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Leaf traits and physiological performance govern the amount of light reflected from leaves at visible and infrared wavebands.

Information on leaf optical properties of tropical trees is scarce. Here, we examine leaf reflectance of Mesoamerican trees for three

applications: (1) to compare the magnitude of within- and between-species variability in leaf reflectance, (2) to determine the

potential for species identification based on leaf reflectance, and (3) to test the strength of relationships between leaf traits

(chlorophyll content, mesophyll attributes, thickness) and leaf spectral reflectance. Within species, shape and amplitude

differences between spectra were compared within single leaves, between leaves of a single tree, and between trees. We also

investigated the variation in a species’ leaf reflectance across sites and seasons. Using forward feature selection and pattern

recognition tools, species classification within a single site and season was successful, while classification between sites or

seasons was not. The implications of variability in leaf spectral reflectance were considered in light of potential tree crown

classifications from remote airborne or satellite-borne sensors. Species classification is an emerging field with broad applications

to tropical biologists and ecologists, including tree demographic studies and habitat diversity assessments.
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An extensive body of literature on leaf optics describes the
interaction of light with light-harvesting pigments and leaf
structural components (e.g., Gates et al., 1965; Woolley, 1971;
Gausman, 1985; Vogelmann, 1993). Three primary regions
emerge from the reflectance spectrum of a leaf, the first (400–
700 nm) is predominantly due to light absorption by pigments
(especially chlorophyll), the second (700–1200 nm) is
influenced by light scattering at air–cell-wall interfaces and
characterized by high reflectance and transmittance, and the
third (1200–2500 nm) is governed by water absorption (Hoffer
and Johannsen, 1969). Furthermore, scientists have examined
perturbations to leaf absorption, reflection, and transmission of
light by external influences such as light availability (Gausman,
1984), disease (Knipling, 1967), freezing (Woolley, 1971),
stress (Carter, 1993), and senescence (Gitelson and Merzlyak,
1994). The spectral properties of different plant types (Gates et
al., 1965) or species (Allen et al., 1970; Gausman and Allen,
1973; Knapp and Carter, 1998) have also been compared. In
more recent years, our understanding of leaf optics has been

extended to larger-scale applications in the field of remote
sensing, for assessing physiological performance of plant
canopies (e.g., Gamon et al., 1990) and distinguishing between
land cover vegetation types (e.g., Salem et al., 1995). In effect,
results from leaf-level studies are often used as a basis for
establishing techniques for retrieving information from canopy
reflectance measured by remote sensors.

Little is known about the leaf optical properties of tropical
trees or about the potential for identifying tropical tree species
using remote sensing. Among the few exceptions are studies by
Lee and Graham (1986) and Lee et al. (1990), who compared
leaf optical properties of tropical sun and shade species, as well
as Avalos et al. (1999), who compared leaf optical properties of
tropical dry forest trees and lianas. Fung and Siu (1998) and
Cochrane (2000) assessed reflectance of leaf or branch samples
for differentiating species of tropical trees. More recently, Clark
et al. (2005) was successful in discriminating seven tropical tree
species at the leaf, pixel, and crown levels, publishing the first
report on automated tropical rain forest tree classification using
high spatial resolution hyperspectral imagery, in which spectral
reflectance is measured over numerous contiguous bands of
narrow width (typically �10 nm). The study represents an
important breakthrough for identifying tropical tree species.
Operational species classification could have numerous
applications, including monitoring endangered or commercial
tree species, characterizing biodiversity in ecologically impor-
tant habitats such as reserves and biological corridors, and
monitoring changes in species composition over time and
changes in tree demography associated with global environ-
mental changes (Clark et al., 2005).

The precept for species discrimination is that interspecies
variability in spectral reflectance exceeds intraspecies variabil-
ity. This presents a challenge for species identification due to
inherent similarities in vegetation characteristics among
species, including leaf biochemistry and anatomy, which result
in similarities in leaf spectral reflectance. After posing the
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question ‘‘How unique are spectral signatures?,’’ Price (1994)
determined that while some are clearly distinct, others may not
be separable at all. In reality, despite the advantages of
hyperspectral technologies, classification of plant species may
be difficult and, at times, unfeasible. A complicating factor is the
dynamic nature of plant spectral signatures. Natural cycles such
as leaf flush and senescence, as well as environmental factors
affecting mineral nutrition, health, light availability, and water
supply, may contribute to changes in a species’ spectral signature
over time or at a given position in the canopy (Gausman, 1984,
1985; Carter, 1993). To date, even the studies from temperate
regions have not fully evaluated the seasonal dynamics of
change in leaf spectral characteristics on tree classifications, nor
do they explore the stability of tree spectral signatures over
multiple sites with a range of climatic and edaphic conditions.
Intuitively, these factors, which lead to within-species variability
in reflectance spectra, could lead to significant confusion for
species recognition using hyperspectral data. Although Clark et
al. (2005) tested within-species variability for seven tropical tree
species at one site, the degree of within-species variability over
a large number of tropical tree species and a range of
environmental conditions has not been adequately addressed.

With image-based, automated tropical tree species classifi-
cation in its preliminary stages of development, we believe it to
be constructive at this time to provide a comprehensive
assessment of intraspecific variability of leaf spectral re-
flectance and its potential to influence tree species classi-
fications. The main objective of this paper, therefore, was to
evaluate within-species and between-species variability in leaf
spectral reflectance for a wide variety of tropical trees found at
seven sites in southern Mexico and Central America. We also
investigated crown-level spectra of five tree species from Fort
Sherman, Panama. In effect, we asked, ‘‘How unique are
spectral signatures of tropical tree species?’’ A large part of our
study focuses on the leaf level for several reasons: (1) by
necessity, because high spatial resolution (,5 m) hyperspectral
data was not available for most of our sites at the time of data
collection, (2) the use of leaf spectra allows for a more
controlled assessment of variability at multiple levels, and (3)
spectral reflectance from leaves is usually the dominant
contribution to tree crown reflectance. To evaluate variability
in leaf reflectance of tropical trees, spectral metrics that
describe reflectance shape and amplitude (Price, 1994) are
compared at various levels within and between species. To
explore the potential to identify species, we also classified the
spectral data from the different sites using forward selection of
features and a set of classifiers described in Castro-Esau et al.
(2004). Lastly, we examined the correspondence between

selected leaf traits (chlorophyll content, leaf thickness, and leaf
histological features) and leaf spectral reflectance character-
istics for one site to further our understanding of differences in
leaf spectra between species.

MATERIALS AND METHODS

Study sites—Leaf samples were gathered from seven sites in Mexico, Costa

Rica, and Panama (Table 1). Five of the sites support tropical dry forest
ecosystems, where our research group is concurrently conducting studies on leaf
area index and forest complexity and their ties with remote detection of
secondary growth vs. mature forest. These sites are part of an international
research consortium called TROPI-DRY that aims to understand the biophysical
characteristics of neotropical dry forests and human interactions with these
forests. Tropical dry forests undergo significant phenological changes through
dry–wet seasonal cycles and typically contain species with varying degrees of
deciduousness (Frankie et al., 1974; Bullock and Solis-Magallanes, 1990;
Avalos and Mulkey, 1999). In addition, tropical dry forests can present high
rates of species endemism (Lott et al., 1987; Kalacska et al., 2004).

Parque Natural Metropolitano, Panama, is the site of our case study to
correlate leaf traits and leaf spectral reflectance. This 100–150-yr-old secondary
forest has a pronounced dry season from January through April, with annual
precipitation averaging 1740 mm.

Crown spectra were recorded from a canopy crane at Fort Sherman, Panama,
a tropical wet forest site.

Leaf sample collection—At each site, 3–15 sun leaves were collected per

tree (Table 2). One to five trees were sampled per species. In general, leaves were
collected from the distal or middle portion of the branch. At some sites, it was not
logistically feasible to sample more than one tree per species, such as in Parque
Natural Metropolitano and Fort Sherman, where we were restricted to trees
within reach of a canopy crane and by institutional regulations regarding the size
of samples that can be collected from each tree. A full list of the species sampled
is provided in Table 3. The samples were acquired using one of the following
methods: pole pruner (Mexico and Costa Rica), sling shot (Costa Rica), or
canopy crane (Panama). Leaves were collected, placed in plastic bags containing
moistened paper towels, labeled, and placed in a larger bag or cooler containing
ice. Samples were transported to an indoor laboratory, and leaf spectral
reflectance was analyzed the same day. Maintaining leaf moisture prevented
significant changes in leaf reflectance during this period (Foley et al., in press).

Crown spectra—Crown spectral measurements were obtained for five
fairly flat, uniform crowns at Fort Sherman (Panama) by positioning the canopy
crane gondola above the center of each crown and fitting the bare optic of
a UniSpec (PP Systems, Amesbury, Massachusetts, USA) spectrometer through
the floor grating (see Measurements of bidirectional spectral reflectance). The
five species were Cordia bicolor (Boraginaceae), Dussia munda (Fabaceae),
Jacaranda copaia (Bignoniaceae), Tapirira guianensis (Anacardiaceae), and
Vochysia ferruginea (Vochysiaceae) (Fig. 1, Table 3).

Leaf trait data—At Parque Natural Metropolitano (Panama), ancillary data

on pigmentation, leaf thickness, internal leaf structure, as well as diffuse
reflectance and transmittance were collected in October 2003.

TABLE 1. Summary of characteristics of study areas.

Location Latitude/Longitude Holdridge life zone Mean annual precipitation (mm)

1. Chamela-Cuixmala Biosphere Reserve, Mexico 198300 N, 1058030 W tropical dry forest 707
2. Los Inocentes, Costa Rica 118010 N, 858300 W transition between basal tropical moist forest

and premontane tropical moist forest
2098

3. Santa Rosa National Park, Costa Rica 10848053 00 N, 85836054 00 W tropical dry forest and tropical dry
transition to moist

1588

4. Los Horizontes, Costa Rica 10845039 00 N, 8583806 00 W tropical dry forest 2378 (1995 data only)
5. El Rodeo, Costa Rica 9831060 00 N, 848400 00 W tropical dry forest 1896
6. Parque Natural Metropolitano (PNM), Panama 88590 N, 798330 W tropical dry forest 1740
7. Fort Sherman (FTS), Panama 98170 N, 79858030 00 W tropical wet forest 3300
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Leaf chlorophyll content and thickness—Five 2.0-cm2 leaf cores per tree
species, each from a different leaf, were analyzed for chlorophyll content at
Parque Natural Metropolitano. Chlorophyll a, chlorophyll b, and total
chlorophyll content were determined using the dimethyl sulphoxide extraction
method (Hiscox and Israelstam 1979). A Smartspectro spectrophotometer
(LaMotte, Chestertown, Maryland, USA) was used to determine absorbance at
645 and 663 nm. Pigment content was computed using Arnon’s (1949)
relationships and converted to a per area basis. In addition, chlorophyll content
was nondestructively assessed using a SPAD 502 (Minolta Camera, Osaka,
Japan) chlorophyll absorbance meter. The SPAD measures absorbance at 650 and
940 nm and yields a relative chlorophyll content, or ‘‘chlorophyll index’’ value
(Markwell et al., 1995; Richardson et al., 2002). Leaf thickness was measured for
5–10 leaves per species using a Nikon (Tokyo, Japan) digital micrometer (to
nearest 0.001 mm). Five measurements were taken per leaf, avoiding large veins.

Leaf histology—Small pieces of leaf blade (approximately 1 cm long and 2–
3 mm wide) were collected at Parque Natural Metropolitano in October 2003
for histological analysis. The leaf pieces were fixed under vacuum for 2 wk in
a formalin aceto-alcohol (5% formalin) solution. After fixation, the samples
were run through an ethanol processing center (Fisher Histomatic 166,
Hampton, New Hampshire, USA) and embedded in paraffin molds. Thin
sections (5 lm) were cut from the mounted samples using a microtome. Slides
were mounted and stained (Harris’ hematoxylin stain), and viewed with a Leica
(Wetzlar, Germany) DM RXM light microscope (2003 total magnification).
Digital photos were taken of the stained samples. The percentage of air space in
the spongy mesophyll was determined by classifying the photos for cells vs. air
space. Spongy mesophyll thickness and the ratio of spongy mesophyll to total
leaf thickness were calculated using a 100-lm scale in each photo, from which
a new ruler was constructed with 10-lm increments.

Leaf diffuse reflectance and transmittance—In addition to measurements of
bidirectional reflectance of leaves described next, diffuse reflectance and
transmittance were recorded using an 1800–12S external integrating sphere (LI-
COR, Lincoln, Nebraska, USA) in conjunction with a UniSpec spectrometer.
The spectrometer fiber optic was inserted through a port on the sphere. To record
diffuse reflectance, the sphere illuminator was directed toward the adaxial side
of the leaf sample in the sample port, and the fiber optic was directed to the
sphere wall. To record transmittance, the leaf was reversed so that the underside
faced the sphere interior. The sphere illuminator was directed through the leaf
sample, and the spectrometer fiber optic was directed to the wall. Dark scans
were performed regularly, and white reference scans (using barium sulfate) were
repeated for every leaf sample. Both diffuse reflectance and transmittance were
calculated as a ratio in relation to the white reference data.

Measurements of bidirectional spectral reflectance—Bidirectional leaf
spectral reflectance was measured at all sites, using one of two spectrometers:
(1) a UniSpec Spectral Analysis System (PP Systems, Amesbury, Massachu-
setts, USA) or (2) a FieldSpec HandHeld spectrometer (Analytical Spectral
Devices, Boulder, Colorado, USA). The 2002 and 2003 data sets employed the
FieldSpec HandHeld (FieldSpec HH) and the UniSpec, respectively. All crown
spectra (Fort Sherman, Panama) were measured using the UniSpec.

UniSpec spectral analysis system—The Unispec spectral analysis system
VIS/NIR relies on a 256-element photodiode array. The spectral range is 350–

1100 nm, with a sampling interval of 3.3 nm and a spectral resolution of ,10
nm. A bifurcated fiber optic delivers light from an internal 7.0 W halogen lamp
via one branch and receives reflected light via the other.

To measure spectral reflectance of leaves, we employed a leaf clip that holds
the foreoptic at 608 and maintains a 2.3 mm diameter field of view (FOV).
Sample reflectance was measured by comparing leaf reflectance to reflectance
of a white standard (barium sulfate). Ten scans were averaged per recorded
spectrum. Dark scans and white reference scans were performed frequently to
detect instrument drift on the spectra.

At Fort Sherman (Panama), crown spectra were recorded mid-morning
under sunny conditions. White reference measurements were taken before
measurements for each species as well as intermittently if we sensed the light
conditions changed. Care was also taken to avoid taking measurements if the
shadow of the gondola fell within the estimated FOV. Spectra were recorded at
a height of 5 m above each crown, determined by lowering a measuring tape
from the gondola. Using the bare UniSpec fiber-optic probe (408 FOV), the
diameter of the viewed crown was approximately 3.6 m. Six measurements
were taken from the same position above each crown and averaged.

FieldSpec HandHeld—The FieldSpec HandHeld spectrometer relies on one
512-element photodiode array. Its range is 325–1075 nm, with a sampling
interval of 1.6 nm and spectral resolution of 3.5 nm at 700 nm. The FOV of the
bare fiber-optic probe is 258.

To obtain leaf spectral reflectance measurements, an external 50 W halogen
lamp was directed at the leaf at an illumination angle of 458. Leaves were
placed against a black minimal (2%) reflectance panel. The FieldSpec
HandHeld fiber-optic probe, inserted into a mounting gun attached to a tripod,
was positioned directly above the sample. In all cases, height was adjusted so
that the FOV had a diameter of approximately 11 mm. Reflectance was
determined by standardizing the sample data to white reference (Spectralon,
Labsphere, North Sutton, New Hampshire, USA) data under the same
illumination and viewing conditions. White reference scans were recorded
frequently. Ten scans were averaged per reflectance spectrum.

Spectral analysis—Spectra collected with the two spectrometers were
analyzed separately rather than collectively due to differences between spectra
measured for the same objects as described in Castro-Esau et al. (in press).

D and h—Two spectral metrics described by Price (1994) enabled
comparisons between pairs of spectra as follows:

D ¼ 1

kb � ka

Z kb

ka

½S1ðkÞ � S2ðkÞ�2dk

� �½

ð1Þ

h ¼ cos�1

Z
S1ðkÞS2ðkÞdk

Z
S1ðkÞ2dk

� �½ Z
S2ðkÞ2dk

� �½

2
6664

3
7775 ð2Þ

D represents the difference in amplitude between two spectra and is computed
as the root mean square difference between a pair of spectra (S

1
and S

2
)

averaged over the spectral range of interest (k
a

to k
b
). The metric h determines

TABLE 2. Summary of data collected at each site.

Location Date Season Instrument Tree species Trees per species Leaves per tree Measurements per leaf

Chamela-Cuixmala Biosphere Reserve, Mexico Aug 2003 wet UniSpec 27 1 15 1
Los Inocentes, Costa Rica Nov 2002 wet FieldSpec HH 10 1–3 3–5 1

Mar 2003 dry UniSpec 5 1 5 3
Santa Rosa National Park, Costa Rica Dec 2002 wet FieldSpec HH 2 3 5 3
Los Horizontes, Costa Rica Oct 2002 wet FieldSpec HH 8 3–5 3 3
El Rodeo, Costa Rica Dec 2002 wet FieldSpec HH 4 3 5 3
Parque Natural Metropolitano (PNM), Panama Mar 2003 dry UniSpec 6 1 3 6

Oct 2003 wet UniSpec 10 1 10 4
Fort Sherman (FTS), Panama Mar 2003 dry UniSpec 15 1 3 6

Oct 2003 wet UniSpec 15 1 10 4
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the angle between two spectra and may be interpreted as the difference in shape

between the pair of spectra. It is computed as a vector dot product for the pair of

spectra, with amplitude dependence removed.

The spectral range used to calculate D and h was 445.9–949.6 nm for both

the UniSpec and FieldSpec Handheld. In this region, noise from both

instruments was low. To compute D and h for the same spectral range and

interval, FieldSpec HandHeld data were interpolated to 3.3-nm intervals to

match the sampling intervals of the UniSpec. No smoothing was performed.

D and h were compared at the following levels for leaf spectra (numbers 1–

6) or crown spectra (number 7):

1. Within-leaf. D and h were calculated where multiple measurements were

TABLE 3. Species sampled for this study.

Family and species Field sites Family and species (continued) Field sites

Anacardiaceae Fabaceae (Papilionoideae)

Amphipterygium adstringens (Schlecht.) Schiede. CH Dalbergia retusa Hemsl. LH, LI
M

Anacardium excelsum (Bertero & Balb. Ex Kunth) Skeels LI
N/M

, PM
M/O

Diphysa americana (Mill.) M. Sousa LH, LI
M

Astronium graveolens Jacq. CH, LI
N

, PM
M/O

Dussia munda C. H. Stirt. FS
CROWN

Spondias purpurea L. CH Gliricidia sepium (Jacq.) Kunth ex Walp. ER, LH, LI
M

Tapirira guianensis Aubl. FS
CROWN

Lonchocarpus heptaphyllus (Poir.) DC. FS
M/O

Annonaceae Malpighiaceae

Annona spraguei Saff. PM
M/O

Byrsonima crassifolia (L.) Kunth ER, LH, LI
N

Apocynaceae Malvaceae

Aspidosperma spruceanum Benth. Ex Müll. Arg FS
M/O

Bombacopsis quinata (Jacq.) Dugand LH, LI
N

Plumeria rubra L. CH Ceiba aesculifolia (Kunth) Britton & Baker CH

Bignoniaceae
Ceiba grandiflora Rose. CH

Astianthus viminalis (HBK.) Baill. CH
Ceiba pentandra (L.) Gaertn. CH

Jacaranda copaia (Aubl.) D. Don FS
CROWN

Guazuma ulmifolia Lamarck CH, ER, LH, LIN/M

Tabebuia donnell-smithii Rose. CH
Heliocarpus pallidus Rose. CH

Tabebuia rosea (Bertol.) DC. CH
Luehea seemannii Triana & Planch. PMM/O

Boraginaceae
Pseudobombax septenatum (Jacq.) Dugand PMO

Cordia alliodora (Ruiz & Pav.) Oken PM
M/O

Meliaceae

Cordia bicolor A. DC. FS
M/O

, FS
CROWN

Carapa guianensis Aubl. FSM/O

Cordia elaeagnoides DC. CH Cedrela odorata L. LIN, SR

Brassicaceae
Swietenia humilis Zucc. CH

Crateva graminacea CH
Swietenia macrophylla King LIN

Burseraceae
Moraceae

Bursera simaruba (L.) Sarg. ER, LI
N/M

Brosimum utile (Kunth) Oken FSM/O

Cochlospermaceae

Castilla elastica Sesse PMO

Cochlospermum vitifolium (Willd.) Spreng. LH

Ficus insipida Willd. PMM/O

Combretaceae

Ficus nymphaeifolia Mill. FSM/O

Conocarpus erectus L. CH

Myristicaceae

Terminalia amazonia (J. F. Gmel.) Exell FS
M/O

Virola surinamensis (Rol. ex) Rottb. Warb. FSM/O

Convolvulaceae
Nyctaginaceae

Ipomoea wolcottiana Rose. CH
Guapira linearibracteata (Heim.) Standl. CH

Clusiaceae
Rubiaceae

Marila laxiflora Rusby FS
M/O

Tocoyena pittieri (Standl.) Standl. FSM/O

Euphorbiaceae
Sapindaceae

Croton sp. CH
Matayba apetala Radlk. FSM/O

Piranhea mexicana CH
Thouinidium decandrum (Humb. & Bonpl.) Radlk. CH

Sapium sp. CH Sapotaceae

Fabaceae (Caesalpinoideae) Chrysophyllum cainito L. PMO

Caesalpinia platyloba S. Watson CH
Manilkara bidentata (A. DC.) Chev. FSM/O

Caesalpinia sclerocarpa Standl. CH Simaroubaceae
Hymenaea courbaril L. LH, LI

N Simarouba amara Aubl. LI
N

, FS
M/O

Tachigali versicolor Standl. & L. O. Williams FS
M/O Urticaceae

Fabaceae (Mimosoideae) Pourouma bicolour Mart. FS
M/O

Enterolobium cyclocarpum (Jacq.) Griseb. CH, LI
M

, PM
O Verbenaceae

Pithecellobium dulce (Roxb.) Benth. CH Avicennia germinans (L.) L. CH

Vochysiaceae
Vochysia ferruginea Mart. FS

CROWN

Notes: CH, Chamela; ER, El Rodeo; FS, Fort Sherman; LH, Los Horizontes; LI, Los Inocentes; PM, Parque Natural Metropolitano; SR, Santa Rosa.
Subscripts: CROWN indicates species for which crown spectra were taken at Fort Sherman (Panama); M, N, and O refer to the month (March, November,
and October, respectively) in which the data were obtained for locations with multitemporal data. Taxonomy is based on the updated Angiosperm
Phylogeny Group (APG II, 2003) classification for orders and families of flowering plants.
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made per individual leaf. For example, six measurements per leaf were
recorded for the Parque Natural Metropolitano March 2003 data set (Table
2). Therefore, D and h were assessed for all 15 possible pairs of the six
spectra (called pairwise combinations hereafter).

2. Within tree. Where multiple leaves were sampled per tree, average leaf
reflectance was computed for each leaf, and D and h were then calculated on
all pairwise combinations of spectra from those leaves.

3. Between tree and within species, site, and season. An average tree spectrum
was computed from all leaf spectra for each tree. Where multiple trees were
sampled per species, D and h were computed for all pairwise combinations
of the mean tree spectra.

4. Between season and within species and site. Pairwise comparisons of D and
h were made between mean tree spectra of the same species measured in the
dry season and wet season. These comparisons were possible at the Parque
Natural Metropolitano and Fort Sherman (Panama) sites only where sunlit
leaves were collected from the same trees and measured with the same
spectrometer in both seasons (Table 2). This comparison was not performed
for Los Inocentes (Costa Rica) since the November 2002 and March 2003
data sets were obtained using different spectrometers.

5. Between site and within species and season. D and h comparisons were
possible for species sampled at more than one site. There were seven such
species, all measured with the FieldSpec HandHeld: Bombacopsis quinata
(Malvaceae), Bursera simaruba (Burseraceae), Byrsonima crassifolia
(Malpighiaceae), Cedrela odorata (Meliaceae), Gliricidia sepium (Faba-
ceae/Papilionoideae), Guazuma ulmifolia (Sterculiaceae), and Hymenaea
courbaril (Fabaceae/Caesalpinoideae).

6. Between species and within site. Within a site, all pairwise combinations of
tree spectra of different species were made. For example, the Chamela
(Mexico) August 2003 data set provided possible combinations for 27
species.

7. Between species and within site (crown level). D and h were computed for
all pairwise combinations of the five mean crown spectra at Fort Sherman,
Panama.

A Wilcoxon rank sum test was used to determine whether levels 3 and 6
differed significantly. This test indicated whether comparisons of individual
conspecific tree crowns differed from comparisons among species. The test was
performed using mean values of D and h for comparisons of conspecific trees
(level 3) and comparisons of heterospecific species pairs (level 6).

Classification—Beyond examination of shape and amplitude differences
between spectra, we determined whether it was possible to discriminate
between species based on reflectance spectra. Steps involved in the
classification included feature selection, classifier training, and classifier
testing.

Forward stepwise feature selection reduced the number of variables entered
into the classification. Stepwise feature selection has proven useful for studies
involving species classification from hyperspectral data (van Aardt and Wynne,
2001; Clark et al., 2005), and initial testing of our data sets led to higher
classification accuracies than using principal components analyses as described
in our earlier work (Castro-Esau et al., 2004) for discriminating liana and tree
species. The approach for forward feature selection involves selecting the single
best feature and consecutively adding those features that improve performance
the most. In this case, the criterion used for the procedure was first nearest
neighbor leave-one-out classification performance (Duin, 2000). By using
alternate spectra, we split the data array in half into training and testing sets.
Feature selection was performed using the training set only.

Spectra were classified to species using a selection of supervised parametric
and nonparametric classifiers, previously described in Castro-Esau et al. (2004).
The classifiers are part of a pattern recognition toolbox, PRTools, developed by
Duin (2000) for use within Matlab (MathWorks, Natick, Massachusetts, USA).
Parametric classifiers included a logistic linear classifier (loglc) and a normal
density-based quadratic classifier (qdc). Nonparametric classifiers included
a decision tree classifier (treec), a neural network classifier (based on back-
propagation and Levenberg-Marquardt gradient descent) (lmnc), and a k-
nearest neighbor classifier (knnc).

Classification involved several steps. Initially, training data were labeled
according to species and used to train the classifiers. Secondly, the trained
classifiers classified the test data set to validate the robustness of the model
(Defernez and Kemsley, 1997). Error estimation was determined for both the
training and testing data, which constituted the percentage of incorrectly
classified spectra in each case. For each data set, classifications were run

Fig. 1. Partial tree crowns, as viewed from a canopy crane at Fort
Sherman, Panama, at a height of 5 m. The species are (A) Jacaranda
copaia, (B) Dussia munda, (C) Tapirira guianensis, (D) Cordia bicolor,
and (E) Vochysia ferruginea.
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several times using multiples of 10 selected features. The highest classification
accuracies were reported. The classifications involved all leaf spectra for each
species (a minimum of five spectra, but in most cases 10þ). Classifications
were run on noninterpolated data in the range 445.9–949.6 nm for the UniSpec
and 445.5–950.7 nm for the FieldSpec HandHeld.

A final analysis was run to determine the potential for classifying increasing
numbers of tropical forest tree species. A data set of 50 species with 10 spectra
each was compiled from Parque Natural Metropolitano, Fort Sherman, and
Chamela, all using UniSpec 2003 wet season data. Classifications were run on
10 000 sets each of 5, 10, 15, 20, 25, 30, 35, 40, and 45 species, where each set
of species was chosen randomly from the 50 total species. A single
classification was run on the full set of 50 species. For this analysis, we used
the logistic linear classifier and 30 previously selected features, the top 10
features from the within-site classifications for each of the three sites. Ten
thousand repetitions were considered a representative sample of all possible
species combinations since variation around mean classification errors
stabilized by this point, as determined by testing with greater numbers of
repetitions.

RESULTS

D and h—With respect to the goal of classifying trees
according to species, it is evident that the magnitude of
variability in amplitude (D) and shape (h) within each species
presents a challenge (Figs. 2 and 3). Levels of comparison to
the left of the between-species category are measures of
intraspecific variability. While there is a general increase in
mean D (Fig. 2) and h (Fig. 3) with increasing level of
comparison or ‘‘scale’’ from within-leaf measurements through
to between-species measurements (with the exception of the
between-sites category for the FieldSpec HH data), there is
a high degree of overlap between each of these levels. Even so,
a significant difference (P , 0.05) was found between level 3
(between tree) and level 6 (between species) with the Wilcoxon
rank sum test, indicating that for one site at one date, variability
between species is greater than variability between individuals
of the same species. At the crown level, amplitude differences
between all possible pairwise combinations of spectra of the
five species were much higher than for any other category (Fig.
2a). This was particularly evident in the near-infrared region
(Fig. 4).

The high variability within species but over multiple sites
observed in Figs. 2b and 3b (between sites FieldSpec HH data)
would appear to preclude classification of leaf reflectance
spectra at one site based on training data from another site or
from a library of hyperspectral signatures of tropical trees.
Figure 5 shows average reflectance spectra collected during the
wet season of 2002 (October–December) for two species
encountered at three sites each. Leaves of the same species
collected at multiple sites may exhibit different characteristics
with regard to leaf moisture content, leaf area, and chlorophyll
content (represented by the SPAD value; Table 4).

Similarly, leaf spectra vary widely across seasons. For the
majority of tree species sampled at Parque Natural Metropol-
itano, Panama, higher reflectance in the visible region of the
spectrum during the dry season (March 2003) was a manifes-
tation of lower chlorophyll content as compared to the wet
season (October 2003; data not shown). For example, average
total chlorophyll content (N ¼ 5 samples) varied from 465.63
6 28.10 lmol/m2 in the dry season to 652.00 6 97.01
lmol/m2 in the wet season for Astronium graveolens
(Anacardiaceae). Average reflectance at 550 nm was 7.4%
and 6.5%, respectively, for the two seasons. Differences in leaf
age and stress levels from season to season may have caused
additional variation in the leaf spectra.

Classification—Species from one site and season were
classified with high accuracy (Table 5). Not unexpectedly, the
highest classification error accompanies the site for which the
largest number of species was sampled (Chamela, Mexico, 27
species), indicating a potential problem for complex tropical
dry forest ecosystems in which species density can exceed 50–
70 species per ha (Kalacska et al., 2004). Still, accuracy on the
test data was 80%.

For our case study site (Parque Natural Metropolitano,
Panama), classification error on the test data (47 of the total 95
leaf spectra for the site, representing 10 species) was 8.51%
(Table 5). Misclassified test spectra included one leaf spectrum
(of 4 or 5 test spectra per species) for each of the following
species: Anacardium excelsum (Anacardiaceae), Luehea
seemannii (Malvaceae), Cordia alliodora (Boraginaceae), and
Enterolobium cyclocarpum (Fabaceae/Mimosoideae). Since no

Fig. 2. Mean amplitude (D) (61SD) of leaf reflectance spectra of
tropical trees at sites in Mexico, Costa Rica, and Panama for various levels
of comparison. Average D was calculated for UniSpec data (A) and ASD
HandHeld data (B) (see Table 2). Number of samples used to compute
each mean is indicated and includes all the pairwise combinations of
spectra per respective level.
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single species was confused with greater frequency than these,
all species were generally well classified.

Accuracy was dependent on number of features and
classifier. Highest classification accuracies were obtained with
20–40 features, beyond which classification accuracy eroded
due to overfitting. The frequency at which wavebands in
various regions of the spectrum were selected for the various
species-level classifications, based on all classified sites and the
top 20 selected features per site, was higher for visible (400–
700 nm) bands than for near-infrared (700–950 nm) bands (Fig.
6). Classifiers also affected accuracy. For example, using 40
wavebands and a logistic linear classifier produced the lowest
overall classification error of 2.67% for the Fort Sherman site
(Table 5). The second lowest error for the same site, however,
was 14.67% for a k-nearest neighbor classifier (k ¼ 2; not
shown). In general, however, reasonably accurate classifica-
tions by multiple classifiers at each site lends support for the
inherent distinguishability of the species. For four of the six

sites, the species-level classification using the logistic linear
classifier produced the lowest classification errors.

Two additional classifications were run to determine the
potential for classifying species across seasons and across sites.
At Parque Natural Metropolitano, there were six species for
which we had bidirectional reflectance data in both dry (March
2003) and wet (October 2003) seasons. Data from the wet
season (October 2003, 10 samples/species) were used to train
classifiers to test on the dry season (March 2003, 3 samples/
species) data set. In this case, best-case scenario classification
error on the test data was high (28%). To classify species
across sites, we used data from the seven species sampled using
the FieldSpec HandHeld at multiple locations. For the pooled
data set, there were 10–43 samples (spectra) per species (mean
¼ 29), and each species was sampled at 2–3 locations. Data
from one site per species were used to train the classifiers, and
data from the remaining site(s) were reserved for testing.
Classification was poor again, with best-case scenario
classification error on the test data at 51.75%.

The classification analysis using repeated classifications on
random sets of species in multiples of 5, up to a total of 50
species, indicated that, within this range, mean classification
error on the test data rises linearly with number of species (Fig.
7). Classification error on the training data was 0% in all cases.
For the test data, it ranged from 13.79% for five species to
22.40% for 50 species. Variability was greater with fewer
species since, from the random selection of species, entirely
different sets of species were selected often. With a higher
number of species, the same species would have entered into
multiple classifications. It was noted that, below five species,
the linear trend shown in Fig. 7 was not followed (e.g., for two
classes, test data error was only 3.30%).

Case study including leaf trait data: Parque Natural
Metropolitano—For each leaf trait, species at Parque Natural

Fig. 3. Mean shape (h) (61SD) of leaf reflectance spectra of tropical
trees at sites in Mexico, Costa Rica, and Panama for various levels of
comparison. Average h was calculated for UniSpec (A) and ASD
HandHeld data (B) (see Table 2). Number of samples used to compute
each mean is indicated and includes the pairwise combinations of spectra
per respective level.

Fig. 4. Average crown reflectance spectra (field of view¼ c. 3.6 m) for
five species at Fort Sherman, Panama. Spectra correspond to species
pictured in Fig. 1 as follows: Jacaranda copaia (JACO), Dussia munda
(DUMU), Tapirira guianensis (TAGU), Cordia bicolor (COBI), and
Vochysia ferruginea (VOFE).
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Metropolitano were ranked from lowest to highest value in
Table 6. In particular, Astronium graveolens (Anacardiaceae) is
exceptional for its low reflectance in both visible and near-
infrared regions, accompanied by high transmittance in the
same regions (Table 6, Fig. 8). In thin sections, leaves had an
unusually thin, compact spongy mesophyll for this species
(Fig. 9). Astronium graveolens had both a low percentage of
intercellular space and low near-infrared reflectance, whereas
Ficus insipida (Moraceae) had a high percentage of in-
tercellular space, a wide spongy mesophyll, and high near-
infrared reflectance (Table 6, Fig. 9).

Correlation analyses between variables listed in Table 6
confirm associations between leaf pigmentation and/or struc-
tural features and leaf reflectance and/or transmittance. In
addition to 548.5 and 800.7 nm, given in Table 6, the
wavebands 445.9, 532, 571.6, 680, 706.2, 748.6, and 959.3 nm

were also tested in the correlation analyses, for both diffuse
reflectance and transmittance as well as bidirectional re-
flectance. Transmittance in near-infrared regions was nega-
tively correlated (P , 0.05) with spongy mesophyll width (at
748.6 and 800.7 nm) and highly negatively correlated (P ,
0.01) with percentage of intercellular space (at 706.2, 748.6,
800.7, and 959.3 nm; Table 7). While relationships between
reflectance wavebands and chlorophyll content are generally
nonlinear, there was a strong linear correlation (P , 0.01)
between chlorophyll content (chlorophyll a, chlorophyll b, and
total chlorophyll, measured in micromoles per square meter)
and a common spectral index used for chlorophyll estimation,
the simple ratio (R

750
/R

705
; Gitelson and Merzlyak, 1994). To

test these relationships, chlorophyll data from individual
samples (N ¼ 5 samples per species for six species) were
paired with bidirectional reflectance data for the same sample.
(UniSpec spectral reflectance measurements were taken of the
leaf cores that were then designated for chlorophyll analysis.)
Leaf thickness was significantly correlated (P , 0.05) with
bidirectional reflectance at 532, 548.5, 571.6, and 706.2 nm
(not shown).

DISCUSSION

Leaf spectral reflectance is a rich data source for un-
derstanding differences in leaf traits among species and for
assessing the potential for species discrimination. Differences
in leaf traits are the basis for differences in leaf optical
properties that permit species discrimination at the leaf level,
which within sites and within seasons, appears promising when
a limited number of species are present. Because classification
accuracy degrades with increasing numbers of species, it is
more likely that, for species-rich tropical forests, a portion of
species with distinctive reflectance characteristics will be
distinguishable from the larger community. At the crown
scale, in the first tropical rain forest tree discrimination study
using high spectral and spatial resolution imagery, Clark et al.
(2005) also found good potential (92% accuracy) for analyzing
a limited number of emergent tree species (seven) from
a single-date (1998) HYDICE image of La Selva, Costa Rica,
using a linear discriminant analysis and 30 wavebands. These
efforts represent the initial stages of operational tropical tree
species identification by hyperspectral remote sensors, which

Fig. 5. Average relative reflectance spectra of (A) Bursera simaruba
(BUSI) and (B) Byrsonima crassifolia (BYCR) each at three sites in Costa
Rica (site abbreviations: SR, Santa Rosa; ER, El Rodeo; LI, Los Inocentes;
LH, Los Horizontes). Accompanying leaf trait data are in Table 4.

TABLE 4. Leaf characteristics of Bursera simaruba and Byrsonima
crassifolia at multiple sites.

Species/site Moisture content (%) Leaf area (cm2) Chlorophyll content

BUSI/SR 0.75 6 0.03 286.15 6 95.31 44.40 6 6.06
BUSI/ER 0.65 6 0.05 227.35 6 86.48 42.37 6 5.85
BUSI/LI 0.64 6 0.05 not available 41.89 6 5.00
BYCR/ER 0.55 6 0.01 42.54 6 13.20 48.60 6 3.90
BYCR/LH 0.53 6 0.002 56.80 6 21.52 42.80 6 4.70
BYCR/LI 0.58 6 0.01 46.98 6 18.94 52.78 6 6.76

Notes: BUSI, Bursera simaruba; BYCR, Byrsonima crassifolia; SR,
Santa Rosa; ER, El Rodeo; LI, Los Inocentes; LH, Los Horizontes. For
moisture content and leaf area, N ¼ 15 samples (3 trees 3 5 leaves). For
SPAD, N ¼ 15 samples 3 5 measurements/leaf ¼ 75 measurements
(exceptions: BYCR/LH and BYCR/LI, for which only three samples (3
trees 3 1 leaf) were averaged. In those cases, 15 SPAD measurements
were averaged (3 samples 3 5 measurements/leaf)). Chlorophyll content
was measured with SPAD, a hand-held chlorophyll absorbance meter
(Markwell et al., 1995; Richardson et al., 2002).
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will provide an important tool to tropical biologists and
ecologists for a variety of applications.

D and h (leaf level)—Use of Price’s (1994) metrics D and h
show that variability in a species’ reflectance begins within
individual leaf blades (Figs. 2 and 3). Multiple spectral
measurements taken over the leaf blade show variation,
particularly over leaf veins (we avoided the main vein).
Similarly, multiple measurements from the SPAD chlorophyll
absorbance meter of the same leaf also vary, indicating uneven
chlorophyll distribution across the leaf blade (also documented
in other species; e.g., Hew et al., 1998). This variation
increases when comparing multiple leaves from the same tree
and is compounded further when examining spectra of leaves
of different conspecific trees from a single site. Greater
differences yet are seen for between-season and between-site
spectra of the same species (Fig. 5).

Classification—Classification for each site was successful
despite high intraspecific variability, with greater than 80% test
data accuracy at all sites. These results may be attributed to the
selection of a set of highly discriminating features (wavebands)
from the spectral range available and the use of a variety of
powerful tools for pattern recognition.

The most frequently selected wavebands in our analyses
were in the blue region (400–499 nm), which is strongly
influenced by absorption of chlorophylls and carotenoids
(Jensen, 2000). The blue-green edge leading to the green peak
(500–549 nm) and chlorophyll absorption leading to the red
edge (650–699 nm) were also important (Fig. 6). This finding
is similar to Fung et al. (1999), who used stepwise linear
discriminant analysis for feature selection and found selected
bands to lie mainly in the green peak and red edge regions.
Overall, however, the bands selected depend on the data used
and therefore differ from one suite of species to the next to
optimize separability in each case. Wavebands beyond the
range 400–950 nm, related to nitrogen and lignin concen-
trations, as well as O-H stretching, may be useful in future tree
discrimination studies, as was the case for Martin et al. (1998),
van Aardt and Wynne (2001), and Clark et al. (2005).

The logistic linear classifier, a parametric classifier, provided
the best species-level classification results at four of six sites
(Table 5). The k-nearest neighbor classifier, a nonparametric
classifier, produced the second best results overall. The
quadratic classifier generally performed the worst, possibly
due to correlations between features. Of the nonparametric
classifiers, the decision tree classifier generally performed

TABLE 5. Best species-level classification results.

Site Date No. species Samples/species Top classifier No. features Training error (%) Testing error (%) Overall error (%)

El Rodeo, Costa Rica Dec 02 4 15 lmnc 20 0 6.67 3.34
Los Horizontes, Costa Ricaa Oct 02 4 10 loglc 30 0 0 0
Los Inocentes, Costa Ricaa Nov 02 9 5–15 knnc 20 0 12.73 6.37
Parque Natural Metropolitano, Panama Oct 03 10 7–10 loglc 20 0 8.51 4.26
Fort Sherman, Panama Oct 03 15 10 loglc 40 0 5.33 2.67
Chamela-Cuixmala, Mexico Aug 03 27 15 loglc 30 0 19.37 9.69

Notes: lmnc, neural network classifier; loglc, logistic linear classifier; knnc, k-nearest neighbor classifier.
a Due to insufficient data, some species were omitted from the classification.

Fig. 6. Distribution of wavebands chosen in the forward feature
selection process based on the within-site species classifications (Table 5).
The top 20 wavebands per classification were tallied for this histogram.

Fig. 7. Classification analysis for 50 species from three sites, Parque
Natural Metropolitano, Fort Sherman, and Chamela. Data were gathered in
the 2003 wet season using the UniSpec. Mean test data error 61SD was
computed from 10 000 classifications each per set of 5, 10, 15, 20, 25, 30,
35, 40, and 45 species. Sets of species were selected at random for each
classification.
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poorly, likely due to complex trees and the tendency toward
overfitting. The decision tree classifier is not well suited to
features that have a large number of possible values (Mitchell,
1997), as was also observed when discriminating between
lianas and trees (Castro-Esau et al., 2004).

The spectrometer used for data collection may possibly
influence classification accuracy as well. Instruments with
higher spectral resolution will better capture fine spectral
details that may be used for discriminating species. In this case,
the FieldSpec HandHeld had a finer spectral resolution (3.5 nm
at 700 nm) than the UniSpec (,10 nm), but there was no
obvious advantage observed in our classification results (Table
5).

Based on our findings, which are at this point mainly limited
to the level of the leaf, the potential for using a database of
spectral signatures of species for classifying across sites and

seasons appears low. The leaf-level spectral signature of
a species from one site did not serve effectively to classify the
same species at a second site (Fig. 5). Differences in leaf age,
phenology, soil mineral nutrition, moisture availability,
temperature, and other stresses (Carter, 1993) could certainly
lead to the differences observed in spectral reflectance of the
same species over multiple sites with varying edaphic and
climatic conditions. In a similar way, progressively increasing
stress with increasing elevation has been noted in the spectral
reflectance properties of Picea rubens, Abies balsamea
(Richardson et al., 2001), and Betula papyrifera (Richardson
and Berlyn, 2002). Another possible cause of intersite
differences in conspecific leaf spectra is that genetic differences
between populations can contribute to spectral differences.
Winter (1998), for instance, was able to distinguish between
two different varieties of avocado (Persea americana) in an
airborne TRWIS III image. Differences in the spectral
characteristics of different genotypes of crops such as barley
(e.g., Fetch et al., 2004) have also been detected. However,
more investigation is required in this area with respect to
tropical trees.

Differences in leaf optical properties due to seasonality (wet /
dry cycles) could be detrimental or beneficial to tree species
identification. Temporal phenomena such as flowering, leaf
flush, or senescence could be confusing if not well understood,
but could become useful in detecting particular species at
particular times of the year if understood. In a similar way, the
timing of imagery is important in crop discrimination studies
(Collins, 1978; Congalton et al., 1998; Murakami et al., 2001).
Thus, a creative combination of image processing and
classification with in-depth knowledge of tree ecology and
phenology will likely be necessary for a successful species-
level classification.

Based on our leaf-level classification analysis of 50 species,
there is potential for classification of up to 20 species with
approximately 85% test data accuracy and approximately 80%
test data accuracy for up to 45 species (Fig. 7). Fung et al.
(1999) achieved a similar level of overall accuracy (89%) for
25 subtropical tree species using a set of 13 bands selected
using hierarchical clustering (as compared to 83.2% test data
accuracy and 91.6% overall accuracy for 25 species, based on
our data). For our analysis, five spectra were used for training

TABLE 6. Leaf trait data for species in the Parque Natural Metropolitano October 2003 data set.

Species Chl
a

(lmol m�2) Chl
b

(lmol m�2) Chl
total

(lmol m�2) R
550

(%) T
550

(%) R
800

(%) T
800

(%) Thick (mm) Space (%) SMW (lm) SM/T

ANEX 715.2 (6) 340.1 (6) 1055.3 (6) 11.33 (6) 6.23 (5) 49.83 (3) 40.27 (5) 0.268 (4) 12.21 (4) 93.5 (6) 0.54 (6)
LUSE 570.2 (5) 144.8 (4) 715.0 (5) 11.24 (4) 1.35 (1) 60.87 (8) 26.32 (1) 0.348 (7)
ASGR 529.9 (3) 134.3 (3) 664.2 (3) 9.10 (1) 10.96 (8) 42.22 (1) 49.45 (9) 0.164 (1) 5.40 (1) 31.0 (1) 0.22 (1)
COAL 390.7 (1) 105.5 (2) 496.2 (1) 10.90 (3) 6.22 (4) 49.90 (4) 38.52 (4) 0.290 (5) 15.47 (6) 37.0 (2) 0.35 (2)
ANSP 544.8 (4) 145.4 (5) 690.2 (4) 9.17 (2) 8.00 (6) 50.09 (5) 43.88 (8) 0.259 (3) 9.86 (2) 58.5 (3) 0.41 (3)
CAEL 11.31 (5) 8.00 (6) 51.38 (6) 41.13 (6) 0.458 (9) 10.18 (3) 65.0 (4) 0.47 (5)
PSSE 11.70 (7) 9.24 (7) 48.37 (2) 43.32 (7) 0.256 (2) 12.70 (5) 78.5 (5) 0.42 (4)
FIIN 415.0 (2) 87.9 (1) 502.9 (2) 12.34 (8) 2.70 (2) 53.57 (7) 31.97 (2) 0.378 (8) 29.30 (7) 146.5 (7) 0.42 (4)
CHCA 15.36 (9) 4.91 (3) 60.92 (9) 35.01 (3) 0.299 (6)

Note: ANEX, Anacardium excelsum; LUSE, Luehea seemannii; ASGR, Astronium graveolens; COAL, Cordia alliodora; ANSP, Annona spraguei;
CAEL, Castilla elastica; PSSE, Pseudobombax septenatum; FIIN, Ficus insipida; CHCA, Chrysophyllum cainito. Chl

a
, Chl

b,
Chl

total
are averages based

on 5 samples/species. R
550

refers to diffuse reflectance at 548.5 nm (average of 4 spectra/species); T
550

, transmittance at 548.5 nm; R
800

, diffuse reflectance
at 800.7 nm; T

800
, transmittance at 800.7 nm; Thick, average leaf thickness from 5–10 leaves (5 measurements/leaf); Space (%), percentage of intercellular

space, based on the classification of one internal leaf morphology image per species; SMW, spongy mesophyll width; SM/T, ratio of spongy mesophyll
width to total leaf width. SMW and SM/Total are both based on five measurements from a single leaf thin section. Species are ranked according to lowest
to highest values in each column (numbers in parentheses). Missing data indicate data not available. There are no leaf trait data for a 10th Parque Natural
Metropolitano species, Enterolobium cyclocarpum (reflectance only), which has been omitted from this table.

Fig. 8. Average reflectance spectra for Astronium graveolens (ASGR)
compared to average reflectance spectra 61SD for all species at Parque
Natural Metropolitano, Panama, for October 2003.
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classifiers and five for testing the classifiers. With greater
amounts of training data, such as using a cross-validation
approach, classification accuracies could have been higher yet.

Provided the linear relationship in Fig. 7 continues, we may
be able to classify test data for 75 species with 73% accuracy,
and 100 species with 69% accuracy. Classification accuracy
erodes further beyond 100 species. At the leaf level, therefore,
it would not be possible to classify all species in species-rich
neotropical forests where the number of tree species can exceed
100 even in 0.1-ha plots (Gentry, 1991), although potential for
discrimination would likely be improved using a spectrometer
with a greater range (e.g., to 2500 nm). Also, it remains to be
determined whether a similar trend holds at the crown level. If
it does, classification could still be successful for less species-
rich tropical forests or for detecting smaller numbers of tree
species with distinct features from the remainder of the canopy.

Spectra and leaf traits—While this paper does not attempt
to explore a comprehensive suite of leaf traits, the selected
traits measured for species at Parque Natural Metropolitano
(chlorophyll content, leaf thickness, percentage of intercellular
space, spongy mesophyll width) provide an illustration of leaf
feature variability among nine tropical dry forest tree species,
which supports the differences observed in leaf reflectance for
these same species (Table 6). Where two species differ in one
or more of these traits, the resultant differences in spectral
reflectance at one or multiple wavebands provide the
opportunity for their discrimination.

Pigment content plays a large role in visible reflectance. The
range of total chlorophyll content for the selected species at
Parque Natural Metropolitano was 496-1055 lmol/m2 and for
reflectance at 550 nm, 9.10–15.36% (Table 6). Overall, visible
wavebands (400–700 nm) were key to species identification
and were emphasized in feature selection (Fig. 6). Leaf
thickness and internal leaf morphology appear to control
near-infrared reflectance (Gates et al., 1965; Knipling, 1970;
Knapp and Carter, 1998). From our samples, histological
analysis of leaf thin sections (Fig. 9) can provide unique insight
into the relative magnitude of reflectance in the near-infrared.
The most striking link encountered was between the low
percentage of intercellular space, spongy mesophyll width, and
leaf thickness of Astronium graveolens and the species’
uniquely low near-infrared reflectance. The leaf thin section
of this species revealed a very thin, compact spongy mesophyll

Fig. 9. Leaf cross sections of three species from Parque Natural
Metropolitano, Panama. (A) Astronium graveolens, (B) Anacardium
excelsum, (C) Ficus insipida. Bracketed area indicates approximate width
of the spongy mesophyll. The 100-lm scale is applicable to all cross
sections.

TABLE 7. Correlation coefficients and P values for relationships between
leaf optical properties and leaf internal mesophyll structure, Parque
Natural Metropolitano (October 2003 data set).

Space (%) SMW (lm)

Waveband r P r P

R
706.2

0.760* 0.048 0.823* 0.023
R

748.6
0.626 0.133 0.632 0.128

R
800.7

0.723 0.066 0.684 0.090
R

959.3
0.786* 0.036 0.710 0.074

T
706.2

�0.879** 0.009 �0.728 0.063
T

748.6
�0.938** 0.002 �0.768* 0.044

T
800.7

�0.932** 0.002 �0.773* 0.042
T

959.3
�0.875** 0.010 �0.725 0.065

Notes: R, reflectance; T, transmittance; Space (%), percentage of
intercellular space; SMW, spongy mesophyll width. Correlation coef-
ficients determined for N ¼ 7 species; *P � 0.05; **P � 0.01.
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layer, allowing little opportunity for interactions of light at air–
cell-wall interfaces. In fact, this same species transmitted more
light through the leaf than any other species sampled. Stronger
correlations with near-infrared bands might have been observed
using the ratio of mesophyll cell surface area exposed to
intercellular spaces per unit leaf surface area (Slaton et al.,
2001), which provides a better description of air–cell-wall
interfaces in the mesophyll than does the percentage of air
space (Knipling, 1970). Water content was not studied here,
but would probably correlate with leaf thickness, intercellular
space, and infrared reflectance and transmittance (Sims and
Gamon, 2003).

In general, accurate classification is closely associated with
the presence of distinctive leaf features within the spectral
range considered, as seen from the example of Parque Natural
Metropolitano. Distinctive leaf spectral features that facilitate
species classification will be tied to leaf traits such as (1) low or
high levels of chlorophyll per unit area, (2) thick or thin leaves,
and/or (3) low or high percentage of air space in the spongy
mesophyll relative to other species.

Crown spectra—Although this discussion focused mainly
on leaf spectra and their discrimination, the primary application
for this study will be towards tree crown identification. How
then, can knowledge about intraspecific variability in leaf
reflectance be applied to future crown-level tree classifications
from airborne or satellite-borne imagery? First, our results will
provide a partial basis for interpreting variability in tree crown
reflectance spectra within and between sites and seasons, since
leaf reflectance often comprises the major component of an
overall crown reflectance spectrum (with exceptions, especially
in dry-season conditions in which many trees are deciduous).
Unlike leaf spectra, tree crown spectra obtained from airborne
or satellite-borne sensors are influenced by leaf area index (leaf
density), leaf angle distribution, crown shape and shading, and
background signals such as tree bark and soil. These additional
factors may help or hinder tree crown classification. For
species that have unique and predictable combinations of these
factors, their overall crown spectral signatures may be even
more distinguishable than their leaf spectral signatures.
However, this has not been substantiated yet, and recent work
(J. L. Zhang, B. Rivard, G. A. Sánchez-Azofeifa, and K. L.
Castro-Esau, unpublished manuscript) indicates that intra-
crown variation within species may pose a challenge. In
a tropical environment, visual inspection of the crown spectra
we recorded at Fort Sherman, Panama, indicate that those five
crowns would be distinguishable without difficulty, mainly due
to large differences in spectral amplitude and, to a lesser extent,
differences in shape (Figs. 1 and 4).

Classification at the canopy level is clearly the next step in
determining whether tropical tree species are differentiated and
requires airborne or satellite-borne imagery with a combination
of both high spectral and spatial resolution. Clark et al. (2005)
presented pioneering work in hyperspectral tropical rain forest
tree species discrimination at leaf to crown scales, which will
likely lead to a burgeoning of research in this field. Additional
efforts so far, using aerial photographs (Trichon, 2001) and
high spatial resolution multispectral data (reflectance measured
over a small number [four] of broad bands, each typically .50
nm wide) such as IKONOS (1 m and 4 m resolution) and
Quickbird (0.7 m and 2.8 m resolution; Read et al., 2003;
Wang et al., 2004), also support the possibility of separating
a portion of the total number of tropical species. Combined

with LiDAR (Light Detection And Ranging, an active remote
sensor that measures return time for laser pulses), which can
provide information on tree location and height as well as
crown diameter and shape, the possibilities may extend even
further (Gillespie et al., 2004). As these types of data become
increasingly available for tropical forests, scientists may draw
upon techniques developed for automated tree isolation
(Wulder et al., 2000; Leckie et al., 2003) and for tree species
classifications in ecosystems with more limited species
diversity, such as arid environments (Lewis, 2000; Lewis et
al., 2001) and temperate forests (Martin et al., 1998; Key et al.,
2001; Roberts et al., 2004). The ability to accurately map tree
species in tropical ecosystems will represent a significant
advance that will facilitate ecosystem characterization, tree
demographic studies, mapping endangered or endemic species,
identifying important food sources for wildlife, and quantifying
carbon pools and carbon sequestration rates.
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