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Migratory animals undergo seasonal and often spectacular movements and

perform crucial ecosystem services. In response to anthropogenic changes,

including food subsidies, some migratory animals are now migrating shorter

distances or halting migration altogether and forming resident populations.

Recent studies suggest that shifts in migratory behaviour can alter the risk of

infection for wildlife. Although migration is commonly assumed to enhance

pathogen spread, for many species, migration has the opposite effect of low-

ering infection risk, if animals escape from habitats where pathogen stages

have accumulated or if strenuous journeys cull infected hosts. Here, we

summarize responses of migratory species to supplemental feeding and

review modelling and empirical work that provides support for mechanisms

through which resource-induced changes in migration can alter pathogen

transmission. In particular, we focus on the well-studied example of mon-

arch butterflies and their protozoan parasites in North America. We also

identify areas for future research, including combining new technologies

for tracking animal movements with pathogen surveillance and exploring

potential evolutionary responses of hosts and pathogens to changing move-

ment patterns. Given that many migratory animals harbour pathogens of

conservation concern and zoonotic potential, studies that document ongoing

shifts in migratory behaviour and infection risk are vitally needed.

This article is part of the theme issue ‘Anthropogenic resource subsidies

and host–parasite dynamics in wildlife’.
1. Introduction
Animal migrations are widespread, spectacular and have important ecological

consequences for processes ranging from pollination to nutrient transfer and

trophic cascades [1–4]. Seasonal migration can also profoundly affect interactions

between hosts and pathogens [5–7]. On the one hand, migration is commonly

assumed to enhance the geographical spread of pathogens and can expose ani-

mals to diverse parasites as they move annually between breeding and

wintering grounds (e.g. [8–10]). On the other hand, migration can lower infection

risk for many animals, in part, by removing infected individuals during strenuous

journeys and by interrupting pathogen transmission for part of the year (reviewed

in [5]). These processes have been demonstrated in theoretical work and empirical

studies on diverse systems, across insect, fish, bird and mammal hosts and their

protozoan, viral, bacterial and macroparasites (reviewed in [5,6,11]).

Animal migrations worldwide are changing in response to human activities

including climate change, habitat alteration (e.g. [12–15,16]) and, interestingly,

food subsidies. Humans can intentionally or unintentionally provide food for

wildlife, in the context of urbanization, agriculture, recreation, or wildlife man-

agement, with food sources including bird feeders, wildlife feeding stations,

dumpsters and agricultural fields [17]. Shifts in food availability can spur shifts

in animal migrations [18], most of which probably evolved due to natural vari-

ation in food resources [1]. Some animals have responded to supplemental

feeding by halting migration altogether, forming resident populations that live

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0094&domain=pdf&date_stamp=2018-03-12
http://dx.doi.org/10.1098/rstb/373/1745
http://dx.doi.org/10.1098/rstb/373/1745
http://dx.doi.org/10.1098/rstb/373/1745
http://dx.doi.org/10.1098/rstb/373/1745
mailto:dara.satterfield@gmail.com
http://orcid.org/
http://orcid.org/0000-0003-3036-5580
http://orcid.org/0000-0001-9966-2773
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170094

2

 on March 13, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
year-round in the same location (e.g. [19–21]). Other popu-

lations have responded by migrating shorter distances (short-

stopping) [22]. Rapid transitions towards residency and

short-stopping behaviours are now observed in numerous

populations of migratory insects, birds and mammals (e.g.

[23,24]). For example, Spanish white storks (Ciconia ciconia)

typically migrate to Africa each winter, but now forego

migration and subsist on city landfills in Spain year-round

[25,26]. European blackbirds (Turdus merula), Anna’s hum-

mingbirds (Calypte anna), grey-headed flying foxes (Pteropus
poliocephalus) and other species are showing similar behavioural

shifts tied to supplemental feeding [27–29].

Evidence that seasonal migration lowers the transmission

of some pathogens emphasizes the importance of studying

how shifts to shorter migrations and year-round residency

alter the ecology of infectious diseases [5,6,30]. One concern

is that resident populations could support greater parasite bur-

dens due to persistently high host densities, longer breeding

seasons and the absence of mechanisms that reduce parasitism

during migration [5,30,31]. Populations showing short-

stopping behaviours might also experience increased infection

prevalence, e.g. if shorter migratory journeys allow infected

migrants to survive longer. Moreover, a crucial need exists

to investigate how resident animals affect the population

dynamics of migratory populations, including whether greater

disease risk in residents affects pathogen transmission to

migrants and under which conditions resident populations

might rescue migratory species from extinction.

Greater pathogen transmission arising from reduced

migratory behaviour can have dire impacts on wildlife conser-

vation and human health [23,32–35]. In one prominent case

study, permanent ‘camps’ of historically nomadic flying foxes

have formed in cities along the Australian east coast, where

they feed on fruiting trees in suburban gardens [29]. This

change in bat movement and ecology from nomadism to

year-round residency has triggered deadly Hendra virus out-

breaks in horses and humans [35,36]. Threats to species of

conservation concern arise when transmission occurs from

infected residents to migratory conspecifics. For example,

high densities of sedentary farmed salmon can support heavy

loads of parasitic sea lice in outdoor pens near river mouths

on the Pacific Coast, increasing transmission to wild juvenile

salmon (many of which have declining populations) migrating

along adjacent routes [37,38].

Here, we synthesize current knowledge about changes in

migratory behaviours associated with supplemental food

resources and outline mechanisms by which the loss or

reduction in migration could alter host–parasite interactions.

To illustrate changes in infection outcomes, we highlight case

studies on migratory fish, birds and mammals and their para-

sites. In particular, we focus on monarch butterflies (Danaus
plexippus) and a debilitating protozoan parasite as a case

study for which recent increases in resident behaviour have

facilitated high infection prevalence that could ultimately

pose risks for remaining migrants. Our synthesis underscores

the need for additional work to (i) assess the extent to which

other animals are undergoing changes in migration in

response to human activities, (ii) test hypotheses about how

changes in migration alter infectious disease dynamics, (iii)

develop predictions about the types of pathogens and hosts

that will be most affected by shifts in migration and (iv)

evaluate if greater pathogen transmission in resident popu-

lations poses a risk to other species and populations.
Understanding the links between changes in migratory be-

haviour and infection risk is an essential research task to

address concerns for public health and wildlife conservation,

particularly as residency behaviours of migrants are expected

to become more common [39].
2. How are animal migrations changing in
response to resource subsidies?

Anthropogenic forces have changed the timing and extent of

many seasonal migrations (e.g. [14,40–42]). Climate warming,

in particular, has been linked to more limited migrations of

several bird species in Europe, with higher frequencies of

birds remaining closer to breeding grounds during winter

[43,44]. Food subsidies from intentional or accidental sources

can cause similar changes in migratory movements, by redu-

cing the seasonal fluctuations in resources that often drive

migration [17,45]. These resources (e.g. provided through bird

feeders, urban waste or crops) can be more locally abundant

or more continuously available than natural foods [17], and in

many cases have enabled migratory animals to halt, shorten

or delay migrations. Reports of populations increasing their

tendency to become resident in response to human-provided

resources are accumulating in the literature (representative

examples in table 1). These shifts in migratory behaviours

can happen over relatively short timescales [19,54,55] and are

taxonomically and geographically widespread (table 1). The

implications of resource-driven changes in movement for

the population biology and ecology of migratory species

were recently identified as a key emerging issue in wildlife

conservation, with potentially global effects [56].

Some migratory species are fed by wildlife managers to

support populations or limit human–wildlife conflicts. For

example, trumpeter swans (Cygnus buccinator) in North Amer-

ica traditionally migrate from breeding grounds in Canada to

wintering grounds in Idaho and Oregon. In the 1930s, wildlife

managers began feeding swans during winter owing to declines

driven by overharvesting. The swan population rebounded, but

many birds ceased to migrate and formed resident sub-popu-

lations in areas as far north as Montana [53,57]. In a similar

example (reviewed in this issue, [58]), elk (Cervus canadensis)
herds in the Greater Yellowstone Ecosystem are fed hay and

alfalfa during the winter to prevent elk from entering private

lands. Supplemental feeding of elk can delay the onset of

migration, shorten migratory journeys and cause animals to

aggregate around feeding stations, elevating their density and

contact rates [49]. Likewise, supplemental feeding of both

white-tailed deer (Odocoileus virginianus) and mule deer

(O. hemionus) has been found to delay spring migration, thus

prolonging duration of stay on the winter range [59,60].

Several types of migratory animals, including butterflies,

sharks, birds and bats have responded to recreational feeding.

As one example, evening grosbeaks (Coccothraustes vespertinus)

began wintering farther north and shortening their migration in

Europe, probably in response to backyard feeding stations [61].

Eurasian blackcaps (Sylvia atricapilla) have altered their

migration to travel northwest from Germany and Austria to

Britain, rather than southwest to Spain—a change driven by

both warming temperatures and supplemental feeding at

bird feeders [51]. In western North America, Anna’s humming-

birds (Calypte anna) traditionally migrate to the south for the

winter, but citizen science data indicated that in recent years

http://rstb.royalsocietypublishing.org/


Table 1. Examples of case studies in which changes to animal migration occurred in response to human-provided resource subsidy. (Monarch photo: Pat Davis;
Other images: Public domain). (Online version in colour.)

species
provisioned
resource changes in migration references

Anna’s hummingbirds

Calypte anna

bird feeders Anna’s hummingbirds have become

more abundant in winter at

northern latitudes, suggesting a

reduced migratory propensity

associated with human landscapes

Greig et al.

2017 [28]

monarch butterfly

Danaus plexippus

exotic milkweed

plants

the planting of exotic milkweed

plants that grow year-round in the

southern USA enables some

monarchs to forego migration to

breed during the winter, leading

to high protozoan parasite burdens

Satterfield et al.

[23,46]; Batalden

et al. [47]

elk Cervus elaphus winter

supplements

elk fed winter supplements in

Wyoming were found to delay

migration, reduce migratory

duration on the summer range

and form dense aggregations

Cross et al. [48];

Jones et al. [49];

Hebblewhite et al.

2006 [50]

Eurasian blackcap Sylvia

atricapilla

bird feeders typically migrants to the

Mediterranean, blackcaps

increasingly overwinter in Britain,

associated with bird feeders

Plummer et al. [51]

European blackbirds

Turdus merula

possibly fruits,

earthworms,

seeds, feeders

in gardens and

on lawns

blackbirds used to be migratory

between central Europe and the

Mediterranean. Now 50% of birds

stay near breeding grounds all

year, possibly driven by foods

and climate

Berthold [39];

Partecke and

Gwinner 2007 [52]

grey-headed flying foxes

Pteropus

poliocephalus

fruit in gardens traditionally nomadic migrants,

these fruit bats have established

resident camps in urban Australia

in response to supplemental fruit

in gardens

Van der Ree et al.

2006 [29]

trumpeter swans Cygnus

buccinator

wheat

(intentionally

fed)

after a severe decline, swans were

fed wheat at a wildlife refuge in

Montana, leading to a population

increase but also a non-migratory

population vulnerable to harsh

winters

Baskin 1993 [53]

white storks Ciconia

ciconia

garbage while the birds typically migrate from

Europe to Africa, a resident

population formed in Spain, where

the birds feed in landfills

year-round

Tortosa et al. [25,26]
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the hummingbirds have become more abundant at northern

latitudes during winter. This change, associated with a conco-

mitant increase in artificial nectar feeders over the same time

span, suggests a reduction in the proportion of birds that are

migratory [28]. Ruby-throated hummingbirds (Archilochus
colubris) have shown similar changes, with some now found

overwintering along the Gulf coast instead of migrating

further south [62]. Recreational feeding extends also to

oceans. Impacts on migration are suspected in some cases

but not well understood. For instance, bull sharks (Carcharhinus
leucas) adjusted local movement patterns at a food provisioning

site for tourists in Fiji [63], and effects of feeding on the long-

distance migration of bull sharks have been hypothesized

but remain untested [64]. Similarly, non-migratory sicklefin

lemon sharks (Negaprion acutidens) and Southern stingrays

(Dasyatis americana) demonstrated higher site fidelity associ-

ated with provisioning [65,66], suggesting a need to assess

whether supplemental food sources also alter longer-distance

movements in marine animals.

Other migratory populations can use foods that are unin-

tentionally provided. Lesser snow geese (Chen caerulescens) in

North America, for instance, have shortened their migrations

to forage in rice fields in the Midwest and Great Basin areas

during the winter, whereas the geese previously wintered

along the Gulf coast or in Mexico [67]. Endangered black

storks (Ciconia nigra) in western Europe have also responded

to rice fields and other land use changes, with an increasing

number of birds wintering in the Iberian Peninsula since

1990, rather than migrating to northern Africa to overwinter

[68,69]. Whooping cranes (Grus americana), which historically

migrated as far south as South Carolina (and later, Florida),

have shortened their migratory distances since being reintro-

duced 14 years ago and now often winter in the Midwest,

significantly closer to their breeding grounds. This change,

first implemented by older and more experienced birds, has

allowed cranes to use new overwintering areas characterized

by high grain cover and warmer temperatures associated

with climate change [22].

As reports of residency and shorter migrations have

become more common, migration itself has become increas-

ingly challenging for animals. Migrants encounter

geographical barriers (e.g. fences), habitat alteration and

other threats (e.g. mortality due to cats, buildings, wind

turbines; [14,70–72]). In these cases, residency might confer

a fitness advantage over migration, enhancing survival or

reproduction [73–75]. Importantly, evolutionary losses of

traits important for migration might occur in newly formed

resident populations and reinforce the degradation of long-

distance movement [76–78], although this remains an impor-

tant question for future work. We also need to understand

whether and how animals that curtail or abandon migrations

interact with remaining long-distance migrants and whether

these interactions are harmful for migratory populations

more broadly.
3. Mechanisms by which animal migrations alter
host – pathogen interactions

Long-distance migration can have profound consequences for

species interactions, including for the ecology of infectious

disease [3,5]. On the one hand, animal migration might

increase infection risk, if considering the simple abundance
and distribution of hosts and parasites across the migratory

pathway. This can occur when migration facilitates parasite

dispersal over long distances or increases host exposure to a

greater diversity of parasites as migrants encounter different

habitats across a broad geographical range [79–81]. On the

other hand, a growing body of evidence from across taxonomic

groups indicates that migration often does the opposite and

reduces infection risk [5,82]. This body of work considers not

only host–parasite distributions and ranges but also processes
during migration, such as host survival, host interactions

with conspecifics, and parasite persistence and decay in the

environment. Underlying these host–parasite interactions is

the complex and continually changing status of immune func-

tion, and migration can be a time when animals experience

greater susceptibility owing to the energetic demands of a

long-distance journey [83–86].

Long-distance migration can decrease infection risk

through several mechanisms (figure 1), including by affecting

(i) transmission opportunities, (ii) survival of infected hosts,

(iiii) spatial separation between susceptible and infected hosts

or age classes, and (iv) recovery of infected hosts, reviewed in

[5,6,87]. First, prolonged use of habitats allows parasite infec-

tious stages to accumulate in the environment over time.

Consequently, migration can enable animals to periodically

escape from contaminated habitats (i.e. migratory escape;

[31,88]). Between intervals of habitat use, harsh winters and

long absences of hosts could eliminate most parasites, resulting

in nearly disease-free conditions by the time hosts return. Sup-

port for migratory escape has been observed for migratory

ungulates, including caribou (Rangifer tarandus), red deer

(Cervus elaphus) and elk, which annually escape infestation

from warble flies and roundworms, ticks and liver flukes

(respectively; [89–93]). Second, long-distance migration can

lower parasite prevalence by removing infected animals from

the population (i.e. migratory culling). This happens when dis-

eased animals delay the onset of migration or are unable to

complete the journey, owing to the combined energetic costs

of migration and infection [31]. Evidence in support of

migratory culling has been reported in fall armyworm moths

(Spodoptera frugiperda) affected by parasitic nematodes [94] and

in Bewick’s swans (C. columbianus) affected by low-parasitic

avian influenza viruses [95,96].

Third, some migratory populations travel to spawning

grounds, where adults die or depart after depositing offspring.

This strategy results in a spatial separation between juveniles

that are highly vulnerable to infection and adults that harbour

disease-causing agents (migratory allopatry). Evidence for

migratory allopatry in lowering infection risk comes from

long-term studies of sea lice in Pacific salmon [38,97]. Such

ontogenetic migration, in which juveniles and adults separate,

is common among benthic invertebrates and anadromous

fishes [98,99], and decreased parasite transmission may be a

selective force for such migrations [100]. Fourth, migration

can also decrease infection risk by shortening the period of

infectiousness. In migratory recovery, individuals recover from

infection during migration, such as when environmental con-

ditions en route are unfavourable to parasites [101]. This

could shorten infectious periods and thus reduce the window

of opportunity for pathogen transmission. Although direct evi-

dence in support of this mechanism is lacking to date, many

species that migrate seasonally between distinct environments

show potential for migratory recovery to operate (summarized

in [101]).

http://rstb.royalsocietypublishing.org/
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Figure 1. Mechanisms (red text) through which migration lowers infection risk, illustrated with a transmission model for susceptible (S), infected (I) and recovered
(R) hosts, and allowing for pathogen transmission through direct contact or via encounters with parasite infectious stages shed into the environment (W).
(i) Migratory escape allows susceptible hosts (S) to escape environments where infectious stages accumulate over time, limiting both shedding (l, not shown)
and transmission rate (bSW) for environmentally transmitted parasites. (ii) Migratory culling lowers the number of infected individuals (I) by increasing infec-
tion-induced mortality (a) during strenuous migration. (iii) Migratory allopatry and separation reduce transmission by separating more susceptible (S) and
more infected (I) individuals in different age classes during migration, thus limiting contact rates. (iv) Migratory recovery reduces the number of infected individuals
(I), as infected animals recover (at rate Y) due to conditions during migration.(Online version in colour.)
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4. Changing migrations can alter infection risk:
hypotheses, theory, and empirical support

The loss or degradation of migrations in response to anthropo-

genic resource subsidies could have a wide range of effects on

disease occurrence (figure 2), with outcomes probably depend-

ing on host life history, modes of pathogen transmission and

the strength of trade-offs between resources and costly

immune defence. Emerging syntheses have underscored the

need to examine how food provisioning alters infection risk

for migratory species [5,102]. Most recently, a meta-analysis

showed that the relationship between supplemental feeding

and higher risk from microparasites was stronger for dietary

generalist species and, to some small degree, for migratory

species; however, the association with migratory status was

relatively weak [103]. Additional work is needed to understand

interactions between supplemental feeding, disease risk

and animal migrations—and how the deterioration of these

migrations affects populations.

In some cases, the loss of migration might reduce pathogen

burdens, if less mobile hosts encounter fewer parasite species

or if reduced host movement frees up resources for defence

against infection. However, we predict that shorter migrations

or shifts from migratory to resident behaviour will be more

likely to increase disease risk, owing to the breakdown of

mechanisms that lower pathogen transmission [6]. Empirical

support for mechanisms by which altered migrations are chan-

ging infection risk is extremely limited. However, the few case

studies available demonstrate strong disease responses to the

loss of animal migration. Below, we outline several hypotheses,

examine theoretical and empirical support to date, and

propose a framework to guide future work in this area.
(a) Loss of migratory escape, culling and recovery
The most immediate effect of diminished movement behaviour

could occur by the loss of migratory escape. If migrants shift

to year-round residency or longer breeding seasons, they

might be exposed to higher numbers of infectious stages that

accumulate in the environment (loss of migratory escape).

The build-up of environmentally transmitted pathogens in

even high-quality habitats can create ecological traps for ani-

mals, as recent modelling work showed [104]. Migratory

escape and consequences for its loss would probably be most

pronounced for specialist parasites that do not use alternative

hosts during the absence of migrants [5], causing parasites to

die in the environment by the time their obligate hosts

return. Importantly, the loss of migratory escape could alter

the relative importance of different modes of pathogen trans-

mission. Some pathogens such as baculovirus in African

armyworms and neogregarines in monarchs (discussed

below) use two modes of transmission, with environmental

(or horizontal) transfer operating during one part of the

annual cycle and vertical transmission occurring at other

times of the year. Transitions to more resident behaviours

could increase environmental transmission (due to pathogen

accumulation) relative to other modes of transmission, poten-

tially providing an opportunity for parasites to evolve higher

virulence [23].

Recent theoretical work has explored disease outcomes

when migratory escape is lost. A transmission model (by Hall

et al. [6]) for pathogens in a two-way migratory host

population found strong support for migratory escape in

lowering infection risk; that is, infection prevalence was

lower for populations that left the breeding grounds sooner.

Results from the model suggested that environmental changes

http://rstb.royalsocietypublishing.org/
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reducing migratory propensity would probably cause higher

infection prevalence for parasites transmitted during the

breeding season. This was tested in another similar transmission

model that also demonstrated migratory escape, such that

infection prevalence was lower when hosts spent more time

migrating [11]. Resident populations in both models, rep-

resented by no time spent migrating, experienced high

infection prevalence owing to the loss of migratory culling

and migratory escape [6,11]. Future empirical work could exam-

ine the loss of migratory escape in wild populations undergoing

rapid behavioural change. Investigators could measure the

abundance and viability of parasite infectious stages in the

environment at sites where parasites might accumulate and

compare these measures with those from migratory sites at

both seasonal breeding and wintering habitats.

In addition to the loss of migratory escape, if hosts stop

migrating or travel shorter distances, the relative survival

of infected animals could increase in the absence of the

physiological and energetic demands of migration (loss of

migratory culling). Hosts undergoing the most strenuous

migrations (measured, for example, in terms of distance tra-

velled or energy allocated during pre-migration) would be

expected to experience the strongest migratory culling [105]

and, as a result, the greatest responses to its loss. For species

like silver Y moths (Autographa gamma) that take advantage

of directional winds and use minimal self-propulsion [106],

migratory culling (or its loss) might be less important.

Similarly, parasite species most likely to benefit from

diminished migrations are those that typically impair host

mobility or cause severe reductions in energy reserves

needed to undertake long journeys.

Modelling work predicts that the loss of migratory culling

would increase pathogen prevalence: a mathematical model

for vector-borne pathogens showed that shorter migration

distances (keeping the period of breeding and transmission con-

stant) led to higher infection prevalence, due to weakened

migratory culling [105]. Other transmission models (for directly

transmitted pathogens) also showed evidence for migratory

culling [6,11], which held for both density-dependent
and frequency-dependent transmission. However, infection

prevalence declined more rapidly in response to migratory cul-

ling when parasites exhibited density-dependent transmission

[11]. Empirical work to examine the loss of migratory culling

has been hampered by the difficulty in tracking both healthy

and infected individuals throughout their long-distance

migrations, although new tracking technologies and molecular

tools for estimating natal origins and migration distances make

this work more feasible. The most direct tests of migratory cul-

ling in the field would compare survival during migration (or

migratory distances travelled) of healthy versus infected indi-

viduals and scale these against survival estimates for resident

animals that do not migrate. Alternatively, movement or

flight performance of healthy and infected individuals could

be measured experimentally in captivity [107,108].

In addition to migratory culling and escape, some hosts

that stop migrating due to supplemental feeding could

undergo a loss of migratory recovery, which occurs when

infected hosts recover from infections during migration due

to changes in environmental conditions that are unsuitable to

the parasite [101]. Parasites that might be affected by migratory

recovery could include, for example, ectoparasites such as

copepods or barnacles that are sensitive to salinity changes

and infect migratory flounders, manatees (Trichechus) and

other hosts [101]. For newly resident populations, if migration

no longer affords time for animals to recover between cycles of

transmission, longer infectious periods could produce greater

opportunities for parasite transmission. Despite theoretical

support for migratory recovery [101], this mechanism has not

been examined in the wild, and future work is needed to moni-

tor the infection status of animals over time during the course

of seasonal migrations.
(b) Loss of migratory allopatry
Newly resident animals could experience higher host–parasite

contact rates due to the loss of migratory allopatry, which sep-

arates infected and susceptible individuals during migration.

The loss of migration may place susceptible host life stages

http://rstb.royalsocietypublishing.org/
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and infected individuals in closer proximity or more frequent

contact. This has occurred in Pacific Northwest salmon, for

which migration normally separates adult salmon from sus-

ceptible juvenile salmon and truncates the transmission

potential of sea lice between these groups (migratory allopatry;

[109]). The introduction of fish farms in outdoor semi-enclosed

sea pens, however, has altered this relationship. High densities

of farmed salmon (acting, essentially, as year-round resident

salmon) can support heavy loads of parasitic sea lice. When

pens are located near river mouths, sea lice from adult

farmed salmon can transmit to wild juvenile salmon migrating

along adjacent routes [32,38]. The farms have been linked to

high lice-induced mortality of wild chum and pink salmon

and were found to raise infection risk along an 80 km stretch

of the wild fish route, in part due to the breakdown in

migratory allopatry [32].

(c) Increased host density and contact rates
Newly formed resident populations could reach higher local

densities than migrants and, as a result, experience greater con-

tact rates, host susceptibility and pathogen transmission. Higher

density following shifts towards residency could be due to

longer breeding seasons, greater recruitment of susceptible

animals and aggregation around supplemental resources (as

discussed elsewhere [102,110,111]). Implications of higher host

density around resource subsidies for pathogen transmission

have been examined in host–pathogen models (e.g. [111]) and

in several host–parasite systems. For example, elk in Wyoming

given supplemental resources have formed high-density, seden-

tary winter populations with higher brucellosis transmission

compared with free-ranging elk [48].

Animals living at high densities might experience more

intense competition for resources, leading to physiological or

nutritional stress. Crowding and stress might increase suscep-

tibility to infection and allow for larger outbreaks and more

severe individual fitness consequences. In insects, this hypoth-

esis was initially examined (by Steinhaus [112]) in studies of

caterpillars and their natural pathogens and is now supported

by work from insects, birds, fish, mammals and amphibians

(e.g. [113,114]). Whether newly resident populations sup-

ported by human-provided resources experience crowding,

stress and greater susceptibility to infection remains an area

open for future work.

(d) Less frequent encounters with parasites and limited
dispersal

Although resident behaviours are expected to promote parasit-

ism through several mechanisms, residency could reduce

infection risk in other ways. In particular, residents could

encounter a less diverse community of pathogens, compared

to migrants, by remaining in the same environment year-

round [79,115]. Cross-species comparisons of residents versus

migrants provide some support for this hypothesis, with

resident bird species harbouring lower parasite richness of

nematodes [116] and helminths in general [117], compared

with migratory species. However, other work found macropar-

asite richness to be determined by habitat type rather than

migratory behaviour [118]. Within-species comparisons of

parasite richness among residents versus migrants remain

rare. However, at least two case studies within species suggest

that changes in migratory propensity reduce infection risk for
urban populations. European blackbirds, as one example,

were once fully migratory; however, a significant proportion

of blackbirds are now residents living in urban areas [39,119].

Driving this behaviour could be a combination of climate

change and supplemental feeding at garden feeders, in orch-

ards and on lawns (where the birds forage for earthworms;

[39,120]). Evans et al. [27] showed that blackbirds had lower

tick prevalence and intensity and lower avian malaria preva-

lence at some urban sites. A study of mallards in Sweden

similarly demonstrated lower infection prevalence of avian

influenza and avian coronavirus in resident ducks, frequently

fed by humans in an urban pond, relative to wild ducks [121].

In addition to lowering host–parasite contact rates, dimin-

ished migration might lower pathogen dispersal rates, in cases

where migrants frequently act as ‘superspreaders’ of infection

that disperse pathogens long distances [86]. This could occur

for avian influenza, for example, for which genetic evidence

suggests migrants can transport pathogens from north to

south in the autumn [122]. Thus, higher residency and lower

migration rates among water birds might, in some cases,

limit the dispersal of some pathogens or pathogen subtypes.

However, higher residency might also provide more opportu-

nities for pathogens to accumulate in environmental reservoirs

and potentially for higher virulence to evolve (see following

section; [5,123]). Additional work using transmission models

to explore consequences of increased residency for avian

influenza dynamics is needed.

(e) Changes to host resistance or pathogen virulence
Reliable resources and reduced movement might allow

for greater host resistance to infection and lower prevalence

in resident populations. In particular, energy available for

immune defence can depend on trade-offs and interactions

between immunity, migration and infection and might

vary throughout annual migratory cycles [7]. If demanding

migrations typically act to lower immune function (e.g.

[124]), then shorter migrations or transitions to residency

could enhance immunity, offsetting mechanisms that increase

exposure to infection. In addition, resident hosts might be

able to locally adapt to sympatric parasites which they continu-

ally encounter [125], an advantage through which parasitism

could actually select against migrants [126].

Increased year-round transmission and the loss of

migratory culling—a process that might normally remove ani-

mals infected with highly virulent pathogens—could allow

more virulent forms of pathogens to invade populations that

experience reduced migrations. Migration has been hypoth-

esized to select for decreased parasite virulence [23,127,128],

because successful parasite transmission might hinge upon

an infected host’s ability to survive strenuous journeys. By con-

trast, residency might release such evolutionary constraints

and allow higher parasite virulence to evolve.

( f ) Resident populations as reservoirs of parasites
In some cases, the formation of resident populations will estab-

lish new interactions within and between species, introducing

novel opportunities for transmission. In particular, unique

infection dynamics emerge when migrant and resident hosts

interact, as suggested in multiple studies of waterfowl. Resi-

dents can act as reservoirs of pathogens and expose migrants

to infection, as has been suggested for avian influenza subtypes

that are maintained in year-round mallard populations and can

http://rstb.royalsocietypublishing.org/
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be transmitted to migratory birds [129–131]. In fact, several

studies that emphasized the role of migratory birds in epizoo-

tics demonstrate that it was specifically migrants interacting
with residents that determined infection dynamics for avian

influenza or blood parasites [130–132]. As some animals

shift towards non-migratory behaviours, one concern is that

newly resident populations will become sources of infection.

Residents can act as reservoirs of pathogens not only within

species but also across species (e.g. [133]), as with blood para-

sites in resident birds that can be transmitted to migratory

species on wintering grounds in Africa [134]. Phylogenetic

methods examining host specificity suggest that bird species

migrating from Europe acquire parasite lineages of Haemopro-
teus and Plasmodium from resident bird species in tropical

Africa during the non-breeding season [132]. In some cases,

pathogen transmission from resident populations could drasti-

cally affect human health. As one example, resident colonies

of fruit bats persisting on food in suburban gardens in

Australia (rather than eating wild foods during nomadic move-

ments) have led to deadly Hendra virus outbreaks in horses

and humans [35]. Another case in point occurred for avian

influenza transmission. In southern China, paddy fields con-

structed for raising high densities of domestic ducks are

visited seasonally by migratory waterfowl, allowing for a ‘com-

plex spatio-temporal interplay’ of transmission of highly

pathogenic avian influenza between resident domestic ducks

and wild birds [135]. Recent evidence suggests that, in 2008,

resident–migrant interactions contributed to pandemic
spread of AIV, with domestic ducks (numbering over 14

million annually) in the Poyang Lake area of China transmit-

ting H5N1 to migratory birds that then transported the virus

to other areas [135].
5. Monarch butterflies and their debilitating
parasites: a case study illustrating how shifts
from migratory to resident behaviour alter
host – parasite interactions

The interaction between monarch butterflies and a debilitating

protozoan parasite, Ophryocystis elektroscirrha (OE), serves as a

model host–parasite system to investigate how resource sub-

sidy-driven changes in migratory behaviour influence the

spread and impacts of infectious disease (figure 3). Monarchs

in eastern North America are iconic insects famous for their

annual migration, during which hundreds of millions of but-

terflies travel from as far north as Canada to overwinter in

the oyamel forests of central Mexico [136,137]. A shorter

migration persists in the western USA, where monarchs

winter along the California coast [138]. Monarchs also form

genetically distinct, non-migratory populations around the

globe, in areas such as the Caribbean and Pacific [139,140].

Throughout their range, monarchs are commonly infected

with OE [141], which is transmitted from adults to larvae via

spores scattered onto eggs and milkweed; spores must be

http://rstb.royalsocietypublishing.org/
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ingested by a larva to cause a new infection [141–143]. Adults

parasitized with OE emerge covered with up to millions of dor-

mant parasite spores on the outside of their bodies (figure 3).

Transmission can be vertical (from adult females to the surface

of their eggs) or environmental (when larvae consume spores

deposited onto milkweed from unrelated infected adults;

[142,144]). Infections lower adult monarch lifespan, size and

flight ability [107,145,146].

Previous work showed that, across multiple migratory

and non-migratory monarch populations, OE prevalence

decreases with migratory propensity and annual distance

flown [31,82,147], with the lowest infection prevalence occur-

ring among eastern North American monarchs, which migrate

the farthest distances [146]. Field and experimental studies

provided evidence for both migratory culling and migratory

escape in contributing to this pattern. Consistent with migratory

culling, experiments with captive monarchs showed that infec-

tion lowers flight performance [107], and field studies showed

that infection prevalence declines during the monarchs’

annual autumn migration [31]. Furthermore, healthy monarchs

wintering in Mexico originate, on average, from locations more

distant from the wintering sites relative to infected monarchs

[82]. Evidence for migratoryescape comes from studies showing

that prevalence increases during the monarch’s breeding season

in the northern USA and Canada, reaches a peak just prior to

migration, and is lowest in the early spring, when the monarchs

return from their wintering sites to breeding grounds with

newly sprouted, parasite-free milkweed plants [31]. Thus, mul-

tiple lines of evidence demonstrate that seasonal migration

protects monarchs from infection by OE parasites.

Like many other migrants, monarchs have experienced

population declines coincident with the loss of breeding

and overwintering habitats in both eastern and western

North America [148–150]. Recent attention has focused on

the loss of common milkweed (Asclepias syriaca) in agricultu-

rally intense regions of the Midwestern USA [151–153].

Efforts to replace monarch breeding habitat have included

planting milkweed in gardens and yards. One of the most

popular milkweed in gardens is a non-native species, tropical

milkweed (A. curassavica; figure 3), which is attractive, easy to

grow and commonly sold in nurseries [47,154]. Unlike most

native milkweeds that enter dormancy in the autumn, tropi-

cal milkweed persists throughout the year in mild climates

[23,46,47]. Tropical milkweed also has high concentrations

of secondary compounds called cardenolides that are attrac-

tive to monarchs, provide a defence against many

predators, and prolong lifespan for infected individuals

[155–157]. In the southern USA, especially along the Gulf

Coast, newly formed resident monarch populations have

become common [158], enabled by the year-round breeding

habitat afforded by A. curassavica [23,46,47].

Starting in 2009, volunteers for the citizen science pro-

gramme Monarch Health (www.monarchparasites.org) began

reporting that winter-breeding monarchs in the southern

USA showed signs of severe OE infections (S. Altizer 2009,

unpublished data). A recent analysis of citizen scientist moni-

toring data from the eastern USA and Canada showed that

non-migratory monarch populations experience, on average,

five times higher OE prevalence than their migratory counter-

parts (figure 3; [23]). In some locations, infection prevalence

reached 100%, and volunteer reports showed that monarch

winter-breeding occurs exclusively at sites with tropical milk-

weed. A strikingly similar pattern was observed in the
western USA: Resident monarchs breeding year-round in

southern California face nine-times higher infection risk com-

pared with migratory monarchs at coastal overwintering sites

[46]. High infection prevalence has been attributed to the loss

of both migratory escape and culling.

One concern is that heavily parasitized resident monarchs

and OE-contaminated tropical milkweed plants could act as a

source of infection for migratory monarchs or could cause

migrants to abandon their journeys upon encountering sites

with resident conspecifics. This is most likely to happen

during autumn and spring, as migrants pass through sites

occupied by resident monarchs. Exposure to tropical milk-

weed in the autumn might induce migrants to break

reproductive diapause (a pre-migratory physiological state

associated with the delay of reproductive development;

[159]) and to stop migrating. Infected monarchs in poor con-

dition, and hence less able to migrate successfully, might be

especially likely to join resident monarchs. Furthermore, in

the spring, tropical milkweed sites might expose migrants’

offspring to high levels of OE infection risk. Migratory mon-

archs typically lay the first generation of eggs in the spring on

milkweed in Gulf coastal states, where tropical milkweed and

resident monarchs with heavy parasite loads are concen-

trated. Thus, important questions remain about whether

resident monarchs supported by human-planted tropical

milkweed pose infection risks for migratory monarchs and

present an additional threat to monarch migration.

Collectively, work on the monarch–OE interaction

suggests that limiting the availability of milkweed to be sea-

sonal rather than year-round would better support monarch

health and migration. Native milkweeds, which typically

die back each autumn, do not allow for the year-round breed-

ing and resident strategies associated with high levels of OE

infection. In response to these results, many gardeners and

citizen scientists—some of whom helped to uncover the

link between disease and year-round tropical milkweed—

are planting native milkweeds and promoting their avail-

ability throughout North America. Some gardeners are also

removing or cutting back tropical milkweed in the southern

USA during the autumn and winter.
6. Broader implications and directions for
future work

Greater pathogen transmission arising from non-migratory

behaviours can impair wildlife conservation and human

health, especially when resident populations act as infection

sources [23,33–35,37,46]. Most responses of supplemental feed-

ing have been recorded among birds and in terrestrial

environments, but changes in migration are probably occurring

among other vertebrates, among insects and in aquatic environ-

ments—wherever humans provide resources. Findings

summarized here call attention to an urgent need to assess the

extent to which other animals are undergoing changes in

migration and disease, and to identify strategies to preserve

migrations when they are protective. As a first step, parasite sur-

veillance is needed for populations showing changes in

migratory behaviour. Such surveillance should focus on both

zoonotic pathogens and the micro- and macroparasites exclu-

sive to wildlife. Whole-genome sequencing will enable rapid

detection of emerging pathogens with high fidelity and could

aid in surveillance of wildlife diseases [160]. As additional

http://www.monarchparasites.org
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case studies become available, meta-analyses could uncover

patterns and predictions about the circumstances, pathogen

types and host taxa that determine how disease dynamics

respond to changes in migration.

Focused laboratory and field studies would provide resol-

ution about mechanisms underlying the interaction between

disease and migration. The use of new tracking technologies

(e.g. GPS transmitters, geolocators) and stable isotopes will

enable comparisons of migration distances and flight perform-

ance en route among infected and uninfected individuals

(i.e. directly examining migratory culling in the wild), and

assessment of infection risk, immunity and physiological

parameters among residents versus migrants. Laboratory

experiments should examine whether animals that enter a

pre-migratory state or invest in the energetic demands of

migration have lower immune defences than resident animals.

New empirical work could inform mathematical models

that explore the loss of mechanisms during shifts from

migratory to resident behaviours. Models provide the opportu-

nity to observe net outcomes of the loss of migration on disease,

when there are co-occurring and opposing influences; for

instance, a model could simultaneously explore in a population

the loss of migratory culling (which could increase disease risk)

and the more consistent availability of human-provided food

at resident sites (which could lower host susceptibility to infec-

tion; this issue, [161]). More work is needed to understand how

migratory and newly resident populations interact and to pre-

dict when residents might serve as sources of infection. Models

that explore the dynamics of linked migrant-resident popu-

lations will be important to that end.

Finally, research is needed to investigate how supplemental

feeding and changes in animal migration will alter parasite

evolution. The loss of migration might release constraints on

parasite virulence and allow more highly virulent parasites

to thrive once hosts no longer undergo strenuous journeys.

Reduced host movement behaviours might also allow local

adaptation of parasites or changes in host breadth for some

pathogens. Changes in host movement might further affect

the population genetic structure and genetic diversity of patho-

gens. Except for some work with monarch butterflies, these

questions remain almost entirely unexplored.

The case studies in this paper highlight implications for

management, conservation and public health. For some

animal populations, supplemental feeding has had beneficial
effects that must be weighed against any altered risks. For

ungulates and large birds, supplemental feeding is often

used as a management tool that has helped populations

rebound or stabilize following population crashes. When sup-

plemental feeding alters migration, however, this practice

should be assessed for effects on infectious disease dynamics.

Other intentional feeding is recreational, such as at bird fee-

ders, and has allowed opportunities for the public to connect

with wildlife. Restricting the availability of intentionally

provided resources to certain seasons or only during the

non-migration period (if first deemed safe in analyses and

models) could be one way to reduce effects on migratory beha-

viours and disease, while still supporting these populations

and engaging the public. For instance, gardeners could provide

critical habitat to help monarch butterflies in North America

recover from their severe decline, and providing native milk-

weeds that grow seasonally will be more beneficial than

exotic milkweeds that allow year-round monarch breeding.

In other cases, resident populations supported by supplemen-

tal feeding are now so well established that they will probably

persist far into the future. Future work is needed to evaluate the

role of these populations in interacting with migratory animals.

For example, residents could provide a rescue effect to shrink-

ing migratory populations but also amplify transmission and

act as a source of parasites for these animals. Some resident

populations pose a risk not only to wildlife but also to

humans. A better understanding of this phenomenon could

help predict where and when spillover is most likely. Finally,

the studies reviewed here suggest that protecting migratory be-

haviour is an essential part of protecting wildlife health.
Data accessibility. This article has no additional data.

Authors’ contributions. D.S. and S.A. wrote the manuscript. All authors
contributed to concept development and revisions.

Competing interests. The authors declare no competing interests.

Funding. This work was supported by funding to DS from the Smith-
sonian Institution National Board Fellowship through the James
Smithson Fellowship Program; from a National Science Foundation
Dissertation Improvement Grant (no. 1406862); and from a Monarch
Joint Venture research grant.

Acknowledgements. We thank Daniel J. Becker, Sonia M. Hernandez and
Richard J. Hall for co-organizing the symposium that inspired this
work (‘Resource Provisioning and Wildlife–Pathogen Interactions
in Human-Altered Landscapes’ at the 101st meeting of the Ecological
Society of America in 2016).
References
1. Dingle H. 2014 Migration: The biology of life on the
move, 2nd edn. Oxford, UK: Oxford University Press.

2. Holdo R, Holt RD, Sinclair ARE, Godley BJ, Thirgood
S. 2011 Migration impacts on communities and
ecosystems: empirical evidence and theoretical
insights. In Animal migration: A synthesis (eds EJ
Milner-Gulland, JM Fryxell, ARE Sinclair),
pp. 131 – 142. Oxford, UK: Oxford University Press.

3. Bauer S, Hoye BJ. 2014 Migratory animals couple
biodiversity and ecosystem functioning worldwide.
Science 344, 1242552. (doi:10.1126/science.
1242552)
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109. Krkošek M. 2017 Population biology of infectious
diseases shared by wild and farmed fish.
Can. J. Fish. Aquat. Sci. 74, 620 – 628. (doi:10.
1139/cjfas-2016-0379)
110. Bradley CA, Altizer S. 2007 Urbanization and the
ecology of wildlife diseases. TREE 22, 95 – 102.

111. Becker DJ, Hall RJ. 2014 Too much of a good thing:
resource provisioning alters infectious disease
dynamics in wildlife. Biol. Lett. 10, 20140309.
(doi:10.1098/rsbl.2014.0309)

112. Steinhaus EA. 1958 Crowding as a possible stress
factor in insect disease. Ecology 39, 503 – 514.
(doi:10.2307/1931761)

113. Iguchi K, Ogawa K, Nagae M, Ito F. 2003 The
influence of rearing density on stress response and
disease susceptibility of ayu (Plecoglossus altivelis).
Aquaculture 220, 515 – 523. (doi:10.1016/S0044-
8486(02)00626-9)

114. Padgett DA, Glaser R. 2003 How stress influences
the immune response. Trends Immunol. 24,
444 – 448. (doi:10.1016/S1471-4906(03)00173-X)

115. Piersma T. 1997 Do global patterns of habitat use
and migration strategies co-evolve with relative
investments in immunocompetence due to spatial
variation in parasite pressure? Oikos 80, 623 – 631.

116. Koprivnikar J, Leung TLF. 2015 Flying with diverse
passengers: greater richness of parasitic nematodes
in migratory birds. Oikos 124, 399 – 405. (doi:10.
1111/oik.01799)

117. Hannon ER, Kinsella JM, Calhoun DM, Joseph MB,
Johnson PTJ. 2016 Endohelminths in bird hosts
from northern california and an analysis of the role
of life history traits on parasite richness. J. Parasitol.
102, 199 – 207. (doi:10.1645/15-867)

118. Gutiérrez JS, Rakhimberdiev E, Piersma T, Thieltges
DW. 2017 Migration and parasitism: habitat use, not
migration distance, influences helminth species
richness in Charadriiform birds. J. Biogeogr. 44,
1137 – 1147.

119. Evans KL, Newton J, Gaston KJ, Sharp SP, McGowan
A, Hatchwell BJ. 2012 Colonisation of urban
environments is associated with reduced migratory
behaviour, facilitating divergence from ancestral
populations. Oikos 121, 634 – 640. (doi:10.1111/j.
1600-0706.2011.19722.x)

120. Van Vliet J, Musters CJM, Ter Keurs WJ. 2009
Changes in migration behaviour of Blackbirds Turdus
merula from the Netherlands. Bird Study 56,
276 – 281. (doi:10.1080/00063650902792148)

121. Wille M, Lindqvist K, Muradrasoli S, Olsen B, Järhult
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157. Sternberg ED, Lefèvre T, Li J, de Castillejo CLF, Li H,
Hunter MD, De Roode JC. 2012 Food plant derived
disease tolerance and resistance in a natural
butterfly-plant-parasite interactions. Evolution
66, 3367 – 3376. (doi:10.1111/j.1558-5646.2012.
01693.x)

158. Howard E, Aschen H, Davis AK. 2010 Citizen
science observations of monarch butterfly
overwintering in the southern United States.
Psyche: J. Entomol. 2010, 1 – 6. (doi:10.1155/2010/
689301)

159. Goehring L, Oberhauser KS. 2002 Effects of
photoperiod, temperature, and host plant age on
induction of reproductive diapause and
development time in Danaus plexippus. Ecol.
Entomol. 27, 674 – 685. (doi:10.1046/j.1365-2311.
2002.00454.x)

160. Gardy J, Loman NJ, Rambaut A. 2015 Real-time
digital pathogen surveillance—the time is now.
Genome Biol. 16, 155. (doi:10.1186/s13059-015-
0726-x)

161. Brown LM, Hall RJ. 2018 Consequences of resource
supplementation for disease risk in a partially
migratory population. Phil. Trans. R. Soc. B 373,
20170095. (doi:10.1098/rstb.2017.0095)

http://dx.doi.org/10.1038/nature13812
http://dx.doi.org/10.1007/s00442-009-1361-6
http://dx.doi.org/10.1006/jipa.1999.4853
http://dx.doi.org/10.1006/jipa.1999.4853
http://dx.doi.org/10.1017/S0031182006002009
http://dx.doi.org/10.1017/S0031182006002009
http://dx.doi.org/10.1046/j.1365-2311.2000.00246.x
http://dx.doi.org/10.1046/j.1365-2311.2000.00246.x
http://dx.doi.org/10.1016/j.biocon.2014.09.041
http://dx.doi.org/10.1111/1365-2656.12253
http://dx.doi.org/10.1111/1365-2656.12253
http://dx.doi.org/10.1111/icad.12198
http://dx.doi.org/10.1098/rsos.170760
http://dx.doi.org/10.2307/2394652
http://dx.doi.org/10.1111/j.1365-2656.2007.01305.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01901.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01901.x
http://dx.doi.org/10.1111/j.1558-5646.2012.01693.x
http://dx.doi.org/10.1111/j.1558-5646.2012.01693.x
http://dx.doi.org/10.1155/2010/689301
http://dx.doi.org/10.1155/2010/689301
http://dx.doi.org/10.1046/j.1365-2311.2002.00454.x
http://dx.doi.org/10.1046/j.1365-2311.2002.00454.x
http://dx.doi.org/10.1186/s13059-015-0726-x
http://dx.doi.org/10.1186/s13059-015-0726-x
http://dx.doi.org/10.1098/rstb.2017.0095
http://rstb.royalsocietypublishing.org/

	Responses of migratory species and their pathogens to supplemental feeding
	Introduction
	How are animal migrations changing in response to resource subsidies?
	Mechanisms by which animal migrations alter host-pathogen interactions
	Changing migrations can alter infection risk: hypotheses, theory, and empirical support
	Loss of migratory escape, culling and recovery
	Loss of migratory allopatry
	Increased host density and contact rates
	Less frequent encounters with parasites and limited dispersal
	Changes to host resistance or pathogen virulence
	Resident populations as reservoirs of parasites

	Monarch butterflies and their debilitating parasites: a case study illustrating how shifts from migratory to resident behaviour alter host-parasite interactions
	Broader implications and directions for future work
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


