Comparative Allometry and Sexual Behavior of Four Fruit Fly Species in the Tribe Ceratitidini (Diptera: Tephritidae)

R. D. Briceño, ${ }^{1}$ W. G. Eberhard, ${ }^{1,2}$ and S. Quilici 3

Abstract

Sexual dimorphisms in four related species of tephritid flies were shown to be associated with differences in sexual behavior. In two species, Ceratitis capitata and C. catoirii, males and females approach closely head to head and apparently touch aristae, and the male buzzes his wings, probably fanning pheromone toward the female; the males were found to have longer aristae with fewer microsetae, and larger posterior areas of their wings than do females. These dimorphisms were absent in the other two species, C. rosa and Neoceratitis cyanescens, which court at a longer distance and in which the male does not fan pheromone toward the female prior to mounting. All three pairs of legs were proportionally longer in the males of all four species. None of the other sexually dimorphic male signalling traits showed the positive allometric slopes predicted by some theories. KEY wORDS: Ceratitis, Neoceratitis, sexual dimorphism, sexual selection, courtship

Sexual selection often results in differences between male and female traits. In some cases the proportional sizes of traits remain the same, and it is only the overall body size that differs between males and females. In others, the proportional sizes of traits differ. Male structures that are used as signaling devices and as weapons are frequently not only larger in males than females, but also proportionally larger in larger males of a given species (Huxley, 1972; Petrie, 1988, 1992; Alatalo et al., 1988; Green, 1992; Baker and Wilkinson, 2001). The proportional size of a trait is often expressed as the slope of the log-log regression of that trait vs. the overall body size in mature conspecific individuals: when the slope is >1.0 ("positive allometry"), larger-sized individuals have proportionally larger structures.

The reason why sexually selected traits tend to show positive allometry is not certain (Huxley, 1972; Petrie, 1988, 1992; Green, 1992). Baker and Wilkinson (2001) suggested that sexually selected traits which serve as ornaments or weapons are relatively small in smaller individuals because small individuals have less to gain from investing in such structures. Otte and Stayman (1979) proposed a related, "overflow" model, in which larger individuals have proportionally greater reserves of material which they can dedicate to sexually selected traits. Petrie (1988) argued that only structures used as signaling devices in intraspecific aggression should show positive allometry, and that weapons should not show positive allometry. This idea is not supported empirically, however. Positive allometry is commonly observed in the horns of mammals and beetles and the cerci of earwigs, which are known to function as weapons in intraspecific battles between males. In some of these groups behavioral details and the settings of interactions suggest that they function as weapons rather than in displays (Huxley, 1972; Eberhard, 1979; Brown, 1980; Eberhard and Gutierrez, 1991; Briceño and Eberhard, 1985; Eberhard et al., 1998, 2000). Bonduriansky and Day (2003) suggested that positive allometry is expected in both signals and weapon traits only under certain sets of conditions.

[^0]Behavioral observations of how particular structures are used are needed to interpret their allometric patterns of morphology. Very little is known regarding the sexual biology of flies in the genus Ceratitis, aside from that of the widespread pest species, C. capitata [Wiedemann] (reviewed in Eberhard, 2000). In C. capitata, males lure females to leks with pheromones, and court them face-to-face at close range, apparently utilizing visual and chemical stimuli, as well as tactile stimulation with their antennal aristae (Eberhard, 2000; Briceño and Eberhard, 2002b). Quilici et al. (2002) gave brief descriptions of some aspects of courtship in the Mascarene fruit fly, C. catoirii Guérin-Mèneville, and the Natal fruit fly C. rosa Karsch. In this paper we present further details of the sexual behavior of three species of Ceratitidini that damage crops on Reunion Island: two polyphagous species (C. catoirii and C. rosa), and the stenophagous Tomato fruit fly, Neoceratitis cyanescens (Bezzi), which attacks wild and cultivated Solanaceae. We also correlate these observations with patterns of sexual dimorphism.

Methods

Flies of C. rosa and N. cyanescens used for behavioral and morphological observations were first generation descendants of wild flies from Reunion Island. Adults from a recent lab-rearing were used for the more rare C. catoirii. Measurements of C. capitata were made using flies from an approximately five year-old mass-reared strain derived from wild flies in Costa Rica. Video recordings of courtship behavior of C. catoirii, C. rosa, and N. cyanescens strains that had been in captivity only a few (<5) generations were made on Reunion Island with an analogue video camera using standard techniques (e.g., Briceño and Eberhard, 2002a), and were analyzed frame by frame.

Measurements of legs, wings, and bristles (Fig. 1-terminology of White et al., 2000) were made by mounting structures flat on microscope slides in Hoyer's medium, and photographing them using a Sanyo VCC-3912 camera mounted on a compound microscope and connected to a Genius Video Wonder Series II card in a computer. Measurements were made employing the Scion image program (© 1998 Scion Image Corp.). Thorax length and head width were measured in dorsal view when the posterior edge of the thoracic scutellum just obscured the posterior edge of the mediotergite (terminology of White et al., 2000). When all measurements were repeated on 20 individuals of C. capitata to test measurement precision, correlations between first and second measurements ranged from 0.93 to 1.0 .

Tests for differences in log-log plots of different traits against thorax length were performed by first testing for differences in male and female centroids with Wilk's Lambda tests. Differences in male and female slopes and elevations of ordinary least squares (OLS) regressions were tested as described by Zar (1999). OLS regressions were used instead of reduced major axis (RMA) regressions, which generally give somewhat higher slopes (Green, 1999; Eberhard et al., 1999). RMA analyses are preferred by some authors (Green, 1999), but are not clearly more appropriate for the type of analysis performed here (see discussion by Eberhard et al., 1999). Means are followed by \pm one standard deviation.

Results
Behavior

Ceratitis catoirii

Males in field cages apparently called females pheromonally in the morning, inflating their abdominal pleura and everting a spherical body at the tip of the abdomen

Fig. 1. Dimensions of measured structures: (A) (a-f) leg; (B) (g-i) supra-fronto-orbital (SFO) seta (of male C. capitata and C. catoirii); and ($\mathrm{j}-\mathrm{k}$) wings of male (C) and female (D) C. catoirii, and male (E) and female (F) C. rosa. a-length femur; b-length tibia; c-length longest tibial seta; d-length brush of tibial setae (only the most basal, most distal, and longest setae are drawn); e-length tibia from base of brush; f-length longest femoral seta; g -widest portion of tip on left side of center line; h -length of seta; i -widest portion of tip on right side of center line (width of tip $=\mathrm{g}+\mathrm{i}$); j -width of wing; k -length of wing. The area of the discal (DB) + apical band (SAB) (1) on the wing was measured; two other bands, the anterior apical band (2) and the posterior apical band (3) were not measured. Scale bars are 0.2 mm for leg (A), 0.1 mm for bristle (B), and 1.0 mm for wings ($\mathrm{C}-\mathrm{F}$).
(presumably the inflated rectal epithelium, as in C. capitata). Courtship began when a female approached a calling male. Nine video recordings of courtships in which the male eventually mounted the female were analyzed. As noted by Quilici et al. (2002), male behavior resembled that of male C. capitata, and included continuous wing vibration while the male faced the female early in courtship, and intermittent wing buzzing later after the female approached closer. The flies approached closely, to within about 0.25 body lengths, before the male jumped onto the female. This was close enough for contact to occur between their aristae, as in C. capitata (Briceño and Eberhard, 2002b), but the aristae were not visible in the video recordings. Head rocking behavior similar to that of C. capitata did not occur. As in C. capitata, the female turned to look more directly at the male during the

Table 1. Comparison of courtship behavior in C. catoirii (this study) and successful courtships of wild male C. capitata (A from Briceño and Eberhard, 2002a, $N=34$; B from Briceño and Eberhard, 1998, $N=22$). Differences in experimental settings and small sample sizes make statistical comparisons inappropriate.

	C. catoirii	C. capitata
Durations (sec)		
Continuous vibrate wings	5.15 ± 4.21	18.7 ± 23.8 (A)
Intermittent buzzing wings	17.0 ± 10.2	10.7 ± 6.6 (A)
Number of buzzes/courtship	35.8 ± 9.9	$41.8 \pm 39.0(\mathrm{~B})$
Rate of buzz (number/sec)	2.34 ± 0.56	4.5 ± 1.7 (B)
Total courtship before mount	21.5 ± 13.2	23.2 ± 22.2 (A)
Female immobile before mount	4.87 ± 1.57	5.78 ± 3.63 (A)
Distances (fraction of male length)		
Start of continuous wing vibration	1.50 ± 2.08	1.36 ± 0.81 (A)
Start of intermittent wing buzz	0.45 ± 0.14	0.30 ± 0.12 (A)
Jump onto female	0.25 ± 0.07	0.14 ± 0.02 (A)
Angles		
Male orientation toward female		
\quad Start of continuous vibration	$7.4 \pm 8.8^{\circ}$	$10.2 \pm 9.2^{\circ}$ (A)
Start of intermittent buzzing	$4.3 \pm 5.3^{\circ}$	$2.8 \pm 3.6^{\circ}$ (A)
\quad Moment of jump	$3.1 \pm 5.9^{\circ}$	$1.1 \pm 2.1^{\circ}$ (A)
Female orientation toward male ${ }^{\text {b }}$		
\quad Start of continuous vibration	$31.5 \pm 37.8^{\circ}$	$52.6 \pm 33.2^{\circ}$ (A)
Start of intermittent buzzing	$8.9 \pm 13.5^{\circ}$	$7.3 \pm 9.9^{\circ}$ (A)
\quad Moment of jump	$4.1 \pm 6.9^{\circ}$	$3.9 \pm 4.2^{\circ}$ (A)
$N ~$	9	34,22

${ }^{\text {a }} 0^{\circ}=$ male facing directly toward female.
${ }^{\mathrm{b}} 0^{\circ}=$ female facing directly toward male.
latter stages of courtship. Durations, distances, and angles at different stages of courtship, which reflect both male courtship and female responses (Briceño and Eberhard, 2002a), were at least generally similar in the two species (Table 1).

Ceratitis rosa

Male C. rosa in field cages formed small groups (usually 2-5 males), especially late in the afternoon, either on fruit where females might oviposit, or on leaves. They appeared to call females pheromonally, inflating their abdominal pleura and everting a tri-lobed rectal ampulla. Fourteen video recordings confirmed the general descriptions of Quilici et al. (2002). The male responded to an approaching female by performing continuous wing vibration. Males did not perform intermittent wing buzzes or head rocking as in C. capitata, but the male faced toward the female $\left(8.0 \pm 13.6^{\circ}\right)$ while the female faced less directly toward the male ($18.1 \pm 18.2^{\circ}$) just before he jumped. The male extended his middle legs laterally very briefly $(0.1-0.2 \mathrm{sec})$ just before jumping onto the female. In ten cases the male first extended one leg, withdrew it, and then extended both legs just before jumping. In two others he twice extended both legs briefly, and in two others he extended each one, in alternation, just before jumping. The distance between male and female at the moment the male jumped was larger than that in C. capitata and C. catoirii (mean $=1.3 \pm$ 0.5 body lengths, $N=9$).

Neoceratitis cyanescens

Only three courtship sequences were taped, and only two of these led to mounting. In all three the male made rhythmic, small amplitude anterior-posterior synchronous movements with his wings (low amplitude "enanation" in the terminology of White et al., 2000) while the female was several body lengths away, and in two of the three it was clear that there was a brief burst of low amplitude buzzing each time the wings moved anteriorly. At no time did the male perform either continuous wing vibration or intermittent buzzing similar to that seen in the other species. In one case the female approached the male even though (in sharp contrast with the other species) he did not turn to face toward her (the male's angle was about 90° when he jumped). The distance between the two flies at the moment the male jumped onto the female was between two and three body lengths, much greater than ever seen in several hundred mounts we have observed in published and unpublished studies of C. capitata. The male did not extend any of his legs laterally before jumping, as in C. rosa.

Morphology—Sexual Dimorphism and Allometry

Tables $2 \mathrm{a}-\mathrm{d}$ present measurements of male-female dimorphism in overall size and allometry, and Table 3 summarizes the sexual dimorphisms in the different species. Female body size (estimated by thorax length) was larger than that of males in C. capitata and C. rosa, but not in C. catoirii and N. cyanescens.

The expanded supra-frontal-orbital (SFO) bristles of males differed between C. capitata and C. catoirii. Those of C. capitata were much shorter (means were 0.38 ± 0.03 and $1.15 \pm 0.10 \mathrm{~mm}$ respectively), and had narrower expansions at their tips (mean widths were 0.22 ± 0.02 and $0.76 \pm 0.06 \mathrm{~mm}$ respectively) (both $P<0.01$ with t-tests). The $\log -\log$ slopes of length and width on body size were relatively low in both species (respectively, 0.28 and 0.26 in C. capitata, and 0.27 and 0.42 in C. catoirii; only the final value was statistically significant, $P=0.03$).

The length of the longest dark setae on the dorsal or the ventral side of the tibia II in the tibial brush of male C. rosa were not significantly related to male body size. The log-log slopes on body size were 0.24 and 0.48 respectively ($P>0.2$ in both cases). The length of the brush, measured at the bases of the setae on the dorsal surface of the tibia (d in Fig. 1A) had a weak, positive relationship with body size (log-log slope $=0.51, P=0.02$).

Discussion

Several patterns in the most highly significant male-female differences in morphology ($P<0.001$ and <0.0001 in Tables 2 and 3) are in accord with apparent differences in sexual behavior (increased behavioral samples, especially in N. cyanescens, are needed to confirm the patterns we note here). In the two species in which males and females approached each other head-to-head to within about 0.25 body lengths before the male mounted (C. capitata and C. catoirii), the length of the male's arista was greater than that of the female, and the male arista had fewer microsetae (as also found in C. capitata by Miranda, 2000). Tactile stimulation from the male aristae is apparently important to induce female C. capitata to mate (Briceño and Eberhard, 2002b), and the similar allometry of male aristae in C. catoirii suggests that they play a similar role in this species. The aristae were not sexually dimorphic in C. rosa and N. cyanescens, in which males and females did not approach close enough prior to mounting for their aristae to touch.
Table 2. Male-female differences (linear measurements in mm; area measurements in $\mathrm{mm}^{2}\left({ }^{* * * *}=P \leq 0.0001 ; * * *=P \leq 0.001 ; * *=P \leq 0.01 ; *=P \leq 0.05\right)$.

		Mean \pm SD	Significance of difference between means	Log-log regression on length of thorax			Significance of Wilk's Lambda	Significance of differences between slopes	Significanceof differencesbetween elevations
				Slope	Significance of slope	Intercept			
a. C. capitata ($N=24-30$ males, 29-30 females)									
length thorax	male	$2.06 \pm .07$							
	female	$2.14 \pm .05$	***						
width head	male	$1.74 \pm .14$		0.90	***	-0.03			
	female	$1.77 \pm .04$	**	0.45	*	0.11	ns	*	ns
length arista	male	$1.15 \pm .09$		0.85	****	-0.27			
	female	$1.10 \pm .05$	***	0.57	****	-0.27	****	ns	****
number dorsal setae arista	male	19.14 ± 3.93		0.28	ns	0.68			
	female	31.73 ± 4.31	***	0.31	ns	0.89	****	ns	****
number ventral setae arista	male	5.38 ± 3.13		0.14	ns	0.18			
	female	11.97 ± 4.51	***	-0.27	ns	2.66	****	ns	***
length wing	male	$3.30 \pm .09$		0.49	**	0.38			
	female	$3.28 \pm .54$	**	0.62	***	0.32	*		
width wing	male	$2.06 \pm .36$		0.61	***	0.05			
	female	$2.03 \pm .07$	***	0.55	***	0.04	****	ns	****
posterior area wing	male	$1.60 \pm .13$		0.68	****	-0.33			
	female	$1.51 \pm .10$	*	0.68	****	-0.45	****	ns	****
total area wing	male	$3.28 \pm .23$		0.46	*	0.21			
	female	$3.20 \pm .15$	ns	0.64	***	-0.81	****	ns	****
area wing bands $\mathrm{DB}+\mathrm{SAB}$	male	$0.53 \pm .03$		0.43	*	-0.53			
	female	$0.54 \pm .03$	ns	0.68	****	-0.80	ns		
length femur I	male	$1.03 \pm .03$		0.38	*	-0.08			
	female	$1.02 \pm .03$	ns	0.26	ns	-0.12	**	ns	**
length seta femur I	male	$0.35 \pm .02$		0.14	ns	-0.53			
	female	$0.30 \pm .02$	***	0.43	*	-0.88	****	ns	****
area setae femur I	male	1336 ± 253		0.32	ns	2.50			
	female	1265 ± 276	ns	0.20	ns	2.36	*	ns	*
number setae femur I	male	11.57 ± 1.7		0.15	ns	0.82			
	female	10.40 ± 1.5	*	0.00	ns	1.01	*	ns	*

Table 2. Continued.

		Mean \pm SD	Significance of difference between means	Log-log regression on length of thorax			Significance of Wilk's Lambda	Significance of differences between slopes	Significance of differences between elevations
				Slope	Significance of slope	Intercept			
length tibia I	male	$1.00 \pm .02$		0.46	*	0.70			
	female	$0.98 \pm .02$	*	0.57	***	-0.18	****	****	****
length femur II	male	$1.27 \pm .04$		0.51	**	0.02			
	female	$1.25 \pm .02$	*	0.37	*	0.003	****	ns	****
length tibia II	male	$1.34 \pm .04$		0.59	***	-0.03			
	female	$1.33 \pm .03$	ns	0.56	**	-0.07	ns	ns	****
length femur III	male	$1.20 \pm .03$		0.32	ns	0.32			
	female	$1.20 \pm .03$	ns	0.40	*	- 0.06	***	ns	****
length tibia III	male	$1.18 \pm .05$		0.60	**	-0.12			
	female	$1.19 \pm .03$	ns	0.66	****	-0.14	ns	ns	ns
b. C. catoirii ($N=26-30$ both male and female)									
length thorax	male	$2.53 \pm .09$							
	female	$2.14 \pm .98$	ns						
width head	male	$1.69 \pm .59$		0.78	****	-0.10			
	female	$1.57 \pm .72$	ns	0.70	****	-0.04	ns	ns	ns
length arista	male	$1.31 \pm .15$		0.13	ns	-0.05			
	female	$1.17 \pm .11$	***	0.45	*	-0.29	****	ns	****
number dorsal setae arista	male	7.64 ± 6.82		-0.17	ns	2.22			
	female	26.37 ± 7.78	***	0.20	ns	0.73	****	ns	***
number ventral setae arista	male	0.00							
	female	5.10 ± 3.38	***	-0.16	ns	1.56	-	-	-
length wing	male	$4.2 \pm .5$		-0.33	ns	0.74			
	female	$4.4 \pm .1$	***	0.64	****	0.36	***	***	**
width wing	male	$2.77 \pm .42$		-0.18	ns	0.50			
	female	$2.38 \pm .10$	***	0.58	**	0.09	****	**	****
posterior area wing	male	$2.55 \pm .22$		-0.47	*	0.84			
	female	$2.15 \pm .17$	***	0.66	****	-0.26	****	****	****
total area wing	male	$5.24 \pm .39$		0.68	***	0.78			
	female	$4.81 \pm .35$	***	0.52	*	0.31	****	ns	****

Table 2. Continued.

		Mean \pm SD	Significance of difference between means	Log-log regression on length of thorax			Significance of Wilk's Lambda	Significance of differences between slopes	Significance of differences between elevations
				Slope	Significance of slope	Intercept			
area wing bands $\mathrm{DB}+\mathrm{SAB}$	male	$1.10 \pm .08$		-0.14	ns	0.17			
	female	$1.12 \pm .09$	ns	0.10	ns	-0.03	ns	ns	ns
length femur I	male	$1.41 \pm .06$		0.65	****	-0.13			
	female	$1.26 \pm .05$	***	0.50	*	-0.13	****	ns	****
length seta femur I	male	$0.57 \pm .03$		0.33	ns	-0.43			
	female	$0.44 \pm .04$	***	0.36	ns	-0.72	****	ns	****
area seta femur I	male	2796 ± 395		0.22	ns	3.09			
	female	2209 ± 350	**	0.29	ns	2.77	****	ns	****
number seta femur I	male	14.00 ± 1.60		-0.22	ns	1.41			
	female	10.15 ± 1.26	***	0.19	ns	0.69	****	ns	***
length tibia I	male	$1.23 \pm .10$		0.32	ns	-0.16			
	female	$1.09 \pm .07$	***	0.62	****	-0.39	****	ns	****
length femur II	male	$1.51 \pm .04$		0.49	***	0.03			
	female	$1.45 \pm .07$	**	0.60	***	-0.09	****	ns	****
length tibia II	male	$1.66 \pm .06$		0.31	ns	-0.09			
	female	$1.56 \pm .05$	***	0.53	**	0.02	****	ns	****
length femur III	male	$1.42 \pm .05$		0.37	ns	0.006			
	female	$1.42 \pm .05$	ns	0.56	**	-0.10	ns	ns	ns
length tibia III	male	$1.37 \pm .06$		0.39	*	-. 04			
	female	$1.34 \pm .04$	ns	0.58	**	-0.12	**	ns	**
c. C. rosa ($N=28-30$ for females, $22-30$ for males)									
length thorax	male	$2.43 \pm .08$							
	female	$2.55 \pm .11$	***						
width head	male	$1.93 \pm .05$		0.69	****	0.07			
	female	$1.98 \pm .06$	**	0.77	****	0.07	ns	ns	ns
length arista	male	$0.97 \pm .12$		0.27	ns	-0.51			
	female	$0.99 \pm .11$	*	0.25	ns	-0.27	ns	ns	ns
number dorsal setae arista	male	41.87 ± 5.51		0.23	ns	1.25			
	female	41.27 ± 5.47	ns	0.16	ns	1.41	ns	ns	ns

Table 2. Continued.

		Mean \pm SD	Significance of difference between means	Log-log regression on length of thorax			Significance of Wilk's Lambda	Significance of differences between slopes	Significance of differences between elevations
				Slope	Significance of slope	Intercept			
number ventral setae arista	male	27.33 ± 3.44		0.02	ns	1.39			
	female	28.93 ± 4.33	ns	-0.03	ns	1.50	ns	ns	ns
length wing	male	$4.19 \pm .14$		0.71	****	0.33			
	female	$4.28 \pm .12$	**	0.66	****	0.46	ns	ns	ns
width wing	male	$2.39 \pm .11$		0.57	****	0.06			
	female	$2.43 \pm .08$	ns	0.59	****	0.22	ns	ns	ns
posterior area wing	male	$1.95 \pm .16$		0.63	***	-0.35			
	female	$2.07 \pm .12$	*	0.50	**	0.05	ns	*	ns
total area wing	male	$4.54 \pm .37$		0.68	****	-0.03			
	female	$4.75 \pm .27$	*	0.66	****	0.32	ns	*	ns
area wing bands $\mathrm{DB}+\mathrm{SAB}$	male	$0.50 \pm .04$		0.45	*	-0.73			
	female	$0.66 \pm .06$	***	0.28	ns	-0.44	****	ns	****
length femur I	male	$1.22 \pm .05$		0.40	*	-0.09			
	female	$1.17 \pm .057$	**	0.55	**	-0.18	****	ns	****
length seta femur I	male	$0.29 \pm .02$		0.25	ns	-0.82			
	female	$0.31 \pm .02$	**	0.31	ns	-0.68	*	ns	*
area setae femur I	male	1220 ± 300		0.30	ns	2.01			
	female	1580 ± 240	***	0.40	*	2.61	**	ns	**
number setae femur I	male	8.10 ± 1.27		-0.04	ns	0.98			
	female	8.47 ± 1.50	ns	-0.05	ns	0.98	ns	ns	ns
length tibia I	male	$1.10 \pm .04$		0.53	**	-0.16			
	female	$1.03 \pm .14$	***	0.14	ns	-0.02	****	ns	****
length femur II	male	$1.60 \pm .06$		0.70	****	-0.10			
	female	$1.59 \pm .06$	ns	0.67	****	-0.04	****	ns	****
length tibia II	male	$1.65 \pm .05$		0.69	****	-0.04			
	female	$1.51 \pm .26$	***	-0.03	ns	0.27	****	ns	****
width tibia II	male	$0.26 \pm .02$		0.21	ns	-0.75			
	female	$0.24 \pm .01$	***	0.15	ns	-0.67	ns	$n \mathrm{~s}$	****
length femur III	male	$1.51 \pm .05$		0.50	**	-0.02			
	female	$1.48 \pm .06$	*	0.44	*	0.02	****	ns	****

Table 2. Continued.

		Mean \pm SD	Significance of difference between means	Log-log regression on length of thorax			Significance of Wilk's Lambda	Significance of differences between slopes	Significance of differences between elevation
				Slope	Significance of slope	Intercept			
length tibia III	male	$1.38 \pm .05$		0.68	****	-0.14			
	female	$1.38 \pm .07$	ns	0.54	**	-0.09	*	ns	*
d. Neoceratitis cyanescens ($N=27-30$ for females, 24-30 for males)									
length thorax	male	$1.76 \pm .51$							
	female	$1.99 \pm .26$	ns						
width head	male	$1.66 \pm .13$		0.98	****	1.60			
	female	$1.45 \pm .62$	ns	0.98	****	1.53	*	ns	**
length arista	male	$0.93 \pm .07$		0.89	****	-0.24			
	female	$0.95 \pm .12$	ns	0.82	****	-0.26	ns	ns	ns
number dorsal setae arista	male	37.67 ± 4.37		0.30	ns	1.47			
	female	36.97 ± 6.85	ns	0.84	****	1.21	*	**	*
number ventral setae arista	male	25.70 ± 3.34		0.34	ns	1.27			
	female	26.5 ± 4.83	ns	0.77	****	1.09	ns	ns	ns
length wing	male	$3.30 \pm .25$		0.78	****	0.33			
	female	$3.45 \pm .39$	*	0.94	****	0.30	ns	ns	ns
width wing	male	$1.75 \pm .14$		0.77	****	0.06			
	female	$1.83 \pm .22$	ns	0.94	****	0.01	ns	ns	ns
posterior area wing	male	$1.12 \pm .26$		0.77	****	-0.34			
	female	$1.30 \pm .28$	*	0.95	****	-0.35	*	ns	ns
total area wing	male	$2.80 \pm .40$		0.80	****	0.08			
	female	$3.07 \pm .67$	*	0.95	****	0.002	*		
length femur I	male	$1.11 \pm .09$		0.87	****	-0.18			
	female	$1.08 \pm .13$	ns	0.93	****	-0.23	****	ns	**
length seta femur I	male	$0.30 \pm .03$		0.59	**	-0.73			
	female	$0.34 \pm .04$	*	0.84	****	-0.73	**	ns	**
area setae ventral femur I	male	2150 ± 490		0.79	****	2.75			
	female	2240 ± 560	ns	0.89	****	2.77	ns	ns	ns
number seta femur I	male	9.79 ± 1.22		0.37	ns	0.83			
	female	9.37 ± 1.21	ns	0.63	****	0.78	*	ns	*

Table 2. Continued.

Table 3. Summary of statistically significant differences between males and females of the four species of Ceratitis and Neoceratitis ("+" = male values higher than those of similarly sized females, from inspection of graphs; "el" = significant difference in elevation; "sl" = significant difference in slope) (**** $=P \leq 0.0001$; *** $\left.=P \leq 0.001 ;{ }^{* *}=P \leq 0.01 ; *=P \leq 0.05\right)$.

	C. capitata	C. catoirii	C. rosa	N. cyanescens
width head	NO	NO	NO	* (+ el)
length arista	**** $(+, \mathrm{el})$	**** (+ , el $)$	NO	NO
number dorsal setae arista	**** (- , el $)$	**** (- , el $)$	NO	* (- , sl, el)
number ventral setae arista	**** $(-, \mathrm{el})$	**** (-, el $)$	NO	NO
length wing	* (+, el)	*** $(-, \mathrm{sl},+, \mathrm{el})^{\mathrm{a}}$	NO	NO
width wing	**** $(+, \mathrm{el})$	**** $(+$, sl, el $)$	NO	NO
posterior area wing	**** $(+, \mathrm{el})$	**** $(+, \mathrm{sl}, \mathrm{el})$	NO	$\mathrm{NO}^{\text {b }}$
total area wing	**** $(+, \mathrm{el})$	**** (+ , el $)$	NO	$\mathrm{NO}^{\text {c }}$
area wing bands $\mathrm{DB}+\mathrm{SAB}$	NO	NO	**** (-, el $)$	-
length femur I	** (+, el)	**** (+ , el $)$	**** $(+, \mathrm{el})$	**** (+ , el $)$
length seta femur I	**** $(+, \mathrm{el})$	**** $(+, \mathrm{el})$	* (-, el)	** $(-, \mathrm{el})$
area seta femur I	* (+ , el $)$	**** $(+, \mathrm{el})$	** $(-, \mathrm{el})$	NO
number seta femur I	* (+ , el $)$	**** $(+, \mathrm{el})$	NO	* (+, el $)$
length tibia I	**** $(+, \mathrm{sl}, \mathrm{el})$	**** $(+, \mathrm{el})$	**** (+ , el $)$	**** $(+, \mathrm{el})$
length femur II	**** $(+, \mathrm{el})$	**** $(+, \mathrm{el})$	**** (+ , el $)$	**** $(+, \mathrm{el})$
length tibia II	**** $(+, \mathrm{el})$	**** $(+, \mathrm{el})$	**** (+ , el $)$	**** (+ , el $)$
length femur III	*** $(+, \mathrm{el})$	NO	**** $(+, \mathrm{el})$	** $(+, \mathrm{el})$
length tibia III	NO	** (+ , el $)$	* (+ , el $)$	* (+ , el $)$

${ }^{\text {a }}$ Male slope not statistically significant.
${ }^{\mathrm{b}}$ Wilk's lambda barely significant $(P=0.03)$, but neither slope nor elevation significantly different (respectively, $P=0.70,0.09$).
${ }^{\text {c }}$ Wilk's lambda barely significant $(P=0.03)$, but neither slope nor elevation significantly different (respectively, $P=0.14,0.72$).

Similarly, in the two species in which males performed intermittent wing buzzing while facing females at close range, the male's wing was wider than that of the female, due to an expansion of the posterior wing area. The details of wing movements in C. capitata indicate that the male uses the posterior area of his wing to waft pheromones toward the female (Briceño and Eberhard, 2000), and presumably the same occurs in C. catoirii. Wing width was not sexually dimorphic in C. rosa and N. cyanescens, in which males did not buzz their wings this way at close range. The greater similarity between C. capitata and C. catoirii is in accord with recent taxonomic studies: these two species are in the same clade within the subgenus Ceratitis s.s., while C. rosa is in a different subgenus which is not closely related (DeMeyer, 2000). The biological significance of the sexual differences in the size of wing markings in C. rosa is less clear. Perhaps visual stimuli from the wings are used in courtship.

The absolute values of the allometric slopes of several display traits (aristae, head bristles, and posterior wing area in C. capitata and C. catoirii, middle tibiae and their brushes of setae in C. rosa) were all well below 1.0 (Tables $2 \mathrm{a}-\mathrm{c}$), in contrast to the theoretical predictions discussed above (Otte and Stayman, 1979; Baker and Wilkinson, 2001). Perhaps emphasis on the value 1.0 in previous discussions of allometry and sexual selection was not justified (Eberhard, 2002; Bonduriansky and Day, 2003). Simple utilitarian arguments may explain why some of these traits have relatively low slopes. For instance, an overly long male arista might bring the male into contact with the female's aristae before he was close enough to launch an effective jump. A similar argument based on mechanical design is not applicable,
however, for the SFO setae of C. capitata and C. catoirii, or the brush of setae on tibia II of C. rosa. The reduced frequency of female acceptance during courtship in C. capitata when the SFO setae were removed (Mendez et al., 1998), and the sharp difference between the sizes and colors of SFO setae in C. capitata and C. catoirii, suggests that they may be under sexual selection; nevertheless their allometric slopes were especially low, and were not even statistically significant in three of four measures. The sizes of the SFO setae are thus poor indicators of male size, and seem more likely to have evolved under female choice for "arbitrary" traits rather than as indicators of male size. There are further sexual dimorphisms in some of these species (greater pilosity on the front femur of males of C. capitata and C. catoirii, larger frontal bristles in male C. catoirii): evaluation of their possible significance (e.g., visual stimuli, dispersers of chemical stimuli, threats during male-male interactions) must await further behavioral studies.

Most sexual dimorphisms resulted from male-female differences in elevation ($N=52$ cases) rather than slope ($N=5$ cases). Perhaps changes of elevation require less reorganization of developmental programs than do changes in slope, and are thus easier to evolve.

Acknowledgments

RDB and WGE thank Eddy Camacho for technical help, Bernal Burgos and Hernan Camacho for specimens of wild Costa Rican flies, Jorge Lobo and Federico Bolaños for help with statistics, and the International Atomic Energy Agency, the Smithsonian Tropical Research Institute, and the Vicerrectoría of the Universidad de Costa Rica for financial support.

Literature Cited

Alatalo, R. V., J. Hoglund, and A. Lundberg. 1988. Patterns of variation in tail ornament size in birds. Biological Journal of the Linnean Society 34:363-374.
Andersson, M. 1994. Sexual Selection. Princeton University Press, Princeton, New Jersey. 599 pp.
Baker, R. H., and G. S. Wilkinson. 2001. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55:1373-1385.
Bonduriansky, R., and T. Day. 2003. The evolution of static allometry in sexually selected traits. Evolution 57:2450-2458.
Briceño, R. D., and W. G. Eberhard. 1985. The functional significance of male cercus morphology in 13 species of tropical earwigs (Dermaptera: Forficulidae, Labiidae, Carcinophoridae, Pygidicranidae). Smithsonian Contributions to Zoology 555:1-63.
Briceño, R. D., and W. G. Eberhard. 1998. Medfly courtship duration: a sexually selected reaction norm changed by crowding. Ethology, Ecology and Evolution 10:369-382.
Briceño, R. D., and W. G. Eberhard. 2000. Male wing positions during courtship by Mediterranean fruit flies (Ceratitis capitata) (Diptera: Tephritidae). Journal of the Kansas Entomological Society 73:111-115.
Briceño, R. D., and W. G. Eberhard. 2002a. Decisions during courtship by male and female medflies (Diptera, Tephritidae, Ceratitis capitata). Florida Entomologist 85:15-32.
Briceño, R. D., and W. G. Eberhard. 2002b. Courtship in the medfly Ceratitis capitata includes probable tactile stimulation with the male's aristae. Entomologia Experimentalis et Applicata 102:221-228.
Brown, L. 1980. Aggression and mating success in males of the forked fungus beetle, Bolitotherus cornutus (Panzer) (Coleoptera: Tenebrionidae). Proceedings of the Entomological Society of Washington 82: 430-434.
Eberhard, W. G. 1979. The function of horns in Podischnus agenor (Dynastinae) and other beetles. In M. Blum and N. Blum (eds.). Sexual Selection and Reproductive Competition in Insects, pp. 231-258. Academic Press, New York. 463 pp.
Eberhard, W. G. 2000. Sexual behavior and sexual selection in the medfly, Ceratitis capitata. In M. Aluja and A. Norrbom (eds.). Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior, pp. 459-489. CRC Press, Boca Raton, Florida. 944 pp.

Eberhard, W. G. 2002. Use of front legs as signals, weapons and spore collectors in the flies Chymomyza mycopelates and C. exophthalma (Diptera: Drosophilidae). Canadian Entomologist 134:667-687.
Eberhard, W. G., and E. Gutierrez. 1991. Male dimorphisms in beetles and earwigs and the question of developmental contraints. Evolution 45:18-28.
Eberhard, W. G., M. Garcia, and J. Lobo. 2000. Size-specific defensive structures in a horned weevil confirm a classic battle plan: avoid fights with larger opponents. Proceedings of the Royal Society of London B 267:1129-1134.
Eberhard, W. G., B. A. Huber, and R. L. Rodriguez. 1999. Don't forget the biology: a reply to Green. Evolution 53:1624-1627.
Eberhard, W. G., B. A. Huber, R. L. Rodriguez, R. D. Briceño, I. Salas, and V. Rodriguez. 1998. One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415-431.
Green, A. J. 1992. Positive allometry is likely with mate choice, competitive display and other functions. Animal Behaviour 43:170-172.
Green, A. J. 1999. Allometry of genitalia in insects and spiders: one size does not fit all. Evolution 53:1621-1624.
Huxley, J. S. 1972. Problems of relative growth, 2nd ed. Dover Publications, New York.
Mendez, V., R. D. Briceño, and W. G. Eberhard. 1998. Functional significance of the capitate supra-fronto-orbital bristles of medflies (Ceratitis capitata) (Diptera: Tephritidae). Journal of the Kansas Entomological Society 71:164-174.
Miranda, X. 2000. Sexual dimorphism in the aristae of Ceratitis capitata (Diptera, Tephritidae) and its possible importance in courtship. Journal of the New York Entomological Society 108:339-348.
Otte, D., and B. Stayman. 1979. Beetle horns: some patterns in functional morphology. In M. Blum and N. Blum (eds.). Sexual Selection and Reproductive Competition in Insects, pp. 259-292. Academic Press, New York. 463 pp .
Petrie, M. 1988. Intraspecific variation in structures that display competitive ability: large animals invest relatively more. Animal Behaviour 36:1174-1179.
Petrie, M. 1992. Are all secondary sexual display structures positively allometric and, if so, why? Animal Behaviour 43:173-175.
Quilici, S., A. Franck, A. Peppuy, E. Dos Reis Correia, C. Mouniama, and F. Blard. 2002. Comparative studies of courtship behavior of Ceratitis spp. (Diptera: Tephritidae) in Reunion Island. Florida Entomologist 85:138-142.
White, I. M., D. H. Headrick, A. L. Norrbom, and L. E. Carroll. 2000. Glossary. In M. Aluja and A. L. Norrbom (eds.). Fruit Flies (Tephritidae) Phylogeny and Evolution of Behavior, pp. 881-924. CRC Press, Boca Raton, Florida. 944 pp.
Zar, J. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey. 663 pp.

[^0]: ${ }^{1}$ Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica; e-mail: rbriceno@ biologia.ucr.ac.cr
 ${ }^{2}$ Smithsonian Tropical Research Institute; e-mail: archisepsis@biologia.ucr.ac.cr
 ${ }^{3}$ CIRAD Réunion, UMR "Peuplements Végétaux et Bioagresseurs en Milieu Tropical" (PVBMT), Pôle de Protection des Plantes, Saint-Pierre, France.

