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Abstract
1.	 Technological advancements have spurred rapid growth in the study of migratory 
connectivity, the linkage of individuals and populations between seasons of the 
annual cycle. The strength of migratory connectivity is a measure of the co-
occurrence of populations throughout the annual cycle and can be represented by 
a correlation of the distances between individuals during one season and another 
(Mantel correlation, rM). However, measurement of seasonal distributions most 
often involves incomplete sampling and use of technologies that vary in accuracy 
and precision. For these reasons, we expanded rM to measure the strength of mi-
gratory connectivity (MC) with population-specific transition probabilities that can 
be derived from many data types and uneven sampling.

2.	 We explore the sensitivity of MC to possible real-world variation in input parame-
ters: transition probabilities, abundance among regions, spatial arrangement of re-
gions, and sample sizes. We compare MC to rM, present a series of resampling 
approaches for propagating uncertainty in input values into estimation of MC and 
rM, and validate the method with bird tracking data.

3.	 Migratory connectivity was negative when populations are further apart between 
seasons, positive when populations remain together between seasons, and zero 
when populations have no patterns in distribution between seasons. MC is most 
sensitive to transition probabilities and spatial arrangement of regions and per-
forms better than rM when sampling effort is not proportional to true abundance, 
and when the strength of migratory connectivity varies across the range of the 
species. Our estimators for MC and rM performed well across several data types.

4.	 We hope that these methods and the MigConnectivity r package will facilitate 
quantitative comparisons of migratory connectivity across studies, data types, and 
taxa to better understand the causes and consequences of the seasonal distribu-
tions of populations. Several study design recommendations emerge from our simu-
lations: (1) incorporate abundance among regions when sampling is not proportional; 
(2) measure transition probabilities across as much of the range as logistically pos-
sible; (3) define study regions with either biological information about population 
delineation, or use discrete study locations as centroids of regions; and (4) estimate 
and report uncertainty from appropriate sources of sampling and process errors.
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1  | INTRODUCTION

Migration, the regular and repeated seasonal movements of animals 
between distinct geographic regions, is a taxonomically widespread 
global phenomenon. Where and when animals occur throughout the 
annual cycle is driven by complex behavioral, ecological, and evolu-
tionary processes and can have profound consequences for popula-
tions and species. Migratory connectivity describes the spatial and 
temporal linkages of individuals and populations between seasons 
that result from migratory movements (Marra, Norris, Haig, Webster, 
& Royle, 2006; Webster, Marra, Haig, Bensch, & Holmes, 2002). 
Research on migratory connectivity has increased dramatically with 
the growing recognition of the importance of full annual cycle biology 
(Marra, Cohen, Loss, Rutter, & Tonra, 2015) and the improved ana-
lytic (e.g. Cohen, Hostetler, Royle, & Marra, 2014; Hostetler, Sillett, 
& Marra, 2015; Thorup, Korner-Nievergelt, Cohen, & Baillie, 2014), 
molecular (e.g. Hobson et al., 2014; Ruegg, Anderson, Boone, Pouls, 
& Smith, 2014; Rushing, Ryder, Saracco, & Marra, 2013), and tech-
nological (e.g. Bridge et al., 2011; Hallworth & Marra, 2015) tools to 
study the movements of migratory animals. The strength, or degree, 
of migratory connectivity is the extent to which individuals and pop-
ulations remain together between seasons of the annual cycle. When 
migratory connectivity is strong, or high, animals remain close during 
multiple seasons of the annual cycle; when migratory connectivity is 
weak, or low, animals that are close during one season of the annual 
cycle are not close during other seasons. For example, breeding pop-
ulations that remain together during the winter have strong migratory 
connectivity during stationary non-breeding (hereafter, non-breeding) 
and breeding populations that use the same migration routes at the 
same times have strong migratory connectivity during migration. 
Conversely, breeding populations that separate in winter have weak 
migratory connectivity during non-breeding (Finch, Butler, Franco, 
& Cresswell, 2017) and breeding populations that use different mi-
gration routes, or pass through them at different times, have weak 
connectivity during migration (Bauer, Lisovski, & Hahn, 2015).

The strength of migratory connectivity is fundamental to a full-
annual cycle perspective on population limitation and conservation 
because it describes the extent to which populations co-occur be-
tween seasons and, therefore, are exposed to the same environmental 
conditions and selective pressures (Webster et al., 2002). The events 
and conditions that populations are exposed to throughout the year 
have consequences for many biological processes, including migra-
tion schedules, reproductive success, survival and abundance, range 
limits, and natal dispersal (Esler, 2000; Finch et al., 2017; Hostetler 
et al., 2015; Marra et al., 2015). Consequently, quantitative measure-
ment of migratory connectivity strength is key to advancing full annual 
cycle biology. At the same time, animal movement data is increasingly 

available at the spatial and temporal scales necessary to measure 
migratory connectivity for many species.

Methods to quantify the strength of migratory connectivity 
should be equally applicable among taxonomic groups, range sizes 
and shapes, and seasons of the annual cycle, e.g. breeding and non-
breeding or breeding and migration. Measures of migratory con-
nectivity strength also need to be comparable among all of the data 
types available to measure migratory movements, e.g. ring recover-
ies, tracking, and isotopic or genetic assignments. The true strength 
of migratory connectivity for a species could be calculated from the 
correlation of the distances between every pair of individuals during 
two seasons, although such unbiased and comprehensive measure-
ment is not attainable. Migratory connectivity can be estimated using 
a Mantel correlation (rM) on a sample of animals located in both sea-
sons (Besag & Diggle, 1977). Ambrosini, Møller, and Saino (2009) used 
rM and a clustering algorithm to measure the strength of migratory 
connectivity for birds banded on the breeding range and recovered on 
the non-breeding range. Band recoveries are among the most accurate 
available for passerine birds, but these data are notoriously sparse for 
many species and require accounting for considerable geographic bias 
in marking and detection (Korner-Nievergelt et al., 2010; Thorup et al., 
2014). Tracking and molecular data are increasingly available to assign 
animals to regions within seasonal ranges, but are generally restricted 
to a limited set of individuals from a priori selected study locations. 
Even when migration data are available from a species’ range, sample 
sizes per site are often small, and sampling effort may not be propor-
tional to abundance. We know of only one study of migratory con-
nectivity strength, that has accounted for abundance among sampling 
regions (Hallworth, Sillett, Van Wilgenburg, Hobson, & Marra, 2015). 
Further, methods used to measure the seasonal distributions of indi-
viduals vary in accuracy and precision and the regions between which 
migratory movements are measured are rarely defined with informa-
tion about population delineation.

Because information about seasonal movement is often derived 
from incomplete sampling with data types that vary in accuracy 
and precision, we undertook an extension of rM that accounts for 
population-specific movement (transition probabilities) between sea-
sons and for sampling that is not proportional to abundance. The use 
of transition probabilities is broadly applicable because they can be 
derived from any data type between any two seasons of the annual 
cycle. Furthermore, biased and incomplete sampling can introduce 
error into the measurement of migratory connectivity, as can nat-
ural variability in animal movement such as breeding dispersal. Our 
objective was to developed methodology to incorporate uncertainty 
due to multiple sources of sampling error into estimates of migratory 
connectivity strength. Here, we measure the strength of migratory 
connectivity (MC) with population-specific transition probabilities 
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derived from many data types and uneven sampling. We explore the 
properties of MC and use simulation to test its sensitivity to possible 
real-world variation in input values and sampling regimes. We com-
pare MC and rM under many sampling scenarios, present a series of 
resampling approaches for propagating uncertainty in input values into 
estimation of MC, and validate the method with simulated and real 
data of several types. The accompanying r package, MigConnectivity, 
includes functions to calculate rM and MC and incorporate error from 
multiple sources.

2  | MATERIALS AND METHODS

2.1 | Calculating migratory connectivity

Whereas rM is the correlation between distance matrices of indi-
viduals encountered during one season of the annual cycle and re-
encountered during another season (Ambrosini et al., 2009; Besag & 
Diggle, 1977), MC is an approximation of this correlation using dis-
crete populations (Data S1). The population-specific transition prob-
abilities used by MC can be defined from any available data type and 
are directional, with an origin and a destination season. For simplicity, 
we only include MC from breeding to non-breeding but the metric 
is equally applicable between other seasons. Because MC makes use 
of transition probabilities, individuals are divided into a priori defined 
populations and, unlike rM, distances among individuals within those 
regions are not incorporated. MC is ideally defined at the species level, 
with data from all populations, but can also be measured when data 
are available for subsets of seasonal ranges that represent regional 
populations.

where B is the number of breeding regions, NB is the number of non-
breeding regions, Dij is the distance between breeding region i and j, Vkl 
is the distance between non-breeding region k and l, μD and μV are the 
mean distances between individuals in the breeding and non-breeding 
regions, respectively, σD and σV are the standard deviations of these 
distances, and Mijkl is the product of the proportions of individuals 
transitioning between i and k and between j and l, corrected to not 
include an individual and itself

where Ri is the relative abundance at breeding region i, ψik is the prob-
ability that a bird breeding at region i transitions to non-breeding 
region k, n is the total sample size (number of animals providing transi-
tion probabilities), and I is the indicator function. Therefore, the data 
needed to calculate MC (without incorporating uncertainty) are the 
number of and distance between the regions within the destination 
and origin ranges, the relative abundance among origin regions, the 
transition probabilities from origin to destination regions, and the 
sample size from which transition probabilities were estimated.

The means and standard deviations of the distances between 
breeding (D) and non-breeding (V) individuals can be calculated as

Negative values of MC indicate that individuals close to each other 
in one season are further apart in the other season. If MC = 0, no rela-
tionship exists between distances in one season and another; if MC = 1, 
the relative distances between individuals in one season are the same 
in the other, although the scale can differ. MC can be calculated in the 
calcMC function available in the MigConnectivity r package.

2.2 | Estimating migratory connectivity

Armed with records of animals observed in both breeding and non-
breeding regions, one is tempted to simply compute the transition 
probabilities for Equations 1–3 as

where Cik is the number of animals observed in breeding location i and 
non-breeding location k. However, this ignores the sampling uncertainty 
in those transition probabilities. Incorporating uncertainty in input values 
(particularly in transition probabilities and relative abundances) into MC is 
a key component of any assessment of migratory connectivity strength. 
Sources of sampling error include limited sample sizes, detection hetero-
geneity (detection probabilities varying between regions), and location 
error. Because studies and data types vary in sampling error, valid quan-
titative comparisons require that they be incorporated into measures of 
migratory connectivity strength. Therefore, we developed a series of re-
sampling approaches for propagating uncertainty into MC and estimating 
confidence intervals and/or standard errors measuring this uncertainty, 
dependent on the types of data used to estimate the input parameters.

Procedures to estimate MC with uncertainty associated with 
input values are implemented in the estMC function available in the 
MigConnectivity r package. Process errors due to natural variability in an-
imal movement also increase uncertainty around transition probability es-
timates and, therefore, influence measurement and definition of MC (see 
Data S1 for further details). We describe the resampling approaches avail-
able with estMC function below. We recognize that these do not encom-
pass all of the uncertainty associated with data used to measure MC, but 
expect that they are broadly applicable to many studies and data types.

An estimate of sampling uncertainty in transition probabilities (e.g., 
from a multistate mark-reencounter model; Cohen et al., 2014), can be 
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propagated into an estimate of uncertainty in MC by resampling a large 
number of times (S) from the distribution for transition probabilities 
and computing MC for each iteration

where ψ∗s
ik
 is the sth sample for the transition probability between i and 

k, MC*s is the sth sample for MC, and μ∗s
V

 and σ∗s
V
 are also calculated by 

substituting M∗s
ijkl
 for Mijkl. MC can then be estimated as the mean of the 

samples and its standard error as their SD

Simple percentile-based confidence intervals for MC can be esti-
mated as

where a 1 − α confidence interval is desired and MC∗(α∕2) is the α/2th 
quantile of the MC samples. This confidence interval is biased when 
the median of the samples is not the same as the estimated value (in 
this case, the mean; Efron & Tibshirani, 1994; Ellner & Fieberg, 2003). 
A bias-corrected (BC) confidence interval can be estimated as

where Φ is the standard normal cumulative distribution function, 
Φ−1 is its inverse (the standard normal quantile function), ẑ0 is a bias-
correction term based on the proportion of samples less than the 
mean, and # indicates the number of samples.

When sampling uncertainty in the relative abundances per breed-
ing location has also been estimated (generally separately from tran-
sition probabilities), Equation 5 can be extended to include samples 
from that distribution

where R∗s
i
 is the sth sample from the distribution for the relative abun-

dance of animals in breeding site i. Equations 6–8 can be applied in the 
same way to these samples.

If detection heterogeneity is not an issue, a separate model may 
not be needed to estimate the uncertainty in transition probabilities. 
However, when location error and limited sample sizes exist, a boot-
strapping approach can be used

where loc∗
r
 is the breeding and non-breeding coordinates (lat-long or 

others) for the rth animal drawn with replacement from the n animals 
monitored and loc*s is the sth bootstrap sample. When there are es-
timates of bias and variance in the non-breeding coordinates, they 
should be incorporated in the bootstrap sampling:

where the rth bootstrap animal is the qth animal in the original dataset, 
locq are its four coordinates, N4 is the quadrivariate normal distribution, 
and the bias, variance, and covariance of coordinates on the non-breeding 
range are estimated separately (breeding location error can be applied in a 
similar way). With or without location error, the sampled coordinates are 
assigned to the discrete breeding and non-breeding locations, censoring 
those that fall outside these regions. Bootstrap samples that do not in-
clude all breeding locations should be replaced. The transition probabilities 
for the sth bootstrap sample can be computed by modifying Equation 4

where C∗s
ik
 is the number of animals observed in breeding location i and 

non-breeding location k in the sth bootstrap sample. Equations 5–8 
can then be applied to estimate MC and its uncertainty. In addition, es-
timates of rM and its uncertainty can be obtained by using the sampled 
coordinates (Equation 10) directly in distance matrices (see Manly, 
1991 for another approach to rM confidence intervals).

Approximate p-values for the one-sided test MC > 0 can be calcu-
lated using the logic of percentile based confidence intervals

and approximate bias-corrected p-values can be calculated as

However, presenting means and standard errors or confidence in-
tervals are probably more informative than p-values (Anderson, Link, 
Johnson, & Burnham, 2001; Efron & Tibshirani, 1994).

2.3 | Sensitivity to real-world values

We used calcMC with available information about possible real-world 
input values to explore the range of attainable MC values in response 
to (1) transition probabilities, (2) distances between regions, and (3) 
relative abundance among regions. We used North American Bird 
Banding Laboratory ringing and long-distance re-encounter data, 
which houses over 4.5 million re-encounter records from 1914 to 
the present (www.pwrc.usgs.gov/bbl), to construct eight probable 
real-world patterns of migratory connectivity (Figure 1), including 
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complete connectivity between one breeding and one non-breeding 
region, full mixing among all regions, and a range of intermediate sce-
narios (Figure S1). We explored the range of MC values in response to 

the eight transition probability scenarios, seven scenarios for the spa-
tial arrangements regions, and five scenarios for relative abundance 
among regions.

F IGURE  1 Migratory movement (transition probability) scenarios derived from North American bird banding laboratory ringing and re-
encounter data (www.pwrc.usgs.gov/bbl) to reflect real-world patterns, including (a) complete connectivity between one breeding and one non-
breeding region, (b) intermediate connectivity with full mixing among regions on either side of a divide, and (c) full mixing among all regions. See 
Figure S1 for the eight transition probability scenarios included in sensitivity analyses

http://www.pwrc.usgs.gov/bbl
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2.4 | Influence of sampling error

Biased or incomplete sampling can introduce error into the measure-
ment of MC that should be accounted for in comparisons among studies. 
For example, species abundance is unlikely to be even across a seasonal 
range. Consequently, when transition probabilities are measured among 
populations across a range, sampling may not be proportional to the 
relative abundance of those regions. Further, estimates of MC may also 
be influenced by the accuracy of devices used to track animals between 
seasons. We therefore, used calcMC and estMC functions to measure 
the influence of many potential sources of sampling error on MC and rM. 
Simulations were used to measure the influence of incorrect delineation 
of populations into regions, sampling not proportional to abundance, 
heterogeneity in detection among regions (e.g., from mark re-encounter 
data), uncertainty in estimates of breeding abundance, small sample 
sizes, and location uncertainty on estimation of MC and rM. We used sim-
ulations with the estMC function to explore the influence of sampling 
error (due to limited sample size, location error, detection heterogeneity, 
or uncertainty in relative abundance) on estimates of the expected value 
of MC, its variance, and its confidence intervals (see Data S1 for further 
details). We also used real tracking data from a temperate – tropical mi-
gratory passerine, the Ovenbird (Seiurus aurocapilla), collected with light-
level and GPS geolocation (Hallworth & Marra, 2015; Hallworth et al., 
2015) and a resampling technique was used to measure the influence of 
small sample size and location uncertainty (e.g., from tracking data) on 
MC and to compare MC to rM (see Data S1 for methods).

2.5 | Comparison of rM and MC

We define and explore the relationships between the true strength of 
migratory connectivity and various approximations to it, including rM, 
MC, and the large sample size asymptotic version of MC. Based on the 
data types available, we make recommendations on the best approach 
to estimate the strength of migratory connectivity.

3  | RESULTS

3.1 | Sensitivity to real-world values

Migratory connectivity ranged from −0.08 to 1.0 for the eight tran-
sition probability scenarios (Figure S1). MC was most influenced by 
the transition probabilities between regions, reflective of the corre-
lations of distances between individuals. The influence of the spatial 
arrangement and relative abundance of regions depended on the 
transition probability matrix. When transitions from each breed-
ing region were broadly distributed across non-breeding regions 
(i.e., weak connectivity), the distances between those regions did 
not strongly influence MC but when transitions from each breed-
ing region were primarily to one or two non-breeding regions (i.e., 
strong connectivity), the influence of distance on MC was greater 
(Figure 2). The spatial arrangement of regions had the greatest in-
fluence on MC when the difference between the breeding and non-
breeding region arrangements were the greatest (Figure 2 scenario 

F). Relative abundance was less influential than transition probabili-
ties and spatial arrangements (Figure 3).

3.2 | Influence of sampling error

We used simulations with the calcMC function to explore the influ-
ence of sampling error on MC, including the number and arrange-
ment of regions designated, sampling out of proportion to abundance, 
and sampling when migratory connectivity varies across the range 
(Tables 1 and 2). MC was biased low when breeding populations 
were grouped into fewer regions than sampling locations and when 
breeding or non-breeding regions were not compact (10 strips rather 
than 4 quadrats), even with equal abundance among breeding regions 
(Table 1). MC contained the greatest bias when sampling occurred in 
all populations and samples were grouped into fewer regions (Tables 1 
and 2), although this bias was increased further by variable strength 
of migratory connectivity. When region definitions matched sampling 
locations, MC was only slightly biased by sampling effort not propor-
tional to abundance and migratory connectivity that varied across the 
range (Table 2). rM was not affected by grouping but was strongly bi-
ased when sampling effort was not proportional to abundance and 
when migratory connectivity was variable across the range (Table 2).

We found that MC error due to detection heterogeneity in long-
distance mark and re-encounter data or uncertainty in relative abun-
dance was negligible (Data S1). In our simulation of GPS tracking data, 
error in MC and rM were also negligible (Table S2; Figure S2). Error 
was somewhat higher for our estimates of MC and rM from simulated 
light-level geolocator data, but still minor and considerably less than 
the uncorrected point estimates using Equation 4 (Data S1, Table S2). 
Results from Ovenbird tracking were similar with GPS and light-level 
geolocation levels of location uncertainty; MC values were consis-
tently lower than rM values (Data S1, Figure S3).

3.3 | Comparison of rM and MC

Under ideal conditions without grouping error and with sampling pro-
portional to relative abundances, rM and MC are identical (Data S1). 
The true strength of migratory connectivity, when the true locations 
of all individuals are known between seasons and animal locations are 
not grouped, is identical to MC calculated with absolute abundance 
(instead of sample size). A version of MC that does not account for 
relative abundances is also identical to rM when animal locations are 
not grouped (Data S1). From simulated data, we found MC is more ro-
bust to bias issues than its other variants, but that there are conditions 
where rM is preferred (Data S1, Table S2). We provide a decision tree 
(Figure 4) to guide researchers about how to calculate or estimate the 
strength of migratory connectivity, given available data.

4  | DISCUSSION

Populations with strong migratory connectivity may be adapted to 
local environments and at greater risk from localized threats, while 
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populations with weak migratory connectivity may be adapted to en-
vironments that occur across a larger geographic area and be more 
buffered from localized threats (Ambrosini et al., 2016; Cresswell, 
2014). Therefore, the strength of migratory connectivity is a demo-
graphic metric, like age ratios, fertility rates, and genetic relatedness 
(e.g., Fst; Meirmans & Hedrick, 2011), with profound consequences 
for populations and species. Yet, the role of migratory connectivity 
strength in evolution, ecology, and conservation has not been well 
studied, despite advancing analytic, molecular, and technological tools 
for measuring animal movement throughout the annual cycle.

Our objective here is to facilitate quantitative exploration of the 
strength of migratory connectivity with methodology that is comparable 
across species, studies, and data types. For example, most studies have 
not sampled migratory animals across the full extent of a species’ range, 
nor have they sampled in proportion to regional abundance. Inferences 
about migratory connectivity strength derived from methods that do 
not account for incomplete sampling (e.g., Finch et al., 2017) may not 
be robust. The approach we present here explicitly addresses uneven 
sampling and incorporates uncertainty in estimates of migratory con-
nectivity strength from multiple sources of sampling and process error.

We define the ideal properties of a metric to quantify the true strength 
of migratory connectivity, when locations of all individuals of a species 
are known between seasons, and define and explore relationships among 

approximations to the true strength (Data S1). The most commonly used 
method to quantify migratory connectivity strength, rM, makes use of a 
sample of individual animals located during two seasons (Besag & Diggle, 
1977). MC builds on this method by incorporating population-specific 
transition probabilities that can be derived from many data types and ac-
counts for uneven sampling. MC approximates rM, which is a correlation 
coefficient with a range from −1 to 1. MC may also qualify as a correlation 
coefficient, at least in some circumstances. In sensitivity analyses based 
on a range of probable real-world scenarios, MC ranged from −0.08 to 
1.0, but it can almost certainly go lower in less realistic scenarios. The 
mathematical and statistical properties of MC, including expected value, 
variance, and range, are yet to be analytically explored. Our simulation 
studies, however, show that our resampling approaches do a good job of 
estimating expected value, variance, and confidence intervals for track-
ing and capture mark recapture data.

Our simulations demonstrate that failure to account for small sam-
ple sizes, uneven sampling among populations, sampling across the 
extent of a species’ range, grouping of individuals into populations, 
or accuracy and precision of locations derived from different data 
types, likely bias calculation of the strength of migratory connectiv-
ity. Sampling regime and natural variability in movement (see Data S1, 
Process error) also influenced estimates. Therefore, we recommend 
estimating and reporting uncertainty from appropriate sources of 

F IGURE  2  Influence of the spatial arrangement of populations into regions on migratory connectivity (MC) (calculated assuming sample sizes 
are large). Sensitivity scenarios varied in transition probabilities (columns; Figure S1) and the spatial arrangement of breeding and non-breeding 
populations into regions (distance scenarios). Bold lines indicate the value when breeding regions and non-breeding regions were arranged 
linearly (scenario A). Additional spatial arrangements are linear and with the distance between the regions doubled or halved (B)–(E), linear and 
gridded (F), or gridded and gridded (G, not pictured)
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sampling and process errors when possible. For example, estimates 
of MC from tracking studies should report uncertainty due to location 
error while long-distance marking and re-encounter studies should re-
port uncertainty due to geographic variability in detection.

Migratory connectivity measures the connections of population 
with probabilities of movement between regions, but does not ac-
count for the distribution of populations within those regions. MC 
will be most accurate when there are no patterns within regions and 
rM will be stronger than MC when individuals that share breeding 
and non-breeding regions maintain the same positions, relative to 
each other, within regions (Ambrosini et al., 2009). For example, rM 
was higher than MC for our Ovenbird tracking dataset, suggesting 
that individuals in connected populations maintain the same relative 
positions within regions between the breeding and non-breeding 
seasons. MC performed better than rM in simulations when sampling 
effort was not proportional to abundance and the strength of migra-
tory connectivity varied across the range. Therefore, estimates of rM 
may be appropriate when estimates of abundance are not available, 
movement data are for individual animals that are not naturally clus-
tered into regions, and detection and location uncertainty are low 
(Figure 4).

The designation of geographical regions for the measurement of 
transition probabilities is necessary for MC and a key difference be-
tween MC and rM. Artificially grouping animals into regions had the 
greatest influence on MC when the strength of migratory connections 
was region-specific, a likely scenario for many species (e.g. Cohen 
et al., 2014; Trierweiler et al., 2014). In practice, unless geography 
or habitat fragmentation create “natural” population delineations, 
identifying discrete populations for geographic sampling is only pos-
sible for species with range-wide demographic data (Rushing, Ryder, 
Scarpignato, Saracco, & Marra, 2015). We used a priori portioning of 
population structure, as opposed to inferring structure in a post hoc 
way. Most migratory connectivity studies select sampling locations in 
this way, usually for logistical reasons, rather than based on known in-
formation about population structure (Data S1). We found that bias in 
MC decreased with more compact, defined regions and with sampling 
at centroids defined by ringing stations or by locations where tracking 
devices are deployed. Measuring MC from a priori selected regions 
also enables hypothesis tests about the role of migratory connec-
tivity strength in population dynamics. For example, we hypothesize 
that stationary non-breeding conditions shape breeding population 
trends when migratory connectivity is strong and the non-breeding 

F IGURE  3  Influence of the relative abundance among regions on migratory connectivity (MC) (calculated assuming sample sizes are large). 
Sensitivity scenarios varied in transition probabilities between breeding and non-breeding regions (columns; Figure S1), the spatial arrangement 
of breeding and non-breeding regions (rows, linear - linear, grid - linear, and grid - grid), and the relative abundance between breeding regions 
(Abundance Scenario). In five abundance scenarios, the relative abundance among breeding regions was equal (bold line), doubled (D*2, B*2), or 
halved (B/2, D/2), in each of two regions
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environment is locally variable (Cresswell, 2014). Methods to identify 
populations (Ambrosini et al., 2009; Rushing, Ryder, et al., 2015b), 
could be used in parallel with MC to generate testable hypotheses 
about the demographic consequences of migratory connectivity.

Further research is needed to understand how MC is influenced 
by sources of process error such as long-distance dispersal rates, an-
nual and within-season environmental variation, and individual het-
erogeneity. MC assumes fidelity to regions within seasonal ranges, 
which could be violated by long-distance dispersal and other sources 
of variation in movement within and among seasons. Systematic, 
long-distance dispersal in particular would lower MC over time. We 
found that relatively small differences in long-distance dispersal 
rates had a large impact on the rate at which MC declined to zero 
(Data S1, Process error and Figure S4). The effect of long-distance 
dispersal on MC will depend on the size and arrangement of regions 
as well as the magnitude and frequency of dispersal movements, in-
formation that is poorly known for most species (Clobert, Baguette, 
Benton, Bullock, & Ducatez, 2012; Paradis, Baillie, Sutherland, & 
Gregory, 1998). In addition, movement of populations could vary an-
nually due to evolution (Delmore, Kenyon, Germain, & Irwin, 2015), 
climate (Rushing, Dudash, Studds, & Marra, 2015), or habitat (Taylor 
& Stutchbury, 2015), further increasing uncertainty in measurement 
of migratory connectivity strength. Individual and population het-
erogeneity in annual movement may also be important sources of 
uncertainty in MC. However, the data necessary to measure individ-
ual heterogeneity—movement of many individuals for many years—
has not been practical. As technological advances make these data 
available, individual heterogeneity could be incorporated into MC as 
covariates (e.g., estimated separately by age or sex).

Studies of the strength of migratory connectivity are applicable to 
migratory periods as well as multiple non-breeding areas. Although most 
migratory connectivity studies have measured connections between 
breeding and non-breeding stationary seasons of the annual cycle, in-
cluding migration will become practical as finer-scale spatial and tem-
poral data become available. Moreover, the extent to which populations 

TABLE  1 Mean MC difference from a true value of 0.25 when 
breeding (n = 100) and non-breeding (n = 100) populations were 
grouped into fewer sampling regions (n = 4 arranged in a grid or 
n = 10 arranged in a row). Sampling effort (n = 1000) was either even 
across the breeding range or at the centroids of the sampling regions. 
Abundance was even among regions and 100 simulations were run 
for each scenario

Breeding 
regions

Non-breeding 
regions

Sampling 
locations MC ∆MC

100 100 100 0.25 0.00

100 10 100 0.10 −0.15

100 4 100 0.18 −0.07

10 100 100 0.13 −0.12

10 10 100 0.18 −0.07

10 4 100 0.09 −0.16

4 100 100 0.18 −0.07

4 10 100 0.07 −0.18

4 4 100 0.18 −0.07

10 100 10 0.15 −0.10

10 10 10 0.18 −0.07

10 4 10 0.09 −0.16

4 100 4 0.22 −0.03

4 10 4 0.09 −0.16

4 4 4 0.22 −0.03

TABLE  2 Mean differences in MC and rM when breeding populations (n = 100) were grouped into regions (n = 4) with uneven relative 
abundance. Sampling effort (total n = 1,000) was either positively (higher in high abundance regions and lower in low abundance regions) or 
negatively (lower in high abundance regions and higher in low abundance regions) proportional to abundance. Migratory connectivity strength 
was either even throughout the breeding range (range-wide MC = 0.25) or varied (range-wide MC = 0.47; =0.60, 0.30, 0.45, and 0.15 in each 
quadrat). Sampling occurred in each population (n = 100, 25 locations per region) or at centroids of regions (n = 4, 1 location per region). 
Non-breeding populations (n = 100) were not grouped and 100 simulations were run for each scenario

Sampling effort 
proportional

Variable migratory 
connectivity Breeding regions

Number of sampling 
locations MC ∆MC rM ∆rM

Yes No 100 100 0.25 0.00 0.25 0.00

Yes No 4 100 0.19 −0.06 0.25 0.00

Yes No 4 4 0.25 0.00 0.25 0.00

Yes Yes 100 100 0.47 0.00 0.47 0.00

Yes Yes 4 100 0.37 −0.10 0.47 0.00

Yes Yes 4 4 0.50 0.03 0.50 0.03

No No 100 100 0.28 0.03 0.24 0.01

No No 4 100 0.20 −0.05 0.24 0.01

No No 4 4 0.26 0.01 0.24 −0.01

No Yes 100 100 0.48 0.01 0.25 −0.23

No Yes 4 100 0.35 −0.12 0.25 −0.23

No Yes 4 4 0.50 0.03 0.23 −0.24
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co-occur outside of breeding depends in part on the diversity of migra-
tory strategies within breeding populations (Gilroy, Gill, Butchart, Jones, & 
Franco, 2016). Breeding populations may use the same spring and autumn 
migration routes each year, but at different times of the season (Bauer 
et al., 2015; Briedis et al., 2016; Paxton & Moore, 2015). Demographic 
consequences could result if this variation causes populations to encoun-
ter different conditions during passage (Drent et al., 2007). Therefore, 
en route migratory connectivity has a spatial and a temporal component 
(Bauer et al., 2015). Weak MC would occur when the same breeding 
populations have more diverse timing, routes, and destinations. Further, 
some migratory species may move considerable distances during winter 
months and remain for extended periods of time within more than one 
region (Heckscher, Taylor, Fox, & Afanasyev, 2011; Renfrew et al., 2013; 
Rohwer, Hobson, & Rohwer, 2009). Increased information about the mi-
gratory movements will therefore require the consideration of multiple 
regions during the “stationary” non-breeding season. The locations of 
individuals within populations would ideally be measured continuously 
in space and time, making it possible to estimate how migratory connec-
tivity changes throughout an annual cycle. The advancement of techno-
logical and analytical tools will facilitate finer-scale measurement of MC.

In conclusion, MC can reduce bias from available data types, 
but accurate estimates of migratory connectivity strength are ul-
timately limited by uncertainty about the seasonal distribution of 
populations. Advances in tracking methodology will reduce this un-
certainty and enable us to integrate multiple, high resolution data 
sources, such as miniature GPS tags and genomics. We hope the 
MigConnectivity package, MC metric, and exploration of available 

methods presented here provide a robust framework to advance 
migratory connectivity research.
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