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ABSTRACT 

Phenelic clustering, the farming of hierarchical nonoverlapping groups strictly according to degree 
of similarity, has serious shcrrtcomings as it is commonly used in biology. When used as a method for 
estimatingphylogeny, phenetic clustering rests on a questionable assumption of correspondence between 
similarity and recency of common ancestry. This compromises its ability to reconstruct the correct 
branching sequence when rates of evolutionary divergence are unequal among lineages, as well as 
causing it to obscure rate differences even when the branching sequence is reconstructed correctly. 
When used as a method for analysing patterns of geographic variation and genetic continuity among 
populations, phenetic clustering rests on a questionable assumption of correspondence between similar- 
ity and degree of genetic continuity. This compromises its ability to identify genetically continuous 
units when their component populations are differentiated, and combined with its sensitivity to uneven 
geographic sampling it can cause the method to yield misleading results if sampling patterns are not 
taken into consideration. Finally, even when used simply as a method for analysing patterns of 
similarity without regard to causal processes, phenetic clustering rests cm a questionable assumption of 
nested hierarchical structure. This compromises its ability to represent similarity relationships accurately 
when those relationships exhibit a significant nonhierarchical component. For all of the common 
biological applications of phenetic clustering, there exist alternative analytical methods that do not 
suffer from the problems associated with phenetic clustering. The problems in question result not from 
the phenetic (.similarity) data themselves, which oflen can be analysed in more appropriate ways, but 
from the phenetic clustering procedure. At least some of the limitations of phenetic clustering as well 
as the advantages of alternative -methods have been known for many years. Advocacy of phenetic 
clustering at the expense of more appropriate methods can be explained as the result of constraints 
imposed by an implicit assumption of nested hierarchies that was part of the taxonomic context within 
which the methods were developed. 
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INTRODUCTION 

PHENETIC CLUSTERING is a class of 
methods used to form groups based on 

similarities among entities. Although the pop- 
ularity of these methods has waned somewhat 
in recent years, they continue to be used for 
diverse purposes by biologists, including anal- 
yses of phylogenetic relationships among spe- 
cies and patterns of variation within them, as 
well as the general representation of similarity 
among diverse kinds of entities, from popula- 
tions, species, and higher taxa to biogeo- 
graphic areas and ecological communities (re- 
viewed by Sneath and Sokal 1973; Clifford and 
Stephenson 1975; see Everitt 1993 for other 
applications). There are, however, problems 
that impose serious limitations on the use of 
phenetic clustering•both as applied to spe- 
cific biological questions and in the general 
analysis of similarity patterns. Here we criti- 
cally review the use of phenetic clustering in 
the specific biological applications of phylog- 
eny reconstruction and analyses of variation 
among potentially conspecific populations, as 
well as in the general analysis of similarity. In 
addition to pointing out problems with phe- 
netic clustering, we call attention to more ap- 
propriate methods of analysis that either al- 
ready exist or currently are being developed. 
Finally, by examining the historical and disci- 
plinary context within which phenetic cluster- 
ing gained its popularity, we attempt to explain 
why this class of methods became popular de- 
spite an early awareness of its shortcomings. 

BASIC TERMS AND PRINCIPLES 

Cain and Harrison (1960) distinguished be- 
tween phenetic taxonomic arrangements based 
on overall similarity (including both pheno- 
typic and genetic components) SLndphyleticar- 
rangements based on evolutionary relation- 
ships. They have been followed by numerous 
subsequent authors in equating phenetic af- 
finity (relationship) with overall similarity. A 
multitude of methods have been developed 
for analysing phenetic relationships, most of 
which fit into one or the other of two major 
categories. The units of analysis, whether indi- 
vidual organisms or groups of organisms (at 
any hierarchical level), are termed operational 
taxonomic units or OTUs (Sokal and Sneath 
1963). Ordination methods array OTUs in a 

continuous hyperspace whose dimensions are 
defined by the characters of the OTUs; in con- 
trast, clustering methods assign OTUs to 
groups (Sneath and Sokal 1973; Clifford and 
Stephenson 1975; Dunn and Everitt 1982). 
Methods based on graph theory (e.g., Kruskal 
1956; Prim 1957) can be used to connect 
OTUs in character space, combining elements 
of both clustering and ordination. 

Cluster analysis oti^mHy referred to a method 
that produced partly overlapping groups 
(Tryon 1939; cited by Michener and Sokal 
1957; Sokal and Michener 1958), and some- 
times the term still is applied to partly overlap- 
ping and nonhierarchical methods (Sneath 
and Sokal 1973). Nevertheless, in biology, 
clustering effectively has become synonymous 
with methods that produce hierarchical non- 
overlapping groups. Such groups are either 
nested (one included entirely within another) 
or mutually exclusive (have no members in com- 
mon). Hierarchical nonoverlapping cluster- 
ing methods include methods known as single 
linkage, complete linkage, and average linkage 
clustering. Among biologists, by far the most 
popular phenetic clustering method is a mem- 
ber of the class of average linkage clustering 
methods, the unweighted pair-group method us- 
ing arithmetic averages or UPGMA (Sokal 1986). 

Phenetic clustering is often described as a 
two-step process (reviewed by Jardine and Sib- 
son 1971; Sneath and Sokal 1973; Clifford and 
Stephenson 1975; Hartigan 1975; Dunn and 
Everitt 1982; Romesburg 1984; Everitt 1993). 
After initial data collection, overall similarity 
is first estimated over a set of characters by 
means of a coefficient of resemblance or similarity 
coefficient, which assigns a value to each pair of 
OTUs (for example, the value of the coeffi- 
cient known as the mean character difference 
is calculated by determining the absolute val- 
ues of the differences between the two OTUs 
for each character, summing those values over 
all characters, and then dividing by the total 
number of characters). We will follow Sneath 
and Sokal (1973) in using these terms to refer 
both to coefficients that increase with increas- 
ing similarity and to those that increase with 
increasing dissimilarity or distance. After cal- 
culating similarity values for all pairs of OTUs, 
a matrix of such values is assembled and sub- 
jected to a clustering algorithm, which forms 
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clusters or groups of similar OTUs according 
to some mathematical criterion. Although raw 
data commonly are converted to similarity' val- 
ues, sometimes raw data are collected directly 
as similarities (e.g., quantitative immunologi- 
cal techniques and DNA-DNA hybridization). 
Furthermore, the problems discussed in the 
present article apply to the group-forming 
process rather than the data on which it is 
used. For these reasons, we distinguish be- 
tween phenetic (similarity) data and phenetic clus- 
tering methods. 

The results of phenetic clustering (hierar- 
chical nonoverlapping groups) can be repre- 
sented in a variety of ways (reviewed by Sneath 
and Sokal 1973), but they are most commonly 
represented as rooted, diverging trees. Most 
subsequent authors have followed the termi- 
nology of Mayr (1965) and Camin and Sokal 
(1965), who distinguished between pheno- 
grams, tree-like branching diagrams repre- 
senting phenetic relationships, and phylograms 
(including dadograms and phylogenetic trees), 
which also take a tree-like form but represent 
evolutionary relationships. Although our re- 
view will focus on average linkage clustering 
methods, particularly the UPGMA, most of 
our conclusions apply to other hierarchical 
nonoverlapping phenetic clustering methods 
and the diagrams, branching or otherwise, de- 
rived from them. 

PHENETIC CLUSTERING AND 

PHYTOGENY RECONSTRUCTION 

Phenetic clustering is commonly used as a 
method for estimating or reconstructing phy- 
logeny (e.g., Colless 1970; Prager and Wilson 
1978; Tateno et al. 1982; Nei et al. 1983; Nei 
1987; Sourdis and Krimbas 1987; Saitou and 
Nei 1987; Felsenstein 1988; Swofford and 
Olsen 1990). Although this application of 
clustering has declined in recent years, it has 
nonetheless persisted, particularly in molecu- 
lar systematics. Among the various problems 
with phenetic clustering, its limitations in esti- 
mating phylogeny are relatively well known. In 
particular, problems caused by rate variations 
among lineages have been discussed by several 
authors (Michener and Sokal 1957; Sokal and 
Sneath 1963; Jardine et al. 1969; Kirsch 1969; 
Colless 1970; Farris 1971, 1972; Moore 1971; 
Sneath and Sokal 1973; Felsenstein 1982a; So- 

kal 1983a; Sober 1988), and can be summa- 
rized as follows. 

In order for phenetic clustering to yield ac- 
curate reconstructions of phylogeny, the de- 
gree of similarit)' among OTUs must corre- 
spond with their recency of common ancestry. 
For contemporary OTUs, this condition im- 
plies that the similarity data being analysed 
must have been generated by roughly uniform 
rates of evolutionary divergence among their 
lineages (so that the similarities themselves 
are approximately ultrametric). If this implicit 
assumption is violated, then phenetic cluster- 
ing may give erroneous results; in other words, 
the branching pattern of the phenogram may 
not correspond with the branching pattern of 
phylogenetic divergence. 

The problem sometimes has been stated in 
terms of alternative interpretations of the re- 
mote clustering of an OTU in a phenogram, 
referred to as the "pregroup-exgroup prob- 
lem" (Michener and Sokal 1957; Sokal and 
Sneath 1963). Attachment of an OTU outside 
of a cluster of OTUs can result from two very 
different evolutionary possibilities. On the one 
hand, the OTU in question may be a pregroup 
derivative, the terminus of a lineage that di- 
verged from the lineages of the cluster before 
they diverged from one another. In this case, 
the remote position of the OTU in the pheno- 
gram accurately reflects its phylogenetic posi- 
tion. Alternatively, the OTU in question may 
be an exgroup, the terminus of a highly modi- 
ñed lineage descended from ancestors within 
the cluster. In this case, the remote position 
of the OTU in the phenogram misrepresents 
its phylogenetic position. A high degree of 
modiñcation in one of the OTUs stemming 
from a particular common ancestor implies an 
increase in the rate of evolution in its lineage. 
Therefore, remote clustering of an exgroup 
OTU from its close phylogenetic relatives, and 
the erroneous conclusions that would be 
reached by interpreting the phenogram as a 
phylogenetic tree, are attributable to variation 
in rates of evolution among lineages. 

Colless (1970) pointed out that absolute 
constancy of evolutionary rates is not neces- 
sary for phenetic clustering to give accurate 
estimates of phylogeny. Minor variations should 
not cause problems. Furthermore, even a sub- 
stantial rate increase or decrease within a sin- 
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gle lineage can be offset by a later change in 
the opposite direction, and a rate increase or 
decrease in one member of a pair of sister lin- 
eages can be offset by a similar change in the 
other member of the pair. In general, rate vari- 
ations should not lead to erroneous conclu- 
sions so long as the total amount of evolution- 
ary change between OTUs stemming from a 
particular common ancestor does not exceed 
that between any of those OTUs and other 
OTUs sharing only more remote common an- 
cestors with them. 

Variation in evolutionary rates is a well- 
known phenomenon. It has been demon- 
strated repeatedly even in molecular data (see 
Moritz and HiUis 1990; Li 1993; and refer- 
ences therein), notwithstanding the existence 
of a controversial proposition that molecular 
sequence evolution is related directly to abso- 
lute time (e.g., Zuckerkandl and Pauling 
1962; Wilson et al. 1977, 1987; Jukes 1987; Li 
1993). The accuracy of phenetic clustering as 
a means of estimating phylogeny under differ- 
ent kinds and amounts of rate variation has 
been investigated in simulation studies (e.g., 
Tateno et al. 1982; Fiala and Sokal 1985; 
Sourdis and Krimbas 1987; Rohlf et al. 1990; Jin 
and Nei 1991; DeBry 1992; Kim et al. 1993; 
Huelsenbeck and Hillis 1993; Huelsenbeck 
1995), which confirm the sensitivity of phe- 
netic clustering to variation in evolutionary 
rates among lineages. Nevertheless, the ques- 
tions remain as to whether rate variations that 
violate the required conditions exist in real 
evolutionary lineages and how they are to be 
detected in practice. 

Potential problems often can be detected 
using information in similarity values. One 
method, the relative rate test (Sarich and Wil- 
son 1967a,b; Wilson et al. 1977), uses these 
values in the context of a minor assumption 
about phylogeny to detect rate variation in the 
ingroup (the group of OTUs under study). 
One or more outgroups (taxa for which there 
is evidence of divergence prior to the most re- 
cent common ancestor of the ingroup OTUs) 
are first identified; similarity values are then 
determined for comparisons between the out- 
group (s) and each of the ingroup OTUs. If 
rates of evolution have been more or less con- 
stant, then the values for all such comparisons 
should be roughly equivalent. On the other 

hand, variations in evolutionary rates should 
be reflected in the comparisons: rapidly evolv- 
ing lineages should exhibit relatively low simi- 
larity to the outgroup, and slowly evolving lin- 
eages should exhibit relatively high similarity. 
Although such comparisons will usually reveal 
some variation in rates, certain results indicate 
potential problems. If an OTU that clusters 
remotely in a phenetic analysis also exhibits 
relatively high rates of divergence, there is rea- 
son to suspect that phenetic clustering may be 
reconstructing its phylogenetic relationships 
incorrectly. 

Michener and Sokal (1957) discussed a con- 
ceptually related method for detecting poten- 
tially problematic rate variations that evaluates 
the original similarity values in the context of 
the pregroup-exgroup problem. The pregroup 
versus exgroup status of an OTU bearing an 
isolated position relative to a cluster of OTUs 
maybe evident in the original similarity values 
for comparisons between the isolated OTU 
and the various members of the cluster. Given 
that the OTUs within the cluster have evolved 
at roughly similar rates, these similarity values 
should exhibit different patterns depending 
on the phylogenetic relationships of the iso- 
lated OTU. If the isolated OTU represents a 
lineage that diverged early, then it should ex- 
hibit more or less equivalent amounts of simi- 
larity to all members of the cluster. On the 
other hand, if the isolated OTU represents a 
highly divergent lineage derived from within 
the cluster, then despite its relatively low simi- 
larit)' to all members of the cluster, it should be 
more similar to some of them than to others. 
Some variation in these comparisons is inevita- 
ble, and there is no straightforward test for 
establishing significance. Nevertheless, the re- 
sults of alternative tree reconstruction meth- 
ods (see below) can reveal potential problems. 
If the remotely clustering OTU exhibits its 
greatest similarity to the same OTU or OTUs 
to which alternative methods indicate that it is 
most closely related, there is reason to suspect 
that phenetic clustering may be reconstruct- 
ing its phylogenetic relationships incorrectly. 

A combination of the two methods dis- 
cussed above can be used to test alternative 
reconstructions of phylogeny, such as those 
resulting from the use of different analytical 
methods (including clustering). Alternative 
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Ph Ua Cg Co Ho 
Ph ~ 0.56 0.56 0.56 1.03 

U> 0.56 • 0.56 0.11 0.69 
Ca 0.56 0.56 ~ 0.21 0.85 
Co 0.56 0.14 0.21 • 0.11 
Ho t.03 0.69 0.85 0.11 • 

I I I 
i 
s 

i 
I 

(a) (b) (c) 

FIGURE 1. AN EXAMPLE IN WHICH VARIATION IN RATES OF EVOLUTION APPARENTLY CAUSES PHENETIC 
CLUSTERING TO YIELD AN INCORRECT PHYLOGENETIC TREE (AFTER DE QUEIROZ 1989,1992). 

(a) Genetic distances (coefficient of Nei 1972) between four ingroup OTUs (Um = Urna, Ca = 
Callisaurus, Co = Cophosaunis, Ho = Holbrookia) and one outgroup (Ph = Phrynosoma) based on data 
collected by Adest (1978) with the omission of 2 loci that were not scored in a second outgroup. (b) 
Ingroup phenogram based on UPGMA clustering of allozyme data converted to genetic distances, (c) 
Phylogeny suggested by neighborjoining and parsimony analyses of allozyme data, parsimony analysis 
of morphological and behavioral characters, and patterns of genetic distance (relative rate tests and 
ingroup comparisons). The discrepancy is attributable to an increased rate of evolutionary divergence 
in the Holbrookia lineage. See text for details. 

trees may yield different predictions concern- 
ing relative amounts of similarity for particu- 
lar pairs of OTUs. These alternative hypothe- 
ses can then be evaluated by comparing the 
predictions derived from them with the ob- 
served similarity values. In short, the family of 
methods described above is useful not only for 
assessing variation in amounts of divergence 
among lineages but also for choosing among 
competing phylogenetic hypotheses. Although 
at least some of the methods have been known 
for a long time, they have not been used to full 
advantage. The following example serves to il- 
lustrate the practical use of the methods, as 
well as the existence of significant rate varia- 
tion among lineages in real data, that is, varia- 
tion of sufficient magnitude to cause prob- 
lems for phenetic clustering as a method for 
estimating phylogeny. 

Patterns of allozyme variation among spe- 
cies within a clade of lizards were studied by 
Adest (1978) and de Queiroz (1989, 1992). 
When converted to genetic distances (Figure 
la) and analysed using UPGMA clustering, 
the alíele frequency data yielded a phenogram 

in which one taxon, Holbrookia, was positioned 
outside of a cluster formed by all other mem- 
bers of the clade (Adest 1978; de Queiroz 
1989) (Figure lb). Comparisons with out- 
group OTUs revealed a greater amount of di- 
vergence for the remotely positioned taxon 
than for the other ingroup taxa (de Queiroz 
1992) (Figure la), suggesting that Holbrookia 
may be an exgroup. This conclusion is sup- 
ported by the results of parsimony and neigh- 
borjoining analyses of the same allozyme data 
as well as the results of parsimony analysis of 
morphological and behavioral characters (de 
Queiroz 1989,1992), all of which indicate that 
Holbrookia is the highly divergent sister group 
of Cophosaurus (Figure Ic). Further compari- 
sons involving the genetic distances between 
various pairs of ingroup OTUs support a close 
phylogenetic relationship between Holbrookia 
and Cophosaurus. Despite the relatively great 
distances between representatives of the diver- 
gent Holbrookia lineage and all other ingroup 
OTUs, the former exhibit smaller genetic dis- 
tances to Cophosaurus than to the other in- 
group OTUs (Figure la). In short, the genetic 
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similarity data themselves imply that Holbroo- 
kia represents a highly divergent lineage that 
shares a relatively recent common ancestor 
with Cophosaurus (Figure Ic). This conclusion 
contradicts the tree resulting from phenetic 
clustering and illustrates that variation in 
amounts of divergence among real lineages 
can be sufficiently great to violate the assump- 
tions necessary for phenetic clustering to esti- 
mate phylogeny correctiy. 

Amounts of rate variation among lineages 
are expected to differ from one clade to an- 
other. If so, phenetic clustering may recover 
the correct phylogeny in some study groups 
even if it does not in others. Nevertheless, the 
existence of a single case demonstrating 
amounts of variation sufficient to cause prob- 
lems for phenetic clustering implies that un- 
critical use of the method is not justified. At 
the very least, one should test for potentially 
problematical rate variations using one or 
more of the procedures described above. Al- 
ternatively, one can use methods of phylogeny 
reconstruction that do not rest on assump- 
tions of rate uniformity. 

Several such alternative methods have been 
developed (reviewed by Felsenstein 1988; Swof- 
ford and Olsen 1990). One of the simplest 
takes the phenogram as a starting point and 
then corrects for rate variations, which are de- 
tected by comparison of the original similarity 
values among pairs of OTUs in the context 
of the phenogram (Li 1981). The neighbor- 
joining method (Saitou and Nei 1987; Studier 
and Keppler 1988) also corrects the original 
similarity values for unequal amounts of diver- 
gence among lineages. It and several other dis- 
tance matrix methods (e.g.. Fitch and Margol- 
iash 1967; Farris 1972) fit the original distances 
to the branches of an additive tree, and (un- 
like phenetic clustering) permit branches of 
equal temporal duration to differ in length. 
Some of these methods are algorithms that 
yield a single tree for a given distance matrix, 
while others choose among alternative trees 
based on an optimality criterion, the most 
common of which minimize the difference be- 
tween the observed distances and those im- 
plied by the fitted branch lengths (e.g., Fitch 
and Margoliash 1967; Cavalli-Sforza and Ed- 
wards 1967; Farris 1972; Prager and Wilson 
1978; Swofford 1981). Rate uniformity is not 

assumed, but these methods assign length to 
terminal branches wherever possible (Swof- 
ford and Maddison 1987). 

Other methods are based on parsimony, 
that is, minimizing the amount of evolutionary 
change required by the data (e.g., Edwards 
and Cavalli-Sforza 1964; Camin and Sokal 
1965; Farris 1970,1972; Farris etal. 1970; Swof- 
ford and Berlocher 1987), or compatibility, 
that is, maximizing the number of congruent 
characters (e.g., LeQuesne 1969, 1972, 1974; 
Estabrook et al. 1976a,b). Neither parsimony 
nor compatibility assume rate uniformity, but 
both can yield incorrect trees when long 
branches in a tree are separated by short ones, 
a situation that can result from certain pat- 
terns of rate inequality among lineages (Fel- 
senstein 1978; Hendy and Penny 1989). Maxi- 
mum likelihood methods (e.g., Edwards and 
Cavalli-Sforza 1964; Cavalli-Sforza and Ed- 
wards 1967; Felsenstein 1973, 1979) require 
an evolutionary model, which can be formu- 
lated specifically to include or to exclude as- 
sumptions of rate uniformity. Methods based 
on invariants (reviewed by Penny et al. 1992) 
use the data to estimate properties of the evo- 
lutionary process that generated them, includ- 
ing variation in rates. Some of these methods 
have been developed specifically to solve the 
problem of phylogeny reconstruction under 
unequal rates (Lake 1987a,b) and the at- 
traction of long branches (Hendy and Penny 
1989). 

All of these methods have their own limita- 
tions (reviewed by Felsenstein 1982a; Swof- 
ford and Olson 1990; Penny et al. 1992), but 
the results of simulation studies indicate that 
most perform better than phenetic clustering, 
particularly when rates are variable among lin- 
eages (Tateno et al. 1982; Sourdis and Krim- 
bas 1987; Rohlf et al. 1990; Jin and Nei 1991; 
DeBry 1992; Kim etal. 1993; Huelsenbeckand 
Hillis 1993; Huelsenbeck 1995). This fact is 
presumably related to an important respect in 
which most alternative phylogenetic methods 
differ from phenetic clustering. Whether they 
use character or similarity/distance data, most 
alternative methods analyse the data as 
changes along the branches of phylogenetic 
trees. For character data, transformations 
from one state to another are assigned to the 
various branches of the tree in order to ac- 
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count for the states present at the branch 
ends. For distance data, the distances between 
taxa at the branch ends are partitioned among 
the branches connecting them. In both cases, 
the branches of the trees have lengths that rep- 
resent amounts of evolutionary change. Such 
methods thus conform with a general phylo- 
genetic branching model, or what O'Hara 
(1988) calls "tree thinking." In contrast, phe- 
netic clustering does not directly analyse simi- 
larity data as having been produced in the con- 
text of a branching phylogeny, but instead 
forms hierarchical nonoverlapping clusters 
strictly on the basis of similarity. These clusters 
need not be represented as trees, and when 
they are, the lengths of the branches indicate 
(stricüy speaking) not amounts of evolution- 
ary change but only the level of similarity at 
which certain OTUs form clusters. Because 
clusters are formed without regard for how the 
similarities may have been produced evolu- 
tionarily, interpretation of the branch lengths 
(clustering levels) as amounts of evolutionary 
change carries with it an implicit and dubious 
assumption of uniform rates. Given the exis- 
tence of alternative methods based on a more 
appropriate theoretical context, and whose 
performance is generally less sensitive to rate 
variation among lineages, there seems to be 
little reason for the continued use of phenetic 
clustering as a method for estimating phyloge- 
netic relationships. 

PHENETIC CLUSTERING AND STUDIES OF 

INTRASPECIFIC VARIATION 

Phenetic clustering is also used to analyse 
relationships among potentially conspecific 
populations, with frequent application to the 
issues of geographic variation and genetic 
continuity, and consequentiy, of species limits 
(e.g., Highton 1989). In contrast with its use 
in phylogeny reconstruction, clustering is still 
one of the most popular methods in such stud- 
ies, but its limitations in this area are less well 
known. However, just as in the case of phylog- 
eny reconstruction, there are serious limita- 
tions to the use of phenetic clustering for 
analysing geographic variation and genetic 
continuity. The two problems are closely anal- 
ogous. As a method of phylogeny reconstruc- 
tion, the accuracy of clustering by similarity is 
limited because of the potential noncorre- 

spondence between similarity and recency of 
common ancestry. Likewise, as a method for 
analysing species limits, the usefulness of phe- 
netic clustering is limited because of the po- 
tential noncorrespondence between similar- 
ity and degree of genetic continuity. 

The problem has often been stated in terms 
of the nonconformity of relationships among 
populations to a general nested hierarchical 
pattern. For example, both the degree of ge- 
netic continuity in the form of gene flow 
among populations and the patterns of phe- 
notypic and genetic similarity resulting from it 
are unlikely to form nested hierarchies except 
under unusual circumstances (e.g., Felsenstein 
1982b). These kinds of relationships may not 
even exhibit discrete clusters, and individual 
phenotypic and genotypic characters (whether 
ancestral, derived, or both) may characterize 
overlapping groups of organisms or popula- 
tions, rather than nested or mutually exclusive 
ones (e.g., Sokal 1983b; for an analogous con- 
clusion concerning biogeographical analyses 
see Hengeveld 1990). 

In the case of relationships that do not intrin- 
sically possess a nested hierarchical structure, 
the use of phenetic clustering and other ana- 
lytical methods (e.g., cladistic analysis) that 
are constrained to yield results in the form of 
nested hierarchies is problematical. Because 
these methods will almost inevitably produce a 
nested hierarchy of groups (Sneath and Sokal 
1973:252; Dunn and Everitt 1982:94), apply- 
ing them to most real data is likely to yield 
results in this form even if the relationships of 
interest are not intrinsically hierarchical. For 
this reason, several authors have attempted to 
analyse intraspecific relationships using ordi- 
nation methods, including principal compo- 
nent and principal coordinate analysis (e.g., 
Menozzi et al. 1978; Rendine et al. 1986; Ma- 
jumder 1988; Sanchez-Mazas and Langaney 
1988) and multidimensional scaling (Baker 
and Moeed 1987; Sokal et al. 1987; Derish and 
Sokal 1988; Lessa 1990), all of which summa- 
rize similarity data•genetic or otherwise• 
without imposing a nested hierarchy. 

Ordination methods may be preferable to 
clustering for summarizing nonhierarchical 
patterns of similarity among populations (e.g.. 
Jardine 1969; Sneath and Sokal 1973:367-368; 
Sokal 1983b, 1985; Thorpe 1983; Lessa 1990), 
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FIGURE 2.    EXPECTED RELATIONSHIP BETWEEN GEOGRAPHIC DISTANCE AND GENETIC DISTANCE FOR 
GENETICALLY CONTINUOUS AND DISCONTINUOUS GROUPS OF POPULATIONS UNDER AN ISOLA- 
TION BY DISTANCE MODEL. 

(a) Plot of genetic distance versus geographic distance for populations within a single genetically 
continuous unit with a linear geographic distribution, (b) Plot of genetic distance versus geographic 
distance for populations separated into two units by a genetic discontinuity under a vicariance model; 
each unit has a linear geographic distribution and together the two units are also distributed linearly; 
displacement of the line is proportional to the length of time since genetic isolation. 

but populations presumably do form nonover- 
lapping groups delimited by the presence or 
absence of genetic continuity. Because ordi- 
nation methods do not explicitly produce 
groups, it is still tempting to use clustering 
methods to identify groups. The problem is 
that groups of genetically similar populations 
do not necessarily correspond with groups of 
genetically continuous populations, and this 
can lead to misinterpretations if clustering 
methods are applied uncritically. 

This problem is illustrated by considering 
the expected relationship between the genetic 
similarity of populations and their geographic 
separation in the presence versus absence of 
genetic continuity (Good and Wake 1992) 
(Figure 2). Within a genetically continuous 
group of populations, the closer two popula- 
tions are in space, the more easily alíeles can 
be exchanged between them. Therefore, pro- 
vided that gene flow is sufficiently low to per- 
mit differentiation, and provided that muta- 
tion and migration rates are at equilibrium. 

there should be a positive relationship be- 
tween the genetic dissimilarity exhibited by 
any two populations and the geographic dis- 
tance separating them (Nei 1972), that is, iso- 
lation-by-distance (Wright 1943, 1946, 1969). 
Within such a group, a regression line for all 
pairwise comparisons among the populations 
should have a positive slope and should inter- 
sect the origin (Figure 2a). Under such cir- 
cumstances, relatively great genetic differ- 
ences can develop between geographically 
distant populations within the same geneti- 
cally continuous unit. 

In contrast, populations that are not parts 
of the same genetically continuous unit ex- 
change no alíeles, regardless of their spatial 
relationships. Therefore, the genetic differen- 
tiation of populations in groups separated by 
a genetic discontinuity should be unrelated to 
the geographic distance between them. In 
other words, such populations should diverge 
at the same rate (all else being equal) regard- 
less of whether they are close together or far 
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apart. Provided that there has been sufficient 
time for genetic differentiation since the sepa- 
ration of two such genetic units, a regression 
line for comparisons between populations in 
separate units should fail to pass through the 
origin (Figure 2b). Displacement of the line 
will increase as genetic differences between 
populations in separate units accumulate, but 
it will be slight in the initial stages of diver- 
gence. Under such circumstances, even rela- 
tively small genetic differences may be indica- 
tive of genetic discontinuity if the populations 
in question are sufficientiy close geographi- 
cally. 

The absence of a simple relationship be- 
tween similarity and continuity complicates 
the interpretation of results obtained using 
phenetic clustering, a situation that is further 
complicated by the inevitable discontinuous 
sampling of genetically continuous popula- 
tions. Combined with the strong tendency of 
phenetic clustering to form groups, these facts 
can lead to the formation of groups that are 
artifacts of nonuniform sampling or minor 
sampling errors rather than reflections of in- 
trinsic species organization. Consider a hypo- 
thetical situation (Figure 3) in which the cor- 
relation between geographic and genetic 
distance is perfect, sampling is absolutely reg- 
ular, and estimates of genetic distance are 
without error. In such an ideal case, phenetic 
clustering will not produce any groups (Figure 
3a). However, if populations are sampled in 
such a way that they happen to be located to- 
ward opposite ends of the geographic range 
of the species, phenetic clustering is likely to 
form two primary groups corresponding with 
the geographically separated samples (Figure 
3b). The greater the geographic gap between 
the samples•^which might result solely from 
the vagaries of field collecting•the more dis- 
tinct the groups will appear (Figure 3c). In 
fact, no such division exists in the genética! 
organization of the species; it is an artifact of 
uneven geographic sampling and the inher- 
ent properties of phenetic clustering. Thus, in 
the case of geographically differentiated pop- 
ulations, the existence of phenetic clusters, 
even seemingly distinct ones, is not necessarily 
indicative of intrinsic species organization, 
that is, genetic discontinuity. 

These problems are illustrated by a study of 

geographic variation in the salamander Ambys- 
toma rosaceum in the Sierra Madre Occidental 
of northwestern Mexico (Figure 4a). Shaffer 
(1983) analysed allozyme data for populations 
of A. rosaceum using phenetic clustering (Fig- 
ure 4b) and the method of Fitch and Margoli- 
ash (1967), another method constrained to 
produce results in the form of a tree. Based 
on the results of these analyses, he suggested 
that the populations of A. rosaceum formed 
northern and southern units, with little or no 
gene flow between them. However, the distri- 
bution of sample populations was uneven, and 
the division between the two putative forms 
identified on the basis of phenetic clustering 
(Figure 4b) corresponds with a large geo- 
graphic gap in sampling (Figure 4a). Analys- 
ing these genetic distance data in the context 
of the geographic distances between the vari- 
ous pairs of populations reveals that the appar- 
ent existence of distinct "forms" may be attrib- 
utable solely to the pattern of geographic 
sampling. Given the relationship between 
geographic and genetic distance seen among 
the populations within the northern and 
southern "forms," the level of genetic differen- 
tiation across the wide geographic gap between 
those "forms" corresponds closely with that 
predicted for populations exhibiting isola- 
tion-by-distance within a single genetically 
continuous unit (Figure 4c). 

Several alternatives to clustering have been 
developed to examine the relationship be- 
tween genetic (or any other kind of) variation 
and the geographic dispersion of populations. 
Mantel's (1967) statistical test for comparing 
matrices has been used to compare genetic 
and geographic distances for the same pairs of 
populations (Sokal 1979). Mantel's test might 
be used to distinguish between genetically co- 
hesive sets of populations (among which there 
presumably would be a significant correlation 
between genetic and geographic distance) 
and sets of populations that do not exchange 
genes (among which such a correlation 
should not be significant). Spatial autocorre- 
lation (Cliff and Ord 1973), the correlation 
between values of variables at locations differ- 
ent distances apart, has been used to measure 
nonrandomness in the spatial distributions of 
individual genotypes (e.g., Sokal and Oden 
1978a,b; Sokal 1979; Sokal and Wartenberg 
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1983; Slatkin and Arter 1991; Epperson 1993). 
This method should be able to distinguish be- 
tween genetically cohesive units (a gradual de- 
cline with increasing distance in spatial auto- 
correlation values) and noncohesive units (no 
such trend in correlations). In both Mantel's 
test and spatial autocorrelation, the units (sets 
of populations) would have to be identified by 
some other criterion prior to analysis. 

The method of Gabriel and Sokal (1969) 
attempts to partition a network of connected 
populations into units, which may be either 
mutually exclusive or overlapping. This is a sta- 
tistical method for categorizing sets of popula- 
tions on the basis of (genetic or phenotypic) 
similarity, but it does not take into consider- 
ation causal processes. Populations that ex- 
change genes should be tightly "connected," 
but connections will by no means be limited 
to such populations. An approach termed 
"phylogeography" (Avise et al. 1987) exam- 
ines the phylogeny of alíeles or haplot)^es in 
the context of their geographic distribution. 
Although the sharing of alíeles from separate 
branches in a gene tree by the members of 
two or more geographically delimited sets of 
populations could result either from gene 
flow or from lack of sufficient time for random 
extinction of gene lineages, geographic sepa- 
ration of such alíeles would seem to indicate 
genetic discontinuity, especially if a similar 
geographic pattern occurred in several inde- 
pendently assorting genes (Avise and Ball 
1990; Baum and Shaw 1995). 

Explicit methods have also been developed 

to measure gene flow, most of which assume 
rather than test genetic continuity. Early at- 
tempts to measure gene flow indirectiy were 
based on the frequency of allelic lethals (re- 
viewed by Crow and Temin 1964; Wallace 
1966). Several other methods based on Wright's 
(1951) coefficient of the component of ge- 
netic variation due to population subdivision 
(FST) have been discussed at length (e.g., 
Wright 1978; Weir and Cockerham 1984; Slat- 
kin 1985a, 1987; Nei 1987; Slatkin and Barton 
1989). Other proposed procedures involve 
maximum likelihood methods (Barton et al. 
1983; Wehrhahn and Powell 1987), the analy- 
sis of the distribution of rare alíeles (Slatkin 
1981, 1985b, 1987; Barton and Slatkin 1986), 
and the analysis of coalescence in gene trees 
(Slatkin and Maddison 1989, 1990). 

Although many methods may have diffi- 
culty detecting recent genetic discontinuities 
(Larson et al. 1984), this is a minor problem 
compared with those resulting from the sim- 
ple comparison of populations in terms of 
their genetic similarity, as in phenetic cluster- 
ing. The preceding analysis suggests that such 
comparisons may reveal little about the pres- 
ence or absence and extent of genetic conti- 
nuity. Without considering the geographic 
context of the comparisons, large differences 
cannot necessarily be taken as evidence for ge- 
netic discontinuity, nor can small ones be 
taken as evidence for genetic continuity. It is 
even possible for differences between geo- 
graphically distant populations within a single 
genetically continuous unit to be greater than 

FIGURE 3. CLUSTERS THAT ARE ARTIFACTS OF UNEVEN GEOGRAPHIC SAMPLING RATHER THAN INTRINSIC 
SPECIES ORGANIZATION. 

(a) Genetic distance matrix (above) and UVGMA (V = Variable) phenogram (below) for populations 
sampled at regular intervals from a genetically continuous series of populations in which the correlation 
between geographic and genetic distance is perfect, sampling is absolutely regular, and genetic distances 
are estimated without error; there are seven alternative UPGMA phenograms for the same data, the 
consensus of which has the same topology as the UVGMA phenogram. In this ideal case, the phenogram 
is unresolved, (b) Genetic distance matrix (above) and one of two equivalent UPGMA phenograms 
(below) for the same series of populations with a sampling gap in the middle of the range (population 
C not sampled), (c) Genetic distance matrix (above) and UPGMA phenogram (below) for the same 
series of populations with a larger sampling gap (populations C and D not sampled). Although there 
is no genetic discontinuity within the species, the sampling gap results in an apparent discontinuity in 
the form of distinct clusters in the phenogram. The apparent distinctness of the clusters, indicated by 
the clustering level on the phenogram, is exaggerated by an increase in the size of the sampling gap. 
Note that even with absolutely regular sampling, a less than perfect correlation between geographic and 
genetic distance or errors in the estimation of genetic distance can lead to the production of clusters. 
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those between populations in separate genetic 
units. Consequently, there is little to be gained 
by analysing the data with phenetic clustering. 
In addition to imposing an inappropriate hi- 
erarchical structure on the results, clustering 
is sensitive to uneven sampling and•because 
it does not incorporate geographic informa- 
tion (but see Legendre 1987)•has no direct 
bearing on the question of genetic continuity. 
Other methods, particularly those incorporat- 
ing geographic information, use the informa- 
tion inherent in the pattern of geographic 
sampling (whether even or uneven) and yield 
results that bear directly on the issue of ge- 
netic continuity. 

PHENETIC CLUSTERING AND THE GENERAL 

REPRESENTATION OF SIMILARITY 

The limitations of phenetic clustering both 
as a method for analysing phylogenetic rela- 
tionships and as a method for assessing genetic 
continuit)' among populations might have been 
anticipated; the procedure was borrowed• 
rather than being specifically designed•for 
these applications. Phenetic clustering was de- 
signed, and consequently its results are to be 
strictly interpreted, simply as a method for an- 
alysing or summarizing the similarity relation- 
ships among OTUs under a nested hierarchi- 
cal model (e.g., Michener and Sokal 1957; 
Sokal and Michener 1958; Sneath and Sokal 
1962, 1973; Sokal 1963; Sokal and Sneath 
1963). In many cases•including applications 
in taxonomy, ecology, biogeography, and psy- 
chology•phenetic clustering is used only in 
this general way, that is, as a method for analys- 
ing or summarizing the similarities and differ- 
ences among entities regardless of the specific 
biological processes that may have produced 
them. We will now argue that even in this very 

general application, phenetic clustering has 
serious limitations. 

The examples used to illustrate problems 
with the use of phenetic clustering in studies 
of geographic variation (Figures 3 and 4) dem- 
onstrate that clustering can give misleading in- 
dications of nested hierarchical organization. 
Nevertheless, in those examples the similarity 
data themselves exhibit a nested hierarchical 
component. For example, the phenograms in 
Figures 3b and 3c are not misleading in indi- 
cating that OTUs A and B are more similar to 
one another than either is to OTUs E and F, 
and vice versa. But even if one is concerned 
only with the representation of similarit)? rela- 
tionships as they exist in the data•that is, 
without concern for their cause or interpreta- 
tion•phenetic clustering is a poor choice as 
an analytical method. The reason is that, de- 
spite containing some nested hierarchical 
components, similarity relationships rarely ex- 
hibit a strictly nested hierarchical structure. 
Consequently, these relationships are inevita- 
bly distorted, or at least oversimplified, by 
methods that are constrained to yield results 
in the form of nested hierarchies. 

Relationships exhibiting a strictly nested hi- 
erarchical structure must satisfy two condi- 
tions for statements taking the general form A 
is more closely related to B than it is to C. First, the 
relation must be symmetric with respect to the 
terms A and B, that is, interchanging the terms 
must not alter the truth of the statement. Sec- 
ond, the converse statement concerning the 
relationships of C must specify an equal rela- 
tionship to A and B. If these conditions hold, 
then the relationships can be accurately and 
entirely represented by a hierarchy of nested 
groups. 

Phenetic relationships rarely satisfy either 

FIGURE 4. AN EXAMPLE IN WHICH UNEVEN GEOGRAPHIC SAMPLING APPARENTLY CAUSES PHENETIC 
CLUSTERING TO YIELD MISLEADING IJLSULTS. 

(a) Distribution oí Ambystoma rosaceum populations sampled by Shaffer (1983) in a study of allozyme 
variation (modified from his Figure 1); shaded area represents land above 2,000 m elevation, (b) 
Phenogram resulting from UPGMA analysis of Nei (1972) genetic distances, upon which basis the 
populations were divided into northern (OTUs 1-4) and southern (OTUs 5-7) groups. Notice that the 
division between these two "groups" corresponds with the largest geographic gap in sampling, (c) Plot 
of Nei genetic distance against geographic distance for all pairs of populations; solid circles represent 
pairwise comparisons between populations within each of the two "groups"; open circles represent 
pairwise comparisons between populations in northern versus southern "groups." The data conform 
well to the expectations for a single genetically continuous unit within which there is isolation-by-distance. 
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FIGURE 5.    PHENETIC (SIMILARITY) 

RELATIONSHIPS, ILLUSTRATED AS 
DISTANCES IN TWO DIMENSIONAL 
CHARACTER SPACE, DO NOT CONFORM 
TO THE PATTERN OF A STRICT 
NESTED HIERARCHY. 

See text for explanation. 

of these conditions. Given that A is more simi- 
lar to B than to C, it does not necessarily follow, 
first, that B is more similar to A than to C, or 
second, that A and B are equally similar to C. 
These conclusions should be evident from the 
following example in which dissimilarity is 
conceptualized as a Euclidean distance in a 
character space of two dimensions. Suppose 
that three OTUs are situated in this character 
space such that the shortest paths connecting 
them form a right triangle, with B at the right 
angle and A at the end of the longer leg (Fig- 
ure 5). Although the distance from A to B is 
smaller than that from A to C, the distance 
from B to A is larger than that from B to C. 
Furthermore, although the distance between 
B and C is smaller than that from either B or 
C to A, the distances from B to A and C to A 
are not of equal magnitude. 

That similarity does not exhibit a strictly 
nested hierarchical structure has important 
consequences for its analysis using phenetic 
clustering. Consider once again OTUs distrib- 
uted in a multidimensional character space 
with dissimilarity measured as the distance be- 
tween them. If OTUs are distributed uniformly 
in this phenetic space, no nested hierarchy ex- 
ists. Although groups can be delimited artifi- 
cially to form a nested hierarchy, no such 

structure is inherent in the data. Of course, 
many clustering methods will not yield nested 
clusters when applied to a uniform distribu- 
tion of OTUs. Only one large unresolved clus- 
ter will be recognized, or there will be multiple 
alternative trees (e.g., Hart 1983), the consen- 
sus of which is unresolved. Nevertheless, even 
the slightest departure from uniformit)' will 
change the situation, and even random distri- 
butions of OTUs will result in the formation 
of clusters (Sneath and Sokal 1973:252; Dunn 
and Everitt 1982:94). 

Given that the application of phenetic clus- 
tering methods will almost inevitably yield 
clusters, it is instructive to consider the mean- 
ing of those clusters and their relationship to 
the intrinsic structure of the data. Although 
similarities rarely conform to the pattern of 
a simple nested hierarchy, they often contain 
nested, hierarchical components. That is to 
say, it is often possible to identify some groups 
of OTUs that are nested and mutually exclu- 
sive in terms of similarity. Continuing with the 
previous example (Figure 5), OTUs B and C 
are more similar to one another than either 
is to A, which means that B and C form an 
exclusive group in terms of similarity. And if 
all other OTUs exhibit distances to A, B, and 
C that are greater than 5 units, then group BC 
is nested within another exclusive similarity 
group, ABC. The groups produced by phe- 
netic clustering, however, do not necessarily 
correspond with such exclusive similarity 
groups. Here it is important to distinguish be- 
tween mutually exclusive groups that are in- 
trinsic to the data and those that result from 
applying a particular analytical method. Just 
because groups are mutually exclusive in 
terms of membership as determined by some 
clustering procedure does not mean that they 
are also mutually exclusive in terms of phe- 
netic relationships. As it turns out, several of 
the most popular phenetic clustering meth- 
ods can produce groups that are not mutually 
exclusive in terms of the phenetic relation- 
ships of their member OTUs. 

The production of such groups is not en- 
tirely unexpected, for the clustering proce- 
dures exhibiting this property were not de- 
signed to find exclusive similarity groups. 
Instead, each method forms groups according 
to a specific mathematical criterion and pro- 
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TABLE 1 
Group formation criteria and group properties for three of the most popular classes of clustering methods^ 

Method Clustering Criterion Similarity Properties of Clusters 

Single linkage 
(nearest neighbor, 
minimum method) 

Complete linkage 
(furthest neighbor, 
maximum method) 

Average linkage 
(including UPGMA, 
WPGMA, UPGMC, 
and WPGMC)^ 

Minimum distance between 
most similar members of 
different clusters. 

Minimum distance between 
least similar members of 
different clusters. 

Minimum average distance' 
between members of 
different clusters. 

The degree of similarity between any member of a given 
cluster and the most similar member ofthat cluster (nearest 

neighbor) is greater than or equal to that between any 
member of the cluster and any nonmember OTU. 

The degree of similarity between any member of a given 
cluster and the least similar member of that cluster (farthest 
neighbor) is greater than or equal to that between any 
member of the cluster and the least similar OTU within 
any other cluster. 

The average degree of similarity' between the (two) primary 
subclusters of a given cluster is greater than or equal to 

the average degree of similarity between either of those 
subclusters and any other cluster. 

' An isolated OTU is considered to be the lone member of a cluster. 
^ UPGMA = unweighted pair-group method using arithmetic averages; WPGMA = weighted pair-group method using 
arithmetic averages; UPGMC = unweighted pair-group method using centroids; and WPGMC = weighted pair-group 
method using centroids. 
' Determined either by weighted or unweighted averaging of the similarity values between either the OTUs in the 
different subclusters or their centroids. 

duces groups whose properties reflect its par- 
ticular criterion. The grouping criteria and 
similarity properties of the groups formed by 
several of the best known phenetic clustering 
methods are given in Table 1. Notice that 
none of the group-forming criteria used in 
these methods rules out the possibility of non- 
exclusive clusters, that is, the possibility that 
an OTU within a given cluster is more similar 
to certain OTUs outside of that cluster than 
to other OTUs within the cluster. In single 
linkage clustering, an OTU can be more simi- 
lar to members of another cluster than to all 
but the most similar member of its own cluster. 
In complete linkage clustering, an OTU can 
be more similar to some members of another 
cluster than to the least similar member of its 
own cluster, as long as it is even less similar to 
the least similar member of the other cluster. 
And in average linkage clustering, an OTU 
can be more similar to some members of an- 
other cluster than to some members of its own 
cluster, as long as its average similarity to the 
members of its own cluster is greater than its 
average similarity to the members of the other 
cluster. Thus, all of the methods can produce 
mutually exclusive groups that do not exist in 
the raw similarity data. 

Examples of this phenomenon are given in 

Figures 6 and 7. Ten OTUs were assigned ran- 
domly to cells in a 10 X10 matrix in two-charac- 
ter space (Figure 6a), and the dissimilarities 
for all pairs were calculated using the Euclid- 
ean distance coefficient (Figure 6b). When 
these data were analysed using methods from 
each of the three major classes of clustering 
procedures in Table 1 (Figure 7a-c), in every 
case groups resulted that are not mutually ex- 
clusive in terms of the observed similarities 
(Figure 6). Consider the seven clusters re- 
sulting from application of the UPGMA (Fig- 
ure 7c). Of those seven clusters, four (ABCD, 
ABC, EFGHIJ, and FGHIJ) are not exclusive 
in terms of similarity. For example, OTU C is 
no more similar to OTUs A and D, with which 
it forms cluster ABCD, than it is to OTU G, 
which is not part of that cluster (D = 3.0 for 
all comparisons). OTU E is more similar to B 
(D = 5.7), with which it clusters only at the 
level of all 10 OTUs, than it is to G (D = 6.0), 
with which it forms cluster EFGHIJ. And OTU 
H is less similar to F (D = 5.0) and G (D = 
6.0), with which it forms cluster FGHIJ, than 
to nonmember E (D = 2.8). Distortion of the 
original similarity relationships by clustering 
procedures is a well-known phenomenon, and 
various methods have been developed to sum- 
marize or illustrate the magnitude of distor- 



18 THE QUARTERLY REVIEW OF BIOLOGY 

(a) 

VOLUME 72 

A 

B 
C D 

E F Q 

H 1 J 

(b) 
B H 

ñ • 

B 2.8   

c 3.0 2.2   

D 4.2 5.1 3.0   

E 8.5 5.7 6.7 9.5   

F 6.1 4.1 3.2 5.0 5.0 • 

G 6.0 4.5 3.0 4.2 6.0 1.0    • 
H 8.9 6.3 6.4 8.6 2.8 3.6    4.5 
1 8.5 6.1 5.8 7.8 3.6 2.8    3.6 1.0      
J    8.2    6.0    5.4    7.1     4.5    2.2    2.8    2.0    1.0      

FIGURE 6.    RANDOM DATA USED TO ILLUSTRATE THE DISTORTION OF PHENETIC RELATIONSHIPS BY 
PHENETIC CLUSTERING. 

(a) Ten OTUs (A-J) assigned randomly to cells in two-character space, (b) Euclidean distance matrix 
for OTUs illustrated in (a). 

tion (e.g., Jardine and Sibson 1968b; Hartigan 
1967; Rohlf 1970). Perhaps the best known 
method is that of cophenetic correlations (So- 
kal and Rohlf 1962; Farris 1969). 

Despite these problems, most real data• 
and even randomly generated artificial data• 
contain some mutually exclusive similarity 
groups (e.g., groups BC, FG, and HIJ in Figure 
6), and these groups will often be recognized 
in the results of phenetic clustering (Figure 
7a-c). Furthermore, methods have been de- 
vised that use mutual exclusivity with respect 

to the degree of similarity as their criterion for 
forming clusters (e.g., McQuitty 1963, 1965, 
1967; Jardine et al. 1969) so that groups are 
formed if and only i/"all of their members are 
more similar to one another than to all non- 
member OTUs (Figure 7d). Such methods 
represent only those mutually exclusive simi- 
larity groups intrinsic to the data; in other 
words, they do not impose clusters where clus- 
ters do not exist. 

Nevertheless, even clustering methods that 
form only mutually exclusive similarity groups 
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do not necessarily represent similarity rela- 
tionships well. Various aspects of phenetic re- 
lationships often cannot be captured by a set 
of nested mutually exclusive groups, because 
the members of exclusive similarity groups are 
not necessarily equally similar either to one 
another or to nonmember OTUs. For exam- 
ple, OTUs H, I, andj (Figure 6) form an exclu- 
sive group, but the dendrograms (Figure 7a- 
d) do not capture either the greater similarity 
between J and I than between J and H, or the 
greater similarity between H and E than be- 
tween either I or J and E. Therefore, although 
hierarchical nonoverlapping clusters can be 
used to represent mutually exclusive similarity 
groups, that is, the nested hierarchical compo- 
nent of phenetic relationships, they will often 
fail to represent other aspects of the more 
complex totality of phenetic relationships. 

Thus, in addition to specific problems with 
the use of phenetic clustering in analyses 
of phylogenetic relationships and variation 
among populations, this class of methods is 
not particularly appropriate for analysing phe- 
netic (similarity) relationships themselves. 
Phenetic relationships are too complex to be 
adequately represented by methods limited to 
producing results in the form of hierarchical 
nonoverlapping clusters. These complex rela- 
tionships are more appropriately analysed us- 
ing: clustering methods that permit overlap- 
ping groups (e.g., Jardine and Sibson 1968a,b; 
Cole and Wishart 1970), undirected graphs• 
such as minimum spanning trees (e.g., Krus- 
kal 1956; Prim 1957)•which connect OTUs 
without imposing a hierarchy, or ordination 
methods such as principal components analy- 
sis (e.g., Hotelling 1933; Harman 1976), multi- 
ple factor analysis (e.g., Harman 1960; Rohlf 
and Sokal 1962), and multidimensional scal- 
ing (Sheppard 1962a,b, 1966; Kruskal 1964a,b), 
which array OTUs continuously in multidi- 
mensional character space rather than group- 
ing them into discrete clusters. Graphs and 
ordinations are particularly effective in combi- 
nation (Gower and Ross 1969; Rohlf 1970). 
The existence and sophistication of alterna- 
tive methods leaves little reason for continu- 
ing to use hierarchical nonoverlapping clus- 
tering methods for analysing relationships 
that conform poorly to this kind of structure. 

PHENETIC CLUSTERING IN 

HISTORICAL CONTEXT 

Several of the limitations of phenetic clus- 
tering have been known for a long time. For 
example, problems concerning the use of 
clustering as a method of phylogeny recon- 
struction were discussed in the late 1950s (e.g., 
Michener and Sokal 1957), the distortion of 
similarity relationships was addressed in the 
early 1960s (e.g., Sokal and Rohlf 1962), and 
problems related to the study of intraspecific 
variation were noted by the late 1960s (e.g.. 
Jardine 1969). By the early 1970s, pheneticists 
were clearly aware both that clustering tended 
to yield clusters regardless of the data and that 
other methods often represented similarity re- 
lationships more accurately than did cluster- 
ing (Sneath and Sokal 1973; see below). In this 
light, the widespread use of phenetic cluster- 
ing in biology appears incongruous. On fur- 
ther consideration, however, the situation is 
understandable as the result of a constraint 
imposed by the historical and disciplinary con- 
text within which the methods were devel- 
oped. 

In the biological sciences, phenetic cluster- 
ing methods were developed largely within 
the context of taxonomy•specifically, within 
the context of a taxonomic reform movement 
known as numerical taxonomy or phenetics (for 
early papers see Michener and Sokal 1957; 
Sneath 1957a,b; Cain and Harrison 1958; So- 
kal and Michener 1958; for reviews see Sneath 
1962; Sneath and Sokal 1962, 1973; Sokal and 
Sneath 1963; Sokal 1963, 1986; for historical 
reviews see Hull 1988; Vernon 1988). Al- 
though the participants in this movement 
were interested in the application of quantita- 
tive methods to diverse biological problems, 
including phylogeny reconstruction (e.g., 
Camin and Sokal 1965; Sokal 1983a), shape 
analysis (e.g., Sneath 1967; Rohlf 1990; Rohlf 
and Bookstein 1990), and biostatistics (e.g., 
Sokal and Rohlf 1969, 1981), their interest in 
clustering methods was tied strongly to taxon- 
omy. Phenetics was a reform movement that 
arose in response to a dissatisfaction with the 
subjective and nonquantitative nature of tax- 
onomy as it existed in the late 1950s (see above 
references), and phenetic clustering methods 
were developed by the participants in that 
movement as part of the solution to the per- 
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ceived problem. Because these scientists held 
certain tenets that seem to account for their 
advocacy of phenetic clustering, we will clas- 
sify them as "pheneticists" on that basis. This 
label is used strictly for the purpose of ex- 
plaining a particular phenomenon in the his- 
tory of taxonomy, and is not intended to rep- 
resent the whole character of any scientist's 
contributions or beliefs. 

As a taxonomic movement, phenetics was 
constrained by the traditions of biological tax- 
onomy, in particular, the Linnean conven- 
tions that had been accepted as the basis of 
that discipline for nearly two centuries. Along 
with binomial species names, the most funda- 
mental convention of the Linnean taxonomic 
system is its hierarchy of taxonomic catego- 
ries•^from kingdom to species•used to con- 
vey the relative positions (ranks) of taxa in 
nested hierarchies. By and large, pheneticists 
accepted the taxonomic convention of nested 
hierarchies: 

In order to evaluate the role in biological 
taxonomy of the methods [for measuring 
dissimilarity and for clustering] we must 
first examine the kind of classificatory sys- 
tem which biologists use, and the aims and 
methods of orthodox taxonomy. 

The taxonomic or Linnaean hierarchy is 
an ordinally stratified hierarchic clustering 
(Jardine and Sibson 1971:127). 

The classical tendency in biological sys- 
temaücs has been hierarchic classificaüon 
... we are so obedient to the Linnean sys- 
tem, which requires mutually exclusive and 
hierarchically ordered classes, that the pro- 
cess of classification has become synony- 
mous . . . with a mapping of the diversity of 
nature into the Linnean system (Sneath and 
SokaI1973:200). 

Concerning the underlying basis for the 
nested hierarchy of taxa, the phenetic move- 
ment was characterized by a particular philo- 
sophical position. Despite an interest in phy- 

logeny, pheneticists argued that biological 
taxonomy should not be based on inferred 
phylogenetic relationships but on observed 
similarity, without regard to its cause: 

Abasic attitude of numerical taxonomists 
is the strict separation of phylogenetic spec- 
ulation from taxonomic procedure. Taxo- 
nomic relationships are evaluated purely on 
the basis of the resemblances existing now 
in the material at hand. These phenetic rela- 
tionships do not take into account the ori- 
gin of the resemblance found nor the rate 
at which resemblances may have increased 
or decreased in the past (Sneath and Sokal 
1973:9; emphasis in original). 

Similar statements are widespread in the phe- 
netic literature (e.g., Cain and Harrison 1958; 
Sneath and Sokal 1962; Sokal and Sneath 
1963; Heywood 1964; Sokal 1985,1986). Phe- 
netic relationships were conceptualized as 
overall similarity expressed as a continuous, 
quantitative variable (Sokal and Sneath 1963; 
Jardine and Sibson 1971; Sneath and Sokal 
1973). Thus, 

[p]henetic taxonomy assumes that similar- 
ity can be measured and that nature is not 
continuous, so that mutually most similar 
taxa can be defined and placed into the non- 
overlapping hierarchy (Sokal 1985:735). 

Phenetic clustering methods were largely 
developed within this particular taxonomic 
context. Specifically, they were developed to 
produce nested hierarchies from similarity 
data. Thus, "[t]he most common and conve- 
nient representation of the results of numeri- 
cal taxonomy is by dendrograms" (Sokal and 
Sneath 1963:198), "which have the advantage 
that they are readily interpretable as conven- 
tional taxonomic hierarchies" (Sneath and So- 
kal 1973:260). Similarly: 

For the taxonomist in particular, hierar- 
chical classifications are attractive.... Hier- 
archical nonoverlapping classification pro- 

FiGURE 7. DISTORTION OF PHENETIC RELATIONSHIPS BY PHENETIC CLUSTERING (BASED ON DATA IN 
FIGURE 6). 

(a) Single linkage phenogram, (b) Strict consensus of four equivalent complete linkage phenograms. 
(c) Strict consensus of two equivalent average linkage phenograms produced by the UPGMA. (d) 
Phenogram representing only those clusters that are exclusive (nonoverlapping) in terms of similarity 
relationships. Notice that each of the first three phenograms contains some groups (e.g., ABC) that are 
not exclusive in terms of similarity. All of the phenograms distort the similarity relationships by failing 
to indicate, for example, that C is more similar to G (D = 3.0) than is B (D = 4.5). 



22 THE QUARTERLY REVIEW OF BIOLOGY VOLUME 72 

duces groups, hereinafter termed clusters, 
whose relationships to one another are 
readily expressed in two dimensions, gener- 
ally in the form of a dendrogram (Clifford 
and Stephenson 1975:28; emphasis in orig- 
inal) . 

In order to summarize and make sense 
of the diversity of organisms the taxonomist 
customarily constructs a taxonomic hierar- 
chy in which a taxon occupies a position in 
a nested scheme . . . 

Taxonomy as a quantitative science is 
concerned with the problems of con- 
structing such (usually) hierarchical struc- 
tures . . . (Dunn and Everitt 1982:2-3). 

Because the Linnean system requires that 
taxonomic entities be arranged in a hierar- 
chic nonoverlapping manner, most cluster- 
ing methods used in biological taxonomy 
have been hierarchic, nonoverlapping tech- 
niques (Sokall 986:430). 

Pheneticists were aware of the problems of 
representing similarities with nested hierar- 
chical taxonomies: 

Hierarchical clustering techniques im- 
pose a hierarchical structure on data and we 
need to consider whether this is merited or 
whether it introduces unacceptable distor- 
tions of the original relationships between 
the OTUs . . . (Dunn and Everitt 1982:96). 

[I]t is not necessarily obvious that a hierar- 
chical system is the most faithful representa- 
tion of organic diversity. Continua may exist 
in character space, which would make it dif- 
ficult and rather arbitrary to decide how to 
arrange the taxa hierarchically (Sokal 1985: 
732). 

For other examples see Cain and Harrison 
(1958) and Sneath (1962). They were also aware 
of the advantages of alternative methods: 

The classificatory procedures described 
earlier would all result in the production of 
one or more two-dimensional graphs (den- 
drograms, minimum spanning trees, etc.) 
from a given set of data. In order to achieve 
such simplicity there has been of necessity a 
considerable loss of information. Much of 
this loss would be avoided if the data could 
be looked at in space of several dimensions 
(Clifford and Stephenson 1975:169). 

Such measures as the cophenetic correla- 
tion coefficient (Sokal and Rohlf 1962) and 
other measures of stress have led to the real- 

ization that hierarchic classifications often 
are poor representations of actual phenetic 
relationships found in nature. Far better 
representations are often obtained by sum- 
marizing the data in an ordination of as few 
as three dimensions (Sneath and Sokal 
1973:201) [See also Rohlf 1967, 1968]. 

Nevertheless, the constraints imposed by the 
traditions of the taxonomic context were strong. 
Consequently, pheneticists continued to ad- 
vocate methods that yielded nested, hierarchi- 
cal results. 

The relative merits of hierarchic versus 
nonhierarchic classifications are difficult to 
evaluate. For traditional biological taxon- 
omy, hierarchic classifications are required. 
. . . Nonhierarchic representation is pre- 
ferred when emphasis is placed on a faithful 
representation of the relationships among 
the OTU's rather than on a summarization 
of these relationships (Sneath and Sokal 
1973:206). 

[OJrdination or scaling techniques . .. may 
be very useful for indicating the taxonomic 
structure in a collection of organisms. How- 
ever, they do not lead to an explicit separa- 
tion of the organisms into groups and so 
neither do they produce classifications per 
se. For this the numerical taxonomist turns 
to one of the many available methods of clus- 
ter analysis (Dunn and Everitt 1982:77; em- 
phasis in original). 

Even when experimenting with greater taxo- 
nomic flexibility, pheneticists for the most 
part remained faithful to tradition: 

This conventional arrangement [nonover- 
lapping taxa] has been built into customary 
taxonomic practice . . . when that concept 
is combined with a hierarchic classification 
it gives the familiar nested classifications. 
However . . . these quite frequentiy distort 
the phenetic relationships among OTUs. 
For this reason some workers have pre- 
ferred to relax the criterion of mutual exclu- 
siveness in taxonomy, and prefer to permit 
overlapping in membership at a given rank 
rather than to resort to ordination, the an- 
tithesis of a nested hierarchic classification 
(Sneath and Sokal 1973:207-208). 

For example. Jardine and Sibson (1968a,b; 
see also Michener 1963) experimented with 
methods that permitted overlapping clusters. 
Only a few workers (e.g., DuPraw 1964,1965), 
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went so far as to advocate taxonomies based 
on ordinations, but even these "non-Linnean 
classifications" were seen as supplemental to, 
rather than replacements for, traditional hier- 
archical taxonomies. 

Advocacy of phenetic clustering can thus be 
understood as resulting from a constraint im- 
posed by the traditions of the disciplinary con- 
text within which those methods were devel- 
oped. By the time the phenetic movement 
started, the assumption of a nested hierarchi- 
cal system had become thoroughly entrenched 
in biological taxonomy. As a consequence, no 
taxonomic movement was likely to succeed 
unless it could be accommodated within such 
a framework. According to Jardine (1969:49), 
"[i]t is improbable that non-hierarchic sys- 
tems of classification will be found acceptable 
by biologists," and Sokal (1985:733) noted 
that "proposals for non-Linnaean taxonomies 
... have foundered on the shoals of tradition." 
It is not surprising, therefore, that methods 
producing nested hierarchical results were fa- 
vored by phenetic taxonomists. Although 
nested nonoverlapping clusters were not the 
best means of representing phenetic relation- 
ships, they were critical to the viability of phe- 
netics as a taxonomic movement. 

The perspective developed above not only 
accounts for the advocacy of phenetic clustering 
despite known shortcomings, it also bears on 
the contribution of phenetics to biology in 
general and its fate as a taxonomic movement. 
Phenetics contributed many important analyt- 
ical methods to biology. According to Hull 
(1988:233), "During the past two decades, nu- 
merical techniques have become increasingly 
prominent in systematics. ... In this sense 
'numerical taxonomy' has been extremely 
successful."Forexample, Sokal, a leading phe- 
neticist, was among the first to develop quanti- 
tative phylogenetic methods based on parsi- 
mony (e.g., Camin and Sokal 1965). He 
developed important methods for the study of 
geographic variation (e.g., Sokal 1979), and 
he pioneered the biological application of or- 
dination techniques (e.g., Rohlf and Sokal 
1962), which are now used widely in studies 
where the construction of taxonomies is not 
the primary focus and thus associated con- 
straining assumptions are effectively removed. 
Quantitative methods developed by pheneti- 

cists are also used widely in other biological 
disciplines. Morphometrics, a burgeoning 
field dealing with the analysis of shapes, has at 
least part of its origins in phenetics (Strauss 
1991), and pheneticists made significant con- 
tributions to the field of biostatistics, where 
Sokal and Rohlf s (1969, 1981) Biometry has 
become a standard reference. 

But despite the success of phenetics in the 
areas noted above, as well as its popularity 
within taxonomy during the 1960s and 1970s, 
in the long run, phenetics has not been suc- 
cessful as a taxonomic movement. Hull 
(1988:233) described phenetic taxonomy as 
having "degenerated precipitously," and ac- 
cording to Donoghue (1990:468), "it's been 
dead in the water for some time" (see also Ghi- 
selin 1984). Specifically, the phenetic ap- 
proach has not come to predominate as the 
basis for the comprehensive taxonomic sys- 
tem. SneathandSokal's (1973) NumericalTax- 
onomy, the standard of the phenetic move- 
ment, is devoted mostly to discussions about 
the workings of various analytical methods 
rather than the construction of working taxo- 
nomies. The authors themselves noted that 
much work had been done on methods for 
representing the relationships implied by sim- 
ilarity matrices, less on using those representa- 
tions to establish taxa, and still less on the 
ranking and naming of taxa (Sneath and So- 
kal 1973:259). More importantly, the taxo- 
nomic philosophy advanced by pheneticists, 
with its advocacy of raw similarity and antipa- 
thy toward inferred evolutionary relationships 
as the basis for taxonomy, has been largely re- 
jected (Hull 1988). 

Hull (1988) attempted to explain the failure 
of phenetics in sociological and psychological 
terms: "[Njumerical taxonomists branched 
out too quickly. Before they had succeeded in 
establishing their methods for classification in 
biological systematics, they dissipated their en- 
ergies in applying quantitative techniques in 
too many areas" (p 519). They also offered "a 
plethora of techniques, each with its own 
strengths, each with its own weaknesses ... for 
the practicing systematist, it was immobiliz- 
ing" (pp 519-520). In contrast, Donoghue 
(1990) argued for the importance of ideas in 
determining the success or failure of a move- 
ment. In his view, phenetics failed because sys- 
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tematists really wanted a taxonomy based on 
phylogeny rather than overall similarity. 

Both Hull's and Donoghue's explanations 
have their merits, and they are not necessarily 
mutually exclusive. Our analysis suggests yet 
another explanation•or more properly, an- 
other part of the explanation•for the failure 
of phenetics as a taxonomic movement. Be- 
cause similarity relationships do not strictly 
conform to the pattern of a nested hierarchy, 
attempts to base nested hierarchical taxono- 
mies on similarity will never be entirely satis- 
factory. In short, there is a fundamental in- 
compatibility between a basic premise of 
phenetics and a basic convention of taxon- 
omy. This incompatibility is fundamental to 
explaining the failure of phenetics as a taxo- 
nomic movement in that it ties together the 
explanations of both Hull and Donoghue as 
parts of a single, unified explanation. 

The incompatibility between similarity and 
hierarchical taxonomy explains why phenet- 
ics generated so many methods without being 
able to oner a clear preference for one of them, 
that is, Hull's (1988) primary explanation for 
the failure of phenetics. Ordination methods 
represented similarities more accurately than 
did clustering, but they did not give hierarchi- 
cal results. Standard clustering methods gave 
hierarchical results, but each captured a some- 
what different aspect of the complex pattern 
of phenetic relationships (Rohlf 1970). More- 
over, many of the methods produced clusters 
that were not exclusive similarity groups, but 
methods that produced only exclusive similar- 
ity groups left an "unclassified residue" 
(Sneath and Sokal 1973:223) (see Figure 7d). 
Because of the nonhierarchical component of 
similarity, no method for converting similari- 
ties into traditional taxonomies was entirely 
satisfactory, and in retrospect, the develop- 
ment of such a method would seem to have 
been impossible. 

The difficulty of developing hierarchical 
taxonomic methods based on similarity may 
in turn explain why pheneticists put their en- 
ergies into the development of methods in dif- 
ferent areas, that is, Hull's secondary explana- 
tion for the failure of phenetics. Pheneticists 
presumably did not realize that their taxo- 
nomic efforts were unlikely to succeed, but 
they were clearly aware of problems with the 

methods they had already developed in this 
area (see above), and this may explain why 
they continued to develop new ones. In any 
case, given that pheneticists were experienc- 
ing greater success in other areas, this situa- 
tion presumably would have favored a redirec- 
tion of their efforts. 

Finally, the poor fit of similarity to a nested 
hierarchical model may at least partly explain 
why systematists came to prefer common an- 
cestry as the basis for taxonomy, that is, Don- 
oghue's (1990) explanation for the failure of 
phenetics. In contrast with similarities (in- 
cluding patristic ones), common ancestry rela- 
tionships conform to the model of a strict 
nested hierarchy, and consequenüy, they are 
easily accommodated with nested hierarchical 
taxonomies. Ironically, although pheneticists 
rejected phylogeny as the basis for taxonomy, 
they sometimes justified their assumption of 
nested hierarchical taxonomies by appealing to 
phylogeny (e.g., Sokal and Sneath 1963:171; 
Sneath and Sokal 1973:200). In any case, com- 
patibility with the tradition of nested hierarchi- 
cal taxonomies may be part of the reason for 
the current success of taxonomic approaches 
based on common ancestry (e.g., Hennig 
1966; Eldredge and Cracraft 1980; Wiley 1981; 
Ax 1987). 

In reaching these conclusions, we do not 
wish to advocate the primacy of traditions over 
the goals or functions of taxonomy. Specifi- 
cally, we do not wish to advocate an approach 
based on common ancestry simply because it 
is compatible with a tradition of nested hierar- 
chical taxonomies. Instead, we want to empha- 
size the constraints that traditions exert on 
taxonomy•a discipline steeped in traditions. 
Explicit consideration of the goals and func- 
tions of taxonomy may help to reveal assump- 
tions that have previously been taken for 
granted, along with their accompanying con- 
straints. But regardless of how the assump- 
tions and constraints are revealed, an aware- 
ness of them can provide insights into both the 
usefulness of particular taxonomic methods 
and developments in the history of taxonomy. 
We hope that we have provided examples of 
such insights in the present article, in the first 
case, with regard to the limitations of phenetic 
clustering, and in the second, with regard to 
the endorsement of this family of methods de- 
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spite an awareness of its limitations, whiich is 
itself a key to understanding both the suc- 
cesses and the failures of phenetic taxonomy. 

CONCLUSIONS 

Phenetic clustering exhibits serious draw- 
backs not only in its specific applications to 
phylogeny reconstruction and studies of varia- 
tion among populations but also as a general 
method for analysing patterns of similarity. 
Similarities do not exhibit the stricdy nested 
hierarchical structure that phenetic cluster- 

ing is constrained to yield. Consequenüy, if 
one is interested in analysing patterns of simi- 
larity, then phenetic clustering does not seem 
to be the most appropriate method for analys- 
ing those patterns, and if one is concerned 
with the construction of nested hierarchical 
taxonomies, then similarity does not seem to 
be the most appropriate property upon which 
to base those taxonomies. 

Despite the problems with phenetic cluster- 
ing, similarity data themselves can be very use- 
ful, for there are more appropriate ways of an- 

alysing such data. In phylogenetic studies, 
methods that explicitly analyse similarities as 
the result of evolutionary changes along the 
branches of trees can reconstruct relation- 
ships accurately in cases where phenetic clus- 
tering cannot, and they can reveal asymmetries 

in branch lengths that constitute evidence for 
variation in rates of evolution among lineages, 
a phenomenon that can cause clustering to 
reconstruct the wrong tree. In studies of intra- 
specific variation, methods that analyse simi- 
larities in the context of the geographic rela- 
tionships among populations can reveal 
evidence for the presence or absence of ge- 
netic continuity in situations involving geo- 
graphic differentiation and uneven geo- 
graphic sampling where clustering gives 
misleading results. And in studies of similarity 
for its own sake, methods that are uncon- 
strained by the assumption of a nested hierar- 
chy are able to analyse patterns of similarity 
more faithfully than is phenetic clustering. In 
all of these areas, direct inspection of a similar- 
ity or distance matrix often reveals aspects of 
complex phenetic relationships that are ob- 
scured by clustering. Phenetic clustering is not 
the most effective way to analyse similarity 
data. 
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