No. 34

Animal Ecology of Raroia Atoll, Tuamotus

Part 1. Ecological Notes on the Mollusks and Other Animals of Raroia

by J. P. E. Morrison

Part 2. Notes on the Birds of Raroia

by J. P. E. Morrison

Issued by
THE PACIFIC SCIENCE BOARD
National Academy of Sciences--National Research Council
Washington, D. C.
November 30, 1954
ECOLOGICAL NOTES ON THE
MOLLUSKS AND OTHER ANIMALS OF RAROA

by J. P. E. Morrison

The molluscan fauna of Raroia Atoll in the Tuamotu Islands, French Oceania, is fundamentally similar to that of the other atolls personally studied in the northern Marshall Islands (Eniwetok, Bikini, Rongelap, and Rongerik Atolls). Where there is no widespread silt or mud habitat to compare with the clay or mud habitats of the shores of higher (volcanic rock) islands, there is necessarily a reduction in the total number of marine species present. With the simplification or restriction of the atolls to fewer types of habitats, there are fewer molluscan species living on and around the atolls than for example on such complex shores as those of the Philippine Islands. With fewer species in the total picture, it becomes a little less difficult to observe or evaluate the ecological preferences of those species. It should be clearly understood however, that the more than one hundred molluscan species whose observed ecology is briefly mentioned or outlined here, constitute only one-fifth or less of the total number of species of mollusks known to be living on such atolls as Raroia. When the classification and determination of all the forms collected at Raroia are completed, the total number of species is likely to pass six hundred.

The writer wishes to express his sincere appreciation of the unparalleled opportunity to be a member of the Pacific Science Board Atoll Research team sent to Raroia in 1952. This team, under the auspices of the Pacific Science Board, of the National Research Council, under contract with and supported by funds of the Office of Naval Research, received the fullest cooperation from the government of French Oceania. Particularly to be acknowledged is the excellence of the transportation furnished through the good offices of the Governor, The Hon. R. Petiteton, to and from Raroia Atoll.

I also wish to acknowledge fully the unflagging help received from others, particularly Austin H. Clark (Echinoderms), F. A. Chace, F. M. Bayer, and L. B. Holthuis (Crustacea and other Marine Invertebrates), D. M. Cochran (Reptiles), D. M. Johnson (Mammals), without whose identifications the non-molluscan notes contained herein would be valueless; lastly, but not least is the aid received from my colleagues in Mollusks, H. A. Rehder and R. T. Abbott.

The single most characteristic molluscan species of the oceanic or outer reef edge on the windward side of Raroia Atoll, is the white-cat's eye shell Turbo setosus Gmelin. Associated with it on and in the zone of the algal ridge are the two commonest species of spiny rocksnails Drupa morum Roding and Drupa ricinus Linnaeus. These have the aperture purplish, and white, respectively. Also along this outer reef edge is to be found the fuzzy-red-legged hermit crab Aniculus anicusus Herbst.

-1-
Behind the algal ridge, the reef diminishes in height in the zone of the small boring sea urchins Echinometra mathaei Blainville and Echinometra mathaei oblonga Blainville. In these short tunnels in the surface of the reef rock, the Drupa species, the brown mitre shell Mitra columbelliformis Kiener, and a few species of cowries such as Cypraea (Arabica) depressa Gray and Cypraea (Ponda) ventriculus Lamarck, take refuge during the day from the light, and from the strong wave action present on windward oceanic reefs.

A few yards nearer shore the pool zone of the reef flat begins. In these pools there are only a few corals present on the rock surface, covered, otherwise, with a thin film of foraminiferous sand. Here in no great abundance, are several species of the smaller cones, such as Conus sponsalis Hwass, C. ebraeus Linnaeus, C. chalceus Röding, and C. nenus Sowerby, along with occasional Drupa ricinus Linnaeus, the very small Mitra litterata Lamarck, and the common black rock-snail Morula granulata Duclos. As one proceeds further shoreward in the study of the reef, the Conus sponsalis, Mitra litterata, and Morula granulata are usually to be found in greater abundance. Here under the larger coral blocks may be discovered a few black poison sea urchins Diadema setosum Leske, the small poison cone Conus retifer Menke, a small byssiferous pearly oyster Isognomon perna Linnaeus, a small black-spotted white ark-shell Arca maculata Sowerby, and two small snails, one speckled Maculotriton digitalis Reeve, and one pink Columella pallida Deshayes, that may be considered characteristic. Closer to the island shores, at just about, or just below the low tide water level, Vasum armatum Broderip appears commonly, along with Thais hippocastaneum Linnaeus, and occasionally Gromia cariosa Wood. Both the Thais and the Cronia species have been found feeding on the Nerita snails in the lower edge of the intertidal zone.

In the intertidal zone, Nerita plicata Linnaeus is most characteristic, sometimes present in great numbers, on and under the coral rocks and gravel. Above it in level is the widespread white littorinid snail Melaraphe coccinea Gmelin, in great abundance on some of the dry rock flats ("Pakokota"), wet only by spray from the ocean in normal weather, but active with the humidity every night and during and after every rain. Above it in normal tide level relations, the soiny littorinid snail Tectarius granicolor Gmelin was found about 4 to 5 feet above high tide level, but only on the solid rock of the largest reef-blocks (cast up by storm action) scattered across this windward oceanic reef flat. The coral gravel and loose rock of the island shores here is apparently not suitable for them. The windward island shores facing the ocean are rather barren of mollusks. In most cases the coral gravel and cobbles along the actual islet shore lines of this part of Rarotua Atoll are inhabited principally by small hermit crabs. There are usually the younger stages (smaller sizes) of one or more species of Coenobita.

Many of the windward islands have large areas of dry rock-flats on the oceanic side. Where these flats are covered with low but very dense growths of Suriara and Pemphis, particularly around pools and incomplete channels across the islands, there are many individuals of the large land-crab Cardisoma carnifex Herbst, called "Papaka Tupa" by the Rarotua natives, to be found. The burrows of these land-crabs were all over the lower ground of some islands; at night when they are most active, these crabs may range all over the higher ground as well, a considerable distance from any water. The brackish (or sometimes fresh?) groundwater of enclosed ponds on the lower areas of some of these
islands, and the groundwater exposed in the burrows of these "Papaka Tupa" are one of the sources of a considerable population of bird mosquitoes (Culex spp.). Another source of this mosquito population is the ever-present large number of rain-filled broken or half coconut shells lying around on both high and low ground, on and around the coconut groves. This secondary coconut shell habitat of the mosquito larvae dates only from the time the coconut palm was brought to Raroia by the Polynesian natives.

Under the Guettarda and other trees on the higher sandier ground of the islands, and in the leafmold of the coconut groves also, there are a few species of very small land snails. These include the ubiquitous, tiny white Gastrocopta pediculus Shuttleworth, a tiny reddish species of Nesopupa, Lamellidea serrata Pease, Lamellidea oblonga Pease, and two species of Opeas. In certain places on the islands, near the sites of former villages, there is a small yellow and red land-operculate snail, Orophana colorata Pease. It seems likely that this helicinid snail and both the species of Lamellidea were carried to Raroia with the plants brought there by the Polynesian natives. Around one of the brackish (or fresh ?) groundwater ponds was found another land-operculate, a species of Syncera (or Omphalotropis ?), white in color, that seems distinct from its gold-colored relative found along the salty lagoon shores in certain places. All of these small land snails are facultatively xerophytic; that is they can withstand considerable heat and drought between rains and during the dry season. Their shells are small, so that micro-shelters in the upper soil and leafmold layers are sufficient. The aperture of their shell is small in proportion to its volume, in resisting desication, and in the case of the pupillid snails is still further restricted by lamellae within the aperture. These pupillids, Gastrocopta and Nesopupa are probably also protected from the tiny Ants, Pheidole spp., by their lamellate apertures, at least in the adult stage. In the leafmold, and under the coconut detritus also, various species of ants, a couple of species of cockroaches, and a small short-tailed scorpion are sometimes to be found in abundance. This species Hormurus australasiae Fabricius, has a wide range on many Pacific islands, and may also have come to Raroia with the Polynesians. The sting of this small scorpion is not regarded as dangerous by the natives. In addition, it does not seem to be very aggressive in its natural habitat at Raroia, so that people are very seldom stung by it.

The two species of earthworms found on Raroia are active in the lower leafmold, and upper soil layers, in breaking down plant detritus into richer soil. They were to be found only in the deeper leafmold layers of lower more moist ground, and in the denser stands of Guettarda and other trees, away from the presently cleared coconut groves. Both these species of earthworms Pheretina montana Kinberg and Pheretina upoluensis Beddard, are extremely active when disturbed, and will flip or "jump" out of one's hand if care is not taken when collecting them. These earthworms also are known to have been carried from island to island in the Pacific by the natives. They undoubtedly came to Raroia in soil on the roots of plants brought by the Polynesians generations ago.

There are two species of rats on the islands of Raroia Atoll. One, Rattus exulans, the small reddish species commonly known as the Polynesian Rat, has no fear of man or his flashlights, lives on various seeds, and has been seen feeding on the flowers of Guettarda. This species probably arrived at Raroia with
the coming of the Polynesian people, perhaps two centuries before they brought
the coconut palm to Raroia Atoll. *Rattus exulans* is not known to affect the
crop of coconuts or copra. The second species (*Rattus rattus alexandrinus*),
larger and grayish, runs away and hides when discovered at night, and actively
feeds on the coconuts. It gnaws a hole in the side of small green coconuts on
the trees, to eat out their contents, causing them to drop off later and be
lost; it also gnaws a hole into ripe coconuts on the ground, and eats the cocon-
ut meat out of them. Crop production figures have been gathered on Tahiti,
40% of the crop coming from small coconuts.

At night, when the tide is out, a gray rat was found
larger and grayish, running about and hiding in the
coconut trees. It gnaws a hole in the side of small green coconuts on
the trees, to eat out their contents, causing them to drop off later and be
lost; it also gnaws a hole into ripe coconuts on the ground, and eats the cocon-
ut meat out of them. Crop production figures have been gathered on Tahiti,
in the Society Islands, that show that this species of rat may destroy up to
40% of the copra crop from those coconut trees that are not protected by a sheet
metal band of sufficient height and smoothness to prevent the rats from climbing
the tree trunks, and reaching the green coconuts. Also, this gray rat species
travels from tree to tree across the touching and/or overlapping coconut leaves
where the trees are crowded and not isolated. This larger grayish rat has ap-
parently completely displaced the small reddish Polynesian Rat on those islands
of Raroia Atoll the gray rat now inhabits. According to the people of Raroia
this gray rat appeared on Raroia Atoll only after the development of the commer-
cial copra trade began about a century ago. On Opakea Island, Raroia, this gray
rat was found to be parasitized by the spirurid worm *Mastophorus muris*.

On those islands of the Atoll not yet, or not now inhabited by any rats,
a large species of gecko *Gehyra oceanica* is particularly abundant. Here they
may be commonly seen at night at any and all levels off the ground, on the
*Guettarda, Messerschmidia*, and coconut palm tree trunks. In the presence of a
population of rats, these geckoes are abundant only high on the trees, particu-
larly on the underside of the leaves of the coconut trees. Two or three small
species of lizards (skinks) are common on many islands at Raroia. They are
most evident in the bright sun at the edges of coconut groves, and on and under
the fallen leaves of *Guettarda* and other trees. A shorter, spotted species
*Ablepharus poecilopleurus* seems to inhabit drier, rockier, more open places
than the long-tailed (sometimes blue-tailed) skink *Eumia ovumura*. Only one
specimen of a third species, *Leiolopisma noctuus*, was collected on the island just
north of the ship’s pass, Tenuku Haupepatea Island. It was taken in company
with, or at least in the same general habitat with, both the other two species
of skinks.

The lagoon shores of the windward islands such as Tetou are almost barren
of mollusks on the sandy beaches. However, wherever beach conglomerate is ex-
posed along the shore, the characteristic *Nerita plicata* is evident, sometimes
in extreme abundance. Everywhere in this habitat it shows the extreme varia-
tion of color of shell from all white, to pink, to striped black, to an al-
most completely black shell in a few individuals. Also in this intertidal zone,
in the crevices of the beach conglomerate, but otherwise exposed to the sun
whenever the tide is out, may be moderate numbers of the small byssiferous rela-
tive of the pearl oyster, *Parviperna dentifera* Krauss. The color of this Parvi-
perna varies also from blackish, to black-fringed, to a pale yellow overall, in
different local areas. On the lower edge of the *Nerita plicata* zone on the
rocks, one may find the carnivorous Muricid snail *Cronia pariosa* Wood, which
feeds on the flesh of the *Nerita plicata*. The greater numbers of the *Cronia*
are characteristically to be found in the zone just below the low tide water
level. Under and on the rocks (beach conglomerate slabs) along this lagoon
shore are a few money cowries *Cypraea* (*Monetaria*) *moneta* Linnaeus, purple rock-
snails *Peristernia nasatula* Lamarck, and a cerithiid *Rhinoclavis sinensis* Gmelin, usually a little below the low tide line. Under some of the rock slabs along these lagoon shores are found small rock crabs, such as *Cyclograpsus longipes* Stimpson and *Cyclograpsus pervulus* DeMan. Also here under the rocks, but usually closer to the high tide level, are certain small ellobiid snails, *Allochroa conica* Pease and *Laecodonta mordax* Dohrn.

Brackish water lagoons are present in certain places on Raroia Atoll. These are micro-lagoons or ponds usually appearing as incomplete channels between islands or small embayments close to the lagoon of the atoll, and more or less completely cut off from the salt water of the lagoon by sand barriers. With the separation of these micro-lagoons or ponds from free access to the oceanic or lagoon salt water, the addition of rain or brackish groundwater brings about the brackish, or at least materially reduced salt water habitat. Such ponds offer a habitat in which only a few low salt tolerant species seem to flourish. Conspicuous here is the small rugose venerid clam *Circa (Crista) pectinata* Linnaeus, the cerithiid snail *Eretithium breve* Quoy & Gaimard, and the shrimp *Palaemon debilis* Dana. In lesser numbers, but nonetheless probably more common in these brackish water ponds than in any other habitat at Raroia were found *Nerita hensoni* Reclus and the extra large or giant form of *Planaxis zonatus* A. Adams. In the search for greater numbers of the *Nerita hensoni*, some larger coral blocks, partly imbedded in the muddy sand bottom, were turned over and accidentally revealed the habitat of some small pink cap-shells not seen before. The habitat, or at least the daytime refuge of these small false limpets, *Pleacolepas* sp., was on these coral blocks under the muddy sand line, near the shore of one of these enclosed brackish water ponds. In life these animals were very pink, color showing through the thin but tough shells, and were so active that the greater numbers present could not all be picked off the coral block, before some of them had disappeared to the bottom side of the turned-over coral block. They did not drop off when the block was taken out of the water, they simply started gliding in a hurry for the lower under side of the block. It was not determined if they came out and were active above the muddy sand line at night, but they were certainly light-fugitive in the bright noonday sun.

Dredging in the lagoon at Raroia to collect the deeper water species of mollusks and other animals was not very productive. Little time was available for the dredging, and each try indicated a generally distributed rock-pavement bottom, with only a very thin sandy cover between the numerous coral clumps growing thereon, in the places sampled. A small shrimp, *Palaemonella denticulata* Nobili, some small clams, *Tellina* species, and a cerithiid snail, *Rhinoclavis procera* Kiener, were taken in 40 feet or more of water on such sand covered bottoms. This *Rhinoclavis procera* Kiener, and a related species *Rhinoclavis asper* Linnaeus are characteristic of such sand-covered rocky bottoms in the lagoons of many of the Pacific islands where they are recorded as living.

On and around the coral patch reefs in the lagoon, which at low tide are or are almost exposed, the green cat's-eye shell *Turbo metholatus* Linnaeus, a large spiny oyster *Spondylus varius* Sowerby, and a blackish plicate oyster *Ostrea sinensis* Gmelin, are among the most conspicuous species of shells. The small species of giant clam *Tridacna maxima* Röding is also present in shallow water on these patch reefs. Here also was seen an occasional individual of the large "leather urchin" starfish *Culicina novaeguineae* Müller & Troschel. The
economically important commercial pearl oyster *Pinctada margaritifera* Linnaeus lives here in the lagoon along with the *Spondylus varius*, and the black oyster *Ostrea sinensis*, usually in water 20 to 30 or more feet deep, on the coral of the slopes of these patch reefs. Living in the mantle cavity of the pearl oyster is the commensal shrimp species *Conchodytes meleagrinus* Peters, a pair (male and female) in each large individual of the molluscan host. In exactly the same type of relationship, a pair (male and female) of the commensal shrimp species *Pontonia hurii* Holthuis may be found in each large individual of the large spiny oyster *Spondylus varius*. Time did not permit a detailed study of the many other smaller species of mollusks and other types of invertebrates undoubtedly present on and around these patch reefs. The commercial pearl oyster is actually living from a few feet below low tide line, to depths of more than 100 feet in the lagoon. There is no commercial pearl shell diving at Raroia because of the danger of sharks in the open lagoon, but at Takume Atoll a few miles to the north, with a closed lagoon and no dangerous sharks, they are taken during a carefully controlled open season under strict size regulations. The pearl oysters are important as an extra cash crop for the Polynesian natives.

The fauna of the lagoon patch reefs is very similar in appearance to that of the well developed lagoon reef along the shore of most of the islands on the leeward side of Raroia Atoll. In places on the steep lagoon face of this reef, the large flat ark shells, *Barbailia complanata* Bruguiere, and the byssiferous clam *Pedum spondyloidium* Gmelin are conspicuous, living in pockets in living massive corals on the almost vertical face of the reef. On and near the edge of the reef, the brightly colored animals of the smallest giant clam, *Tridacna maxima* Röding, of large size for the species (10 to 12 inches) are also conspicuous. At first glance, it may seem completely absurd to have the smallest of the three known species of giant clams with the scientific specific name of *maxima*. Regardless of how the name may have been originally given, perhaps even accidentally, it is definitely not a wrong name. This is the smallest species, but with its shallow water, sometimes even partly intertidal habitat on the reef surface, it is subject to the greatest forces of wave disturbance, of any of the giant clams. With such ecological requirements, it possesses the maximum holdfast or byssal attachment. In this concept, the name *maxima* may be considered completely appropriate.

Inconspicuous at the surface, but nevertheless common here are a few species of clams, boring in the extremely hard coral rock. The commonest of these is the widespread Indopacific species of boring mytilid *Lithophagus* (*Lithophaga*) *teres* Philippi. Another is its relative *Lithophagus* (*Fibera*) *mucronatus* Philippi. A third, smaller species found here, which is probably *Grazieriella* (*Tibialectus*) *bakeri* Dell, Bartsch & Rehder, has been found only in the Hawaiian Islands, and here at Raroia. If it is not the same species it is one very close to, but distinct from the Hawaiian form. Boring sea urchins *Echinometra mathaei* oblonsa Blainville and black (banded-spined) poison sea urchins *Echinothrix diadema* Linnaeus are present, but not common, on these lagoon reefs. There are two species of crustaceans that are commensal here on the *Echinothrix diadema*. One is the commensal shrimp *Stegopontonia commensalis* Nobili, which lives generally over the surface of the sea urchin, between the spines, while the other is a small (spider ?) crab *Eumedonias convictor* Bouvier & Seurat, which lives on the anal plate region of this sea-urchin. There may be one on each of these urchins of large size. Both the commensal shrimp, and
this little commensal crab are very inconspicuous in their habitat, being of almost the same color as the very dark greenish-black sea urchins.

In the small sandy pockets between corals the poison cone Conus textile Linnaeus, a small white cerithiid small Cerithium nesioticum Pilsbry & Vanatta, and a small sand clam Tellina species, are present, along with a species of balanoglossid worm. Not collected, but obviously of necessity present here are numerous small annelid and other worms that make up the food of such carnivorous species as the "cloth of gold" poison cone Conus textile.

Inside this lagoon reef proper, the bottom is eroded somewhat, with pools (1 ft. deep at low tide), and covered with coralline and/or foraminiferous sand in a thin layer, or it is coral gravel and rocks, with sand filling the inter-spaces. On and under the gravel and coralline rocks, money cowries Cypraecula (Monetaria) moneta Linnaeus (of small size), black rock snails Morula granulata Duclos, purple-mouthed smalls Peristernia nassatula Lamarck, Polilia undosa Linnaeus, and a few other species may be found in abundance. On the under side of the larger coral blocks on the lagoon reef flat may be found the byssiferous clam Isognomon perna Linnaeus and two characteristic species of ark shells, the small black spotted white Arca macula Lamarck, and the small brown Barbatia parva Sowerby. The struggle for space in this habitat under the shelter of the coral blocks is occasionally keen enough to provide some astounding examples of crowding. On the under side of one such coral slab of medium size was a complete ring of individuals of the byssiferous Isognomon perna. Every one of these individuals of fair size for the species was oriented in the same direction around the circle, leaning against the right hand neighbor, and leaned on by the left hand neighbor. In other words a complete line of these clams was formed around the periphery of the underside of this slab. As they grew, they all leaned in one direction (by chance?) until, as the crowding progressed, there was no longer any beginning or end to the line of clams, but a continuous circle, achieving the absolute maximum use of space available to them under the slab. Deeply sunken in 'nests' or pits ground into the under surfaces of some of these coral blocks are numerous specimens of all sizes of the large turkey-feather ark shell Arca ventricosa Lamarck. On these coral blocks, particularly on those that extend up to about high tide level, are also found money cowries Cypraecula (Monetaria) moneta Linnaeus, and the eastern golden-ring cowry Cyprea (Ornamentaria) obvelata Lamarck (here practically intertidal in habitat), along with a species of the pulmonate sea-slug Onchidium, and the green-colored half-shelled tectibranchiate sea-slug Smaragdinella calyculata Broderip & Sowerby.

Commonly found most active at night along this lagoon shore, at or just below the low tide line, are a number of crab species, including the rock-crab Eriphia scabricula Dana, red-eyed rock-crab Eriphia sebeca Shaw & Hoder, Lydia annulipes Milne-Edwards, white rock-crab Xantho exaratus Milne-Edwards, speckled rock-crab Xantho gracilis Dana, the small rock-crabs Grapsus longitarsus Dana and Pachygrapsus crassipes DeWain, young individuals of the common large red-clawed land hermit-crab Coenobita perlatus Milne-Edwards, and the smaller hermit-crabs Calcinus laevimanus Randall, Calcinus latens Randall, and Calcinus seurati Forest.

Perhaps less than a hundred yards away, on the sandier portions of this reef area, Strombus mutabilis Swainson, Strombus gibberulus Linnaeus, Cerithium columna Sowerby, and Conus eburneus Hass are conspicuous members of the fauna.
The Conus aburneus were seen only at night; apparently they remain burrowed under the surface of the sand during the day. Under the rocks in this area are occasionally seen the small rugose venerid clams Circe (Crista) pectinata Linnaeus, while under every coral rock deeply imbedded in the sand, are annelid worms with needle setae that painfully stick in the fingertips at the slightest touch. This pink species of annelid with golden setae must be handled only with forceps. Widely ranging over the inner reef flats are two large species of hermit-crabs, one white-eyed Dardanus deformis Milne-Edwards, and the other giant red Dardanus megistos Herbst. Both these species are fast-moving and difficult to collect. They do not withdraw into the large small shells such as those of Turbo, Charonia tritonis Linnaeus, and Lambis truncata Humphrey, that they use, but scurry rapidly away whenever disturbed or approached with a light in their nightly wanderings.

In the shallow tide pools that remain in some of the lower parts of the intertidal flats along the lagoon shore, and even hiding in the white sand film over the rock pavement of these flats are found certain swimming crabs, such as Portunus (Cyclocheelous) granulatus Milne-Edwards and Portunus (Hellenus) longispinus Dana. In other spots, where there is only a thin crust of the conglomerate rock at the surface of the flats at just about the low tide line, there may be seen fiddler crabs. They are active whenever the tide is down, but scurry for their holes through the rock, if they are disturbed. Because their holes go through the thin places in this conglomerate rock, and their burrows are beneath it, they cannot be dug out, but must be surprised, and caught "off base" so they can't get back to their burrow, in order to be taken. The fiddler crab species found at Raroia in this particular habitat is a truly handsome creature, Uca tetragonon Herbst, with its whitish general color, and truly brilliant crimson-orange "fiddler" claw. Sometimes there may be great numbers of the tiny marine water-striders stranded on such rock flats at low tide. While each individual of this kind of insect (Halobates sp.) is very tiny, the aggregate of great numbers may add to the food available for scavengers in this intertidal zone.

Wherever there are extensive rocky pavement flats in the lower intertidal zone or lower to middle intertidal zones, there is evident a small but very characteristic group of molluscan species on these rocky pavements or slabs, that are exposed with every tide, and remain almost dry for a few hours each time. Here we find the small relative of the pearl-oysters that looks more like a sea-mussel at first glance, than anything else. This little bivalve Parviperma dentifera Krauss is well named. It is one of the very few members of its family that possesses even rudimentary hinge teeth. It may well have retained this primitive character of the shell because of its need for a more tightly locking shell in its more exposed habitat on top of intertidal rock surfaces, than that of Isognomon perna Linnaeus its relative which lives under rocks and has no hinge teeth whatsoever. In fact the family up to now has been described as being completely without them. So here we have another example of a species on the atolls, more primitive in certain ways than any of its relatives, living in a niche nothing else of its type is competing for. Is it too much to assume that such primitives still surviving on the outlying island habitats (atolls) might not be oldest or least changed of their kind still living? Much less conspicuous, in fact easily overlooked unless the rock surface is critically scanned, is the tiny golden trochiform littorinid Peasiella conidalis Pease. Cerithium breve Quoy & Gaimard is often exceedingly abundant in
the crevices and hollows on these intertidal rock flats, but is not limited to this zone.

In the upper intertidal zone, particularly on those shore lines composed largely of coral gravels, there is usually present an enormous population of rather small sized individuals of the common and widespread *Nerita plicata* Linnaeus. On the lower edge of this population, the carnivorous muricid snail *Cronia cariosa* Wood may be found in numbers, feeding on the *Nerita plicata* at night, and also occasionally in the daytime. Unlike some of their relatives, in this case the *Cronia* attack and eat the *Nerita* animals out of the aperture of the shell. Specimens of the *Cronia* were collected in the later stages of the act of eating *Nerita* animals, on several occasions. Apparently the *Cronia* have no difficulty in feeding on this particular species of *Nerita* because the operculum is only a very thin horny plate. They do not drill or otherwise mark the *Nerita plicata* shells. Normally the population of *Nerita plicata* retreats with the incoming tide, both day and night, and rests often in the daytime just at or above the normal high tide line for the next night's period of greatest activity.

On those shores of coral gravel with sand interspersed, another species *Nerita polita* Linnaeus is a conspicuous member of the fauna, but only appears at night when the tide is out. In the daytime they remain burrowed under the sand, as they do when the tide is high. These *Nerita polita* characteristically live in the zone just below the more visible population of *Nerita plicata* on these shores. With a thick calcareous operculum, the *Nerita polita* are apparently not subject to the deprivations of the carnivorous *Cronia* snails, even though they live in the same shore line zone.

On the sand beaches of these lagoon shores may be seen the burrows and mound of the Pacific ghost crab *Ocyrodes ceratophthalma* Pallas. In the daytime they remain burrowed down to the moist sand layer, but at night when the tide is out, they are the most active and most conspicuous animals along the sand beaches. On those lagoon shores along which beach conglomerate rock is exposed, a brown rock-crab *Geograpsus crinipes* Dana is characteristic. Along with it may be found lesser numbers of the rather ubiquitous red-spotted shore (rock) crab *Grapsus tenuicrustatus* Herbst, and other smaller rock-crabs such as *Grapsus longitarsus* Dana, and *Pseuodocinus eystrus* Milne-Edwards.

The sub-marginal land zone at and just above the high tide line is the habitat of a few individuals of the common whitish shore line littorinid snail *Meleraphe occinea* Gmelin, the tiny golden snail *Syncera lucida* Pease, and a considerable and very characteristic population of ellobid or salt-marsh snails. This habitat is particularly well developed (and filled with snails) along these lagoon shores of coral gravel and rocks where there is more or less accumulation of drift material from the lagoon. In the absence of any salt marshes on such atolls as Raroia, these "salt-marsh" snails live in their other known type of habitat, that is under rocks, cobbles, or gravel along the salt water shores. These ellobid snails feed on the decaying plant materials of the drift zone, or on the algae on these coral rocks, or both. They can survive under this apparently barren coral gravel, under the full heat of the sun, without shade, because of the insulation from the tropic sun afforded them by the numerous gravel and air (interspace) layers. In the daytime they remain at or on or partly buried in the sand level 4 to 8 inches below the sun-heated
top layer of gravel on the beach slope, or just about at the crest of the beach ridge, if that is not too high above the normal high tide line. These most primitive land snails, the allobiids, are limited to the sub-marginal or shore-line zones of the land by their life-history requirements, according to the latest information. The eggs, and the pelagic young larval stage of an American species have been recently discovered. Proof of the required pelagic stage in the life-history, which is probable for many members of the family, logically explains why this primitive type of pulmonate (lung-breathing) land snail has not been able to fill other land habitats, and at the same time furnishes a possible explanation for the extremely wide geographic distribution of some of the species that belong to this group. The three largest of these allobiids from Raroia, Melampus luteus Quoy & Gaimard, Melampus violus Lesson, and Pira fasciata Deshayes, are known to be living over a vast geographic range in the Indopacific region, all the way from the South African (Natal) coast or from Mauritius, eastward to the Tuamotu Islands and Easter Island. In addition, there are smaller species belonging to other genera, Allochroa conica Pfease, Laemodonta morax Dohrn, Pedipes species, and Microrhalia lucida Pfease, living at Raroia under the rocks and coral gravel of the lagoon shores. Many or all of these species may be living together in the same spot. Also found here is another species, a smaller Pira, namely Pira muropnata Gould, whose ecological habit has hitherto kept it in the category of misunderstood and doubtful species. The Raroia studies have resulted in the re-discovery of this species, which seems to be restricted to the Tuamotu Island region, and with the finding of large populations, the ecology is clarified. Pira muropnata apparently lives at all times under the coral gravel pieces along these steeply sloping lagoon shores. It does not normally leave these covered interspaces under the gravel even at night, when all its relatives come forth and wander all over the top surface of the rocks or gravel, as far as necessary to feed on the drift material. The species Allochroa conica and Laemodonta morax seem to prefer larger blocks of coral rock along the shore line for their habitat. The Laemodonta is sometimes inordinately abundant in the small pits or pockets on the underside of such larger coral rocks, just below the normal high tide line, along with another type of snail, the widespread Planaxis zonatus A. Adams. Two small species of crabs, Pseudograpsus alasus Stimpson, and Cyclograpsus longipes Stimpson, are living in the same habitat under the coral gravel and cobbles, where the Melampus and Pira are so abundant.

The fauna of the leeward islands of the atoll is essentially a repetition of that of the windward islands of Raroia, with a few modifications. These leeward islands are usually more evenly level and sandier, hence the large land-crab "Papaka Tupa" Cardisoma carnifex Herbst is much less conspicuous. In its place the conspicuous Crustacean land fauna consists of large land hermit-crabs. The commonest species here is the large red-clawed species Coenobita perlatus Milne-Edwards. Less common is the purple-clawed, more active species Coenobita brevimanus Dana, and a second rougher, purple-clawed form Coenobita rugosus Milne-Edwards. All three of these land hermit-crab species utilize the shells of Turbo seostus Gmelin and Turbo errabrostomus Linnaeus for their protection, as adults. Of all the common shells at Raroia and many other similar atolls, only these species of Turbo have shells large enough and heavy enough to last very long for these large land hermit-crabs to keep indefinitely as protective shells. The large coconut crab Birgus latro Linnaeus is present, but rare at Raroia, simply because the Polynesian natives eat every individual they find,
and there is no opportunity for the accumulation of a population of any size on any of these inhabited atolls. Also present on the leeward islands is a true land-crab Geograpsus grayi Milne-Edwards, seen principally on the leaf covered forest floor of the groves of Guettarda and other trees.

The small lizards (skinks) Enota cyanura and Ablepharus poecilopleurus are less evident around native habitations than they are on the uninhabited windward islands of Raroia. There is a small species of gecko that is more or less abundant in and on the walls of every native house or hut. This smaller gecko Lepidodactylus lugubris seems to thrive around the native habitations, laying in wait even on the ceilings, or in the thatch of the temporary coconut-harvesting huts, for the numerous flies. The larger gecko present at Raroia Gehyra oceanica is only seen commonly at night on the under side of the leaves on the coconut trees. Because of the present location of the native habitations on the leeward islands, and the greater activity in all the major coconut groves of burning all the coconut and other detritus off the limestone soil, the normal fauna of the land is very much reduced on most of the leeward islands. This is particularly true of the normal inhabitants of the leafmold such as the land snails, and the earthworms. Both the species of rats present on Raroia are most uncommon around the native village. The villagers' cats and dogs, which are mostly allowed to forage for themselves, serve to keep the population of rats at a minimum and under cover (strictly nocturnal) on every inhabited island.

The sandy oceanic soil line of such leeward islands at Raroia as Ngarumaa, is barren of living mollusks, but highly productive of drift shells. Here may be found samples of almost all the species living on the outer or oceanic shore and/or reef, including a number of deeper water inhabiting species never seen alive at Raroia. Locally the sand slope may change to a rampart of coral gravel or coral cobbles. Without any major shelter, this sand slope is traversed nocturnally by hermit-crabs, but in the daytime shows no animal activity. Seaward of the sand slope is a more or less level, but rather rough rock flat, known by the Polynesian natives as the "Pakokota". The only characteristic inhabitant of these rock flats is the littorinid small Melarhaphe coccinea Gmelin. These snails are active only in the high humidity at night, and during and after rains, apparently feeding on the algae that grow in and on the surface of the "Pakokota" rock. These snails, pinkish white in color, are conspicuous in the daytime resting with the aperture sealed against the leaden gray rock, either in the crevices, or on the top surfaces of these flats. They are not reached in this habitat by normal salt spray, living as they do 25 to 50 yards or more shoreward of the normal high tide line of water on this rocky shore.

The actual shore line may be characterized by the presence of the common red-spotted shore-crab Grapsus tenuicrustatus Herbst. Tectarius grandinatus Gmelin is locally abundant on the higher rocks of this shore line, a couple of feet above the normal high tide line, but obviously in the upper spray zone. Mostly below all the Tectarius, but sometimes a little overlapping, is the population of the common Nerita plicata Linnaeus, just above the high tide line. The carnivorous snails Cronia carinca Wood and Thais hippocastaneum Linneaus are here in moderate numbers in the zone at just about the mean or ordinary high tide line and a little below. Locally, and particularly on the higher blocks of coral rock cast up by storm action and standing on the reef near shore, the
Tectarius and Morula plicata may be conspicuous. In addition on these blocks, there is a pulmonate sea-slug Orchidium species, and a green-colored half-shelled tectibranch sea-slug Smeragdinella calyculata Broderip & Sowerby, living in the upper intertidal zone, just at or a little below the high tide line. It is not clear what predator or ecological condition would allow these two sea-slug species to be locally abundant on these reef blocks standing isolated offshore on the reef flat, and at the same time prevent their occurrence or survival on the shoreline rocks of the same tidal zonation, just a few yards away. There did not seem to be any readily observable ecological difference to explain the restriction of the sea-slug species to these isolated rocks. Locally abundant here also is a small species of shore-crab Grapsus longicaudus Dana, at the edge of the water at low tide.

The molluscan fauna of the eroded reef flats, sometimes more deeply pooled near the shoreline, is the most easily collected, and the largest in number of common species of all those studied at Haroa. Here may be found locally in abundance several small species of Cerithium, with Pusia nodosa Swainson and other Pusia species (which probably feed on these small Ceriths), the small mitrid Imlifearia punctata Swainson, Strombus maculatus Sowerby, and Modulus tectum Gmelin. The most common and characteristic species of this inner zone of the oceanic or outer reef on the leeward side of Haroa are Vasum armatum Broderip, the small lettered mitre shell Mitra litnarea Linnaeus, the black rock-snail Morula granulata Duclos, a whitish rock snail with purple mouth Morula uva Roding, and the little red-flammulate cone, Conus sponsalis Hwass.

In many places the Vasum armatum seemed to be all of a more or less uniform size, but small for the species; in other places on the reef flats, there were two sizes evident in the population, the commoner small size, and a large size almost twice the dimensions. Evidently we are here dealing with a species that with two size groups in the total population at one time, must have a growth of at least two years to reach full size. Some of the largest and hence oldest of the Vasum shells exhibited abandoned scars of formerly attached horses'-hoof shells Sabia conica Schumacher of large (adult) size, to corroborate the idea that the Vasum had lived longer than a whole generation (at least one years brood) of the Sabia snails. Uncommon, but characteristic here are the carnivorous frog-shells Bursa granularia Roding, the toad-shell Bursa bufonim Gmelin, and the small white frog-shell Bursa producta Pease. The first two of these are widespread in the Indopacific, while the third, Bursa producta is only known from the eastern atolls, from the Gilberts to the Tuamotu Islands. Also present locally in abundance are the Hebrew cone Conus ebreaus Linnaeus, the Chaldean cone Conus chaldeus Roding, the flesh-colored Conus miliaris Hwass, and the darker flammulated Conus coronalis Roding. The Hebrew and Chaldean cones, both named because of the resemblance of the markings on their shells to ancient writings, have often been considered as varieties of one species. Their presence here in one habitat in considerable numbers, of all sizes and ages, living together without any intergrades whatsoever, gives us biological proof that these two are distinct species. By the same proof, we know that the two others, Conus miliaris and Conus coronalis, although often confused, are absolutely separate and distinct species.
Under the larger coral rocks in this zone may be found the beautiful but dangerous (poison) Conus reticulifor Menke, the tiny speckled Maculotriton digitalis Reeve, the small pink Columbella pallida Deshayes, small black-spotted white ark shells Arca maculata Sowerby, and an occasional individual of the large horse's-hoof cowry Cypraea (Pereiobulus) muritiana Linnaeus, along with numbers of very young hermit-crabs of various species in many kinds of tiny snail shells. Under every such rock, the black poison sea urchins Diadema setosum Leske take refuge in the daytime, moving out at sundown to feed. Living on some of these Diadema individuals is a small commensal species of crangonid shrimp. Also found characteristically under these rocks is a long black sea cucumber that remains always partly under the rocks, but stretches out a considerable distance to feed. Another species, the largest and most conspicuous animal in the open and evident in the daytime in this zone is the common black sea cucumber, usually at least partly covered with sand grains. These common black sea cucumbers may be as abundant as 15 or 20 to the square metre over the rock surface where it is coated with a thin film of foraminiferal sand.

Because of their more rapid and wider ranging movements, the crabs of the outer reef are more difficult to localize into narrow or restricted zones, so that their exact or complete ecology is not necessarily well indicated by the collection of a few specimens. However, the following several species of crabs were definitely recorded from the inshore, more pooled area of the leeward outer reef at Raroia. These included Cryptodromia canaliculata Stimpson, Dymene spinosa Rathbun, Miciopeidies angustifrons Milne-Edwards, Thalamita plicata Stimpson, Carupa laeviuscula Heller, Actaea superciliaris Odhner, Chlorodopsis areolata Milne-Edwards, Cyamo deplanatus Milne-Edwards, Euphyia sebana Shaw & Nodder, Lophozoovymus superbus Dana, Lybia tessellata Latreille, Lydia smulipes Milne-Edwards, Xanthias lemarckii Milne-Edwards, and Pachygrapsus plicatus Milne-Edwards (common also on the reef blocks). Also here are the red-fuzzy-legged hermit-crabs Aniculus aniculus Herbst, and Clibanarius cornellinus Milne-Edwards, the brilliant blue-legged hermit-crabs Calcinus elegans Milne-Edwards, the ordinary appearing white-legged hermit-crabs Calcinus laevimanus Randall, Calcinus lebens Randall, Calcinus neurati Forest, and the feathery appearing red-banded shrimp Stenopus hispidus Oliver. One individual of the red-eyed rock-crab Euphia sebana Shaw & Nodder was seen in the act of feeding. When collected it was in the act of crushing the shell of a small cone Conus sponges lis Hwass in its crushing claw, and starting to eat the animal. At just about dusk, this crab was active on the exposed inshore reef flat, out of water at low tide.

The middle zone of this oceanic reef is thickly dotted with small coral growths, under which the many black poison sea urchins Diadema setosum Leske take refuge diurnally. On some of these sea urchins may be found a small commensal, a species of crangonid shrimp. The "squilla" (Stomatopod Crustacean) Gonodactylus chilagro platsoma Wood-Nason, is characteristic of the zone, but was never seen in abundance at Raroia. In and under these corals are commonly found money cowries Cypraea (Monetaria) moneta Linnaeus (of large size), the snake's-head cowry Cypraea (Ravitrone) cpoutserpentis Linnaeus, the whitish-tan colored sand cowry Cypraea (Fonda) schilderorum Iredale, the cones Conus lividus Hwass and Conus miles Linnaeus, and less commonly, the large Turbo argyrostromus Linnaeus. Also found here, but not commonly, were the tiny spotted cowry Cypraea (Naria) irrorata Gray, and the small blue-tipped, red-speckled starfish Linckia multiforma Lamarck. Many of the individuals of Linckia collected
here were in the act of regeneration of parts, some even regenerating the other four (tiny) new arms (and the body disc ?) from what was apparently only one ray or arm. Not common, but only found in this zone at Raroia is the round, short-spined sea urchin that covers itself with pieces of algae or other debris (Tripneutes gratilla Linnaeus).

Living in the coral rock formed at the base of certain of these corals (Acropora spp.) is the characteristic white coral-boring snail Magilopsis lamarckii Deshayes. These snails live in a flask-shaped cavity in the coral similar to the boring of certain coral-boring clams such as Lithophaga with the head of the snail directed toward the small opening to the exterior, and the spire downward in the widest part of the chamber. In some of these Magilopsis borings were found some small commensal clams; one of the clams Barclayia incerta Deshayes living alongside the living Magilopsis lamarckii snail in the boring, in each observed instance of this commensalism. It is interesting to note here that the snail and the clam of this commensal pair were both originally described from the same locality (Reunion Island) in the Indian Ocean by Deshayes. The discovery of the true commensal relation of the two species at Raroia Atoll indicates that this commensal clam is also present all the way across the range of the boring snail; in other words, all the way from Reunion Island thousands of miles eastward at least as far as Raroia Atoll, in the Tuamotu Islands.

Living in "nests" or depressions on the surface near the base of some of these corals is the uncommon but very characteristic coral-snail Coraliophila violaceaKiener. This species holds its eggs in capsules under the shell of the female until they hatch, and the pelagic young swim away just as is known in the case of the hipponicid snails (Sabia conica) at Raroia. In a similar fashion, the eggs of the coral-boring Magilopsis lamarckii are held in capsules in the boring chamber until they hatch, and the pelagic young swim away to find a new host coral in which to start their boring. Also living on the bases of corals here is the second type of coral-snail Guoyula monodonta Blainville.

In the patches of the middle of the outer reef that are almost devoid of coral, there is a more or less wide expanse of rock pavement, over which sifts a very thin film of Foraminiferous sand. Locally abundant on these pavement areas, but most inconspicuous because of their camouflage coating of small coralline algal (Coniolithon) growths and foram sand the same as the pavement, is the golden-mouthed rock-snail Drupa grossularia Roding. What is probably an undescribed species of boneiid worm was seen here at Raroia, but never chiseled out of the rock and collected. This appeared as a thin ribbon like a nemeretan worm, but in the shape of a capital T with the ribbon about two or three millimetres wide, and the T outstretched about 4 by 6 inches, with the base of the T disappearing into a hole in the pavement about three millimetres in diameter. In a cavity beneath the hole is the large sac-like body of the boneiid worm, which is protected by the hard rock of the pavement.

Along some of the outflow areas of the narrower parts of the leeward outer reef at Raroia, the outer edge of the reef is lacking any definite algal ridge, so that the "pavement" may simply end with the beginning of the outer slope or buttress zone. On such flat pavement areas, near but not actually on the outer reef edge, may be found patches of "soft corals". In some spots locally abundant, these are not true soft corals, but are colonial zoanthid anemones,
which are retracted and appear like sandy grit-filled patches of dirty grey-white paraffin or candle drippings about an inch thick, when they are exposed out of water at each low tide interval. What may be the rarest animal in point of numbers, that is, least abundant in individuals at Raroia, was found here. It is a species of Baccalauraea, a symbiotic barnacle that lives inside the colonial zonothid anemone. This symbiotic barnacle is without external appendages, and is so much reduced from the normal appearance of a barnacle, as to be difficult to place in any animal group, on the basis of visible characters. Its general shape is similar to that of the old greek discus, with a symmetrical helicoid spiral ridge on each face. The two sides or faces, and the helicoid ridges are right and left hand mirror images of each other.

In the boring sea urchin and/or Amphiroa algal zone, the reef is perforated with the burrows of the small boring urchins Echinometra mathaei Blainville and Echinometra mathaei oblonga Blainville. These borings, about two inches in diameter, and four to six inches deep, sometimes simple, but more often branched or irregularly Y or U shaped, furnish shelter for a number of other animals besides the subcylindrical urchins, which travel up and down (sideways) in these short burrows. They usually stay near the bottom of the boring when the tide is low, but always come right up to the surface end of the burrow when the first water of the incoming tide reaches them. Living on some of these boring urchins is a small commensal species of crangonid shrimp. Most of the other animals found here in these borings are simply taking shelter there until the next night's period of activity. Only seen at night, or more abundant out on the surface of the reef in this zone at night are the spotted cowry Cypraea (Arabica) depressa Gray, a few species of medium sized mitre shells Mitra spp., and another spotted cowry Cypraea (Arabica) histrio Gmelin. This last, the histrio cowry, has a blackish smudge on the base of the much higher arched shell, and is much more rare at Raroia than is its close relative depressa. Also found here but rarely is the widespread and elsewhere common tiger cowry Cypraea (Cypraea) tigris Linnaeus. Several very colorful sea-slugs (Nudibranchs) are characteristic of this part of the reef. These include at least two species of the genus Glossodoris; one about two inches long with red ring-spots on a blue-black general color, very similar to, but probably distinct from Glossodoris ransoni Pruvot-Fol recently described from Hikueru Atoll, 100 miles southward of Raroia Atoll, and another of the same size, but of an opaque milk-white color all over. One species of crab of medium size, rough surfaced, and of the same color in general as the pinkish purple Porolithon growths of algae, is especially characteristic of the boring sea urchin zone of this leeward outer reef at Raroia. This species of crab Daira perlata Herbet was seen only in or around these borings. With both the color and surface texture resemblance to the coralline algal rock, they were less commonly noticed than many species that were much less abundant, but much more easily visible in the same habitat.

As mentioned before, the crab fauna of the outer reef is harder to correlate into narrow zonation than are some of the slower moving molluscan species. The "outer reef", that is the general outer half of this reef along the lee side of Raroia, is the hunting ground of the natives for night-time fish spearing, and for the gathering of many species of crabs they use for food, whenever the tide is out. The edible species taken here by the natives, with
the aid of torches in the early days, but now with the aid of kerosene or gasoline lanterns, include the swimming crab Charybdis erythrodytaea Lamarck, the xanthid crabs Atergatopsis simatus Adams & White, Caprella convexus Forskal, Caprella maculata Linnaeus, Eteosa (Eetides) splendidus Rathbun, Juxanathan tetraceros Heller, Lachnoris talitesis DeMan, Zasimus aeneus Linnaeus, and the plagusian crabs Pachon abbreviatum Dana, and Placastra species Dana, the shovel-nosed lobster Parribacus antarcticus Lund, and the spiny lobster Penulirus penicillatus Olivier. A small species of goose barnacle was found here, commensal on the mouth appendages of the shovel-nosed lobster Parribacus antarcticus Lund.

The top of the algal ridge is the characteristic habitat of Patella stellalaefonis Reeve, which lives here in little sockets on the surface. When the ridge is exposed at low tide, each of these limpets is discernible only by the outline of its shell, the surface of the shell and the rock around it both being covered by the pinkish algal ridge. The limpets must be pried out of their individual homing positions or sockets. If they move around much they apparently return or "home" at each low tide to the same socket or pit which exactly outlines the shell. Also most characteristic here, resting in any large crevices available, is the large, heavy-shelled white cat's-eye shell Turbo setosus Gmelin. On every large Turbo shell are numbers of the hippocid snail Sabia conica Schumacher which grows into sockets it erodes on the Turbo shells near the aperture. Apparently these small snails which seem to be scavengers, feeding on the scraps or droppings of the Turbo, have a shorter life span than does the Turbo. The oldest Turbo shells show full adult size scars of Sabia animals that have lived, died and dropped off, and in these old scars are small Sabia of the next generation living. Three spiny species of rock-snails, Drupa spp., are found here. Drupa ricinus Linnaeus, white-mouthed, may be found in small numbers scattered clear across the reef from the shore outward, but seems most abundant at the outer reef edge. Drupa elegans Broderip & Sowerby, white-mouthed with a bright red line ringing the aperture of adults, is less common, but restricted in habitat to the outer reef edge. These studies at Raroia proved elegans to be a separate species rather than a color form of ricinus, with young and adults of both species readily distinguishable. The purple-mouthed species Drupa morum Röding is typically restricted to the region of the algal ridge at Raroia, just as was observed for this species on Bikini and other atolls in the northern Marshall Islands. Actually the largest and most conspicuous animal of the algal ridge zone is the purple slate-pencil sea urchin, Heterocentrotus trigonarius Lamarck. Also present, but much less common at Raroia is a second, more reddish species Heterocentrotus mamillatus Linnaeus. Commonly present on the slate-pencil urchins is a small species of crangonid shrimp, which is also purplish in color, matching the general color of the urchins on which it is commensal. Much more rarely found at Raroia is the parasitic snail Stylifer species, which attaches itself to the oral side of these slate-pencil sea urchins.

In certain places, very local and restricted in area on the lee side of Raroia Atoll, are small stretches of what has been called "dead reef". Here the first impression is that the erosional forces are in the ascendancy, with the reef being eroded simply as if it were only rock of inorganic origin, and not actively maintaining itself in balance or increasing, by the growth and the calcareous deposition accomplished by the Porolithon and other calcareous
algae. In such places, the helmet or "pavement-spined" sea urchin Colobocentrotus pedifer Blainville is the conspicuous animal of the reef edge, living in the pockets they hollow out in the reef rock. Complete studies of these areas will undoubtedly show that these are not dead reefs, but areas of the reef where the forces of deposition and erosion are in a different balance, than is the case of the other stretches of reef at Raroia. In fact it is entirely possible that the presence of the helmet urchins Colobocentrotus is one of the factors in the modification of the reef to a different, but yet a true balance, in these areas of so-called "dead reefs".

Along these areas fronted by the helmet urchins on the reef, it seems as if there is a slightly different or modified zonation of the molluscan species, a zonation that was particularly evident in the case of the species of Thais present here. In this modified reef zonation, the large pinkish Thais armigera Link was near the reef edge; Thais intermedius Koenor was in the middle zone or pot-hole area; and the commonest Thais hippocastaneum Linnaeus was in the shoreward zone, without any apparent overlapping of these Thais populations under these conditions. Over the commoner type of reef with the algal ridge on the leeward side of Raroia, the Thais species were not so markedly set off in discreet or separate zones. In addition, the Thais tuberosa Röding was also present in the middle section of the reef flats, while the small narrow pink species Thais affinis Reeve was locally common on the middle and the shoreward areas of the reef, overlapping and mixed with the Thais hippocastaneum population near but not at the shore line. These Thais specimens from Raroia demonstrate that, contrary to the opinion of Pease, the large pink armigera and the small narrow pink affinis are completely distinct and separate species. Young of armigera and adults of affinis, of identical dimensions, are readily separated on the basis of the large knobby spines on the periphery of the whorl; in armigera there are two equally prominent, in affinis only one, just above the periphery is of major prominence.

Not evident on the surface, but very characteristic of the area of the Porolithon, and often living under the surface level of the reef, on the sides or on the under side of the small rounded "heads" or lumps of the Porolithon growth, are such species as the horse's-hoof snails Hipponix (Antig Bosnia) foliacea Quoy & Gaimard, Hipponix (Cochlear) barbata Sowerby, and the small trochid snails Stomatia spp., and Genes rooseae Pease. The habitat of these hipponicid snails is completely different from that of the similar, but generically distinct Sabia conica Schumacher, which at Raroia and elsewhere on the atolls is restricted to a (commensal ?) habitat on larger snail shells. Drupa cistata Lamarck, the brown chestnut-burr rock-snail is characteristic of the lowest normal low tide level on the outer slope of the algal ridge, always in reach of the surf. Only found on this outer slope also was a small red chiton, the only member of its group seen at Raroia. Also recorded from the coralline algal ridge of the outer reef, or from the reef margin just beyond, are the crabs Actaea caviipes Dana, Actaea rufopunctata Milne-Edwards, Carpielodes rugatus Milne-Edwards; the fuzzy-red-legged hermit-crab Aniculus aniculus Herbst, and the smaller hermit-crab with the brilliant blue-banded legs Calcinus elegans Milne-Edwards.
From the surge-channels in the buttress zone just beyond the algal ridge, two species of shrimp were taken, that apparently make this their home. These species, *Rhynchocinetes hiatti* Holthuis, and *Brachyceras blanquiculatus* Lucas, were not seen in other habitats at Raroia.

The buttress zone of the reef and the coral shelf, outside of the edge of the surface reef, with up to 10 meters of water over its outer slopes, are undoubtedly the normal habitats of many of the species of mollusks that are recorded (as shells) but that have never been seen alive at Raroia. Most conspicuous among this group are the small but very beautiful abalone shell *Paddlea blusherrimus* Gmelin, the umbrella-limpet *Cheilea aequstris* Linnaeus, the rare endemic *Drupa speciosa* Dunker which was only found as a hermit-crab shell, and the handsome spotted cylindrical cowry *Cypraea* (Arabica) *scurra* Gmelin. It seems probable that the little abalone and the *Cheilea* are living somewhere on the outermost algal slopes in the buttress zone.

The *scurra* cowry was more abundant in the shoreline drift on the lee side of Raroia Atoll than at any other place personally visited in the Pacific. It must be common and characteristic of the offshore coral shelf of the atoll, living under and around the many and varied coral growths of this zone.

Only seen rarely at Raroia, undoubtedly cast up over the atoll rim by storms, were a few shells of the medium sized scaly giant clam *Tridacna nova Roding*. It must also be living only on these outer slopes of the atoll. Lack of sufficient time, and the extreme reluctance of the Raroian natives to dive here in the known presence of all the dangerous sharks of the region, prevented the study or even the collection of living specimens of mollusks or other invertebrates from this outermost zone of the atoll ring.