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Abstract. The widespread conversion of natural habitats to agricultural land has created a need to

integrate intensively managed landscapes into conservation management priorities. However, there

are no clearly defined methods for assessing the conservation value of managed landscapes at the

local scale. We used remotely sensed landscape heterogeneity as a rapid practical tool for the

assessment of local biodiversity value within a predominantly agricultural landscape in Canterbury,

New Zealand. Bird diversity was highly significantly correlated with landscape heterogeneity,

distance from rivers and the Christchurch central business district, altitude and average annual

household income, indicating that remotely sensed landscape heterogeneity is a good predictor of

local biodiversity patterns. We discuss the advantages and limitations of using geographic

information systems to determine local areas of high conservation value.

Introduction

Humans have converted 36% of the Earth’s land surface area to agriculture at
the expense of natural habitats (Morris 1995). As a consequence, land use
change is expected to be the primary driver of population reduction and species
loss for the foreseeable future (Vitousek 1994). Because land use change and
landscape context are critical determinants of population viability (Hanski and
Ovaskainen 2000; Vandermeer and Carvajal 2001), it is important to move
beyond simply protecting natural habitat remnants, to a better recognition of
the role that highly modified landscapes play in maintaining native biodiversity
(Pimentel et al. 1992; Moguel and Toledo 1999; Jensen 2001; Dolek and Geyer
2002). As Novacek and Cleland (2001, p. 5468) point out, ‘‘we are obviously
past any point where strategies that focus on conservation of ‘pristine’ habitat
are sufficient for the job’’. There is a clear need to integrate the conservation
values of agricultural landscapes into priority management strategies.
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Frequently, conservation goals and management strategies are accom-
plished by maximising the diversity and complementarity of species within
conservation areas of minimal size (Balmford and Gaston 1999). High species
richness is one measure that is commonly used to determine priority areas for
conservation protection at regional (Wickham et al. 1995; Barnard et al.
1998; Wessels et al. 2000; Sfenthourakis and Legakis 2001; Simonson et al.
2001) and global (Williams et al. 1997; Myers et al. 2000) scales, despite the
obvious problem that diversity is not always a good surrogate for uniqueness
or conservation value (Prendergast et al. 1993). Clearly, the optimal method
for locating these species-rich hotspots is to conduct detailed primary surveys
to quantify native species richness (Balmford and Gaston 1999), but this can
be costly and time-consuming and is usually only feasible at coarse resolu-
tion. In practice, the same economic and logistic constraints that determine
the scope and extent of conservation action, also limit the feasibility of
conducting surveys. Furthermore, there are lost opportunity costs in the time
and money spent identifying priority areas, at the expense of active conser-
vation management.

In managed landscapes, one problem with taking a similar approach to
maximising the diversity and complementarity of species is that native species
are often much rarer and more widely dispersed than in natural landscapes.
Consequently, conservation priorities for managed landscapes might well have
to be resolved at local, rather than regional scales. Unfortunately, the direct
and indirect costs of primary surveys become exponentially greater with
increasing spatial resolution, making it difficult for conservation managers or
urban planners to obtain empirical data for setting local conservation priorities
within regions. Here, we assess the degree to which remotely sensed landscape
diversity metrics can be used in combination with other digital data sets to
overcome this problem in identifying areas of high native species richness at a
local scale.

A common strategy to minimise the costs of identifying regions of high
species richness has been to establish whether there are correlations between
landscape structure, plant diversity and animal diversity, with the goal of
using an easily sampled landscape metric as a predictor of overall biodi-
versity (Crisp et al. 1998; Duellie and Obrist 1998; Howard et al. 1998;
Simonson et al. 2001). Debate over the degree of spatial autocorrelation in
taxon diversity continues to be the subject of numerous empirical (Oliver et
al. 1998; Tardif and DesGranges 1998; Allen et al. 1999; Barker and
Mayhill 1999; Allen et al. 2001; Negi and Gadgil 2002; Vessby et al. 2002;
Hawkins and Porter 2003) and experimental (Siemann et al. 1998; Haddad
et al. 2001) studies. Most investigations find positive correlations between
the diversity of different taxa (Duellie and Obrist 1998; Howard et al. 1998;
Lawton et al. 1998; Niemelä and Baur 1998; Blair 1999; Allen et al. 2001),
but the correlations are often weak and, more importantly, the spatial
locations of hotspots for different taxa frequently do not overlap (Pren-
dergast et al. 1993). Despite these apparent problems, several recent studies
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have attempted to use remotely sensed landscape heterogeneity as a general
predictor of biodiversity hotspots. Surprisingly, perhaps, there has been a
remarkable degree of success in establishing relationships between landscape
diversity and the diversity of plants (Debinski et al. 1999; Lehmann et al.
2002; Luoto et al. 2002; Moser et al. 2002), invertebrates (Debinski et al.
1999; Cowley et al. 2000; Fleishman et al. 2001; Kerr et al. 2001; Mac Nally
et al. 2003) and birds (Nøhr and Jørgensen 1997; Debinski et al. 1999) at
regional scales. Most recently, Hope et al. (2003) showed socioeconomics to
be an important determinant of urban plant diversity. We extend the ap-
proaches taken in these studies to examine the possibility of using remotely
sensed landscape heterogeneity in combination with a socioeconomic indi-
cator as a tool for rapidly assessing local biodiversity value in heavily
modified, managed landscapes in New Zealand.

For local-scale analyses, limitations on spatial resolution (Tobalske and
Tobalske 1999) and the degree to which different land-use types can be dif-
ferentiated with remotely sensed data, restrict the accuracy of geographic
information system (GIS) analyses in conservation management. Furthermore,
local landscape diversity assessments are likely to be particularly sensitive to
the availability of precise, up-to-date, spatial land-use information. However,
the attraction of using GIS to determine local diversity hotspots is the ease and
cost-effectiveness with which it can be employed, relative to the alternative of
costly and time-consuming primary surveys. Such an advantage makes GIS a
powerful tool for conservation managers and urban planners faced with the
challenge of prioritising local conservation areas.

In New Zealand, the Land Cover Database (LCDB) maps land-use types
from a nationwide, satellite-derived data set that is updated regularly. We used
the LCDB to determine spatial patterns in landscape diversity with regard to
the dominant natural and anthropogenic features of the environment. The
degree to which GIS analyses can be used to predict local biodiversity value
was assessed by analysing the spatial congruence between landscape diversity, a
socioeconomic indicator and bird species richness.

Methods

Study area

We measured landscape heterogeneity in a representative portion of the coastal
Canterbury Plains, South Island, New Zealand (Figure 1A). The area com-
prised 457,500 ha of highly modified landscape, including Christchurch City,
its surrounding suburbs and hinterland containing several rivers, a large area
of intensive agriculture, and the mountainous Banks Peninsula. Historically,
the area was almost entirely forested before conversion to agriculture (Knox
1969; McGlone 1989). Today, only 51 forest fragments remain as small, iso-
lated patches on Banks Peninsula (total area = 351 ha), in the foothills of
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the Southern Alps (total area = 193 ha), and Riccarton Bush (7.7 ha) near the
centre of the city. The LCDB recognised 14 different land-use types within
the study area (Table 1), of which pastoral land was dominant, covering 82 %
of the total area (Figure 1B).

GIS analyses

Digital information from the LCDB, NZ Digital Elevation Model (NZDEM)
and NZ Statistics Department Survey data were analysed using ArcView 3.2
and Patch Analyst GIS software. The study area was divided into 1 · 1 km grid
squares for analysis.

Biodiversity value within the landscape was estimated by compiling a list of
native bird species that utilise (defined as feeding or breeding within) each of
the 14 land-use types in Canterbury (Appendix 1). Bird diversity value was
assigned to each land-use type according to the total number of bird species
within each land use (Appendix 1). The bird diversity value of each grid square
was determined using the following equation:

BD ¼
X
ðpAi� iÞ

where pAi is the proportion of grid square area occupied by the ith land-use
type and Si is the number of species that utilise the ith land-use type.

Spatial patterns in bird diversity were investigated in relation to five
variables: (1) landscape diversity, (2) altitude, (3) distance from the

Table 1. The 14 land-use types that occurred in the study area, and the area (ha) and proportional

area (%) of each.

Land-use Area (ha) Area (%)

Pastoral 376,555 82.30
Scrub 28,002 6.12
Urban 14,957 3.27
Planted forest 14,924 3.26
Bare ground 8454 1.85
Tussock 5521 1.21
Urban open space 2746 0.60
Coastal wetlands 2719 0.59
Inland water 994 0.22
Horticulture 987 0.22
Coastal sands 793 0.17
Indigenous forest 576 0.13
Inland wetlands 306 0.07
Mines and dumps 10 0.00
Total 457,545 100.00

Horticulture includes market-gardens, pastoral includes all exotic grasslands, bare ground includes riverine

gravel beds and urban open space includes parks and playing fields.
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Christchurch Central Business District (CBD), (4) distance from rivers and
(5) average household income. First, landscape diversity was calculated
within each grid square using the Shannon (Shannon and Weaver 1949) and
Simpson (Simpson 1949) diversity indices. Second, average altitude (m) was
obtained from the NZDEM. Elevation within the study area varied from
sea level to 930 m. Third, distance from the centre of each grid square to
the CBD and the nearest river (km) were calculated using Patch Analyst.
Finally, average household income (NZ $ p.a.) per grid square was derived
from the most recent (2001) national survey data. Values for average
household income per grid square varied from $ 0 (no households within
grid) to $ 92,000 p.a.

Data analysis

Variables with non-normal distributions were converted to rank data for
analysis. To account for spatial autocorrelation between adjacent grid squares,
we included grid square latitude and longitude as covariates in all analyses.
Values of the Shannon and Simpson indices were compared with a Spearman
rank correlation. Relationships between bird diversity and the five predictor
variables were tested with linear regression.

Results

The two landscape diversity indices were highly significantly correlated with
each other (Spearman rank correlation: r = 0.999, df = 4821, p < 0.001).
Given the high degree of concordance in index values, we restricted further
analyses to Shannon landscape diversity. Spatial patterns in Shannon land-
scape diversity were apparent with regard to three variables (Figure 2A). First,
diversity in the city centre was extremely low, but a strong peak in landscape
diversity was apparent at 10 km from the CBD. The surrounding, predomi-
nantly agricultural landscape, exhibited intermediate-to-low diversity. Second,
land-use diversity was high along rivers and declined rapidly over a distance of
4–5 km. Third, high land-use diversity was observed near sea level and at
medium altitudes, whereas the low-lying Canterbury Plains had very low
diversity.

Areas with highest bird diversity were apparent in estuaries and in the
suburban green-belt of Christchurch city (Figure 2B). Bird diversity was lowest
along the major rivers and in the CBD. The monocultural, pastoral regions
that dominated much of the Canterbury Plains had moderate values of bird
diversity.

Significant relationships existed between bird diversity and all five GIS
predictors (Table 2). The model explained a total of 53% of the variation in
bird diversity, with landscape diversity alone explaining 42%. Surprisingly,
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Figure 2. Diversity indices in the landscape: (A) values of the Shannon landscape diversity index;

(B) values of the Bird Species diversity index.

Table 2. Results of multiple regression of bird diversity on Shannon landscape diversity, altitude,

distance from Christchurch Central Business District (CBD) and nearest river, and average

household income. Model r2 = 0.533.

Variable Df SS MS F-value p

Rank(Shannon) 1 2,972,593,370 2,972,593,370 4200.96 <0.0001
Rank(river) 1 469,357,932 469,357,932 663.31 <0.0001
Rank(CBD) 1 324,588,576 324,588,576 458.72 <0.0001
Income 1 16,112,493 16,112,493 22.77 <0.0001
Rank(altitude) 1 3,284,764 3,284,764 4.64 0.03
Residual 4690 3,318,637,401 707,599
Total 4695 7,104,574,536 3,786,644,734
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bird diversity and Shannon landscape diversity were negatively correlated, as
were distance to CBD and household income. Distance to river and altitude
were positively correlated with bird diversity.

Discussion

Remotely sensed landscape variables were highly significantly correlated with
bird diversity at the local scale relevant to conservation managers and urban
planners. The amount of variance explained by the model was comparable to
that found in other studies of a similar nature (Nøhr and Jørgensen 1997;
Anderson 2001), indicating GIS analyses can successfully characterise areas of
high local biodiversity in dissimilar environments. Therefore, GIS analysis
provides a fast, cost-effective predictor of local biodiversity hotspots that may
be appropriate for targeted conservation efforts.

Surprisingly, our analysis showed bird and landscape diversity to be neg-
atively correlated, indicating that uniform landscapes apparently have higher
biodiversity value than heterogeneous landscapes. This is because the Can-
terbury region is dominated by pastoral land, which supports a relatively
large number of native species compared to some other urban or industrial
land uses (Appendix 1), so the majority of homogeneous grid squares had
moderately high bird diversity. Although natural habitats such as wetlands
and indigenous forest supported considerably more species, these habitat
types occurred rarely in the landscape and were typically small, isolated
patches that were unable to support the full complement of species known to
utilise them. Therefore, grid squares containing natural habitats also con-
tained larger areas of species-poor landuses, leading to low average bird
diversity in grid squares with high landscape heterogeneity. This result does
not mean that we are suggesting pastoral lands are more appropriate sites for
conservation action than natural habitats. An important component of bio-
diversity value that was not measured in this study is beta diversity, or
species turnover between sites. It is reasonable to assume that beta diversity
would be much higher between heterogeneous grid squares containing natural
habitats than between uniform grid squares composed entirely of the same
pastoral land use.

Within the Canterbury region, local areas of high biodiversity value were
located in estuaries and some city suburbs. Both landscape and bird diversity
were surprisingly high within a zone between 7–13 km from the Christchurch
city CBD. This was probably due to the intersection of human-modified
habitats with natural and semi-natural habitats such as coastal sands, lakes and
wetlands in the city ‘green-belt’, which together support large numbers of
native bird species. The high diversity value of New Zealand city suburbs has
also been shown for native plant and beetle diversity. For example, Given and
Meurk (2000) found that Christchurch city supports a minimum of 350 native
vascular plant species (out of a total flora of ca. 2500 species) and an exhaustive
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survey by Kuschel (1990) recorded 753 native beetle species in a single suburb
of another New Zealand city, Auckland (out of a total fauna of ca. 5000
species). In contrast, agricultural monocultures typically support a depauper-
ate native flora and fauna, as highlighted by Sivasubramaniam et al. (1997)
who found just 44 species of beetles in Canterbury carrot fields, and Kuschel
(1990) and Harris and Burns (2000) who found that agricultural landscapes in
the North Island supported predominantly exotic beetle species and few
natives.

Bird diversity was negatively correlated with annual household income. A
recent study by Hope et al. (2003) showed income to be positively correlated
with plant genera richness because native plants were replaced with a larger
number of exotic genera in residential gardens. If the trend described by Hope
et al. (2003) is also true of New Zealand cities, we would expect to see a decline
in bird species richness with increasing income as native animal diversity is
typically positively correlated with the amount of native vegetation (Crisp et al.
1998).

Although the strong relationship between landscape and bird diversity
implies a high degree of predictive power, two problems are apparent in
using remotely sensed landscape diversity as a surrogate for bird species
diversity. First, the method emphasises areas with a high proportion of
edge habitat, where two land uses are immediately adjacent to one another.
Grid squares with the highest landscape diversity occur where the edges of
several land-use types occur in close proximity. Given that ecosystem
dynamics are altered at habitat edges (Murcia 1995; Fagan et al. 1999) and
some native species are obligate core-dwellers, any bias toward edge habitat
is a serious problem for conservation managers. However, in highly mod-
ified landscapes like Canterbury, the problem may be minimal relative to
that experienced by managers working in natural landscapes. Managed
landscapes typically support a large proportion of invasive species (Lons-
dale 1999), whereas many native species survive in remnant natural habitats
(Kuschel 1990). Of the native biodiversity that survives in managed habi-
tats, most are either generalist species that are tolerant of different land
uses or highly dispersive species that are able to cross areas of unsuitable
land use in search of favourable habitat patches. So, the predominance of
edge habitat in modified environments is unlikely to further reduce native
biodiversity.

The second problem associated with using remotely sensed surrogate
measures of biodiversity is that the LCDB is derived from satellite imagery
using 100 · 100 m resolution. Consequently, fine scale habitat heterogeneity
is not adequately represented in the data set. For example, recent efforts by
the Christchurch City and Regional Councils to improve biodiversity con-
servation along riparian strips within the city bounds (Meurk and Swaffield
2000; Environment Canterbury 2001) and the establishment of native shel-
terbelts (Meurk 2003) are unlikely to appear on future updates of the
LCDB, because the width of these strips is typically less than 50 m. This is

1478



problematic, given the importance of narrow, linear features such as shel-
terbelts, hedgerows and road verges in providing breeding habitat and dis-
persal corridors for birds (Skagen et al. 1998; Estrada et al. 2000), small
mammals (de Lima and Gascon 1999; Laurance and Laurance 1999) and
invertebrates (Hill 1995; Fournier and Loreau 2001; McLachlan and
Wratten 2003) in human-dominated landscapes. Some of these features
could be incorporated into the GIS by using digitised 1:50,000 topographical
maps of New Zealand. However, the data used in creating the TopoMap
series were collected prior to 1989, so many features on the maps may have
been removed and others added. Future development of the LCDB can
address this problem by increasing resolution and categorising these
fine-scale land-use types.

Despite these apparent drawbacks, the LCDB provides a valuable resource
for the identification of conservation values at a local scale. Such a rapid
method of landscape assessment means that organisations tasked with priori-
tising areas for conservation action are able to do so without resorting to costly
site surveys. The value of the LCDB is further enhanced by the production of
regular updates. By repeating analyses using future updates of the LCDB,
managers will be able to ascertain areas of rapid changes in land-use diversity.
Temporal changes in land use are increasingly being recognised as important
drivers of current species composition and diversity patterns (Danielsen 1997;
Harding et al. 1998; Grove 2002), so combining landscape history with current
landscape composition will provide a powerful, complementary method for
targeted conservation action.
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