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Abstract

The biomass of tropical forests plays an important role in the global carbon cycle, both as a
dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas
undergoing deforestation. However, the absolute magnitude and environmental determi-
nants of tropical forest biomass are still poorly understood. Here, we present a new
synthesis and interpolation of the basal area and aboveground live biomass of old-growth
lowland tropical forests across South America, based on data from 227 forest plots, many
previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors:
basal area and mean wood density. Basal area is strongly affected by local landscape
factors, but is relatively invariant at regional scale in moist tropical forests, and declines
significantly at the dry periphery of the forest zone. Mean wood density is inversely
correlated with forest dynamics, being lower in the dynamic forests of western Amazonia
and high in the slow-growing forests of eastern Amazonia. The combination of these two
factors results in biomass being highest in the moderately seasonal, slow growing forests
of central Amazonia and the Guyanas (up to 350 Mg dry weightha ') and declining to 200-
250 Mg dry weightha ' at the western, southern and eastern margins. Overall, we estimate
the total aboveground live biomass of intact Amazonian rainforests (area 5.76 x 10° km?® in
2000) to be 93 & 23 Pg C, taking into account lianas and small trees. Including dead biomass
and belowground biomass would increase this value by approximately 10% and 21%,
respectively, but the spatial variation of these additional terms still needs to be quantified.
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Introduction

The lowland tropical forests of South America account
for about half of the world’s tropical forest area (FAO,
2001). They are estimated to account for 30% of global
productivity (Roy et al., 2001) and 25% of global biodi-
versity (Groombridge & Jenkins, 2003). They are also
being cleared at rapid rates (Achard et al., 2002), and
are, thus, a major carbon source, equivalent to 5-10% of
fossil fuel emissions in the 1990s (Achard et al., 2004).
Quantifying the amount of carbon stored and cycled in
these forests is clearly important. In addition, there is
accumulating evidence that old-growth tropical forests
may be accelerating in growth (Lewis et al., 2004),
recruitment and mortality (Phillips & Gentry, 1994;
Phillips et al., 2004), increasing in biomass (Malhi &
Grace, 2000; Baker et al., 2004a) and shifting in ecologi-
cal composition (Phillips et al., 2002; Laurance et al.,
2004), but there is little understanding on the con-
straints and determinants of current forest biomass.

The absolute magnitude and spatial variation of
biomass in these forests are poorly quantified. Recent
estimates of forest biomass have come from either
interpolation of plot studies (Houghton ef al., 2001), or
are based on a combination of modelling and remote-
sensing approaches (Houghton et al., 2001; Potter et al.,
2001). Interpolation from site studies is hampered by
the low number of systematically consistent compila-
tions, or by only partial inventories of large trees or
partial geographical coverage, such as RADAMBRASIL
(Brown & Lugo, 1992; Fearnside, 1997). Model studies,
on the other hand, are based on predictions of produc-
tivity, and often incorporate untested assumptions
about the relationship between gross photosynthesis,
wood productivity and total biomass (Malhi et al., in
preparation).

Here, we present a data synthesis and interpolation of
results based on a compilation of biomass and basal
area data across the South American lowland tropical
forests. Many of these site data are previously unpub-
lished, and/or are part of the RAINFOR network (Malhi
et al., 2002) of Neotropical forest plots; other data are
gathered from published or grey literature. We incorpo-
rate data from 226 sites in eight South American coun-
tries, to our knowledge the most spatially extensive
dataset to date on neotropical forest biomass. We also
include data from one well-studied central American
site (Barro Colorado Island, Panama) in the analysis, but
not in the spatial interpolations.

A novel feature that is accounted for in this analysis is
biogeographic variation in mean forest wood density
that is driven by shifts in tree species composition
(Terborgh & Andresen, 1998). Analysing a subset of
the plots presented here (Baker et al., 2004b) found that

spatial variations in wood density play a major role in
determining spatial variations in biomass. The mean
wood density was found to be inversely correlated with
wood productivity, with more dynamic forests having
more light wood species. Moreover, aboveground wood
productivity appears related to soil properties, but not
to climate (Malhi et al., 2004). Our aim here is to assess
how this variation in wood density affects regional
patterns and total estimates of Amazonian forest bio-
mass.

For the study here, we focus on South American
tropical lowland forests. Ninety-five percent of these
forests lie in a contiguous block in the Amazon and
Orinoco basins and Guyana shield and are floristically
interconnected; for convenient shorthand these will be
referred to as “Amazonian forests’. The remaining 5% lie
in small blocks west of the Andes, and in fragments in
eastern Brazil and on the Atlantic coast. We focus solely
on extrapolation of biomass from apparently undis-
turbed old-growth forests. Hence, our extrapolated
maps are estimates of the undisturbed biomass of
Amazonian forests, and we do not try to account for
human impacts such as forest degradation, cryptic
forest impoverishment, which may be occurring at rates
of 10-15000km?a!, and edge effects (Laurance et al.,
1997; Nepstad et al., 1999). Our aim is to understand
how the background biomass of these forests varies
with regional-scale environmental factors, not to quan-
tify human impacts on these forests.

Materials and methods

Field sites, forest cover and climate

The data used in this study are listed in Table Al in
Appendix A, and mapped in Fig. 1. The dataset is a
compilation of published values and unpublished data
compiled by the authors within the RAINFOR project
(Malhi et al, 2002, www.geog.leeds.ac.uk/projects/
rainfor), with the source indicated in Table 1. In total,
there are 227 plots in the dataset, with reasonable
distribution across Amazonia. The largest spatial gaps
in our dataset are Colombia and the southern Brazilian
Amazon. For the majority of sites (open circles in Fig. 1)
only data on basal area were available (in general from
published data). For a subset of sites (filled circles; bold
type in the ‘biomass’ column in Table A1) the above-
ground dry weight live biomass (henceforth ‘AGL
biomass’) was directly estimated within the RAINFOR
project, using individual tree diameter data and taxon-
omy to directly account for wood density and the
size-class distribution of stems (Baker et al., 2004b).
Only trees with diameter at 1.3m (dbh)>10cm were
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Fig. 1 Forest site locations where basal area measurements have been taken in lowland South American tropical forests. Filled circles
indicate sites where the availability of taxonomic data permitted direct calculation of mean wood density; open circles indicate sites
where only information on total basal area was available.

Table 1 Cross-correlation matrix of forest plot basal area against various climatic variables, including the multi-variate ENSO

index
Mean dry Mean monthly Mean monthly Mean ENSO
Basal area season length rainfall temperature monthly solar index
Basal area 1
Mean dry season length —0.25 1
(—0.38)
Mean monthly rainfall 0.28 —0.88 1
(0.38) (~0.88)
Mean monthly temperature —0.01 —0.02 —0.16 1
(-0.01) (0.05) (-0.23)
Mean monthly solar —0.08 0.50 —0.30 —0.49 1
(-0.22) (0.48) (—0.28) (—0.47)
ENSO index -0.21 0.22 -0.23 —0.46 0.51 1
(—0.16) (0.36) (-0.24) (0.05) 0.17)

Figures in normal type are for all forest plot data; figures in bold type in brackets are after removal of 28 outlier plots as described in

the text.
ENSO, El Nino-southern oscillation.
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considered in plot-level estimates of biomass; small
trees and lianas may account for up to a further 10%
of biomass (Phillips et al., 1998; DeWalt & Chave, 2004).
Biomass for these plots was estimated using individual
tree allometric relationships derived from direct sam-
pling in central Amazonia, with additional incorpora-
tion of wood density data for each species; details are
given in Baker ef al. (2004Db).

The approach to estimate biomass applied here tries
to take into account spatial variation in basal area, stem
size distribution and wood density. One factor that is
still not accounted for is spatial variation in allometry
(i.e. the tree height and biomass supported for a given
tree basal area). The data that exist to date (T. Baker,
unpublished data) give no indication of a clear relation-
ship between allometry and environmental factors,
although it would be expected from hydrological con-
siderations (Meinzer et al., 1999; 2001) that tree height
per unit basal area would reduce with increasing dry
season length. As the biomass estimates derived here
apply an allometric relationship derived for the central
Amazon near Manaus, it is likely that tree height and
biomass at the dry margins of Amazonia will be over-
estimated.

We concentrate our analyses and extrapolations on
the continuous lowland tropical rainforest region
centred on the Amazon Basin. The dry limits of ‘rain-
forests’ are rather arbitrary and vary according to
source and climatic dataset applied. Here, we use a
definition of a lowland tropical rainforest as equivalent
to the ‘rainforest’ plus ‘tropical moist forest’ categories
in the FAO Global Forest Resources Assessment 2000
(FAO Forestry Paper 140, data available online at
http:/ /www.fao.org/forestry/fo/fra), and at an eleva-
tion less than 1000 m. The FAO defines tropical forests
as forests with mean temperature in all months over
18°C, with 0-3 dry months (rainforests) or 3-5 dry
months (moist deciduous forest), where dry months
are defined as months where total precipitation in
millimeters is equal to or less than twice the mean
temperature in degree Celsius.'" Some estimates
of tropical forest area also include the ‘tropical dry
forest category’. However, this category frequently
grades into woody savanna regions, and is excluded
from the current analysis. The forest cover map was

Some of the sites presented in Table A1 are estimated to have dry
seasons greater than 5 months. This arises from a mismatch
between the climatology used for the original FAO map and the
climatology we use here — both climatologies are based on sparse
data sets and subject to uncertainty in local details. For simplicity
where retain the use of the two data sets despite the contradictions
at the forest margins.

coarsened to 0.5° resolution to be compatible with the
climate dataset. Our study area included significant
areas outside the Amazon watershed, in particular large
areas of the Orinoco Basin, the Guyana lowlands and
the Brazilian periphery east of the mouth of the Ama-
zon. However, these areas form a phytogeographic
continuum with Amazon lowland rainforest, and
hence, it is reasonable to adopt the shorthand “Amazo-
nia’ to describe this entire lowland tropical forest
region. Other recent maps of forest cover (Achard
et al., 2002; DeFries et al., 2002; Eva et al., 2004) differ
at the margins from the FAO map; hence estimates of
the total biomass of Amazonian rainforests will also
depend on the spatial extent of forests in different
analyses. This topic is not addressed here. For the
definition used here, the total extent of Amazonian
forests is 5.76 x 10°km?.

The climatic and soils variations across the region
were discussed by (Malhi et al., 2004). In summary:

(i) There is a general trend of increasing rainfall and
decreasing seasonality heading towards north-
western Amazonia, but also high rainfall on the
eastern Brazilian and Guyanese coasts;

(ii) The El Nino-Southern Oscillation (ENSO) has great-
est influence in northern Amazonia, and in particu-
lar often leads to episodic droughts in central and
eastern Amazonia. ENSO has little consistent influ-
ence on rainfall in southwestern Amazonia.

(iii) Sunshine is higher but more seasonal at the north-
ern and southern margins of Amazonia, where the
climate shifts towards ‘outer tropical’ and there are
long dry seasons.

(iv) The lowland Amazonian plain consists of low
plateaux dissected by river values, and rises very
gradually in mean elevation from sea level in the
east to 2-300 ma.s.l. in the west. The Brazilian and
Guyanese crystalline shield rise to the north and
south, with typical elevations of 600-1000m, and
the Andes mountain chain bounds Amazonia to
the west.

(v) The most highly weathered soils generally occur in
the eastern Amazonian lowlands (Sombroek, 2000),
intermediate fertilities are generally found on the
crystalline shield regions, and highest fertilities in
the Andean foothills, and on sediment-rich flood-
plains throughout the region. We employ the Co-
chrane map of soils (www.agteca.com) as our basic
soil map. This map does not cover the Guyanas
and some sections of eastern Amazonia; for these
regions we employed the FAO world soils map.
The reclassification of these soil maps into eight
basic soil categories is described in a companion
paper (Malhi et al., in preparation).
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Fig. 2 A flow diagram indicating the analysis pathways presented in this paper. Squares indicate maps, circles indicates table of values

for each plot, shaded squares indicate the end-products: maps of biomass. Details of the analysis pathways are presented in the text.

Analysis methodology

Our approach here, is as follows (letters refer to the flow
diagram in Fig. 2):

(1) interpolate the available plot data on basal area per
hectare (A) to generate maps of the variation of
basal area across South American tropical forests
®B);

(2) examine the relationship between biomass, basal
area and coarse wood productivity for a subset of
plots where these parameters were directly esti-
mated by Baker et al. (2004b) and Malhi et al. (2004);

(3) apply the relationship derived in (2) to two different
maps of wood productivity derived by Malhi et al.
(in preparation) to produce maps of the structural
conversion factor required to convert a basal area
measurement to a biomass estimate (D);

(4) directly overlay the map of basal area (B) with the
map of the conversion factor (D) to produce a map
of biomass (E);

(5) as an alternative approach, use the map of conver-
sion factor (D) to extract the conversion factor for
each plot where only basal area information is
available (F), and thus, derive an estimate of bio-
mass for each plot (G) and interpolate these to arrive
at alternative maps of biomass (H).

Spatial interpolation of the plot data was investigated
using three different approaches: kriging, spline inter-
polation and inverse distance weighting (IDW). Kriging
and spline interpolation approaches performed poorly
because the high variability of biomass between plots at
local scales. Basal area shows considerable local and
landscape scale variability (in contrast to productivity,

© 2006 The Authors

for example, which is dominated by regional-scale
variation: Malhi et al., 2004). Consequently, the least
sophisticated interpolation method (IDW) was found to
be most appropriate, and was applied using the geos-
tatistical analysis tool in ArcMAP (ESRI, Redlands, CA,
USA). For any value of a continuous variable B(x,y)
interpolated between the N neighbouring points (x;, ;)
in the search window(i =1,2,...N), the IDW interpola-
tion at point (x,y) is

I-\i w,‘.B Xi, Yi
B(x,y)22171 N ( y)7
2 im1 Wi

where

w; = [(X —x)+(y — ]/i)z} p/Z.

The power, p, is an adjustable parameter that controls
the rate of decline of the weighting function. For our
purposes the most appropriate setting was p = 1: this
resulted in a smoothed interpolation with a large num-
ber of neighbouring points having some influence, with
only a slow decline in weighting function with distance.

Results
Spatial interpolation of basal area

Our first step is to use the plot measurements of basal
area (A in Fig. 2) to produce a best estimate map of basal
area (B in Fig. 2). An IDW interpolation of all basal area
measurements is shown in Fig. 3a. A feature that stands
out is local ‘bulls-eyes’ driven by individual plots with
unusually high or low values. This contrasts with

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2006.01120.x
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Fig. 3 (a) A simple interpolation of 227 basal area measurements using inverse distance weighting across lowland South American
tropical forests; (b) an interpolation of 199 basal area measurements (28 plots have been removed as ‘outliers’ — details given in the text).
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maps of forest productivity, which are much smoother.
This feature arises because basal area is much more
affected by local landscape features (e.g. local topogra-
phy, or recent natural disturbance) and such local
variations can swamp regional patterns. In addition,
1 ha sample plots may not be large enough to accurately
sample the variance in biomass introduced by large
trees (Chave et al.,, 2003), but may be sufficient for
assessment of wood productivity, as evidenced by the
greater similarity in wood productivity values between
neighbouring plots (Malhi et al., 2004).

As our interest here is to examine broad regional
patterns, we employed a filter to remove locally anom-
alous plots and smooth the data set. The approach
identified clusters of forest plots (of varying sizes) and
local anomalous plots were removed if the value for the
plot fell outside the range (mean value of neigh-
bours + standard deviation of neighbouring values x
threshold), where the threshold was varied between
values of 1.0 and 1.8.

The effect of removing anomalous plots is shown in
Fig. 4. Removing outliers improves the predictive
power of the interpolation (as would be expected), but
with greater data removal there is greater danger of
losing genuine regional variation. We adopted a com-
promise approach of using a search radius of 250 km
and a threshold value of 1.6 for anomaly removal. This
corresponds to an inflection in Fig. 4 which indicates an
optimal compromise between a significant improve-
ment in predictive power and minimum data shedding.
This removes 28 plots (12% of plots; removed plots are
indicated with an asterisk in Table Al), and improves
the cross-validation statistics by 22%. The interpolated
may of basal area with outliers removed is shown in
Fig. 3b. The ‘bulls-eye’ pattern has reduced in intensity,
although not disappeared completely.

The relationship between basal area and climatic
variables was explored by cross-correlation analysis
(Table 1). The cross-correlations were significantly im-
proved by the removal of locally anomalous plots. The
strongest correlation (—0.38) was found to be with dry
season length and/or total annual rainfall (these two
climatic variables were strongly correlated), and this
relationship was explored further.

Figure 5 plots the basal area against dry season
length. There is substantial site-to-site variability, indi-
cating that local landscape controls dominate over
regional trends. There is little evidence of any relation-
ship for moderate seasonality (less than 4 months dry
season), but evidence of a general decline in the basal
area of tropical forests with increasing water stress
for longer dry season lengths. This is to be expected
as root competition for dry season water resources
intensifies, and the ground surface is able to support

© 2006 The Authors
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Fig. 5 Plot measurements of basal area (with 28 local outlier
plots removed) plotted against dry season length. Grey dia-
monds indicate individual plot data, open circles are binned
means, error bars are 95% confidence limits. The polynomial
trend line is fitted through the binned means: y = —0.22x* +
0.50x +29.84 (*=0.93). A polynomial fit through individual
points is almost identical: y = 0.29x* + 1.00x + 28.87 (* = 0.18).

less stem water uptake per unit area (e.g. Meinzer et al.,
1999).

A revised interpolation of basal area with dry season
length factored in (Fig. 6) was conducted by calculation
of a smooth mean basal area field from the basal area—
dry season length relationship in Fig. 5, and then IDW
interpolation and superposition of the residuals of
each data point relative to this mean field. There was
no significant correlation between the residuals and any
other climatic variable. The major difference from Fig. 3

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2006.01120.x
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Fig. 6 An interpolation of forest basal area across lowland South American tropical forests incorporating the relationship with dry
season length described in Fig. 5 (with 28 local outlier plots removed).

is in south-eastern Amazonia, where there is a paucity
of field plots. This extra information gained from in-
corporating dry season length into the model suggests
that the wetter forests extend further into this region
than suggested by direct spatial interpolation of plot
data, and hence, basal area in this region is higher than
expected. Another feature is a reduction of predicted
basal area in the dry region in the central Guyanas,
which is consistent with the available plot data in the
region. We consider this interpolation to be our current
best estimate of the spatial variation of basal area in
Amazonia.

Structural and density factor

Our next step is to relate basal area to biomass. We will
refer to the ratio between aboveground live biomass (of
trees >10 cm dbh) and basal area (i.e. the mean amount
of biomass supported per unit of forest basal area) as
the structural conversion factor (SCF). Baker ef al.,
(2004b) found that variations in wood density and size
class distribution have a significant influence on the
SCF, and that spatial variations in SCF appeared more
important than variations in basal area in determining
the spatial pattern in aboveground biomass. Figure 7
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Fig. 7 The relationship between the structural conversion fac-
tor, SCF (= plot aboveground live biomass/plot basal area) and
aboveground coarse wood productivity for 56 lowland Amazo-
nian forests. Biomass and basal area values are derived from
Baker et al. (2004), productivity values from Malhi et al. (2004).
The least-squares linear fit (black solid line) is y = —0.90x + 13.19,
?=0.48.

demonstrates that the SCF is related to wood produc-
tivity, with more productive forests having lower wood
density. There is, however, some variance that is not
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related to wood density, and is instead influenced by
size-class distribution.

Using the relationship shown in Fig. 7, we mapped
the spatial variation in the SCF (D in Fig. 2) using the
maps of wood productivity generated in Malhi et al. (in
preparation; C in Fig. 2). Two productivity maps were
used: one that was a direct kriging interpolation of the
productivity data, and a second based on a “painting-
by-numbers’ approach (Schimel & Potter, 1995) that
assumed productivity was related to soil type (both
maps are shown in Fig. 8). Details of the extrapolation
of productivity data will be given in Malhi et al. (in
preparation). The SCF varies by about 30%, between 9
and 12MgDW m 2 basal area. Both maps show a simi-
lar broad regional pattern with lower SCF being found
in the more dynamic western Amazonian forests, and
high values in north-east Amazonia. The two maps
differ in smoothness and in detail. If the spatial varia-
bility is predominantly driven by soil prperties (Malhi
et al., 2004), the map suggests that the highest values of
SCF are found in the old, highly weathered oxisols
along the main Amazon valley, and intermediate values
are to be found on the crystalline shield to the north and
south. The soils-based map gives spatial details but the
consistency of the SCF:soil relationship and the local
details of the soils map are still uncertain, so these local
details should be treated as tentative. The calculations
in the rest of this paper will be based in parallel on
both the kriging and soils-based interpolations. The
basal area and SCF show almost no spatial correlation
and can be treated as independent influencing factors
on biomass (the correlation coefficient between plot
values of basal area and kriging-derived SCF was
0.02; between basal area and soils map-derived SCF it
was —0.05).

Maps of biomass

Having derived maps of basal area (B in Fig. 2) and SCF
(D in Fig. 2), our next step was to estimate the SCF and
biomass for each plot (F and G in Fig. 2). Where plot
biomass had been directly derived from the individual
tree data using a consistent protocol as described by
Baker et al. (2004b), this value was preferred. Where
such directly calculated biomass was not available, we
extracted an estimate of SCF for each plot from the
maps in Fig. 8, and multiplied this by the reported basal
area to calculate the plot biomass. These values are
listed in Table ATl.

We then employed three approaches to produce
region-wide maps of biomass:

1. Use the allometric relationship derived for the central
Amazon with no allowance for spatial variation in SCE.

© 2006 The Authors
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2. Directly overlay the maps of basal area (B in Fig. 2)
and the maps of the SCF (with one map each for
the kriged and soil-based interpolations; D in Fig. 2)
to produce a map of biomass (E in Fig. 2).

3. Directly interpolate the derived biomass values for
each site (G in Fig. 2) to produce an alternative map
of biomass (H in Fig. 2). We used the same procedure
and thresholds to remove local anomalies as outlined
for the basal area interpolation above.

The resulting maps of biomass are shown in Fig. 9.
There are significant differences in details between the
kriging-based and soils-based maps, but the overall
patterns are similar. The two different routes to calcu-
lating biomass (E and H in Fig. 2) yield very similar
results, with the exception that H does not factor in the
relationship between basal area and dry season length.
Hence, we consider Fig. 9b and c¢ to be our best
estimates of forest biomass. In general, biomass is
calculated to be highest in central Amazonia and on
the Guyana coast. This represents an optimum combi-
nation of high basal area (related to short dry season
length) and high wood density (related to low produc-
tivity and probably to infertile soils). As we head to
aseasonal northwestern Amazonia, basal area increases
but is offset by the increasing abundance of low wood
density species. Heading towards the dry southern and
northern margins, wood density is moderately high, but
basal area drops off because of limited water availabil-
ity. The coastal areas of Brazil and the Guyanas also
appear to have high biomass, a combination of the high
basal area sustained by oceanic front rainfall, and high
wood density on infertile soils. Comparing the soils-
based map (9¢) with the kriging map (9b), the soils map
suggests that the high wood density zone may extend
further northwest into the infertile soils of lowland
Colombia and Venezuela, and snake east along the
lowland corridor bordering the Amazon river, but the
broad patterns are similar. Overall, regional mean bio-
mass over the forest area of 5.76 x 10°km? varies be-
tween 250 and 350 MgDW ha 'yr '. The mean value
reported by Baker et al. (2004b) was 298 ( =+ 51)
MgDW ha', suggesting that the core dataset used by
Baker et al. (2004b) was well distributed.

The per hectare and total carbon stocks (over area
5.76 x 10°km?) for the lowland Amazonian forests cal-
culated by the different approaches are tabulated in
Table 2. The most apparent feature is that incorporation
of spatial variability in the SCF reduces the estimated
total carbon stocks by about 8% from 92 to 83-86 PgC
(top row vs. bottom two rows). This is because the
default allometric relationships used are based on
studies in the central Amazon near Manaus, a region
shown in Fig. 9 to have among the highest biomass
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Fig. 8 Interpolation of the structural conversion factor across lowland South American tropical forests derived using the linear

relationship presented in Fig. 7 with (a) a map of aboveground coarse wood productivity (AGCWP) interpolated by ordinary kriging,

and (b) a map of AGCWP based on soil categories.
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Fig. 9 Interpolations of biomass of lowland South American tropical forests: (a) calculated by interpolating biomass estimates
generated at each plot (with 25 local anomalous plots removed using a search radius of 250 km) using inverse distance weighting
(=Box H in Fig. 2); (b) calculated by overlaying the best basal area estimate (Fig. 6) with maps of the structure and wood density
function (Fig. 8), using kriged interpolations for both maps (= Box E in Fig. 2); (c) as for (b) but using soils-based interpolations instead
of kriged interpolations.
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values in Amazonia. The particular method of spatial
interpolation used has little effect on estimates of total
biomass: the soils-based interpolations (bottom row)
tend to give a value 2-3% lower because they suggest
that poorly sampled regions of the Amazonian crystal-
line shield may have high fertility and lower wood
density than simple kriging of the existing plot data
would suggest.

The values cited here are for aboveground woody
biomass of all live trees >10cm dbh. To arrive at total
biomass carbon stocks we need to include a number of
extra terms, such as the biomass of trees <10cm dbh,
the biomass of lianas, dead biomass, and belowground
carbon. These extra terms have been estimated for some
forest plot sites, but as their spatial variation is unclear
we do not attempt to map their spatial variability, but
rather include mean values as multiplicative factors to
arrive at estimates of total biomass carbon stocks. To be
consistent with Phillips et al. (1998), we estimate the
biomass of trees less <10 cm to be an additional 6.2%,
based on forest plots in the Manaus region, and the
biomass of lianas to be 3.7% of total aboveground tree
biomass, based on several plots in western Amazonia.
Dead wood biomass has been estimated at a number of
sites and ranges between 6.4 + 1.6 MgCha ' over 10ha
in southern Peru (Baker et al., submitted) and 25-
30 MgChaf1 at two sites in eastern Amazonia (Keller
et al., 2004; Rice et al., 2004), and Houghton et al. (2001)
report a mean value of 10% of live biomass, the value
that is applied here. Belowground biomass has been
measured at only a few sites, and Houghton et al. (2001)
report a mean value of 21% (range 13-26%) of above-
ground live tree biomass; that value is applied here.
Applying these approximate multiplicative factors uni-
formly to our previous estimate of aboveground live
woody biomass (83-86 Pg C), we estimate that the total
aboveground live woody biomass is about 91-95Pg C,
the total aboveground woody biomass is about 100-
104 Pg C, and the total woody biomass is 121-126 Pg C.

Discussion

Using data from 227 forest plots, we have explored the
spatial variation of aboveground live biomass in Ama-
zonia, with particular emphasis on accounting for var-
iations in basal area and wood density. Although there
is substantial site-to-site variability, we were able to
determine the somewhat opposing trends in these two
factors, both of which are important determinants of
AGLB. Wood density tends to peak in the slow growing
forests on infertile soils in eastern lowland Amazonia
and the Guyanas, and is lowest in the much more
dynamic forests of western Amazonia. Basal area gen-
erally declines with increasing dry season length, for

regions with a 4 months or longer dry season. The
superposition of these two factors indicates that bio-
mass is highest in central Amazonia and the Guyanas,
and is about 15% lower in the more dynamic west, and
lowest in the dry fringes to the south and north.

The estimates of aboveground live biomass were
based on two parameters: basal area and structural
conversion factor. These two parameters seem fairly
independent at regional scales — basal area is related
to hydraulic considerations and hence to dry season
length, whereas the structural conversion factor is re-
lated to productivity and hence probably to soil fertility
(Malhi et al., 2004). The combination of these two factors
leads to maximum biomass is wet regions with low
wood productivities and infertile soils, such as central
Amazonia and the Guyana coast, and lower biomass
in dynamic western Amazonia, and the dry southern
and northern fringes.

A number of the removed ‘anomalous plots’ show
evidently unusual properties (e.g. the liana-dominated
forests at CHO-1 CHO-2, XIN-01 and XIN-02, the
bamboo-dominated forests RES-06 and CAM-02, fire-
affected forest at NKT-01 and NKT-02, the gallery
forests NKE-02, NKG-01). While these obviously influ-
ence regional analyses of biomass, it is not surprising
that the ecological and/or historical factors that cause
their unusual properties are not captured in this broad
analysis. Other forest plots are suspected of being
subject to a majestic forest sampling bias where the
original investigators deliberately selected high bio-
mass stands (e.g. BEN-5, BEN-10, BEN-9: ‘contains
one of the last remaining stands of Swietenia macrophylla
in the reserve reaching seven trees per hectare’). Others
may be recently affected by a local natural disturbance
(BDF-04 suffered recent high mortality from a La Nifia-
related flooding event). A number of the anomalous
sites have no obvious explanation, which may reflect
the random influence of a single very large tree within
the sample plot, or our ignorance of detailed sampling
methodologies, or else additional factors that are not
considered in this analysis.

Uncertainties

Tree height allometry. Probably the most important factor
that has not been included here is spatial variability in
height allometry, which would be expected to show a
similar pattern to basal area and decrease with
increasing dry season length as hydraulic constraints
on tree height become more severe. Hence, biomass
would drop off more rapidly at the dry extremes.
However, it is not clear whether height allometry
shows any variation under moderate dry season
conditions, and hence, whether the central Amazonian
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peak in biomass would be shifted towards more
aseasonal regions.

The relationship between wood density and allometry. In
adopting the approach of Baker et al. (2004b), we are
assuming that allometries can be scaled linearly by
wood density. It is plausible that low wood density
trees have different architecture than high wood density
trees. However, in their comprehensive assessment of
tree allometry of 2410 trees, Chave et al. (2005) found
that their null hypothesis of a linear relationship
between wood density and aboveground biomass was
not rejected, suggesting there is little evidence of a
nonlinear scaling by wood density. Moreover, Chave
et al. (2005) found no significant difference in allo-
metries from South American and South-East Asian
forests (constructed by lumping all species), despite
the fact that these forests share almost no common
genera, and very different dominant families. This
again suggests no significant allometric differences
between major tree dicot families.

Biased land-form selection. There may be some biases in
site selection in our plot network (e.g. plateaux are
favoured over steep slopes, accessible flood plains are
favoured over ‘interior’ forests). In the soils-based
interpolation, we try to account for landform using by
including the various ‘facets” in the Cochrane and FAO
maps (e.g. if the map described a land form as 90%
plateau, 10% river valley, these are assigned different
values). Given that there is little difference between the
soils-based and kriging interpolations in total biomass,
it is unlikely that our estimate in total biomass will be
strongly affected by this bias, although the details of
regional patterns may vary. A remote sensing analysis
to evaluate the landscape context of a number of the
RAINFOR plots is currently under way.

Biased sampling of disturbance-recovery dynamics. Old
growth tropical forests have a natural disturbance-
recovery dynamic (e.g. sites are hit by occasional large
tree falls/blowdowns, followed by slow recovery in
biomass until the next infrequent disturbance). In
setting up forest plots, it is possible that sites that
recently underwent strong natural disturbance (e.g.
storm blowdowns) were avoided. The would lead to
an overestimate of the background biomass of old-
growth forest biomass. The magnitude of such a bias
is likely to be small, but is difficult to quantify and
requires detailed exploration of the disturbance-
recovery dynamics of Amazonian forests.

The effect of wrinkled topography. Most of the forest plots
are established in terms of a fixed ground area. In
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regions of significant slopes or undulating topography,
the biomass per unit area of the Earth’s surface could be
significantly higher. This ‘wrinkled topography’ effect
would increase biomass estimates in geomorphological
transition zones such as the periphery of the Andes,
and the Brazilian and Guyanan shields. It should be
straightforward to estimate this effect with high-
resolution digital elevation data.

Quantification of uncertainty in region-wide totals

The above sources of uncertainties in our biomass totals
can be classified into two categories (Chave et al., 2004):
sampling uncertainties caused by partial sampling of a
landscape that is heterogeneous at many scales, and
systematic biases caused by errors in methodology of
biomass measurement or analysis, such as incorrect
allometric equations. Stochastic sampling uncertainties
in our estimates of biomass are likely to be smaller
when considering basin-wide totals, as opposed to
accurate prediction of biomass at specific sites. Table 2
gives us some insight into the likely sensitivity of basin-
wide totals to sampling uncertainties:

(i) The total area of forest sampled (excluding the
50ha Panama site) is 366.1 ha, which can be di-
vided into approximately seven regions of 50 ha
each. The standard error of mean basal area over
the entire dataset is about 1% (over each region it is
about 4%). With a normal distribution, the 95%
confidence limits would be 2% and 8%, respec-
tively. This is consistent with the findings of Keller
et al. (2001) and Chave et al. (2003), who reported
that approximately ten 1ha plots are required to
bring 95% confidence limits within 20%, and 26 ha
to bring these limits within 10%. Assuming well-
distributed sampling, the random sampling uncer-
tainty in basin-wide and regional basal area esti-
mates would be 2% and 8%, respectively (95%
confidence).

(ii) Uncertainty in the use of allometric models con-
tributes a systematic uncertainty of about 13%
(Chave et al., 2005).

(iii) Imposition of the SCF reduces estimates of total
regional biomass by 7%; the variation in assump-
tion about the exact distribution of SCF causes a
systematic bias of about 3% in final biomass (rows
in Table 2b).

(iv) Similarly, removal of outliers, and comparison with
the mean of the sample plots has only modest
influence on basin-wide totals, of order 3% (col-
umns in Table 3b). This suggests that the spatial
sampling bias contributes an uncertainty less than
5% in basin-wide totals.

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2006.01120.x



14 Y. MALHI etal.

Table 2 The aboveground live biomass of trees >10cm diameter for all lowland Amazonian forests, as calculated by different
interpolation procedures: (a) mean dry-weight per hectare (Mg DW ha™1); (b) summed over the forest area and converted to carbon
units (Pg C). The columns correspond to (left to right): (i) the overlay of the basal area interpolation (with 28 outliers removed) with
the structural conversion factor; (ii) direct interpolation of plot biomass estimates with no outliers removed; (iii) direct interpolation

of plot biomass estimates with 28 outliers removed

Biomass calculated from
the BA interpolation based

Biomass values calculated
at individual plots* and
then interpolated using IDW

No plots removed Plots removed

on DSL (MgDWha™) (MgDWha ™) (MgDWha™)
(@)
ASSUMPTION SCF
None 320 X X
Derived from ordinary kriging of AGCWP 298 297 297
Derived from soil type classification of AGCWP 289 289 291

Biomass values calculated at individual

Biomass calculated from  pots* and then interpolated using IDW

the BA interpolation
based on DSL (Pg C)

No plots removed (Pg C) Plots removed (Pg C)

(b)

ASSUMPTION SCF
None 924
Derived from ordinary kriging of AGCWP 85.8

Derived from soil type classification of AGCWP  82.9

X X
85.5 85.7
83.3 83.8

The rows correspond to different assumptions about the variation of SCF (top to bottom): (i) SCF fixed at values for central
Amazonia; (ii) kriged interpolation of SCF (Fig. 8a); (iii) soils-based interpolation of SCF (Fig. 8b).

(v) Other uncertainties listed above are currently more
difficult to quantify, but in total they are unlikely to
exceed 10%.

If all these uncertainties were strongly correlated, the
total uncertainty in biomass estimates would be about
35%, if they were independent the total uncertainty
would be 18%. Hence, 25% is a conservative estimate
of uncertainty in basin-wide biomass totals, with sys-
tematic uncertainty in allometric relationships being the
biggest contributing factor. Applying an uncertainty
of 25% to our previous calculations, we estimate that
the total aboveground live woody biomass is 93 +
23 PgC, the total aboveground woody biomass is about
102 £26PgC, and the total woody biomass is 123 +
31PgC.

Comparison with previous estimates for Brazilian
Amazonia

How does our estimate of the spatial patterns and total
biomass of Amazonian forests compare with previous
estimates? Houghton et al. (2001) compared a variety of

maps of biomass for the Brazilian Amazon only. From
our study mean biomass values were extracted from
Fig. 9 for forested regions of the Brazilian Amazon only
(area 3.60 x 10°km? compared with total Amazonian
forest area 5.76 x 10°km?), and these are presented in
Table 3 for comparison with various values reported by
(Houghton et al. (2001). For compatibility, the 30% cor-
rection that Houghton et al. applied for dead wood and
below-ground biomass has been removed, (i.e. we are
considering aboveground live biomass only). A 10.1%
correction for trees <10cm dbh and lianas has been
retained for our analysis to be compatible with Phillips
et al.(1998). For the field measurements summarized by
Houghton et al. (2001), it was not clear which data sets
included small trees and lianas, and which did not.
Allowing for regional variations in basal area and
SCF, we calculate the mean AGL biomass of Brazil
Amazonian moist forests to be about 16OMgCha71
(6-10% lower than if a central Amazonian struc-
ture factor had been uniformly applied), with a 25%
uncertainty as discussed above. This is close to the value
of 148 Mg Cha ™' that Houghton et al. (2001) extrapolated
from 44 sites. Many of these sites did not account for

© 2006 The Authors

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2006.01120.x



BIOMASS IN AMAZONIAN FORESTS 15

Table 3 (a) The mean above-ground live biomass of trees in lowland forests in Brazilian Amazonia only, including a 10.1% correction

factor for small trees and lianas

Biomass calculated from
the BA interpolation

Biomass values calculated
at individual plots and
then interpolated using IDW

No plots removed Plots removed

based on DSL (MgCha™") (MgCha™") (MgCha™)
(@)
ASSUMPTION SCF
None 175 X X
Derived from ordinary kriging of AGCWP 164 163 163
Derived from soil type classification of AGCWP 158 157 159
Above-Ground Live Biomass
Study Total Biomass (MgCha ') No small trees MgCha ')  With small trees (Mg Cha ')
(b)
Houghton interpolation of 44 points 192 148 163
RADAMBRASIL (Brown et al., 2002) 156 120 132
RADAMBRASIL (Fearnside, 1997) 232 141 155
Brown (calibrated with 39 of 44 points) 183 141 155
Brown (calibrated with forest surveys) 196 151 166
Brown (calibrated with areas >0.5ha) 197 152 167
Olson 100 77 85
Potter 196 151 166
DeFries 178 137 151
This study 143-149 157-164

For comparison reasons, values are presented in carbon units Mg C ha~'. Columns and rows describe different analysis procedures
as in Table 2. (b) The total biomass and above-ground live biomass of trees in Brazilian Amazonia, for various studies summarised
by Houghton et al. 2001, in Mg C ha . The last column includes a 10.1% correction for small trees and lianas, as explained in the text.

small stems or lianas — once this 10.1% correction is
applied to the Houghton et al. (2001) estimate the two
values are very similar. In spatial detail the Houghton
et al. (2001) extrapolation picks out some of the broad
features that are confirmed with greater confidence in
our (more data-rich) estimate: high biomass in the cen-
tral Amazon and low values at the dry fringes.
Houghton et al. also report estimates of Brazilian
Amazon biomass from a number of other field and model
studies. These are compared briefly with our estimates:

Estimates  derived ~ from  RADAMBRASIL.  The
RADAMBRASIL project (DNPM, 1973-1983) made an
inventory of stemwood volumes on thousands of 1ha
old-growth forest plots across Brazilian Amazonia,
measuring stems >31.8cmdbh, providing the most
spatially intensive and systematic Amazonian forest
inventory to date, albeit constrained by sampling only
medium and large trees. Brown & Lugo, (1992) and
Fearnside, (1997) used standard structure factors to

© 2006 The Authors

convert to these data to biomass with a uniform wood
density of 0.69gm 2. The two studies differed in that
Fearnside tried to include additional terms, such as
small trees <10cmdbh (+12%), lianas (+5.3%),
palms (+24%), hollow trees (—6.6%) and bark
(—=0.9%). In addition, Fearnside also estimated high
values for belowground biomass (33.6% of AGL
biomass) and dead biomass (31% of AGL biomass),
leading to estimates of total forest biomass some 60%
higher than those of Brown and Lugo. These total
biomass values seem at the high end of the range of
values reported from field studies, but for below-
ground biomass do take into account aspects that are
frequently neglected, such as below-ground boles and
tap roots. Considering AGL biomass alone, Fearnside
arrives at a mean value for Brazilian Amazonia of
141 MgCha_l, a value close to that reported here,
compared with 120 Mg Cha ' by Brown & Lugo (1992).

One noticeable feature is that the RADAMBRASIL
based maps do not indicate the peak in biomass in
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central Amazonia as strongly the present study,
although there is some indication of lower biomass at
the dry fringes. One possible reason for the attenuation
of this trend is that the RADAMBRASIL survey
sampled only medium and large trees (>31.8cm
dbh). Although total basal area appears to decline
with increasing dry season length (and this is also
consistent with physiological water-use principles),
mean tree size increases with dry season length
(Malhi et al., 2002) (i.e. the decline in basal area is
disproportionately in small trees, which were not
sampled by RADAMBRASIL).

Brown and Lugo estimates. Brown and colleagues have
advanced a method for estimating potential biomass of
tropical forest lands that takes into account variation in
four environmental parameters: soil depth, texture,
elevation and slope. Details of the approach are given
in Houghton et al. (2001), but in summary the approach
was calibrated off either 39 sites (mainly of area
<0.5ha), or six large FAO inventories, or 16 sites
where the area sampled was greater than 0.5ha. The
three approaches yield a value of AGLB in Brazilian
Amazonia between 141 and 152MgCha'. These
extrapolations indicated highest biomass in western
Amazonia, in disagreement with the present study,
but are based on very few points.

The classic study by Olson et al. (1983) of biomass for
44 terrestrial ecosystems yields estimates half the size of
all other reported values, and are likely to be in error.
The NASA-CASA model (Potter, 1999) yields a mean
value of AGLB in Brazilian Amazonia of 151 Mg
Cha™!, but with biomass increasing in drier regions,
the opposite of what is observed. The mechanism for
this discrepancy clearly requires further investigation,
but is likely to be related to the calculation of wood
productivity and residence time.

Conclusions: Uncertainties and Future Directions

We have explored the spatial variation of aboveground
live biomass in old-growth Amazonian forests, with
particular emphasis on accounting for variations in
basal area and wood density. Our estimates covered
all of Amazonia, but we were able to compare the
results from Brazilian Amazonia with previous esti-
mates, which are based either on a smaller number of
inventories, or on the extensive but less complete
RADAMBRASIL inventories, or on modelling and
satellite-derived studies. Although our estimates were
comparable in mean values with most previous esti-
mates, they often differed in the spatial distribution of
biomass. These discrepancies can be explained by:

(i) the greater size of the data set presented here
compared with other small-plot-based extrapola-
tions, which enabled clearer definition of trends in
basal area;

(ii) accounting for wood density and its relationship
with forest dynamism, which enabled tracking of
the decline in biomass to the west;

(iii) accounting for trees >10cm and <31.8cmdbh
(in contrast to the RADAMBRASIL surveys), which
indicated a decline in basal area at the dry fringes.

Two hundred and twenty-six plots is still a small
number compared with the extent of Amazonia, and
the details of the maps presented in Fig. 9 are likely to
be modified as data sets expand. The main intent of this
paper is to identify principles that need to be accounted
for in future estimates of biomass:

(1) Forest basal area in relatively invariant at about
30m®ha! at regional scales in moist Amazonian
forests, but declines in drier areas.

(2) This regional-scale invariance in mean basal area
occurs despite a threefold variation in regional
wood productivity (Malhi et al., 2004).

(3) K-r tradeoffs between high wood density, long-
living species and low wood density, short-lifetime
species lead to a regional variation in wood density
that significantly affects regional patterns of bio-
mass. Hence, ecological interactions, that are not
incorporated in current biogeochemical approaches
to estimating forest carbon stocks, are important
determinants of forest biomass.

(4) The trends in basal area and wood density have
somewhat opposite directions, resulting in the high-
est forest biomass regions occurring in central Ama-
zonia and the Guyana coast.

(5) There is no simple correlation between biomass and
wood productivity, and the two should not be
confounded.

Uncertainties that remain include the following issues:

(i) The variation of tree height (and hence wood
volume) with environmental factors is poorly de-
scribed. This could be tackled through both field
surveys and remote sensing approaches (e.g. lidar
altimetry)

(i) We have produced two ‘final” maps of biomass,
reflecting that the apparent relationship between
wood density and soil fertility is still tentative.
There is a clear need to explore the relationship
in more detail with improved soil data sets, such as
those recently collected by the RAINFOR project. If
soil fertility is indeed the controlling factor for
wood productivity and hence density, an obvious
next step is the identification of which soil fertility
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parameters are key (e.g. soil texture, phosphorus
availability, pH, cation exchange) and mapping of
their spatial variation.

(iii) There are major gap regions in the dataset, such as
the southern dry margins of Amazonia, the crystal-
line shield regions, and much of Colombia. These
need to be filled, through further ‘mining’ and
compilation of existing datasets, or targeted field
studies.

(iv) The approach we apply explores regional-scale
variation in biomass, but only weakly addresses
landscape scale variation (variation of wood den-
sity with landform facet is accounted for, but
variation in basal area is not). Local variation
clearly dominates estimates of basal area at the
hectare scale. It should be also possible to account
for landscape-scale variation (e.g. slope, soil
depth), perhaps using an approach similar to
(Brown & Gaston, 1995).

(v) We have generated a map of biomass of old-growth
forests as an upper envelope of estimates of bio-
mass of the complete Amazonian forest distur-
bance mosaic. To arrive at a map of actual forest
biomass, it is necessary for data on secondary
forests, logged forests, and natural disturbance-
recovery dynamics, be superimposed on this map
to arrive at estimates of actual forests biomass.

An obvious next step is to combine the ecological
insights presented here with the wealth of new remote
sensing information and analyses becoming available,
to conduct extrapolations that explicitly include remo-
tely-sensed information on landscape context, forest
structure, and forest disturbance.
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