No. 13

Proliminary Report on Marine Biology Study of Onotoa A'coll, Gilbert Issands

Part I
by A. H. Banner
Part II
by John E. Randall
Issued by
THE PACIFIC SCIEOCE BOARD
National Acadeniy of Sciences--National Research Council
Washington, B. C.
December 15, 1952

PRRLIMINARY REPORT ON MARINE BTOLOGY STUDY OF ONOTOA ATOLL, GTLPERT ISLANDS
 SCIENTHEIC INVESLIGATIONS IN MIORONESLA Pacific Science Board
 National Research Council

Part I	Dr. A. H. Banner Uiliversity of Haweii Honolulu, Hamaii Februery 20, 1952
Part II	Vr. John E. Randall University of Hawaii Honolulu, Hewaii March 4, 1952

This field work was carried on in connection with the Coral Atoll Project of the Pacific Science Board of the National Research Council and was supported by funds granted to the National Academy of Sciences from the Office of Naval, Reseatch.

Generous cooperation was received from the Military Air Transport Service and the Unitec States Coast Guard in assisting with transportation, the University of Hawaii in supplying much needed equipment, the administrative officials of the Gilbert and Ellice Islands Colony. The author is particularly grateful for the assistance extended by Miss Emestine Akens and Mr. Harold J. Coolidge of the Pacific Science Board.

Inanks are also due to Dr. Preston E. Cloud, Jr., the leader of the expedition, for the use of the map he made of the island, and to R. Tucker Abbott of the U. S. National Museum for the identification of some of the moluses.

The marine biological work on Onotoa is divisible into five portions:

1. The investigation of shallow water ecological associations, rem ported herein:
A. The ecology of the winduard reen.
B. The ecology of the lagoon reefs and shores.
2. The investigation of the deeper water ecological associations, to be reported by Dr. Preston E. Clond, Jr.
3. The investigation of the maxine algae, to be reported by Dr. Edwin Moul.
4. The investigation of the ichthyofauna, reported by Mr. John Randall and appended to this remort.
5. The native use of the marine invertebrates for food, reported herein. Hy portion of the study, the narine invertebrates, was severely limited by an attack of blood poisoning and a subsequent attack oi influenza that resulted from attempting to do field work when not fully recovered from the first illness; as a result of these two illnesses, over five of the ten weeks spent on Onotoa vere lost and the investigations made were neither as thorough nor as extensive as planned.

The following reports are prelininary, and should be talien to show merely the extent of the work done. The identifications are fiold identicications and must be confirmed by experts, with the exception of sone of the molluecs Which have already been identified by R. Tucker fibbott of the U. S. National Museung and no conclusions are incomporated in the reports. When these reports are published the deficiencies will be corrected.

PART I

I

thaditaril ReEf tramsect

The rindward reef on Onotoa is found along the northern, eastern and southern shores of the atoll, presenting an almost unbroken barricade against the force of the prevailing waves. It varies in width fron three or four hundred feet to over a quarter of a mile and is nore extensively developed around the southem island than around the northem. As it is of quite uniform heicht, structure and biotic zones, a single transect across its surface was demed to be indicative of the general ecology of the reef. Conditions of tho Reef

The inshore border or the reef is composed either of consolidated and eroded coral rock or noderately fine sand with the upper edge extending to the maximum height of the stom vavos and the lover edge varying but usually about the 2.0 to 2.5 foot ticie ievel. Beyond this steep shorevard area the reef flat extends to a unifoxm area of slight slope, with freguent small to large shallow pools of water left at lou tide. The reef rlat in the transect studied was 650 feet bread, Searard of the reer hlat is a depression, the beck-ridge trough, bebreen 50 and 100 feet ride and ranging in depth from about the $\neq 0.2$ to the -7.5 foot tidal level. The final edge of the reef is the coralline ridge (or Lithothamnion ridge by previous vorkers), a rempart betreen 1.0 and 2.0 feet abuve the zero tide and 50-100 feet broad. Its shoreward edge presents an almost continuous frcint of redizish coralline algae, but on its searsard side soon develop deep fissures or surge channels at right angles to the shore that reach six or more feet below the surface of the reef and that are of varying width, ridening as they reach seavard. The seavard edge of the corailine ridge thus separates into a series of
separate and depressed fingers that finally slope rapidly dom to the growing reef surface below. The outermost reef or the reef shelf is relatively narron, about three hundred feet mide, and slopes rather rapidly from about ten feet deop on the shorerard side to over thirty or thirty five feet deep on the seaward side; it consists of living coral groming in irregular mounds rith areas between the heads strem with dead coral fragments. Beyond this reef shelf the botion drops sudenly anay, at a slope of perhaps more than 45° and soon disappears in the turid waters; this last zone was not explored at all.

The mindtard reef facing the trade winds sustains the almost continuous beating of the waves. At low tide the waves are broken against the coralline ridge and only slight waves are felt in the backridge troughe Hovever, when the tide is high, only a portion of the strong vaves is expended against the coralline ridge and the adjacent though and moderate sized waves sueep across the reef flat, carrying enough energy to move coral rocks a foot or two in dianeter.

The reef flat froa the coralline ridge back is the evident result of the consolidation of a living corel reef, chiefly of Heliopora, by coralline algae; in almost all areas the old Heliopora is completely dead and covered with the algae to make an almost table-like top. This top, hovever, is pitted with small to large depressions, and in many areas perforated" by burrous leading dom among the old coral fronds.

Animals living upon the flat are subjected to many biological vicissitudes in addition to the action of raves. In the inshore area especially the reef fllat is exposed to the air for several hours at a time at the lower low waters, and those animals that cannot migrate to the shallow pools must be able to withstand this period of dessication: Those animals in the pools, as well as those exposed to the air must also be able to withstand great changes in
salinity of their environment, for the high tide has the normal ocean salinity, while the low tide may expose them to torrential rains which would lower the salinity of the tomost layers at least to almost zero. However, because of the difference in specific gravity and the absence of agitation in these small bodies of water it is likely that the bottoms of the pools and the burrows in the rock especially maintain their normal salinity.

Probably the most pronounced physical change the animals are subjected to is the change in temperature for the dark reef surface on low tides is exposed for long periods to the tropical sun. At these times the water in the inshore pools become hot to the touch (studies on temperature made by Strasburg will be renorted by Cloud): yet wi.th the flooding tide the temperature will drop perhaps 15° in a fer minutes.

Previous studies have shom that the oxygen content of the vater over the rees at high tide and in the pools at low tide is alvays near if not above its saturation value. But as the temperature rises this saturation value, in grams of oxygen per liter of sea water, decreasea rapidly, so the reef inhabitants must be able to adjust to less than nornel oxyeen.

Tho biological conditions of the reef flat shouid be mentioned as influencing its ecology. In the first place the reef surface not in the small tide pools is covered in most areas by a dense algal mat that affords both food and protection for the inhabitants; this was particularly true in tine midde and outer portions of the reef flato Secondly, while fer lerger predators and scavengers like larger fish, lobster and crabs were found thile the survey was conducted at lov tide, they moved onto the reer at high tide.

Liethods and Limitations of the Study:
The objects of the investigation were to find the transition of dominant forms over the reef surface, and, if possible, to designate sharply delimited
zones on the reef through a quantitative study.
On the main reef flat the study was conducted by laying out a series of continuous stations, twenty feet wide and fifty feet long, and within them areas extending the length of the station one or two feet vide rithin the smaller area all animals were collected and counted; the larger area was then inspected for largor but less comm animals like the larger snails, sea cucumbers, etc. Then areas in the same tidal zone adjacent to the studjed area were superficially examined to see if the zone selected was typical; it was found so in all cases.

In the inshore beach area, in the backridge trough, and over the offshore shelf no quantitative stuãy was attempted because of difficulty in obtaining either enough animals in a typical area or becavse of the diffeculty in laying out an area for study and collecting it (as in twenty to thirty feet of water) 。 Because of poor tides and poor veather conditions when it was possible for me to do field work, almost no study was made on the coralline ridge at all.

The limitations of the study are:

1. The study is limited to macroscopic invertebrates; no microscopic Sorns of life nor any fish are considered. ir. Randall did a paralleil study on fish and will report it separately.
2. Concerned as it is with the dominant animals, this study omits the nore rare animals.
3. All identifications of animals are but field identifications, and will be corrected upon the identification by experts.
4. The study is limited by necessity to the more superficially occurring animals; it was impossible to explore the tubes reaching dom from the consolidated surface of the reef.
5. No statistical checks have been applied to the quantitative results, and they should be accepted nerely as rough indications rather then accurate statistics; in other words, a similar section two hundred feet away might give different figures, but would show the same trend.

Transect

Area A-O; Shoreward beach.
The well-demarked beach extends from about 2.5 feet to about 8-1. feet above the zero tide zone. It is divisible into two different habitats, the sand beach composed of loose and shifting sand, and the rock beach consisting of consolicated corel and beach rock, eroded and with some small tidal pools.

The sand beach is the habitat only for ocypode ceratophthalma, the "ghost crab" that lives in deep burrows by day; also at night terrestrial hermit crabs migrate dom to the upper zones of the beach.

The rock beach is inhabited by Grapsus grapsus in faix numbers, some identiried hermit crabs, and large numbers of Nierita plicata (species marked * indicates the identification has been confimed by . R. Tucker Abbott.) Areas Á- to A-IL.

These stations covered the reef-flat and present roughly the same type of substrate. The surface is relatively smooth, weing built up by the consolidation of the individual heads and fronds of coral by coralline algae. Its surface is pitted with mall shallow depressions in which water stands at low tide; these are usually less than a square foot in area and not over about three inches deep. The exposed surface of the coral and in some areas the tidal pools, are usually covered mith a more or less dense growth of algae (to be renorted by Dr. rioul). The excentions to these generalizations are in the back-ridge trough (areas A-13 and A-14) where the surface is below the level of the lowest tides. Areas $A-7$ and $A-8$ and $A-9$ were at least in part covered by a single extensive tide pool; in these areas a fev living pieces of Heliopora were still growing uncovered by coralline algae.

In the tabulations below those animals not quantitatively estimated and those animils that are rare; scattered or very irregular in their occurrence (as would be those found only in the occasional loose coral boulders) are indicated by \underline{P} for present.

	1	11	1	!	1	I						
	81	11	. .	$\therefore 1$	1.1	-		,	1		'	1
Station	1221	$3: \quad 41$	51	61	$7{ }^{\prime} 8$					12		
	1 1			,	1 t							
Distance	0.150m1100	1150-:	200-12	250.13	300w1350-1	4,00-:	450	1500		550	600	1650
from beach	50:100, 150	. 200	250:	3001	$350{ }^{\prime} 4001$. 450	500	1.550		600	. 650	. 700
	,	'	,	1	,	,			,			,
	11	$1 \quad 1$	-	1	$1 \quad 1$	1		,	1		1	:
	1	1	1	1	1	1		'	1		1	
Height	2.422 .2 .0	1,8!	2.6%	I.L!	1.2: 1.01	$1.0{ }^{1}$. 0.8	10.6		0.4	140.4	'-0,2
above 0,0	11	11	1	1	:	1		,	:			' to
tide zone	11	,		1	$1 \quad 1$,	-... -	'	,		:-0.2	$1-1.4$
	11	:	!	$!$	1 i	!		1	1		,	,
	; 1	1	!	1	1	,		'	!			!
Approxi-	1 '	1 '	,	1	1 '	1		,	1		'	1
nate per-	1 1	1...	$\because 1$: 1	' '	t.		1	1			1
centage	' '	'		,	1	1		,	'			'
covered	70\% $30 \% \cdot 30 \%$	150\% .	30\% 1	30\%	80\% ${ }^{1} 100 \% 1$	90\% '	70\%	1.80\%		70\%	'20\%	'100\%
by tidal	,			1	,			,				
pools.	1 '	1 1	1	1	$1 \quad 1$	1		!	1		1	!
	1	,	1	1	1	1		;	1		1	1

1.	1.	2	3	4	5	6	7			89	10	0	11	$1 \quad 12$	13	14
	1			1				1				1			1	
PEJECYPODA	1			1				1				1			1	
	1			1				1				1			1	
$\begin{array}{r} \text { *Barbatia } \\ \text { Cenella } \end{array}$	1			1				1				'			'	
	1 :	-	5	Pi	20	40	360		1390	01400	720		840	O 260	IP	-
	:			1				:				!			,	
$\frac{\text { Volsella }}{\text { auriculata }}$	'			1				1	,			'				
	-1	\sim	\cdots	40:	-	-	-	-	-	-		-		-	-	\cdots
	1			1				1	,			1				
	1			1				1	1			1			!	
$\frac{\text { NIsognomon }}{\text { perna }} 3$	1			1				'	;			'			1	
	3 '	2	3	-1	20	40		-	, -	- 20		60		-	-	-
	,			!				'	,			'			,	
$\frac{\text { Gafrarium }}{\text { pectinata }}$	1			1				1	1			'			;	
	-1	-	2	-1	-	-		-	1 -	-		- 1	1 -	- -	- 1	-
	1			;				!	:			1	1		'	
ECHINODERTIATA	,			1					1			1	'		1	
	1			'					1			1	,		!	
Tripneustes gratilla	1			1					1				'			
	- 1	-	-	-1	-	-		-	-	-		-	11	1	- 1	-
	1			1					1				,		$\underline{1}$	
	1			1					1			1	t		1	
$\frac{\text { Echinometra }}{\text { mathaei }}$	1			1					1				1		,	
	- 1	-	-	-1	-	-		-	1 -	-		-	11	1	-	-
	1			'					1				'		1	
Diadema	,			1					1				1		1	
paucispinus -	-1	-	-	-	-	-		-	1 P	P		-	1	-	-	-
	1			'					1				1			
Distichopis sp.-		-	-	-1	-	-		-	-			-		-	-	P
	-			1					1				1			
	1			1					1				1			
	1			1					1				1		,	
$\frac{\text { Ophiocoma }}{\text { orevipes }}$	-	-	-	-1	-	-		-	-	-		-	1	1	-	P
	1			1					1				1			
Other brittle				1					!				1			
stars 125P		2	8	-1	IP	-		P	-	-		-		- 120P	P	-
	1			1					1				i			
	1			1					1				!			
$\frac{\text { Holochuria }}{\text { atra }}$.	1			'					1				'			
	- :	p	1	1	-	-		\cdots	1	1		1	,	1 -	-	-
	1								1				1			
Actinopyga	'			1					1.				1			
mavictana -	- 1	-	-	-1	-	-		-	-	-		-	1	1	-	
	,			1					1				1			
Other Holou thurians	1			1					'				1			
	-1	-	-	-1		-		-	1.	-		20	1	-	-	
	1								1				1			
	1								1				1			
CHORDATA									'				1			
									1				1			
Ptychodera sp. I	11	P	P		20P	-		-	1	-		-	1	-	-	-
									;							

Coralline ridge.
The topographical features of this ridge are described above. Unfortunately tides and waves did not permit an examination, neither quantitative nor qualitative, of the fauna of this zone The relatively smooth surface of the coralline algae did not offer any protection for animal life; the shifting rocks at the bottom of the surge channels offered less. Howover, reaching into the nass of the coraline algae were numerous openings, and within the heads were chambers in wich many animals lived. In this habitat were found such animals as Echinometra mathei, Heterocentrosus sp., and several species of xantinid crdbs.

Reef Shelf.
This area, lying beyond the outer edge of the coralline ridge, was estimated to be about 300 Seet ride, from $8-10$ feet deep at the coralline ridge to about 30 feet deep where the bottom begins to drop away abruptly. In this area no invertebrates other than corals sere observed, and no facilities were available to transport heads of coral to shore for rurther examination; however, numerous holes vere noted in the coral floor where crustaceans, worms and other forms could have lived.

The coral on tha shelf was roughly zoned, with the dominant species in the shallower water near the coralline ridge being Pocillopora meandrina, and in the deener water of the middle and outer shelf, species of Acropora. In the middle and outer portions of the shelf massive heads of Poxites lobata were conspicuous. Among the other corals found in this area were all of those reported fron the bach-ridge trough and some small specimens of Stylaster groving on the undersides of coral heads in twenty feet or more of water. Large areas of the bottom nere covered with dead, loose fronds of Acropora:

Shailartrater lagooin rectons and adtactiv areas

ARES NOT IN LAGOON.

I. Leeward Island Reef.

This area lies to the lee of the ends of the islands, west and northwest of Tabaurorae and its northern reef. The regions famistically approach the windrard reef but on then there is not a well-developed reef flat and no backridge trough or coralline ridge whatsoever, but insteat changes at places quite abruptly into conditions similar to the reef shelf off the windward reei. In water of moderate depths -- two to five feet -.. the najor elenents of tire fauna are the same as the backridge trough on the windward reef.

The major exception to these generalities lies in the region northrard of the Helioporaflets off Anteuma; here, the conditions are similar to the area rithin tine reef to the rest of Abenecnec Island (to be described by Dr. Cloud).

IT. Fieliopora Flats.
The areas designated as Heliopora Hats are found in a protected region behind the mindward rees at the south end of the north island and northrest of the tip of the north island

The sontinern Heliopora flat consists of an extensive tile pool avout 800 feet in diametor, protected on the oceanside by a coarse coralline boulder ridge, and by elovated sand and boulder covered reefs on the other sides. The botion of the pool is estimated to be about the 0,0 tidal level, and the water stends about trelve to eighteen inches deap. The bottom is sand. The dominant mimal is Heliopora, with one heac ahout everur square yard; Porites sp. is poriaps a tenth, as nlentiful. Other corais, all infrequent, include

Orbicella, Pocillopora, Leptoria, On the exposed sand bottom no animals except Holothuria atra are conspicuous. Other invertebrates are found in two habitats.
A. Under coral heads. Here are found stomatopods (Pseudosquilla ciliata), Tethys, two species of tmicates, four species of holothuroids, *Thais hippocastarum, and several species of brachyuran crabs.
B. In coral heads. Here the dominant forms are crangonid shrimps and small xanthid crabs. Encrusting sponges of various types are common; black colonial tunicates are plentiful; one head only showed numerous small sea anemones. Amelid worns, both Errantia and Sedentaria, are moderately common. Several species of clams, including *Isognomon sp. and *Barbatia tenella, are found between the inner branches of the coral.

The northern Heliopora flat is famistically similar to the southern, with the same population. However, it shows the transition, on its inner side, between a typical Heljopora flat as described above with infrequent heads of Heliopora reaching from the sand bottom, through a condition where the Heliopora is growing thickly and the top ends were being consolidated by coralline algae, to a consolidated condition like that described in section A-8 of the windward reef. In the labyrinthian passages below the surface consolidation are numerous small fish. On the outer edge these flats gradually change in a moderately deep water coral association with passages between the coral six or more feet deep.
III. Shingle Flats.

These areas of shingle -- flattened and waveworn coral rocks lie in regions where the waves and the currents are strong enough to sweep away the sand. These conditions are found in the passes between the islands, as in the three passes between North Island and South Island, and the two passes west of South Island. The size of the rocks varies with location, being large
where there is an unbroken sweep of the water, as betreen the windward side of the Abenecnec passes, and gradually changing into fine gravel on the more protected extensions of the current, as to the west end of the southerm tip of Morth Island, which in turn is replaced by the fine sand characteristio of the lagoon. Nll shingle areas inspected were bove the 0.0 tidal zone, and in places extended up to the edge of the terrestrial flora. In some portions of the passes there nero developed broad shallorr tidal pools, with a bottom of finer rocks or sand.

Without exception these actucil pass areas were found to be deroid of Iarger animals; even the tidal pools appeared lifeless. However, where there was slight protection either from is? ands or from bars, there was a feeble fauna developer, fith some tanthid crabs, a fers sponges and heads of porites in the tidal pools. In the fine gravel zones, transitional between the shingle and the lagoon sand, somo life vas found in the levels near the zero tide zone. Burroving into the dead coral ree: under these areas vere found sipunculids and annelids; in the small shallow tidal pools were found occasional brittle stars, solitary zooanthids and small crabs under the scattered loose boulders.

LAGOON ARZAS

IV. Sand Foreshore.

Along the legoon side of the island the foreshore, from about the two root tidal level up aiternates betreen fine sand and consolidated beach rock with more areas of beachrock off the northern island and nore sand off the sowthern. Only near the tips of the islands and around snaller"islands like Anterma and Abenconec are these tro characteristic beach formations replaced by coral shingle. The sand foreshore is devoid of life except for occasional ghost crabs ocmode ceratophthalma the same species that is found much more

Dientifully on the rindraxd sand beech
V. Beach-rock Foreshore.

Altemating with the sand foreshore are areas there the elovated beachrock of the island's base is exposed by wave action This slab is eroded on the top suriace into the typical cupped patterm, and often is undercut along the lover edse by wave action and possibly solution by fresin water from the island lonse At places, especially in the lower tidal zones, the underoutting has proceeded far enough so thet slabs up to several feet or more long have broken off from the base rock and lie free on the substrate of either beachrock or of sand.

Animal communities in this nabitat when the tide is out are subjected to dessication and heat, to ratn and especially to the flotring fresh vater, common all along the shore; when the tide is in, to moderate rave action (except, possibly during periods of stoms from the rest men the vave action vould be vigorous).

The rocks can be subdivided into four associations:
A. The hisher beach-rock area. This is above about the 2.5 foot tidal. zone and is almost devoid oi life except for焦eritia ploata and Grapsus grapsus, neither as comon as on the similan rocks on the rindiard side of the island.
B. Lower beach-rock area, rocks lying on solid substrate or undercut solid rock. These rocks Ije betreen the 0.0 and 2.5 tidal zones. In them are found burroving sipunculid forms; near the edges of the rocks are numerous Holothuria atra and Less numerous Holothuria monocaria, some colonies of colonial tunicates and sone sponges; under them are numerous crabs of at least four species, four or more species of crangonid shrimps, very few hermit crabs, and no woms.
C. Lover beach-rock, rocks lying on sand. These are in the same zone as B above, but lie mith the base imbeded in the sand. About the in eague is the common Holothuria atira and clusters of zooanthids; in burrovs under them in the sand are numerous large rorms of the genus Eurythoe and three species of crangonici shrimps.

Do Lover beach-rock, suspended rocks. These, lying with one end on other rocks, leave a large surface underneath open to sree circulation of vater or air, and protection from the sun and rain. On this surface, hanging dorm, are hydroid colonies in profusion, and some colonial tumicates, a fer sponges. VI ind Flats。

In a short narrow area alorg the middle of the irorth Islands belo: the foreshore and behind the incipient beachmock (VIi) there is a mud flat. The height of the mud flat is slightly above the zero tide level. The mud is soft, so that a person walking over it would sink betwen ankle and knee-deep; slipery with little admuture of sand, and rich in organic matter whose decomposition gives it tine characteristic odor of hydrogen sulfiden

In this mud flat proper is only one species visible, the brilliantly colored fiddler crab, living in burrows. In areas transitional between the mud flat and the sand are found some burrons of stomatopods. There vere no traces of anelid burrous or of other macroscopic life.

VII Incipient Boach-rock
A small area off middle of the northern island, bounded inshore by the mudflats (VI) and off shore and at the ends by sand $\hat{f l a t s}$ or turtle grass (VIII and IX), is composed or beachirock in the process of formation, according to Dr. Clond. The rock is as fim, or almost as firm as the typical elevated beach rock (V) but its surface, necr the zewo tide zone, was roughly eroded like the nore exposed rock (IV-A).

In protected areas in the rock, as in deeper cusps, in fissures and under the occasional loose rocks are the following snails: Thais hippocastanum; *Mitra virgata and "M. litterata; "Cymathium chlorostomum and "Conus hebraeus. Under the rocks are numerous hermit crabs. Burrowing into the rock were sipunculoid worms and sea anemones were found in protected locations where they were living in shallow pits that precisely fitted the basal portions of their columins. In shallow but rather long burrows that they have either excavated or taken are the large red-eyed crabs and fiddler crabs; at the entrance of these burrows were vast numbers of collembola.

VIII Sand rlats.
The most extensive habitat in the lagoon is the sand flatio: These flats rum from the inshore beach along the three major islands extending as a broad, alnost level, flat from the inshore beach outwards for several hundred feet wide to a half mile or more. On the outward edge they either continue as the sand bottom of the lagoon or are covered by turtle grass (IX), or are demarked by a decadent corai reef (X). The portions of this area described below run from about two feet above to several feet below the zero tidal zone. The sand varies from less than an inch thick, covering old coral reef, to at least several feet thick.

The fama of this zone varies with the depth in the tidal zone, the fineness of sand particles, the amount of wave action, and nitil the deptir of the sand. The differences in the fauna are not well demaxked andmost often are quantitative rather then qualitative - . the same species present in most areas, but varying in relative abundance. of course, with the difference in depth the fama changed markedy; for example, in the highest portion here considered (some tidal pools in the middle tidal zone off Anteuma), the only elements of
the fauna left were the Enteropneustan, Ptychodera, and on the other hand, belov the -1.0 tide level solitary heads of coral would reach up above the surrounding sand.

These solitary heads of coral in this area, like those in the Turtle grass area, constitubed microenviroments maxkedly different from the surrounding sand. For that reason they are considered as a separate subdivision below.
A. Sand area proper, fama:

Porifera: Purple sponge, black sponge (tro kinds), orange sponge。
Coelenterata: Zooantilids (corals considered below).
Annelida: Tubeworms with leathery tubes and with sand tubes; two species of Errantia; small and giant sipunculids.

Crustacea: Lysiosquilla maculata; Callianassids, Calappa spo
Hollusca: (Note: remarkably few traces of living mollusca wore found, although dead shells were seen in some areas; this may be attributed to the foct that most of the sand flat molluscs are estemed as food by the Gilbertese.) Clams, various species including *arrarium pectinata, Frellina crassiplicata, "Tellina sp., "Nautica sp., various species of Mitra, Terebra, Cymathiurin, Trochus,

Bchinodernata:
Holothuria atra (extrenely comon in some areas, counted at 5-15 per square yard).

Chordata:

Ptychodera Sp.

B. Isolated coral heads, fauna:

Porinera: sane as above.

Coclenterata: Porites sp. (dominant); Pocillopora damicomis; Acropora servicornis; Orbicella; other corals in lesser numbers.

 Pennaria.

 Pennaria.}

Amelida: Tube worms in liny tubes; sipunculids
Crustacea: Crangonids, varicus species; brachyuran crabs.
Mollusca: Cyprea erosa, "Mionetaria moneta, "Barbatia anygalumtostum.
Chordata: Colonial tunicates.

TX. Turtle Grass
Large areas in the northern part of the lagoon and portions of the southerm Iagoon are dominated by Turtle Grass (Thallasia sp.) which extends over the sand botton from tater about at the zero tae line or a little above to six or ten feet belot the surface. The Turtle Grass, which makes a dense stand Like the northern eel-grass (Zostora), seldon grows over a foot or more high; Ats creeping rizizomes make a dense interroven mat in the sand substrate. In the southern portion of the lagoon less area is adaptable to the grovth of the plant, and in general it is limited to a relatively narrow zone near the shore of the island; in the midale of the lagoon, off the passes between North and South Islend and the adjacent areas, and off Tabuarorae and the southwestermost portion of the lagoon there is no Turtle Grass thatsoevers

The furte Grass proper is relatively devoid of invertebrate life. on the fronds of the grass are found black colonial tunicates and occasional sponges of soveral types; about the bases of the grass are nore sponges of the same type and, most abundant in many areas, a papillose green-black holothurian. It was impossible, once digging vas started, to dig out the
few burrowing animals detected because of the clouds of fine silt that rendered undertator viston impossible. The burroning animelss howevorg are feu in number and appeared to be limited to a small squillid (Iysiosquilla) and some burrouting wormss

In the deeper portions of the Turtie Grass beds, especially in the area off the northem islond, tinere appear solitiry and separated coral masses, like islands in a sea of grass. These isolated masses are rich in life, both ifish and invertebrate. They evidently are made up primarily of porites, but they are covered in a large extent by other corais like Acropora, Zocillopora, Orbicella, etc. The invortebrate fama is in general similar to the faura of coral heads in the sand beach area (VIII-E).

X. Decadent Coral Reef.

In many areas the sand flats grade gradualy into a region of doad corel reefs that lic betroen $\neq I_{0} 0$ and $-I_{0} 0$ tida? Ievel. These areas appear to be those where the wave action and current action is stronger, sweeping the veneer of sand from the harder substrate They are found to the southeast of Antevna; oif the southern portion of the Morth Island and the northern portion of the South Island and the passeges betreen: and they are oxtonsively developed off Tabuarone and in the gouthertem portions of the lagoono

The decadent to dead coral reefs present a variety of hebitats for inver'ebrates: on the hard coral there are naces of actaciment, protected and unprotected, for sessile foms; in noturally occurring spaces and in burrous in the coral there are paces for the smaller invertebrates to hide; in the areas betreon the heade of coral, oither broken off as the reef vas growing or subsequently eroded from the reef surface are pockets of sand and gravel to accommodate buxhoring forms; these pockets, some of then many feet
long，retain water when the tide is out and provide a tidal pool for the protection of its inhabitants．For this reason the fauma of the area is more diverse than any other area of the lagoon；honever，with few exceptions，no eloments of the fauna are exceedingly common：
Porifera：Yellov to red encrusting sponges，several species
Black，rounded sponge
Moderately cormon
Uncommon
Theommon
Coelenterata：－

Pennaria

Forites，living Pocillopora damicornis

Annelida：
Toms in limy tubes，tro species
Burroning Errantia， 1 specinen
Sipunculus sp．
Crustacea：
Crangon，and other genera Uncommon
Brachyuran crabs（other than Portunids）Uncomion
（Portunids）
Hermit＂Crabs
Gastropoda：
Conus rebraeus
Conus flavidus Rare
Wionetaria moneta
＊Hautica sp．
淮位至 virgata \quad Rare
ITudibranch Rare
Uncommon
Uncomnon

Uncommon
Uncomon
Common

Crustace

Rare

Rare

Comion on undorsides of coral overhangs．
（Ioderately common）

Boderately common

Pelecypoda:

*Barbatia anygdalumtostum	Uncomon
*Isognomon perna	Common
FPinctada vulgaris	Comnon
HTellina sp.	Rare
Frellina crassiplicata	Rare

Echinodermata:

Eritule Stars (as in A-2 windward reef)	Common
Linkia sp.	Rare
Holothuria atra	Abundant in tidepools at jurer edge of area (60 in one pool of about 60 square feet); otherwise rare.
Papillose sea cucumber (as in ty above)	Rare

Chordata:

Ptychodera
Encrusting compound tunicate, three species

Rare
Rare to common, according to the species.

III

GILBDRTESE UTHIZATION OT TNVETEBRATES

Cne of the important phases of a study of a native peoples is the study of the food resources available to the people, and of their utilization of these resources. This is especially true of the inhabitants of a coral atoll, there the food resources at best are somethat limited, and where, on a small dry and overpopulated atoll like Onotoa, these resources may be the deciding factor in social structure and even of life and death.

On Onotoa the population had available three sources of food; the conventional land produce, plant and animal which obviously was inadequate to support the island's population, especially in times of drought; the marine fisheries, apparently the chief source o? protein in the native diets and one of the main sources of calories; and finally, the marine invertebrates, Which appeared to be at best merely a supplementary source of food, gathered primarily either then fortuitous occasions arose, like low tides at night for the collection of lobsters, or to serve as mere variations in the usual diet of coconut-pandanus-fish.

However, this study will give some indication of the extent that the Onotoans are utilizing most of the available resources as food. Methods and Jimitations of the Study:

This study was carried on to large part when I was immobilized by blood-poisoning. A native assistant was assigned to help me when he was not busy with other jobs; he was willing and cooperative, but the study was inhibited by his most imperfect English and my total lack of Gilbertese; at times an interpreter was used to bridge the gap.

The study, in its original phases, consisted of looking at pictures in illustrated books of morine life. Later, upon finding that thot system was inaccurate because of the inability of natives to interpret correctly the illustrations, all information was gathered by showing the natives actual specimens, specimens that were either collected for us by our native assistants or by ourselves.

- The study has three major limitations and sources of inaccuracies. rirst is the probaility that we were unable to find all of the foods of the people because we had neither illustrations nor specimens of themg and our informants did not discuss them because of the languace limitations. Second because of their "sillingness to please" the natives included aninels thet possibly were not eaten, or that were eaten only under extreme fanine conditions, To remove this possibility several natives vere checked, one against anothear, in as meny instances as possible, fhird is that not all individuals or family groups utilize the invertebrate foods as much as others -- Like in our on society some families eat crabs but others would not consider them. Perhaps my informants were not among those who kners and atilized all of the roods found on the reeis and shores of onotoa. I did observe on some of the food species that there was no agreement as to the native nome; for example, I received three native names for the snail Quimalee pomum, This rould seem to indicate that it was not a common article of foodo

Systematic Account

Scientific Tlame
Hative Hane

1. Coelenterata-Scyphozoa (Carybdea alata Remand)

Te Baitari

Notes

These large (10-12") scyphomedusae occurred at a moderate tide slightly before the full of the moon; reportedly
the moon throughout the year. They are gathered on the windward reef by wading women and children who either put them in baskets or string them on pandenus fibers. In preparation the outer layers of jelly are stripped off, the oral and aboral ends removed and only the remaining material - the muscular coat of the gastro-vascular cavity is saved. The cleaned material is thus 6-8 inches long, $1 \frac{1}{2}$ inches broad and about $1 / 8$ inch thick. It is reported that this is boiled to form a rather sticky "soup".

AnnelidamSipunculoidea

2. Sipunculus Endicus Peters Te Ibo

These are found burrowing in sand Slats of the lagoon. They are one to two feet long and the diameter of a man's little finger. When the native, usually a man, finds a hole and casting made by the worm he probes the sand behind it with a flexible and sharpened young root of a pandanus; this, when hitting the vertical portion of the worm burrow follows dorm the tube. When the worm is touched

Arthropoda, cridstacea-Stomatonoda
3. Lysiosquilla maculata

Te Waro
by the tip of the probe, it is thrust with vigour and penetrates with the introvert into the anterior body pocket, securely holding the worm. The worm is then dug from the tube: The probe is jerked out, rupturing the anterior body wall of the sorme Then the sorm is seized by the back end and snapped like a whic, completely eviscerating it and leaving nothing but the thick muscular coate This is washed and eaten raw, cooked by boining or dried for future use.

This Iarce stomatopod (obout I foot long) is found oniy burrorted in the sand in the lagoon. It is caught by both men and wonen by placing a spear in the sand so that it is in line mith the hole; a piece of fish is placed at the entrance of the burow as a lure, a noise is mace to attract its attention, and as the stomatopod comes to the mouth of the burrout to strike the bait, the spear is thrust home. The animal is cooked and all except the viscera under

\because	the carapace is eaten.
4. $\frac{\text { Pseudosquilla }}{\text { (and other speciliata }}$ All smaller stomatopods when capture	
	are eaten; they run from one to four
Te raro (as above)	
-	these stomatopods is under rocks on the
\because	windward reef flot, where they are
- :	gathered by hand or by small scoop nets
\because	together with shrimps, ebc. They are
	gathered principally by rromen. Hethod
	of preparation as in 3 abovec
Decapoda	
5. Crangon strenuus (Dana)	(Note: this Gilbertese name evidently
Tenittarowaro	includes other genera and species of
	chelate shrimp and lobster-like
	crustaceans but the only form observed
$\cdots \cdots$	was Crangon strenuus). These range in
	size from one inch to fourteen inches
	long and are caught by all members of
	the family near the back-ridge trough
	of the windivard reef in small nets when
:	torch-fishing. They are boiled and both.
	the cephalothorax and abdomen are eaten.
6. Panulirus pencillatus (Oliver)	This lobster runs from six to eighteen
Te Ura	inches long. It is caught along the
	windward reef by men and women either
: $\because \cdot$	during the day when the tide is out or

7. Parabaccus antarcticus (Tund)

Te Inava
8. Birgus latro

Te Aii
9. Geocaroides sp.

Te inanai
10. (Terrestrial Hermit Crabs)

Te ilakauro
over the reen surface at night, when torch fishing. Dip nets are used for its capture. It is boiled and the abdomen, portions of the cephalothorax, and legs are eaten. The sand Iobster reaches the length of nine inches; it is caught, prepared and eaten in the same way as in 6 . These coconut ciabs are entirely terrestrial and are foumd by day in burrous. They are dug out only by men. Then boiled the abdomen and legs are eaten, These large land crabs are found only on the Morth ends of both major islands of Onotoa. They are caught by mon and women at night by torch light in the middle of the island. They are boiled and eaten like other crabs (see below). These are snall terrestrial hermit crabs. that live in the shells of Turbo, etc. They are caught either by day or by night, the latter time by torch light. only children were observed gathering them. They are boiled and the abdomen alone is eaten.

1	Calappa hepatica (I.)	These sand crabs reach the breadth of
	Temonno	about $3^{\prime \prime}$. They are captured in the sand
		of the lagoon when the tide iss out by
		feeling for them under the sand with the
		hands or feet. Everyone helps in their
		capture. They are boiled and the legs
		alone are, eaten. ..
12.	Charybdis erythoodactyla (Lanark) These crabs are six to eight inches	
	Tentabarereki	broad across the carapace and found
		both on the winduard reef and in the
		lagoon. They are gathered by anyone
		finding them and boiled; the legs and the
		ventral portion of the cephalothorax is
		eaten.
13.	Caxpilius naculatus (L.)	These crabs are found only on the
	Te Tba Toburinai:	Winduard reef when the tide is out by
		day or at night by torchifishing; only
		aduets catch them, either by nets or by
		hand. They are boiled and eaten as above.
14.	(thidentificd crab)	These crabs are about 6-7' ${ }^{\prime \prime}$ across the
	Te Nikanewerewe	carapace, and their habitat, mode of
		capture and preparation are the same
		as 13.
15.	(Red-eyed crab)	These crabs are found high in the
	Tentababa	intertidal zone on both mindutard and
		leertard beaches, underneath beachrock;

	they reach the carapace breadth of about 3 inches. Ansrone may catch them, and they are gathered by hand and prepared in the same fashion as above.
16. Ocypode ceratophthaina (Pallas) Te Kauki	These "ghost crabs" are found high on the sand beaches on both shores of the islands where they live in burrows: they reach the breadth of $3^{\prime \prime}$. Anyone may capture then, eitiner by digging by day or by torching at night with a net. They are boiled and portions attached to the ventral hall of the body are eaten.
17. Zozymus aeneus L_{0} Te Kukua	These crabs are foum at night on the windward reef in torch fishing; they are reputedly extremely poisonous in $2 . l l$ parts of the body, causing rapid death when eaten. They are never used as food.
Hollusca, Gastropoda	
18. Trochus, all species Te Baraitoa	These are found along the windvard reef; they are gathered by all members of the family, boiled in the shell and the meat is prolled from the shell for eating.

31. Charonia tritonis

Te Tauu
32. Tonna perdix

Te Tau
33. Quinalea ponum

Te Iakauro-n Tari
34. Vasuan ceramicum

Thais hippocastanum (L.)
Morula granulata Duclos
Te Nimakaka

This large conch or triton is found along the outer edge of the lagoon on coral in waist deep or deeper water; it is gathered only by wien. It is considered poisonous and not eaten; however, the shell is used as a trumpet to announce meetings in the comunity hall, and the sheil, hung upside dom, is used as a flask to store coconut oil (the oil is poured out of the syphon, from rhich it emerges in a small and easily controlled stream).

This snail is found in the lagoon in water two fathons or more deep, on coral; it is gathered only by men. Before eating, the animal is boiled in the shell. (one old man informed me it was the young of the conch (31) and had the same name).

This snail is found in the same habitat and prepared the same way as Tonna perdix (32).

These species are all found on the windward reef flat, where they may be gathered by men, women or children; they are cooked in the shell. All are knom by the same name.
35. Conus, all species Te Nouo
36. Pollia undosa

Te Wikakang
37. Mitrag all species

Terebra, all species
Te Kabinea
38. Melampus, all species

Te Kokoti

These species are found variously on the ocean or lagoon side of the island in shallow or deep water; primarily women and children gathex them on the windward reef, while only men gather them in the deeper water of the lagoon. While Conus striatus, one oi the poison cones, is among those gathered, the Gilbertese sem to have no knorlledge of its "sting". All are boiled before eating, and then the shell is broken to withdraw the meat. Another informant called thom "Te Nruo Nuo". These snails are found only on the nindvard reei flat and gathered by evertrone. Tiney are cooked and the meat is then pulled from the shell. These snailis are found onlyr buxied one to tro inches deep in the sand of the Iagoon when the tide goes out; they are gathered by all menbers of the femily and boiled in the shell. Both genere have similar habitats and bear the same GiJbertese name.

These species are found only high on rocky beaches on the nortinvestern and

42. Hippopus hippopus

Te Nei Toro - small individuals

Te Aubuna - large individuals
is gathered by men only. The meat is removed from the shell before it is boiled. Some pearls are found and the shell can be sold but there is no established pearling trade on Onotoa, The shell is used also by the men for ormaments on belts, for earrings and for canoe decorations.

This giant clam is found on both lagoon and ocean reefs from three feet deep to about two fathomsw ill sizes, from two or three inch specimens to those about three feet across, are gathered by men for eatingo At times they are eaten raw. Then fresh, their meat is boiled with water or coconut milk; they may also be dried with salt and kept several months. The large sholls are often used as wash basins. Some families make small holding pens of coral along the beach in front of their houses and keep small specimens alive until they grow larger, or until the family is ready to eat them. One fanily had a pen about four feet square that held ten clams ranging in size irom three to twelve inches across.

45. Tridacna cumingi
 Tridacna elongata

Te vere
46. Tridacna squamosa

Te tere Hakai
47. Cardium sp.

Te Tuai or
Te Taerake

48. Carcium (Trachycardiun)

flavum
Te Nikarikiriki
49. Gafraum tumidum

Venus clathrata
Te Koikoinanti

These are the same as Hippopus above (44) excepting for their smaller size -up to nine inches across in lagoon, three inches across along the ocean. These are the same as Hippopus above (4it); size up to about fourteen inches across.

These cockles are found in the lagoon only s?ightly under the surface of the sand, in intertidal zone. They are gathered by owsxyone; the clam is boiled for food and the shell is used as a coconut meat scraper to make baby food.

These cockles are found near the surn face of the sand in the intertidal zone along the southem island only. They are gathered by everyone and boiled in the shell before being eaten. These are both found in outer lagoon on corel and not in sand, in about one fathom of water. They are gathered by both men and tomen diving from canoes. They are removed from the shell before boiling. Both species are referred to by the same name.

50. Pitar (Agriopoma) japonica		Both of these clams are found along islands buried one to two inches deep
	Te Katura	in the sand high in the intertidal
		zone. They are gathered by everyone and boiled in their shells before
		eating.
51.	Protothraca staminea	This ciam is found low in the intertidal
	Te Koumara	zone along the lagoon only near the end
		islands buried up to six inches deep in
		the sand. It is gathered by women and
		chilcren and may be either eaten raw or
		boiled in the shells.
52.	Tellina crassiplicata	This ciam is found buried eight to
	Te Nikatona	twelve inches deep in sand in lower
		intertidal zone off the south and north
		island and off the south island. It is
		reported to be about "rished out". It
		is dug the year around by anyone. It
		may be eaten raw, boiled after removing
		from the shell, or salted and dried.
53.	Asaphia dichotoma	This clam is found in lagoon sand in
	Tei. Koikoi	lower intertidal zone buried about one
		foot deep all along the coast except
		off the middle of the southern islend.
		It is dug only by tomen and children;
		it may be eaten rav ox boiled in the
		shell.
		40 -

54. Asaphis deflorata

Te Bun
55.

Polypus marmoratus
Te Kika

This clan is found only at Abemana
Island but not on Onotoa nor any other island; it is found low in intertidal zone in sand of the lagoon. on

Abemama it is dug by everyone; it may be eaten raw or bioled and is reportedly of excellent taste. The shells were imported to Onotoa to be used as fishing sinkers.

The octopus is one of the principal Invertebrate foods of the people. It is caught on both sides of the island in holes under rocks when the tide is out by spearing with short hocked spears. iim, women and children all capture it. ill parts of itt are eaten except the ink sac. Several methods of preparation are used with it: It can be pounded on a stone without additional salt until soft, and then either boiled in water or coconut milk for several. hours; or it can be saited and dried to be kept for at least several months. Before the dried octopus is eaten, it is washed and boiled.

DISCUSSION

It is remarkable that these people did not use certain supposedly edible animals of their region. For example, careful questioning showed no evidence of the use of sea weeds, of sea urchins (quite common around the islands), and of marine annelics like the palolo worm. All three of these constituted relatively juportant foods for the peoples of Hawaii and Sanoa. In addition several other foods used by other peoples were not used on the islands, like the sea anemones eaten by Samoans; hovever, no large sea anemones were seen about Onotoa.

Several foods on their list, on the other hand, possibly are not too wide spread in their use; this is especially trme of the scyphomedusae, the sipunculids (although these are eaten in the liarshalls) and the supposedly poisonous cone shells,

The lagoon reef is not veay productive of the edible moliuses; in all of the field work in the intertidal areas of the lagoon no evidences of living clams or edible snails were seen. Mhile it is likely this condition stemmed from overfishing by the concontratad popilation, it may actually be the result of low productivity of the Onotoa legoon reefse

PART II

INVESTIGATION OF THE ICHTHYORAUNA OF ONOTOA, GILBERT JSLANDS

Onotoa is a small atoll with a relatively high population density; it is quite drer andsubject to extended drougit. Fev food plants can be grom, and even the coconut crop fails at times. Thus, for the Gilbertese on Onotoa, there is a very great dependence on the sea for food. .

The nethods of fishing are many and varied and involve men, women, and children alike. Pishing is undertaken largely by the men, however, and centers around the use of the native outriggor canoe.

Jacking suituble trees for dugouts, the outriggers in the Southern Gilbert Islands are constructed from Australian plank Iumber obtained from Ocean Island. No metal parts are used, the planks and outriggers being lashed in place with a native cord nade from retted coconut husk fiber. The outrigger itself is a solidatece of mod and usually made fron driftood.

Hot every mon orms a canoe, but nearly every family has one or access to one:"In the village of fiaki there are 370 people and 82 canoes * Fiftyeight of these are good-sized sailing canoes and can be used for trolling outside of the lagoon.

The fisherman tho oms a canoe will usually have the following items of fishing gear: a fer fishing lines of various sizes, a small assortment of hooks, leader wixe of flexible galvanized type, a large shark hook, one or two handmade Iures, a flying fish net, a pointed metal rod with a mooden handle for gaffing large fish, a lmife, and swin goggles. ilost of the fishermen own a fish spear with rubber slinga ilany families have eel traps and small nets for torch fishing. Some have eel snares, fish traps, beach seines, and finemesh nets for small fish.
*This infomation, as well as certain other facts in this report, was suprlied by Dr. Ward Goodenough.

A cooperative store is located on the atoll and is supplied infrequently from Tarawa. It usually has hooks and fish line for sale. Normal-sized hooks are quite inexpensive, ranging in price from $\frac{1}{4}$ to $1 \frac{1}{2}$ pennies. The large shark hooks, when in stock, cost 2 shillings 6 pence (30申). Heavy fishing line, of sufficient length for one trolling line, costs 5 shillings.

The Gilbertese can earn very little money; hence they can buy very few of the preferred manufactured items of fishing gear. Copra and various itens of native handicraft made from pandanus leaf fiber are the principal sources of income. Bach year about 60 men from Onotoa are taken to Ocean Island where they work as laborers and by their standards are vell paid. On their return they customarily bring with them such things as wire, old inner tubes, metal rods, pieces of lead, and glass, all of which are importent in their making of fishing gear.

There are meny different kinds of fishes which serve as food for the Gilbertese, and frequently special methods of fishing are utilized for certain species or groups of speciese Usually these methods are standard from fisherman to fisherman, but some individual variation does, of course, exist. In some cases a family or individual may have an efficient mean of catching fish which is kept secret. The description of the various methods as given below represent the standaxd ways of procuring food fishes on Onotoa. Trolling: Sailing canoes are used for trolling which may be undertaken in the lagoon, but the usual site is in deep weter just outside of the west reef of the atoll, especially the region where there is a large westward projection of this reef. At most anytime, but especially in the morning, one can see nunerous sailing canoes trolling back and forth beyond the reef. These canoes may be operated by a single man or by two persons. If there are two persons, they are usually of the same family, as father and son. Women may help their husbands when troliing, 'but this is not a common occurrence.

Trolling speed is highly variable depending on the rind, but generally no difficulty is had in attaining speeds sufficienily great with these fleet craft. In fact, it would seem that too often the contrary occurs; that is, that good trolling speed is exceeded.

The lures minch are used are comonly of three types. A hook may have chicken feathers tied directly to it. Such a lure is used for smaller fish such as the : wail tuna, Euthymus yaito. There may be a lure consisaing of a piece of metal, usually lead, in thich there is a hole through which the leader wire is rum. The back part of the metal is notched for the attachment of feathers. The hook is attached to the leader wire and is always single. The third type of lure is made from an elongate, well-molished piece or pearl shell. The hook is attached directiy to the piece of shell, and feathers nay or may not be added.

The use of thole fish for trolling is a common practice, mullet and flying fish being the usual bait species. Irullets are netted in ponds or close to shore in the lagoon, and ilying fishes are taken with dip nets at nighta The bait fish is attached to the hook by locating the eye of the hook in the mouth and the barbed end up through the back so it is just exposed on the dorsal surface. The eyres of the fish are then removed, and coconut husk riber is used to lash through the orbits to the eye of the hook.

Fishes wich are taken when trolling at the surface in deep water are: Euthynnus yaito, Acanthocybiun solandri, Istiophorus gladius, Blagatis bipinnulatus, Katsuronus pelanis, Neothunnus nacropterus, and at least one other umidentified species of tuna. Swordfishes are occasionally caught. The dolphin, Coryphaena hippurus, is rarely taken. Nearer the reef, species of Caranx and Sohyraena are caught.

Then large-sized fishes are hooked, they are gaffed and their heads beaten rith a moocen club before being brought into the canoe. Spearing: Fomerly a long wooden speax rith a metal point lashed at one ond was ermpoyed. This was jabbed at fish mile swimang wammater. Now, the comon method involves a simple 2lastic eling device and a steel rod of about $\frac{1}{6}$ inch diameter and five or sjiz f eet in length. The sling consists of a piece of truck tire inner tube or a section of bicycle inner tube to which a loop of stuxdy cloth is tied at one end and a loop of cord at tine other. The metal rod has a notch at one end and is sharpened to 2 point at the otiner. There is no folding-type barb, but there may be a small oblique cut made in the rod near the point and the section of metal aray from the point bent slightly outrard. The thumb of the left hand is placed through the loop of cloth and the notci of the spear engaged in the cord. The notched end of the spear is then dram back tith the right hand, bow and amroy fashion, and the spear is cuided as it is launched by the thumb and fingers of the left hand. The spear-fisherman tears shall goggles which he makes for himself from local wood and glass obtained from Ocean Is?and. The gogeles are tied on behind the head inth heavy string. The final item of spering accoutement is an optional one and consists of a piece of cord on which the fish are strung. The fish are suspended from the back, the cord being tiad around the waist. In suiming the frog lick is used and the fich are aproched very cautiousiy, all shaxp movements being avoided. A spesin can be shot for a horizontal distance greater than 25 seet but is not veny effective beyond a distance of 6 feet or so because of reduced accuracy. Epearing is undertaken in both the legoon and on the sea side. Generally the lagoon is referred for there is no heavy suri with mich to contend. In the lagoon the fisherman usually
sails or paddles his canoe out to a suitable area. It is anchored rith a heavy stone or tied directly to a coral lmoll. A paddle or piece of buoyant wood is tied to the anchor line below the surface to prevent the line from catching on coral and chafing.

Spearing fish is a very important method of fishing. It is utiiized mostly by the younger men, some of whom prefer it to any other means of obtaining fish. imone those fishes most sought are members of the following genera: Caranx, Scarus, Lutianus, Iyripristis, Holocentrus, Acanthurus (especially A. nigricans and A. triostegus), Ctenochaetus, Gymothorax, Cephalopholis, and Epinephelus.

Shark jishing: Very strong line, Uire leader made from smaller strands of wire crudely twisted together, and a large heavy hook comprise the usual backle for sharis fishing. The hook is usuallya purchased commercial product, but it may be made by hand from steel rod, in thich sase there is no barb but the tip of the hook is strongly recurred. Fishing may be engaged in from cenoes drifting rell ont at sea, Thole fish is the usual bait, the favorite being the small tuna, Buthynas yaito, which is caught by trolling imiediately prior to the actucl fishing for sharks, If the bait fish is alive, it is hooked carefivlly through the gill openings; if dead it may be tied securely to the hook with coconut husk fiber in a variety of ways. The line is paid out to mindvard and remains near the surface。 Often several heavy shells (Tambis truncata) are tied to a second line which is lowered a few feet below the surface and kept in constant motion. The noise of the shells knocking together supposedly attracts sharks. Some fishemen out fresh fish intofine pieces and disperse this in the water whereupon the much-discussed poyer of blood to attract sharks is brought into operation. This surface fishing often
results in the taking of large pelagic fishes such as swordfishes, whoo, and yellowin tune, as well as sharks.
ifore comonly shark fishing is undertaken over shailow reef areas with a weighted line. Thole fish or cut fish is the usual bait. The sharks taken in reef areas are smaller species, generally, such as the white tip and the black tip.

The flesh of the shark is highly esteemed by the Gijbertese, many of whom actually prefer it to tome and othor fish. It is usually prepared by slicing into sections and roastiag in a pit in the ground. Sometines the flesh is selted and dried in the sun and ultimately eaten without cooking. Still other times it is boiled in sea water.

Hight Rishing for Tilying Mish: The sailing canoe and at least tro persons are required in fishing for flying fish. If there are but tro persons, one holds cocont frund townes while the other steers the vecsel and rorks a dip net. Bishing is cone outside the reef wille moring at ordinary sailing sneed. There are usually about eight or ten torches at hand, made fron ciried coconut leaves lashed jn bundles about seven fect long. The first torch is lighted with matches or by surikine filint and ste 3 over dried coconut husk, Each subsequent tom is lighted from the previcus one just as the latter is about to burm out. The helmsnan (and fisheman) generally wears a woven coconut hat to shade his eyes from the torch light. His dip net is elliptical in shape, about two feet in its greatest dianeter. The wooden handie is at least twelve feet in leagth.

The flying fish ara attracted to the torch jight and skitter about the cance, some striking the sice of it quite resoundingly. The fish are usually caught at the surfece bui occasionally are picked right out the air by an alert fisherman. Then the fish are on the surface the net is dropped directly over them instecd of scooping from the side. Usually the netting
operation takes place on the leeward side of the canoe (the side mithout the outrigger), but the more skillinul fishermen extenc their range to the water to the stem and the tindward side aft of the outrigger.

The only flying fishes observed taken at the atoll. were of genus
Cypselurus. liost of these were of good size, reaching a maximum of about 15 inches in length. Occasionally some half-beaks were retted. Hook and Line: The Gilbertese fish with hook and line fron canoe, from shore, or while standing in shallor water. A pole may or nay not be employred. No use of set lines of any sort was observed. Usually the fisherman handles but a single line which contains but one or a verur few hooks due to the great chance of loss of tackle on coral.

Bishing from a canoe takes place in the lagoon but isually over reef areas or near large coral headse Instead of heving a sinker permanently attached to the line, a stone is often loosely tied ritin a slip imot and the Iine is then lomered to the desired depth where the stone is released by a sudden jerk of the line. A great variety of fishes are taken but predominantly Iutianids, labrids, carangids, sexranids, balistids, and scarids.

Mren fishing from shore on the lagoon side of the atoll, the fishermen (frecuentiy in this case women and children) generally wade well out into the water. Their catch usually includes small Garanx spp. and Gerres sp. and occasionally lutianids.
at low ticle fishing with hook and line may be carried on in the surge channels of the reef on the seaside of the atoll. Here a pole is a great asset to the fishermen. These nay be made from bamboo obtained from Ocean Island or from alocal plant, Guettarda. The pole varies in length froin 5 to 12 feet. The usual bait is land hemait crabs which have been removed from their gastropod shells. No sinker is used. The fishes mich are most often
taken are Cimphitus sp. Thalassoma spp., Halichoeres sp.g Abudefduf spp., and Lutianus sp. These are small carnivorous fishes thich occupy the special. surge channel habitat.

No deep water hend line fishing was observed, but intervie:Js with fishermen revealed that a fer apparently fish to a depth as great as 100 fathoms from a canoe outside of the reef. The average Gi.Ibertese cioes not have sufficient line for this or would not want to risk the loss of so much line. The fish thich is most sought irm the deeper water seems from native description to be the oil Pish or escolar (Ruvettus pretiosys). Torch Fishing: The equipment Zor this ineans of catching fish consists of coconut frond torches of the tye described for $\bar{n} y$ ying fish fisning, a basket moven from coconut leaves, and either a short-inamiled dip net or a long knife. One man does the fishing, but customarily is followed by a second person who carries extra torches. Fishing may teke plece in the logoon or on the sea side on the reef. The paeferred site for torch fishing is the back ridge trough, and for this, low tide is a necessity. The water in the back ridge trough at this time is about waist deop. As the Eisherman walks along he carries the torch in one hand, the kife or net in the other. The Dasket for the fish is blung from his shoulder and hangs at his side. Light from the torch is quite bright and fish are readily seen for the water is clear except Then an unusually heary surf is running. Usually a ifisn can be approached witiout difficuity and either scooped up with the net or cut with a rapid domvard stroke of the knife. Pishes commonly caught by this method include: Girmitus sp., Iutianus speg Monotaxis grandocuis, hcanthurus triostegus, Myripristis spp., Holocentrus spe., Parupenous sp., Gymnothorax spp. belonids, and mugilids. They are ordirariny eaten imediately after the fishing operation is completed; they are roasted vithout cleaning in beds of hot coses.

Hots: The simplest type of net is. the dip net such as employed in torch fishing. This net may also be used in a fishing operation during the day at low. tide. The location is a surge channel. At Onotoa the surge channels are narrow, irregular indentations into the reef averaging about six feet in width and ten feet in depth. The water in these channels is in constant motion, and visibility from the surface or in the channel is poor because of the foam from the breakers. One man uses a coconut frond to drive fish in the channel tovard a good vantage point where a second man keeps his dip net in the water. Both men stand on the reef beside the channel. This method of fishing is not a. comaion one.

Small seines of about two fathom lengith and four or five feet in depth are often used. A seine may be operated by just tro persons, each holding a vertical pole at each end, but usually several other persons assist by driving fish toward the net. Frequently a moven line of coconut fronds serves as an extension of the seine from one or both onds. At low tide on the reef the back ridge trough is a region which is commonly seined. One such operation was closely observed. A man; his wife, and too boys were the participants. The fish they hunted was a good-sized scarici which comes up into the shallow water on the recfin small schools. The fishermen endeavored to get between the fish and the open sea. Sometimes this involved actwal running rith the seine in the shallow water; at other times slow cautious movenents were necessary. When the fish were cut off and tried to elude the seine, they were herded by the boys towerd the net th th coconut palm fronds and by splashing and throwing stones. hany large parrot fish were caught arid some surgeon fish (Acanthurus triostogus) and dansel. fish (Abudefduf spo) were taken. The fishes were rendered inactive by biting the dorsal part of the skuil and were strung
by cord through the eyes to one of the poles of the seine. This one fishing operation lasted several hours and covered a distance of about tro miles.

In the lagoon small seines are used over shallow sandy areas and the fishes caught include Gerres spo, small Caranx spo, mullots (rugilidae), and goatifishes (ifullidae). Here the seining is very often the work of women and childoren.

Small seines may be imported cotton products or may be nade from local material.

Some larse beach seines are omed collectively by entire villages. Each village usually has but one such seine. Hovever, the largest village, Aiaki, is divided into tro sections and each oms a seine. These are made of coconut husk fiber and may be as long as thirty fathoms. Shells are used as weights on the foot rope and pieces of a local wood (Scaevola) strung along the float line. These seines are used only in the lacoon, and their operation involves many individuals. One is designated the leader, and he directs the operation by hand signals, for noise is kept to a mininum. One end of the seine is worked out from shore in a large semicircle until it is again brought to shore at thich tine both ends are hauled up on the beach. The same fishes are caught with these large seines as listed above for smaller seines in the lagoon plus a fer others such as lutianids. At night more larger fishes are caught, including small sharks.

One other type of net is used for a very special kind of fishing. This is a fine mesh netting (generally mosquito netting) with a slight bag and supported at four comers with poles. The net is suspended horizontally in the water betreen two canoes, men or women from one canoe holding two of the poles vertically in the water while those in the other canoe handle the other two poles. The area over the net is chumed with bits of fish. Small fishes
of genus Caesio are caught when they smim over the netting by a rapid pulling up of the four roles. These inshes occur in the lagoon in numbers great enough for such fishing only once every ten years on so. They tend to form small schools over coral heads in the lagoon. They are dried on coconut or pandanus mats out in the sum and stored in tight-lid containexs, where they remain vell-preserved for many years. The flosh is red in color when dried and considered a great delicacy.

Traps: Tro types of traps are made from lashing small sidicks together. The most coman in use is the eel trap. This consistently has the configuration of a house (rectangular with a slopine roof), roughly three feet long and a foot and a halif wide. At one and a hole of three-inch dianeter can be seen. This extends, cylinder-like, toward the middle of the trap there it is narro:ted by side flaps of woven coconut fiber. This trap is baitedn It is set by lowering with a line from a canoe in water up to ten fathoms deep. The species of eels taken are mostly of genus Gymnothorax. A small trap door in the "roof" affords a means of removing the eels.

The second type of trap has the appecrance of a small quonset hut. size is more variable than the eel trap, but it is generally not more than three feet long. Tt is set by diving in vater up to about three fathons in depth. It is placed in such a manner in the coral that it can be concealed by addition of a fer stones or pieces of coral. The entrance to the trap, wich is similar to that of the eel trap, is kept free. This trap is not baited and is designed to capture reef fishes winich tend to seek refuge under rocks or Ledges of coral. These include a number of acanthurids like Ctenochaetus strigosus, scarics, holocentrids, and lutianids. A covered opening on the opposite end to the trap entrance is used to remove the fish. Such fish traps do not seem tobe utilized very frequently.

Another type of fish trap which is of considerable importance is the stone trap. These are found in the lagoon, on the reef, and in shallow passes between islands. They are constructed by piling stones into a long, low wall which encloses a large, roughly rectanglar area. The wall is usually about a foot and a half high anciwell covered by water at high tide As the tide lowers the top of the wall is exposed thus isolating a body of water thin the trap. "ith further lowering of the tide the water within the trap decreases and the fish are concentrated to an extent where they may be seined or picked up by hand. The same species are taken by stone trap as were mentioned for the lagoon and reef sejniag operations except for mullets thich escane by juming over the wall. On the soa side the wall is occasionally broken in places when surf is heavy, and nust be repared. Here, hovever, red coralline algae tends to cement stone of the trap together and must greatly reauce the maintenance of the trap wall.

Tide Pool Fishing: Three means of collecting fishes from very shellow water are included here. First there is the collection of simall ticle pool fish by hand which is usualiy the task of women and children. By far the most important Rish taken is the young of Epinenhelus merra which ore very abundant in tide pools and in shallow water lagoon areas. These are dried in the sun and eaten wi.thout cooking.

A species of moray eel., Gynothorax picta, occurs well up on the reef.flat on the sea side of the islands of the atoll. A method for capturing this species was observede At low tide the fisherman walks over the reef, equipped with a basket with a lid and to metal rods about two fect long. one is sharpened and the other is hooked at the end. Boulders are rolled over and every likely hole in the comal is inspected with the rods, and the morays, then located, ane pulled from their holes th the hooked rod.

Arother method for catching eels is a simple snare device. A stick about tro feet long is baited at the end with a piece of fish. is second stick has a noose thich may be drawn tight. This is placed around a hole which looks like a likely dweling for a moray. The bait is held just outside the noose. As the moray lunges for the bait the noose is pulled tightly around his body behind the head. This is a very old fishing method but still used today. Usually it takes place on the reef flat at low tide in the surge channel area. The same method may be used in the lagoon in deeper water by diving. Pisciculture: The milkfish, Chenos chanos, was at one time actively reared in nonds, especially one saixly large isolabed body of water in the complex of tiny islands in the southern part of the atoll. The roung of this species were periodically seined from outside areas and transferred to the ponds, since adutis will not breed there. Such a practice has been nore or less discontinued for some years.

Poisonous Fishes: Numerous interviews with groups of natives concerning the presence of fish in the atoll waters with poisonous flesh were undertaken. The only fishes which were considered poisonous at this time were the puffers and then only the interna? organs, especially the gonads, were toxic. In viety of the prevalence of poisonous forms throughout the whole Pacific area, it vas hard to believe that there was no such problem at onotoa. The natives were observed catching, preparing, and eating many species lnom to be poisonu ous elsewhere. Interviews did reveal, however, thet a certain section of the reer near the northern part of the atoll harbored poisonous fishes for several years but for the last tro years fish taken from there have not been toxic.

Fishes with poisonous spines do occur in the area, notably sting rays,
siganids, and certain scorpaenids like Pterois. The stone fish, Symancea verrucose,was not collected but very probably occurs on onotoa. It is reported from l'arawa.

Attacks by Sharks: Several discussions with natives were initiated in respect to this subject. only fire cases of attack by sharks on men were recalled - even by the oldar Gilbertese. These involved large sharks and not the comon smaller forms near the reef. The natives swim axound these Smalex sharks without any noticeable fear. Sufficient information was not secured to identify the larger, dangerous srecies of sharks. Mishing Regulations: Before the white man came to the Giloert Islands sections of the reef tlat and water areas of the lagoon were oned by men who retained exclusive rights to fish in these areas, Aman who fished in enother man's region risked violent punitive measures by tine omer. Iissioneries arived in the cilbert Islands around 1850 and tended to break up these holdings. When the Britich took over the islands as a Protectorate in 2892, the system of oming reef and lagoon areas wes soon completely elininated.

Today by native lart one regulation of this sort exists. lyo man can fish in the vicinity of another man's stone fish trap at or near low tide. One other interesting law exists, on the rare occasions when Caesio sp. (the special fishing method for this fish was previously described) occur in the latoon in large numbers, no flying fich fishing is anlowed. It is believed that the ight from the torches whil Prighten Gaesio away. A fine of three shillings is imposed on any wan caugh fishing for fiying fish curing this time.

No restrictions vere noted conceming size linits. As far as known no species of fish were ever rescrved for special individuals or occasions.

$$
-56-
$$

Preserving of Fisk: Most of the fish is eaten fresh, the fisherman usually cotchne only erongh for inmediate family use. then more is caugh, it is cut into thin pieces and dried in the sun. It nay be cooked prior to drying. Usually it is not salted, and rarely is any of the catch smoked. Abundance of Fish: io collection of catch statistics nor direct measurement or fishing effort was made, but the fishing effort on Onotoa, by atoll standards, seems high. This is due to the rolatively hish population and the emphasis on fishing. Fevertheless, it is doubted if any serious depletion of fish stocks has taken place, aven for reef fishes. There are, however, more reef fishes to be seen by undervater observation in outlying parts of the atoll away from usual fishing activity and in otiler atolls with smaller notive populations. Also, in the Iatter regions the fishes may be approached much more readily when striming undervater.

Still, tolay, the onotoen Sisheman can obtain $2 l l$ the fish he needs in a reiativeir short period of tine, at most tro ox three hours.

FISH COLESETOM OH ONOTOA
The majority of fishes which were collected during the tiononts stay on Onotoa were taken with powdered cubé or derris root containing rotenone, the active poisonous ingredient. Ten successful poison stations were executed with the two hundrea pounds of cube root which was on hand.

Hearly 120 species vero added to the collection by spearijishing, though many of these tumed up in poison stations as well. Spearing is a highly selective means of getting fish and useful in obtaining fishes such as parrotfishes (scaridae) which are not easily poisoned. But this method has the obvious disadvantage of mutilation of specimers, and one usually fails to obtain a sufficient number of specinens of any one species in this may for ordinary
taxonomic purposes.
Considerable difficulty ras experienced in procuring fishes from the Gilbertese which they had caught and which sere destined for their dinner tables. This ras especiaily true then the natives observed that most of the fish mich was purchased from them did not end up as a component of the expedition's diet. Fish, they must have reasoned, should be put to but one use, food, Nevertheless, some valuable additions to the fish collection were made tincough purchases and trading, particularly with the children. Very meterial aid mas obtained from the natives in recovering fishes at poison stations.

A fer fishes were caught in th hook and fine, with use of nets; and by hend in tide pools.

Field work was dominated by making the collection of fishes, since description of the fish fama of a net area must necessarily precede ecological studies; neventheless, sone ecological work ras done. A ciescription tas made of the areas mere rishes rere coliected. This, coupled tith extensive maerFater observations, made it possible to identify a type habitat for meny of the species. Of course, specific nabitats are difficult to delimit for marine Pishes, and sven then one maneges wheth fair assurance to pinpoint a isish in a certain environment, it often pops up in an altogether difererent one.

Analysis of the stomach contents of fishes was made when a surplus of specimens vas arailable. Such data vere obtained for about finty species; horfeven, there were usually insufficient nubers of any one species examined to denonstrate total variability of food habjts pood studies which were made on fishes talien by poisoning wore complicated by an unanticipated factor. liany of the inshes mich are normally nonmiscivonous were found to be opportuinists and fed mon smaller poisoned fishes before they, in tum, succumbed
to the poison. This source of error was more or less compensated for by disregarding all recentlyweaten fishes which could logically have been killed by the rotenone.

A reef transect for fishas was attempted from shore to "lithothamion" ridge during a period of exceptional low tides and with the last of the supply of rotenone. then approximately half completed, storm conditions precluded the completion of this project.

The local Gilbertese names for fishes were recorded. It was found that sinaller species frequently were not named. In fact, poisoning produced many fishes which the natives had never seen, and for which they obviously had no names. It wes interesting to note hov groups of similar species vere often given collective names thich paralleled the families of ichthrological nomenclature. Acanthurids, balistids, tetraodonts, and chaetoronts are examples; the nanes te riba, te bubu, te buni, te ibaba can be applied freely to neerly any fish within these respective families. The more distinctive or comon members of these groups generally have more definite names, though often the above nanes remain as roots. Acanthurus achiles, for example, is called te ribataukarava. There mas not alvays complete agreement among the Gilbertese for their names of fishes, especially $\hat{\text { I }}$ or the rare species.

The fish collection from Onotoa comprises about 325 species, These still beax field identifications to a large extent, and thus no taxonomic report can be mesented at this time. The following is a breakdom of the collection on a family basis and will serve to give some idea of its extent and the predominance of certain families over others:

Fariily	Number of Species
Acanthuridae	15
Antennaridae	2
Apogonidae	10

Atherinidee 1
Aulostomiciae 1
Balistidae 6
Belonidae 2
Blenniidae 16
Bothidae 1
Brotulidae 2
Conthigasteridae 3
Caracanthidae 2
Carangidae 5
Carapidee 2.
Chaetodontidae 17
Chanidae 1
Cirrhitidae 6
Echelidae 2
Tichidnidae 26
Eleotridae 6
Exocoetidae 2.
Fistularidae 1
Cerridae 1
Gobiidae 10
Heairamphidae 2
Holocentridae 16
Istiophoridae 1
Labridae 34
Lutianidae 17
Fonocanthidae 4
iloringuidae 3
Ifugilidae 3
irullidae 6
Ophichthyidae 1
Ostraciidae 1
Parapercidae 1
Permpheridae 1
Platycephalidae 1
Pleuronectidae I
Ponacentridae 29
Priacanthidae 1
Pseudochromidae 4
Scaridae 22
Scorpaenidae 8
Seriolidae 1
Serranidae 13
Siganidae 2
Sparidae 1
Sphyraenidae 1
Smgnathidae ?
Synodontidae 2
Tetraodontidae 3
Thunnidae 3
Zanc?idae 1
At least twenty-five acditional species were observed underwater but were not taken. Tlant of these were provisionally identified. Onl- three sharls were captured. Some rays were seen but were not taken.

An opportunity provided itself to test the efficacy of copper acetate as a shark repellent. the folloning is taken cirectly from my field notes: "Two sherks (Iriaenodon obesus) vere observed by Dr. Banner and myself slomly circling an area rhere it is believed a speared (and hence bleeding) fish was sceking refuge in a hole in the coral. The trater tas about eight feet deep and fairly clear. The sharls vere estimatod at $4 \frac{7}{2}$ and $5 \frac{7}{2}$ reet in length. The smaller shark yas seon on wo occasions to stick his head dom the hole, thus exposing inis body vertically in the water. Tron time to tine the sharks would leave the area, either singly or together, but alvays they returned. They rere never observed to stim repidy. A small tin of copper acetate crystals was dispensed by Dr. Baner in a circle of about tiventy-five feet in dianeter around the area. At this tine the sharks rere absent. The smaller shamit ras then observed to approaci the area but not onter it. The larger shark, on reaching the cloudy area there the acetate had precipited, turned sharply around and stam very swiftly away. Within at least the next ten minutes neither sherik was seen at all."

Over two hundred color photographs of fishes were taken with 35 mm Kodacolor film. liost of these were satisiactory.

