Mining threatens Colombian ecosystems

The American tropics are home to about 10% of Earth’s species and several biodiversity hotspots of global importance for conservation (1, 2), including high-elevation tropical alpine ecosystems (páramos) and Andean forests. These ecosystems deliver numerous services, such as providing water to millions of people (3). They are also extremely sensitive to perturbations and difficult to restore (4). Despite their importance and fragility, a goldmining company has proposed a project that will put Colombia’s montane and páramo environments at risk.

 Minesa goldmining company plans to build one of the world’s largest underground mines in Santurbán, Santander, Colombia (5, 6). The goal of the megamining project is to extract 255 million grams of gold over 20 years, and the extractive company claims that the sale of this gold will bring about U.S.$2 billion in mining company claims that the sale of this gold will bring about U.S.$2 billion in revenues (6). However, environmental authorities to take the necessary action to stop the Santurbán goldmining project and instead promote the active preservation and restoration of the páramos and Andean forests, particularly in this biologically important area of the country.

Oscar Alejandro Pérez-Escobar,1,2 Rodrigo Cámara-Leret,3,4 Alexandre Antonelli,1,2,4,5 Richard Bateman,4 Sidonie Bellot,7 Guillaume Chomicki,8 Antoine Cleef,9 Mauricio Diazgranados,9 Steven Dodsworth,10 Carlos Jaramillo,11 Santiago Madriñán,12 Ingrid Olivares,13 Alejandro Zuluaga,14 Rodrigo Bernal15 1Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden. 2Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden. 3London SW8 3PF, UK. 4Gothenburg Botanical Garden, Gothenburg, Sweden. 5Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02139, USA. 6London TW9 2DX, UK. 7Plant Biodiversity Research, Department Ecology & Ecosystem Management, Technical University of Munich, 85354 Freising, Germany. 8Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. 9The Queen’s College, Oxford OX1 4AW, UK. 10Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands. 11West Sussex RH16 4ST, UK. 12School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK. 13Smithsonian Tropical Research Institute, 9100 Panama City, Panama. 14Universidad de los Andes, DC 01 Bogotá, Colombia. 15University of Zurich, 8008 Zurich, Switzerland. 16Universidad de Valle, Ciudadela

REFERENCES


Ocean deoxygenation: Time for action

In their review “Declining oxygen in the global ocean and coastal waters” (5 January, p. 46), D. Breitburg et al. summarize evidence showing that oxygen has declined in the open ocean and in coastal waters over the past 50 years as a result of increased greenhouse gas emissions and nutrient discharges to coastal waters. We also urgently need more data on the role and speed of microbial engagement, including how deoxygenation is altering microbial pathways and rates of processes within the water column and the deep ocean (1). Given that more than half of...
the oxygen produced on Earth is derived from phytoplankton, decline of oxygen in the ocean concerns life on land as well. We cannot afford to wait before taking action.

Breitburg et al. call for a “raised awareness” of the deoxygenation phenomenon. We contend that such awareness must extend to all facets of society, beyond the pages of scientific journals. Intuitive, interactive, dynamic online maps and visualizations (2, 3) will be key to generating the societal and political will toward the effective management needed to ultimately reverse deoxygenation. The global trend by nations of securing large areas of ocean as “blue parks” (4) is cause for hope because protecting nature protects our existence.

Sylvia A. Earle,1,2 Dawn J. Wright,3,4 Samantha Joye,5 Dan Laffoley,6 John Baxter,7 Carl Safina,7 Patty Elkus3
1National Geographic Society Explorer-in-Residence, Washington, DC 20036, USA. 2Mission Blue, Napa, CA 94581, USA. 3Environmental Systems Research Institute, Redlands, CA 92373, USA. 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA. 5Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA. 6International Union for Conservation of Nature–World Commission on Protected Areas, Gland, Switzerland. 7School of Marine and Atmospheric Sciences, Stony Brook University, Setauket, NY 11733, USA.
*Corresponding author. E-mail: saearle@aol.com

REFERENCES

Amazon sugar cane: A threat to the forest

Amazonia’s vegetation ranges from dense forests to savanna areas, and the region’s forests and their biodiversity are vulnerable to the ongoing advance of land-use change for agriculture and ranching (1). In Brazil, cultivation of sugar cane is currently prohibited in the Mato Grosso wetlands (pantanal) and Amazonia regions (2). The number of sugar cane plantations has vastly increased during the past decade, and Brazil is the world’s largest sugar cane producer (3). The cane plantations are projected to increase due to demand for biofuels (4). Sugar cane plantations have been shown to threaten biodiversity, their effects extending beyond the cultivated areas to adjacent forests (5). The Brazilian Senate has scheduled a decision for 2018 on a bill that proposes opening the Amazon region to sugar cane (6). This crop would supposedly be planted in degraded fields, in natural Amazonian grasslands, and in the biodiversity hotspots of the central Brazilian savannas (cerrado). Because of the potential catastrophic effects on the Amazonian forest, the biodiversity and ecosystem services of South America, and the agricultural productivity of Brazil, we urge the President to veto this bill.

The threat of sugar cane is just one among Amazonia’s many strong drivers of destruction (4). Amazonian forests play an important role in the climate of South America, with substantial rainfall contributions to agriculture in southeastern Brazil (7). In the medium and long term, forest loss would threaten Brazil’s own agricultural and biofuel production, given that the area with the greatest agricultural production is in the south and southeast of the country (9) and depends on water vapor from the Amazon region (7, 8). Political decision-makers and national and international institutions that fund large agricultural enterprises should not be fooled by the sweet taste of a new agricultural frontier to be exploited. They should instead be guided by the need to avoid loss of Amazonia’s biodiversity, genetic heritage, and valuable ecosystem services, including climate regulation for the area with the largest population and agricultural production in South America (9, 10).

L. Ferrante* and P. M. Fearnside
National Institute for Research in the Amazon (INPA), 69067-375, Manaus, AM, Brazil.
*Corresponding author. E-mail: lucasferrante@hotmail.com

Brazil may decide to expand sugar cane production.
Mining threatens Colombian ecosystems
Oscar Alejandro Pérez-Escobar, Rodrigo Cámara-Leret, Alexandre Antonelli, Richard Bateman, Sidonie Bellot, Guillaume Chomicki, Antoine Cleef, Mauricio Diazgranados, Steven Dodsworth, Carlos Jaramillo, Santiago Madriñan, Ingrid Olivares, Alejandro Zuluaga and Rodrigo Bernal

Science 359 (6383), 1475.
DOI: 10.1126/science.aat4849