


**Figure 1.** AGRRA survey sites in Grand Cayman and Little Cayman, Cayman Islands. See Table 1 for site codes.

# STATUS OF CORAL REEFS OF LITTLE CAYMAN AND GRAND CAYMAN, BRITISH WEST INDIES, IN 1999 (PART 2: FISHES)

## BY

# CHRISTY V. PATTENGILL-SEMMENS<sup>1</sup> and BRICE X. SEMMENS<sup>2</sup>

## ABSTRACT

The fish assemblages at 33 sites around the islands of Grand Cayman and Little Cayman were assessed in June 1999 for the Atlantic and Gulf Rapid Reef Assessment initiative using belt transects and Roving Diver Technique surveys. A comprehensive species list, with 58 new records, was compiled for the Cayman Islands based on these data and survey data from the Reef Environmental Education Foundation database. In general, the reefs on Little Cayman appeared to support larger and more individual fishes than those of Grand Cayman. A multidimensional scaling ordination plot showed no clear island pattern but did reveal that the windward or leeward location of each site was an important factor affecting fish community composition. All but two sites followed a pattern of distinct windward and leeward clusters, and these clusters also correlated to macroalgal abundance. The relationship between macroalgal abundance and herbivore density was analyzed and significant correlations were found with surgeonfishes (Acanthuridae) and parrotfishes (Scaridae) using multiple regression.

### INTRODUCTION

Fishes have the potential to provide sensitive indices of reef health. Certain predatory fish species dominate the top of coral reef food webs, hence their density reflects a vast number of human and natural disturbances from habitat alteration to direct exploitation (Ferreira et al., 1998). Similarly, the presence and abundance of herbivorous fishes affect algal composition and cover (Ogden and Lobel, 1978).

In response to concerns about the widespread deterioration of reef condition in the Caribbean basin, the Atlantic and Gulf Rapid Reef Assessment (AGRRA) initiative was designed to provide a regional perspective using a standardized methodology. The rapid assessment protocol is focused on three main components of the reef community: stony corals, fish, and algae. As part of this initiative, the reefs of Grand Cayman (GC) and Little Cayman (LC) were assessed in June 1999.

<sup>&</sup>lt;sup>1</sup> Reef Environmental Education Foundation, P.O. Box 246, Key Largo, FL 33037. Email: christy@reef.org

<sup>&</sup>lt;sup>2</sup> University of Washington, Dept. of Zoology, Box 351800, Seattle, WA 98195-1800.

The Cayman Islands are a British Crown Colony located in the western Caribbean. The three islands lie between 19° 15' and 19° 45' N latitude and between 79° 44 ' and 81° 27' W longitude (Fig. 1). GC is the largest and most populous. LC lies approximately 145 km to its east-northeast and is about 10 km from Cayman Brac. The three islands are limestone, horst-and-graben structures associated with the Cayman Ridge (Jones, 1994). Freshwater is scarce and the islands lack rivers and streams. The fringing reefs that surround most of the islands contain shallow reef crests (rubble ramparts) as well as mid-shelf and shelf-edge fore reefs (Blanchon and Jones, 1997). These fringing reefs are particularly well-developed on the windward (eastern and southern) coasts of both islands. Other submerged benthic habitats include seagrass beds and mangrove fringes.

The level of human disturbance on GC is significantly greater than on LC, which is relatively remote and undeveloped. Anthropogenic impacts on GC reefs include habitat destruction from anchors and increased suspended sediment load from dredging and mangrove removal. Fishing pressure is considerably greater on GC than around LC. Five spawning aggregations of Nassau grouper (*Epinephelus striatus*) have been heavily harvested (during the 2002 spawning season, all but one had been depleted). Five hundred local residents are licensed to snorkel with spearguns. Fish pots (Antillean Z-traps) probably represent the biggest threat to the fish communities of both islands (personal observations).

An extensive marine park system was established in the Cayman Islands in 1986. Reefs in marine park and replenishment zone areas are protected from fish traps, spearguns, anchoring, and line fishing, although line fishing from shore and beyond the drop-off (shelf edge) is allowed. The Cayman Islands' Department of the Environment maintains a system of 257 permanent mooring buoys throughout the three islands.

The benthos of the Cayman Islands has been well studied, including descriptions of the coral communities, reef status, and analysis of spatial patterns (Roberts, 1988; Logan, 1994; Roberts, 1994). In contrast, apart from descriptions of Nassau grouper spawning aggregations (Colin et al., 1987; Tucker et al., 1993), there are few scientific descriptions of its reef fishes. However, Burgess et al.'s (1994) taxonomic review of collection expeditions contained an annotated list of 381 species known to occur in the Cayman Islands, including the endemic y-lined blenny (*Starksia y-lineata*) described by Gilbert (1965).

Since 1994, fish sighting and relative abundance data have been collected around the Cayman Islands as part of the Reef Environmental Education Foundation (REEF) Fish Survey Project, an ongoing volunteer monitoring effort. REEF volunteers use the Roving Diver Technique (RDT) (Schmitt and Sullivan, 1996) and the survey data are maintained in a publicly-accessible database. By the end of 2001, the REEF database contained over 40,000 surveys from over 2,000 sites, including approximately 2,200 surveys from the Cayman Islands.

This paper describes the fish assemblages of the Cayman Islands using the 1999 AGRRA data for GC and LC, along with REEF data from the two islands collected between 1994 and 2001. An updated species list and comparisons between islands and among sites are provided. The relationship between herbivorous fishes and macroalgal abundance is also investigated.

#### METHODS

In June 1999, AGRRA fish and benthos surveys were simultaneously conducted at 15 sites on GC and 18 sites on LC (Fig. 1, Table 1). Sites were chosen by a mixed representative/strategic strategy: 12 were on the windward sides of the islands and 21 were on their leeward sides (the southwest side of GC was underrepresented). Six sites on LC and three on GC were located within marine park or replenishment zone areas. The benthic component is reported by Manfrino et al. (this volume). To assess the fishes, the AGRRA protocol Version 2.1 was used (Appendix One, this volume). At each site, a team of three (occasionally two) divers conducted at least 10 2 m x 30 m belt transects. Counts of serranids (groupers) were restricted to species of *Epinephelus* and *Mycteroperca*; scarids (parrotfishes) and haemulids (grunts) less than 5 cm in length were not tallied. Each diver also conducted a 45-60 minute RDT survey at each site. All fieldwork was undertaken between 9:00 a.m. and 3:00 p.m. Field identifications were based on Humann (1994), Stokes (1980), and Robins et al. (1986).

The fish transect data were entered into a custom AGRRA Excel spreadsheet. REEF provided the RDT data in ASCII format. Using the transects as replicates, the average density (#/100 m<sup>2</sup>) and size (cm) of each species and family were calculated for each site. Analyses were done at the regional (GC versus LC) and site levels, incorporating reef location (windward, leeward) and benthic parameters when appropriate. The average density and size of each species and family were compared between regions using a t-test after testing the data for normality. Due to confounding factors such as differences in use (e.g., recreation, harvest) and hydrographic features, comparisons between protected (marine park) and unprotected sites were not attempted. The site data were used in a hierarchical cluster analysis using Pearson's similarity index. The similarity matrix was generated using log-transformed density values for each species documented in at least three (10%) of the sites; the other 22 rare species were eliminated (per Grossman et al., 1982). A two-dimensional multidimensional scaling (MDS) ordination plot was also generated using the similarity matrix.

The transect data were also used to investigate interactions between the fish assemblages and the benthic community. This preliminary investigation was focused on herbivore/algae interactions. A regression was calculated on the densities of parrotfish and surgeonfish against percent absolute macroalgal abundance in quadrats (hereafter macroalgal abundance) and height at each site. Other coral factors (percent live coral cover, average colony height, percent diseased colonies) and environmental (windward/leeward) parameters were also plotted against each fish family. All values were transformed prior to regression (transformations were log+1 for fish density and algal height and arcsine of the square root for proportions).

The RDT survey data provided species lists, frequency of occurrence, and relative abundance estimates. Percent sighting frequency (%SF) for each species was the percentage of all dives in which the species was recorded. An estimate of abundance was calculated as: abundance score =  $D \times \%SF$ , where the density score (D) for each species was a weighted average index based on the frequency of observations in different abundance categories. Density score was calculated as:

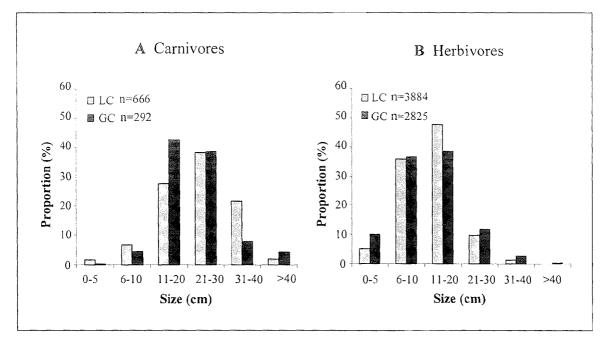
 $D = ((n_S x 1) + (n_F x 2) + (n_M x 3) + (n_A x 4)) / (n_S + n_F + n_M + n_A)$ , where  $n_S$ ,  $n_F$ ,  $n_M$ , and  $n_A$  represented the number of times each abundance category (Single, Few, Many,

Abundant) was assigned for a given species. The RDT data were pooled and compared by island using the Wilcoxon Sign Rank test. Only species that were seen in at least 10% of the RDT AGRRA surveys were included in the analysis (103 species), reducing the effect of rare species (Grossman et al., 1982). SYSTAT 7.0 was used for all the analyses.

All expert-level REEF data from GC and LC, including the RDT data collected during the AGRRA expedition, were used to compile a species list of reef fishes for the Cayman Islands (REEF, 2001).

#### RESULTS

A total of 341 transects (142 - GC; 199 - LC) and 79 RDT surveys (32- GC and 47- LC) documenting 173 species were conducted at 33 reefs (Table 1). The RDT survey data were added to the existing REEF database. The total number of species recorded by REEF experts on the Cayman Islands between 1994 and 2001 was 275 (Appendix A, this paper). When compared with Burgess et al.'s (1994) ichthyofaunal list, the REEF survey data added 58 new species records for a total of 423 reef fishes documented on the Cayman Islands (five freshwater species, 10 deepwater (>300 m) species, and a misidentification (*Stegastes mellis*) listed by Burgess et al. (1994) were not included in this tally). The 25 most common species, according to %SF in the REEF database, are noted in Table 2.


Parrotfish (Scaridae) was the most abundant family recorded during the belt transects (Fig. 2). Average density of snapper (Lutjanidae) on LC was approximately twice that of GC reefs. Size frequency distributions of carnivores (select grouper genera and all snappers) and herbivores [parrotfish  $\geq$ 5 cm, surgeonfish (Acanthuridae), and the



**Figure 2.** Mean fish density (no. individuals/100 m<sup>2</sup>  $\pm$  sd) for AGRRA fishes in Grand Cayman and Little Cayman. Other = *Bodianus rufus, Caranx ruber, Lachnolaimus maximus, Microspathodon chrysurus, Sphyraena barracuda*.

yellowtail damselfish *Mierospathodon chrysurus*] are shown in Figure 3. Approximately 75% of the carnivores were less than 30 cm in length, and 85% of the herbivores were less than 20 cm in length. T-tests on these data showed that the average density and size for most species and families did not differ between islands. However, many species were reported in RDT surveys with greater than average abundance on the LC reefs (Wilcoxon Sign Rank p<0.0005). In particular, the sighting frequencies of six species of large groupers were considerably greater in LC (Table 3; Wilcoxon Sign Rank p<0.05). Exceptions included yellowtail snapper (*Ocyurus chrysurus*) and sergeant major (*Abudefduf saxatilis*), two species that become abundant when fed regularly by divers. Fish feeding is much more commonplace on GC reefs (Burgess et al., 1994; personal observations).

Site comparisons at the assemblage level showed no clear, intra-island groupings. However, two distinct clusters were obvious in the MDS plot (Fig. 4A) and, to a lesser extent, in the cluster diagram (Fig. 4B). The only environmental characteristics significantly related to fish density were reef location (windward/leeward) and macroalgal abundance. The windward (high-wave exposure) or leeward/protected windward (low wave-exposure) location of the sites was an important factor in the MDS cluster for all but two of the sites (LC02 and GC30). Leeward sites also had significantly higher macroalgal abundance than windward sites (45% versus 31%, respectively: F-test p<0.001; multiple R = 0.560).



**Figure 3.** Size frequency distribution of (A) carnivores (all lutjanids, select serranids) and (B) herbivores (acanthurids, scarids  $\geq 5$  cm, *Microspathodon chrysurus*) in GC (Grand Cayman) and LC (Little Cayman). Total number of individuals counted (n) is given.

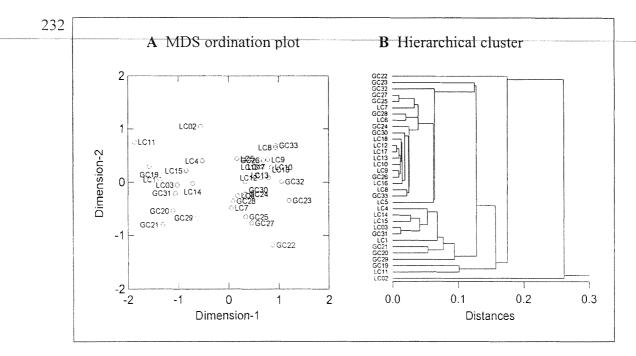
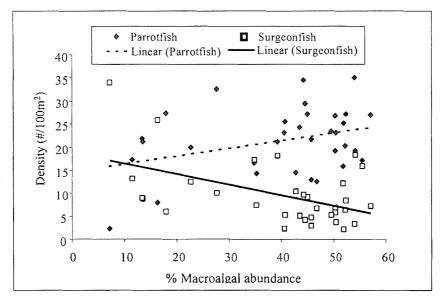




Figure 4. (A) MDS ordination plot (left cluster is windward) and (B) hierarchical cluster analysis of AGRRA reef fish transect data in GC (Grand Cavman) and LC (Little Cavman).

Surgeonfish density showed an inverse relationship with macroalgal abundance (p<0.01; r2 = 0.209), whereas parrotfish density was positively related to macroalgal abundance (p<0.01; r2 = 0.215) (Fig. 5). Adding macroalgal height to a multiple regression significantly improved the relationships with macroalgal abundance for parrotfish  $(p<0.001; r^2 = 0.413)$  and surgeonfish  $(p=0.001; r^2 = 0.367)$  densities. A strong inverse relationship between parrotfish and surgeonfish densities was also found  $(p<0.001; r^2 = 0.384)$ .



**Figure 5.** Regression plot between mean parrotfish density  $(\bullet)$  and mean surgeonfish density  $(\Box)$  (no. individuals/100m<sup>2</sup>) and mean absolute macroalgal abundance by site in the Cayman Islands.

#### DISCUSSION

The reefs of the Cayman Islands support relatively diverse and abundant fish assemblages. This richness is probably a result of several factors including high local habitat diversity, a significant (34%) area of coastal reserves, and a reef system that is generally in fair condition (Manfrino et al., this volume). However, significant differences were revealed between GC and LC, most likely a result of the greater anthropogenic impacts on GC reefs. Higher harvest pressure on GC was reflected in the lower density and size of large groupers, parrotfishes and snappers (Table 4) and lower sighting frequencies of large groupers (Table 3). Analyses of RDT data indicated that regardless of commercial importance, the average abundance of most fish species was higher on LC, hence other factors, such as coastal development and water pollution, may also adversely impact fish communities on GC.

The site-level transect density data correlated most strongly with relative wave exposure (Fig. 4A,B). Macroalgae were significantly less abundant overall on windward (high-wave exposure) sites than on leeward and protected windward (low-wave exposure) sites, where parrotfish were the most abundant fishes in the transects. It is clear, however, that macroalgal abundance does not by itself adequately explain site-level assemblage composition, given that LC sites had only slight differences between waveexposed and non wave-exposed sites (Manfrino et al., this volume). The correlation between fish communities at sites with similar wave exposure highlights the effect of physical parameters on fish assemblage structure, and should be taken into consideration in future analyses of fish data for the Cayman Islands.

In a simple system, one might expect the presence and density of herbivorous species to be negatively correlated with algal abundance and height. In other words, a site with many herbivorous fish would have relatively low algal abundance due to grazing. Our analysis at the site level indicates that this expectation holds true for surgeonfish. However, the inverse is evident in parrotfish. This implies either or both of the following: 1) there is a direct or indirect interaction between parrotfish and surgeonfish, or, more generally 2) the dynamic spatial and temporal characteristics of reef fish confound simple relationships between resource availability and fish abundance. Recent work on stoplight parrotfish (*Sparisoma viride*) indicates that whereas there are few, if any, direct interactions between surgeonfish and parrotfish, the use of space on the reef by individual fish is complex (territorial behavior, depth partitioning based on social grouping), and varies as a function of social status and intraspecific interactions (van Rooij et al., 1996a; van Rooij et al., 1996b). Clearly, more research is needed to understand the use of space by reef fish if accurate conclusions are to be drawn from relationships between fish abundance and benthic conditions.

One of the crucial tasks that scientists face in implementing a "reef health scale" using AGRRA data is to determine exactly what indicators within the collected data track health. An additional challenge lies in assessing how to evaluate and analyze the broad and complementary set of information collected on fishes, stony corals, and algae. Results from this paper and others in this volume will provide valuable insight on these issues. Due to the inherently complex nature of coral reef communities, the manner in which AGRRA data will dictate a scale of reef condition is most certainly also complex. The negative relationship between surgeonfish and parrotfish at the site level is a good example of how community complexity may confound seemingly logical indicators of reef health such as herbivore biomass. Given our results, it is possible that Cayman Island reefs with similar herbivore biomass constituted by predominately different taxa may reflect dramatic differences in benthic conditions. The disparity between grouper abundance between the transect and RDT data and the dramatic increase in species reported in the Cayman Islands that resulted from the RDT surveys (18% based on the published list by Burgess et al., 1994) highlights the importance of using the two complementary visual fish-survey methods.

Because certain fish species dominate the top of coral reef food webs, a baseline of fish community composition and richness provides a useful tool for future assessment of reef health, given that a change in reef communities at lower trophic levels will most likely result in changes in the reef fish community composition (Choat, 1991; Jones et al., 1991). Additionally, because fish tend to be the most charismatic group of reef community members, changes in their community are most likely to be noticed and documented.

#### ACKNOWLEDGMENTS

The authors wish to thank the Marine Education and Environmental Research Institute (MEERI) and Dr. C. Manfrino for coordinating this immense project. The data collection assistance of K. Hoshino, B. Hansrod, L. Whaylen, and P. Hillenbrand is also greatly appreciated. Funding support was provided by the Gilo Family Foundation, American Airlines, Island Air, Little Cayman Beach Resort, Southern Cross Club, the Reef Environmental Education Foundation, the Cayman Islands Department of Tourism and Tortuga Divers. The AGRRA Organizing Committee facilitated financial support as described in the Forward to this volume. The REEF volunteers who have contributed surveys from the Cayman Islands are also appreciated.

#### REFERENCES

Blanchon P., and B. Jones

1997. Hurricane control on shelf-edge reef architecture around Grand Cayman. *Sedimentology* 44:479-506.

Burgess, G.H., S.H. Smith, and E.D. Lane

1994. Fishes of the Cayman Islands. Pp. 199-228. In: M. A. Brunt and J. E. Davies (eds.), *The Cayman Islands: Natural History and Biogeography*. Dordrecht (Netherlands). Kluwer Academic Publishers. 576 pp.

Choat, J.H.

- 1991. The biology of herbivorous fishes on coral reefs. Pp. 120-153. In: P. F. Sale (ed.), *The Ecology of Fishes on Coral Reefs*. San Diego, California (USA). Academic Press, Inc. 754 pp.
- Colin, P.L., D.Y. Shapiro, and D. Weiler
  - 1987 Aspects of the reproduction of two groupers, *Epinephelus guttatus* and *E. striatus* in the West Indes. *Bulletin of Marine Science* 40: 220-230.

Ferreira, C.E L., A.C. Peret, and R. Coutinho

1998. Seasonal grazing rates and food processing by tropical herbivorous fishes. Journal of Fisheries Biology 53: Suppl. A 222-235.

## Gilbert, C.R.

- 1965. Starksia y-lineata, a new clinid fish from Grand Cayman Island, British West Indies. Notulae Naturae, Academy of Natural Sciences, Philadelphia 379. 6 pp.
- Grossman, G.D., P.B. Moyle, and J.J.O. Whitaker
  - 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory. *American Naturalist* 120: 423-454.

## Humann, P.

1994. *Reef Fish Identification* (2nd ed.). Jacksonville, FL, New World Publications, Inc. 396 pp.

## Jones, B.

- 1994. Geology of the Cayman Islands. Pp. 13-40. In: M. A. Brunt and J. E. Davies (eds.), *The Cayman Islands: Natural History and Biogeography*. Dordrecht (Netherlands). Kluwer Academic Publishers. 576pp.
- Jones, G.P., D.J. Ferrell, and P.F. Sale
  - 1991. Fish predation and its impact on the invertebrates of coral reefs and adjacent sediments. Pp. 156-178. In: P.F. Sale (ed.). *The Ecology of Fishes on Coral Reefs*. San Diego, California (USA). Academic Press, Inc. 754 pp.

## Logan, A.

1994. Reefs and lagoons of Cayman Brac and Little Cayman. Pp. 105-124. In: M.A. Brunt and J.E. Davies (eds.), *The Cayman Islands: Natural History and Biogeography*. Dordrecht (Netherlands). Kluwer Academic Publishers. 576 pp.

## Ogden, J.C., and P.S. Lobel

1978. The role of herbivorous fishes and urchins in coral reef communities. Environmental Biology of Fishes 3:49-63.

## REEF

2001. Reef Environmental Education Foundation. World Wide Web electronic publication. www.reef.org, date of download (31 December 2001).

#### Roberts, H.H.

1988. Grand Cayman. Swamps and shallow marine substrates 1 and 2, Cayman Islands 1: 25,000 (map). U.K.: Overseas Development Natural Resources Institute.

## Roberts, H.H.

- 1994. Reefs and lagoons of Grand Cayman. Pp. 75-104. In: M. A. Brunt and J. E. Davies (eds.), *The Cayman Islands: Natural History and Biogeography*. Dordrecht (Netherlands). Kluwer Academic Publishers. 576 pp.
- Robins, C.R., G.C. Ray, and J. Douglass
  - 1986. Peterson Field Guides-Atlantic Coast Fishes. New York, NY. Houghton Mifflin. 354 pp.
- Schmitt, E.F., and K.M. Sullivan
  - 1996 Analysis of a volunteer method for collecting fish presence and abundance data in the Florida Keys. *Bulletin of Marine Science* 59:404-416.

Stokes, F.J.

- 1980 Handguide to the Coral Reef Fishes of the Caribbean and Adjacent Tropical Waters Including Florida, Bermuda, and the Bahamas. New York, NY. Lippincott and Crowell, Publishers, 160 pp.
- Tucker, J.W., P.G. Bush, and S.T. Slaybaugh
  - 1993. Reproductive patterns of Cayman Islands Nassau grouper (*Epinephelus striatus*) populations. *Bulletin of Marine Science*. 52:961-969.

van Rooij, J.M., E.D. Jong, F. Vaandrager, and J.J. Videler

1996a. Resource and habitat sharing by stoplight parrotfish, *Sparisoma viride*, a Caribbean reef herbivore. *Environmental Biology of Fishes* 47:81-91.

- van Rooij, J.M., F.J. Kroon, and J.J. Videler
  - 1996b. The social and mating system of the herbivorous reef fish *Sparisoma viride*: one-male versus multi-male groups. *Environmental Biology of Fishes* 47:353-378.

| Name <sup>1</sup>  | Site | Protection <sup>2</sup> | Location <sup>3</sup> | Reef Type <sup>4</sup> | Latitude<br>° ' N                      | Longitude<br>° ' W | Survey date | Depth (m) | % live stony<br>coral cover<br>(mean ± sd) <sup>5</sup> | 30m fish<br>transects<br>(#)          | RDT<br>surveys<br>(#) <sup>6</sup> | RDT fish<br>species<br>(#) |
|--------------------|------|-------------------------|-----------------------|------------------------|----------------------------------------|--------------------|-------------|-----------|---------------------------------------------------------|---------------------------------------|------------------------------------|----------------------------|
| Little Cayman      |      |                         |                       |                        |                                        |                    | <u></u>     |           |                                                         |                                       |                                    |                            |
| Jigsaw Puzzle      | LC02 | ореп                    | lee                   | High S&G               | 19 39.983'                             | 80 06.390'         | 6-Jun-99    | 10.5      | $27.0\pm9.5$                                            | 11                                    | 4                                  | 96                         |
| Mixing Bowl        | LC05 | park                    | lee                   | Shelf edge             | 19 41.096'                             | 80 04,700'         | 8-Jun-99    | 12.4      | $29.0\pm12.0$                                           | 12                                    | 2                                  | 105                        |
| Black Tip Tunnels  | LC06 | replen                  | lee                   | S&G                    | 19 42.847'                             | 79 57.470'         | 9-Jun-99    | 12.4      | $15.5 \pm 7.5$                                          | 12                                    | 2                                  | 74                         |
| Penguin's Leap     | LC07 | ореп                    | lee                   | Hardpan                | 19 42.551'                             | 80 00.487'         | 9-Jun-99    | 16.1      | $16.5 \pm 8.0$                                          | 12                                    | 2                                  | 64                         |
| Meadows            | LC08 | park                    | lee                   | Patch                  | 19 41.510'                             | 80 04.130'         | 10-Jun-99   | 18.4      | 37.0 ± 11.5                                             | 14                                    | 3                                  | 88                         |
| Nancy's Cup of Tea | LC09 | park                    | lee                   | Shelf edge             | 19 41.639'                             | 80 04.137'         | 10-Jun-99   | 12.5      | $21.5 \pm 14.0$                                         | 14                                    | 3                                  | 87                         |
| Joy's Joy          | LC10 | park                    | lee                   | Shelf edge             | 19 40.690'                             | 80 05.575'         | 10-Jun-99   | 12.1      | $19.0\pm6.5$                                            | 14                                    | 3                                  | 82                         |
| Paul's Anchor      | LC12 | park                    | lee                   | Shelf edge             | 19 41.661'                             | 80 04.181'         | 13-Jun-99   | 12.9      | $17.0 \pm 12.0$                                         | 9                                     | 3                                  | 73                         |
| Rock Bottom Wall   | LC13 | open                    | lee                   | S&G                    | 19 42.057'                             | 80 03.421'         | 13-Jun-99   | 12.6      | $22.5 \pm 10.5$                                         | 10                                    | 2                                  | 70                         |
|                    | LC16 | ореп                    | lee                   | S&G                    | 19 39.702'                             | 80 06.728'         | 15-Jun-99   | 14        | 25.5 ± 5.5                                              | 10                                    | 3                                  | 76                         |
|                    | LC17 | open                    | lee                   | S&G                    | 19 42.470'                             | 80 00.495'         | 15-Jun-99   | 8.8       | 22.5 ± 4.5                                              | 10                                    | 3                                  | 71                         |
|                    | LC18 | replen                  | pro wind              | Hardpan                | 19 42.996'                             | 79 58.921'         | 15-Jun-99   | 10.8      | $15.0 \pm 5.5$                                          | 10                                    | 3                                  | 62                         |
| Grundy's Gardens   | LC01 | park                    | wind                  | S&G                    | 19 39.421'                             | 80 05.321'         | 6-Jun-99    | 9.4       | 37.5 ± 11.5                                             | 10                                    | 3                                  | 80                         |
| Disneyland         | LC03 | replen                  | wind                  | S&G                    | 19 49.831'                             | 80 01.374'         | 7-Jun-99    | 9.9       | $25.5\pm6.5$                                            | 11                                    | 2                                  | 73                         |
| Charles Bay        | LC04 | ореп                    | wind                  | S&G                    | 19 41.628'                             | 79 58.459'         | 7-Jun-99    | 10.7      | $17.5 \pm 6.5$                                          | 11                                    | 2                                  | 76                         |
| Main Channel East  | LCH  | open                    | wind                  | Fringing               | 19 39.412'                             | 80 04.368'         | 11-Jun-99   | 2.8       | $16.0 \pm 5.5$                                          | 9                                     | 1                                  | 30                         |
| Lucas's Ledge      | LC14 | replen                  | wind                  | S&G                    | 19 40.155'                             | 80 02.595'         | 14-Jun-99   | 13.6      | 24.5 ± 6.0                                              | 10                                    | 3                                  | 68                         |
|                    | LC15 | replen                  | wind                  | S&G                    | 19 40.628'                             | 80 01.562'         | 14-Jun-99   | 10.9      | $26.5 \pm 8.5$                                          | 10                                    | 3                                  | 65                         |
| Grand Cayman       |      |                         |                       |                        | ······································ |                    |             |           |                                                         | · · · · · · · · · · · · · · · · · · · |                                    |                            |
| Hepp's Mini Wall   | GC28 | park                    | lee                   | Patch/S&G              | 19 23.126'                             | 81 24.992'         | 20-Jun-99   | 11.5      | $22.0 \pm 5.5$                                          | 5                                     | 1                                  | 35                         |
| Cemetery Reef      | GC32 | park                    | lee                   | Patch/S&G              | 19 21.917                              | 81 23.726'         | 22-Jun-99   | 9         | $17.5\pm4.9$                                            | 9                                     | 2                                  | 74                         |
| Sunset House       | GC33 | park                    | lee                   | Patch/S&G              | 19 17.172                              | 81 23.463'         | 22-Jun-99   | 9.1       | $22.5 \pm 12.0$                                         | 12                                    | 3                                  | 74                         |
| Isabel's Reef      | GC22 | open                    | pro wind              | High S&G               | 19 21.460'                             | 81 08.145'         | 18-Jun-99   | 10.6      | $24.5\pm7.5$                                            | 10                                    | 2                                  | 52                         |
| Babylon            | GC23 | replen                  | pro wind              | S&G                    | 19 21.200'                             | 81 09.842'         | 18-Jun-99   | 9.5       | $18.0 \pm 3.5$                                          | 10                                    | 2                                  | 51                         |
| Delila's Delight   | GC24 | open                    | pro wind              | S&G                    | 19 21.518'                             | 81 14.801'         | 19-Jun-99   | 7.1       | $23.0 \pm 13.0$                                         | 10                                    | 2                                  | 56                         |
| Queen's Throne     | GC25 | replen                  | pro wind              | Hardpan                | 19 22.818'                             | 81 17.493'         | 19-Jun-99   | 12.1      | 14.5 ± 3.0                                              | 10                                    | 2                                  | 61                         |
|                    | GC26 | replen                  | pro wind              | S&G                    | 19 21.202'                             | 81 11.746'         | 19-Jun-99   | 13.9      | $12.5 \pm 4.0$                                          | 10                                    | 2                                  | 49                         |
| Bear's Paw         | GC27 | replen                  | pro wind              | S&G                    | 19 23.854'                             | 81 21.617'         | 20-Jun-99   | 10.7      | 15.5 ± 3.5                                              | 5                                     | 1                                  | 46                         |
|                    | GC19 | ореп                    | wind                  | High S&G               | 19 19.058'                             | 81 04.484'         | 17-Jun-99   | 6.7       | $23.0\pm9.5$                                            | 10                                    | 2                                  | 38                         |
|                    | GC20 | open                    | wind                  | High S&G               | 19 20.002'                             | 81 04.596'         | 17-Jun-99   | 8.9       | $18.0\pm4.5$                                            | 10                                    | 2                                  | 49                         |

| Table 1. Site information for AGRRA fish surveys in Little Cayman and Grand Cayman Islands. |  |
|---------------------------------------------------------------------------------------------|--|
|                                                                                             |  |
|                                                                                             |  |
|                                                                                             |  |

| Table 1, Contin | Table 1, Continued |                         |                       |                        |             |              |             |           |                                                         |                           |                                    |                            |  |  |  |
|-----------------|--------------------|-------------------------|-----------------------|------------------------|-------------|--------------|-------------|-----------|---------------------------------------------------------|---------------------------|------------------------------------|----------------------------|--|--|--|
| Name            | Site               | Protection <sup>2</sup> | Location <sup>3</sup> | Reef Type <sup>4</sup> | Latitude °N | Longitude °W | Survey date | Depth (m) | % live stony<br>corał cover<br>(mean ± sd) <sup>5</sup> | 30m fish<br>transects (#) | RDT<br>surveys<br>(#) <sup>6</sup> | RDT fish<br>species<br>(#) |  |  |  |
| Snapper Hole    | GC21               | open                    | wind                  | High S&G               | 19 20.634'  | 81 04.676'   | 18-Jun-99   | 10.1      | $24.0 \pm 10.5$                                         | 10                        | 3                                  | 72                         |  |  |  |
| Breakers        | GC30               | open                    | wind                  | S&G                    | 19 17.507'  | 81 12.069'   | 21-Jun-99   | 12.5      | $22.5\pm4.5$                                            | 10                        | 2                                  | 59                         |  |  |  |
| Playing Fields  | GC31               | open                    | wind                  | High S&G               | 19 17.565'  | 81 06.318'   | 21-Jun-99   | 7.5       | $17.5 \pm 4.5$                                          | 10                        | 3                                  | 71                         |  |  |  |

<sup>1</sup>Site name given if it corresponds to a known Cayman Island Department of Environment buoy. <sup>2</sup>Park = Marine Park Area; open = no protection; replen = Replenishment Zone Area <sup>3</sup>lee = leeward; wind = windward; pro wind = protected windward <sup>4</sup>Reef types follow Manfrino et al. (this volume), S&G = spur and groove, High S&G = high profile spur and groove. <sup>6</sup>RDT = Roving Diver Technique

Scientific name Sighting frequency (%) Density score<sup>1</sup> Common name Acanthurus coeruleus Blue Tang 98 2.8 Thalassoma bifasciatum Bluehead 97 3.3 Chromis cvanea Blue Chromis 97 3.8 Stegastes partitus Bicolor Damselfish 96 3.6 Sparisoma viride Stoplight Parrotfish 96 2.7 Caranx ruber Bar Jack 2.3 95 Chromis multilineata Brown Chromis 95 3.4 Fairy Basslet Gramma loreto 94 3.6 Chaetodon capistratus Foureve Butterflyfish 94 2.1 Sparisoma aurofrenatum Redband Parrotfish 93 2.7 Halichoeres garnoti Yellowhead Wrasse 92 2.7 Canthigaster rostrata Sharpnose Puffer 92 2.1 Epinephelus cruentatus Graysby 92 2.1 Lutianus apodus Schoolmaster 91 2.4 Ocvurus chrysurus Yellowtail Snapper 89 2.5 Haemulon flavolineatum French Grunt 89 2.3 Striped Parrotfish Scarus croicensis 89 2.4 Princess Parrotfish Scarus taeniopterus 88 2.5 Clepticus parrae Creole Wrasse 87 3.7 Melichthys niger Black Durgon 87 2.8 Mulloidichthys martinicus Yellow Goatfish 84 2.4 Holacanthus tricolor Rock Beauty 1.9 84 Stegastes diencaeus Longfin Damselfish 82 2.3 Epinephelus fulvus Coney 81 2.1 Stegastes planifrons Threespot Damselfish 80 2.2

Table 2. Twenty-five most frequently sighted fish species on the Cayman Islands. Data (Sighting Frequency and Density Score) were compiled from the REEF database, using expert sightings from 1994 through 2001 (N=670 RDT Surveys).

<sup>1</sup>See Methods for definition of Density score.

| Scientific name             | Common name         | Sighting | , frequency (%) |
|-----------------------------|---------------------|----------|-----------------|
|                             |                     | LC       | GC              |
| Mycteroperca bonaci         | Black Grouper       | 7%       | 3%              |
| Epinephelus striatus        | Nassau Grouper      | 69%      | 9%              |
| Epinephelus guttatus        | Red Hind            | 44%      | 21%             |
| Mycteroperca tigris         | Tiger Grouper       | 50%      | 12%             |
| Mycteroperca venenosa       | Yellowfin Grouper   | 22%      | 0%              |
| Mycteroperca interstitialis | Yellowmouth Grouper | 6%       | 3%              |

Table 3. Mean percent sighting frequency of select groupers during AGRRA roving diver surveys in LC and GC, Cayman Islands.

Table 4. Density and length (mean ± standard deviation) of AGRRA fishes, and macroalgal index values for LC and GC, Cayman Islands.

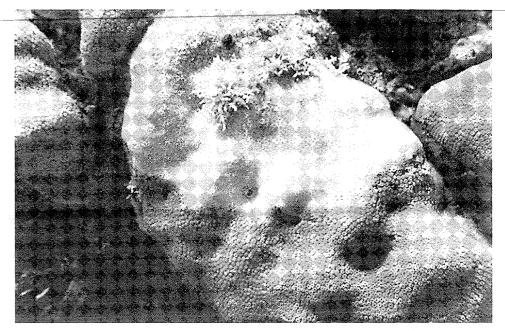
| Island                            | Herbi            | vores               |                       | Carnivores       |                         | Macroalgal         |
|-----------------------------------|------------------|---------------------|-----------------------|------------------|-------------------------|--------------------|
|                                   | Acanthuridae     | Scaridae<br>(≥5 cm) | Haemulidae<br>(≥5 cm) | Lutjanidae       | Serranidae <sup>1</sup> | index <sup>2</sup> |
| LC density (#/100m <sup>2</sup> ) | $10.67 \pm 7.22$ | $21.20 \pm 7.56$    | $4.59 \pm 5.98$       | $3.17 \pm 3.61$  | $2.38 \pm 0.96$         | 105                |
| LC length (cm)                    | $11.85 \pm 2.08$ | $15.87 \pm 2.67$    | $19.45 \pm 2.58$      | $27.78 \pm 3.42$ | $19.11 \pm 3.02$        |                    |
| GC density (#/100m <sup>2</sup> ) | $8.35 \pm 6.66$  | $22.13 \pm 7.04$    | $8.72 \pm 10.04$      | $1.86 \pm 2.04$  | $2.00\pm0.67$           | 32                 |
| GC length (cm)                    | $12.02 \pm 1.60$ | $15.33 \pm 2.19$    | $19.21 \pm 1.36$      | $28.58 \pm 7.29$ | $18.95 \pm 1.92$        |                    |

<sup>1</sup>Epinephelus spp. and Mycteroperca spp. <sup>2</sup>Macroalgal index = absolute macroalgal abundance x canopy height.

Appendix A. Cayman Islands Species List. Data compiled from the REEF database, using expert sightings from 1994 through 2001. A total of 670 expert surveys (32- Cayman Brac; 258- Little Cayman; 380- Grand Cayman) reported 276 species. For each species, percent sighting frequency (%SF) and density score (DEN) are given. Fifty-eight species previously unreported from the Cayman Islands are listed and indicated by an asterisk (\*).

| Scientific Name          | Common Name              | SF%             | DEN | Scientific Name          | Common Name          | SF%     | DEN |
|--------------------------|--------------------------|-----------------|-----|--------------------------|----------------------|---------|-----|
| Acanthuridae             | Surgonfishes             |                 |     | Belonidae                | Needlefishes         | <u></u> |     |
| Acanthurus bahianus      | Ocean Surgeonfish        | 84%             | 2.3 | *Playbelone argalus      | Keeltail Needlefish  | 0.1%    | 2.0 |
| Acanthurus chirurgus     | Doctorfish               | 39%             | 2.0 | Tylosurus crocodilus     | Houndfish            | 3%      | 1.6 |
| Acanthurus coeruleus     | Blue Tang                | 98%             | 2.9 | Blenniidae               | Blennies (Combtooth) |         | -   |
| Apogonidae               | Cardinalfishes           |                 |     | Entomacrodus nigricans   | Pearl Blenny         | 0.3%    | 1.0 |
| *Apogon affinis          | Bigtooth Cardinalfish    | 0.1%            | 2.0 | Ophioblennius atlanticus | Redlip Blenny        | 32%     | 1.9 |
| *Apogon aurolineatus     | Bridle Cardinalfish      | 0.4%            | 1.6 | *Parablennius marmoreus  | Seawced Blenny       | 1%      | 1.3 |
| Apogon binotatus         | Barred Cardinalfish      | 17%             | 2.0 | Bothidae                 | Flounders (Lefteye)  |         |     |
| Apogon lachneri          | Whitestar Cardinalfish   | 17%             | 2.0 | Bothus ocellatus         | Eyed Flounder        | 0.3%    | 1.0 |
| Apogon maculatus         | Flamefish                | 14%             | 1.7 | Bothus lunatus           | Peacock Flounder     | 12%     | 1.2 |
| *Apogon pillionatus      | Broadsaddle Cardinalfish | SO <sup>1</sup> |     | Callionymidae            | Dragonets            |         |     |
| Apogon planifrons        | Pale Cardinalfish        | 1%              | 1.8 | Paradiplogrammus bairdi  | Lancer Dragonet      | 3%      | 1.3 |
| Apogon pseudomaculatus   | Twospot Cardinalfish     | 2%              | 1.6 | Carangidae               | Jacks                |         |     |
| Apogon quadrisquamatus   | Sawcheek Cardinalfish    | 1%              | 1.8 | Alectis ciliaris         | African Pompano      | $SO^1$  |     |
| Apogon townsendi         | Belted Cardinalfish      | 26%             | 2.2 | Caranx bartholomaei      | Yellow Jack          | 3%      | 1.6 |
| Astrapogon puncticulatus | Blackfin Cardinalfish    | 0.4%            | 2.0 | Caranx crysos            | Blue Runner          | 1%      | 1.4 |
| Phaeoptyx pigmentaria    | Dusky Cardinalfish       | 3%              | 2.3 | Caranx hippos            | Crevalle Jack        | 2%      | 1.9 |
| *Phaeoptyx xenus         | Sponge Cardinalfish      | 11%             | 1.6 | Caranx latus             | Horse-Eye Jack       | 33%     | 2.3 |
| Aulostomidae             | Trumpetfishes            |                 |     | Caranx lugubris          | Black Jack           | 8%      | 1.4 |
| Aulostomus maculatus     | Trumpetfish              | 69%             | 1.7 | Caranx ruber             | Bar Jack             | 95%     | 2.3 |
| Balistidae               | Leatherjackets           |                 |     | Elagatis bipinnulata     | Rainbow Runner       | 0.4%    | 1.3 |
| Aluterus scriptus        | Scrawled Filefish        | 9%              | 1.1 | Scomberomorus regalis    | Cero                 | 18%     | 1.3 |
| Balistes vetula          | Queen Triggerfish        | 34%             | 1.3 | Trachinotus falcatus     | Permit               | 3%      | 1.2 |
| Cantherhines macrocerus  | Whitespotted Filefish    | 22%             | 1.4 | Trachinotus goodei       | Palometa             | 0.3%    | 2.0 |
| Cantherhines pullus      | Orangespotted Filefish   | 13%             | 1.3 | Carcharhinidae           | Sharks (Requeim)     |         |     |
| Canthidermis sufflamen   | Ocean Triggerfish        | 11%             | 1.3 | *Carcharhinus limbatus   | Blacktip Shark       | 0.3%    | 1.5 |
| Melichthys niger         | Black Durgon             | 87%             | 2.8 | *Carcharhinus perezi     | Reef Shark           | 2%      | 1.1 |
| Monacanthus tuckeri      | Slender Filefish         | 8%              | 1.4 | Chaenopsidae             | Blennies (Tube)      |         |     |
|                          |                          |                 |     | Acanthemblemaria aspera  | Roughhead Blenny     | 11%     | 1.5 |

| Scientific Name            | Common Name             | SF%    | DEN | Scientific Name             | Common Name         | SF%   | DEN |
|----------------------------|-------------------------|--------|-----|-----------------------------|---------------------|-------|-----|
| Chaenopsidae (cont.)       | Blennies (Tube)         |        |     | Gerreidae (cont.)           | Mojarra             |       |     |
| *Acanthemblemaria chaplini | Papillose Blenny        | 0.1%   | 1.0 | *Eucinostomus gula          | Silver Jenny        | 0.1%  | 2.0 |
| Acanthemblemaria maria     | Secretary Blenny        | 16%    | 1.6 | Eucinostomus jonesi         | Slender Mojarra     | 0.1%  | 2.0 |
| Emblemaria pandionis       | Sailfin Blenny          | 14%    | 1.7 | Gerres cinereus             | Yellowfin Mojarra   | 11%   | 1.9 |
| Emblemariopsis sp.         | Darkhead Blenny         | 4%     | 1.2 | Gobiesocidae                | Clingfishes         |       |     |
| Lucayablennius zingaro     | Arrow Blenny            | 19%    | 1.5 | Arcos rubiginosus           | Red Clingfish       | 1%    | 1.4 |
| Chaetondontidae            | Butterflyfishes         |        |     | Gobiesox punctulatus        | Stippled Clingfish  | 0.1%  | 1.0 |
| Chaetodon aculeatus        | Longsnout Butterflyfish | 26%    | 1.5 | Gobiidae                    | Gobies              |       |     |
| Chaetodon capistratus      | Foureye Butterflyfish   | 94%    | 2.1 | Coryphopterus               | Masked/Glass Goby   | 82%   | 3.7 |
| Chaetodon ocellatus        | Spotfin Butterflyfish   | 38%    | 1.7 | personatus/hyalinus         |                     |       |     |
| Chaetodon sedentarius      | Reef Butterflyfish      | 1%     | 1.1 | Coryphopterus dicrus        | Colon Goby          | 3%    | 1.2 |
| Chaetodon striatus         | Banded Butterflyfish    | 73%    | 1.8 | Coryphopterus eidolon       | Pallid Goby         | 20%   | 1.6 |
| Cirrhitidae                | Hawkfishes              |        |     | Coryphopterus glaucofraenum | Bridled Goby        | 63%   | 2.3 |
| Amblycirrhitus pinos       | Redspotted Hawkfish     | 29%    | 1.3 | Coryphopterus lipernes      | Peppermint Goby     | 46%   | 1.9 |
| Congridae                  | Eels (Conger)           |        |     | Gnatholepis thompsoni       | Goldspot Goby       | 69%   | 2.4 |
| Heteroconger halis         | Brown Garden Eel        | 22%    | 3.5 | Gobionellus saepepallens    | Dash Goby           | 1%    | 1.4 |
| Dactylopteridae            | Flying Gurnards         |        |     | *Gobiosoma chancei          | Shortstripe Goby    | 3%    | 1.7 |
| Dactylopterus volitans     | Flying Gurnard          | 0.3%   | 1.5 | Gobiosoma dilepsis          | Orangesided Goby    | 28%   | 1.8 |
| Dasyatidae                 | Rays (Sting)            |        |     | Gobiosoma evelynae          | Sharknose Goby      | 20%   | 1.9 |
| Dasyatis americana         | Southern Stingray       | 23%    | 1.3 | Gobiosoma genie             | Cleaning Goby       | 49%   | 2.4 |
| Echeneididae               | Remoras                 |        |     | Gobiosoma horsti            | Yellowline Goby     | 45%   | 1.9 |
| Echeneis naucrates         | Sharksucker             | 5%     | 1.1 | Gobiosoma louisae           | Spotlight Goby      | 6%    | 1.7 |
| Elopidae                   | Tarpon                  |        |     | Gobiosoma multifasciatum    | Greenbanded Goby    | 6%    | 2.0 |
| Megalops atlanticus        | Tarpon                  | 22%    | 2.2 | Gobiosoma pallens           | Semiscaled Goby     | 4%    | 1.3 |
| Ephippidae                 | Spadefishes             |        |     | *Gobiosoma saucrum          | Leopard Goby        | 0.3%  | 1.5 |
| *Chaetodipterus faber      | Atlantic Spadefish      | 1%     | 1.2 | *Gobiosoma xanthiprora      | Yellowprow Goby     | 0.1%  | 2.0 |
| Exocoetidae                | Flyingfishes/Halfbeeks  |        |     | *Ioglossus helenae          | Hovering Goby       | 2%    | 1.4 |
| *Hemiramphus balao         | Balao                   | 0.1%   | 3.0 | *Microgobius carri          | Seminole Goby       | 0.1%  | 1.0 |
| *Hirundichthys speculiger  | Mirrorwing Flyingfish   | $SO^1$ |     | *Nes longus                 | Orangespotted Goby  | 0.3%  | 1.5 |
| Fistulariidae              | Cornetfishes            |        |     | Priolepis hipoliti          | Rusty Goby          | 3%    | 1.2 |
| Fistularia tabacaria       | Bluespotted Cornetfish  | 1%     | 1.5 | Risor ruber                 | Tusked Goby         | 1%    | 1.5 |
| Gerreidae                  | Mojarra                 |        | -   | Grammatidae                 | Basslets            | - / 0 |     |
| *Eucinostomus melanopterus | Flagfin Mojarra         | 0.3%   | 2.0 | *Gramma linki               | Yellowcheek Basslet | 0.1%  | 1.0 |


| Scientific Name            | Common Name            | SF%  | DEN | Scientific Name               | Common Name           | SF%  | DEN |
|----------------------------|------------------------|------|-----|-------------------------------|-----------------------|------|-----|
| Grammatidae (cont.)        | Basslets               |      |     | Labridae (cont.)              | Wrassess              |      |     |
| Gramma melacara            | Blackcap Basslet       | 34%  | 3.4 | Doratonotus megalepis         | Dwarf Wrasse          | 1%   | 1.0 |
| Lipogramma trilineatum     | Threeline Basslet      | 2%   | 1.4 | Halichoeres bivittatus        | Slippery Dick         | 42%  | 2.2 |
| Haemulidae                 | Grunts                 |      |     | *Halichoeres cyanocephalus    | Yellowcheek Wrasse    | 2%   | 1.1 |
| Anisotremus surinamensis   | Black Margate          | 3%   | 1.5 | Halichoeres garnoti           | Yellowhead Wrasse     | 93%  | 2.8 |
| Anisotremus virginicus     | Porkfish               | 1%   | 1.3 | Halichoeres maculipinna       | Clown Wrasse          | 43%  | 2.0 |
| Haemulon album             | White Margate          | 17%  | 1.5 | *Halichoeres pictus           | Rainbow Wrasse        | 16%  | 2.0 |
| Haemulon aurolineatum      | Tomtate                | 6%   | 2.3 | *Halichoeres poeyi            | Blackear Wrasse       | 0.1% | 2.0 |
| Haemulon carbonarium       | Caesar Grunt           | 26%  | 2.3 | Halichoeres radiatus          | Puddingwife           | 19%  | 1.4 |
| Haemulon chrysargyreum     | Smallmouth Grunt       | 1%   | 2.5 | *Hemipteronotus martinicensis | Rosy Razorfish        | 19%  | 2.2 |
| Haemulon flavolineatum     | French Grunt           | 89%  | 2.3 | Hemipteronotus splendens      | Green Razorfish       | 28%  | 1.9 |
| *Haemulon macrostomum      | Spanish Grunt          | 3%   | 1.7 | Lachnolaimus maximus          | Hogfish               | 44%  | 1.3 |
| *Haemulon melanurum        | Cottonwick             | 1%   | 1.7 | Thalassoma bifasciatum        | Bluehead              | 97%  | 3.3 |
| Haemulon parra             | Sailors Choice         | 18%  | 2.2 | Labrisomidae                  | Blennies (Scaly)      |      |     |
| Haemulon plumieri          | White Grunt            | 69%  | 1.8 | Acanthemblemaria spinosa      | Spinyhead Blenny      | 4%   | 1.4 |
| Haemulon sciurus           | Bluestriped Grunt      | 65%  | 2.0 | Chaenopsis limbaughi          | Yellowface Pikeblenny | 1%   | 1.0 |
| *Haemulon striatum         | Striped Grunt          | 0.3% | 2.0 | *Hemiemblemaria simulus       | Wrasse Blenny         | 1%   | 1.2 |
| Holocentridae              | Squirrelfishes         |      |     | *Labrisomus filamentosus      | Quillfin Blenny       | 0%   | 2.0 |
| Holocentrus adscensionis   | Squirrelfish           | 57%  | 1.9 | Labrisomus gobio              | Palehead Blenny       | 0.1% | 1.0 |
| Holocentrus coruscum       | Reef Squirrelfish      | 3%   | 1.7 | *Labrisomus kalisherae        | Downy Blenny          | 0.1% | 1.0 |
| Holocentrus marianus       | Longjaw Squirrelfish   | 69%  | 2.0 | Malacoctenus aurolineatus     | Goldline Blenny       | 2%   | 1.7 |
| Holocentrus rufus          | Longspine Squirrelfish | 68%  | 2.0 | Malacoctenus boehlkei         | Diamond Blenny        | 25%  | 1.5 |
| Holocentrus vexillarius    | Dusky Squirrelfish     | 19%  | 1.9 | Malacoctenus macropus         | Rosy Blenny           | 7%   | 1.5 |
| Myripristis jacobus        | Blackbar Soldierfish   | 54%  | 2.0 | Malacoctenus triangulatus     | Saddled Blenny        | 75%  | 2.3 |
| Plectrypops retrospinis    | Cardinal Soldierfish   | 2%   | 1.2 | Malacoctenus versicolor       | Barfin Blenny         | 0.1% | 1.0 |
| Inermiidae                 | Bonnetmouths           |      |     | Starksia nanodes              | Dwarf Blenny          | 0.1% | 2.0 |
| *Emmelichthyops atlanticus | Bonnetmouth            | 0.4% | 3.0 | Lutjanidae                    | Snappers              |      |     |
| *Inermia vittata           | Boga                   | 17%  | 3.0 | Apsilus dentatus              | Black Snapper         | 0.6% | 1.2 |
| Kyphosidae                 | Chubs                  |      |     | Lutjanus analis               | Mutton Snapper        | 59%  | 1.5 |
| Kyphosus sectatrix/incisor | Bermuda/Yellow Chub    | 78%  | 2.4 | Lutjanus apodus               | Schoolmaster          | 91%  | 2.4 |
| Labridae                   | Wrassess               |      |     | Lutjanus buccanella           | Blackfin Snapper      | 17%  | 2.0 |
| Bodianus pulchellus        | Spotfin Hogfish        | 1%   | 1.5 | Lutjanus cyanopterus          | Cubera Snapper        | 3%   | 1.2 |
| Bodianus rufus             | Spanish Hogfish        | 74%  | 1.9 | Lutjanus griseus              | Gray Snapper          | 4%   | 1.9 |
| Clepticus parrae           | Creole Wrasse          | 87%  | 3.7 | Lutjanus jocu                 | Dog Snapper           | 10%  | 1.3 |

| Scientific Name             | Common Name        | SF%    | DEN | Scientific Name          | Common Name           | SF%  | DEN |
|-----------------------------|--------------------|--------|-----|--------------------------|-----------------------|------|-----|
| Lutjanidae (cont.)          | Snappers           |        |     | Pempheridae              | Sweepers              |      |     |
| Lutjanus mahogoni           | Mahogany Snapper   | 69%    | 2.2 | Pempheris schomburgki    | Glassy Sweeper        | 2%   | 2.2 |
| Lutjanus synagris           | Lane Snapper       | 2%     | 1.9 | Pomacanthidae            | Angelfishes           |      |     |
| Ocyurus chrysurus           | Yellowtail Snapper | 89%    | 2.5 | Centropyge argi          | Cherubfish            | 1%   | 1.2 |
| Matacanthidae               | Tilefishes         |        |     | *Holacanthus bermudensis | Blue Angelfish        | 0.1% | 1.0 |
| Malacanthus plumieri        | Sand Tilefish      | 74%    | 2.0 | Holacanthus ciliaris     | Queen Angelfish       | 35%  | 1.4 |
| Mobulidae                   | Ray (Mantas)       |        |     | Holacanthus tricolor     | Rock Beauty           | 84%  | 1.9 |
| Manta birostris             | Manta              | 0.3%   | 1.0 | Pomacanthus arcuatus     | Gray Angelfish        | 39%  | 1.4 |
| Mullidae                    | Goatfishes         |        |     | Pomacanthus paru         | French Angelfish      | 51%  | 1.3 |
| Mulloidichthys martinicus   | Yellow Goatfish    | 84%    | 2.4 | Pomacentridae            | Damselfishes          |      |     |
| Pseudupeneus maculatus      | Spotted Goatfish   | 46%    | 1.7 | Abudefduf saxatilis      | Sergeant Major        | 49%  | 2.5 |
| Muranidae                   | Eels (Moray)       |        |     | Abudefduf taurus         | Night Sergeant        | 0.4% | 2.0 |
| Echidna catenata            | Chain Moray        | 0.1%   | 1.0 | Chromis cyanea           | Blue Chromis          | 97%  | 3.8 |
| Enchelycore carychroa       | Chestnut Moray     | 0.1%   | 1.0 | *Chromis insolata        | Sunshinefish          | 18%  | 2.2 |
| Gymnothorax funebris        | Green Moray        | 5%     | 1.0 | Chromis multilineata     | Brown Chromis         | 95%  | 3.4 |
| Gymnothorax miliaris        | Goldentail Moray   | 4%     | 1.0 | Microspathodon chrysurus | Yellowtail Damselfish | 57%  | 2.0 |
| Gymnothorax moringa         | Spotted Moray      | 3%     | 1.2 | Stegastes diencaeus      | Longfin Damselfish    | 82%  | 2.3 |
| Gymnothorax vicinus         | Purplemouth Moray  | 0.3%   | 2.0 | Stegastes fuscus         | Dusky Damselfish      | 18%  | 1.8 |
| Myliobatidae                | Rays (Eagle)       |        |     | Stegastes leucostictus   | Beaugregory           | 35%  | 1.8 |
| Aetobatus narinari          | Spotted Eagle Ray  | 9%     | 1.1 | Stegastes partitus       | Bicolor Damselfish    | 96%  | 3.6 |
| Ogcocephalidae              | Batfishes          |        |     | Stegastes planifrons     | Threespot Damselfish  | 80%  | 2.2 |
| Ogcocephalus nasutus        | Shortnose Batfish  | $SO^1$ |     | Stegastes variabilis     | Cocoa Damselfish      | 17%  | 1.5 |
| <b>Ophichthidae</b>         | Eels (Snake)       |        |     | Priacanthidae            | Bigeyes               |      |     |
| Myrichthys breviceps        | Sharptail Eel      | 0.3%   | 1.0 | Priacanthus arenatus     | Bigeye                | 0.4% | 1.0 |
| Opistognathidae             | Jawfishes          |        |     | Priacanthus cruentatus   | Glasseye Snapper      | 9%   | 1.3 |
| *Opistognathus aurifrons    | Yellowhead Jawfish | 42%    | 2.1 | Rhincodontidae           | Sharks (Carpet)       |      |     |
| *Opistognathus macrognathus | Banded Jawfish     | 0.3%   | 1.5 | Ginglymostoma cirratum   | Nurse Shark           | 5%   | 1.0 |
| *Opistognathus whitehursti  | Dusky Jawfish      | 0.3%   | 1.5 | Scaridae                 | Parrotfishes          |      |     |
| Ostraciontidae              | Boxfishes          |        |     | Cryptotomus roseus       | Bluelip Parrotfish    | 6%   | 1.9 |
| Lactophrys bicaudalis       | Spotted Trunkfish  | 30%    | 1.1 | Scarus coelestinus       | Midnight Parrotfish   | 8%   | 1.2 |
| Lactophrys polygonia        | Honeycomb Cowfish  | 26%    | 1.2 | Scarus coeruleus         | Blue Parrotfish       | 2%   | 1.5 |
| Lactophrys quadricornis     | Scrawled Cowfish   | 1%     | 1.6 | Scarus croicensis        | Striped Parrotfish    | 89%  | 2.4 |
| Lactophrys trigonus         | Trunkfish          | 0.4%   | 1.3 | Scarus guacamaia         | Rainbow Parrotfish    | 15%  | 1.3 |
| Lactophrys triqueter        | Smooth Trunkfish   | 23%    | 1.2 | Scarus taeniopterus      | Princess Parrotfish   | 88%  | 2.5 |

| Scientific Name          | Common Name            | SF%  | DEN | Scientific Name             | Common Name            | SF%             | DEŅ |
|--------------------------|------------------------|------|-----|-----------------------------|------------------------|-----------------|-----|
| Scaridae (cont.)         | Parrotfishes           |      |     | Serranidae (cont.)          | Sea Basses             |                 |     |
| Scarus vetula            | Queen Parrotfish       | 59%  | 1.9 | *Liopropoma carmabi         | Candy Bass             | 1%              | 1.0 |
| *Sparisoma atomarium     | Greenblotch Parrotfish | 41%  | 2.2 | Liopropoma mowbrayi         | Cave Bass              | 3%              | 1.3 |
| Sparisoma aurofrenatum   | Redband Parrotfish     | 93%  | 2.7 | Liopropoma rubre            | Peppermint Bass        | 19%             | 1.4 |
| Sparisoma chrysopterum   | Redtail Parrotfish     | 62%  | 2.0 | Mycteroperca bonaci         | Black Grouper          | 11%             | 1.2 |
| Sparisoma radians        | Bucktooth Parrotfish   | 2%   | 2.2 | Mycteroperca interstitialis | Yellowmouth Grouper    | 6%              | 1.1 |
| Sparisoma rubripinne     | Yellowtail Parrotfish  | 46%  | 2.0 | *Mycteroperca phenax        | Scamp                  | 1%              | 1.2 |
| Sparisoma viride         | Stoplight Parrotfish   | 96%  | 2.7 | Mycteroperca tigris         | Tiger Grouper          | 54%             | 1.5 |
| Sciaenidae               | Drums                  |      |     | Mycteroperca venenosa       | Yellowfin Grouper      | 18%             | 1.3 |
| Equetus acuminatus       | Highhat                | 1%   | 1.5 | *Paranthias furcifer        | Creole-fish            | 1%              | 2.0 |
| Equetus lanceolatus      | Jacknife Fish          | 0.1% | 1.0 | Rypticus saponaceus         | Greater Soapfish       | 18%             | 1.2 |
| Equetus punctatus        | Spotted Drum           | 15%  | 1.2 | *Serranus baldwini          | Lantern Bass           | 11%             | 1.5 |
| Odontoscion dentex       | Reef Croaker           | 0.4% | 1.6 | Serranus tabacarius         | Tobaccofish            | 53%             | 1.8 |
| Scorpionidae             | Scorpionfishes         |      |     | Serranus tigrinus           | Harlequin Bass         | 75%             | 1.9 |
| Scorpaena plumieri       | Spotted Scorpionfish   | 6%   | 1.1 | *Serranus tortugarum        | Chalk Bass             | 7%              | 1.7 |
| Scorpaenodes caribbaeus  | Reef Scorpionfish      | 1%   | 1.0 | Sparidae                    | Porgies                |                 |     |
| Serranidae               | Sea Basses             |      |     | Calamus bajonado            | Jolthead Porgy         | 15%             | 1.2 |
| Epinephelus adscensionis | Rock Hind              | 2%   | 1.1 | Calamus calamus             | Saucereye Porgy        | 27%             | 1.3 |
| Epinephelus cruentatus   | Graysby                | 92%  | 2.1 | *Calamus pennatula          | Pluma                  | 1%              | 1.1 |
| Epinephelus fulvus       | Coney                  | 81%  | 2.1 | Sphyraenidae                | Barracudas             |                 |     |
| Epinephelus guttatus     | Red Hind               | 27%  | 1.3 | Sphyraena barracuda         | Great Barracuda        | 49%             | 1.5 |
| Epinephelus itajara      | Goliath Grouper        | 0.6% | 1.2 | Sphyraena picudilla         | Southern Sennet        | 1%              | 3.5 |
| *Epinephelus morio       | Red Grouper            | 0.3% | 1.5 | Sphyrnidae                  | Sharks (Hammerhead)    |                 |     |
| Epinephelus striatus     | Nassau Grouper         | 50%  | 1.5 | *Sphyrna lewini             | Scalloped Hammerhead   | SO <sup>1</sup> | į.  |
| Hypoplectrus aberrans    | Yellowbelly Hamlet     | 4%   | 1.2 | Syngnathidae                | Pipefishes/Seahorses   |                 |     |
| *Hypoplectrus chlorurus  | Yellowtail Hamlet      | 0.3% | 1.0 | *Acentronura dendritica     | Pipehorse              | 0.4%            | 1.6 |
| Hypoplectrus gummigutta  | Golden Hamlet          | 0.4% | 1.0 | *Cosmocampus albirostris    | Whitenose Pipefish     | 0.1%            | 1.0 |
| Hypoplectrus guttavarius | Shy Hamlet             | 21%  | 1.3 | *Hippocampus erectus        | Lined Seahorse         | 0.4%            | 1.0 |
| Hypoplectrus indigo      | Indigo Hamlet          | 9%   | 1.3 | Synodotidae                 | Lizzardfishes          |                 |     |
| Hypoplectrus nigricans   | Black Hamlet           | 14%  | 1.4 | Synodus intermedius         | Sand Diver             | 5%              | 1.1 |
| Hypoplectrus puella      | Barred Hamlet          | 64%  | 1.8 | *Synodus saurus             | Bluestriped Lizardfish | 0.3%            | 1.0 |
| *Hypoplectrus sp.        | Masked Hamlet          | 2%   | 1.0 | Synodus synodus             | Red Lizardfish         | 0.4%            | 1.0 |
| *Hypoplectrus sp.        | Tan Hamlet             | 2%   | 1.0 | Tetradontidae               | Puffers                |                 |     |
| Hypoplectrus unicolor    | Butter Hamlet          | 19%  | 1.3 | Canthigaster rostrata       | Sharpnose Puffer       | 92%             | 2.1 |

| Scientific Name           | Common Name             | SF%  | DEN | Scientific Name        | Common Name           | SF%  | DEN |
|---------------------------|-------------------------|------|-----|------------------------|-----------------------|------|-----|
| Tetradontidae (cont.)     | Puffers                 |      |     | Tripterygiidae         | Blennies (Tripplefin) |      | )   |
| *Chilomycterus antennatus | Bridled Burrfish        | 0.3% | 1.0 | Enneanectes altivelis  | Lofty Triplefin       | 2%   | 1.0 |
| Diodon holocanthus        | Balloonfish             | 4%   | 1.0 | Enneanectes atrorus    | Blackedge Triplefin   | 0.1% | 1.0 |
| *Diodon hystrix           | Porcupinefish           | 13%  | 1.1 | Enneanectes boehlkei   | Roughhead Triplefin   | 2%   | 1.4 |
| Sphoeroides spengleri     | Bandtail Puffer         | 5%   | 1.2 | Enneanectes pectoralis | Redeye Triplefin      | 3%   | 1.1 |
| Torpedinidae              | Rays (Torpedo Electric) |      |     | Urolophidae            | Rays (Round)          |      |     |
| *Narcine brasiliensis     | Lesser Electric Ray     | 0.1% | 2.0 | Urolophus jamaicensis  | Yellow Stingray       | 6%   | 1.2 |

Species Only, those seen during REEF surveys with no abundance estimates.



**Plate 6A**. "Recent mortality," as in this *Montastraea annularis* lobe, is defined as any non-living parts of the coral in which the corallite structures are white and either still intact or covered by a thin layer of algae or fine mud. (Photo Kenneth W. Marks)



**Plate 6B.** Recent mortality resulting from parrotfish bites, most commonly observed in the *Montastraea annularis* species complex (as shown) and *Colpophyllia natans*, is characterized by partial loss of the skeleton along with the overlying living tissues. (Photo Robert S. Steneck)