ATOLL RESEARCH BULLETIN NO. 251

BIOGEOGRAPHY OF THE PUERTO RICAN BANK

by Harold Heatwole, Richard Levins and Michael D. Byer

Issued by
THE SMITHSONIAN INSTITUTION
Washington, D. C., U.S.A.
July 1981

Fig. 1. Map of the Puerto Rican Island Shelf. Rectangles A - E indicate boundaries of maps presented in more detail in Appendix I. 1. Cayo Santiago, 2. Cayo Batata, 3. Cayo de Afuera, 4. Cayo de Tierra, 5. Cardona Key, 6. Protestant Key, 7. Green Key (St. Croix), 8. Caña Azul

ATOLL RESEARCH BULLETIN 251

ERRATUM

The following caption should be inserted for figure 7:

Fig. 7. Temperature in and near a small clump of vegetation on Cayo Ahogado. Dots: 5 cm deep in soil under clump. Circles: 1 cm deep in soil under clump. Triangles: Soil surface under clump. Squares: Surface of vegetation. X's: Air at center of clump. Broken line indicates intervals of more than one hour between measurements.

BIOGEOGRAPHY OF THE PUERTO RICAN BANK

by Harold Heatwole¹, Richard Levins² and Michael D. Byer³

INTRODUCTION

There has been a recent surge of interest in the biogeography of archipelagoes owing to a reinterpretation of classical concepts of evolution of insular populations, factors controlling numbers of species on islands, and the dynamics of inter-island dispersal. literature on these subjects is rapidly accumulating; general reviews are presented by Mayr (1963), and Baker and Stebbins (1965). Carlguist (1965, 1974), Preston (1962 a, b), MacArthur and Wilson (1963, 1967), MacArthur et al. (1973), Hamilton and Rubinoff (1963, 1967), Hamilton et al. (1963), Crowell (1964), Johnson (1975), Whitehead and Jones (1969), Simberloff (1969, 1970), Simberloff and Wilson (1969), Wilson and Taylor (1967), Carson (1970), Heatwole and Levins (1973), Abbott (1974), Johnson and Raven (1973) and Lynch and Johnson (1974), have provided major impetuses through theoretical and/ or general papers on numbers of species on islands and the dynamics of insular biogeography and evolution. Other work has dealt with specific problems such as dispersal (Gressitt and Yoshimoto 1963, Carlquist 1966 a-c, 1967, Heatwole and Levins 1972b), interspecific competition (Grant 1965, 1966, 1968, Crowell 1962, 1968, Sheppard et al. 1968), effect of disasters (Brattstrom 1963, Sauer 1962), trophic relations (Heatwole 1971, Heatwole and Levins 1972a), colonization (Bassot and Ball 1971, Hunt and Hunt 1974, Becker 1975, Schoener 1975 and Williams 1969), and endemism (Mayr 1965, Heatwole and MacKenzie

Department of Zoology, University of New England, Armidale, N.S.W., 2351, Australia.

Department of Population Sciences, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, O2115, U.S.A.

Departmento de Biología, Universidad de Puerto Rico, Rio Piedras, Puerto Rico, 00931.

1967, Thornton 1967). In addition there have been a large number of studies treating the distribution and variation of specific groups of organisms on islands and the role of historical factors upon such With this broadening base of theoretical background and patterns. accumulation of information on specific aspects, the first two authors felt it opportune to carry out a comprehensive study of an archipelago containing many islands with a variety of sizes, inter-island distances, topography, vegetation, time of separation, use by humans, and other characteristics, and to study as many aspects of the biogeography of as wide a range of organisms as feasible. Our aim was to look at the subject as a whole and thereby contribute toward a synthetic understanding of the broad aspects of the problem. design of the project was presented in an early paper (Levins and Heatwole 1963) and some of the data have been used in general reviews (Levins 1968, 1969, Heatwole 1976a). This paper presents the geography, vegetation, and ecological characteristics of the Puerto Rican Bank and constitutes a background for the rest of the series (some of which have already been published, e.g. Heatwole and Levins 1972b, 1973, Levins and Heatwole 1973, Levins et al. 1973), and for papers by a variety of specialists using the material we collected during our study.

GENERAL DESCRIPTION OF THE REGION AND ITS CLIMATE

The area studied consists of all the islands and cays in the part of the Antillean chain making up the political units of Puerto Rico, the American Virgin Islands, and the British Virgin Islands, sometimes referred to as "Greater Puerto Rico" (Thomas and Schwartz 1966). This includes all land masses between latitudes 17° 40' N and 18° 45' N and stretching from the island of Monito (longitude 67° 57' W) to Anegada (longitude 64° 16' W). There are 243 islands and cays in this area (not including those emergent ones periodically washed over by tides and lacking terrestrial vegetation). Of these we surveyed 141, including all of the larger ones. Figure 1 shows a map of the general region and appendix I provides detailed ones of selected areas containing the small cays which were studied. Where possible we followed the official names for islands as listed by the U.S. Department of Commerce, Coast and Geodetic Survey (1962). When no official name could be found, we used names supplied by local fishermen. nomenclatural disputes among local authorities, we simply chose one of Sometimes we were unable to obtain any name at all the alternatives. and have named islands ourselves.

The climate of the area is tropical and slightly modified by altitude on the larger islands. Rainfall on Puerto Rico is geographically variable, greater in the central mountains than on the coastal plain. In addition, there is a general east-west difference. On the Luquillo Mountains at the northeastern tip of the island, rainfall may exceed 5,080 mm (200 inches) annually; the southwestern lowlands receive less than 750 mm (30 inches) annually (Picó 1954 and see Fig. 2).

The principal Virgin Islands are similar in rainfall to the coastal areas of Puerto Rico; smaller, or more isolated islands represented by Culebra, Vieques, and Mona in figure 2, are more xeric. Mona is drier than its rainfall would suggest, as it is honeycombed with limestone caverns which rapidly drain off surface water.

Temperatures are remarkably uniform seasonally and from year to year in a given locality (Figs. 3, 4). However, on Puerto Rico, temperature follows east-west and altitudinal trends. Reservoir (elevation 1,000 m) has lower temperatures than Rio Piedras (elevation 15 m) on the northeastern coast. Rio Piedras is in turn cooler than Magueyes Island (10 m) which is representative of the southwestern coast (Fig. 4). The isotherm for mean annual temperatures of 24° C separates the coastal plain and some valleys (below 150 m elevation and where mean annual values exceeding 260 may occur) from the mountains where mean annual values below 20°C are encountered in the highest parts; the highest temperature ever recorded for the island was 39.5° C, the lowest 5° C (Picó 1954). The hotter coastal areas of southwest Puerto Rico have temperatures similar to those of the principal Virgin Islands (Fig. 4).

Very few meteorological data are available for small cays, though it can be said that most are warm and dry. Figure 3 presents data for However, this island is so close to Puerto Rico that Magueyes Island. it is representative of conditions of coastal southwest Puerto Rico rather than that of more isolated islands. Table 1 gives the average conditions on Cayo Ahogado, a small, nearly barren sandy cay about 1 km east of Puerto Rico, during several days in March, 1966. Figures 5-7 show the details of the daily regimen for the two most extreme days, March 10 which was bright and sunny, and March 19 which was heavily overcast with occasional fine rain. The hottest environment on the cay was the soil surface where midday temperatures exceeded 380 C. At 1 cm and 5 cm below the soil surface, temperatures decreased somewhat but even there reached 30° C or above on hot days. Air temperatures near the ground reached 32° C on warm days, temperature decreased with height above ground. However, except for a few flying forms which experience above-ground temperatures, most inhabitants of small cays are exposed to the thermal conditions near the ground. vegetation on Cayo Ahogado ameliorates temperatures somewhat (Fig. 7), although on hot days air temperatures near the surface of small clumps of plants reach 32 - 33° C. Surface temperatures of leaves were several degrees lower, presumably because of transpiration. Temperature 1 cm down in the soil was as much as 20 C cooler under vegetation than in the open. At 5 cm depth the difference was as much as 4⁰ C. Although the plants were small and sparsely distributed, and hence did not greatly affect environmental temperatures, the few degrees of difference they caused were in a range that may reduce the insolation directly reaching small animals. The effect of unobstructed radiant energy can be seen from the high black bulb (TRR) temperatures (Fig. 5).

The nearly bare, rocky cays probably have even more extreme conditions than Cayo Ahogado, more heavily vegetated ones are probably

more moderate.

The prevailing winds are from the northeast and apparently have been so at least back into the Pleistocene (Kaye 1959). Marine currents are east to west, although a northward current exists between Mona and Puerto Rico, and there is a northward deflection between Vieques and Puerto Rico (Kaye 1959).

Hurricanes usually travel in a general east to west direction.

VEGETATION

The Puerto Rican and Virgin Island flora has been most recently summarized by Britton and Wilson (1923-30) and by Little and Wadsworth (1964). Ecological treatments of a broad nature have been presented by Gleason and Cook (1927), Cook and Gleason (1928) and Dansereau (1966). Only a few articles have dealt with the plants on the small islands (e.g. Britton 1924, 1933 on Hicacos and Culebra, Heatwole et al. 1963 on Cayo Santiago and Cayo Batata, and D'Arcy 1971, 1975 on Anegada). Our records are presented in Appendix II.

Analysis of the vegetation of the islands treated here would be a major project in itself and was not possible within the scope of the present investigation. However, broad vegetation types could be recognized and were grouped on a physiognomic basis into 12 categories, most of which include more than one association, or at least varied somewhat in floristic composition from place to place. The classification is not intended to be phytosociological, but rather a useful description of the type and diversity of available structural habitats for animals. The spatial relationships of the categories to one another and to several major environmental parameters are clarified in Figs. 8 and 9. The categories are as follows:

- 1. Lack of Vegetation. Extensive areas of bare rock or sand, usually coastal, though occurring locally further inland.
- 2. Succulent Beach Vegetation. Often nearly pure stands of low, succulent, halophytic herbs. Sesuvium portulacastrum and Philoxeris vermicularis, usually under 30 cm in height, occur alone or in combination on relatively undisturbed gravelly or sandy beaches¹. These two species plus Batis maritima and Salicornia perennis form various combinations after the elimination of mangrove (8), or in otherwise intermittently-flooded, shallow, saline coastal depressions. Batis may reach 70 cm in height.
- 3. Mixed Beach Vegetation. A variable mixture of herbs (Cakile lanceolata), small suffrutescents (Euphorbia buxifolia), rhizomaceous

Nomenclature follows Britton and Wilson (1923-30).

grasses (Sporobolus virginicus, Spartina patens) and creeping vines (Ipomoea pes-caprae, Canavalia maritima, Vigna marina), sometimes with Sesuvium portulacastrum. Vegetation usually less than 1 m tall, with low cover. On sand, gravel, or crevices in coastal shelf limestone, fairly resistant to disturbance, and recovers rapidly.

- 4. Beach Shrubs. Small, scattered shrubs intermixed with herbs and grasses, occasionally containing a high proportion of vines which form a nearly continuous mat. Height usually 1-2 m, found inland from the previous type. Common species are Suriana maritima, Tournefortia gnaphalodes, and Thespesia populnea, with the species characteristic of the previous type (3) as ground cover. Fairly resistant to disturbance.
- 5. Graminoid. Stands having the graminoid life form dominant, whether composed of true grasses or of sedges. Usually also contains a number of forbs. Usually 1 m or less high, though taller stands are sometimes found. Found in the interior of intermediate-sized and larger islands. Always a disclimax or successional stage in the climatic zone studied (Richards 1957), maintained by grazing, fire, or periodic cutting or mowing. Various graminoid species cover the full range of moisture and edaphic conditions found in the study region.
- 6. Scrub. Shrubs of various types, cactus, and vines, frequently intermixed with herbs and grasses. Varies from less than 50% to 100% cover, easily penetrable to impenetrable, and less than 1 m to over 2 m, occasionally higher. Frequent dominants are Croton astroites, C. rigidus (both replaced by C. discolor in Anegada), Lantana involucrata, Anthacanthus spinosus, and Pithecellobium unguiscati. A disclimax maintained by overgrazing and overbrowsing, primarily by feral goats, in the interior of intermediate-sized, drier islands and on the leeward (rain-shadow) sides of the largest islands. Shrub stages in the zone where moist forest (10) is climax are successional and consist cf more mesomorphic species, often seedlings and saplings of larger, secondary forest trees.
- 7. Coastal Groves. Stands of small trees or shrubs, inland from (4), ranging from nearly prostrate and less than 1 m in height on windswept coasts and dunes, to 4 m or more in protected sites. Usually provide dense shade with a heavy accumulation of leaf litter. Frequently pure stands of Coccoloba uvifera or Hippomane mancinella, or mixtures of several to many species; Elaeodendron xylocarpum, Erithalis fruticosa, Conocarpus erecta, and the tree-cactus Opuntia rubescens are prominent.
- 8. Mangroves. Stands of mangrove ranging from scattered saplings about 1 m in height to forests over 10 m, providing rather deep shade, in permanently- or intermittently-flooded depressions behind coasts, and along coasts and on old reefs etc. which are sheltered from wave action. Rhizophora mangle, Avicennia nitida, Laguncularia racemosa and Conocarpus erecta, either as single-species stands or in various combinations.

- 9. Xeric Forest. Deciduous, open forest, frequently with sparse understory of cactus, thorny shrubs, vines, and annual grasses. Height usually over 8 m. Interior of intermediate-sized islands and leeward (rain-shadow) sides of largest islands. May be absent on the windward (humid) sides of the latter, where mesic forest (10) lies adjacent to coastal formations, except where local edaphic-topographic conditions permit xeric forest. Probably includes Dansereau's (1966) category of Semi-deciduous Forest and Little and Wadsworth's (1964) Dry Coastal and Dry Limestone forests. Dominant trees variable from place to place; Pisonia subcordata, Torrubia fragrans, Bursera simarouba, Citharexylum fruticosum, Tabebuia heterophylla, and the giant cactus Cephalocereus royeni are representative.
- 10. Mesic Forest. Includes a variety of moister, altitudinally-zoned types including those called Moist-coastal, Moist Limestone, Lower and Upper Cordillera, and Lower and Upper Luquillo Forest by Little and Wadsworth (1964), and Lowland Rain Forest, Lower Montane Rain Forest, Montane Forest and Montane Scrub by Dansereau (1966). Physiognomy and floristics are variable (see Beard 1944, Richards 1957). Such a variety is included under one heading since in the region studied, these forests occur only on the largest islands, some types only on Puerto Rico. Finer distinctions would be unnecessary for our purposes.
- 11. Coconut Groves. Usually planted by man in flat, sandy coastal areas. Light shade, understory usually composed of species of the mixed beach vegetation (3) and variable.
- 12. Other. Any vegetation not fitting any of the above categories, e.g. crops, ruderals, dooryards, or vegetation of other highly modified areas.

During the survey of a particular island, the vegetation types were recorded, and where feasible, the percentage of the island covered by each one estimated and a rough sketch-map drawn. When only a few individual plants were present on an island, complete censuses were made. In some instances, vegetational reconnaissances were made.

The results are presented in Table 2. By way of summary it can be stated that Puerto Rico contains all the vegetation types outlined (1-12). Culebra and Vieques have xeric to mesic forests (9, 10); Mona, Caja de Muertos and Desecheo support xeric forest, all five have a variety of the simplest types (1-8). Monito has predominantly scrub (6). The small cays near the southern and southwestern coast of Puerto Rico are mostly mangrove islands (8); those further offshore tend to be sandy and nearly bare (1) or with succulents (2) mixed beach vegetation (3), or beach shrubs (4).

The group of cays extending toward Culebra from northeastern Puerto Rico are mostly steep-sided, limestone or cemented sand dunes, although a few low sandy islands also occur. Most support scrub (6),

succulent or mixed beach vegetation (2,3), although the larger ones have shrubs (4) and occasionally trees. The cays south of this chain (east of Puerto Rico) and around Culebra Island are variable, most being either rocky with a beach, or sandy. The larger ones support xeric forest (9), the smaller ones only succulent or mixed beach vegetation (2,3) or scrub (6).

The Virgin Islands, St. John, Tortola and St. Croix have mesic forest plus all other categories (1 - 12). The other principal islands except Anegada, as well as a few somewhat smaller ones such as Guana, Greater Caminoe, Peter, Norman, and Greater Thatch have xeric The remaining cays and small islands plus Anegada are variable. However, few support vegetation more lush than scrub (6), or at most limited areas of xeric forest (9). The available climate and soil data, corroborated by conversation with older inhabitants, indicate that at one time forest was more extensive on both the larger Apparently it has been decimated by and the smaller islands. charcoal burners, cultivators, and feral animals, a widespread phenomenon throughout the Caribbean as indeed in the tropics generally.

GEOLOGY

Rosen (1975) has reviewed the previous history of the Caribbean. Although there is not unanimity among authorities on the topic, he felt that the most reasonable synthesis of the geologic and biogeographic data was the following sequence of events. In the late Mesozoic when South America was separating from Africa, a subduction zone consuming the eastern Pacific sea floor bordered the western coast of both North and South America and the area between them, the latter consisting of a volcanic archipelago, the Proto-Antilles. Subsequently, separate North and South American plates arose by the formation of two decoupling faults on either side of the Proto-Antilles. With the continued relative westward drift of the North American and South American plates, the Proto-Antillean region became displaced eastward towards its present relative position; a new fault zone occurred which separated the Proto-Antilles into two subregions which subsequently became the Greater Antilles and Lesser Antilles. With the continued westward movement of the major American continents, further faulting occurred breaking up the Central American region into an archipelago which subsequently joined to form the present day isthmus; the Caribbean islands aligned themselves into their present relative positions.

If this model is correct, the Greater Antilles have been an archipelago for a long time, contrary to previous opinion that the major Antillean islands were broadly connected (Schuchert 1935). Connections between adjacent banks were rare, the Puerto Rican one never having been connected to the nearest one to the east (St. Maarten) (Butterlin 1956). If it was ever connected to Hispaniola, it lost the connection in the Pliocene or earlier (Mitchell 1954).

The Puerto Rican Bank (Puerto Rico, its outlying islands, the American and British Virgin Islands) resulted from vulcanization in the Cretaceous (Meyerhoff 1933) and became emergent during orogenic movements in the late Eocene (Butterlin 1956). In contrast to the paucity of connections between banks, connections of islands within the Puerto Rican Bank have been extensive and recent. Heatwole and MacKenzie (1967) have shown that the principal islands of the Virgin group (except St. Croix) lost their connection with each other and with Puerto Rico only about 8,000-10,000 years ago, due to eustatic rise in sea level. Culebra lost its connection with Puerto Rico and the Virgins at the same time, although Vieques, Caja de Muertos, and many small cays remained connected to Puerto Rico until about 6,000 years The smaller islands around the principal Virgins were ago. separated from the latter at various times before 8,000-10,000 B.P.

By contrast, Mona, Monito, Desecheo and St. Croix have been isolated much longer, not having been connected to any other islands since at least the Pliocene, if then.

A number of islands were present at various times which have since submerged.

ISLAND AND COASTLINE FORMS

The larger islands are of volcanic origin and consist mainly of igneous and metamorphic rock with quite steep topography. Puerto Rico has, in addition, an extensive northern and a smaller southern strip of cenozoic limestone which has been extensively eroded, giving rise to characteristic low, blocky, vertical-sided hills with many caves. Mona, Monito and the higher islands to the northeast of Puerto Rico are of similar origin, while Anegada is a low, flat limestone shelf, contrasting markedly with all the other islands of the Puerto Rican bank save for a few small cays.

Form of the smaller islands varies considerably, and ranges from low, sandy cays with gently sloping beaches to mushroom-shaped ones surrounded by vertical cliffs undercut at the base by wave action. Many islands have a great proportion of the coastline made up of rock which is neither vertical cliff, nor beach. We termed this "intermediate type". A final coastline type consisted of mangrove swamp. Most large islands have several coastline types, including beach, undercut cliffs, and intermediate type.

METHOD OF SURVEY

Each island surveyed was described as to its vegetation (see above), geological type, soil, presence or absence of standing water, maximum height, area, nature of shoreline, and proportion of each type of coast, proportion surrounded by barrier reef, distance to nearest other landmass on the Puerto Rican shelf in each of 4 quadrants, degree of

disturbance by humans and time of isolation from other land masses.

Proportions of various shoreline types were obtained by measuring the perimeter on a map or aerial photograph with a Radix map measurer, keeping values for each coastline type separate in accordance with observations made while on the island. Percentages of each type were then calculated. Island areas were obtained either from the literature, from maps using a planimeter, or by direct measurement. Maximum height was obtained from topographic maps, or in the case of small cays by direct estimation or measurement. The other information was obtained by direct observation supplemented by maps, aerial photographs, nautical charts, conversations with inhabitants of various islands, and the literature.

On every island visited, each of the above-defined vegetation categories which was present was searched for the following group of animals; terrestrial isopods, centipedes, millipedes, pseudoscorpions, amblypigids (= phrynichids or tailless whip scorpions), scorpions, spiders, ants, Drosophila, land snails, amphibians and reptiles; other groups provided supplementary information on certain aspects. opportunistic in that ease of sampling and the probability of obtaining adequate samples in a relatively short time was a consideration in our choice of groups. However, the animal groups we used were chosen to include both eurytopic and stenotopic forms, those with weak and those with strong dispersal powers, and groups with a wide range of suspected Specialists in various groups identified (or are evolutionary rates. in the process of identifying) our material and advised on techniques which would provide as complete a representation of an island's fauna as possible. These methods included use of (1) Tullgren funnel extraction of litter samples transported to the laboratory in plastic bags, (2) sweeping vegetation with an insect net, (3) beating vegetation over a white sheet, (4) examining litter on a white sheet, (5) setting out bait (mixed fruits for Drosophila, sugar and tuna for ants, etc.), (6) shooting or noosing (reptiles), (7) careful search of the surface of the ground and vegetation and under rocks and other objects, and (8) breaking open twigs, old termite nests, logs, and other debris.

All data were stored on computer cards. Statistical treatment is discussed later in appropriate papers, as are other special methods used for individual parts of the project. Biogeographic and taxonomic treatments will be published by the various specialists that have received material. The appendices list the results for some groups for which a number of identifications are now available.

SPECIAL NOTES

The island of Sail Rock (Appendix I) requires special mention. It is a mass of rock rising 38 m (125 ft) precipitously out of the sea. It is about 100 m in diameter. The cliffs around it are vertical or nearly vertical and are undercut at the base. It is unusual in that

it completely lacks terrestrial vascular plants and hence no local autotrophic energy base for the surprisingly large number of terrestrial animals. Indeed, the only terrestrial plants observed at all was a green alga in one crevice on the north side. A few individuals of a marine plants, <code>Sargassum</code>, collected by sea birds or material was present but did not appear to have any terrestrial animals associated with it or feeding upon it.

We visited the island in May 1966, scaled the cliffs and made an intensive search for organisms on the top.

Numerous cracks and crevices occur in the rock on top, and on the few flat, or nearly flat areas, there are some loose boulders and From these places we collected species of terrestrial vertebrates and one vertebrate (a gekkonid lizard, Sphaerodactylus macrolepis macrolepis); many of the species were quite abundant. far the most abundant arthropod present was a terrestrial isopod. occurred in surprisingly dense populations and probably served as the basis for much of the rest of the terrestrial food chain which consisted largely of predators, there was I species each of centipede, tailless whip scorpion (amblypigid = phrynichid), scorpion and spider. There was in addition one species of ant, several other species of insects, and a land crab. Unfortunately none of the invertebrates were identified to species as our collection was lost in the mail when sent to specialists for identification and we have not had opportunity However, sufficient is known about the to visit the island again. genuine feeding habits of some of the groups to comment on the probable trophic relations.

The top of the island was used extensively by sea birds for nesting and their excrement literally covers the island, giving it a white-washed appearance. These birds feed on fish and hence it is probable that they serve as transfer organisms (Heatwole 1975) obtaining energy from the marine community and depositing a food source for the terrestrial community on the island in the form of quano and on occasions as carrion (dead adults or chicks) or broken The guano is believed to be the most important source as is carrion was observed and the only species likely to be scavengers that were present was the land crab and possibly the ant. The undercut nature of the island and its height would make work up of marine Isopods generally feed on detritus or other finely carrion unlikely. divided organic matter and we suspect that it fed on quano and in turn was preyed upon by the predatory invertebrates. The larger predators such as scorpion, whip scorpion, and lizards probably eat isopods and None of the lizards some of the invertebrates that prey on isopods. we collected had prey in their stomachs. However, we did obtain three recognizable items from the section of one animal. There were remains of an ant, the head of an insect larva, and surprisingly, parts of a species not otherwise known from the island, a homopteran. last is a plant feeder and must represent a waif arriving aerially (the nearest vegetated land mass, Culebra Island is 14 km away).

In summary, the probable trophic relations are (1) a transfer of marine-derived energy via sea birds in the form of guano and carrion, (2) its utilization by isopods which (3) serve as prey for a variety of predators, (4) leading to secondary predators. The endogenous prey is probably supplemented by (5) aerial waifs. Complete dependence of an insular terrestrial community upon exogenous, marine-derived energy, although unusual, is not unique. Heatwole (1975) reports communities of several terrestrial species (including predators) on vegetation-free sand cays in the Coral Sea.

The source of the terrestrial fauna on Sail Rock is problematic. Sail Rock became isolated from the once continuous land mass of Greater Puerto Rico (about 8,000 years B.P.) (Heatwole and MacKenzie 1967), and it seems unlikely that the resident species could have maintained themselves on such a small barren island. On the whole the undercut nature of the island's base would suggest that at present flotsam transport would be unlikely and the flightless nature of many of the resident species would militate against aerial transport. The difficulty of access to the island would make human transport unlikely, although there is an automatic light house on top which is periodically serviced. Introduction of so many species by this means, however, seems unlikely.

From the above, it is clear that Sail Rock is especially interesting from the standpoints of island biogeography and community ecology. It would warrant quantitative study by someone in a position to carry out a long-term observation there.

DISCUSSION

The brief description of the general ecology of the archipelago presented above provides a summary of local conditions during the 8-year period in which data were collected. Many ecological characteristics are, however, in the process of rapid change, largely through human influence. An assessment of the nature of such changes is requisite for placing the present study in perspective and for evaluation of future data.

In pre-Columbian times a succession of cultures occurred in the area, especially on the larger islands. However, even those as small as Culebra (about 14 x 6 kms) had at least semi-resident populations, a midden containing various artifacts was found on this island during one of our field trips. Some species, such as useful plants and the edible iguana, may possibly owe their distribution in part to transport by these early residents. In post-Columbian times, man's effect was accelerated through additional clearing of land and establishment of an European-type culture. Domestic animals and a variety of ornamental and edible plants were purposefully introduced as well as various weeds, rodents, insects and other involuntarilytransported species. Feral cats and especially rats have possibly had an adverse effect on the now rare and endangered Puerto Rican

parrot (Amazona v. vittata) through depredation of nests (Rodriguez-Vidal 1959). The mongoose was introduced in order to control rodents (unsuccessfully). The role of the mongoose in the decline and extinction of West Indian native fauna may not be as great as is sometimes attributed to it, but it is almost certainly responsible for local extinction of some lizards, snakes and ground-nesting birds (see Barbour 1930, Heatwole and Torres 1967, Philibosian and Ruibal 1971).

The cane toad (*Bufo marinus*) was brought to Puerto Rico to control insect pests of sugar cane in 1920 (Bartlett 1949) and is now abundant on various islands. Cayo Santiago has had a feral band of rhesus monkeys for a number of years. Recently, introduction of some of them into several additional islands was made. These populations will undoubtedly have an ecological effect.

Goats and sheep are perhaps the most destructive of any introduced species, and there are probably few islands in the archipelago which have not been disturbed to some extent by these animals at some time or The early custom of releasing goats and other domestic ungulates on small islands and cays for later use by mariners was apparently common (Davis 1971). Mona and Desecheo Islands still maintain local populations originating in this way; the former island serves as a reserve for sportsmen to hunt goats and feral pigs. of the cays in the Virgin Islands have goat herds which belong to residents from larger islands and from which individuals are periodically killed for meat. Perhaps the island most affected by feral animals is Salt Island, B.V.I., in which the greater part of the vegetation has been reduced to a low, open strand of Croton rigidus and C. astroites, species unpalatable even to goats. Except for creeping Opuntia repens, the spaces between Croton bushes are nearly devoid of other vegetation, and goats have been observed gleaning the tiny grasses and annuals which do appear.

On Salt Island at least, free-roaming sheep and cattle also played a role in decimating once-considerable grassy areas (Mrs. Beatrice Smith, personal communication). These animals died out, since they cannot subsist on a diet of woody dicots as can goats. Observations on exclosures over a three-year period (Byer, in preparation) suggest that once ground cover is eliminated, re-establishment of woody plants is retarded even in the absence of goats. Possibly increased run-off either washes seeds away directly or removes organic matter necessary for their germination.

The degree of disturbance to a small island seems to be related to its geomorphologic type. Monito, which has steep sides undercut at the base, is relatively inaccessible and has probably been visited by humans only a few times (Rolle et al. 1964). The same is true of a number of the small islands in the chain just northeast of Puerto Rico. The latter, however, were used for strafing practice during World War II and remnants of shells can still be found embedded in rock on the top of some. Others of the relatively inaccessible steep-sided islands (e.g. Sail Rock) constitute shipping dangers and have light-

houses or other navigational aids which must be periodically serviced.

Many of the small accessible islands are frequently visited for short periods by fishermen who camp on the beach but otherwise have a Some islands containing large colonies of nesting sea minimal effect. birds are periodically visited by egg gatherers (e.g. Frenchcap Cay). A number of the more accessible islands have people living on them, even some as small as Ramos Island (< ½ km in greatest diameter). Lobos Island (slightly more than ½ km in greatest diameter) has a tourist hotel, and Isleta Marine serves as a yacht basin. islands with some beach and larger than 1 km in greatest diameter are inhabited either permanently or seasonally. Some inhabited islands show almost no disturbance by their residents (e.g. Guana Island); most however, are clearly modified by agricultural or other practices. Cayo Luis Peña and part of Culebra Island are used for bombing and naval gunnery practice. During World War II, Desecheo was used for bombing practice and bomb fragments can still be found on various parts of the island.

Human effects have accelerated greatly during our study. On many small uninhabited islands in the beginning of the study one was reminded of the proximity of human populations only by the large numbers of bottles, light bulbs, shoes, etc. encountered in the beach drift.

Most, however, especially if currently goat-free, appeared in a relatively natural state. Various such islands close to Puerto Rico, were selected for detailed, long-term study (e.g. Cayo Ahogado and Palominitos). It was fortunate that our study was initiated as early as it was because today one would have to select less accessible islands in order to carry out such studies. Those near Puerto Rico with good anchorage for small craft are now visited by large numbers of weekend excursionists, who have turned the cays into veritable garbage and trash dumps and have cut woody vegetation for campfires and tent supports.

It appears that the small, inhabited islands whose owners discourage trespassing are likely to retain some similarity to their natural state, whereas uninhabited, public ones are already being rapidly destroyed.

The larger islands also show an alarming degree of human disturbances to natural communities. For example, in a study contracted by the Puerto Rican government, Heatwole (1970) found that that island had lost a mean of 1.7% of its coverage of mangrove per decade between 1930 and the mid-1960's. Between 1965 and 1970, large tracts were lost, some swamps dying completely. Industrial pollution and interference with drainage patterns by construction activities, dredging, and filling contributed to their demise. Proposed touristic development in the Vacia Talega area will probably eliminate much of Puerto Rico's best remaining mangrove, and is already flooding the island's largest stand of Avicennia, near Boguerón, with fresh water in order to convert it into a Typha marsh to be used for waterfowl hunting. The flooding was undertaken because all sizeable natural

fresh-water marshes, once thought valueless, had been eliminated some time in the past by agricultural development.

The destruction of habitat with increasing levels of human population is of course, not a problem unique to islands. However, there may be unique aspects arising from insularity. It would appear that three major tasks face island ecologists, (1) detailed study of the functioning of relatively undisturbed insular ecosystems while such are still available, (2) the assessment of the effect of human pressure on such ecosystems, and (3) recommending practices for use of small islands in ways that will not result in their destruction and loss to the human population. The series, to which this paper represents the introduction, concentrates largely on the first of these tasks.

ACKNOWLEDGEMENTS

We are grateful to the citizens of the United States of America who financed this project through a National Science Foundation grant Dr. Maximo Cerame-Vivas aided by putting the Marine Research Vessel, Medusa, at our disposal. The success of the project was greatly enhanced by the dedication of the research assistants, Faustino McKenzie and Frank Torres, whose efforts frequently went beyond the call of duty. Many students and staff of the University of Puerto Rico aided in the field work. Various people and institutions provided facilities, lodging, transportation and other essential aid during field expeditions. These were Eunice Boardman, Reginald Penn, the Police Department of Cabo Rojo, P.R., the U.S. Coast Guard, the U.S. Navy, the Institute of Marine Biology at La Parguera, P.R., the Department of Agriculture of the British Virgin Islands, the Catholic University of Puerto Rico, and the late Tito John Cooper and Steven D. Garber supplied their Wirshing. We are grateful to Frank Torres, distributional records for our use. Alice Matta and Angelica Muñiz for summarizing the arachnid date. Roy Woodbury aided in identification of some of the plants. Done, Elizabeth Cameron and Barbara Saylor Done criticized the manuscript and Viola Watt, Neva Walden, Russell Hobbs, Sue Dixon and Audry Heatwole aided in its preparation.

LITERATURE CITED

- Abbott, I. 1974 Numbers of plant, insect and land bird species on nineteen remote islands in the Southern Hemisphere. *Biol. J. Linn. Soc.* 6: 143-152.
- Baker, H.G. and G.L. Stebbins 1965 The genetics of colonizing species. Academic Press, New York.
- Bassot, J.M. and E.E. Ball 1972 Biological colonization of recently created islands in Lake Wisdom, Long Island, Papua New Guinea, with observations on the fauna of the lake. Papua New Guinea Sci. Soc. Proc. 23: 26-35.

- Beard, J.S. 1944 Climax vegetation in tropical America. *Ecology* 25: 127-158.
- Becker, P. 1975 Island colonization by carnivorous and herbivorous Coleoptera. J. Anim. Ecol. 44: 893-906.
- Brattstrom, B.H. 1963 Barcena Volcano, 1952: Its effect on the fauna and flora of San Benedicto Island, Mexico. Symposium 10th Pacific Sci. Congress, pp. 499-524.
- Britton, N.L. 1924 La vegetación de Cayo Icacos. Revista Agric. Pto Rico 12: 91-96.
- Britton, N.L. 1933 An undescribed cactus of Culebra Island, Puerto Rico. Cactus and Succulent Journal 5: 469.
- Britton, N.L. and P. Wilson 1923-1930 Descriptive flora Spermatophyta. Botany of Porto Rico and the Virgin Islands.
 N.Y. Acad. Sci. Surv. P.R. and Virgin Isls. Vols. 5 and 6.
- Butterlin, J. 1956 La constitution géologique et la structure des Antilles: Centre National de la Recherche Scientifique, 453 pp.
- Carlquist, S. 1965 *Island Life*. Natural History Press, Garden City, New York, 451 pp.
- Carlquist, S. 1966a The biota of long-distance dispersal. I. Principles of dispersal and evolution. *Quart. Rev. Biol.* 41: 247-270.
- Carlquist, S. 1966b The biota of long-distance dispersal. II. Loss of dispersibility in Pacific Compositae. *Evolution* 20: 30-48.
- Carlquist, S. 1966c The biota of long-distance dispersal. IV.

 Genetic systems in the floras of oceanic islands. *Evolution* 20: 433-455.
- Carlquist, S. 1967 The biota of long-distance dispersal. V. Plant dispersal to Pacific Islands. *Bull. Torrey Bot. Club* 94: 129-161.
- Carlquist, S. 1974 *Island Biology*. Columbia University Press, New York, 660 pp.
- Carson, H.L. 1970 Chromosomal tracers of founder events. *Biotropica* 2: 3-6.
- Climatological Data Puerto Rico and Virgin Islands. 1960-1967 vols. 6-12. U.S. Dept. of Commerce Weather Bureau, Asheville.
- Cook, M.T. and H.A. Gleason 1928 Ecological survey of the flora of Porto Rico. Pto. Rico Dept. of Agric. Jour. 12: 1-139.

- Crowell, K.L. 1962 Reduced interspecific competition among the birds of Bermuda. *Ecology* 43: 75-88.
- Crowell, K.L. 1964 On determinants of insular faunas. Amer. Nat. 47: 194-196.
- Crowell, K.L. 1968 Rates of competitive exclusion by the Argentine ant in Bermuda. *Ecology* 49: 551-555.
- Dansereau, P. 1966 Studies on the vegetation of Puerto Rico. I.

 Description and integration of the plant communities. *Univ. Pto Rico Instit. Carib. Stud. Spec. Publ.* 1: 1-45, 56-287.
- D'Arcy, W.G. 1971 The island of Anegada and its flora. Atoll Res. Bull. No. 139: 1-21.
- D'Arcy, W.G. 1975 Anegada Island: vegetation and flora. Atoll Res. Bull. 188: 1-40.
- Gleason, H.A. and M.T. Cook 1927 Plant ecology of Porto Rico. N.Y. Acad. Sci. Surv. P.R. and Virgin Isls. 7: 1-173.
- Grant, P.R. 1965 The adaptive significance of some size trends in island birds. *Evolution* 19: 355-367.
- Grant, P.R. 1966 Ecological compatibility of bird species on islands. *Amer. Nat.* 100: 451-462.
- Grant, P.R. 1968 Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. *Systematic Zoology* 319-333.
- Gressitt, J.L. and C.M. Yoshimoto 1963 Dispersal of animals in the Pacific. pp. 283-292 in: *Pacific Basin Biogeography, a Symposium*. Bishop Mus. Press, Honolulu.
- Hamilton, T.H. and I. Rubinoff 1963 Isolation, endemism, and multiplication of species in the Darwin Finches. *Evolution* 17: 388-403.
- Hamilton, T.H., I. Rubinoff and R.H. Barth Jr. 1963 Species abundance: Natural regulation of insular variation. *Science* 142: 1575-1577.
- Hamilton, T.H. and I. Rubinoff 1967 On predicting insular variation in endemism and sympathy for the Darwin Finches in the Galapagos Archipelago. *Amer. Nat.* 101: 161-171.
- Heatwole, H. 1971 Marine-dependent terrestrial biotic communities on some cays in the coral sea. *Ecology* 52: 363-366.

- Heatwole, H. 1976a The ecology and biogeography of coral cays. In:
 Biology and Geology of Coral Reefs. Vol. 3 (Biology II) (eds.
 O.A. Jones and R. Endean), Academic Press, New York.
- Heatwole, H. 1976b Herpetogeography of Puerto Rico. VII. Geographic variation in the Anolis cristatellus complex in Puerto Rico and the Virgin Islands. Occ. Papers Mus. Nat. Hist. Univ. Kansas 46: 1-18.
- Heatwole, H. and R. Levins 1972a Trophic structure stability and faunal change during recolonization. *Ecology* 53: 531-534.
- Heatwole, H. and R. Levins 1972b Biogeography of the Puerto Rican Bank: flotsam transport of terrestrial animals. *Ecology* 53: 112-117.
- Heatwole, H. and R. Levins 1973 Biogeography of the Puerto Rican Bank: species-turnover on a small cay, Cayo Ahogado. *Ecology* 54: 1042-1055.
- Heatwole, H. and F. MacKenzie 1967 Herpetogeography of Puerto Rico. IV. Paleogeography, faunal similarity and endemism. *Evolution* 21: 429-438.
- Heatwole, H., D.S. Sade and R. Hildreth 1963 Herpetogeography of Puerto Rico. I. Herpetofauna of Cayo Santiago and Cayo Batata. Carib. J. Sci. 3: 1-5.
- Hunt, G.L. and M.W. Hunt 1974 Trophic levels and turnover rates: the avifauna of Santa Barbara Island, California. *Condor* 76: 363-369.
- Johnson, M.P. and P.H. Raven 1973 Species numbers and endemism: the Galapagos Archipelago revisited. *Science* 179: 893-897.
- Johnson, N.K. 1975 Controls of number of bird species on montane islands in the Great Basin. *Evolution* 29: 545-563.
- Kaye, C.A. 1959 Shoreline features and quaternary shoreline changes Puerto Rico. *U.S. Geol. Surv. Profess. Pap.* 317-B: 49-140.
- Levins, R. 1969 Thermal acclimation and heat resistance in *Drosophila* species. *Amer. Nat.* 103: 483-499.
- Levins, R. 1968 Evolution in Changing Environments. Princeton Univ. Press. Princeton, N.J.
- Levins, R. and H. Heatwole 1963 On the distribution of organisms on islands. *Carib. J. Sci.* 3: 173-177.
- Levins, R., M.L. Pressick and H. Heatwole 1973 Coexistence patterns of ants. Amer. Scient. 61: 463-472.

- Levins, R. and H. Heatwole 1973 Biogeography of the Puerto Rican Bank: Introduction of species on to Palominitos Island. *Ecology* 54: 1056-1064.
- Little, E.L. Jr. and F.H. Wadsworth 1964 Common Trees of Puerto Rico and the Virgin Islands. *Agric. Handbook* 249: 548 pp. U.S.D.A. Forestry Service, Washington D.C.
- Lynch, J.F. and N.K. Johnson 1974 Turnover and equilibria in insular avifaunas, with special reference to the California Channel Islands. *Condor* 76: 370-384.
- MacArthur, R.H. and E.O. Wilson 1963 An equilibrium theory of insular zoogeography. *Evolution* 17: 373-387.
- MacArthur, R.H. and E.O. Wilson 1967 The Theory of Island Biogeography. Princeton Univ. Press, Princeton, N.J., 203 pp.
- MacArthur, R., J. MacArthur, D. MacArthur and A. MacArthur 1973 The effect of island area on population densities. *Ecology* 54: 657-658.
- MacLean, W.P., R. Kellner and H. Dennis 1977 Island lists of West Indian amphibian and reptiles. Smithsonian Herpetological Information Service 40: 1-47.
- Mayr, E. 1963 Animal Species and Evolution. Harvard Univ. Press, Cambridge, Mass., 797 pp.
- Mayr, E. 1965 Avifauna: Turnover on islands. Science 150: 1587-1588.
- Meyerhoff, H.A. 1933 Geology of Puerto Rico. *Univ. Pto Rico Monogr. Ser.* B., 1: 1-306.
- Mitchell, R.C. 1954 A survey of the geology of Puerto Rico. Univ. Pto Rico Agric. Exp. Sta. Tech. Pap. 13: 1-167.
- Philibosian, R. and J.A. Yntema 1976 Records and status of some reptiles and amphibians in the Virgin Islands. I. 1968-1975. Herpetologica 32: 81-85.
- Philibosian, R. and Yntema, J.A. Records and status of some reptiles and amphibians in the Virgin Islands. II. 1975-1976. Herpetologica, in press.
- Picó, R. 1954 Geografía de Puerto Rico. Editorial Univ., Rio Piedras, P.R., 243 pp.
- Preston, F.W. 1962a The canonical distribution of commonness and rarity: Part I. *Ecology* 43: 185-215.

- Preston, F.W. 1962b The canonical distribution of commonness and rarity: Part II. *Ecology* 43: 410-432.
- Richards, P.W. 1957 The Tropical Rain Forest. Cambridge Univ. Press, Cambridge, 450 pp.
- Rosen, D.E. 1975 A vicariance model of Caribbean biogeography. Systematic Zoology 24: 431-464.
- Sauer, J.D. 1962 Effects of recent tropical cyclones on the coastal vegetation of Mauritius. *Jour. Ecol.* 50: 275-290.
- Schoener, A. 1975 Experimental zoogeography: colonization of marine mini-islands. Amer. Nat. 108: 715-738.
- Schuchert, C. 1935 Historical Geology of the Antillean-Caribbean Region. John Wiley and Sons, New York, 811 pp.
- Schwartz, A. and R. Thomas 1975 A check-list of West Indian amphibians and reptiles. Carnegie Mus. Nat. Hist. Special Publ. 1: 1-216.
- Sheppard, D.H., P.H. Klopfer and H. Oelke 1968 Habitat selection: Differences in stereotypy between insular and continental birds. *Wilson Bull*. 80: 452-457.
- Simberloff, D.S. 1969 Experimental zoogeography of islands. A model for insular colonization. *Ecology* 50: 296-314.
- Simberloff, D.S. 1970 Taxonomic diversity of island biotas. *Evolution* 24: 23-47.
- Simberloff, D.S. and E.O. Wilson 1969 Experimental zoogeography of islands. The colonization of empty islands. *Ecology* 50: 278-296.
- Thomas, R. and A. Schwartz 1966 Sphaerodactylus (Gekkonidae) in the Greater Puerto Rico region. Bull. Fla. State Mus. 10: 193-260.
- Thornton, I.W.B. 1967 The measurement of isolation on archipelagos, and its relation to insular faunal size and endemism. *Evolution* 21: 842-849.
- U.S. Dept. Commerce Coast and Geodetic Survey. 1962 United States
 Coast Pilot 5. Atlantic Coast Gulf of Mexico, Puerto Rico, and
 Virgin Islands. 5th edition. U.S. Gov't Printing Office,
 Washington, D.C., 264 pp. plus 1965 supplement, 17 pp.
- Whitehead, D.R. and C.E. Jones 1969 Small islands and the equilibrium theory of insular biogeography. *Evolution* 23: 171-179.
- Williams, E.E. 1969 The ecology of colonization as seen in the zoogeography of anoline lizards on small islands. *Quart. Rev. Biol.* 44: 345-389.

Wilson, E.O. and R.W. Taylor 1967 An estimate of the potential evolutionary increase in species density in the Polynesian ant fauna. *Evolution* 21: 1-10.

TABLE 1. TEMPERATURES (MEANS AND RANGES) IN DIFFERENT MICRO-HABITATS ON CAYO AHOGADO, MARCH 16-21, 1966.

			AIR	TEMPERATUR	ES	SOIL T	EMPERATURES		TEMPERATURES AT A CLUMP OF VEGETATION								
DATE	Rh %	T _{BB}	1 cm	15 cm	1 m	5 cm deep	l cm deep	Surface	5 cm in soil	1 cm in soil	Soil Surface under Clump						
		24.7	25.1	25.2	25.3	25.6	24.1	23.9	24.7	24.4	24.5	24.9	24.9				
16*		24.2-25.5	24.7-25.7	24.8-25.9	24.9-25.9	24.8-27.1	23.4-25.5	23.3-25.0	24.5-25.0	24.0-25.1	24.0-25.3	24.5-25.5	24.5-25.5				
17	74	33.5	27.5	27.3	26.6	28.0	29.3	30.4	25.8	26.4	27.6	27.0	27.3				
	62-93	24.8-39.0	24.9-30.6	25.2-29.5	25.2-27.7	23.7-30.7	23.6-33.8	24.2-37.9	24.1-26.9	24.8-28.2	25.4-29.9	25.3-28.5	25.3-29.5				
18	73	32.1	27.4	26.7	26.3	27.6	28.9	29.9	26.6	27.4	28.0	26.7	27.6				
	63-95	22.2-41.1	22.9-32.2	22.5-30.1	22.3-28.4	23.3-31.3	21.5-35.5	21.3-38.2	23.2-29.2	23.2-31.4	22.5-33.2	24.7-29.3	22.2-32.2				
	78	24.1	23.7	23.8	23.6	23.8	22.9	22.8	22.9	22.6	22.9	23.8	23.7				
19	73-86	22.5-26.9	22.7-25.4	22.3-24.5	22.3-25.2	23.3-24.3	22.0-24.2	21.7-24.5	22.5-23.2	22.0-23.3	22.0-24.0	22.3-25.1	22.4-25.1				
	70	32.0	25.8	25.6	25.2	25.7	27.1	27.3	23.9	24.4	25.2	25.6	25.7				
20	60-82	23.7-40.8	23.5-28.3	23.4-27.5	23.7-26.7	22.0-28.5	21.4-32.7	21.9-32.6	22.0-25.8	21.9-26.4	22.5-27.5	23.8-27.0	23.7-27.3				
	87	24.1	23.2	23.5	23.9	23.1	21.9	22.2					~				
21**	86-88	22.7-25.5	23.1-23.3	23.1-23.8	23.4-24.4	22.6-23.5	21.7-22.0	21.7-22.7									

Late evening and night only.

^{**} Early morning only.

Table 2. Vegetation types present on the islands of the Puerto Rican Bank. X indicates presence but cover either not estimated or estimated to have been less than 1%. Where numbers are given, they approximate the percentage of the island's area covered by a given vegetation type. Islands which do not appear, either were not studied from the vegetation standpoint, or will be treated in more detail in future papers. For names of vegetation types see text.

	VEGETATION TYPE													
ISLAND NAME	1	2	3	4	5	6	7	8	9	10	11	12		
Abel Key								100						
Alina Key								100						
Anegada	х		x			85	х	5	10			x		
Bare Cactus	x				х	x		x	x					
Beef Island	x		х	х	х	x	x	x	x			x		
Big Cockroach	10				80	10								
Big Hans Lollick	x		x			х	x		x					
Big Tobago	x				х	60	х		40					
Blanquilla	x	65				35								
Booby Hatch	x	x	x											
Botella	х	5			10	85								
Byer Bache								100						
Caballo Blanco								100						
Cabez de Perro	x	х			х	x								
Caja de Muertos	x		x			х	x		х					
Caña Azul	90	5						5						
Cayo Ahogado	75	25	5											
Cayo Batata	x		x	x										
Cayo Enmedio	20	5						7 5						
Cayo Enrique	x	х						x						
Cayo Gilberto								100						
Cayo Isabel								100						
Cayo Majimo	5	5						90						
Cayo Norte	х		x	х		х	x		х					
Cayo Olga								100						
Cayo Santiago	x		x		x		х	x	x		x			
Cayo Turramotecito	90	10												
Chicken Island	х				x	х		x	x					
Cooper Island	х		1		4	50	x		40		5			
Cucaracha	x	x												
(Las Cucarachas)														
Culebra	x	x	х		x	x	х	x	х	x	х	x		
Culebrita	x		x	x		x	x		x					
Dead Man's Chest	х				3	48	1		48					
Desecheo	x		x		x	x	x		x					
Diablo	x			x		x								
Double Island	45	50		5										
East Farallón	7 5	25												

Table 2 cont'd.

Table 2 Cont d.												
	1	2	3	4	5	6	7	8	9	10	11	12
					·							
East Geniquí	10	5			10	50			25			
East Seal Dog	X			X		X	x					
Eustatia	2		1		15	50	1		30		1	
Fallen Jerusalem						x	X		X			X
Frank Key				_				100				
Frenchman's Cap	х			60	37	3						
(French Cap Key)												
Frenchman's Cay	X				97				3			
George Dog			2		30	38	x		30			
Ginger Island	x					52	3		45			
Grant Rock	20	80										
Green Cay	x		x	x		x						
(Near St. Croix)												
Guana	x		x	x		x			x		x	
Gusano	x		x	x								
Herb Key								100				
Hicacos	x		х		x	x	x		x			
Island O								100				
Island Q	40	30						30				
Island R								100				
Isleta Marina	x		х								x	x
José Key								100				
Julie Key								100				
Key Reist								100				
Konyokí	20						60	20				
La Gata	х							x				
(Isla La Gata)												
Laurel	10							90				
Levin's Rock	х			х								
Little Hans Lollick	х	х	х			50	х	x	50		x	
Little Saba Island					25	7 5	х					
Little Tobago	х				70	_			30			
Long Key								100				
Magueyes		x			20	70		x	10			x
Mangrove Key		50						50				
Marina Cay	х	x		x		х	х					x
Mata Seca								100				
Media Luna	95							5				
Minnesota Mangrove								100				
Mona	x		х			х	х		x			
Monito	x		••			x	••		••			
Mosquito Island			4		5		6		80			5
Necker Island	5		x		J	70	x		25			•
Norman Island	2		3			23	2		60	10		
Outer Caracol	x	x	5				_	х	33	~~		
(Cavo Caracoles)												
Palominitos	20		20			55			5			
Palominos	x		_0		10	90			,			x
2 0.101111100	Λ				-0	70						Λ

Table 2 cont'd.

_	1.	2	3	4	5	6	7	8	9	10	11	12
Pelican Key	90			5		5						
Peter Island	х	x	x	х	x	x	x	x	x			
Platillo	х			х		x	x					
Prickly Pear	х				70				30			
Protestant Key	х			x			x	х			x	x
Puerto Rico	x	x	x	x	х	х	х	x	х	x	х	x
Ramos	х		х			х	x	x			x	х
Ratones	х		х		х	80	6	4	10		x	
(Cayo Ratones)												
Romero II								100				
Romero III								100				
Round Key								100				
Sail Rock	100											
Salt Island	х		х			80	5	х	10		5	x
San Cristobal	82	15						3				
Sheila Rock	95	5										
Solito	7 5	25										
(Cayo Solito)												
Spaghetti Key								100				
Spiny Butte						65		5	30			
St. Croix	x	x	x	x	х	х	х	х	x	x	x	x
St. John	x	x	x	x	х	х	x	х	x	x	х	х
St. Thomas	x	x	x	x	x	x	x	x	x		х	x
Surprise Key	20	50	15		15							
Tortola	х	x	x		x	х	X	x	x	x	x	x
Turramote	25	50						25				
Vieques	х	х	х	x	x	х	х	x	х		x	х
Villa del Mar					90		5	5				
Virgin Gorda	х	x	x	x	x	x	x	x	x		x	x
Watson Rock	90		x	5	5							
West Dog					x	х	x		x			
West Farallón	95	5										
West Seal Dog	х				25	60	15					

A.

C.

D.

E.

- Appendix I. Maps of small islands on the Puerto Rican Bank.
 Inconsistency in use of "cay" and "key" reflects
 differences between the American and British Virgin
 Islands in the way the word is spelled. We prefer
 the former and use it unless "key" is part of the
 proper name of an island.
- A. Cays in the La Parguera region of Puerto Rico (enlargement of rectangle A in Figure 1).
- B. Cays immediately east of Puerto Rico (enlargement of rectangle B in Figure 1). 1. Levin's Rock
- C. Cays between Puerto Rico and Culebra Island (enlargement of rectangle C in Figure 1).
- D. Culebra Island and its surrounding cays (enlargement of rectangle D in Figure 1). 1. Chicken Island, 2. Mangrove Key.
- E. The islands and cays of the American and British Virgin Islands, except for St. Croix and its nearby islets (enlargement of rectangle E in Figure 1).

1.	Sail Rock	30.	Little Thatch Island
2.	Savanna Island	31.	Frenchman's Key
3.	Cricket Rock	32.	Leduck Island
4.	Cockroach Island (near St. Thomas)	33.	Flannigan Island
5.	Dutchman's Cap	34.	Norman Island
6.	Salt Cay	35.	Peter Island
7.	West Cay	36.	Dead Man's Chest
8.	Little Saba Island	37.	Salt Island
9.	Outer Brass Island	38.	Cooper Island
10.	Inner Brass Island	39.	
11.	Hassel Island	40.	Round Rock
12.	Water Island	41.	Fallen Jerusalem
13.	Buck Island (near St. Thomas)	42.	Guana Island
14.	Capella Island	43.	Buck Island (near Tortola)
15.	Frenchman's Cap (French Cap Key)	44.	Beef Island
16.	Little Hans Lollick	45.	Marina Cay
17.	Big Hans Lollick	46.	Scrub Island
18.	Thatch Key	47.	Greater Camanoe
19.	Greater St. James	48.	The Dog Islands: George
20.	Little St. James		Dog, West Dog, Great Dog
21.	Big Tobago		and Big Cockroach (near
22.	Little Tobago		Virgin Gorda)
23.	Mingo Key	49.	Seal Dogs: East Seal Dog
24.	Congo Key		and West Seal Dog
25.	Lovango Key	50.	Mosquito Island
26.	Jost van Dyke	51.	Prickly Pear
27.	Little Jost van Dyke	52.	
28.	Sandy Key	53.	Watson Rock

54. Pelican Key

29. Great Thatch Island

- 55. A series of tiny cays, R, O, Q and Byer Bache
- 56. Green Cay (Jost van Dyke)
- 57. Sandy Spit
- 58. Eustatia
- 59. Saba Rock
- 60. Little Camanoe
- 61. Broken Jerusalem

Appendix II. Floral lists from some small islands and cays in the Puerto Rican and Virgin Island area. These should be considered as plant records rather than complete floras except for those islands marked with an (*) for which attempts were made to collect all species. Major islands not included; for treatment of their flora and vegetation see Britton and Wilson (1923-30), Gleason and Cook (1927), Little and Wadsworth (1964) and Dansereau (1966). Byer has a long-term, comprehensive study of the flora of small islands of this region in progress.

ANEGADA

See D'Arcy (1971, 1975)

BIG COCKROACH

Cephalocereus royeni Opuntia dillenii

BIG HANS LOLLICK

Thrinax argentea
Piscidia piscipula
Citharexylum fruticosum
Torrubia fragrans (?)
Pithecellobium unguis-cati
Croton astroites
Agave missionum
Vigna marina
Coccoloba uvifera
Hippomane mancinella
Bursera simarouba
Capparis indica (?)

BIG TOBAGO

Conocarpus erecta
Croton astroites
Bulbostylis vestita
Agave missionum
Cephalocereus royeni
Tabebuia heterophylla
Pithecellobium unguis-cati
Torrubia fragrans
Bursera simarouba
Opuntia repens

CAYO AHOGADO

See Heatwole and Levins (1973)

CAÑA AZUL *

Avicennia nitida Rhizophora mangle

CAYO BATATA

See Heatwole, Sade and Hildreth (1963)

CAYO ENMEDIO *

Sesuvium portulacastrum

CAYO ENRIQUE *

Sesuvium portulacastrum

CAYO MAJIMO *

Sesuvium portulacastrum

CAYO SANTIAGO

See Heatwole, Sade and Hildreth (1963)

CAYO TURREMOTECITO *

Sesuvium portulacastrum

COOPER ISLAND

Bursera simarouba
Cakile lanceolata
Carica papaya
Coccoloba uvifera
Cocos nucifera
Croton astroites
Euphorbia buxifolia
Musa sp.
Sporobolus virginicus

DOUBLE KEY *

Sesuvium portulacastrum

DEAD MAN'S CHEST

Coccoloba uvifera

Croton astroites

Croton sp.

Sesuvium portulacastrum

Sporobolus virginicus

EAST FARALLON *
Sesuvium portulacastrum

EUSTATIA

Bursera simarouba Cakile lanceolata Cocos nucifera Croton astroites Hippomane mancinella Sporobolus virginicus

FALLEN JERUSALEM

Bursera simarouba Coccoloba uvifera Croton astroites Tabebuia heterophylla

FRENCHCAP CAY

Canavalia maritima
Clerodendron aculeatum
Cyperus planifolius
Ficus laevigata
Hippomane mancinella
Mollugo verticillata
Portulaca grandiflora

GEORGE DOG ISLAND

Bursera simarouba

Coccoloba uvifera

GINGER ISLAND

Avicennia nitida Bursera simarouba Croton astroites Croton rigidus Pisonia subcordata

HICACOS

See Britton (1924)

ISLAND O *

Rhizophora mangle

ISLAND R *

Rhizophora mangle

ISLAND Q *

Borrichia arborescens Laguncularia racemosa Rhizophora mangle Salicornia ambigua Sesuvium portulacastrum

LEVINS ROCK *

Canavalia maritima Erithralis fruticosa Paspalum glabrum

LITTLE HANS LOLLICK

Bursera simarouba
Cephalocereus royeni
Coccoloba uvifera
Croton astroites
Croton discolor
Hippomane mancinella
Jacquinia barbasco
Opuntia dillenii
Opuntia repens
Opuntia rubescens
Pithecellobium unguis-cati
Rivina humilis
Sporobolus virginicus
Thrinax argentea
Torrubia fragrans

LITTLE SABA

Cephalocereus royeni Conocarpus erecta Rhizophora mangle

LITTLE TOBAGO

Agave missionum
Bursera simarouba
Cephalocereus royeni
Croton astroites
Jacquemontia jamaicensis
Lantana involucrata
Opuntia dillenii
Pithecellobium unguis-cati
Sporobolus virginicus
Torrubia fragrans
Vigna marina

MOSQUITO ISLAND

Bursera simarouba Carica papaya Coccoloba uvifera Croton astroites Hippomane mancinella Sporobolus virginicus Tabebuia heterophylla Torrubia fragrans (?)

NECKER

Bursera simarouba
Cactus intortus
Cephalocereus royeni
Coccoloba uvifera
Croton astroites
Croton rigidus
Guilandia crista

NORMAN ISLAND

Amaranthus dubius
Atriplex sp.
Bursera simarouba
Capparis flexuosa
Coccoloba uvifera
Conocarpus erecta
Croton astroites
Euphorbia sp.
Laguncularia racemosa
Pisonia albida
Sporobolus virginicus
Tamarindus indica

PALOMINITOS *

Borrichia arborescens Cakile lanceolata Canavalia maritima Cassytha filiformis Cenchrus echinata Cenchrus pauciflorus Coccoloba uvifera Conocarpus erecta Cyperus planifolius Erethralis fruticosa Ermodia littoralis Euphorbia buxifolia Lantana involucrata Melanthera nivea Scaevola plumeri Sesuvium portulacastrum Suriana maritima Vigna marina 3 unidentified

PELICAN KEY

Capparis flexuosa
Conocarpus erecta
Laguncularia racemosa
(disappeared again before
June 1968)
Opuntia repens
Portulaca oleracea
Sporobolus virginicus

PLATILLO

Coccoloba uvifera

PRICKLY PEAR

Agave missionum Bursera simarouba

RATONES

Coccoloba uvifera

SAIL ROCK *
Barren

SALT ISLAND

Cocos nucifera Croton astroites

SAN CRISTOBAL *

Avicennia nitida Laguncularia racemosa Philoxerus vermicularis Rhizophora mangle Sesuvium portulacastrum

SHEILA ROCK *

Sesuvium portulacastrum

SOLITO *

Sesuvium portulacastrum

SPINY BUTTE *

Acuan virgatum Ayenia pusilla Boerhaavia erecta Bursera simarouba Capparis flexuosa Commelina elegans Cordia angustifolia Croton discolor Croton humilis Euphorbia berteriana Hibiscus brasiliensis Hippomane mancinella Lantana involucrata Leptocereus quadricostatus Molluchia tomentosa Opuntia dillenii Panicum maximum Pectis linifolia Pithecellobium unquis-cati Portulaca pilosa Pteramnus labialis Rauwolfia lamarckii Rhizophora mangle Ruellia tuberosa Sida glabra Sida procumbens Stigmaphyllon lingulatum 3 unidentified

TURREMOTO (CORRAL) Avicennia nitida

Laguncularia racemosa

WEST DOG ISLAND

Coccoloba uvifera Conocarpus erecta Croton rigidus

WEST FARALLON *

Sesuvium portulacastrum

WEST SEAL DOG

Coccoloba uvifera

Appendix III. Reptiles and Amphibians of the Puerto Rico - Virgin Island Archipelago

The islands from which each species was collected are listed first, followed by a listing of all of the herpetofauna for each An attempt was made to do a complete survey on each island. These lists are based on our own collections, those of various museums, literature records up to 1970 which we have not verified (*), and our own sight records (**). They do not include the records obtained by other investigators after 1972, and whose collections we Some of these later collections add species for have not seen. islands we have surveyed and present records from a number of islands we did not visit. A complete listing of the known insular distributions of the Puerto Rican - Virgin Island species can be obtained from a combination of the present paper, and the publications of Schwartz and Thomas (1975), Philibosian and Yntema (1976, in press) and Maclean et al. (1977). In our list, island names in parentheses indicate that the species in question was recorded from that island but probably does not occur there as a permanently established breeding This list corrects that of Schwartz and Thomas (1975) for population. Anolis cristatellus cristatellus and Anolis cristatellus wileyae in line with the taxonomic assessment of Heatwole (1976b).

Schwartz and Thomas indicated A. c. cristatellus to inhabit many islands east of Puerto Rico, which are in fact inhabited by A. c. wileyae instead.

Distribution of Species

LIZARDS

Iguanidae

Anolis acutus

Buck Island (near St. Croix)
Green Key (near St. Croix)

Protestant Key

St. Croix

Anolis cooki

Caja de Muertos

Puerto Rico

Anolis cristatellus cristatellus

Algodones Caja de Muertos Cardona Key (Cayo Ahogado) Cayo Batata Cayo Santiago Isleta Marina¹
Long Island
Magueyes Island

Platillo Puerto Rico Ramos

Also hybrids between A. c. cristatellus and A. c. wileyae.

Anolis cristatellus wileyae

Algodones Anegada

Bare Cactus Island

Beef Island (near Tortola)

Blanquilla Booby Hatch Botella Island

* Buck Island

(near St. Thomas) Cabeza de Perro

Cayo Lobos Cayo Norte

Cayo Ratones (near Hicacos)

Chicken Island
Cockroach Island
(near St. Thomas)
Cooper Island
Congo Cay
Culebra
Culebrita

Dead Man's Chest

Isleta Marina Konyokí

Little Camanoe

Little Hans Lollick Little Jost van Dyke

Little Saba (near St. Thomas)

* Little St. James Little Tobago

* Lovango Key
Marina Cay
Mosquito Island
Norman Island
Necker Island
Palominitos
Palominos
Peter Island
Piñeros

Piñeritos Prickly Pear Island

Puerto Ricol

Diablo

* Dog Island

* Dutchman's Cap East Seal Dog

Eustatia

Fallen Jerusalem George Dog Island Ginger Island

Grant Rock

* Great Dog Island Greater Camanoe

Greater Thatch Island Green Cay (near Tortola)

Guana Island

Hans Lollick

* Hassel Island

Hicacos

* Inner Brass Island

Isla Cabras (near Roosevelt

Rds P.R.) Ramos

* St. James

St. John

St. Thomas

Salt Island

* Salt Key

Sandy Cay (near Tortola)

Sandy Spit

* Savanna Island Scrub Island Surprise Key

Tobago Tortola Vieques

Villa del Mar Virgin Gorda

* Water Island

** West Dog Island

West Seal Dog Island

Anolis cuvieri

Puerto Rico

* Vieques

¹ Also hybrids between A. c. cristatellus and A. c. wileyae.

Anolis desechensis

Desecheo

Anolis evermanni

Puerto Rico

Anolis gundlachi

Puerto Rico

Anolis krugi

Puerto Rico

Anolis monensis

Mona

Monito

Anolis occultus

Puerto Rico

Anolis poncensis

Puerto Rico

Anolis pulchellus

Algodones Anegada

Anegada
Cabeza de Perro
Caja de Muertos
(Cayo Ahogado)
Cayo Batata
Guana Island
Hicacos

Isleta Marina * Jost van Dyke

Little Jost van Dyke

* Little St. James

* Lovango Key Palominos Peter Island Culebra
* Fallen Jerusalem

Cayo Ratones (near Hicacos)

Greater Camanoe

Cayo Santiago

Piñeros Puerto Rico * St. James

Cayo Norte

St. John
St. Thomas
Tortola
Vieques

Virgin Gorda * Water Island

Anolis roosevelti

* Culebra

Anolis stratulus

Beef Island (near Tortola) Norman Island * Peter Island Cayo Santiago * Congo Key Piñeros Culebra Prickly Pear Fallen Jerusalem Puerto Rico Ginger Island St. John St. Thomas Greater Camanoe Greater Thatch Island * Savanna Island Guana Island Scrub Island * Jost van Dyke Tortola Little Jost van Dyke Vieques * Little Saba (near St. Thomas) Virgin Gorda Marina Cay * Water Island

Cyclura cornuta

Mona

Necker Island

Cyclura pinguis

Anegada

Iguana iguana

Teiidae

Ameiva alboguttata

Mona

Ameiva desechensis

Desecheo

Ameiva exsul

Algodones (Levin's Rock)
Anegada Little Camanoe
Beef Island Little Hans Lollick
Blanquilla Little Jost van Dyke
* Buck Island (near Tortola) Little Saba (near St. Thomas)
Cabeza de Perro Little St. James
Caja de Muertos Lovango Key

* Cardona Key (Cayo Ahogado) Cayo Batata Cayo Lobos Cayo Norte Cayo Ratones Cayo Santiago Cooper Island Culebra Culebrita Dead Man's Chest

Diablo

* Dutchman's Cap Eustatia George Dog Island Ginger Island

Greater Camanoe Guana Island Hans Lollick Hassel Island Hicacos

Inner Brass Isleta Marina

Konyokí

Marina Cay Mosquito Island Necker Island Norman Island Palominitos Palominos Peter Island Piñeros Platillo Prickly Pear Puerto Rico Ramos St. James St. John

St. Thomas Salt Island * Salt Key

Savanna Island Scrub Island

Tobago Tortola Viegues Virgin Gorda Water Island

Ameiva polops

Green Key (near St. Croix)

* St. Croix

Protestant Key

Ameiva wetmorei

Caja de Muertos Magueyes Island Puerto Rico

Scincidae

Mabuya mabouya sloanei

* Anegada Buck Island (near St. Thomas) Cayo Norte

- * Culebra
- * Culebrita

Dead Man's Chest

** Ginger Island Hicacos

* Jost van Dyke

* Little Saba (near St. Thomas)

Mona

** Monito

Necker Island Peter Island Puerto Rico

- * St. John
- * St. Thomas Salt Island
- * Vieques (Perhaps now locally

extinct) Virgin Gorda

Anguidae

Diploglossus pleii

Puerto Rico

Gekkonidae

Hemidactylus brooki

Puerto Rico

Hemidactylus mabouia

Culebra St. Thomas

* Jost van Dyke * Salt Island
Mona Tobago
Peter Island Tortola
Puerto Rico Vieques
St. Croix * Water Island

* St. John

Phyllodactylus wirshingi

* Caja de Muertos

* Puerto Rico

Sphaerodactylus beattyi beattyi

Buck Island (near St. Croix)
Green Key (near St. Croix)

St. Croix

Sphaerodactylus beattyi seamani

* St. Croix

Sphaerodactylus gaigeae

Cayo Santiago Piñeros Puerto Rico

Sphaerodactylus klauberi

Puerto Rico

Sphaerodactylus levinsi

Desecheo Island

Sphaerodactylus macrolepis ateles

Sphaerodactylus macrolepis grandisquamis

Algodones Cabeza de Perro Cayo Batata Cayo Santiago Puerto Rico

Sphaerodactylus macrolepis guarionex

Puerto Rico

Sphaerodactylus macrolepis inigoi

* Cayo de Afuera

Vieques

* Cayo de Tierra

Sphaerodactylus macrolepis macrolepis

Anegada
Bare Cactus Island
Beef Island
Big Cockroach
Botella
* Buck Island (near St. Thomas)
Cooper Island
* Congo Key
Culebra

Culebrita Dead Man's Chest East Geniquí East Seal Dog Eustatia

Fallen Jerusalem George Dog Island Ginger Island Great Dog Island Greater Camanoe Greater Thatch

Green Cay (near Tortola)

Guana Island
Hans Lollick
Jost van Dyke
Little Camanoe
Little Hans Lollick

Little Jost van Dyke Little Saba

* Little St. James Little Thatch Island Buck Island (near St. Croix)
* Buck Island (near Tortola)

* Cayo Luis Peña Cayo Norte Chicken Island

Cockroach (near St. Thomas)

Little Tobago
Marina Cay
Mosquito
Necker Island
Norman Island
Peter Island
Prickly Pear
Sail Rock
St. Croix
St. John
St. Thomas
Salt Island

Sandy Cay (near Tortola)

Sandy Spit
* Savanna Island
Scrub Island
Tobago
Tortola

Villa del Mar
Virgin Gorda
* Water Island
Watson Rock
West Dog Island

West Seal Dog Island

Sphaerodactylus macrolepis mimetes

Sphaerodactylus macrolepis phoberus

Puerto Rico

Sphaerodactylus macrolepis spanius

Puerto Rico

Sphaerodactylus macrolepis stibarus

Piñeros

Sphaerodactylus monensis

Mona

Sphaerodactylus nicholsi nicholsi

Magueyes Island Puerto Rico

Spiny Butte (Turramote Key)

Sphaerodactylus nicholsi townsendi

Blanquilla

Hicacos

Booby Hatch

Isla Cabras (near Roosevelt

Rds., P.R.)

Caja de Muertos

Konyokí * Cayo de Afuera (near Vieques)

* Cayo de Tierra (near Vieques)

MacKenzie Key Palominos

Cayo Lobos Cayo Ratones (near Hicacos) Piñeros Platillo Puerto Rico

* Culebra

Ramos

Diablo

Surprise Key

French Cap Key

Vieques

Grant Rock

Sphaerodactylus parthenopion

Mosquito Island

Virgin Gorda

Sphaerodactylus roosevelti

Caja de Muertos

Puerto Rico

Magueyes Island

* Vieques

Thecadactylus rapicaudus

Necker Island

* St. Croix

AMPHISBAENIANS

Amphisbaenidae

Amphisbaena bakeri

Puerto Rico

Amphisbaena caeca

Puerto Rico

Amphisbaena fenestrata

- * Greater Camanoe Little Jost van Dyke
- * St. James
- * St. John

- * St. Thomas
- * Tortola
- * Virgin Gorda

Amphisbaena schmidti

Puerto Rico

Amphisbaena xera

Caja de Muertos (called A. caeca Puerto Rico by Heatwole et al. 1965)

SNAKES

Boidae

Epicrates inornatus

Puerto Rico

Epicrates monensis

* Mona

* Tortola

Colubridae

Alsophis portoricensis

Anegada

* Buck Island (near St. Thomas)
Cabeza de Perro
Caja de Muertos
Cayo Santiago

* Cockroach (near St. Thomas)
Culebra
Ginger Island
Green Cay (near Tortola)
Guana Island

Mona
Mosquito
Necker Island
Norman Island
* Peter Island
Platillo
Puerto Rico
* St. John
* St. Thomas
* Salt Island

* Jost van Dyke

* Little Saba Little Tobago * Savanna Island

* Vieques Virgin Gorda

Alsophis sancticrucis

* St. Croix

Arrhyton exiguum

Anegada Cayo Santiago * Culebra

Greater Camanoe

* Hassel Island Peter Island Puerto Rico
* St. John
St. Thomas
Tortola
Virgin Gorda

Typhlopidae

Typhlops granti

Puerto Rico

Typhlops monensis

Mona

Typhlops richardi

Cayo Norte

* Culebra
Diablo
Guana Island
Little Hans Lollick
Little Jost van Dyke
Palominitos

Puerto Rico

* St. Croix

* St. John

* St. Thomas
Surprise Key
Tortola
Virgin Gorda

Typhlops rostellata

Puerto Rico

TURTLES (excluding marine ones)

Emydidae

Chrysemys decussata stejnegeri

Testudinidae

Geochelone carbonaria

* St. John

* Tortola

* St. Thomas

* Water Island

ANURANS

Bufonidae

Bufo lemur

Puerto Rico

Bufo marinus (introduced)

Algodones Cayo Santiago Culebra

Puerto Rico St. Croix Vieques

Bufo turpis

* Virgin Gorda

Leptodactylidae

Eleutherodactylus antillensis

Culebra Piñeros Puerto Rico St. Thomas Tortola Vieques Virgin Gorda

St. Croix (introduced?)

St. John

Eleutherodactylus brittoni

Puerto Rico

Eleutherodactylus cochranae

* Hassel Island Puerto Rico St. John

St. Thomas Tortola

Eleutherodactylus cooki

Puerto Rico

Eleutherodactylus coqui

Eleutherodactylus eneidae

Puerto Rico

Eleutherodactylus gryllus

Puerto Rico

Eleutherodactylus hedrecki

Puerto Rico

Eleutherodactylus karlschmidti

Puerto Rico

Eleutherodactylus lentus

St. Croix

St. Thomas

Eleutherodactylus locustus

Puerto Rico

Eleutherodactylus monensis

Mona

Eleutherodactylus portoricensis

Puerto Rico

Eleutherodactylus richmondi

Puerto Rico

Eleutherodactylus schwartzi

Great Dog

Tortola

St. Croix (introduced?)

Virgin Gorda

St. John

Eleutherodactylus unicolor

Puerto Rico

Eleutherodactylus wightmanae

Leptodactylus alibilabris

Algodones Anegada Cayo Santiago Culebra Hicacos Piñeros

Puerto Rico St. Croix St. John St. Thomas Tortola Vieques

Ranidae

Rana catesbeiana (introduced)

Puerto Rico

Vieques (J.E. Cooper, pers. com.)

Fauna of Islands

Algodones

Ameiva exsul Anolis cristatellus cristatellus Leptodactylus albilabris

Bufo marinus (introduced)

Anolis cristatellus wileyae

Sphaerodactylus macrolepis grandis-

quamis Anolis pulchellus

Anegada

Alsophis portoricensis

Ameiva exsul Anolis cristatellus wileyae

Anolis pulchellus * Arrhyton exigum

*Cyclura pinguis Leptodactylus albilabris * Mabuya mabouya sloanei

Sphaerodactylus macrolepis macrolepis

Bare Cactus Island

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Beef Island (near Tortola)

Ameiva exsul

Anolis stratulus

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Big Cockroach

Blanquilla

Ameiva exsul Sphaerodactylus nicholsi townsendi Anolis cristatellus wileyae

Booby Hatch

Anolis cristatellus wileyae Sphaerodactylus nicholsi townsendi

Botella Island

Anolis cristatellus wileyae Sphaerodactylus macrolepis macrolepis

Buck Island (near St. Thomas)

* Alsophis portoricensis

- * Mabuya mabouya sloanei
- * Anolis cristatellus wileyae * Sphaerodactylus macrolepis macrolepis

Buck Island (near St. Croix)

Anolis acutus Sphaerodactylus macrolepis macrolepis Sphaerodactylus beattyi beattyi

Buck Island (near Tortola)

Ameiva exsul

* Sphaerodactylus macrolepis macrolepis

Cabeza de Perro

Alsophis portoricensis Anolis pulchellus

Ameiva exsul Sphaerodactylus macrolepis

Anolis cristatellus wileyae grandisquamis

Caja de Muertos

Alsophis portoricensis

Ameiva exsul Ameiva wetmorei Amphisbaena xera

Anolis cooki

Anolis cristatellus cristatellus Anolis pulchellus

* Phyllodactylus wirshingi

Sphaerodactylus nicholsi townsendi

Sphaerodactylus roosevelti

Cardona Key

Ameiva exsul * Anolis cristatellus cristatellus

Cayo Ahogado

(Ameiva exsul) (Anolis pulchellus)

(Anolis cristatellus cristatellus)

Cayo Batata

Ameiva exsul

Anolis pulchellus

Anolis cristatellus cristatellus

Sphaerodactylus macrolepis grandis-

quamis

Cayo de Afuera

* Sphaerodactylus macrolepis inigoi*Sphaerodactylus nicholsi townsendi

Cayo de Tierra

* Sphaerodactylus macrolepis inigoi*Sphaerodactylus nicholsi townsendi

Cayo Lobos

Ameiva exsul

Anolis cristatellus wileyae

Sphaerodactylus nicholsi townsendi

Cayo Luis Peña

* Sphaerodactylus macrolepis macrolepis

Cayo Norte

Ameiva exsul

Mabuya mabouya sloanei

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis Typhlops richardi

Anolis pulchellus

Cayo Ratones

Ameiva exsul

Anolis pulchellus

Anolis cristatellus wileyae

Sphaerodactylus nicholsi townsendi

Cayo Santiago

Alsophis portoricensis

Arrhyton

Ameiva exsul

Bufo marinus (introduced)

Anolis cristatellus cristatellus Leptodactylus albilabris

Anolis pulchellus

Sphaerodactylus gaigeae

Anolis stratulus

Sphaerodactylus macrolepis grandis-

quamis

Chicken Island

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Cockroach (near St. Thomas)

* Alsophis portoricensis Anolis cristatellus wileyae

Cooper Island

Ameiva exsul

Sphaerodactylus macrolepis

Anolis cristatellus wileyae

Congo Key

* Anolis cristatellus wileyae

*Sphaerodactylus macrolepis macrolepis

* Anolis stratulus

Culebra

Alsophis portoricensis

Ameiva exsul

Anolis cristatellus wileyae

Anolis pulchellus

* Anolis roosevelti Anolis stratulus

Arrhyton exiguum

Bufo marinus (introduced)

Eleutherodactylus antillensis Hemidactylus mabouia

Leptodactylus albilabris

* Mabuya mabouya sloanei

Sphaerodactylus macrolepis macrolepis

* Sphaerodactylus nicholsi townsendi

* Typhlops richardi

Culebrita

Ameiva exsul Anolis cristatellus wileyae * Mabuya mabouya sloanei Sphaerodactylus macrolepis macrolepis

Dead Man's Chest

Ameiva exsul

Anolis cristatellus wileyae

Mabuya mabouya sloanei

Sphaerodactylus macrolepis macrolepis

Desecheo

Ameiva desechensis Anolis desechensis Sphaerodactylus levinsi

Diablo

Anolis cristatellus wileyae

Ameiva exsul

Sphaerodactylus nicholsi townsendi

Typhlops richardi

Dog Island

* Anolis cristatellus wileyae

Dutchman's Cap

Ameiva exsul

* Anolis cristatellus wileyae

East Geniqui

East Seal Dog

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Eustatia

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Ameiva exsul

Fallen Jerusalem

Anolis cristatellus wileyae

Anolis stratulus

* Anolis pulchellus

Sphaerodactylus macrolepis macrolepis

French Cap Key

Sphaerodactylus nicholsi townsendi

George Dog Island

Ameiva exsul

Sphaerodactylus macrolepis macrolepis

Anolis cristatellus wileyae

Ginger Island

Alsophis portoricensis

Anolis stratulus

Ameiva exsul

**Mabuya mabouya sloanei

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Grant Rock

Anolis cristatellus wileyae

Sphaerodactylus nicholsi townsendi

Great Dog Island

* Anolis cristatellus wileyae Eleutherodactylus schwartzi Sphaerodactylus macrolepis macrolepis

Greater Camanoe

Ameiva exsul

Anolis stratulus

* Amphisbaena fenestrata

Arrhyton exiquum

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Anolis pulchellus

Greater Thatch Island

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Anolis stratulus

Green Key (near St. Croix)

Ameiva polops Anolis acutus Sphaerodactylus beattyi beattyi

Green Cay (near Tortola)

Alsophis portoricensis Anolis cristatellus wileyae Sphaerodactylus macrolepis macrolepis

Guana Island

Alsophis portoricensis

Ameiva exsul

Anolis cristatellus wileyae

Anolis pulchellus

Anolis stratulus * Iquana iquana

Sphaerodactylus macrolepis macrolepis

Typhlops richardi

Hans Lollick

Ameiva exsul

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Hassel Island

Ameiva exsul

* Anolis cristatellus wileyae Arrhyton exiquum

* Eleutherodactylus cochranae

* Iguana iguana

Hicacos

Ameiva exsul

Anolis cristatellus wileyae

Anolis pulchellus

Iguana iguana (pers. com.

S.D. Garber)

Leptodactylus albilabris Mabuya mabouya sloanei

Sphaerodactylus nicholsi townsendi

Inner Brass Island

Ameiva exsul

Anolis cristatellus wileyae

Isla Cabras (near Roosevelt Rds., P.R.)

Anolis cristatellus wileyae

Sphaerodactylus nicholsi townsendi

Isleta Marina

Ameiva exsul

Anolis cristatellus wileyae

Anolis cristatellus cristatellus A.c. cristatellus X A. c. wileyae Anolis pulchellus

Jost van Dyke

- * Alsophis portoricensis
- * Anolis pulchellus
- * Anolis stratulus
- * Hemidactylus mabouia
- * Mabuya mabouya sloanei Sphaerodactylus macrolepis macrolepis

Konyokí

Ameiva exsul

Sphaerodactylus nicholsi townsendi

Anolis cristatellus wileyae

Levin's Rock

(Ameiva exsul)

Little Camanoe

Ameiva exsul

Sphaerodactylus macrolepis macrolepis

Anolis cristatellus wileyae

Little Hans Lollick

Alsophis richardi Ameiva exsul

Anolis cristatellus wileyae Sphaerodactylus macrolepis macrolepis

Little Jost van Dyke

Ameiva exsul

Anolis stratulus Sphaerodactylus macrolepis macrolepis

Amphisbaena fenestrata Anolis cristatellus wileyae

Typhlops richardi

Anolis pulchellus

Little Saba (near St. Thomas)

* Alsophis portoricensis Ameiva exsul

* Anolis stratulus

* Mabuya mabouya sloanei

* Anolis cristatellus wileyae

* Sphaerodactylus macrolepis macrolepis

Little St. James

Ameiva exsul

- * Anolis pulchellus
- * Anolis cristatellus wileyae
- * Sphaerodactylus macrolepis macrolepis

Little Thatch Island

Sphaerodactylus macrolepis macrolepis

Little Tobago

Alsophis portoricensis Anolis cristatellus wileyae

Long Island

Anolis cristatellus cristatellus

Lovango Key

Ameiva exsul

* Anolis pulchellus

* Anolis cristatellus wileyae

MacKenzie Key

Sphaerodactylus nicholsi townsendi

Magueyes Island

Ameiva wetmorei Sphaerodactylus nicholsi nicholsi Anolis cristatellus cristatellus Sphaerodactylus roosevelti

Marina Cay

Ameiva exsul

Anolis cristatellus wileyae

Anolis stratulus Sphaerodactylus macrolepis macrolepis

Mona

Alsophis portoricensis
Ameiva alboguttata
Anolis monensis
Cyclura cornuta
Eleutherodactylus monensis

* Epicrates monensis
Hemidactylus mabouia
Mabuya mabouya sloanei
Sphaerodactylus monensis
Typhlops monensis

Monito

Anolis monensis

**Mabuya mabouya sloanei

Mosquito Island

Alsophis portoricensis

Ameiva exsul

Anolis cristatellus wileyae

 ${\it Sphaerodactylus\ macrolepis\ macrolepis}$

Sphaerodactylus parthenopion

Necker Island

Alsophis portoricensis

Ameiva exsul

Anolis cristatellus wileyae

Anolis stratulus

Mabuya mabouya sloanei

Sphaerodactylus macrolepis macrolepis

Thecadactylus rapicaudus

Norman Island

Alsophis portoricensis

Anolis stratulus

Ameiva exsul

Sphaerodactylus macrolepis macrolepis

Anolis cristatellus wileyae

Palominitos

Ameiva exsul

Typhlops richardi

Anolis cristatellus wileyae

Palominos

Ameiva exsul

Anolis pulchellus

Anolis cristatellus wileyae

Sphaerodactylus nicholsi townsendi

Peter Island

* Alsophis portoricensis

Ameiva exsul

Arrhyton exiguum Hemidactylus mabouia

Anolis cristatellus wileyae

Iquana iquana

Anolis pulchellus

Mabuya mabouya sloanei

* Anolis stratulus

Sphaerodactylus macrolepis macrolepis

Piñeros

Ameiva exsul

Anolis cristatellus wileyae

Leptodactylus albilabris Sphaerodactylus gaigeae

Anolis pulchellus Anolis stratulus

Sphaerodactylus macrolepis stibarus Sphaerodactylus nicholsi townsendi

Eleutherodactylus antillensis

Piñeritos

Anolis cristatellus wileyae

Platillo (Morillito)

Alsophis portoricensis

**Ameiva exsul

Anolis cristatellus cristatellus Sphaerodactylus nicholsi townsendi

Prickly Pear Island

Ameiva exsul

Anolis stratulus

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Protestant Key

Ameiva polops

Anolis acutus

Puerto Rico

Alsophis portoricensis

Ameiva exsul Anolis stratulus Ameiva wetmorei Arrhyton exiguum Amphisbaena bakeri Bufo lemur

Amphisbaena caeca Bufo marinus (introduced)
Amphisbaena schmidti Chrysemys decussata stejnegeri

Amphisbaena xera Diploglossus pleii

Anolis cooki Eleutherodactylus antillensis Anolis cristatellus cristatellus Eleutherodactylus brittoni Anolis cristatellus wileyae Eleutherodactylus cochranae Anolis c. cristatellus X A. c. Eleutherodactylus cooki

wileyae

Anolis cuvieri Eleutherodac
Anolis evermanni Eleutherodac
Anolis gundlacki Eleutherodac
Anolis krugi Eleutherodac
Anolis occultus Eleutherodac
Anolis poncensis Eleutherodac
Anolis pulchellus Eleutherodac

Eleutherodactylus richmondi Eleutherodactylus unicolor

Eleutherodactylus wightmanae Epicrates inornatus Hemidactylus brooki Hemidactylus mabouia Iguana iguana

Leptodactylus albilabris
Mabuya mabouya sloanei
* Phyllodactylus wirshingi

Rana catesbeiana (introduced) Sphaerodactylus gaigei Sphaerodactylus klauberi Eleutherodactylus coqui
Eleutherodactylus eneidae
Eleutherodactylus gryllus
Eleutherodactylus hedrecki
Eleutherodactylus karlschmidti
Eleutherodactylus locustus
Eleutherodactylus portoricensis
Sphaerodactylus macrolepis ateles
Sphaerodactylus macrolepis grandisquamis

Sphaerodactylus macrolepis guarionex Sphaerodactylus macrolepis mimetes Sphaerodactylus macrolepis phoberus Sphaerodactylus macrolepis spanius Sphaerodactylus nicholsi nicholsi Sphaerodactylus nicholsi townsendi Sphaerodactylus roosevelti

Typhlops granti Typhlops richardi Typhlops rostellata

Ramos

Ameiva exsul Anolis cristatellus wileyae Anolis cristatellus cristatellus Sphaerodactylus nicholsi townsendi

Sail Rock

St. Croix

* Alsophis sancticrucis

Ameiva polops Anolis acutus Bufo marinus (introduced) Eleutherodactylus antillensis * Sphaerodactylus beattyi seamani (introduced?) Eleutherodactulus lentus

Eleutherodactylus schwartzi (introduced?)

Hemidactylus mabouia

* Iguana iguana Leptodactylus albilabris Sphaerodactylus beattyi beattyi

Sphaerodactylus macrolepis macrolepis

* Thecadactylus rapicaudus

* Typhlops richardi

St. James

Ameiva exsul

* Amphisbaena fenestrata

- * Anolis cristatellus wileyae
- * Anolis pulchellus

St. John

* Alsophis portoricensis Ameiva exsul

* Amphisbaena fenestrata Anolis cristatellus wileyae Anolis pulchellus Anolis stratulus

* Arrhyton exiquum Eleutherodactylus antillensis

Eleutherodactylus cochranae Eleutherodactylus schwartzi Geochelone carbonaria

- * Hemidactylus mabouia
- * Iquana iguana Leptodactylus albilabris
- * Mabuya mabouya sloanei Sphaerodactylus macrolepis macrolepis
- * Typhlops richardi

St. Thomas

* Alsophis portoricensis Ameiva exsul Amphisbaena fenestrata Anolis cristatellus wileyae Eleutherodactylus cochranae Eleutherodactylus lentus

* Geochelone carbonaria Hemidactylus mabouia

* Iguana iguana

Anolis pulchellus Anolis stratulus Arrhyton exiguum Eleutherodactylus antillensis Leptodactylus albilabris

* Mabuya mabouya sloanei Sphaerodactylus macrolepis macrolepis

* Typhlops richardi

Salt Island

* Alsophis portoricensis Ameiva exsul Anolis cristatellus wileyae * Hemidactylus mabouia Mabuya mabouya sloanei Sphaerodactylus macrolepis macrolepis

Salt Key

* Ameiva exsul

* Anolis cristatellus wileyae

Sandy Cay (near Tortola)

Anolis cristatellus wileyae Sphaerodactylus macrolepis macrolepis

Sandy Spit

Anolis cristatellus wileyae Sphaerodactylus macrolepis macrolepis

Savanna Island

* Alsophis portoricensis

* Anolis stratulus

Ameiva exsul

* Sphaerodactylus macrolepis macrolepis

* Anolis cristatellus wileyae

Scrub Island

Ameiva exsul

Anolis stratulus

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Spiny Butte

Sphaerodactylus nicholsi nicholsi

Surprise Key

Anolis cristatellus wileyae Typhlops richardi Sphaerodactylus nicholsi townsendi

Tobago

Ameiva exsul

Hemidactylus mabouia

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Tortola

Ameiva exsul

* Amphisbaena fenestrata

Anolis cristatellus wileyae

Anolis pulchellus

Anolis stratulus

* Anolis sp. (giant form)

Arrhyton exiguum

Eleutherodactylus antillensis Eleutherodactylus cochranae

* Geochelone carbonaria

* Epicrates monensis

Hemidactylus mabouia

* Iguana iguana

Leptodactylus albilabris

Eleutherodactylus schwartzi

Sphaerodactylus macrolepis macrolepis

Typhlops richardi

Turramote Key

(Sphaerodactylus nicholsi nicholsi)

Vieques

- * Alsophis portoricensis Ameiva exsul Anolis cristatellus wileyae
- * Anolis cuvieri Rana catesbeiana (introduce Cooper, pers. comm.)

 Anolis stratulus Sphaerodactylus macrolepis
 Bufo marinus (introduced) Sphaerodactylus nicholsi to Eleutherodactylus antillensis * Sphaerodactylus roosevelti Hemidactylus mabouia
- Leptodactylus albilabris
 * Mabuya mabouya sloanei (now probably
 locally extinct)
 Rana catesbeiana (introduced) (J.E.
 Cooper, pers. comm.)
 Sphaerodactylus macrolepis inigoi
 Sphaerodactylus nicholsi townsendi
 * Sphaerodactylus roosevelti

Villa del Mar

Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

Virgin Gorda

Alsophis portoricensis
Ameiva exsul
* Amphisbaena fenestrata

Anolis cristatellus wileyae Anolis pulchellus Anolis stratulus Arrhyton exiguum * Bufo turpis
Eleutherodactylus antillensis
Eleutherodactylus schwartzi
Mabuya mabouia sloanei
Sphaerodactylus macrolepis macrolepis
Sphaerodactylus parthenopion
Typhlops richardi

Water Island

Ameiva exsul

- * Anolis cristatellus wileyae
- * Anolis pulchellus
- * Anolis stratulus

- * Geochelone carbonaria
- * Hemidactylus mabouia
- * Iguana iguana
- * Sphaerodactylus macrolepis macrolepis

Watson Rock

Sphaerodactylus macrolepis macrolepis

West Dog Island

**Anolis cristatellus wileyae

Sphaerodactylus macrolepis macrolepis

West Seal Dog Island

Anolis cristatellus wileyae

Appendix IV. Distribution of the scorpion Centruroides nitidus and the spider Gasteracantha tetracantha on the Puerto Rican Bank

Centruroides nitidus

Anegada Beef Island Big Hans Lollick Big Tobago Broken Jerusalem Caja de Muertos Cayo Diablo Cayo Norte Cooper Island Desecheo Eustatia Fallen Jerusalem George Dog Great Dog Greater Camanoe Great Thatch Island Guana Island Hicacos Jost van Dyke Little Hans Lollick Little Jost van Dyke

Little Thatch Island

Little Tobago Magueyes Marina Cay Mosquito Island Necker Island Norman Island Palominos Peter Island Piñeros Prickly Pear Puerto Rico Ramos St. Croix St. John St. Thomas Salt Island Scrub Island Tortola Virgin Gorda

Gasteracantha tetracantha

Anegada
Beef Island
Big Hans Lollick
Big Tobago
Cayo Diablo
Culebrita
Desecheo
Eustatia
George Dog
Ginger Island
Great Dog
Greater Camanoe
Great Thatch Island

Jost van Dyke
Little Camanoe
Little Hans Lollick
Little Thatch Island
Mosquito Island
Necker Island
Norman Island
Piñeros
Puerto Rico
Salt Island
Tortola
Virgin Gorda

Fig. 2. Rainfall at various localities on the Puerto Rican Bank, 1960-1967. Data from Climatological Data Puerto Rico and Virgin Islands, Vols. 6-12 (1960-1967). Numbers above histograms indicate yearly totals.

Fig. 3. Temperatures at Magueyes Island, Puerto Rico, 1960-1966. Upper line represents mean daily maxima, middle line the monthly means, and lower line the mean daily minima. Data from same source as that of Figure 2.

Fig. 4. Temperature at various localities on the Puerto Rican shelf during 1964. Crux Bay, St. John; Charlotte Amalie, St. Thomas; Alexander Hamilton Field, St. Croix; Magueyes Island, Southwest P. R.; Rio Piedras, coastal P. R.; Guineo Reservation, upland P. R. Dotted lines indicate missing data, dot the August mean at Guineo Reservoir. The upper and lower lines for Rio Piedras represent monthly maxima and minima respectively. Other symbols as in Figure 3. Data from Climatological Data Puerto Rico and Virgin Island, Vol. 10 (1964).

Fig. 5. Air and black bulb temperatures on Cayo Ahogado, P. R. Broken lines indicate intervals of more than 1 hour between measurements. Dots: black bulb temperatures 15 cm above the ground. Triangles: air, 1 cm above ground. Circles: air, 15 cm above ground. Squares: air, 1 m above ground

Fig. 6. Unshaded soil temperatures on Cayo Ahogado. Broken lines indicate intervals of more than one hour between measurements.

Triangles: at soil surface. Circles: 1 cm deep. Dots: 5 cm deep.

Fig. 8. Diagram-map of hypothetical island showing spatial relationships of numbered vegetation categories (described in text) to one another and to three environmental parameters. Three imaginary straight lines, whose termini are show and labelled, divide the island into two conditions each of wind exposure, wave exposure, and disturbance. Elevation increases towards the center. As islands increase in area and elevation, concentric rings are added from the center, beginning with the most marginal ring not yet present, thus progressively expanding the rings already present toward the outside. Relative areas are not to scale; e.g., most of the area of a large, little-disturbed island might be covered by moist forest (10).

Fig. 9. Vertical section across a hypothetical island showing spatial relationships of numbered vegetation categories (described in text) to one another, distance from the sea, topography, elevation, wind direction, and wave exposure. Not to scale.