Smithsonian Miscellaneous Collections 1038

SMITHSONIAN

PHYSICAL TABLES

PREPARED BY

THOMAS GRAY

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1896 The Riverside Press, Cambridge, Mass., U. S. A. Electrotyped and Printed by H. O. Houghton & Co.

.

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852. A second edition was issued in 1857, and a third edition, with further amendments, in 1859. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that, after twenty-five years of valuable service, the work was again revised and a fourth edition was published in 1884. In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish a new work in three parts - Meteorological Tables, Geographical Tables, and Physical Tables - each representative of the latest knowledge in its field, and independent of the others, but the three forming a homogeneous series. Although thus historically related to Dr. Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893, and so great has been the demand for it that a second edition has already become necessary. The second volume of the series (the Geographical Tables), prepared by Prof. R. S. Woodward, was published in 1894. The present volume (the Physical Tables), forming the third of the series, has been prepared by Prof. Thomas Gray, of the Rose Polytechnic Institute, Terre Haute, Indiana, who has given to the work the results of a wide experience.

S. P. LANGLEY, Secretary.

.

r

.

PREFACE.

In the space assigned to this book it was impossible to include, even approximately, all the physical data available. The object has been to make the tables easy of reference and to contain the data most frequently required. In the subjects included it has been necessary in many cases to make brief selections from a large number of more or less discordant results obtained by different experimenters. I have endeavored, as far as possible, to compile the tables from papers which are vouched for by well-known authorities, or which, from the method of experiment and the apparent care taken in the investigation, seem likely to give reliable results.

Such matter as is commonly found in books of mathematical tables has not been included, as it seemed better to utilize the space for physical data. Some tables of a mathematical character which are useful to the physicist, and which are less easily found, have been given. Many of these have been calculated for this book, and where they have not been so calculated their source is given.

The authorities from which the physical data have been derived are quoted on the same page with the table, and this is the case also with regard to explanations of the meaning or use of the tabular numbers. In many cases the actual numbers given in the tables are not to be found in the memoirs quoted. In such cases the tabular numbers have been obtained by interpolation or calculation from the published results. The reason for this is the desirability of uniform change of argument in the tables, in order to save space and to facilitate comparison of results. Where it seemed desirable the tables contain values both in metric and in British units, but as a rule the centimetre, gramme, and second have been used as fundamental units. In the comparison of British and metric units, and quantities expressed in them, the metre has been taken as equal to 39.37 inches, which is the legal ratio in the United States. It is hardly possible that a series of tables, such as those here given, involving so much transcribing, interpolation, and calculation, can be free from errors, but it is hoped that these are not so numerous as to seriously detract from the use of the book.

I wish to acknowledge much active assistance and many valuable suggestions during the preparation of the book from Professors S. P. Langley, Carl Barus, F. W. Clarke, C. L. Mees, W. A. Noyes, and Mr. R. E. Huthsteiner. I am also under obligations to Professors Landolt and Börnstein, who kindly placed an early copy of their "Physikalisch-Chemische Tabellen" at my disposal.

THOMAS GRAY.

ROSE POLYTECHNIC INSTITUTE, TERRE HAUTE, IND., July 13, 1896.

																			PAGE
Ir	ntroduct	ion o	on uni	ts of m	easur	ement	and	cor	nvers	sion	l fa	cto	ors		•	•	•		xv
U	nits of	meas	ureme	ent, ger	neral (liscus	sion									•	•		xv
D	imensic	n foi	mulæ	for dyn	namic	units					•								xvii
	66		66	" he	at uni	ts .				•		•				•		. 2	xiii
	6.6	of	elect	ric and	magr	ietic u	nits,	ger	ieral	di	scu	issi	on				•	+	xxv
	66	fo	rmulæ	e in elec	etrosta	atic sy	stem			•	•						٠	+ 2	xxvi
	66		66	" elec	ctrom	agneti	c sys	ten	n .							•		. 2	cxix
P	ractical	unit	s of el	lectricit	y, leg	alizati	on of	Ε.		•	•	•	•	•	•		•	XJ	cxiii
ABLI	E																		
I .	Formu	læ fo	r conv	version	facto	rs:													
	(a)	Fund	amen	tal unit	s.	• •			•										2
	× /			nits .															2
				etric an															2
				units															3
	-	III.	Magn	etic and	d elec	tric un	nits .												3
2.	Equiva																		-
				mperial			-		0										5
				metric															6
	· · ·		-	o metric		-													7
	,	_		imperia															8
3.	Tables			-															
Ū				to met		-									٠				9
				customa															10
4.	Factor	s for	the c	onversi	on of	length	ns.		۰										II
5.	66	6.6		6.6		areas													II
6.	66	6.6	66	66	66	volum	ies .												I 2
7.	6.6	66	66	66	66	capac	ities												I 2
8.	6.6	66	66	66		masse													
9.	66	66	66	66		mome													13
10.	6.6	66	66	66	66	angle	5												14
II.	66	66	66	6.6		times													14
12.	66	66	66	6.6	6.6	linear	velc	citi	ies										15
13.	66	66	66	66	66	angul	ar ve	eloc	ities							,			15
14.	66	66	66	66		mome													16
15.	66	66	66	6.6		mome													16

TABLE	OF	CON	TENTS
-------	----	-----	-------

1б.	Factors	for	the	conversion	of	forces	17
17.	66	66	66	6.6	66	linear accelerations	17
18.	66	66	66	66	66	angular accelerations	18
19.	66	66	66	66	66	linear and angular accelerations	18
20.	6.6	66	66	66	66	stress or force per unit of area, gravitation	
						units	19
21.	66	66	66	• 6	66	power, rate of working, or activity, gravi- tation units	19
22.	6.6	66	66	66	66	work or energy, gravitation units	20
22. 23.	66	66	66	66		film or surface tension	20
23. 24.	66	66	66	66		power, rate of working or activity, absolute	
24.						units	21
25.	6.6	66	66	66	66	work or energy, absolute units	21
26.	6.6	66	66	66		stress or force per unit of area, absolute	
						units	22
27.	6.6	66	66	66	66	film or surface tension, absolute units	22
28.	66	66	66	66	66	densities	23
29.	66	"	66	66	66	specific electrical resistance	23
30.	6.6	66	66	6.6	66	electrolytic deposition	24
31.	66	66	6.6	66	66	heat units	24
32.	66	66	66	66	66	thermometer scales	25
33.	66	66	6.6	66	66	electric displacement and other quantities	
						of dimensions $M^{\frac{1}{2}} L^{-\frac{3}{2}} \dots \dots$	25
34.	66	66	66	66	6.6	surface density of magnetization and other	
						quantities of dimensions $M^{\frac{1}{2}}L^{-\frac{1}{2}}$	26
35.	6.6	66	66	66	66	intensity of magnetization and other quan-	
						titics of dimensions $M^{\frac{1}{2}} L^{\frac{1}{2}} \ldots \ldots$	26
36.	6.6	66	66	66	66	electric potential and other quantities of	
						dimensions $M^{\frac{1}{2}} L^{\frac{3}{2}} \dots \dots$	27
37.	6.6	66	66	66	6.6	magnetic moment and other quantities of	
				_		dimensions $M^{\frac{1}{2}} L^{\frac{5}{2}} \dots \dots \dots$	
			4			sines) for values of x from 0 to 5	
39.	66	<u>دد ا</u>	ex+0	(hyperb	olic	cosines) for " " " " · · ·	29
40.	Logarit	thm	s of	<u>e^xe^{-x}</u>			30
41.	66		of	2 "			31
42.	Values	of	e^x ar	nd e^{-x} and	the	ir logarithms	32
43.	6.6	66	e^{x^2} a	nd e^{-x^2} "	66		33
44.	66	66	$e^{\pi x}$	and $e^{-\frac{\pi}{4}}$	66	··	34
45.	6.6	66	$e^{\sqrt{\frac{\pi}{4}}x}$	and $e^{\sqrt{\pi}r}$	66	" fractional values of x	34
46.	6.6	66	e^x ar	nd e^{-x}	66	" fractional values of x	35
47.						rvation	
48.				66 66			

49.	Values of 0.6745 $\sqrt{\frac{1}{n-1}}$	6
50.	" " $0.6745\sqrt{\frac{1}{n(n-1)}}$	7
51.	" " $0.8453\sqrt{\frac{1}{n(n-1)}}$	7
52.	" " $0.8453 \frac{I}{n\sqrt{n-1}}$	7
53.	" " the logarithm of the gamma function $\Gamma(n)$ for values of n	
55.	between 1 and 2	8
54.	" " the first seven zonal harmonics from $\theta = 0^\circ$ to $\theta = 90^\circ$ 4	0
55.	" " $\log M/4\pi \sqrt{aa^1}$ for facilitating the calculation of the mutual	
	inductance between two coaxial circles 4	2
56.	" " $\int_{0}^{\frac{\pi}{2}} (\mathbf{r} - \sin^2\theta \sin^2\phi)^{\frac{1}{2}} d\phi$ for different values of θ with the loga-	
	rithms of these integrals \ldots \ldots \ldots \ldots \ldots 4	3
57.	Cross section and weight of copper, iron, and brass wire of different	
	diameters, British units	4
58.	Cross section and weight of copper, iron, and brass wire of different	.6
50	diameters, metric units	0
39.	ent diameters	8
бо.	Cross section and weight in various units of platinum wires of different	
		0
бі.	Cross section and weight in various units of gold wires of different	
	diameters	2
б2.	Cross section and weight in various units of silver wires of different	
6	diameters	
оз. 64.	Weight, in grammes per square metre, of sheet metal	
	" " various British units, of sheet metal	7
03.	and Sharp's gauge and British measure	8
66.	Same data as 65, but in metric measure	
67.	" " " but British standard wire gauge 6	
68.	" " " 67, but in metric measure	
69.	" " " 65, but Birmingham wire gauge 6	
70.	" " " 69, but in metric measure 6	
7I.	Strength of materials :	
	(a) Metals and alloys \ldots \ldots \ldots \ldots $.$	0
	(b) Stones and bricks \ldots \ldots \ldots \ldots $.$	0
	(c) Timber $\ldots \ldots \ldots$	
	Composition and physical properties of steel	I
73·	Effect of the reduction of section produced by rolling on the strength of	
	bar iron	
74.	Effect of diameter on the strength of bar iron	2

vii

75.	Strength of copper-tin alloys (bronzes)	H 2
76.		73
77.	" " copper-zinc-tin alloys	73
	Moduli of rigidity	73
79.	Young's modulus of elasticity	74
79. 80.	Effect of temperature on rigidity	75
81.		76
82.	Electic moduli of errestele formula	76
83.	" " " " " " " " " " " " " " " " " " "	77
84.	Compressibility of nitrogen at different pressures and temperatures	78
85.	" "hydrogen " " " " "	79
86.	" " methane " " " " "	79
8 ₇ .	" "ethylana " " " " "	79
88.		79
89.		80
oy.	values of	0
0.0	the ratio pv/p_1v_1	80
90.	an, oxygen, and carbon monoxide at different pres-	
	sures and ordinary temperature	80
91.	support dioxide at different pressures and tempera-	-
	tures	
92.	annionia at different pressures and temperatures.	81
93.		82
94.	sonas	83
95.	Density of various solids	84
96.		85
97.		86
98.	woods	87
99.		88
100.	gases	89
101.	" " aqueous solutions of salts	90
102.	" " water between o° and 32° C	92
103.	Volume of water at different temperatures in terms of its volume at	
	temperature of maximum density	93
104.	Density and volume of water in terms of the density and volume at	
	4° C	94
105.	" " " mercury at different temperatures	95
106.		
107.	Density of aqueous methyl alcohol · · · · · · · · · · · · · · · · · · ·	97
	Variation of density of alcohol with temperature	
	Velocity of sound in air, principal determinations of	99
110.	"""""solids	100
III.	"""""liquids and gases • • • • • • • • • • • • • • • • • •	101
112.	Force of gravity at sea level and different latitudes	102
113.	Results of some of the more recent determinations of gravity	103
114.	Value of gravity at stations occupied by U. S. C. & G. Survey in 1894 .	104
115.	Length of seconds pendulum for sea level and different latitudes	104
11б.	Determinations of the length of the seconds pendulum	105

117.	Miscellane	ous dat	a as to t	he eart	h and j	planet	ts			•		106
	Aerodynar											
119.	66	Ľ	Data for t	he soa	ring of	plan	es .	• •	• •		• •	109
120.	Terrestrial	magnet	tism, tota	al inter	nsity .	ø 6		• •	۰.	٠	• (110
121.	6.6	6.6	sec	ular va	iriation	of to	tal inte	ensity	• •	٠	• •	110
122.	66	66	dip	• •				• •	• •	٠	•	III
123.	66	66	sec	ular va	iriation	of di	р	• •	. •		•	III
124.	66	66			l intens							
125.	66	66			iriation				-			
126.	66	66			for valu							
127.	44	66			riation							-
128.	66	66		<i>c</i> c	66			(cei				
129.	66	66		"	"	"	66	(we	stern	stati	ons) 116
130.	66	66	pos	ition	of ago	nic l	ine in	1800	, 185	о, і	875	,
Ŭ					90							
131.	66	6.6	dat	e of n	naximu	m eas	st dec	linatio	on at	var	ious	5
Ũ			S	tation	s	. •						. 118
132.	Tables for	r compu	iting pre	ssure	of mer	cury	and of	wate	r, Bri	itish	and	l .
Ť	metric n	neasures					• •					. 119
133.	Reduction	of baro	metric h	eight t	to stand	lard to	empera	ature		٠	٠	. 120
134.	Correction	of bar	ometer t	o stan	dard g	ravity	, Britis	sh and	d met	tric 1	mea	-
	sures .											
135.	Reduction		meter to	latitu	de 45°,	Britis	sh scal	e		•		. 122
13б.					66							
137.	Correction	of bard	ometer fo	o <mark>r c</mark> api	llarity,	metri	c and	Britis	h mea	isure	S	. 124
138.	Absorption	<u> </u>										. 125
	Vapor pre											
140.	Capillarity											
141.	66	66	66		niscella							
142.	66	66	66		iqueous							
143.	66	66	66	"	iquids							
						×	• •					-
144.	66	66			iquids :							. 129
145.	"				hickne:		-					-
	Colors of	-										. 130
147.	Contractio	n produ "	~									. 131
148.					n of sol			• •				. 134
149.	Coefficien											. 135
150.	-											. 136
151.	Coefficien		-							• •		• 137
152.	Specific vi	iscosity "	or miner " variou							• •		. 137
153.	66		" variou									. 137
154.	66	66	" variou	is nqui			re vari	 ation				. 138
155.	66	66			~							. 139
156.	66	66	" solutio	-			-		-			
1 57.	6.6			at	omic co	ncent	tration	5	۰	• •		• 144

158.	Specific viscosity of gases and vapors	٠	145
159.	" " " formulæ for temperature variation		
160.	Diffusion of liquids and solutions of salts into water		
161.	" "vapors		
162.	" " gases and vapors		-
163.	Isotonic coefficients and lowering of the freezing-point		
164.			-
165.	Pressure of aqueous vapor (Regnault)		151
166.	" " " (Regnault and Broch)		
167.	Weight in grains of aqueous vapor in a cubic foot of saturated air .		155
168.	" " grammes of " " " " metre of " ".		155
-	Pressure of aqueous vapor at low temperatures		156
	Hygrometry, vapor pressure in the atmosphere		157
171.	" dew-points \dots \dots \dots \dots \dots \dots		158
-	Values of $0.378e$ in atmospheric pressure equation $h = B - 0.378e$.		160
	Relative humidity \dots		160
174.	Table for facilitating the calculation of $h/760$		
	Logarithms of $h/760$ for values of h between 80 and 800		202
170.	Values of $1+.00367t$: (a) For values of t between 0° and 10° C. by tenths		164
	(<i>b</i>) " " " t " -90° and $+1990^{\circ}$ C. by tens		
	(c) Logarithms for t " -49° and $+399^{\circ}$ C. by units		
	(<i>d</i>) """ " " " 400° and 1990° C. by tens		
T 77	Determination of heights by barometer		100
	Determination of heights by barometer		109
	Barometric pressures corresponding to different temperatures of t		109
	Barometric pressures corresponding to different temperatures of a boiling-point of water :	the	
	Barometric pressures corresponding to different temperatures of the boiling-point of water :(a) British measure	the	170
178.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) An and the boiling to different temperatures of the boiling temperature temperature temperatures of the boiling temperature temperature temperature temperatures of the boiling temperature temperature temperature temperatures of temperature temperature temperatures of temperature temperature temperatures of temperature temperatures of temperature temper	the	170 171
178.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172
178. 179. 180.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172 175
178. 179. 180. 181. 182.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172 175 176 176
178. 179. 180. 181. 182.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172 175 176 176
179. 180. 181. 182. 183.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172 175 176 176 177
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of the boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c	the	170 171 172 175 176 176 177
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c)	the	170 171 172 175 176 176 177 177
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c)	the	170 171 172 175 176 176 177 177 177
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Hopkinson's Barometric standards (c) Hopkinson's 	the	170 171 172 175 176 176 177 177 177 178 178 178
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Mascart's 	the	170 171 172 175 176 176 177 177 177 178 178 178 178
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Hopkinson's (c) Langley's (c) Baille's (c) Langley's 	the	170 171 172 175 176 176 177 177 178 178 178 178 179 179
179. 180. 181. 182. 183. 184.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Langley's (c) Water and and antical atmosphere Barometric atmosphere (c) Langley's (c) Water and antical atmosphere (c) Hopkinson's (c) Langley's (c) Water atmosphere (c) Water atmosphere (c) Langley's (c) Vogel on effect of temperature 	the	170 171 172 175 176 176 177 177 177 178 178 178 178 179 179
179. 180. 181. 182. 183. 184. 185.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Langley's (c) Metric standard Baille and and and and and and and and and and	the	170 171 172 175 176 176 177 177 178 178 178 178 179 179 179
179. 180. 181. 182. 183. 184. 185.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Hopkinson's (c) Hopkinson's (c) Langley's (c) Müller <l< td=""><td>the</td><td>170 171 172 175 176 176 177 177 177 178 178 178 178 179 179</td></l<>	the	170 171 172 175 176 176 177 177 177 178 178 178 178 179 179
179. 180. 181. 182. 183. 184. 185.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Hopkinson's (c) Langley's (c) Mageart's (c) Mageart's (c) Langley's (c) Miller (c) Miller (c) Mageart's (c) Langley's (c) Langley's (c) Miller (c) M	the	170 171 172 175 176 176 177 177 177 178 178 178 179 179 179 179 180
179. 180. 181. 182. 183. 184. 185.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Hopkinson's (c) Hopkinson's (c) Langley's (c) Langley's (c) Mascart's (c) Mascart's (c) Mascart's (c) Mascart's (c) Langley's (c) Langley's (c) Miller (c) Miller (c) Mascart's (c) Miller (c) Miller<td>the</td><td>170 171 172 175 176 176 177 177 177 178 178 178 179 179 179 179 179 180 181</td>	the	170 171 172 175 176 176 177 177 177 178 178 178 179 179 179 179 179 180 181
179. 180. 181. 182. 183. 184. 185.	 Barometric pressures corresponding to different temperatures of a boiling-point of water : (a) British measure (b) Metric measure (c) Metric measure (c) Metric measure (c) Metric measure (c) Hopkinson's (c) Hopkinson's (c) Langley's (c) Mageart's (c) Mageart's (c) Langley's (c) Miller (c) Miller (c) Mageart's (c) Langley's (c) Langley's (c) Miller (c) M	the	170 171 172 175 176 176 177 177 177 178 178 178 179 179 179 179 179 179 179 180 181

188.	Index of re	efractio	n of r	ock sa	lt, var	ious	auth	orit	ies	•	•	•	•	•	•	. 1	182
189.	66 66	66		ylvine												•]	182
190.	66 66	66	" fl	uor-spa	ar .	• •				٠	٠	•	•	•			183
191.	66 66	66		arious													184
192.	66 66	66		celand													185
193.	66 66	66		luartz													186
194.	66 66	66	" V	arious													187
195.	66 66	6.6	66		biaxi					٠	•	•	•	•	•	•	187
196.	66 66	6.6	" s	olution	ns of s	salts	and a	ncid	S :								
5	(a) Solu	tions in	n wate	r.							٠		•	•	•	•	188
	(b) Solu	tions ir	n alco	hol.	• •	• •			•			٠	•	•	٠	•	188
	(c) "	د دد	' pota	ssium	perma	ingai	nate	• •		•		•	•	•	•	•	188
197.	Index of r	efractio	on of v	arious	liqui	ds .		• •	•			•	•	•	•	•	189
108.	66 66	66	66 3	gases a	ind va	pors						•		•		٠	190
199.	Rotation of	of plane	e of po	olarized	l ligh	t by	soluti	ions	÷.	•		٠		•		•	191
200.	66 6	6 66	66	66	66	66	sodiu	m o	chlo	rate	e ai	nd b	ру с	lns	irtz	•	191
201.	Lowering	of freez	zing-p	oints b	y salt	s in	solut	ion		•	•			•	•	•	192
202.	Vapor-pres	ssures o	of solu	itions of	of salt	ts in	wate	r.				•	•	•	٠	•	194
203.	Raising of	boiling	g-poin	ts by s	alts ii	n soli	ation	•	•			•	•	•		٠	196
204.		onduct	ivity (of meta	als an	d allo	oys -	• •			٠			•	•	+	197
205.	66	66		" vario	ous su	bsta	nces					•	٠	٠	•		198
20б.	66	66		" wate	r and	solu	tions	of	salt	s.	٠				٠		198
207.	66	66		" orga	nic li	quids	÷.			•		٠		•			198
208.	66	66		" gase	s.	-	٠	• •				•	•				198
209.	Freezing	nixture															199
210.																	200
211.	Heat of c																201
212.	" " C	ombina	tion	• •													202
	Latent he																204
214.																	206
	Melting-p																
216.	Boiling-po	ints of		66	66					•		٠					207
	Melting-p																
	Boiling-po				"		66										210
219.	Melting-p	oints o	f mixt	ures.				•									
220.	Densities,	melti	ng-poi	ints, a	nd b	oiling	g-poir	its	of	SOI	ne	org	gani	С	con	n-	
	poun																
	(a) Par	affin se	ries .		• •						•		٠				212
	(b) Ole																
	(c) Ace																
	(a) Mo																
	(e) Alc																
	(f) Eth																
221																	
222																	
		66	6.6	- ‹‹	66	mis	cellai	neor	us s	ubs	tan	ces	٠	٠			215
223				-													

225.	Coefficients of cubical expansion of gases
226.	Dynamical equivalent of the thermal unit
227.	" " " " historical table 220
228.	Specific heat of water, descriptive introduction
228.	Specific heat of water
229.	Ratio of specific heats of air, various determinations
230.	Specific heats of gases and vapors
231.	Vapor pressure of ethyl alcohol
232.	" " " methyl "
233.	Vapor pressures and temperatures of various liquids:
	(a) Carbon disulphide
	$(b) Chlorobenzene \dots $
	(c) Bromobenzene
	(d) Aniline
	(e) Methyl salicylate
	(f) Bromonaphthaline
	(g) Mercury
234.	Thermometers, comparisons of mercury in glass and air thermometers 228
235.	" comparison of various kinds with hydrogen thermometer 229
236.	" " " " air thermometer 229
237.	" change of zero due to heating (Jena glass)
238.	" " " " " " " (various kinds of glass) . 230
239.	" " " " " " effect of composition of
	glass
240.	" slow change of zero with time
240. 241.	
241.	 slow change of zero with time
241. 242.	 slow change of zero with time
241. 242.	 slow change of zero with time
241. 242. 243.	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234
241. 242. 243. 244.	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235
241. 242. 243. 244.	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants235
241. 242. 243. 244. 245.	 slow change of zero with time
241. 242. 243. 244. 245.	 slow change of zero with time
241. 242. 243. 244. 245. 246.	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 249. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 249. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire235Radiation of bright platinum wire to copper envelope across air of different pressures236Effect of pressure on radiation at different temperatures236Properties and constants of saturated steam, metric measure237""<"<"<"
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 	 slow change of zero with time
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire235Radiation of bright platinum wire to copper envelope across air of dif- ferent pressures236Effect of pressure on radiation at different temperatures236Properties and constants of saturated steam, metric measure237""<"<"<"<"<">"<"<"<"<"<">British measure238Ratio of the electrostatic to the electromagnetic unit of electricity, different determinations of.(a) Medium air and terminals flat plates244(b)"<"<"<"
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire235Radiation of bright platinum wire to copper envelope across air of dif- ferent pressures236Properties and constants of saturated steam, metric measure237""<"""""""""""""""""""""""""""""""
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire235Radiation of bright platinum wire to copper envelope across air of different pressures236Effect of pressure on radiation at different temperatures236Properties and constants of saturated steam, metric measure237""<"<"<" "<" "<" "<" "<" "<" "
 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 	"slow change of zero with time231"correction for mercury in stem232Emissivity of polished and blackened surfaces in air at ordinary pressures234Emissivity of polished and blackened surfaces in air at different pressures234Emissivity of polished and blackened surfaces in air at different pressures234Constants of emissivity from various substances to vacuum235Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire235Radiation of bright platinum wire to copper envelope across air of dif- ferent pressures236Properties and constants of saturated steam, metric measure237""<"""""""""""""""""""""""""""""""

254	Data as to electric battery cells :	
~J+	(a) Double fluid batteries	246
	(b) Single fluid batteries \ldots \ldots \ldots \ldots	
	(c) Standard cells \ldots \ldots \ldots \ldots \ldots	
		247
255.		248
256.		249
257.		249
258.		249
259.		250
259 . 26 0.		250
200. 2б1.	" " Le Roux's "	-
201. 2б2.	Conductivity of three-metal and miscellaneous alloys	
202. 263.	" " alloys	
•		~
264.		
265.		
266.	Effect of elastic and permanent elongation on resistance of metallic	250
207.		0.58
C 0	wires	
	Resistance of wires of different diameter to alternating currents	
	Conductivity of dilute solutions proportional to amount of dissolved salt	259
270.	Electrochemical equivalent numbers and densities of approximately nor-	
	mal solutions	~ ~ ~
	Specific molecular conductivities of solutions	
	Limiting values of specific molecular conductivities	
	Temperature coefficients of dilute solutions	261
274.	Various determinations of the ohm, the electrochemical equivalent of	
	silver and the electromotive force of the Clark cell	
	Specific inductive capacity of gases	263
276.	" " " solids	264
277.	-	265
278.	Contact difference of potential, solids with liquids and liquids with	
	liquids in air	
		268
		269
281.	Resistance of glass and porcelain at different temperatures	270
282.	Relation between thermal and electrical conductivities :	
	$(a) Arbitrary units \ldots \ldots$	27 I
	(b) Values in c. g. s. units $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	27 I
	(c) Berget's experiments \ldots \ldots \ldots \ldots \ldots	27I
	(d) Kohlrausch's results \ldots \ldots \ldots \ldots	27I
283.	Electrochemical equivalents and atomic weights of the chemical ele-	
	ments	272
284.	Permeability of iron for various inductions	274
285.	Permeability of transformer iron :	
	(a) Specimen of Westinghouse No. 8 transformer	274
	(b) · · · · · · · · · · · · · · · · · · ·	

xiii

	(c) Spec												275
	(d)					iston 150							275
	Compositio												276
287.	Permeabili												278
288.	Magnetic I	propertie											278
289.	6.6	6.6				and 100						•	278
290.	6.6	66											279
291.	6.6	6.6				100° C							279
292.	6.6	66											279
293.	6.6	66				wrought							279
294.	66	66	66	Vick	er's t	ool steel	in inter	nse fie	lds .	•	• •		279
295.	6.6	66				s mangan							279
296.	Saturation												279
297.	Magnetic J												280
298.	Dissipation	n of ener	gy ir	n the	cyclic	magneti	zation o	of mag	netic s	subs	tan	ces	280
299.	6.6	66 66	66	66	66	66	6	' cabl	e tran	sfor	mei	'S .	280
300.	66	66 66	66	66	66	66			ous su				
301.	66	66 .6	66	66	66	66			sforme				
302.	66	66 66	66	66	66	66	(' vari	ous sp	ecin	nen	s of	
-								SC	ft iron	L	• •		283
	Magneto-c	ptic rota	ition	, Ve	rdet's	constant		• •	• •	•	•		284
303.		6	6	in s	olids			• •	• •			. •	285
304.	66	6	6	" 1	iquids	5		• •			•		286
305.	66	6	6	" S	olutio	ons of aci	ids and	salts	in wate	er	•	• •	288
306.	66	6	6	66	6.6	" sal	lts in al	cohol		•			290
307.	66	6	6	66	66	in hydr	ochloric	acid	4 .				290
308.	66	6			gases								291
309.	Miscellane	eous valu	ies c	of Ve	rdet's	and Ku	ndt's co	nstan	ts .		•		291
310.	6.6	6.6	:	" sus	scepti	bility for	liquids	and g	gases		•		292
311.	Kerr's cor	nstants fo	or ir	on, n	ickel,	cobalt, a	and mag	gnetite	e		•		292
312.	Effect of	magneti	c fie	ld or	h the	electric	resistar	ice of	bism	uth	(ini	ltial	
	resistar	nce of on	e ob	nm fo	r zero	field an	d vario	us tem	iperati	ires)	• •	293
313.	Effect of	magneti	c fie	ld or	n the	electric	resistar	nce of	bism	uth	(ini	itial	
0 0	resistar	nce one	ohm	for	zero f	ield and	temper	ature :	zero C	enti	gra	.de)	293
314.	Specific h	eat of va	riou	s sol	ids an	d liquids	S		• •	•	•	• •	294
315.	Specific h	eat of m	etals							•	•	• •	296
	-												

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, --- and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. --- It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the British and the French, or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the British system the standard unit of length is the yard, and it is defined as follows : "The straight line or distance between the transverse lines in the two gold plugs in the bronze bar deposited in the Office of the Exchequer shall be the genuine Standard of Length at 62° F., and if lost it shall be replaced by means of its copies." [The authorized copies here referred to are preserved at the Royal Mint, the Royal Society of London, the Royal Observatory at Greenwich, and the New Palace at Westminster.]

The British standard unit of mass is the pound avoirdupois, and is the mass of a piece of platinum marked "P. S. 1844, 1 lb.," which is preserved in the Exchequer Office. Authorized copies of this standard are kept at the same places as those of the standard of length.

In the metric system the standard of length is defined as the distance between the ends of a certain platinum bar (the *mètre des Archives*) when the whole bar is at the temperature o° Centigrade. The bar was made by Borda, and is preserved in the national archives of France. A line-standard metre has been constructed by the International Bureau of Weights and Measures, and is known as the International Prototype Metre. This standard is of the same length as the Borda standard. A number of standard-metre bars which have been carefully compared with the International Prototype have lately been made by the International Bureau of Weights and Measures and furnished to the various governments who have contributed to the support of that bureau. These copies are called National Prototypes.

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the metre bar was made by Borda. The metre is not now defined as stated above, but as the length of Borda's rod, and hence subsequent measurements of the length of the meridian have not affected the length of the metre.

The French, or metric, standard of mass, the kilogramme, is the mass of a piece of platinum also made by Borda in accordance with the same decree of the Republic. It was connected with the standard of length by being made as nearly as possible of the same mass as that of a cubic decimetre of distilled water at the temperature of 4° C., or nearly the temperature of maximum density.

As in the case of the metre, the International Bureau of Weights and Measures

has made copies of the kilogramme. One of these is taken as standard, and is called the International Prototype Kilogramme. The others were distributed in the same manner as the metre standards, and are called National Prototypes.

Comparisons of the French and British standards are given in tabular form in Table 2; and similarly Table 3, differing slightly from the British, gives the legal ratios in the United States. In the metric system the decimal subdivision is used, and thus we have the decimetre, the centimetre, and the millimetre as subdivisions, and the dekametre, hektometre, and kilometre as multiples. The centimetre is most commonly used in scientific work.

Time.—The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. - Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a vard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if I be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is I^2 . Similarly the ratio of two units of volume will be l^3 , and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, m, t are known, and the powers of l, m, and t involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of lwas 1/3 and the power of l involved in the expression for area is l^2 ; hence, the factor for transforming from square feet to square yards is 1/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l/t and l/t^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = M L^2 T^{-2}$$

is the dimensional equation for energy, and ML^2T^{-2} is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$\mathbf{Q} = \mathbf{C} \mathbf{L}^{a} \mathbf{M}^{b} \mathbf{T}^{c},$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $\frac{L_i}{L}, \frac{M_i}{M}, \frac{T_i}{T}$, which in accordance with the convention adopted above will be $l_i m_i t_i$, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_1 = Ll$, $M_1 = Mm$, $T_1 = Tt$, and if Q_1 be the new quantity-number

$$Q_{I} = CL_{I}^{a}M_{I}^{b}T_{I}^{c}$$

= $CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c},$

or the conversion factor is $l^a m^b t^c$, a quantity of precisely the same form as the dimension formula $L^a M^b T^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

1. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$
,

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L², and the conversion factor l^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

xviii

$$V = CL^3$$
,

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^3 and the conversion factor l^3 .

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-3} , and conversion factor ml^{-3} .

Example. — The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here *m* is the number of grains in a pound = 7000, and *l* is the number of inches in a foot = 12; $\therefore ml^{-3} = 7000/12^3 = 4.051$. Hence the density is 150 × 4.051 = 607.6 in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{dL}{dT}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT^{-1} , and the conversion factor lt^{-1} .

Example. — A train has a velocity of 60 miles an hour : what is its velocity in feet per second ?

Here l = 5280 and t = 3600; $\therefore ll^{-1} = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity = $60 \times 1.467 = 88.0$ in feet per second.

5. Angle. — An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.

6. Angular Velocity. — Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .

7. Linear Acceleration. — Acceleration is the rate of change of velocity or $a = \frac{d\tau}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is lt^{-2} .

Example:— A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometres per hour: what is the acceleration in centimetres per second per second?

Since the velocity gained was 20 kilometres per hour in one minute, the acceleration was 1200 kilometres per hour per hour.

Here l = 100000 and t = 3600; $\therefore lt^{-2} = 100000/3600^2 = .00771$, and therefore acceleration = .00771 × 1200 = 9.26 centimetres per second.

8. Angular Acceleration. - Angular acceleration is rate of change of angu-

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{\text{T}}$ or T⁻², and the conversion factor t^{-2} .

9. Solid Angle. — A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text{area}}{\text{L}^2}$ or 1, and hence the conversion factor is also 1.

10. Curvature. — Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L⁻¹, and the conversion factor is l^{-1} .

11. Tortuosity. — Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .

12. Specific Curvature of a Surface. — This was defined by Gauss to be, at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L⁻², and the conversion factor is thus l^{-2} .

13. Momentum. — This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT^{-1} , and the conversion factor mlt^{-1} .

Example. — A mass of 10 pounds is moving with a velocity of 30 feet per second : what is its momentum when the centimetre, the gramme, and the second are fundamental units ?

Here m = 453.59, l = 30.48, and t = 1; $\therefore mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

14. Moment of Momentum. — The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .

15. Moment of Inertia. — The moment of inertia of a body round any axis is expressed by the formula $\sum mr^2$, where *m* is the mass of any particle of the body

XX

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML². The conversion factor is therefore ml^2 .

16. Angular Momentum. — The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.

17. Force. — A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2} . The conversion factor is thus mlt^{-2} .

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grammes, centimetres, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and t = 1; $\therefore mlt^{-2} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

18. Moment of a Couple, Torque, or Twisting Motive. — These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or $ML^{2}T^{-2}$, and the conversion factor is $ml^{2}t^{-2}$.

19. Intensity of a Stress. — The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.

20. Intensity of Attraction, or "Force at a Point." — This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2} , the same as acceleration. The conversion factors for acceleration therefore apply.

21. Absolute Force of a Centre of Attraction, or "Strength of a Centre." — This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL^2M^{-1} or $L^{8}T^{-2}$. The conversion factor is therefore $l^{3}t^{-2}$.

22. Modulus of Elasticity. — A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}t^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML^2T^{-2} .

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

24. Resilience. — This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^2T^{-2}L^{-3}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.

25. Power, or Activity. — Power — or, as it is now very commonly called, activity — is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT⁻¹ or ML²T⁻³, and the conversion factor ml^2t^{-3} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.

Examples. (a) Find the number of gramme centimetres in one foot pound.

Here the units of force are the attraction of the earth on the pound * and the gramme of matter, and the conversion factor is f, where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

(b) Find the number of foot poundals in 1 000 000 centimetre dynes. Here m = 1/453.59, l = 1/30.48, and t = 1; $\therefore ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

(c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or $550 \times 32.2 = 17710$ foot poundals per second. One watt is 10^7 ergs per second, that is, 10^7 dyne centimetres per second. The conversion factor is ml^2t^{-3} , where m = 453.59, l = 30.48, and t = 1, and the result has to be divided by 10^7 , the number of dyne centimetres per second in the watt.

Hence, $17710 ml^2 t^{-8}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$.

(d) How many gramme centimetres per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is flt^{-1} , where f is 453.59, l is 30.48, and t is 60.

Hence, $33000 \ lt^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604000$ nearly.

* It is important to remember that in problems like that here given the term "pound" or "gramme" refers to force and not to mass.

HEAT UNITS.

I. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-2} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature, and hence if we denote temperature-numbers by Θ and their conversion factors by θ the dimensional formula and conversion factor for quantity of heat will be M Θ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{s}\Theta$, and hence the conversion factor is to be calculated from the formula $l^{s}\theta$.

For other physical quantities involving heat we have : ---

2. Coefficient of Expansion. — The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .

3. Conductivity, or Specific Conductance. — This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$\mathbf{K} = \frac{\mathbf{H}}{\frac{\Theta}{\mathbf{L}^{2}\mathbf{T}}}$$

and the dimensional formula $\frac{H}{\Theta LT} = \frac{M}{LT}$, which gives $ml^{-1}t^{-1}$ for conversion factor.

In thermometric units the formula becomes L^2T^{-1} , which properly represents diffusivity. In dynamical units H becomes ML^2T^{-2} , and the formula changes to $MLT^{-3}\Theta^{-1}$. The conversion factors obtained from these are l^2t^{-1} and $mlt^{-8}\theta^{-1}$ respectively.

Similarly for emission and absorption we have —

4. Emissivity and Immissivity. — These are the quantities of heat given off by or taken in by the body per unit of time per unit of surface per unit difference of temperature between the surface and the surrounding medium. We thus get the equation

$$EL^{2}\Theta T = H = M\Theta.$$

The dimensional formula for E is therefore $ML^{-2}T^{-1}$, and the conversion factor

 $ml^{-2}t^{-1}$. In thermometric units by substituting l^3 for *m* the factor becomes lt^{-1} , and in dynamical units $mt^{-8}\theta^{-2}$.

5. Thermal Capacity. — This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and *m*.

6. Latent Heat. — Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M\Theta/M$ or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is l^2t^{-2} .*

7. Joule's Equivalent. — Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^{2}T^{-2} \equiv JH \text{ or } JM\Theta.$$

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta$. The conversion factor is thus represented by $l^2t^{-2}\theta$. When heat is measured in dynamical units J is a simple number.

8. Entropy. — The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2t^{-2}\theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water $\mathbf{1}^\circ$ F. The *caloric* is the quantity of heat required to raise the temperature of one kilogramme of water $\mathbf{1}^\circ$ C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water $\mathbf{1}^\circ$ C. Hence : —

(1) To find the number of calories in one British thermal unit, we have m = .45399 and $\theta = \frac{5}{9}$; $\therefore m\theta = .45399 \times 5/9 = .25199$.

(2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $\therefore m\theta = 1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.

(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

* It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulæ in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

mula $ml^{-1}t^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and t = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-3}$.

(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $ml^{-2}t^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-5}$.

(d) Find the number of centimetre gramme second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}t^{-1}$, where m = 0.064799, l = 2.54, and t = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^2t^{-2\theta}}{lt^{-2}}$ or $l\theta$, where l = .3048 and $\theta = 1.8$; $\therefore 776 \times .3048 \times 1.8 = 425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogramme metre second and degree-Centigrade units are used?

The conversion factor is $l^2 t^{-2} \theta$, where l = .3048, t = 1, and $\theta = 1.8$; $\therefore 24832 \times l^2 t^{-2} \theta = 24832 \times .3048^2 \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f = a \frac{qq_1}{r^2}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_1 quantities of electricity, and l the distance between q and q_1 . The magnitude of the force f for any particular values of q, q_1 and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_l$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_1}{l^2},$$

where m and m_1 are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (*Vide* Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m = m_1$, and f, a, and l each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

I. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimetre gramme second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for [force \times length² \times inductive capacity]³ or M³L³T⁻¹K³, and the conversion factor is $m^{\frac{3}{2}l^3}t^{-1}k^{\frac{3}{2}}$.

2. Electric Surface Density and Electric Displacement. — The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-\frac{1}{2}}k^{\frac{1}{2}}$.

3. Electric Force at a Point, or Intensity of Electric Field. — This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-\frac{1}{2}}k^{-\frac{1}{2}}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}'}\Gamma^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}} = LK,$$

which gives lk for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

6. Specific Inductive Capacity. — This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or 1.*

7. Electric Current. — Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{3}{2}}\mathrm{T}^{-1}\mathrm{K}^{\frac{1}{2}}}{\mathrm{T}} = \mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{3}{2}}\mathrm{T}^{-2}\mathrm{K}^{\frac{1}{2}},$$

and the conversion factor $m^{1}l^{1}t^{-2}k^{1}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as I on the electrostatic and as $l^{-2}t^{2}$ on the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

 $\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{L^{\frac{3}{2}}L^{\frac{1}{2}}T} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area } \times \text{ potential gradient } \times \text{ time}}.$

The conversion factor is $t^{-1}k$.

9. Specific * Resistance. — This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .

10. Conductance. — The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

 $\frac{M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-2}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}} = LT^{-1}K^{-1},$

from which we get the conversion factor $lt^{-1}k^{-1}$.

11. Resistance. — This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $L^{-1}TK$ and $l^{-1}tk$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

(a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.

By (1) the formula is $m^{k}l^{k}t^{-1}k^{k}$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; \therefore the factor is $0.0648^{k} \times 30.48^{k} = 4.2836$.

(b) Find the factor required to convert electric potential from millimetre milligramme second units to c. g. s. units.

By (4) the formula is $m^{\frac{1}{2}t^{-1}k^{-\frac{1}{2}}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.

(c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.

By (5) the formula is lk, and in this case l = 30.48 and k = 6; \therefore the factor = $30.48 \times 6 = 182.88$.

* The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

xxviii

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

1. Magnetic Pole, or Quantity of Magnetism. — Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity] or M³L³T⁻¹P³, and the conversion factor is $m^{\frac{3}{2}}l^{\frac{3}{2}}t^{-1}p^{\frac{3}{2}}$.

2. Density of Surface Distribution of Magnetism. — This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\frac{3}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.

3. Magnetic Force at a Point, or Intensity of Magnetic Field. — The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$\frac{\mathrm{ML}^{2}\mathrm{T}^{-2}}{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{3}{2}}\mathrm{T}^{-1}\mathrm{P}^{\frac{1}{2}}} = \mathrm{M}\mathrm{L}^{\frac{1}{2}}\mathrm{T}^{-1}\mathrm{P}^{-\frac{1}{2}},$$

which gives the conversion factor $ml^{\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

5. Magnetic Moment. — This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{\frac{1}{2}}L^{\frac{4}{7}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{5}{2}}t^{-1}p^{\frac{1}{2}}$.

6. Intensity of Magnetization. — The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-

tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{M^{\frac{1}{2}L^{\frac{5}{2}}T^{-1}P^{\frac{1}{2}}}{L^{8}} = M^{\frac{1}{2}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}.$$

The conversion factor is therefore $m^{\frac{1}{2}}t^{-\frac{1}{2}}t^{-\frac{1}{2}}t^{\frac{1}{2}}$.

7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity. — This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.

8. Magnetic Susceptibility. — This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

 $\frac{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} \text{ or } P.$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

9. Current Strength. — A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$.

10. Current Density, or Strength of Current at a Point. — This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{\frac{1}{2}}L^{-\frac{5}{2}}T^{-1}P^{-\frac{1}{2}}$ and $m^{\frac{3}{2}}l^{-\frac{5}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$.

11. Quantity of Electricity. — This is the product of the numbers for current and time. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times T = M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}}p^{-\frac{1}{2}}$.

12. Electric Potential, or Electromotive Force. — As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}l^2}t^{-2}p^{\frac{1}{2}}$.

XXX

^{*} Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as I in the electromagnetic and $l^{-2}l^2$ in the electrostatic systems.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{\mathrm{M}^{3}\mathrm{L}^{3}\mathrm{P}^{-3}}{\mathrm{M}^{3}\mathrm{L}^{3}\mathrm{T}^{-2}\mathrm{P}^{3}} = \mathrm{L}^{-1}\mathrm{T}^{2}\mathrm{P}^{-1},$$

and the conversion factor $l^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{4}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} = LT^{-1}P.$$

The conversion factor thus becomes $lt^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

15. Conductance. — This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}TP^{-1}$ and $l^{-1}tp^{-1}$.

16. Conductivity, or Specific Conductance. — This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows : —

$$\frac{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{1}{2}\mathrm{P}^{-\frac{1}{2}}}}{\mathrm{L}^{2}\frac{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{1}{2}\mathrm{T}^{-2}\mathrm{P}^{\frac{1}{2}}}}{\mathrm{L}}} = \mathrm{L}^{-2}\mathrm{T}\mathrm{P}^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

17. Specific Resistance. — This is the reciprocal of conductivity as defined in 15, and hence the dimensional formula and conversion factor are respectively $L^2T^{-1}P$ and $l^2t^{-1}p$.

18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. — These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{3}{2}}\mathrm{T}^{-2}\mathrm{P}^{\frac{1}{2}}}{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{3}{2}}\mathrm{T}^{-1}\mathrm{P}^{-\frac{1}{2}}}\times\mathrm{T}=\mathrm{L}\mathrm{P}.$$

The conversion factor is therefore lp, and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

20. Electro-kinetic Momentum. — The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times LP$ = $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}p^{\frac{1}{2}}$.

21. Electromotive Force at a Point. — The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{3}{2}l^{\frac{1}{2}}t^{-2}}p^{\frac{1}{2}}$.

22. Vector Potential. — This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}t^{-1}}P^{\frac{1}{2}}$.

23. Thermoelectric Height. — This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}\Theta^{-1}$, and the conversion factor $m^{\frac{3}{2}l^{\frac{3}{2}}t^{-2}}p^{\frac{1}{2}}\theta^{-1}$.

24. Specific Heat of Electricity. — This quantity is measured in the same way as 23, and hence has the same formulæ.

25. Coefficient of Peltier Effect. — This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$\frac{\mathrm{M}\Theta}{\mathrm{M}^{\frac{1}{2}}\mathrm{L}^{\frac{1}{2}}\mathrm{P}^{-\frac{1}{2}}} = \mathrm{M}^{\frac{1}{2}}\mathrm{L}^{-\frac{1}{2}}\mathrm{P}^{\frac{1}{2}}\Theta,$$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}p^{\frac{1}{2}}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

(a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.

By (3) the formula is $m^{\frac{1}{2}l^{-1}}t^{-1}p^{-\frac{1}{2}}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = 1; \therefore the factors $= 0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} = 0.046108$.

(b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?

By (5) the formula is $m^{\frac{3}{2}t-1}p^{\frac{1}{2}}$, and the values for this problem are m = 0.0648, l = 30.48, t = 1, and p = 1; \therefore the number $= 0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}} = 1305.6$.

(c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimetre milligramme second units ?

xxxii

By (6) the formula is $m^{\frac{1}{2}l}t^{-1}p^{\frac{1}{2}}$, and in this case m = 1000, l = 10, t = 1, and p = 1; \therefore the intensity $= 700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}} = 70000$.

(d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gramme and second units.

By (9) the formula is $m^{\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$, and the values of these quantities are here $m = 10^{11}$, $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor $= 10^{\frac{11}{2}} \times 10^{-\frac{9}{2}} = 10$.

(e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10^{-11} grammes and second units.

By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-9}$, t = 1, and p = 1; .: the factor = 10^{-9} .

(f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gramme and second units to c. g. s. units.

By (12) the formula is $m^{\frac{1}{2}}t^{-2}p^{\frac{1}{2}}$, and for this case $m = 10^{-11}$, $l = 10^9$, t = 1, and p = 1; \therefore the factor = 10^8 .

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimetre, the gramme, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"*Resolved*, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the *international ohm*, which is based upon the ohm equal to 10⁹ units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grammes in mass, of a constant cross-sectional area and of the length of 106.3 centimetres.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of 0.001118 of a gramme per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted : ---

"As a unit of electromotive force, the *international volt*, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\frac{1}{4}\frac{9}{3}\frac{9}{4}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.*

"As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampère in one second.

"As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.[†]

"As a unit of work, the *joule*, which is equal to 10⁷ units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.

"As a unit of power, the *watt*, which is equal to 10^7 units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.

"As the unit of induction, the *henry*, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.

"The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

"The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimetres in diameter and from 4 to 5 centimetres in depth.

"The anode should be a plate of pure silver some 30 square centimetres in area and 2 or 3 millimetres in thickness.

"This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.

"The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.

"The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms."

* "A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received."

† The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

PHYSICAL TABLES

(a) Fundamental Un	ITS.	
Name of Unit.	Symbol.	Conversion Factor.
Length. Mass. Time. Temperature. Electric Inductive Capacity. Magnetic Inductive Capacity.	L M T Ø K P	l m t θ k \$
(b) Derived Units. I. Geometric and Dynamic	Units.	
Name of Unit.		Conversion Factor.
Area. Volume. Angle. Solid Angle. Curvature. Tortuosity. Specific curvature of a surface. Angular velocity. Angular acceleration. Linear velocity. Linear acceleration. Density. Moment of inertia. Intensity of attraction, or "force at a point." Absolute force of a centre of attraction, or "st of a centre." Moment um. Moment of momentum, or angular momentum. Force. Moment of a couple, or torque. Intensity of stress. Modulus of elasticity. Work and energy. Resilience. Power or activity.	rength }	$ \begin{bmatrix} 2^{2} \\ 2^{3} \\ 1 \\ 1 \\ \frac{1}{2^{-1}} \\ \frac{1}{2^{-1}} \\ \frac{1}{2^{-2}} \\ \frac{1}{2^{-1}} \\ \frac{1}{2^{-2}} \\ \frac{1}{2^{-2}} \\ \frac{1}{2^{-2}} \\ \frac{1}{2^{-2}} \\ \frac{1^{3}}{2^{-2}} \\ \frac{1^{3}}{2^{-2}} \\ \frac{1^{3}}{2^{-2}} \\ \frac{1^{3}}{2^{-2}} \\ \frac{1^{2}}{2^{-2}} \\ \frac{1^{2}}{2^{-3}} \\ \frac{1^{2}}{2^{-3}}$

FUNDAMENTAL AND DERIVED UNITS.

II. Heat	Units.	
Name of Unit.		Conversion Factor.
Quantity of heat (thermal units). """(thermometric units). ""(dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). "(thermometric units), or " (dynamical units). Emissivity and imissivity (thermal units). Emissivity and imissivity (thermal units). Emissivity and imissivity (thermal units). "(dynamical units). "(dynamical units). ""(dynamical units). ""(dynamical units). Joule's equivalent. Entropy (heat measured in thermal un "(""dynamical	diffusivity. .s). c units). nits). its).	$m \theta$ $l^{8} 0$ $m l^{2} t^{-2}$ θ^{-1} $m l^{-1} t^{-1}$ $l^{2} t^{-1}$ $m l t^{-3} \theta^{-1}$ $m l^{-2} t^{-1}$ $l t^{-1}$ $m t^{-3} \theta^{-1}$ $m l^{-2} t^{-1}$ $l^{2} t^{-2}$ $l^{2} t^{-2} \theta$ $m l^{2} t^{-2} \theta$
III. Magnetic and Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Magnetic pole, or quantity of mag- netism. Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and mag- netic inductive capacity. Quantity of electricity. Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.		$m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1} p^{\frac{3}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{\frac{3}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-2} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-2} p^{\frac{1}{2}}$ $l^{-1} t^{\frac{2}{2}} p^{-1}$ $l^{-2} t^{\frac{2}{2}} p^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$
Smithsonian Tables.		
3		

III. Magnetic and	l Electric Units.	
Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. } Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	$t^{-1} k$ $t k^{-1}$ $l t^{-1} k^{-1}$ $l^{-1} t k$ $l^{-1} t^{2} k^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} k^{-\frac{1}{2}} \theta^{-1}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t k^{-\frac{1}{2}} \theta$	$\begin{array}{c} l^{-2} t p^{-1} \\ l^{2} t^{-1} p \\ l^{-1} t p^{-1} \\ l t^{-1} p \end{array}$ $l p \\ m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1} p^{\frac{1}{2}} \\ m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-2} p^{\frac{1}{2}} \\ m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-2} p^{\frac{1}{2}} \\ m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-2} p^{\frac{1}{2}} \theta^{-1} \\ m^{\frac{1}{2}} l^{-\frac{1}{2}} p^{\frac{1}{2}} \theta \end{array}$

SMITHSONIAN TABLES.

4

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

NOTE. — The METRE is the length, at the temperature of o^o C., of the platinum-iridium bar deposited with the Board of Trade.

The present legal equivalent of the metre is $30^{\circ}37079$ inches, as above stated. If a brass metre is, however, compared, not at its legal temperature (0° C. or 32° F.), but at the temperature of 62° F., with a brass yard at the temperature also of 62° F., then the apparent equivalent of the metre would be nearly $39^{\circ}38^{\circ}$ inches. The KILOGRAMME is the weight in vacuo at 0° C. of the platinum-iridium weight deposited with the Board of

Trade. The LITRE contains one kilogramme weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimetres.

^{*} Quoted from sheets issued in 1890 by the Standard Office of the British Board of Trade.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEICHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

	L	INEAR MI	EASURE.		1	М	EASURE OF	CAPACITY	•
	Millimetres to inches.	Metres to fect.	Metres to yards.	Kilo- metres to miles.		Litres to pints,	Dekalitres to gallons.	Hectolitres to bushels.	Kilolitres to quarters.
I 2 345 6	0.0393707 0.0787415 0.1181123 0.1574831 0.1968539 0.2362247	8 6.56180 7 9.84270 6 13.12360 5 16.40450	2.18727 3.28090 4.37453 5.46817	0.62138 1.24276 1.86415 2.48553 3.10691 3.72829	1 2 3 4 5 6	1.76077 3.5215- 5.28233 7.04308 8.80389	4 4.40193 1 6.60290 8 8.80386 5 11.00483	2.7 5121 5.50242 8.25362 11.00483 13.7 5604 16.507 25	3.43901 6.87802 10.31703 13.75604 17.19505 20.63406
7 8 9	0.2755955 0.3149663 0.3543371	3 22.96629 2 26.24719	7.65543 8.74906	4.34968 4.97106 5.59244	7 8 9	12.32539 14.08610 15.8469	9 15.40676 6 17.60773	19.25846 22.00966 24.76087	24.07307 27.51208 30.95110
	S	QUARE MI	EASURE.				WEIGHT (Av	oirdupois).	
	Square centimetres to square inches.	Square metres to square feet.	Sqnare metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kilogrammes to grains.	Kilo- grammes to pounds.	Quintals to hundred- weights.
I 2 3 4 5	0.15501 0.31001 0.46502 0.62002 0.77503	10.76430 21.52860 32.29290 43.05720 53.82150	1.19603 2.39207 3.58810 4.78413 5.98017	2.47114 4.94229 7.41343 9.88457 12.35572	I 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	1 5432.34874 30864.69748 46297.04622 61729.39496 77161.74370	4.40924 6.61386 8.81849	1.96841 3.93682 5.90523 7.87364 9.84206
6 7 8 9	0.9300.4 1.0850.4 1.2.4005 1.39505	64.58580 75.35010 86.11439 96.87869	7.17620 8.37223 9.56827 10.76430	14.82686 17.29800 19.76914 22.24029	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92 594.09244 108026.44118 12 34 58.78992 1 38891.1 3866	15.43235	11.81047 13.77888 15.74729 17.71570
	CUBI	C MEASUF	ξE.	Apothe- carirs' Measure.	A	voirdupoi: (cont.)		Veight.	Apothe- caries' Weight.
	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Cub. cen- timetres to fluid drachms.		Milliers of tonnes to tons.		Grammes to penny- weights.	Grammes to scruples.
I 2 3 4 5	61.02705 122.05410 183.08115 244.10821 305.13526	70.63316 105.94974 141.26632	2.61604 3.92406 5.23209		1 2 3 4 5	0.9842 1.9684 2.9526 3.9368 4.9210	1 0.06430 2 0.09645 2 0.12860	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54323 2.31485 3.08647 3.85809
6 7 8 9	366.16231 427.18936 488.21641 549.24346	282.53265	9.15615 10.46417	2.25753	6 7 8 9	5.9052 6.8894 7.8736 8.8578	4 0.22506 5 0.25721	3.85809 4.50110 5.14412 5.78713	4.62970 5.401 31 6.17294 6.94455

SMITHSONIAN TABLES.

б

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

NOTE. — The YARD is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade. The POUND is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., and which is also deposited with the Board of Trade.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches. The weight of a cubic inch of water is 252.286 grains.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

	LU	NEAR MEA	SURE.			MEA	SURE OF	CAPACITY	7.
	Inches to millimetres	Feet to metres.	Yards to metres.	Miles to kilo- metres.		Quarts to litres.	Gallons to litres.	Bushels to dekalitres.	Quarters to hectolitres.
I 2 3 4 5	25.399541 50.7990822 76.198623 101.598164 126.9977056	26 0.60959 40 0.91438 53 1.21918 56 1.52397	0.91438 1.82877 2.74315 3.65753 4.57192	1.60931 3.21863 4.82794 6.43726 8.04657	1 2 3 4 5 6	1.13586 2.27173 3.40759 4.54346 5.67932	4.54346 9.08692 13.63037 18.17383 22.71729 27.26075	3.63477 7.26953 10.90430 14.53907 18.17383 21.80860	2.90781 5.81563 8.72344 11.63125 14.53907 17.44688
6 7 8 9	152.397246; 177.7967879 203.1963299 228.595870	92 2.13356 56 2.43835	5.48630 6.40068 7.31507 8.22945	9.65589 11.26520 12.87452 14.48383	6 7 8 9	6.81519 7.95105 9.08692 10.22278	27.20075 31.80421 36.34766 40.89112	25.44336 29.07813 32.71290	20.35469 23.26250 26.17032
	SQ	UARE MEA	ASURE.			WI	EIGHT (Av	01rdup015) .	
	Square inches to square centimetres.	Square feet to squarc decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milligramm			- weights to
1 2 3 4 5	6.45137 12.90273 19.35410 25.80547 32.25683	9.28997 18.57994 27.86990 37.15987 46.44984	0.83610 1.67219 2.50829 3.34439 4.18049	0.40467 0.80934 1.21401 1.61868 2.02336	1 2 3 4 5	64.798950 129.597900 194.396851 259.195801 323.994751	072 56.699 09 85.048 45 113.398	008 0.9071 862 1.3607 816 1.8143	9 1.01605 8 1.52407 7 2.03209
6 7 8 9	38.70820 45.15957 51.61094 58.06230	55.73981 65.02978 74.31974 83.60971	5.01658 5.85268 6.68878 7.52487	2.42803 2.83270 3.23737 3.64204	6 7 8 9	388.793702 453.592652 518.391602 583.190553	255 198.446 291 226.796	579 3.175 1 533 3.6287	5 3.55617 4 4.06419
	CUBIC	MEASURE	2.	Apothe- caries' Measure.	A	voirdupois (cont.).	TROY V	Veight.	Apothe- caries' Weight.
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Fluid drachms to cubic centi- metres.		Tons to milliers or tonnes.	Ounces to grammes.	Penny- weights to grammes.	Scruples to grammes.
I 2 3 4 5	16.38618 32.77235 49.15853 65.54470 81.93088	0.02832 0.05663 0.08495 0.11326 0.14158	0.76451 1.52903 2.29354 3.05805 3.82257	3.54958 7.09915 10.64873 1.4.19831 17.74788	I 2 3 4 5	1.01605 2.03210 3.04814 4.06419 5.08024	31.10350 62.20699 93.31049 124.41398 155.51748	3.11035 4.66552 6.22070	3.88794
6 7 8 9	98.31706 114.70323 131.08941 147.47558	0.16989 0.19821 0.22652 0.25484	4.58708 5.35159 6.11611 6.88062	21.29746 24.84704 28.39661 31.94619	6 7 8 9	6.09629 7.11233 8.12838 9.14443	186.62098 217.72447 248.82797 279.93147	10.88622	9.07185 10.36783

(4) IMPERIAL TO METRIC.

SMITHSONIAN TABLES.

8

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES."

(I) CUSTOMARY TO METRIC.

		LINEA	.R.				САРАС	CITY.	
	Inches to millimetres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millimetres or cubic centimetres.	Fluid ounces to millilitres.	Quarts to litres.	Gallons to litres.
1. 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.3004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21809 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.02 236.59 266.16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	3.78543 7.57087 11.35630 15.14174 18.9271 7 22.71261 26.49804 30.28348 34.06891
		SQUAR	RE.				WEIG	HT.	
	Square inches to square cen- timetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
I 2 3 4 5	6.452 12.903 19.355 25.807 32.258	9.290 18.581 27.871 37.161 46.452	0.836 1.672 2.508 3.344 4.181	0.4047 0.8094 1.2141 1.6187 2.0234	I 2 3 4 5	64.7989 129.5978 194.3968 259.1957 323.9946	28.3495 56.6991 85.0486 113.3981 141.7476	0.45359 0.90719 1.36078 1.81437 2.26796	31.10348 62.20696 93.31044 124.41392 155.51740
6 7 8 9	38.710 45.161 51.613 58.065	55.742 65.032 74.323 83.613	5.017 5.853 6.689 7.525	2.4281 2.8328 3.2375 3.6422	6 7 8 9	388.7935 453.5924 518.3914 583.1903	170.0972 198.4467 226.7962 255.1457	2.72156 3.17515 3.62874 4.08233	186.62088 217.72437 248.82785 279.93133
		CUBI	С.						
	Cubic inches to cubic cen- timetrcs.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.	3	I Gunter's I sq. statu	te mile ==	20.1168 259.000	metres. hectares.
I 2 3 4 5	16.387 32.774 49.161 65.549 81.936	0.02832 0.05663 0.08495 0.11327 0.14158	0.765 1.529 2.294 3.058 3.823	0.35239 0.70479 1.05718 1.40957 1.76196	Tr	I fathom I nautical I foot I avoir, po	ound =		
6 7 8 9	98.323 114.710 131.097 147.484	0.16990 0.19822 0.22654 0.25485	4.587 5.352 6.116 6.881	2.11436 2.46675 2.81914 3.17154	5	40~000091		1.000 MI	

The only authorized material standard of customary length is the Troughton scale belonging to the United States Office of Standard Weights and Measures, whose length at $50^{\circ}.62$ Fahr, conforms to the British standard. The yard in use in the United States is therefore equal to the British yard. The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of un-known density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy. The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois. The British gallon = 4.54346 litres. The British bushel = 36.3477 litres. The British bushel = 36.3477 litres. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years aço, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

Spheroid of 1866).

* Quoted from sheets issued by the United States Office of Standard Weights and Measures.

TABLE 3.

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

		LINEA	.R.				CA	PAC	ITY.	
	Metres to inches.	Metres to feet.	Metres to yards.	Kilometres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.	t	tres Dec o litre arts. gallo	s litres to
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.685c0 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 t.24274 t.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8 9	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.338 0.676 1.014 1.353 1.691 2.029 2.367 2.705 3.043	2.1 3.1 4.2 5.2 6.3 7.3 8.4	567 2.62 134 5.28 700 7.92 267 10.50 834 13.20 401 15.89 968 18.49 535 21.13 101 23.77	34 5.6755 51 8.5132 68 1.8510 85 14.1887 62 17.0265 10 19.8642 36 22.7019
		SQUAR	.E.				W	EIG	HT.	
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kild gramt to grain	nes	Hecto- grammes to ounces avoirdupois	Kilo- grammes to pounds avoirdupois.
I 2 3 4 5 6 7 8 9	0.1550 0.3100 0.4650 0.6200 0.7750 0.9300 1.0850 1.2400 1.3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2.47 I 4.942 7.41 3 9.884 12.355 14.826 17.297 19.768 22.239	1 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346 0.13889	1 543 3086 4629 6172 7716 9259 10802 12345 13889	4.7 1 7.07 9.43 1.78 4.14 6.49 8.85	3.5274 7.0548 10.5822 14.1096 17.6370 21.1644 24.6918 28.2192 31.7466	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160
		CUBIC	С.				W	EIG	нт.	
	Cubic centimetres to cubic inches.	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.			tals to ds av.		illiers or s to pounds av.	Kilogrammes to ounces Troy.
I 2 3 4 5 6 7 8 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0.5492	61.023 122.047 183.070 2.44.094 305.117 366.140 427.164 488.187 549.210	35.314 70.629 105.943 141.258 176.572 211.887 247.201 282.516 317.830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	44 66 88 110 132 154 176	0.46 0.92 1.39 1.85 2.31 2.77 3.24 3.70 4.16	I	2204.6 4409.2 661 3.9 8818.5 1023.1 3227.7 5432.4 7637.0 9841.6	32.1507 64.3015 96.4522 128.6030 160.7537 192.9044 225.0552 257.2059 289.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Conmittee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a cer-tain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept in the Office of Standard Weights and Measures in Washington, D. C. The metric system was legalized in the United States in 1866. The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the dis-tance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. The International Standard Kilogramme is a mass of platinum iridium deposited at the come place and its

and Measures. The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives. The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

TABLE 4. --- Conversion Factors for Expression of Lengths.

Dimensions = L.

Statute mile.	mile.	Nautical mile.	ile.	Yard.		Foot.		Inch.		Centimetre.*	*
											,
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
1 1.15157 5.68182 × 10 1.89394 × 10 1.57828 × 10 6.21370 × 10	0 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\overline{1}.938711}{6.732061}$	$\begin{array}{c} 1.76000 \times 10^{3} \\ 2.02676 \times 10^{3} \\ 1 \\ 3.3333 \times 10^{-1} \\ 2.77778 \times 10^{-2} \\ 1.09361 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.245513\\ 3.306802\\ \hline \hline 0\\ \hline \hline 1.522879\\ \hline \hline 2.038863\\ \hline \hline 2.038863\\ \end{array}$	$\begin{array}{c} 5.28000 \times 10^{3} \\ 6.08027 \times 10^{3} \\ 3.00000 \\ 1 \\ 8.33333 \times 10^{-2} \\ 3.28083 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.722634\\ 3.783923\\ 0.477121\\ 0\\ \hline 0\\ \hline 2\\ \hline 2.515984\\ \hline 2.515984\end{array}$	$\begin{array}{c} 6.33600 \times 10^{4} \\ 7.29632 \times 10^{4} \\ 3.60000 \times 10 \\ 1.20000 \times 10 \\ 1 \\ 3.93701 \times 10^{-1} \end{array}$	4.801815 4.863104 1.556302 1.079181 0 1.595165	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.206650 5.267939 1.961137 1.484016 0.404835 0
								-			

* In accordance with the United States Standards the metre is taken as = 39.37 inches.

TABLE 6. -- Conversion Factors for Expression of Areas.

umerre.	Log. No. Log.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Square centimetre.	No.	$\begin{array}{c} 2.59000 \times 10^{11} \\ 8.36127 \times 10^{3} \\ 9.29030 \times 10^{3} \\ 6.45163 \\ 1 \\ 1 \\ 5.06709 \times 10^{-10} \end{array}$
ch.	Log.	$\begin{array}{c} 9.603630\\ 3.112605\\ 2.158362\\ 2.158362\\ \hline \hline 1.190331\\ \hline 7.895993\end{array}$
Square inch.	No.	$\begin{array}{c} 4.01449 \times 10^{9} \\ 1.29600 \times 10^{3} \\ 1.44000 \times 10^{2} \\ 1 \\ 1 \\ 5.55900 \times 10^{-1} \\ 7.55398 \times 10^{-7} \end{array}$
ot.	Log.	$\begin{array}{c} 7.445268\\ 0.954242\\ \hline 0\\ \hline 3.841637\\ \hline 5.031968\\ 9.737727\end{array}$
Square foot.	No.	$\begin{array}{c} 2.78784 \times 10^7 \\ 9.00000 \\ 1 \\ 0 \\ 1 \\ 0.94444 \times 10^{-8} \\ 1 \\ 0.94444 \times 10^{-6} \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$
rd.	Log.	$\begin{array}{c} 6.491025 \\ 0 \\ \overline{1}.045757 \\ \overline{4}.887395 \\ \overline{6}.077726 \\ \overline{10}.782485 \end{array}$
Square yard.	No.	$\begin{array}{c} 3.09760 \times 10^{6} \\ \textbf{J} \\ \textbf{I} \\ \textbf{I}$
nile.	Log.	0 7.508975 8.554732 10.396370 10.291460
Square mile.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

CONVERSION FACTORS.

Dimensions \equiv L².

			ו ר			
metre.	Log.	15.619948 5.883410 4.452046 1.214502 0	$Dimensions = L^3.$		Log.	1.452046 2.214502 0.578114 0.657707
Cubic centimetre.	No.	$\begin{array}{c} 4.16825 \times 10^{15} \\ 7.64555 \times 10^{5} \\ 2.83168 \times 10^{4} \\ 1.63871 \times 10 \\ 1\end{array}$	Dime	Litres.	No.	$\begin{array}{c} 2.83168 \times 10 \\ 1.63872 \times 10^{-2} \\ 3.78542 \\ 4.54682 \end{array}$
h.	Log.	$14.405445 \\ 4.668907 \\ 3.237544 \\ \overline{2}.785498 \\ \overline{2}.785498 \\ \end{array}$		011.	Log.	$\begin{array}{c} \underline{0.794339} \\ \underline{3.556795} \\ \underline{1.920407} \\ 0 \\ \overline{1.342292} \end{array}$
Cubic inch.	No.	$\begin{array}{c} 2.54358 \times 10^{14} \\ 4.66560 \times 10^{4} \\ 1.72800 \times 10^{3} \\ 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	of Capacities.	British gallon.	No.	$\begin{array}{c} 6.22785 \\ 3.60408 \times 10^{-3} \\ 8.32544 \times 10^{-1} \\ 8.32544 \times 10^{-1} \\ 1 \\ 2.19934 \times 10^{-1} \end{array}$
t.	I.og.	$11.167902 \\ 1.431364 \\ 0 \\ \overline{4}.762456 \\ \overline{5}.547954 $	or Expression	gallon.	Log.	$\begin{array}{c} 0.873932\\ \overline{3}.656388\\ 0\\ \overline{1}.421886\end{array}$
Cubic foot.	Nu.	$\begin{array}{c} 1.47198 \times 10^{11} \\ 2.70000 \times 10 \\ \textbf{J} \\ 5.78704 \times 10^{-4} \\ 3.53147 \times 10^{-5} \end{array}$	7.— Conversion Factors for Expression of Capacities.	United States gallon.	No.	$\begin{array}{c} 7.48052 \\ 4.32900 \times 10^{-3} \\ 1 \\ 1 \\ 1 \\ 1 \\ 2.64171 \times 10^{-1} \end{array}$
	Log.	9.736538 0 $\overline{2}.568636$ $\overline{5.331092}$ $\overline{6.116590}$	TABLE 7. – Co		Log.	3.237544 0 2.363612 2.443205 1.785498
Cubic yard.	No.	5.45178×10^{9} 1 1 3 .70370 \times 10^{-2} 2 .14334 × 10^{-5} 1 .30795 × 10^{-6}	ΤA	Cubic inch.	No.	$\begin{array}{c} 1.72800 \times 10^{3} \\ 1.31000 \times 10^{2} \\ *2.77463 \times 10^{2} \\ 6.10236 \times 10^{2} \end{array}$
ů	Log.	0 10.263462 12.832098 15.594555 16.380052			Log.	0 <u>4</u> .762456 <u>1</u> .126668 <u>1</u> .205661 <u>2</u> .547954
Cubic mile.	No.	$\begin{array}{c} 1 \\ 1.3_{3426} \times 10^{-10} \\ 6.79357 \times 10^{-12} \\ 3.94071 \times 10^{-15} \\ 2.40796 \times 10^{-16} \end{array}$		Cubic foot.	No.	$\begin{array}{c} \textbf{1}\\ \textbf{2},78704\times\textbf{10}^{-4}\\ \textbf{1},33681\times\textbf{10}^{-1}\\ \textbf{1},60569\times\textbf{10}^{-1}\\ \textbf{3},53147\times\textbf{10}^{-2}\end{array}$

TABLE 6. - Conversion Factors for Expression of Volumes.

TABLES 6, 7.

CONVERSION FACTORS.

* Founded on weight of one cubic inch of water at 62° F. = 252.286 grains, and one British gallon = 10 pounds Avoirdupois.

5.957696 2.656666 2.811568 0 6.00691.4 Dimensions = M. Log. Gramme. $\begin{array}{c} 1.01605 \times 10^{6} \\ 9.07186 \times 10^{5} \\ 4.53593 \times 10^{2} \\ 6.47989 \times 10^{-2} \\ \mathbf{J} \end{array}$ No. 7.195346 7.146128 3.845098 **0** 1.188432 Log. Grain. $\begin{array}{c} 1.56800 \times 10^{7} \\ 1.40000 \times 10^{7} \\ 7.00000 \times 10^{3} \\ \end{array}$ 1.54324×10 No. 3.350248 3.301030 $\overline{4.154902}$ $\overline{3.343334}$ Log. Pound. $\frac{1.42857}{2.20462} \times \frac{10^{-4}}{10^{-8}}$ 2.00000×10^{3} 2.24000×10^{3} No. H 4.698970 8.853872 6.042304 0.049218 Log. 0 U. S. or Short Ton. (2000 lbs.) 5.00000×10^{-4} $7.1.4286 \times 10^{-8}$ 1.10231×10^{-6} No. 1.12000 **1** 1.950782 4.649752 8.804654 7.993086 Log. 0 British or Long Ton. (2240 lbs.) $\begin{array}{c} 8.92857 \times 10^{-1} \\ 4.46429 \times 10^{-4} \\ 6.37755 \times 10^{-8} \\ 9.84205 \times 10^{-7} \end{array}$ N_0 . r-i

SMITHSONIAN TABLES.

TABLE 8. -- Conversion Factors for Expression of Masses.*

Troy weight The troy onnce = 480 grains. The avoirdupois ounce = 437.5 grains. * The French tonne \equiv 1000 kilogrammes \equiv 10⁶ grammes. The troy pound \equiv 5760 grains. The troy onnce \equiv 480 grains. This used for gold, silver, and jewels, except diamonds and pearls, for which the grain is 0.8 troy grain. One carat \equiv 3.2 troy grains. 13

-71
5
- Ē
- 244
9
03
÷
e
B
2
Z
of
d
5
S
S
H.
X
Ħ
OT
fo
5
6
5
53
Ξ.
6
S.
er
Þ
8
ŏ
i
0
0
EA.
H
8
1
E4

la,

Centimetre Gramme Units.	No. Log.	$\begin{array}{c c} 1 & 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ $
Cent		4.2140 2.92640
Units.	Log.	3.845098 1.686735 0 2.220400
Foot Grain Units.	No.	7.00000 \times 10 ³ 4.86111 \times 10 1 1.66111 \times 10 ⁻²
Units.	Log.	2.1.58362 0 5.533684
Inch Pound Units.	No.	$ \begin{array}{c} 1.44000 \times 10^{2} \\ \mathbf{I} \\ \mathbf{I} \\ 2.05714 \times 10^{-2} \\ 3.41715 \times 10^{-5} \end{array} $
Units.	Log.	$\begin{array}{c} 0\\ \overline{3}.841637\\ \overline{4}.154902\\ \overline{6}.375302\end{array}$
Foot Pound Units.	No.	$\begin{array}{c} 1 \\ 6.94444 \times 10^{-3} \\ 1.42857 \times 10^{-1} \\ 2.37302 \times 10^{-6} \end{array}$

R

= 'T.	-р	Log.	4.935326 4.936514 3.556302 1.778151 0
Dimensions = 'I.	ar Secon		04 4.90 03 3.55 1.77
Din	Mean Solar Second.	No.	$\begin{array}{c} 8.61641 \times 10^{4} \\ 8.64000 \times 10^{4} \\ 3.60000 \times 10^{3} \\ 6.00000 \times 10 \\ \textbf{1} \end{array}$
	inute.	Log.	3.157175 3.158362 1.778151 <u>5</u> .221849
atervals of Time.	Mean Solar Minute.	No.	$\begin{array}{c c} 1.43607 \times 10^{8} & 3.157175 \\ 1.44000 \times 10^{3} & 3.158362 \\ 6.00000 \times 10 & 1.778151 \\ 1.066667 \times 10^{-2} & \overline{2.221849} \end{array}$
ression of D	* Mean Solar Day. Mean Solar Hour.	Log.	1.379024 1.380211 0 <u>2</u> 221849 443697
Conversion Factors for Expression of Intervals of Time.		No.	$\begin{array}{c} \textbf{2.39345 \times 10} \\ \textbf{2.40000 \times 10} \\ \textbf{1} \\ \textbf{1.66667 \times 10^{-2}} \\ \textbf{2.77778 \times 10^{-4}} \end{array}$
		Log.	$\frac{\overline{1}.998813}{0}$ $\frac{\overline{2}.619789}{\overline{4}.841637}$ $\overline{5}.063486$
TABLE 11.		No.	9.97270 × 10 ⁻¹ 1 4.16667 × 10 ⁻² 6.94444 × 10 ⁻⁴ 1.15741 × 10 ⁻⁵
		Log.	0 2.620976 <u>4</u> .842825 <u>5</u> .064674
	Sidereal Day.*	No.	1 1.00274 4.17807 × 10 ⁻² 6.96346 × 10 ⁻⁴ 1.16058 × 10 ⁻⁵

* The sidereal year = 365.2563578 mean solar days.

TABLE 10. - Conversion Factors for Expression of Angles.

TABLE 10 CORVERSION LACUALS 10. LAPIESSON OF LAPIESSON OF LAPIESSON OF LAPIESSON OF LAPIESSON OF LAPIESSON DIAGON PROPERSION = 1.Dimension = 1.Log. D_{ogree} D_{ogree} $I_{lundredth}$ of Circumference. $I_{lundredth}$ of Circumference.Log. N_{o} . I_{ogree} N_{o} . I_{ogree} I_{ogree} 0 5.72956×10 1.758121 1.59155×10^{-1} 1.443697 2.277778×10^{-1} 1.443697 1.443697	
(1) of (10 10	_
ğ. 3121	I
1.7581	~>C>CC.>
Degree. No. 5.72956 × 10	9.0000
	10106/.2
Radian. Radian. I.7 $_{4533} \times 10^{-2}$	0.20321 × 10 -

14

TABLE 12. - Conversion Factors for Expression of Velocities.

	E-	_	
Limensions $= L/T$.	r second.	Log.	1.650347 1.484016 1.443697 0.221849 0
Ulmensic	Centimetres per second.	No.	4.47040 × 10 3.04801 × 10 2.77778 × 10 1.66667 1
	inute.	Log.	1.428499 1.262167 1.221849 0 1.778151
	Metres per minute.	No.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	r hour.	Log.	0.206650 0.040318 0 2.556302
	Kilometres per hour.	No.	× 10 ⁻²
	cond.	Log.	0.166331 1.60934 0 0 1.09727 1.09727 2.515984 2.515984 3.60000
	Fect per second.	No.	$\begin{array}{c} 1.46667 \\ \textbf{1} \\ 9.11344 \times 10^{-1} \\ 5.46807 \times 10^{-2} \\ 3.28084 \times 10^{-2} \end{array}$
	our,	Log.	$\begin{array}{c} 0 \\ \overline{1.833669} \\ \overline{1.793350} \\ \overline{2.571501} \\ \overline{2.349653} \end{array}$
	Miles per hour.	No.	$\begin{array}{c} \textbf{1} \\ \textbf{6.81828} \times 10^{-1} \\ \textbf{6.21371} \times 10^{-1} \\ \textbf{6.21371} \times 10^{-2} \\ \textbf{3.72821} \times 10^{-2} \\ \textbf{2.23694} \times 10^{-2} \end{array}$
Ľ			

SMITHSONIAN TABLES.

15

Dimensions — 1/T	second.	Log.	3.241877 1.020028 0.798179 2.221849				
Dimens	Radians per second.	No.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
le / time).	ninute.	Log.	1.020028 0.798179 3.576331 1.778151				
TABLE 13 Conversion Factors for Expression of Angular Velocities (angle/time).	Radians per minute.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Revolutions per second.	Log.	$\frac{\overline{4}.443697}{2.221849}$ $\frac{\overline{4}.423669}{0}$ $\overline{4}.423669$ $\overline{1.201820}$				
		No.	$\begin{array}{c c} 2.77778 \times 10^{-4} & \overline{4.443697} \\ 1.66667 \times 10^{-2} & \overline{2.221849} \\ \textbf{1} & \textbf{0} \\ \textbf{2} & \textbf{0} \\ 2.65258 \times 10^{-4} & \overline{4.423669} \\ 1.59155 \times 10^{-1} & \overline{1.201820} \end{array}$				
Conversion	minute.	Log.	<u>7</u> .221849 0 <u>1</u> .778151 <u>1</u> .201820 0.979972				
TABLE 13C	Revolutions per minute.	No.	1.66667×10^{-2} 1.59155×10^{-1} 0.54944				
	r hour.	Log.	0 1.778151 3.556303 0.979972 2.758123				
	Revolutions per hour.	No.	$ \begin{array}{c} 1 \\ 6.00000 \times 10 \\ 3.60000 \times 10^3 \\ 9.54944 \\ 5.72958 \times 10^2 \end{array} $				
L		_					

TABLES 12, 13.

CONVERSION FACTORS.

	CONVERSION FACTORS.							
= ML/T.	ramme its.	Log.	7.608044 5.000000 5.000000	= ML ² /T.	ramme nits,	Log.	5.624698 3.466336 1.779600 7.000000	
Dimensions = ML/T.	Dimensions = ML Centimetre Gramme Second Units.	No.	4.05549 × 10 ⁷ 1.38255 × 10 ⁴ 1.97508 1.00000 × 10 ⁵	$Dimensions = ML^2/T$.	Centimetre Gramme Second Units,	No.	$\begin{array}{c} 4.21402 \times 10^{5} \\ 2.92640 \times 10^{3} \\ 6.02002 \times 10^{7} \\ 1.00000 \times 10^{7} \end{array}$	
	amme its,	Log.	2.608044 1.1140682 5.295584 5.205584 5.00000	Conversion Factors for Expression of Moments of Momentum.	amme iits.	Log.	$\frac{\overline{2}.624698}{\overline{6}.779600}$ $\frac{\overline{7}.000000}{\overline{7}.000000}$	
t of Momentum.	Metre Kilogramme Second Units.	No.	$\begin{array}{c} 4.05549 \times 10^{2} \\ 1.3525 \times 10^{-1} \\ 1.97508 \times 10^{-5} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ 0 \\ \mathbf{I} \\ 0 \\ 0 \\ \mathbf{I} \end{array}$		Metre Kilogramme Second Units.	No.	$\begin{array}{c} 4.21402 \times 10^{-2} \\ 2.92640 \times 10^{-4} \\ 6.02002 \times 10^{-6} \\ \mathbf{I} \\ \mathbf{I} \\ 1 \end{array}$	
r Expression	Foot Grain Second Units.	Log.	7.312459 3.845098 0 1.704416	ression of M	in its.	Log.	3.845098 1.686736 0 5.220400	
14Conversion Factors for Expression of Momentum.		No.	$\begin{array}{c} 2.05333 \times 10^7 \\ 7.00000 \times 10^3 \\ 1 \\ 5.06309 \times 10^4 \\ 5.06309 \times 10^{-1} \end{array}$	on Factors for Ex1	Foot Grain Second Units.	No.	$7.00000 \times 10^{3} \\ 4.86112 \times 10 \\ 1 \\ 1.66112 \times 10^{5} \\ 1.66112 \times 10^{-2} \\ 1.66112 \times 10^{-2} \\ 10^{-2} \\ 1.66112 \times 10^{-2} \\ 10^{$	
		Log.	$\frac{3.467361}{0}$ $\frac{\overline{4.15,4902}}{0.859318}$ $\overline{5.859318}$		nd iits.	Log.	2.158362 2.158362 <u>3.533664</u> <u>4.533664</u>	
TABLE		N0,	$\begin{array}{c} 2.93333 \times 10^{3} \\ 1.42857 \times 10^{-4} \\ 7.23300 \times 10^{-5} \end{array}$	TABLE 15.	Inch Pound Second Units.	No.	$\begin{array}{c} 1.44000 \times 10^{2} \\ \textbf{1}.4200 \times 10^{2} \\ \textbf{2}.05714 \times 10^{-2} \\ 3.41716 \times 10^{3} \\ 3.41716 \times 10^{-4} \end{array}$	
	Mile Ton Hour Units. (One ton = 2000 lbs.)	Log.	0 <u>8.687541</u> <u>3.391956</u> 8.391956		nd lits.	Log.	0 <u>3</u> .841637 4.154962 1.375392 6.375392	
		No.	$\begin{array}{c} 1 \\ 3.40909 \times 10^{-4} \\ 4.8701 3 \times 10^{-8} \\ 2.46580 \times 10^{-3} \\ 2.46580 \times 10^{-8} \end{array}$		Foot Pound Second Units	N0.	$\begin{array}{c} \textbf{1} \\ \textbf{6.94444} \times 10^{-3} \\ \textbf{1.42857} \times 10^{-4} \\ \textbf{2.37302} \times 10^{-6} \\ \textbf{2.37302} \times 10^{-6} \end{array}$	
	t							

TABLES 14, 15.

CONVERSION FACTORS.

16

TABLE 16. - Conversion Factors for Expression of Force or Time Rate of Change of Momentum.

Dimensions = MI. / T²

s. Foot Grain Second Units,	Log. No. Log.	$ \begin{array}{c c} \overline{5.859318} & \overline{5.06310 \times 10^{-1}} & \overline{1.704416} \\ \hline 9.859318 & \overline{5.06310 \times 10^{-5}} & \overline{5.704416} \\ \hline 7.00000 \times 10^3 & \overline{3.845098} \\ \hline 4.154902 & 1 \end{array} $
Poundals. (Foot Pound Second Units.)	No.	7.23300×10^{-5} 7.23300 × 10^{-9} 1 1.42854 × 10^{-4}
igramme nits.	Log.	4.000000 0 8.140682 4.295584
Millimetre Milligramme Second Units.	No.	1.00000×10^{4} 1.38255 $\times 10^{8}$ 1.97507 $\times 10^{4}$
Units.)	Log.	0 4.1.4000000 4.1.40682 0.295584
Dynes. (Cm. Gr. Sec. Units.)	No.	$\begin{array}{c} 1 \\ 1.00000 \times 10^{-4} \\ 1.38255 \times 10^{4} \\ 1.97507 \end{array}$

SMITHSONIAN TABLES.

1.650347 1.872196 1.484016 1.443697 1.665546 0 Dimensions = L/TT'. Log. per sec., per sec. Centimetres 7.45067×10^{-1} 3.04801×10 2.77778×10 4.62963×10^{-1} 4.47040 X 10 N_{0} 0.206650 1.818470 1.778151 { per hour, per min. } per min. 1.984So1 Log. 9.65606 × 10 1.6093.4 6.58368 × 10 No. Kilom. <u>0.206650</u> <u>2.428498</u> { per hour, per sec. } Log. 0.166331 1.60934 2.388180 2.68223 × 10⁻² 1.09728 No. Kilom. Log. per sec., per sec. Feet 2.44.44 × 10⁻² No. r.46667 1.7781.51 0 Miles { per hour, per min. } Log. $\begin{array}{c|c} 1.66667 \times 10^{-2} & \overline{2}.221849 \\ 0.81818 \times 10^{-1} & \overline{1}.833669 & 4.09091 \times 10 \end{array}$ 6.00000×10 No. Miles { per hour, per sec. Log. 0

TABLE 17.- Conversion Factors for Expression of Linear Accelerations.

CONVERSION FACTORS.

0.334454

2.16000 H

 $\overline{2.221849}$ $\overline{2.556302}$

 $\begin{array}{c} \underline{1.571502} & \underline{9.11344 \times 10^{-1}} & \overline{1.959681} & \underline{1.0571502} \\ \underline{1.793350} & \underline{1.51891 \times 10^{-2}} & \underline{2.181530} & \underline{1.66667 \times 10^{-2}} \\ \underline{0.127804} & \underline{3.28084 \times 10^{-2}} & \overline{2.515984} & \underline{3.60000 \times 10^{-2}} \end{array}$

2.015199 6.21371 × 10⁻¹ 2.349653 1.34216

3.72824 × 10

6.21371 × 10⁻¹ [1.793350]

N0.

H

 1.03562×10^{-2} 2.23694×10^{-2}

1.611820

6.00000 X 10

0.040318

.TTV.	1	ts er sec.	l.og.	1.020028 3.241877 0.798180 2.221849 4.443697 4.443697
Dimensions = ANGLE/TY.		Radians per sec., per sec.	No.	$\begin{array}{c} 1.04720 \times 10^{-1} \\ 1.74533 \times 10^{-3} \\ 0.28318 \\ 1.6666 \times 10^{-2} \\ 2.77778 \times 10^{-2} \\ 2.77778 \end{array}$
		is er min.	Log.	2.576331 0.798180 4.354482 1.778151 3.556303
erations.		Radians per min., per min.	No.	$\begin{array}{c} 3.76996 \times 10^{2} \\ 6.28318 \\ 2.26195 \times 10^{4} \\ 6.00000 \times 10 \\ 1 \\ 1 \\ 1 \\ +53213 \times 10^{3} \end{array}$
gular Accel		n., per sec.	Log.	0.798180 1.020028 2.576331 0 2.778151
Ixpression of An		Radians { per min., per sec. per min.	No.	$\begin{array}{c} 6.28318 \\ 1.04720 \times 10^{-1} \\ 3.76990 \times 10^{2} \\ 1 \\ 1.66667 \times 10^{-2} \\ 6.00000 \times 10^{-2} \end{array}$
actors for I		ns r scc.	.sorI	$\frac{\overline{2.221849}}{\overline{3.423697}}$
TABLE 18 Conversion Factors for Expression of Angular Accelerations.		Revolutions per sec., per sec.	No.	$\begin{array}{c} 1.66667 \times 10^{-2} \\ 2.77778 \times 10^{-4} \\ \textbf{1} \\ \textbf{2} \\ 2.65258 \times 10^{-3} \\ 4.42097 \times 10^{-5} \\ 1.59155 \times 10^{-1} \end{array}$
TABLE 18		ns r min.	Log.	1.778151 0 3.556303 0.979971 1.201820 2.758123
		Revolutions per min., per min.	No.	$\begin{array}{c} 6.00000 \times 10 \\ 1 \\ 4.53213 \times 10^{3} \\ 9.54930 \\ 1.59155 \times 10^{-1} \\ 5.72958 \times 10^{2} \end{array}$
		, per sec. per min.	Log.	0 <u>7</u> :221849 <u>1.778151</u> <u>1.778151</u> <u>1.778151</u> <u>3.423</u> 569 <u>0.979971</u>
		Rev. { per min., per sec.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 19. - Conversion Factors for Expression of Linear and Angular Accelerations, when the Time Unit only changes.

10	-		
	second.	Log.	10.124598 8.8855020 4.441323 1.997625 10.126972
	Sidercal Second.	No,	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Jay.	Log.	1.997625 2.758048 6.314350 9.870653 9.873027
	Sidercal Day.	No.	$\begin{array}{c c} \hline 0.126972 \\ \hline 0.126972 \\ \hline 0.126972 \\ \hline 0.126972 \\ \hline 0.129347 \\ \hline 0.129347 \\ \hline 0.129347 \\ \hline 0.002375 \\ \hline 0.46496 \times 10^9 \\ \hline 0.873027 \\ \hline 0.887027 \\ \hline 0$
	econd.	Log.	10.126972 8.887395 4.443697 0.0129347 0.002375
	Mean Solar Second.	No.	$\begin{array}{c} 1.33961 \times 10^{-11} \\ 7.71005 \times 10^{-8} \\ 2.77778 \times 10^{-4} \\ \textbf{1}.34694 \times 10^{-11} \\ 1.00548 \end{array}$
	linute.	Log.	7.683275 4.443697 0 7.68566302 7.68566302 3.558677
	Mean Solar Minute.	No.	$\begin{array}{c} 4.82253 \times 10^{-7} \\ 2.77778 \times 10^{-4} \\ \textbf{1} \\ 3.60000 \times 10^{3} \\ 4.84897 \times 10^{-7} \\ 3.61974 \times 10^{3} \end{array}$
	Hour.	Log.	3.239577 3 .556302 7.112005 7.114952 7.114950
	Mean Solar Hour.	No.	$\begin{array}{c} 1.73611 \times 10^{-3} \\ 1.73611 \times 10^{-3} \\ 3.60000 \times 10^{3} \\ 1.29600 \times 10^{3} \\ 1.29600 \times 10^{3} \\ 10^{-3} \\ 1.30311 \times 10^{7} \end{array}$
	Day.	Log.	0 2.760422 6.316725 9.873027 9.875402 9.875402
	Mean Solar	No.	$\begin{array}{c} 1 \\ 5.76000 \times 10^2 \\ 5.76000 \times 10^6 \\ 7.46496 \times 10^6 \\ 7.46496 \times 10^6 \\ 1.00548 \\ 7.50589 \times 10^6 \end{array}$
	Mean Sofar Day.	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLES 18, 19.

CONVERSION FACTORS.

(Gravitation Measure.) - Conversion Factors for Expression of Stress or Force per Unit Area. TABLE 20.

Dimensions = M/LT².

0.713599 2.866602 4.063847 2.555236 0.404534 Log. Centimetres of mercury 0 at o^o Cent. $\frac{5.17129}{7.35532 \times 10^{-2}}$ 3.59117×10^{-2} 1.15837×10^{1} No. H 2.57000 0.308765 2.461768 3.659013 2.150402 T.595166 Log. 0 Inches of mercury at o^o Cent. $\begin{array}{c}1.41385 \times 10^{-2}\\2.03594 \times 10^{-2}\\2.89579 \times 10^{-2}\end{array}$ 3.93701×10^{-1} 4.56050 × 10³ No. 5.197245 1.538232 1.133398 1.846997 Log. 0 Grammes per square $\begin{array}{c} 1.57487 \times 10^{5} \\ 4.85241 \times 10^{-1} \\ 7.03067 \times 10 \end{array}$ centimetre. 3.45328×10 1.35956×10 No. $\frac{2}{1.691235}$ $\frac{1}{1.286401}$ 3.3502.48 3.841637 Log. 0 Pounds per square inch. 6.9444 × 10⁻³ 1.42234×10^{-2} 4.91174×10^{-1} 1.93376×10^{-1} 2.24000×10^3 No. 5.508610 0.311365 1...44.1764 2.158362 Log. 0 Pounds per square 3.22560 × 10⁵ 1.44000×10^{2} 2.78461 × 10 7.07:90 X 10 No. 2.04317 $\begin{array}{c} 3.10019 \times 10^{-6} & \overline{6.4}913^{8}9 \\ 4.46429 \times 10^{-4} & \underline{4.}04975^{2} \\ 6.34973 \times 10^{-6} & \overline{6.802755} \end{array}$ 5.936153 4.340987 6.401389 Log. Tons per square inch. One ton = 2240 lbs. 0 2.19274×10^{-4} 8.63283 × 10^{-5} No. ш

2.362521 6.875061 6.881045 4.140(.82 3.221849 Log. $Dimensions = ML^2/T^3$ Gramme Centimetres per second. 0 0.918833 1.38255 × 10⁴ 1.140672 2.03042 × 10² 7.50000 × 10⁶ 3.659196 7.60403 × 106 1.66667×10^{3} No. , FI 1.38252×10^{-1} 1.140672 1.58200×10^{3} 3.6532135 4.77819 Log. 0 Kilogramme Metres per minute. 6.00000 × IO⁻⁴ $\begin{array}{c} \underline{0.005984} \\ \underline{3.265621} \\ \underline{5.487470} \\ \underline{5.487470} \\ \underline{1.38252} \times \underline{10^{-1}} \end{array}$ No. Ч <u>4</u>.346787 7.124939 Log. 0 Force de cheval.* $\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 5 \end{array} \end{array} \begin{array}{c} 1 \\ 3 \\ 3 \\ 0 \end{array} \begin{array}{c} 1 \\ 1 \end{array} \\ 3 \\ 1 \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \end{array} \\ 1 \\ 1 \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array} \end{array} \begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}$ 2.22222 × 10⁻⁴ 1.33333×10^{-7} No. 4.518514 1 1.778151 1 0 3 4.512530 0.859328 <u>3</u>.637479 Foot Pounds per minute. Log. 3.30000×10^{4} 6.00000×10 No. 2.740363 Foot Pounds per second. Log. 5.50000×10^{2} No. Log. 0 Horse power. 1.31509×10^{-7} No. H

One force de cheval = 75 kilogramme metres per second.

CONVERSION FACTORS.

- Conversion Factors for Expression of Power, Rate of Working, or Activity. (Gravitation Measure.)

TABLES 20, 21.

TABLE 21.

r		-	
ML ² /T ² .	imetres.	Log.	7.49030 7.441712 4.140682 0.295584 5.000000
Dimensions = ML^2/T^2 .	Gramme Centimetres.	No.	$\begin{array}{c} 3.09691 \times 10^7 \\ 2.76510 \times 10^7 \\ 1.38255 \times 10^4 \\ 1.97507 \\ 1.0000 \times 10^5 \end{array}$
e.)	fetres,	Log.	$\frac{2.490930}{1.140682}$ $\frac{2.441712}{5.441682}$ $\frac{1.140682}{5.295584}$ $\frac{5.295584}{5.00000}$
TABLE 22 Conversion Factors for Expression of Work or Energy. (Gravitation Measure.)	Kilogramme Metres.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
aergy. (Gr	ns.	Log.	7.195346 7.146128 3.845098 0 1.704416 1.704416
n of Work or E	Foot Grains.	No.	1.56800 × 10 ⁷ 1.40000 × 10 ⁷ 7.00000 × 10 ³ 5.06310 × 10 ⁴ 5.06310 × 10 ⁴
r Expressio	Foot Tons. (One ton $\equiv 2000$ lbs.) Foot Pounds.	Log.	3.350248 3.301030 4.154902 0.859318 5.859318
rsion Factors for		No.	2.24000×10^{3} 2.00000×10^{3} 1 1.42854×10^{-4} 7.23300×10^{-5}
22. — Conv		Log.	0.049218 0 <u>7</u> .698970 <u>8</u> .853872 <u>3</u> .558288 <u>8</u> .558288
TABLE 2		No.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	is. to Ibs.)	Log.	0 1.950782 1.019752 8.509070 8.509070
	Foot Tons. (One ton $= 2240$ lbs.)	No.	1 8.92857 × 10 ⁻¹ 4.46429 × 10 ⁻⁴ 6.37755 × 10 ⁻⁸ 3.22902 × 10 ⁻⁸ 3.22902 × 10 ⁻⁸
	O) Smiths		82028 3377 2025 2025 2025 2025 2025 2025 2025 20

Dimensions = M/T^2 . TABLE 23. - Conversion Factors for Expression of Film or Surface Tension. (Gravitation Measure.)

linear e.	Log.	1.172650 2.251832 2.406734 0
Grammes per lincar centimetre.	No.	$\begin{array}{c} 1.48816 \times 10 \\ 1.78579 \times 10^{2} \\ 2.55113 \times 10^{-2} \\ 1 \end{array}$
ar inch.	Log.	2.765917 1.845098 1.593266
Grains per linear inch.	No.	5.83333×10^{2} 7.00000×10 1 3.91983×10
ar inch.	Log.	2.920819 0 3.748168
Pounds per linear inch.	No.	$\begin{array}{c} 8.33333 \times 10^{-2} \\ \mathbf{I} \\ \mathbf{I} \\ 5.59976 \times 10^{-2} \\ 5.59976 \times 10^{-3} \end{array}$
ar foot.	Log.	0 <u>3</u> .234083 <u>2</u> .827349
Pounds per linear foot.	No.	$\begin{array}{c} 1 \\ 1, 20000 \times 10 \\ 1, 7, 1, 28 \times 10^{-3} \\ 6.7, 1971 \times 10^{-2} \end{array}$

TABLES 22, 23.

CONVERSION FACTORS.

Б

Force de cheval. $(g = g\delta_1)$	Log.	-5 -5 -1) 10.133271 -3.133771 -3.133771 -3.133771 -3.137771 -3.1377777777777777777777777777777777777
Force de cheval. (g = 981)	No.	$\begin{array}{c} 5.72755 \times 10^{-5} \\ 1.35916 \times 10^{-11} \\ 1.35916 \times 10^{-3} \\ 1.01387 \\ 1.01387 \\ 1\end{array}$
(g = 981)	Log.	
Horse power. $(g = 98i)$	No.	$\begin{array}{c} 5.64917 \times 10^{-5} \\ 1.34056 \times 10^{-10} \\ 1.34056 \times 10^{-3} \\ 1.34056 \times 10^{-3} \\ \mathbf{J} \\ 9.86319 \times 10^{-1} \end{array}$
	Log.	2.624698 7.000000 0 2.872713 2.866729
Watts.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
es or Ergs d.	Log.	5.624698 0 7.000000 9.872713 9.866729
Centimetre Dynes or Ergs per second.	No.	$\frac{4\cdot^2 1403}{1} \times 10^5$ $\frac{1\cdot20000}{1\cdot00000} \times 10^7$ $\frac{7\cdot45956}{7\cdot35748} \times 10^9$
r second.	Log.	0 6.375302 1.375302 4.248015 4.248015
Foot Poundals per second.	No.	$\begin{array}{c} 1 \\ 2.37302 \times 10^{-6} \\ 2.37302 \times 10^{2} \\ 1.77013 \times 10^{4} \\ 1.74595 \times 10^{4} \end{array}$

SMITHSONIAN TABLES.

	[
${ m Dimensions}={ m ML^2}/{ m T^2}.$	limetres.	Log.	2.633029 3.008331 4.008331 4.140682 0
Dimensions	Gramme Centimetres.	No.	$\begin{array}{c} 4.29565 \times 10^{2} \\ 1.01937 \times 10^{-3} \\ 1.01937 \times 10^{4} \\ 1.38255 \times 10^{4} \end{array}$
e Measure.)	= 32.18504)	Log.	$\frac{\overline{2}}{1.867}$ $\frac{2}{1.867}$ $\frac{8.867}{0}$ $\overline{1.867}$ $\frac{0}{5.859318}$
TABLE 25 Conversion Factors for Expressing Work or Energy. (Absolute Measure.)	Foot Pounds. (g = 32.18504)	No.	$\begin{array}{c} 3.10704 \times 10^{-2} \\ 7.37308 \times 10^{-8} \\ 7.37308 \times 10^{-1} \\ 1 \\ 7.23299 \times 10^{-5} \end{array}$
sing Work o	Joules.	Log.	$\frac{\overline{2}.624698}{\overline{7}.000000}$ $\frac{0.132351}{\overline{5}.991669}$
actors for Express		No.	$\begin{array}{c} 4.21403 \times 10^{-2} \\ 1.00000 \times 10^{-7} \\ 1 \\ 1 \\ 9.51000 \times 10^{-5} \end{array}$
- Conversion	re Dynes.	Log.	5.624698 0 7.132351 2.991669
TABLE 25(Ergs or Centimetre Dynes	No,	$\begin{array}{c} 4.21403 \times 10^{6} \\ 1.00000 \times 10^{7} \\ 1.35629 \times 10^{7} \\ 9.81000 \times 10^{2} \\ 9.81000 \times 10^{2} \end{array}$
	als.	Log.	0 6.375302 1.375302 1.375302 1.507653 3.366971
	Foot Poundals.	No.	$\begin{array}{c} \textbf{1}\\ \textbf{2}.37302 \times 10^{-6}\\ \textbf{2}.37302 \times 10\\ \textbf{3}.21850 \times 10\\ \textbf{2}.32794 \times 10^{-3}\\ \textbf{2}.32794 \times 10^{-3} \end{array}$

CONVERSION FACTORS.

2 I

= M / LT ² .	e metre.	Log.	1.172650 2.000000 2.000000	$= M/T^2$.	Ir cm.
<pre>lute Measure.) Dimensions == M / LT².</pre>	Megadynes per square metre.	No.	$\frac{1.48816 \times 10^{-1}}{2.14295 \times 10^{-2}}$ 1.00000 × 10^{-2} 1	Measure.) $Dimensions = M/T^2$.	Grammes per linear cm.
t of Area. (Abso	centimetre.	Log.	1.172650 3.331013 2.000000	nsion. (Absolute	ar inch.
leters for Expression of Stress or Force per Unit of Area. (Absolute Measure.) $_{\rm Dir}$	Dynes per square centimetre.	No.	$1.48816 \times 10^{2.14295} \times 10^{3}$ 2.14295 × 10^{3} 1.000000 × 10^{2}	f Film or Surface Te	Grains per linear inch.
xpression of Str	lare inch.	Log.	$\overline{3.841637}$ 0 $\overline{4.668987}$ $\overline{2.668987}$	or Expression of	ar inch.
version Factors for E	Poundals per square inch.	No.	*6:94444 × 10 ⁻³ 1 4.66646 × 10 ⁻⁴ 4.66646 × 10 ⁻²	TABLE 27.— Conversion Factors for Expression of Film or Surface Tension. (Absolute Measure.)	Dynes per linear inch.
TABLE 26.—Conversion Fa	are foot.	Log.	0 2.158362 <u>2</u> .827349 0.827349	ТАВЬЕ 27. –	ear inch.
F	Poundals per square foot.	No.	$\begin{array}{c} 1 \\ $		Poundals per linear inch.

0.744179 <u>3</u>.008331 <u>2</u>.406734 **0** (g = 951 cms. per sec., per sec.) Log. $\begin{array}{c} 5.54854 \\ 1.01937 \times 10^{-3} \\ 2.55114 \times 10^{-2} \end{array}$ No. 2.337445 2.601597 0 1.593266 (g = 951 cms. per sec., per sec.)Log. $\frac{2.17490 \times 10^2}{3.99573 \times 10^2}$ 3.91981×10 No. 3.735848 0 2.991669 Log. $\begin{array}{c} 2.50267 \times 10^{-1} \\ 9.81000 \times 10^2 \end{array}$ 5.44312×10^3 No. 0 <u>3</u>.662556 <u>1</u>.255821 Log. $\begin{array}{c} \mathbf{1} \\ 1.83723 \times 10^{-4} \\ 4.59786 \times 10^{-3} \\ 1.80228 \times 10^{-1} \end{array}$ No.

CONVERSION FACTORS.

TABLE 28. - Conversion Factors for Expression of Densities.

10.337748 2.204620 <u>1.442164</u> <u>3.597066</u> Grammes per cubic centim. Log. 0 ⁸ 8.740683 2.17644 × 10⁻¹⁰ 10 0.607554 1.60184 × 10⁻² 2 3.845098 2.76799 × 10⁻³ 3 3.95428 × 10⁻³ 3 No. Н 2.402934 Log. Grains per cubic inch. 1 5.50405 × 10⁻⁸ 8 5 4.05093 7.00000 × 10³ 2.52891×10^2 No. 4.154902 2.557836 $\begin{array}{c|c} 7.86293 \times 10^{-12} & \overline{12.895584} \\ 5.78704 \times 10^{-4} & \overline{4.762456} \\ \mathbf{1} \end{array}$ Log. Pounds per cubic inch. N0. 8.133128 0 Log. Pounds per cubic foot. 1.35872×10^{-8} N_0 . 0 7.866872 Log. Tons per cubic mile. 2000 pounds 1 ton. $\begin{array}{c} 7.35990 \times 10^7 \\ 1.27179 \times 10^{11} \\ 1.81685 \times 10^7 \\ 4.59466 \times 10^9 \end{array}$ No. Ч

SMITHSONIAN TABLES.

•

Dimensions = M / L^3 .

TABLE 29. - Conversion Factors for Expression of Specific Electrical Resistance.

$= L/\mu I$.	a Cubic tre.*	Log.	4.501891 7.256378 5.104910 4.104910 0
Dimensions — $L/\mu T$.	Resistance of a Cubic Centimetre.*	No.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	a Metre.* m.)	Log.	0.396981 3.151368 1.000000 5.895090
	Resistance of a Metre.* (d = 1 mm.)	No.	2.49448 1.41699 × 10 ³ 1.00000 × 10 1 7.85398 × 10 ⁻⁵
	Resistance of a Kilometre.* (d = 1 cm.)	Log.	1.396981 2.151368 0 5.895990
		Resistance of a] (d = 1 cn	No.
	a Vard.* nil.)	Log.	$\frac{\overline{3}.245513}{\underline{5}.848632}$
	Resistance of a Vard.* (d = one mil.)	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	a Mile.* h.)	Log.	0 2.754487 0.603019 <u>1</u> .603019 <u>5</u> .498109
	Resistance of a Mile.* (d = 1 inch.)	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

CONVERSION FACTORS.

23

* Taken as unit.

Dimensions = M/T. uncs per minute.	Lug.	<u>3</u> .589720 <u>1.656666</u> <u>2.778151</u>
Dimensions = A Kilogrammes per minute.	No.	3.88794×10^{-3} 4.53593×10^{-1} 6.00000×10^{-2} 1
second.	Log.	2.811568 0.878515 0 1.221849
Grammes per second.	No.	6.47989 × 10 ⁻² 7.55988 1.66667 × 10
inute.	Log.	3.933953 0 1.121485 0.343334
Pounds per minute.	No.	$\begin{array}{c} 8.57143 \times 10^{-3} \\ 1 \\ 1.32277 \times 10^{-1} \\ 2.20462 \end{array}$
cond.	Log.	0 2.066947 1.188432 2.410280
Grains per second.	No.	$\begin{array}{c} 1 \\ 1.16667 \times 10^2 \\ 1.54323 \times 10 \\ 2.57206 \times 10^2 \\ 2.57206 \times 10^2 \end{array}$

TABLE 31. -- Conversion Factors for Expression of Quantities of Heat.

	-		
Dimensions = M0.	ee C.)	Log.	0.343334 2.343334 1.745727 0
Dime	(Pound degree C.)	No.	2.20462 2.20462 × 10 ³ 5.56836 × 10 ³ 1
	al Unit. ce F.)	Log.	0.598606 3.598606 0.254272
	British T'hermal Unit. (Pound degree F.)	No.	3.96832 3.96832 × 10 ³ 1.79586
	l Calorie. tee C.)	Log.	3.000000 0 4.656666
	Therm, or Small Calorie. (Gramme degree C.)	No.	1.00000 × 10 ³ 1 2.51996 × 10 ⁻⁴ 4.53593 × 10 ⁻⁴
	igree C.)	Log.	0 3.000000 1.401394 1.656666
	Calorie. (Kilogramme degree C.)	N_{0} ,	$\begin{array}{c} 1 \\ 1.00000 \times 10^{-3} \\ 2.51996 \times 10^{-1} \\ 4.53593 \times 10^{-1} \end{array}$
L			

CONVERSION FACTORS.

Dimension $\equiv \Theta$.

CONVERSION FACTORS.

Centigrad	Fahı	renheit.	Réaumur.			
No. Log.		No. Log.		No.	Log.	
1 5.55556 × 10 ⁻¹ 1.25000	0 1.744727 0.096910	1.80000 1 2.25000	0.255272 0 0.352182	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

TABLE 32. — Conversion Factors for Expression of Temperatures.

In many of the derived units for the measurement of physical quantities, the unit of time may be taken as constant, because it is seldom that any other unit than the second is used. This is the case, in particular, for the electric and magnetic units. Tables 33-37 below, giving the factors for the conversion of units depending on different dimensional equations in M and L from one set of fundamental units to another, will be found sufficient for almost all cases.

TABLE 33. - Electric Displacement, etc.

Dimensions = $M^{\frac{1}{2}}L^{-\frac{3}{2}}T^{n}$.

Foot Gra Second Ur		Metre Gra Second U		Centimetre Gramme or } Second Millimetre Milligramme } Units.		
No.	Log.	No. Log.		No. Log.		
1 6.61058 × 10 ⁻¹ 6.61058 × 10 ²	0 1.820240 2.820240	1.51273 1.00000 × 10 ³	0.179760 0 3.000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

$= \mathbf{M}^{\frac{1}{2}}\mathbf{L}^{-\frac{1}{2}}\mathbf{T}^{n}.$	lligramme Juits.	Log.	0.663772 1.000000 2.000000 0
$Dimensions = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{n}.$	Millimetre Milligramme Second Units.	No.	4.61075 1.00000 × 10 1.00000 × 10 ² 1
· · · · · ·	ramme nits .	Log.	2.00000 <u>1</u> .000000 <u>2</u> .00000
ADDL OT Sullate Delisity of Magletism, eve	Centimetre Gramme Second Units.	No.	$\begin{array}{c} 4.61075 \times 10^{-2} \\ 1.00000 \times 10^{-1} \\ \textbf{l} \\ 1.00000 \times 10^{-2} \end{array}$
	nme its.	Log.	$\begin{array}{c} \overline{1.663772} \\ 0 \\ \overline{1.000000} \\ \overline{1.000000} \end{array}$
	Metre Gramme Second Units.	No.	$\begin{array}{c} 4.61075 \times 10^{-1} \\ 1 \\ 1.00000 \times 10^{-1} \\ 1.00000 \times 10^{-1} \end{array}$
	n its.	Log.	$\begin{array}{c} 0 \\ 0.336228 \\ \underline{1.33}6228 \\ \overline{1.33}6228 \\ \overline{1.33}6228 \end{array}$
	Foot Grain Second Units	No.	1 2.16884 2.16884 × 10 2.16884 × 10
	SMITHSO	DNIAN	TABLES.

TABLE 34. - Surface Density of Magnetism, etc.

HSONIAN I ABLES.

Dimensions — $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{n}$. TABLE 35. - Intensity of Magnetization, etc.

- E			
• T_T_W ==	lligramme Inits.	Log.	2.147792 3.000000 2.000000
T_{1} m = subsequences T_{1}	Millimetre Milligramme Second Units.	No.	$\begin{array}{c} 1.4053^{\circ} \times 10^{2} \\ 1.00000 \times 10^{3} \\ 1.00000 \times 10^{2} \\ 1.00000 \times 10^{2} \\ 1\end{array}$
	ramme nits.	Log.	0.147792 1.000000 <u>7</u> .000000
	Centimetre Gramme Second Units.	No.	1.40538 1.00000 × 10 1 1.00000 × 10 ⁻²
1	ume its.		
	nme nits.	Log.	$\frac{\overline{1}.14779^2}{0}$ $\frac{\overline{1}.000000}{\overline{3}.000000}$
	Metre Gramme Second Units.	No. Log.	$\begin{array}{c} 1.40538 \times 10^{-1} \\ 1 \\ 1 \\ 1.00000 \times 10^{-1} \\ 1.00000 \times 10^{-3} \end{array}$
			$\begin{array}{c c} 0 & 1 \\ \hline 0 \\ \hline 1.852208 \\ \hline 1.852208 \\ \hline 1.00000 \times 10^{-1} \\ \hline 3.852208 \\ \hline 1.00000 \times 10^{-3} \\ \hline 1.00000 \\ \hline 0 \\ \hline $
	Foot Grain Second Units. Second Units.	No.	$\begin{array}{c} 1.40538 \times 10^{-1} \\ \textbf{L} \\ \textbf{L} \\ 1.00000 \times 10^{-1} \\ 1.00000 \times 10^{-3} \end{array}$

CONVERSION FACTORS.

26

TABLE 36. - Electric Potential, etc.

10		
llligramme Jnits.	Log.	4.631808 6.000000 3.000000 0
Millimetre Mi Second U	No.	$\begin{array}{c} 4.28359 \times 10^{4} \\ 1.00000 \times 10^{6} \\ 1.00000 \times 10^{3} \\ 1\end{array}$
bramme nits.	Log.	1.631808 3.000000 <u>3</u> .000000
Centimetre C Second U	No.	$\begin{array}{c} 4.28359 \times 10 \\ 1.00000 \times 10^{3} \\ 1 \\ 1 \\ 1.00000 \times 10^{-3} \end{array}$
mme nits.	Log.	2 2.631808 0 6.000000 6.000000
Metre Gra Second U	No.	$\begin{array}{c} 4.2^{3}359 \times 10^{-5} \\ 1 \\ 1.00000 \times 10^{-6} \\ 1.00000 \times 10^{-6} \end{array}$
its.	Log.	0 1.368192 <u>5</u> .368192 <u>5</u> .368192
Foot Grai Second Uni	No.	1 2,33449 × 10 2.33449 × 10 ⁻⁵ 2.33449 × 10 ⁻⁵
	Foot GrainMetre GrammeCentimetre GrammeMillimetre MilligrammeSecond Units.Second Units.Second Units.Second Units.	 ⁷oot Grain Metre Gramme Second Units. Second Uni

27

,

7.115824 5.000000 4.000000 Dimensions = $M^{\frac{5}{2}}L^{\frac{5}{2}}T^{n}$. Millimetre Milligramme Second Units. Log. 0 $\begin{array}{c} 1.30564 \times 10^7\\ 1.00000 \times 10^5\\ 1.00000 \times 10^4\\ \mathbf{l}\end{array}$ N.0, 3.115824 1.000000 4.000000 Log. 0 Centimetre Gramme Second Units. TABLE 37. -- Magnetic Moment, etc. 1.00000 × 10⁻⁴ 1.30564×10^{3} 1.00000×10 No. Н 2.115824 0 <u>1</u>.000000 <u>5</u>.000000 Log. Metre Gramme Second Units. $\begin{array}{c} \rm I.00000 \ \times \ 10^{-1} \\ \rm I.000000 \ \times \ 10^{-5} \end{array}$ 1.30564×10^2 No. 3.884176 4.884176 8.884176 Log. 0 Foot Grain Second Units. $\begin{array}{c} 7.65907 \times 10^{-3} \\ 7.65907 \times 10^{-4} \\ 7.65907 \times 10^{-4} \end{array}$ No. Н

CONVERSION FACTORS.

HYPERBOLIC FUNCTIONS.*

Hyperbolic sines.

Values of $\frac{e^{x}-e^{-x}}{2}$.

20	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901
0.1	.1002	.1102	.1203	.1304	.1405	.1506	.1607	.1708	.1810	.1911
0.2	.2013	.2115	.2218	.2320	.2423	.2526	.2629	.2733	.2837	.2941
0.3	.3045	.3150	.3255	.3360	.3466	.3572	.3678	.3785	.3892	.4000
0.4	.4108	.4216	.4325	.4434	.4543	.4653	.4764	.4875	.4986	.5098
0.5	0.5211	0.5324	0.5438	0.5552	0.5666		0.5897	0.6014	0.6131	0.6248
0.6	.6367	.6485	.6605	.6725	.6846		.7090	.7213	.7336	.7461
0.7	.7586	.7712	.7838	.7966	.8094		.8353	.8484	.8615	.8748
0.8	.8881	.9015	.9150	.9286	.9423		.9700	.9840	.9981	.0122
0.9	1.0265	1.0409	1.0554	1.0700	1.0847		1.1144	1.1294	1.1446	1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1.3025	1.3190
I.I	.3356	.3524	.3693	.3863	.4035	.4208	.4382	.4558	.4735	.4914
I.2	.5095	.5276	.5460	.5645	.5831	.6019	.6209	.6400	.6593	.6788
I.3	.6984	.7182	.7381	.7583	.7786	.7991	.8198	.8406	.8617	.8829
I.4	.9043	.9259	.9477	.9697	.9919	2.0143	2.0369	2.0597	2.0827	2.1059
1.5	2.1293	2.1529	2.1768	2.2008	2.2251	2.2496	2.2743	2.2993	2.3245	2.3499
1.6	.3756	.4015	.4276	.4540	.4806	.5075	.5346	.5620	.5896	.6175
1.7	.6456	.6740	.7027	.7317	.7609	.7904	.8202	.8503	.8806	.9112
1.8	.9422	.9734	3.0049	3.0367	3.0689	3.1013	3.1340	3.1671	3.2005	3.2341
1.9	3.2682	3.3025	.3372	.3722	.4075	.4432	.4792	.5156	.5523	.5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.8593	3.8993	3.9398	3.9806
2.1	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	4.3221	4.3666	4.4117
2.2	4.4571	4.5030	4.5494	4.5962	4.6434	4.6912	4.7394	4.7880	4.8372	4.8868
2.3	4.9370	4.9876	5.0387	5.0903	5.1425	5.1951	5.2483	5.3020	5.3562	5.4109
2.4	5.4662	5.5221	5.5785	5.6354	5.6929	5.7510	5.8097	5.8689	5.9288	5.9892
2.5	6.0502	6.1118	6.17.41	6.2369	6.3004	6.3645	6.4293	6.4946	6.5607	6.6274
2.6	6.6947	6.7628	6.8315	6.9009	6.9709	7.0417	7.1132	7.1854	7.2583	7.3319
2.7	7.4063	7.4814	7.5572	7.6338	7.7112	7.7894	7.8683	7.9480	8.0285	8.1098
2.8	8.1919	8.2749	8.3586	8.4432	8.5287	8.6150	8.7021	8.7902	8.8791	8.9689
2.9	9.0596	9.1512	9.2437	9.3371	9.4315	9.5268	9.6231	9.7203	9.8185	9.9177
3.0	10.018	10.119	10.221	10.324	11.429	11.534	11.640	11.748	11.856	11.966
3.1	11.076	11.188	11.301	11.415	11.530	12.647	12.764	12.883	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.876	13.006	13.137	13.269	13.403
3.3	13.538	13.674	13.812	13.951	14.092	14.234	14.377	14.522	14.668	14.816
3.4	14.965	15.116	15.268	15.422	15.577	15.734	15.893	16.053	16.214	16.378
3.5	16.543	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.6	18.285	18.470	18.655	18.843	19.033	19.224	19.418	19.613	19.811	20.010
3.7	20.211	20.415	20.620	20.828	21.037	21.249	21.463	21.679	21.897	22.117
3.8	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
3.9	24.691	24.939	25.190	25.444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	28.122	28.404	28.690	28.979	29.270	29.564	29.862
.4.1	30.162	30.465	30.772	31.081	31.393	31.709	32.028	32.350	32.675	33.004
4.2	33.336	33.671	34.009	34.351	34.697	35.046	35.398	35.754	36.113	36.476
4.3	36.843	37.214	37.588	37.966	38.347	3 ^{8.7} 33	39.122	39.515	39.913	40.314
4.4	40.719	41.129	41.542	41.960	42.382	42.808	43.238	43.673	44.112	44.555
4.5	.45.003	45.455	45.912	46.374	46.840	47.311	47.7 ⁸ 7	48.267	48.752	49.242
4.6	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53.344	53.880	54.422
4.7	54.969	55.522	56.080	56.643	57.213	57.788	58.369	58.955	59.548	60.147
4.8	60.751	61.362	61.979	62.601	63.231	63.866	64.508	65.157	65.812	66.473
4.9	67.141	67.816	68.498	69.186	69.882	70.584	71.293	72.010	72.734	73.465

* Tables 38-41 are quoted from "Des Ingenieurs Taschenbuch," herausgegeben vom Akademischen Verein (Hütte). SMITHSONIAN TABLES.

Hyperbolic cosinos.

Values of $\frac{e^x + e^{-x}}{2}$.

	-									
x	0	1	2	3	4	5	6	7	8	9
0.0	1.0000	1.0001	1.0002	1.0005	1.0008	1.0013	1.0018	1.0025	1.0032	1.0041
0.1	.0050	.0061	.0072	.0085	.0098	.0113	.0128	.0145	.0162	.0181
0.2	.0201	.0221	.0243	.0260	.0289	.0314	.0340	.0367	.0395	.0423
0.3	.0453	.0484	.0516	.05.19	.0584	.0019	.0055	.0692	.0731	.0770
0.4	.0811	.0852	.0895	.0939	.0984	.1030	.1077	.1125	.1174	.1225
0.5	1.1276	1.1329	1.1383	1.1438	1.1494	1.1551	1.1609	1.1669	1.1730	1.1792
0.6	.1855	.1919	.1984	.2051	.2119	.2188	.2258	.2330	.2402	.2476
0.7	.2552	.2628	.2706	.2785	.2865	.2947	.3030	.3114	.3199	.3286
0.8	.3374	.3464	.3555	.3647	.3740	.3835	.3932	.4029	.4128	.4229
0.9	.4331	4434	.4539	.4645	.4753	.4862	.4973	.5085	.5199	.5314
1.0	1.5431	1.5549	1.5669	1.5790	1.5913	1.6038	.6164	1.6292	1.6421	1.6552
1.1	.6685	.6820	.6956	.7093	.7233	•7374	.7517	.7662	.7808	.7956
1.2	.8107	.8258	.8412	.8568	.8725	.8884	.9045	.9208	.9373	.9540
1.3	.9709	.9880	2.0053	2.0228	2.0404	2.0583	2.0764	2.0947	2.1132	2.1320
1.4	2.1509	.1700	.1894	.2090	.2288	.2488	.2691	.2896	.3103	.3312
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.4845	2.5073	2.5305	2.5538
1.6	•5775	.6013	.6255	.6499	.6746	.6995	.7247	.7502	.7760	.8020
1.7	.8283	.8549	.8818	.9090	.9364	.9642	.9922	3.0206	3.0492	3.0782
1.8	3.1075	3.1371	3.1669	3.1972	3.2277	3.2585	3.2897	.3212	.3530	.3852
1.9	•4177	.4506	.4838	.5173	.5512	.5855	.6201	.6551	.6904	.7261
2.0	3.7622	3.7987	3.8355	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.1	4.1443	4.1847	4.2256	4.2668	4.3085	4.3507	4.3932	4.4362	4.4797	4.5236
2.2	4.5679	4.6127	4.6580	4.7037	4.7499	4.7966	4.8437	4.8914	4.9395	4.9881
2.3	5.0372	5.0868	5.1370	5.1876	5.2388	5.2905	5.3427	5.3954	5.4487	5.5026
2.4	5.5569	5.6119	5.6674	5.7235	5.7801	5.8373	5.8951	5.9535	6.0125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.8363	6.9043	6.9729	7.0423	7.1123	7.1831	7.2546	7.3268	7.3998
2.7	7.4735	7.5479	7.6231	7.6990	7.7758	7.8533	7.9136	7.0106	8.0905	8.1712
2.8	8.2527	8.3351	8.4182	8.5022	8.5871	8.6728	8.7594	8.8469	8.9352	9.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.4844	9.5791	9.6749	9.7716	9.8693	9.9680
3.0	10.068	10.168	10.270	10.373	10.476	10.581	10.687	10.794	10.902	11.011
3.1	11.121	12.233	11.345	11.459	11.574	11.689	11.806	11.925	12.044	12.165
3.2	12.287	13.410	12.534	12.660	12.786	12.915	13.044	13.175	13.307	13.440
3.3	13.575	14.711	13.848	13.987	14.127	14.269	14.412	14.556	14.702	14.850
3.4	14.999	15.149	15.301	15.455	15.610	15.766	15.924	16.084	16.245	16.408
3.5	16.573	16.739	16.907	17.077	17.248	17.421	17.596	17.772	17.951	18.131
3.6	18.313	18.497	18.682	18.870	19.059	19.250	19.444	19.639	19.836	20.035
3.7	20.236	20.439	20.644	20.852	21.061	21.272	21.486	21.702	21.919	22.139
3.8	22.362	22.586	22.813	23.042	23.273	23.507	23.743	23.982	24.222	24.466
3.9	24.711	24.959	25.210	25.463	25.719	25.977	26.238	26.502	26.768	27.037
4.0	27.308	27.582	27.860	28.139	28.422	28.707	28.996	29.287	29.581	29.878
4.1	30.178	30.482	30.788	31.097	31.409	31.725	32.044	32.365	32.691	33.019
4.2	33.351	33.686	34.024	34.366	34.711	35.060	35.412	35.768	36.127	36.490
4.3	36.857	37.227	37.601	37.979	38.360	38.746	39.135	39.528	39.925	40.326
4.4	40.732	41.141	41.554	41.972	42.393	42.819	43.250	43.084	44.123	44.566
4.5	45.014	45.466	45.923	46.385	46.851	47.321	47·797	48.277	48.762	49.252
4.6	49.747	50.247	50.752	51.262	51.777	52.297	52.823	53.354	53.890	54.431
4.7	5.4.978	55.531	56.089	56.652	57.221	57.796	58.377	58.964	59.556	60.155
4.8	60.759	61.370	61.987	62.609	63.239	63.874	64.516	65.164	65.819	66.481
4.9	67.149	6 7 .823	68.505	69.193	69.889	70.591	71.300	72.01 7	72.741	73.472

HYPERBOLIC FUNCTIONS.

Common logarithms + 10 of the hyperbolic sines.

æ	0	l	2	3	4	5	6	7	8	9
0.0	8. <u></u>	0000	3011	4772	6022	6992	7784	8455	9036	9548
0.1	0007	0423	0802	1152	1475	1777	2060	2325	2576	2814
0.2	3039	3254	3459	3656	3844	4025	4199	4366	4528	4685
0.3	4836	4983	5125	5264	5398	5529	5656	5781	5902	6020
0.4	9.6136	6249	6359	6468	6574	6678	6780	6880	6978	7074
0.5	9.7169	7262	7354	7444	7 533	7620	7707	7791	7875	7958
0.6	8039	8119	8199	8277	8 354	8431	8506	8581	8655	8728
0.7	8800	8872	8942	9012	908 2	9150	9218	9286	9353	9419
0.8	9485	9550	9614	9678	97 4 2	9805	9868	9930	9992	0053
0.9	10.0114	0174	0234	0294	0 3 53	0412	0470	0529	0586	0644
1.0	10.0701	07 58	0815	0871	0927	0982	1038	1093	1148	1203
I.I	1257	1 31 1	1365	1419	1472	1525	1578	1631	1684	1736
I.2	1788	1 8 40	1892	1944	1995	2046	2098	2148	2199	2250
I.3	2300	2 3 5 1	2401	2451	2501	2551	2600	2650	2699	2748
I.4	2797	2 8 4 6	2895	2944	2993	3041	3090	3138	3186	3234
1.5	10.3282	3330	3378	3426	3474	3521	3569	3616	3663	3711
1.6	3758	3805	3852	3899	3946	3992	4039	4086	4132	4179
1.7	4225	4272	4318	4364	4411	4457	4503	4549	4595	4641
1.8	4687	4733	4778	4824	4870	4915	4961	5007	5052	5098
1.9	5143	5188	5234	5279	5324	5370	5415	5460	5505	5550
2.0	10.5595	5640	5685	5730	5775	5820	5865	5910	5955	5999
2.1	6044	6089	6134	6178	6223	6268	6312	6357	6401	6446
2.2	6491	6535	6580	6624	6668	6713	6757	6802	6846	6890
2.3	6935	6979	7023	7067	7112	7156	7200	7244	7289	7333
2.4	7377	7421	7465	7509	7553	7597	7642	7686	7730	7774
2.5	10.7818	7862	7906	7950	7994	8038	8082	8126	8169	8213
2.6	8257	8301	8345	8389	8.433	8477	8521	8564	8608	86 52
2.7	8696	8740	8784	8827	8871	8915	8959	9003	9046	9090
2.8	9134	9178	9221	9265	9309	9353	9396	9440	9484	9527
2.9	9571	9615	9658	9702	9746	9789	9 ⁸ 33	9877	9920	9964
3.0	11.0008	0051	0095	0139	0182	0226	0270	0313	0357	0400
3.1	0444	0488	0531	0575	0618	0662	0706	0749	0793	0836
3.2	0880	0923	0967	1011	1054	1098	1141	1185	1228	1272
3.3	1316	1359	1403	1446	1490	1533	1577	1620	1664	1707
3.4	1751	1794	1838	1881	1925	1968	2012	2056	2099	2143
3.5	11.2186	2230	2273	2317	2360	2404	2447	2491	2534	2 578
3.6	2621	2665	2708	2752	2795	2839	2882	2925	2969	301 2
3.7	3056	3099	3143	3186	3230	3273	3317	3360	3404	3 147
3.8	3491	3534	3578	3621	3665	3708	3752	3795	3838	388 2
3.9	3925	3969	4012	4056	4099	4143	4186	4230	4273	4 3 17
4.0	11.4360	4403	4447	4490	4534	4 577	4621	4664	4708	47 51
4.1	4795	4838	4881	4925	4968	5012	5055	5099	5142	51 86
4.2	5229	5273	5316	5359	5403	5446	5490	5533	5577	5620
4.3	566.4	5707	5750	5794	5 ⁸ 37	588 1	5924	5968	6011	60 55
4.4	6098	6141	6185	6228	6272	631 5	6359	6402	6446	6489
4.5	11.6532	6576	6619	6663	6706	67 50	6793	6836	6880	6923
4.6	6967	7010	7054	7097	7141	7 184	7227	7271	7314	7358
4.7	7.401	7445	7488	7531	7575	7618	7662	7705	7749	7792
4.8	7836	7879	7922	7966	8009	80 53	8096	8140	8183	8226
4.9	8270	8313	8357	8400	8444	8487	8530	8574	8617	8661
		1			1		1			

TABLE 41.

HYPERBOLIC FUNCTIONS.

Common logarithms of the hyperbolic cosines.

al ^a	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0000	0001	0002	0003	0005	0008	0011	0014	0018
0.1	0022	0026	0031	0037	0042	0049	0055	0062	0070	0078
0.2	0086	0095	0104	011.4	0124	0134	0145	0156	0108	0180
0.3	0193	0205	0210	0232	0246	0201	0276	0291	0306	0322
0.4	0339	0355	0372	0390	0407	0.126	0444	0.463	0482	0502
0.5	0.0522	0542	0562	0583	0605	0626	0648	c670	0693	0716
0.6	0739	0762	0786	0810	0835	0859	0884	c910	0935	0961
0.7	0987	1013	1040	1067	1094	1122	1149	1177	1206	1234
0.8	1263	1292	1321	1350	1380	1410	1440	1470	1501	1532
0.9	1563	1594	1625	1657	1689	1721	1753	1785	1818	1851
1.0	0.1884	1917	1950	1984	2018	2051	2086	2120	2154	2189
1.1	2223	2258	2293	2328	2364	2399	2435	2470	2506	2542
1.2	2578	2615	2651	2688	2724	2761	2798	2835	2872	2909
1.3	2947	2984	3022	3059	3097	3135	3173	3211	3249	3288
1.4	3326	3365	3403	3442	3481	3520	3559	3598	3637	3676
1.5	0.3715	37 54	3794	3833	3873	3913	3952	3992	4032	4072
1.6	4112	41 52	4192	4232	4273	4313	4353	4394	4434	4475
1.7	4515	45 56	4597	4637	4678	4719	4760	4801	4842	4883
1.8	4924	496 5	5006	5048	5089	5130	5172	5213	5254	5296
1.9	5337	5 37 9	5421	5462	5504	5545	55 ⁸ 7	5629	5671	5713
2.0	0.5754	5796	5838	5880	5922	5964	6006	6048	6090	61 32
2.1	6175	6217	6259	6301	6343	6386	6428	6470	6512	6555
2.2	6597	6640	6682	6724	6767	6809	6852	6894	6937	6979
2.3	7022	7064	7107	7150	7192	7235	7278	7320	7363	7406
2.4	7448	7491	7534	7577	7619	7662	7705	7748	7791	7 ⁸ 33
2.5	0.7876	7919	796 2	8005	8048	8091	8134	8176	8219	8262
2.6	8305	8348	8391	8434	8477	8520	8563	8606	8649	8692
2.7	8735	8778	8821	8864	8907	8951	8994	9037	9080	9123
2.8	9166	9209	925 2	9295	9338	9382	9425	9468	9511	9554
2.9	9597	9641	9684	9727	9770	9813	9856	9900	9943	9986
3.0	1.0029	0073	0116	01 59	0202	0245	0289	0332	037 5	0418
3.1	0462	0505	0548	0 591	0635	c678	0721	0764	0808	0851
3.2	0894	0938	0981	1 0 2 4	1067	1111	1154	1197	1241	1284
3.3	1327	1371	1414	1 4 57	1501	1544	1587	1631	1674	1717
3.4	1761	1804	1847	1 8 9 1	1934	1977	2021	2064	2107	2151
3.5	1.2194	2237	2281	2324	2367	2411	2454	2497	2 541	2584
3.6	2628	2671	2714	2758	2801	2844	2888	2931	2974	3018
3.7	3061	3105	3148	3191	3235	3278	3322	3365	3408	3452
3.8	3495	3538	3582	3625	3669	3712	3755	3799	3842	3886
3.9	3929	3972	4016	4059	4103	4146	4189	4233	4278	4320
4.0	1.4363	4.106	4450	4493	4537	4580	4623	4667	4710	4754
4.1	4797	4840	4884	4927	4971	5014	5057	5101	5144	5188
4.2	5231	5274	5318	5361	5405	5448	5492	5535	5578	5622
4.3	5605	5709	5752	5795	5839	5882	5026	5969	6012	6056
4.4	6099	6143	6186	6230	6273	6316	6360	6403	6447	6490
4.5	1.6533	6577	6620	6664	6707	6751	6794	6837	6881	6924
4.6	6968	7011	7055	7098	7141	7185	7228	7272	7315	7358
4.7	7402	7445	7489	7532	7576	7619	7662	7706	7749	7793
4.8	7836	7880	7923	7966	8010	8053	8097	8140	8184	8227
4.9	8270	8314	8357	8401	8444	8487	8531	8574	8618	8661

SMITHSONIAN TABLES.

6

EXPONENTIAL FUNCTIONS.

.

Values of e^x and of e^{-x} and their logarithms.

Values of e^z and e^{-z} for values of x intermediate to those here given may be found by adding or subtracting the values of the hyperbolic cosine and sine given in Tables 38-39.

		1						
æ	ex	log ex	æ	ex	log ex	æ	e-x	log e-x
0.1	1.1052	0.04343	5.1	164.03	2.21490	0.1	0.90484	1.95657
2	1.2214	08686	2	181.27	25833	2	81873	91314
3	1.3499	13029	3	200.34	30176	3	74082	86971
4	1.4918	17372	4	221.41	34519	4	67032	82628
5	1.6487	21715	5	2 44.69	38862	5	60653	78285
0.6	1.8221	0.26058	5.6	270.43	2.43205	0.6	0.54881	1.73942
7	2.0138	30401	7	298.87	47548	7	49659	69599
8	2.2255	34744	8	330.30	51891	8	44933	65256
9	2.4596	39087	9	365.04	56234	9	40657	60913
1.0	2.7183	43429	6.0	403.43	60577	1.0	36788	56570
1.1	3.0042	0.47772	6.1	445.86	2.64920	1.1	0.33287	1.52228
2	3.3201	52115	2	492-75	69263	2	30119	47885
3	3.6693	56458	3	545-57	73606	3	27253	43542
4	4.0552	60801	4	601.85	77948	4	2.4660	39199
5	4.4817	65144	5	665.14	82291	5	22313	34856
1.6	4.9530	0.69487	6.6	735.10	2.86634	1.6	0.20190	1.30513
7	5.4739	73830	7	812.41	90977	7	18268	26170
8	6.0496	78173	8	897.85	95320	8	16530	21827
9	6.6859	82516	9	992.27	99663	9	14957	17484
2.0	7.3891	86859	7.0	1096.63	3.04006	2.0	13534	13141
2.1	8.1662	0.91202	7.1	1212.0	3.08349	2.1	0.12246	1.08798
2	9.0250	95545	2	1339.4	12692	2	11080	04455
3	9.9742	99888	3	1480.3	17035	3	10026	00112
4	11.0232	1.04231	4	1636.0	21378	4	09073	2.95769
5	12.1825	08574	5	1808.0	25721	5	08208	91426
2.6	13.463	1.12917	7.6	1998.2	3.30064	2.6	0.074274	2.87083
7	14.880	17260	7	2208.3	34.407	7	067205	82740
8	16.445	21602	8	2440.6	387.50	8	060810	78398
9	18.174	25945	9	2697.3	43093	9	055023	74955
3.0	20.086	30288	8.0	2981.0	47436	3.0	049787	69712
3.1	22.198	1.34631	8.1	3294.5	3.51779	3.1	0.045049	2.65369
2	24.533	3 ⁸ 974	2	3641.0	56121	2	040762	61026
3	27.113	43317	3	4023.9	60464	3	036883	56683
4	29.964	47660	4	4447.1	64807	4	033373	52340
5	33.115	52003	5	4914.8	69150	5	030197	47997
3.6	36.598	1.56346	8.6	5431.7	3.73493	3.6	0.027 324	2.43654
7	40.447	60689	7	6002.9	77836	7	024724	39311
8	44.701	65032	8	6634.2	82179	8	02237 1	34968
9	49.402	69375	9	7332.0	86522	9	0202.42	30625
4.0	54.598	73718	9.0	8103.1	90865	4.0	018316	26282
4.1	60.340	1.78061	9.1	8955.	3.95208	4.1	0.016573	2.21939
2	66.686	82404	2	9897.	99551	2	014996	17596
3	73.700	86747	3	10938.	4.03894	3	013569	13253
4	81.451	91090	4	12088.	08237	4	012277	08910
5	90.017	95433	5	13360.	12580	5	011109	04567
4.6	99.48	1.99775	9.6	14765.	4.16923	4.6	0.010052	2.00225
7	109.95	2.04118	7	16318.	21266	7	009095	3.95882
8	121.51	08461	8	18034.	25609	8	008230	91539
9	134.29	12804	9	19930.	29952	9	007447	87196
5.0	148.41	17147	10.0	22026.	34295	5 .0	006738	82853

EXPONENTIAL FUNCTIONS.

Value of e^{x^2} and e^{-x^2} and their logarithms.

The equation to the probability curve is $y = e^{-x^2}$, where x may have any value, positive or negative, between zero and infinity.

x	C.X ²	log ex3	e-x2	$\log e^{-x^2}$
0.1	I.0101	0.00434	0.99005	Ī.99566
2	I.0408	01737	96079	98263
3	I.0904	03909	91393	96091
4	I.1735	06949	85214	93051
5	I.2840	10857	77880	89143
0.6	1.4333	0.15635	0.69768	I.84365 78720 72205 64822 56571
7	1.6323	21280	61263	
8	1.8965	27795	5 ²⁷²⁹	
9	2.2479	35178	44486	
1.0	2.7183	43429	36788	
1.1	3·353 5	0.525 5 0	0.29820	ī.47450
2	4.2207	62538	23693	37462
3	5.4195	73396	18452	26604
4	7.0993	85122	14086	14878
5	9.4877	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77306 × 10 ⁻¹	2.88821
7	1.7993 "	25511	55576 "	74489
8	2.5534 "	40711	39164 "	59289
9	3.6996 "	56780	27052 "	43220
2.0	5.4598 "	73718	18316 "	26282
2.1	8.2269 "	1.91524	0.12155 "	2.08476
2	1.2647 × 10 ²	2.10199	79070 × 10 ⁻²	3.89801
3	1.9834 "	29742	50418 "	70258
4	3.1735 "	50154	31511 "	49846
5	5.1802 "	71434	19304 "	28566
2.6	8.6264 "	2.93583	$\begin{array}{cccc} 0.11592 & ``\\ 68233 \times 10^{-8}\\ 39367 & ``\\ 22263 & ``\\ 12341 & ``\end{array}$	<u>3</u> .06417
7	1.4656 × 10 ³	3.16601		4.83400
8	2.5402 "	40487		59513
9	4.4918 "	65242		34758
3.0	8.1031 "	90865		09135
3.1	1.4913 × 10 ⁴	4.17357	$\begin{array}{c} 0.67055 \times 10^{-4} \\ 35713 & `` \\ 18644 & `` \\ 95402 \times 10^{-5} \\ 47851 & `` \end{array}$	5.82643
2	2.8001 "	44718		55283
3	5.2960 "	72947		27053
4	1.0482 × 10 ⁵	5.02044		6.97956
5	2.0898 "	32011		67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673 × 10 ⁵ 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	δ.37154 05451 7.72879 39438 05129
4.1	1.9976 × 10 ⁷	7.30049	$\begin{array}{c} 0.50062 \times 10^{-7} \\ 21829 & `` \\ 93303 \times 10^{-8} \\ 39088 & `` \\ 16052 & `` \end{array}$	8.69951
2	4.5809 "	66095		_ 33905
3	1.0718 × 10 ⁸	8.03011		9.96989
4	2.5583 "	40796		59204
5	6.2297 "	79447		20553
4.6 7 8 9 5 .0	$\begin{array}{c} 1.5476 \times 10^{9} \\ 3.9228 & `` \\ 1.0143 \times 10^{10} \\ 2.6755 & `` \\ 7.2005 & `` \end{array}$	9.18967 59357 10.00615 42741 85736	$\begin{array}{c} 0.64614 \times 10^{-9} \\ 25494 & `` \\ 98595 \times 10^{-10} \\ 37376 & `` \\ 13888 & `` \end{array}$	10.81033 40643 11.99385 57259 14264

TABLE 44. EXPONENTIAL FUNCTIONS.

Jr.	<i>α α α α α α α α α α</i>	$\log e^{\frac{\pi}{4}x}$	$e^{-\frac{\pi}{4}x}$	$\log e^{-\frac{\pi}{4}x}$
1	2 1933	0.34109	$\begin{array}{c} 0.45594 \\ .20788 \\ .94780 \times 10^{-1} \\ .43214 \\ .19703 \end{array}$	1.65891
2	4.8105	.68219		.31781
3	1.0551 × 10	1.02328		2.97672
4	2.3141 "	.36438		.63562
5	5.0754 "	.70547		.29453
6	$\begin{array}{c} 1.1132 \times 10^{2} \\ 2.4415 & `` \\ 5.3549 & `` \\ 1.1745 \times 10^{3} \\ 2.5760 & `` \end{array}$	2.04656	0.89833 × 10 ⁻²	3:95344
7		.38766	.40958 "	.61234
8		.72875	.18074 "	.27125
9		3.06985	.85144 × 10 ⁻³	4:93015
10		.41094	.38820 "	.58906
11	5.6498 "	3.7 5204	$\begin{array}{cccc} 0.17700 & ``\\ .80699 \times 10^{-4} \\ .36794 & ``\\ .16776 & ``\\ .76487 \times 10^{-5} \end{array}$	4.24796
12	1.2392 × 10 ⁴	4.09313		5.90687
13	2.7168 "	.43422		.50578
14	5.9610 "	.77 532		.22468
15	1.3074 × 10 ⁵	5.11641		6.88359
16	2.8675 "	5.45751	0.3.4873 "	6.54249
17	6.2893 "	.79860	.15900 "	.20140
18	1.3794 × 10 ⁶	6.13969	.72495 × 10 ⁻⁶	7.86031
19	3.0254 "	.48079	.33953 "	.51921
20	6.6356 "	.82189	.15070 "	.17812

TT a las a m	-	π	and	0-	$\frac{\pi}{a}x$	and	*hoir	locarithme
Values	oft	1 1 ~	and	e	4	and	their	logarithms.

TABLE 45.

EXPONENTIAL FUNCTIONS.

	$\sqrt{\pi}$	• • • •			
Values of	e s z	and $e^{-\epsilon}$	and and	their	logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}x}$	$\log e^{\sqrt{\pi} \frac{\sqrt{\pi}}{4}x}$	$e^{-rac{\sqrt{\pi}}{4}x}$	$\log e^{-\sqrt{\pi_x}}$
1	1.4429	0.19244	0.64203	T.807 56 .61 51 2 .42267 .23023 .03779 Z.84535 .65291 .46047 .26802 .07 558 J.88314
2	2.4260	.38488	.41221	
3	3.7786	.57733	.26465	
4	5.8853	.76977	.16992	
5	9.1666	.96221	.10909	
6	14.277	1.15465	0.070041	
7	22.238	.34709	.044968	
8	34.636	.53953	.028871	
9	53.948	.73198	.018536	
10	84.027	.92442	.011901	
11	130.87	2.11686	0.0076408	
12	203.85	.30930	.0049057	.69070
13	317.50	.50174	.0031496	.49826
14	494.52	.69418	.0020222	.30582
15	770.2.4	.88663	.0012983	.11337
16	1109.7	3.07007	0.00083355	4.92093
17	1868.5	.27151	.00053517	-72849
18	2910.4	.46305	.00034360	-53005
19	4533.1	.65639	.00022060	-31361
20	7000.5	.84883	.00014163	-15117

EXPONENTIAL FUNCTIONS.

Value of e^x and e^{-x} and their logarithms.

æ	e*	log e ^x	e-*	log e-r
1/64	1.0157	0.00679	0.98.450	T.99321
1/32	.0317	.01357	.96923	.98643
1/16	.0045	.02714	.93941	.97286
1/10	.1052	.04343	.90484	.95657
1/9	.1175	.04825	.89484	.95175
1/8	1.1331	0.05429	0.88250	T.94571
1/7	.1536	.06204	.86688	.93796
1/6	.1814	.07238	.84648	.92762
1/5	.2214	.08686	.81873	.91314
1/4	.2840	.10857	.77880	.89143
I/3	1.3956	0.14476	0.71653	ī.85524
I/2	.6487	.21715	.60653	.78285
3/4	2.1170	.32572	.47237	.67428
I	.7183	.43429	.36788	.56571
5/4	3.4903	.54287	.28650	.45713
3/2	4.4817	0.65144	0.22313	1.34856
7/4	5.7546	.76002	.17377	.23998
2	7.3891	.86859	.13535	.13141
9/4	9.4877	.97716	.10540	.02284
5/2	12.1825	1.08574	.08208	2.91426

TABLE 47.

LEAST SQUARES.*

Values of P =
$$\frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^{2}} d(hx)$$

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{h_{x}} e^{-(hx)^{2}} d(hx)$

hæ	0	1	2	3	4	5	6	7	8	9
0.0	.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128	.11246
0.1	.12362	.13476	.14587	.15694	.16799	.17901	.18999	.20094	.21184	.22270
0.2	.22352	.22430	.25502	.26570	.27633	.28690	.29742	.30788	.31828	.32863
0.3	.33891	.34913	.35928	.36936	.37939	.38933	.33921	.40901	.41874	.42839
0.4	.43797	.44747	.45689	.88623	.47548	.48466	.49375	.50275	.51167	.52050
0.5	.5292.4	.53790	.5.4646	·55494	.56332	.57162	-57982	.58792	·59594	.60386
0.6	.61168	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084	.67780
0.7	.68467	.69143	.69810	.70468	.71116	.71754	.72382	.73001	.73610	.74210
0.8	.74800	.75381	.75952	.76514	.77067	.77610	.78144	.78669	.79184	.79691
0.9	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851	.84270
1.0	.84681	.8508.4	.85478	.85865	.86244	.86614	.86977	.87333	.87680	.88020
1.1	.88353	.88679	.88997	.89308	.89612	.89910	.90200	.90484	.90761	.91031
1.2	.91296	.91553	.91805	.92051	.92290	.92524	.92751	.92973	.93190	.93401
1.3	.93666	.93807	.94001	.94191	.94376	.94556	.91731	.94902	.95067	.95229
1.4	.95385	.95538	.95686	.95830	.95970	.96105	.96237	.96365	.96490	.96610
1.5	.96728	.96841	.96952	.97059	.97162	.97263	.97360	.97.455	.97 5.16	.97635
1.6	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98 31 5	.98379
1.7	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864	.98909
1.8	.98952	.98994	.99035	.99074	.99111	.99147	.99182	.99216	.99248	.99279
1.9	.99309	.99338	.99366	.99392	.99418	.99443	.99466	.99489	.9921 1	.99532

* Tables 47-52 are for the most part quoted from Howe's "Formulæ and Methods used in the application of Least Squares."

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

20 7'	0	ı	2	3	4	5	6	7	8	9
	0 .00000 .05378 .10731 .16035 .21268 .26407 .31430 .36317 .41052 .45618 .50000 .54188 .58171 .61942 .65498 .68833 .71949 .74847 .77528 .79999 .82266 .84335 .86216 .87918 .89450	1 .00538 .05914 .11264 .16562 .21787 .26915 .31925 .36798 .41517 .46064 .50428 .54595 .58558 .62308 .65841 .69155 .72249 .75124 .77785 .80235 .82481 .84531 .86394 .88078 .89595	2 .01076 .06451 .11796 .17088 .22304 .27421 .32419 .37277 .41979 .46509 .50853 .55001 .58942 .62671 .66182 .69474 .72546 .75400 .78039 .80469 .82695 .84726 .86570 .88237 .89738	3 .01614 .06987 .12328 .17614 .22821 .27927 .32911 .37755 .42440 .46952 .51277 .55404 .59325 .63032 .66521 .63791 .72841 .75674 .78291 .80700 .82907 .84919 .86745 .88395 .89879	4 .02512 .07523 .12860 .18138 .23336 .28431 .33402 .38231 .42899 .47393 .51699 .55806 .59705 .63391 .66858 .70106 .73134 .75945 .78542 .80930 .83117 .85109 .86917 .88550 .90019	5 .02690 .08059 13391 .18662 .23851 .28934 .3892 .38705 .43357 .47832 .52119 .56205 .60083 .63747 .67193 .70419 .73425 .76214 .78790 .81158 .83324 .85298 .83324 .85298 .87088 .88705 .90157	6 .03228 .08594 .13921 .19185 .24364 .29436 .34380 .39178 .43813 .48270 .52537 .56602 .60460 .64102 .67526 .70729 .73714 .76481 .79036 .81383 .83530 .85486 .87258 .88857 .90293	7 .03766 .09129 .14451 .19707 .24876 .29936 .34866 .39649 .44267 48605 .52952 .56998 .60833 .64554 .67856 .71038 .74000 .76746 .79280 .81607 .83734 .85671 .87425 .89008 .90428	8 .04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44719 .49139 .53366 .57391 .61205 .64804 .68184 .71344 .74285 .77009 .79522 .81828 .83936 .85854 .87591 .89157 .90562	9 .04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570 .53778 .57782 .61575 .65152 .68510 .71648 .74567 .77270 .79761 .82048 .84137 .86036 .87755 .89304 .90694
2.5 2.6 2.7 2.8 2.9 3	.90825 .92051 .93141 .94105 .94954 0	.90954 .92166 .93243 .94195 .95033 1 .96346	.91082 .92280 .93344 .94284 .95111 2	.91208 .92392 .93443 .94371 .95187 3	.91332 .92503 .93541 .94458 .95263 4	.91456 .92613 .93638 .94543 .95338 5	.91578 .92721 .93734 .94627 .95412 6 .98482	.91698 .92828 .93828 .94711 .95484 7	.91817 .92934 .93922 .94793 .95557 8	.91935 .93038 .94014 .94874 .95628 9
45	.95698 .99302 .99926	.99431 •99943	.96910 .99539 .99956	·97397 99627 ·99966	.97817 .99700 .99974	.98176 .99760 .99980	.99808 .99808 .99985	.98743 .99848 .99988	.98962 .99879 .99991	.99147 .99905 .99993

TABLE 49.

LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $e_s = 0.6745$	$\sum_{n=1}^{\infty} \frac{\sum y^2}{n-1}$ for the probable error of a single observation, and other
si	milar equations.

n		1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .2029 .1472 .1211 .1053	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157 .1017	0.3016 .1742 .1349 .1140 .1005	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094 .0974
50 60 70 80 90	0.0964 .0878 .0812 .0759 .0715	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0940 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0778 .0731 .0692	0.0901 .0830 .0773 .0727 .0688	0.0893 .0824 .0768 .0723 .0685	0.0886 .0818 .0763 .0719 .0681

LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_m = 0.6745 \sqrt{\frac{\Sigma y^2}{n(n-1)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20	0.0711 .0346	0.0643 .0329	0.4769 .0587 .0314	0.2754 .0540 .0300	0.1947 .0500 .0287	0.1 508 .0465 .0275	0.1231 .0435 .0265	0.1041 .0409 .0255	0.0901 .0386 .0245	0.0795 .0365 .0237
30 40 50	0.0229 .0171 .0136	0.0221 .0167 .0134	0.0214 .0163 .0131	0.0208 .0159 .0128	0.0201 .0155 .0126	0.0196 .0152 .0124	0.0190 .0148 .0122	0.0185 .0145 .0119	0.0180 .0142 .0117	0.0175 .0139 .0115

LEAST SQUARES.

TABLE 51.

Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_s = 0.8453 \frac{\Sigma_y}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

n		1	2	3	4	5	6	7	8	9
00 10 20	0.0891 .0434	0.0806 .0412	0.5978 .0736 .0393	0.3451 .0677 .0376	0.2440 .0627 .0360	0.1890 .0583 .0345	0.1543 .0546 .0332	0.1304 .0513 .0319	0.1130 .0483 .0307	0.0996 .0457 .0297
30 40 50	0.0287 .0214 .0171	0.0277 .0209 .0167	0.0268 .020.4 .0164	0.0260 .0199 .0161	0.0252 .0194 .0158	0.0245 .0190 .0155	0.0238 .0186 .0152	0.0232 .0182 .0150	0.0225 .0178 .0147	0.0220 .0174 .0145

TABLE 52.

Values of 0.8453
$$\frac{1}{n\sqrt{n-1}}$$

This table gives the average error of the arithmetic mean when the probable error is one.

n		1	2	3	4	5	6	7	8	9
00 10 20	0.0282 .0097	0.0243 .0090	0.4227 .0212 .0084	0.1993 .0188 .0078	0.1220 .0167 .0073	0.0845 .0151 .0069	0.0630 .0136 .0065	0.0493 .0124 .0061	0.0399 .0144 .0058	0.0332 .0105 .0055
30 40 50	0.0052 .0034 .0024	0.0050 .0033 .0023	0.0047 .0031 .0023	0.0045 .0030 .0022	0.0043 .0029 .0022	0.0041 .0028 .0021	0.0040 .0027 .0020	0.0038 .0027 .0020	0.0037 .0026 .0019	0.0035 .0025 .0019

TABLE 53.

CAMMA FUNCTION.*

Value of
$$\log \int_0^\infty e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_0^\infty e^{-x}x^{n-1}dx$ or log $\Gamma(n)$ +10 for values of *n* between 1 and 2. When *n* has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) \equiv n\Gamma(n) \equiv n(n-1) \dots (n-r)\Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99	97497	95001	92512	90030	8755563196395351656494273	85087	82627	80173	77727
1.01	7 5287	728 55	70430	68011	65600		60799	58408	56025	53648
1.02	51 279	48916	46561	44212	41870		37207	34886	32572	30265
1.03	27 964	25671	23384	<u>21104</u>	<u>18831</u>		14305	12052	09806	07567
1.04	0 5334	03108	00889	<u>98677</u>	96471		92080	89895	87716	85544
1.05	9.9 ^{SS} 3379	81220	79068	76922	74783	72651	70525	68.406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47.577	45530	43489
1.07	41469	39428	37407	35392	33384	31382	29387	27.398	25415	23449
1.08	21469	19506	<u>17549</u>	<u>15599</u>	<u>13655</u>	<u>11717</u>	<u>09785</u>	0 <u>7860</u>	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	898 5 6	87100	85250
1.10	9.9783407	81 570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
1.12	47834	461 20	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	1 3094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97.471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44867	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	3 ¹ 747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	<u>09841</u>	<u>08675</u>	07515	<u>06361</u>
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	5272 7	51855	50988	50126	49268	48416	47570	46728
1.28	45 ⁸ 91	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32439	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11540	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9•9499515	99023	9 ⁸ 535	98052	97 57 3	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	9 3044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	80363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	8 5366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	8 2208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	7974 ⁸	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	7536 5	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73 ⁸ 94	73783	73676	93574	73746
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

* Quoted from Carr's "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

CAMMA FUNCTION.

1.459.94726777.25307.25877.25497.25147.24447.24597.24777.24107.24661.477.23977.23977.23977.23977.23977.23977.23977.23977.23977.2373		0	1	2	3	4	5	6	7	8	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>n</i>					т 					9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
	1.48	73097	73175	73258	73345	73436	73531	73630	73734	738.11	73953
	1	7.1008		7.1312							7 5293
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		79426	79667	79912	80161	S0414	80671	80932	81196	81465	81738
					-						
							Ŭ				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		92139	92537	92938	93344	93753	94166	94583	95004	95429	<u>95857</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
											22091 28151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0000		.0.	31767		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.64	35867	36563		37966	38673	39383	40097		41536	
1.67 585_{303} 59166 59913 60723 61736 62353 63174 63998 64826 65656 1.68 66491 67329 68170 69015 69864 70716 71571 72430 73393 74159 1.69 75028 75901 76777 77657 78540 79427 80317 81211 82108 83008 1.70 9.9583912 84820 85731 86645 87536 88484 89409 90337 91268 92203 1.71 93141 94683 95028 95977 96929 97884 98843 998055 00771 01740 1.72 602712 03688 04667 05650 06636 07625 08618 096015 00771 01740 1.73 12622 13632 14645 15661 16681 17704 18730 19760 20793 21830 1.74 22869 23912 24959 26009 27062 28118 29178 30241 31308 32377 1.75 9.9633451 34527 35607 36690 37776 38866 39959 41055 42155 43258 1.76 44394 45473 46586 47702 48821 49944 51070 52200 53331 54407 1.77 55606 50749 57894 59043 60195 61350 62509 03671 04836 600051 1.78 <t< td=""><td></td><td>9.9542989</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		9.9542989									
1.68 66491 67329 68170 69015 69864 70716 71571 72430 73293 74159 1.69 75028 75901 76777 77657 78540 79427 80317 81211 82108 83008 1.70 9.9583912 84820 85731 86645 87536 88484 89409 90337 91268 92223 1.71 93141 94083 95028 95977 96929 97884 98843 99805 00771 01740 1.72 602712 03688 0467 03550 06636 07625 08618 09614 10613 11616 1.73 12622 13632 14645 15661 16681 17704 18730 19760 22702 21830 1.76 44354 45473 46586 47702 48821 49944 51070 52200 53331 54407 1.76 44354 45473 46586 47702 48821 49944 51070 52200 53331 54407 1.77 55066 50749 57894 59043 60195 61350 62509 63671 64336 60605 1.78 67176 68351 69529 70710 71895 73082 74274 75468 76665 77866 1.79 79070 80277 81488 82701 83198 85138 863611 87588 88818 900511 1.80 9.96912									63998		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 5028	75901	70777		78540		80317	81211		83008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.73	12622	13632		15661				19760	20793	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			23912		-				30241	31303	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
1.79 79070 80277 81.488 82701 83198 85138 86361 87588 88818 90051 1.80 9.9691287 92526 93768 95014 96263 97515 98770 $\overline{00029}$ $\overline{01291}$ $\overline{02555}$ 1.81 703823 05095 06369 07646 08927 10211 11498 12788 14082 15378 1.82 16678 17981 19287 20596 21908 23224 24542 25864 27189 28517 1.83 29848 31182 32520 33860 35204 36551 37900 39254 40610 41969 1.84 43331 44697 46065 47437 48812 50190 51571 52955 54342 55733 1.86 71230 72657 74087 75521 76957 78397 79839 81285 82734 84186 1.87 85640 87098 88559 90023 91490 92960 94433 95910 97389 98871 1.88 800356 01844 03335 04830 06327 07827 09331 10837 12346 13859 1.89 15374 16893 32242 33793 35348 36905 38465 40028 41595 43164 44736 1.91 46311 47890 49471 51055 52642 54232 55825 57421 59020 <t< td=""><td>I.77</td><td>55606</td><td>56749</td><td>57894</td><td>59043</td><td>60195</td><td>61350</td><td></td><td>63671</td><td>64836</td><td>66004</td></t<>	I.77	55606	56749	57894	59043	60195	61350		63671	64836	66004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								74274	7 5468	76665	
1.81 703823 05095 06369 07646 08927 10211 11498 12788 14082 15378 1.82 16678 17981 19287 20596 21908 23224 24542 25864 27189 28517 1.83 29848 31182 32520 33860 35204 36551 37900 39254 40610 41969 1.84 43331 44697 46065 47437 48812 50190 51571 52955 54342 55733 1.86 71230 72657 74087 75521 76957 78397 70839 81285 82734 84186 1.87 85640 87098 88559 90023 91490 92960 94433 95910 97380 98871 1.88 800356 01844 03335 04830 06327 07827 09331 10837 12346 13859 1.89 15374 16893 18414 19939 21466 22996 24530 26066 27066 29148 1.90 9.9830693 32242 33793 35348 369055 38465 40028 41595 43164 44736 1.92 62226 63834 65445 67058 68675 70294 71917 73542 75170 76802											
1.82 16678 17981 19287 20596 21908 23224 24542 25864 27189 28517 1.83 29848 31182 32520 33860 35204 36551 37900 39254 40610 41969 1.84 43331 44697 46065 47437 48812 50190 51571 52955 54342 55733 1.85 9.9757126 58522 59922 61325 62730 64140 65551 66966 68384 69805 1.86 71230 72657 7.4087 75521 76957 78397 79839 81285 82734 84186 1.87 85640 87098 88559 90023 91490 92960 94433 95910 97380 98871 1.88 800356 01844 03335 04830 06327 07827 09331 10837 12346 13859 1.89 15374 16893 18414 19939 21466 22996 24530 26066 27006 29148 1.90 9.9830693 32242 33793 35348 369055 38465 40028 41595 43164 44736 1.92 62226 63834 65445 67058 68675 70294 71917 73542 75170 76802											
1.84 43331 44697 46665 47437 48812 50190 51571 52955 54342 55733 1.85 9.9757126 58522 59922 61325 62730 64140 65551 66966 68384 69805 1.86 71230 72657 7.4087 75521 76957 78397 79839 81285 82734 84186 1.87 85640 87098 88559 90023 91490 92960 94433 95910 97380 98871 1.88 800356 01844 03335 04830 06327 07827 09331 10837 12346 13859 1.89 15374 16893 18414 19939 21466 22996 24530 26066 27606 29148 1.90 9.9830693 32242 33793 35348 36905 38465 40028 41595 43164 44736 1.91 46311 47890 49471 51055 52642 54232 55825 57421 59020 60622 1.92 62226 63834 65445 67058 68675 70294 71917 73542 75170 76802	1.82	16678								27189	28517
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							36551				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			58522								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.87	85640	87098		90023	91490	92960		95910	97389	98871
1.909.98306933224233793353483690538465400284159543164447361.91463114789049471510555264254232558255742159020606221.9262226638346544567058686757029471917735427517076802				03335	04830						
1.91 46311 47890 49471 51055 52642 54232 55825 57421 59020 60622 1.92 62226 63834 65445 67058 68675 70294 71917 73542 75170 76802											
1.92 62226 63834 65445 67058 68675 70294 71917 73542 75170 76802		9.9830693	32242			30905					
		62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.93 1.94	78436	80073 96605	81713 98274	83356 99946	8 <u>5002</u> 01621	$\frac{86651}{03299}$	<u>88302</u> 04980	<u>89957</u> 06663	<u>91614</u> 08350	<u>93275</u> 10039
1.95 9.9911732 13427 15125 16826 18530 20237 21947 23659 25375 27093											
1.96 28815 30539 32266 33995 35728 37464 39202 40943 42688 44435	1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97 46185 47937 49693 51451 53213 54977 56744 58513 60286 62062			47937			53213				60286	
1.98 63840 65621 67405 69192 70982 72774 74570 76368 78169 79972 1.99 81779 83588 85401 87216 89034 90854 92678 94504 96333 98165											

ZONAL HARMONICS.*

The values of the first seven zonal harmonics are here given for every degree between $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$.

θ	Zl	Zo	z_3	\mathbf{z}_4	\mathbf{z}_5	\mathbf{z}_6	Z7
					· · · · · · · · · · · · · · · · · · ·		
0°	I.0000	1.0000	1.0000	I.0000	I.0000	1.0000	I.0000
1°	0.9998	0.9995	0.9991	0.998 5	0.9977	0.9967	0.9955
2	•9994	.9982	.9963	.9939	.9909	.9872	.9829
3	•9986	.9959	.9918	.9863	.9795	.9713	.9617
4	•9976	.9927	.9854	.97 58	.9638	.9495	.9329
5	.9962	.9886	·9773	.9623	•9437	.9216	.8961
6°	·9945	.9836	.9674	.9459	.9194	.8881	.8522
7	·9925	•9777	•9557	.9267	.8911	.8476	.7986
8	·9903	.9709	•9423	.9048	.8589	.8053	.7448
9	·9877	.9633	•9273	.8803	.8232	.7571	.6831
10	·9848	.9548	•9106	.8532	.7840	.7045	.6164
11°	.9816	.9454	.8923	.8238	.7417	.6483	.5461
12	.9781	.9352	.8724	.7920	.6966	.5892	.4732
13	.9744	.9241	.8511	.7582	.6489	.5273	.3940
14	.9703	.9122	.8283	.7224	.5990	.4635	.3219
15	.9659	.8995	.8042	.6847	.5471	.3982	.2454
16 °	.961 <u>3</u>	.8860	.77 ⁸ 7	.6454	•4937	.3322	.1699
17	.9563	.8718	.7519	.6046	•4391	.2660	.0961
18	.9511	.8568	.7240	.5624	•3836	.2002	.0289
19	.9455	.8410	.6950	.5192	•3276	.1347	—.0443
20	•9397	.8245	.6649	.4750	•2715	.0719	—.1072
21 °	.9336	.8074	.6338	.4300	.2156	.0107	1662
22	.9272	.7895	.6019	.3845	.1602	0481	2201
23	.9205	.7710	.5692	.3386	.1057	1038	2681
24	.9135	.7518	.5357	.2926	.0525	1559	3095
25	.9063	.7321	.5016	.2465	.0009	2053	3463
26 °	.8988	.7117	.4670	.2007		2478	3717
27	.8910	.6908	.4319	.1 553		2869	3921
28	.8829	.6694	.3964	.1 105		3211	4052
29	.8746	.6474	.3607	.0665		3503	4114
30	.8660	.6250	.3248	.0234		3740	4101
31°	.8572	.6021	.2887	0185	2595	3924	
32	.8480	.5788	.2527	0591	2923	4052	
33	.8387	.55551	.2167	0982	3216	4126	
34	.8290	.5310	.1809	1357	3473	4148	
35	.8192	.5065	.1454	1714	3691	4115	
36 °	.8090	.4818	.1102	2052	38714011411241744197	4031	2738
37	.7986	.4567	.0755	2370		3898	2343
38	.7880	.4314	.0413	2666		3719	1918
39	.7771	.4059	.0077	2940		3497	1469
40	.7660	.3802	—.0252	3190		3234	1003
41° 42 43 44 45	-7547 -7431 -7314 -7193 -7071	·3544 .3284 .3023 .2762 .2500		3416 3616 3791 3940 4062		2938 2611 2255 1878 1485	0534 0065 .0395 .0846 .1270

* Calculated by Prof. Perry (Phil. Mag. Dec. 1891). See also A. Gray, "Absolute Measurements in Electricity and Magnetism," vol. ii., part 2.

ZONAL HARMONICS.

Zı	Ze	\mathbf{z}_3	Z.	Z5	\mathbf{z}_6	Z 7
0.6947 .6820 .6691 .6561 .6428	0.2238 .1077 .1716 .1456 .1198	2040 2300 2547 2781 3002		3568 3350 3105 2836 2545	1079 	0.1666 .2054 .2349 .2627 .2854
.6293	.0941	3209	4239	2235	.0954	.3031
.6157	.0686	3401	4178	1910	.1326	.3153
.6018	.0433	3578	4093	1571	.1677	.3221
.5 ⁸ 78	.0182	3740	3984	1223	.2002	.3234
.5736	—.0065	3886	3852	0868	.2297	.3191
•5592	0310	4016	3698	0510	.2559	.3095
•5446	0551	4131	3524	0150	.2787	.2949
•5299	0788	4229	3331	.0206	.2976	.2752
•5150	1021	4310	3119	.0557	.3125	.2511
•5000	1250	4375	2891	.0898	.3232	.2231
.4848	1474	4423	2647	.1229	.3298	.1916
.4695	1694	4455	2390	.1545	.3321	.1571
.4540	1908	4471	2121	.1844	.3302	.1203
.4384	2117	4470	1841	.2123	.3240	.0818
.4226	2321	4452	1552	.2381	.3138	.0422
.4067	2518	4419	1256	.261 5	.2996	`.0021
.3907	2710	4370	0955	.2824	.2819	0375
.3746	2896	4305	0650	.300 5	.2605	0763
.3584	3074	4225	0344	.31 58	.2361	1135
.3420	3425	4130	.0038	.328 1	.2089	1485
.3256	3410	4021	.0267	·3373	.1786	1811
.3090	3568	3898	.0568	·3434	.1472	2099
.2924	3718	3761	.0864	·3463	.1144	2347
.2756	3860	3611	.1153	·3461	.0795	2559
.2588	3995	3449	.1434	·3427	.0431	2730
.2419	4112	3275	.1705	.3362	.0076	2848
.2250	4241	3090	.1964	.3267	0284	2919
.2079	4352	2894	.2211	.3143	0644	2943
.1908	4454	2688	.2443	.2990	0989	2913
.1736	4548	2474	.2659	.2810	1321	2835
.1 564	$\begin{array}{c}4633 \\4709 \\4777 \\4836 \\4886 \end{array}$	2251	.2859	.2606	1635	2709
.1392		2020	.3040	.2378	1926	2536
.1219		1783	.3203	.2129	2193	2321
.1045		1539	.3345	.1861	2431	2067
.0872		1291	.3468	.1577	2638	1779
.0698 .0523 .0349 .0175 .0000	$\begin{array}{c}4927 \\4959 \\4982 \\4995 \\5000 \end{array}$	1038 0781 0522 0262 0000	.3569 .3648 .3704 .3739 .3750	.1278 .0969 .0651 .0327 .0000	2811 2947 3045 3105 3125	
	$\begin{array}{c} .6820\\ .6691\\ .6561\\ .6428\\ .6293\\ .6157\\ .6018\\ .5878\\ .5736\\ .5592\\ .5446\\ .5299\\ .5150\\ .5000\\ .4848\\ .4695\\ .4540\\ .4384\\ .4226\\ .4067\\ .3907\\ .3746\\ .3584\\ .4226\\ .4067\\ .3907\\ .3746\\ .3584\\ .4226\\ .4067\\ .3907\\ .3746\\ .3584\\ .4226\\ .4067\\ .3907\\ .3746\\ .3584\\ .4226\\ .2588\\ .2419\\ .2256\\ .2079\\ .1908\\ .1736\\ .1564\\ .1392\\ .1219\\ .1045\\ .0872\\ .0698\\ .0523\\ .0349\\ .0175\\ \end{array}$	0.6947 0.2238 $.6820$ $.1077$ $.6691$ $.1716$ $.6561$ $.1436$ $.6428$ $.1198$ $.6293$ $.0941$ $.6157$ $.0686$ $.6018$ $.0433$ $.5878$ $.0182$ $.5736$ 0065 $.5592$ 0310 $.5446$ 0551 $.5299$ 0788 $.5150$ 1021 $.5000$ 1250 $.4848$ 1474 $.4695$ 1694 $.4384$ 2117 $.4226$ 22518 $.3907$ 2518 $.3907$ 2710 $.3746$ 2896 $.3584$ 3074 $.3420$ 3425 $.3256$ 3410 $.3090$ 3568 $.2924$ 3718 $.2756$ 3860 $.2588$ 3995 $.2419$ 4112 $.2250$ 4241 $.2079$ 4352 $.1908$ 4548 $.1564$ 4633 $.1392$ 4709 $.1219$ 4777 $.1045$ 4836 $.0872$ 4886 $.0698$ 4927 $.0223$ 4959 $.0175$ 4995	0.6947 0.2238 2040 0.691 $.1716$ 2517 0.651 $.1456$ 2781 0.6293 $.0941$ 3209 0.6157 $.0686$ 3401 0.6157 $.0686$ 3401 0.6157 $.0686$ 3401 0.6157 $.0686$ 3401 0.618 $.0433$ 3578 0.5736 00655 3886 0.5592 0010 4016 0.551 4131 4229 0.550 1250 4375 $.4548$ 1474 4423 0.4055 1694 4423 0.4055 1694 4470 0.4548 1474 4423 0.4607 2518 44170 0.4536 3761 4470 0.3746 2896 4305 0.3746 2896 4305 <	-1 -22 -2040 -4158 0.6047 0.2238 2040 4158 0.6601 1.716 2517 4270 0.6501 1.1456 2781 4239 0.6128 1.198 3002 4275 0.6293 $.0941$ 3209 4275 0.6157 $.0686$ 3401 4178 0.6157 $.0686$ 3740 3984 0.5736 0055 3886 3652 0.5592 0310 4016 36984 0.5736 00551 4131 3524 0.592 0788 4229 3331 0.5750 1021 4310 3119 0.592 1250 4477 2647 0.4848 1477 44723 2647 0.4549 1250 4375 2891 0.4548 1477 1257	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1 -2 -2 -4158 3568 1079 -6691 -1776 300 4252 3356 0645 -6691 1716 2517 4270 3105 0645 -6501 1.1456 -2.517 4275 3253 -0053 -6293 -0941 -3209 4239 2235 -0954 -6157 -6686 3740 3984 1277 1371 1.177 -55736 -0655 3984 1223 $.2002$ $.2787$ -55736 -0055 3984 1223 $.2002$ $.2787$ $.5592$ -0051 4131 3524 -0150 $.2787$ $.5592$ -0051 4135 2390 $.1545$ $.3232$ $.5446$ 1474 4423 2647 $.1229$ $.3232$ $.5592$ 0350 4898 $.3232$ $.32390$

SMITHSONIAN TABLES.

,

MUTUAL INDUCTANCE.*

Values of log $\frac{M}{4\pi \sqrt{\alpha \alpha'}}$.

Table of values of log $\frac{M}{4\pi \sqrt{aa'}}$ for facilitating the calculation of the mutual inductance M of two coaxial circles of radii *a*, *a'*, at distance apart *b*. The table is calculated for intervals of 6' in the value of $\cos^{-1}\left\{\frac{(a-a')^2+b^2}{(a-a')^2+b^2}\right\}^{\frac{1}{2}}$ from 60° to 90°.

1	0′	6′	12′	18′	24′	30′	36′	42′	48′	54′
60°	T.4994783	5022651	5050505	50783.15	5106173	5133080	5161701	5189582	5217361	5215128
61	5272883	5300628	5328361	5356081	5383796	5411408	5439190	5466872	5494545	5522209
62	5549864	5577510	5605147	5632776	5660398	5688011	5715618	5743217	5770809	5798394
63	5825973	5853546	5881113	5908675	5936231	5963782	5991 322	6018871	6046408	6073942
64	6101472	6128998	61 56 522	6184042	6211560	6239076	6266589	6294101	6321612	6349121
65°	T.6376629	6404137	6131615	6459153	6486660	6514169	6541678	6569189	6596701	6624215
66	6651732	6679250	6706772	6734296	6761824	6789356	6816891	6844431	6871976	6899526
67	6927081	6954642	6982209	7009782	7037362	7064949	7092544	7120146	7147756	7175375
68	7203003	7230640	7258286	7285942	7313609	7341287	7368975	7396675	7424387	7452111
69	7479848	7 507 597	7535361	7 5631 38	7 590929	7618735	7646556	7674392	7702245	7730114
70 °	T.7758000	7785903	7813823	7841762	7869720	7897696	7925692	7953709	7981745	8009803
71							8206836			
72	8319967	\$348316	8376693	8.405099	8433534	8461998	8490493	8519018	8547575	8576164
73							8777237			
74	8892943	8921969	8951036	8980144	9009295	9038489	9067728	9097012	9126341	9155717
75 °	1.9185141	9214613	9244135	927 3707	9303330	9333005	9362733	9392515	9422352	9452246
76	9482196	9512205	9542272	9572400	9602590	9632841	9663157	9693537	9723983	97 54497
77	9785079									
78	0.0094959									
79	041 327 3	0445633	0478098	0510668	0543347	0576136	0609037	0642054	0675187	0708441
80°	0.0741816	0775316	0808944	0842702	0876592	0910619	09.44784	0979091	1013542	1048142
Sı	1082893	1117799	1152863	1188089	1223481	1259043	1294778	1 3 3 0 6 9 1	1366786	1403067
82							1662658			
83							2053502			
84	2217823	2259728	2301983	2344600	2387591	2430970	2474748	2518940	2563561	2008026
	0.26541 52									
86	31 39 097	3191092	3243843	3297387	3351762	3407012	3463184	3520327	3578495	3637749
87							4089234			
88							4913595			
89	5360007	5490969	5632886	5788406	5961 320	61 57 370	6385907	0603883	7027765	7580941

* Quoted from Gray's "Absolute Measurements in Electricity and Magnetism," vol. ii., p. 852.

SMITHSONIAN TABLES.

42

ELLIPTIC INTEGRALS.

Values of $\int_0^{\pi} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}} d\phi.$

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(i - \sin^2 \theta \sin^2 \phi)^{\frac{1}{2}} d\phi$ for diff.rent values of the modulus corresponding to each degree of θ between 0 and ϕ .

θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^2}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi})^{\frac{1}{2}}$	$\int_0^{\bullet \frac{\pi}{2}} (1-s)$	in²0sin²¢) ¹ d¢	θ	$\int_0^{*\pi} \frac{1}{(1-s)}$	$d\phi$ $\sin^2\theta\sin^2\phi)^{\frac{3}{2}}$	$\int_0^{\pi} (1-s)$	in²θsin²φ) ¹ dφ
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0°	1.5708	0.196121	1.5708	0.196121	45°	1.8541	0.268133	1.3506	0.130527
1	5709	196148	5707	196093	6	8691	271632	3418	127688
2	5713	196259	5703	195983	7	8848	275265	3329	124798
3	5719	196425	5697	195817	8	9011	279005	3238	121822
4	5727	196646	5689	195595	9	9180	282849	3147	118827
5°	1.5738	0.196949	1.5678	0.195291	50°	1.9356	0.286816	1.3055	0.115777
6	5751	197308	5665	194930	1	9539	290902	2903	112705
7	5767	197749	5649	194487	2	9729	295105	2870	109578
8	5785	197245	5632	194014	3	9927	299442	2776	106395
9	580 5	198794	5611	193431	4	2.0133	303908	2081	103153
10°	1.5828	0.198934	1.5589	0.192818	55°	2.0347	0.308500	1.2587	0.099922
I	5854	200139	5564	192121	6	0571	313255	2492	096632
2	5882	200905	5537	191367	7	0804	318147	2397	093317
3	5913	201752	5507	190528	8	1047	323190	2301	089940
4	5946	202652	5476	189659	9	1300	328380	2206	086573
15°	1.5981	0.203604	1.5442	0.188703	60°	2.1565	0.333749	1.2111	0.083180
6	6020	204662	5405	187662	1	1842	339292	2015	079724
7	6061	205773	5367	186589	2	2132	345021	1020	076276
8	6105	206961	5326	185429	3	2435	350926	1826	072838
9	6151	208199	5283	184209	4	2754	357058	1732	069372
20°	1.6200	0.209515	1.5238	0.182928	65°	2.3088	0.363386	1.1638	0.065878
1	6252	210907	5191	181586	6	3439	369939	1545	062394
2	6307	212374	5141	180155	7	3809	376741	1453	058919
3	6365	213916	5090	178689	8	4198	383779	1302	055455
4	6426	215532	5037	177161	9	4610	391112	1272	052001
25°	1.6490	0.217221	1.4981	0.175541	70 °	2.5046	0.398738	1.1184	0.048597
6	6557	218982	4924	173885	I	5507	406659	1096	045166
7	6627	220788	4864	172136	2	5998	414940	1011	041827
8	6701	222742	4803	170350	3	6521	423590	0927	038501
9	6777	224714	4740	168497	4	7081	432065	0844	035189
30°	1.6858	0.226806	1.4675	0.166578	75°	2.7681	0.442182	1.0764	0.031974
1	6941	228939	4608	164591	6	8327	452201	0686	028815
2	7028	231164	4539	162534	7	9026	462787	0611	025756
3	7119	233478	4469	160438	8	9786	474056	0538	022758
4	7214	235882	4397	158272	9	3.0617	485963	0468	019864
35°	1.7312	0.238347	1.4323	0.15603.4	80°	3.1534	0.498779	1.0401	0.017075
6	7415	240923	4248	153754	1	2553	512591	0338	014436
7	7522	243584	4171	151400	2	3699	527617	0278	011909
8	7633	246326	4092	148973	3	5004	544118	0223	009578
9	7748	249149	4013	146531	4	6519	562519	0172	007406
40°	1.7868	0.252076	1.3931	0.143982	85°	3.8317	0.583391	1.0127	0.005481
I	7992	255079	3849	141418	6	4.0528	607755	0086	003719
2	8122	258206	3765	138776	7	3387	637360	0053	002296
3	8256	261406	3680	136086	8	7427	677026	0026	001128
4	8396	264723	3594	133347	9	5.4349	735192	0008	000347
45 °	1.8541	0.268133	1.3506	0.130527	90°	0	8	1.0000	

BRITISH UNITS.

Cross sections and weights of wires.

This table gives the cross section and weights in British units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide section and weights by 100. For ten times the diameter multiply by 100, and so on.

-	Area of	Coppe	r — Densit	y 8.90.	Iron –	– Density 7	7.80.	Brass	— Density	8.56.
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
10	78.54	.000303	4.48150	3300.	.0002656	4.42420	3765.	.0002915	4.46458	3431.
11	95.03	0367	.56429	2727.	03214	.50697	3112.	03527	54735	2836.
12	113.10	0436	.63986	2291.	03825	.58257	2615.	04197	62295	2383.
13	132.73	0512	.70939	1953.	04488	.65208	2228.	04926	69246	2030.
14	153.94	0594	.77376	1683.	05206	.71646	1921.	05713	75684	1750.
15	176.71	.000682	4.83368	1467.	.0005976	4.77637	1674.	.0006558	4.81675	1 52 5.
16	201.06	0776	.88974	1289.	06799	.83244	1471.	07461	.87282	1 340.
17	226.98	0876	.94240	1142.	07675	.88510	1303.	08423	.92548	1 187.
18	254.47	0982	.99205	1018.	08605	.93475	1162.	09443	.97513	1 0 59.
19	283.53	1094	3.03902	914.	09588	.98171	1043.	.0010522	3.02209	9 50.
20	314.16	.001212	3.08357	825.1	.001062	<u>3</u> .02626	941.4	.001166	3.06664	857.7
21	346.36	1336	.12594	748.3	1171	.06864	853.8	1285	.10902	778.0
22	380.13	1467	.16634	681.8	1286	.10904	777.8	1411	.14942	708.9
23	415.48	1603	.20496	623.8	1405	.14766	711.7	1542	.1880.4	648.6
24	452.39	1746	.24192	572.9	1530	.18463	653.7	1679	.22500	5 95.7
25	490.87	.001894	3.27738	528.0	.001660	3.22008	602.4	.001822	3.26046	549.0
26	530.93	2046	.31146	488.1	1795	.25415	557.0	1970	.29453	507.5
27	572.56	2209	.3.1423	452.6	1936	.28693	516.5	2125	.32731	470.6
28	615.75	2376	.37583	420.9	2082	.31852	480.3	2285	.35890	437.6
29	660.52	2549	.40630	392.4	2234	.34900	447.7	2451	.38938	408.0
30	706.82	.002727	3.4357 5	366.7	.002390	3.37845	418.4	.002623	3.41882	381.2
31	754.77	2912	.46424	343.4	2552	.40693	391.8	2801	.44731	357.0
32	80.4.25	3103	.49181	322.2	2720	.43450	367.7	2985	.47488	335.1
33	855.30	3300	.51854	303.0	2892	.46123	345.8	3174	.50161	315.1
34	907.92	3503	.54446	285.4	3070	.48716	325.7	3369	.52754	296.8
35	962.11	.003712	3.56964	269.4	.003253	3.51233	307.4	.003570	3.55271	280.1
36	1017.88	4927	.59412	254.6	3442	.53681	290.5	3777	.57719	264.7
37	1075.21	4149	.61791	241.0	3636	.56061	275.0	3990	.60098	250.6
38	1134.11	4376	.64108	228.5	3844	.58476	260.2	4218	.62514	237.1
39	1194.59	4609	.66364	216.9	4040	.60633	247.6	4433	.64671	225.6
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	.004849 5094 5346 5603 5867	.70708 .72801	206.2 196.3 187.1 178.5 170.4	.004249 4465 4685 4911 5142	3.62833 .64977 .67070 .69114 .71111	235.3 224.0 213.5 203.6 194.5	.004664 4900 5141 5389 5643	3.66871 .69015 .71108 .73152 .75149	214.4 204.1 194.5 185.6 177.2
45	1 590.43	.006137	3.78793	162.9	.005378	3.73063	185.9	.005902	3.77101	169.4
46	1661.90	6412	.80703	155.9	5620	.74972	177.9	6167	.79010	162.1
47	17 34.94	6694	.82569	149.4	5867	.76840	170.5	6438	.80878	155.3
48	1809.56	6982	.84399	143.2	6119	.78669	163.4	6715	.82706	148.9
49	1885.74	7276	.86289	137.4	6377	.80459	156.8	6998	.84497	142.9
50	1963.50	.007 576	.93005	132.0	.006640	3.82214	1 50.6	.007287	3.86252	137.2
51	2042.82	7882		126.9	6908	.83934	144.8	7581	.87972	131.9
52	2123.72	8194		122.0	7181	.85621	1 39.2	7881	.89659	126.9
53	2206.18	8512		117.5	7460	.87275	1 34.0	8187	.91313	122.1
54	2290.22	8837		113.2	7744	.88899	1 29.1	8499	.92937	117.7
55	2375.83	.009167	3.96223	109.1	.008034	3.9 °493	124.5	.008817	3.94531	113.4

BRITISH UNITS.

Cross sections and weights of wires.

'n.	Area of cross	Coppe	r — Densit	y 8.90.	Iron -	– Density	7.80.	Brass -	– Density	8.56.
Diam, i Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound,
55	237 5.83	.009167	3.96223	109.1	.008034	3.90493	124.5	.008817	3.94531	113.4
56	2463.01	09504	.97789	105.2	08329	.92058	120.1	09140	.96096	109.4
57	2551.76	09846	.99325	101.6	08629	.93595	115.9	09470	.97633	105.6
58	2642.08	10195	2.00837	98.1	08934	.95106	111.9	09805	.99144	102.0
59	2733.97	10549	.02320	94.8	09245	.96591	108.2	10146	2.00629	98.6
60	2827.43	.01091	2.03782	91.66	.00956	3.98050	104.59	.01049	2.02088	95.30
61	2922.47	1128	.05216	88.68	0988	.99486	101.19	1085	.03524	92.21
62	3019.07	1165	.06628	85.84	1021	2.00898	97.95	1120	.04936	89.25
63	3117.25	1203	.08019	83.14	1054	.02288	94.87	1157	.06326	86.45
64	3216.99	1241	.09386	80.56	1088	.03656	91.83	1194	.07694	83.77
65	3318.31	.01280	2.10732	78.11	.01122	2.05003	89.12	.01231	2.09041	81.21
66	3421.19	1320	.12061	75.76	1157	.06329	86.44	1270	.10367	78.76
67	3525.65	1360	.13367	73.51	1192	.07635	83.88	1308	.11673	76.43
68	3631.68	1401	.14655	71.36	1228	.08922	81.42	1348	.12960	74.20
69	3739.28	1443	.15924	69.30	1264	.10190	79.09	1388	.14228	72.06
70	3848.45	.01485	2.17174	67.34	.01302	2.11451	76.82	.01429	2.15489	70.00
71	3959.19	1528	.18404	65.46	1339	.12672	74.69	1469	.16710	68.06
72	4071.50	1571	.19618	63.65	1377	.13887	72.63	1511	.17925	66.19
73	4185.39	1615	.20817	61.92	1415	.15085	70.66	1553	.19123	64.38
74	4300.84	1660	.22000	60.26	1454	.16267	68.76	1596	.20304	62.66
75	4417.86	.01705	2.23165	58.66	.01494	2.17432	66.95	.01639	2.21460	61.01
76	4536.46	1751	.24317	57.13	1534	.18583	65.19	1684	.22621	59.40
77	4656.63	1797	.25453	55.65	1575	.19718	63.50	1728	.23756	57.87
78	4778 36	1844	.26574	54.23	1616	.20839	61.89	1773	.24877	56.39
79	4901.67	1892	.27681	52.87	1658	.21946	60.33	1819	.25974	54.99
80	5026.55	.01939	2.28769	51.56	.01700	2.23038	58.83	.01865	2.27076	53.61
81	5153.00	1988	.29848	50.29	1743	.24117	57.39	1912	.28155	52.29
82	5281.02	2038	.30914	49.07	1786	.25183	56.00	1960	.29221	51.03
83	5410.61	2088	.31966	47.90	1830	.26236	54.66	2008	.30274	49.80
84	5541.77	2138	.33006	46.77	1874	.27276	53.36	2057	.31314	48.63
85	5674.50	.02189	2.34034	45.67	.01919	2.28304	52.11	.02106	2.32342	47·49
S6	5808.80	2241	.35050	44.62	1964	.29320	50.91	2156	.33358	46·39
S7	5944.68	2294	.36054	43.60	2010	.30324	49.75	2206	.34362	45·33
S8	6082.12	2347	.37047	42.61	2057	.31317	48.62	2257	.35355	41·30
S9	6221.14	2400	.38028	41.66	2104	.32298	47.54	2309	.36336	43·31
90	6361.73	.02455	2.38999	40.74	.02151	2.33269	46.49	.02360	2.37297	42.37
91	6503.88	2509	.39958	39.85	2199	.34228	45.47	2414	.38266	41.43
92	6647.61	2565	.40908	38.99	2248	.35178	44.49	2467	.39216	40.54
93	6792.91	2621	.41847	38.15	2297	.36116	43.54	2521	.40154	39.67
94	6939.78	2678	.42775	37.35	2347	.37046	42.61	2575	.41084	38.83
95	7088.22	.02735	2.43694	36.56	.02397	2.37965	41.72	.02630	2.42003	38.02
96	7238.23	2793	.44604	35.81	2448	.38874	40.86	2686	.42912	37.37
97	7389.81	2851	.45404	35.07	2499	.39775	40.02	2742	.43812	36.45
98	7542.96	2910	.46395	34.36	2551	.40665	39.20	2799	.44703	35.72
99	7697.69	2970	.47277	33.67	2603	.41547	38.42	2857	.45585	35.01
100	7853.98	.03030	2.48150	33.00	.02656	2.42420	37.65	.02915	2.46458	34.31

METRIC UNITS.

Cross sections and weights of wires.

This table gives the cross section and the weight in metric units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

	ou- a ctn.	S	Coppe	r — Density	y 8.90.	Iron	— Density	7.80.	Brass	s — Density	8.56.
Distance in the	Dram. in thou- sandths of a cm.	Area of cross section.	Grammes per Mctre.	Log.	Metres per Gramme.	Grammes per Metre,	Log.	Metres Per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.
	10	78.54	0.06990	2.84448	14.306	0.06126	2.78718	16.324	0.06723	2.82756	14.874
	11	95.03	.08458	.92725	11.823	.07412	.86996	13.492	.08135	.91034	12.293
	12	113.10	.10065	1.00285	9.935	.08822	.94556	11.335	.09681	.98594	10.330
	13	132.73	.11813	.07236	8.465	.10353	1.01506	9.659	.11362	1.05544	8.801
	14	153.94	.13701	.13674	7.299	.12008	.07945	8.328	.13177	.11983	7.589
	15	176.71	0.1573	ī.19665	6.358	0.1378	ī.13936	7.255	0.1513	ī.17974	6.611
	16	201.06	.1789	.25272	5.588	.1568	.19542	6.376	.1721	.23580	5.810
	17	226.98	.2020	.30538	4.951	.1770	.24808	5.648	.1943	.28846	5.147
	18	254.47	.2265	.35503	4.415	.1985	.29773	5.038	.2178	.33811	4.591
	19	283.53	.2523	.40199	3.963	.2212	.34469	4.522	.2427	.38507	4.120
	20	314.16	0.2796	1.44654	3·577	0.2450	ī.38925	4.081	0.2689	1.42963	3.719
	21	346.36	.3083	.48892	.244	.2702	.43162	3.701	.2965	.47200	.373
	22	380.13	.3383	.52932	2.956	.2965	.47203	.373	.3254	.51241	.073
	23	415.48	.3698	.56794	.704	.3241	.51064	.086	.3557	.55103	2.812
	24	452.39	.4026	.60490	.484	.3529	.54761	2.834	.3872	.5 ⁸ 799	.582
	25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	0.4369 .4725 .5096 .5480 .5879	1.64036 .67443 .70721 .73880 .76928	2.289 .116 1.962 .825 .701	0.3829 .4141 .4466 .4803 .5152	1.58306 .61713 .64992 .68150 .71198	2.612 .415 .239 .082 1.941	0.4202 -4545 .4901 .5271 .5654	ī.62344 .65751 .69030 .72188 .75236	2.380 .200 .040 1.897 .769
	30	706.86	0.6291	ī.79872	1.590	0.5514	ī.74143	1.814	0.6051	T.78181	1.653
	31	754.77	.6717	.82721	.489	.5887	.76991	.699	.6461	.81029	.548
	32	804.25	.7158	.85478	.397	.6273	.79749	.594	.6884	.83787	.453
	33	855.30	.7612	.88151	.314	.6671	.82421	.499	.7321	.86459	.366
	34	907.92	.8081	.90744	.238	.7082	.85014	.412	.7772	.89052	.287
	35	962.11	0.856	ī.93261	1.168	0.7504	ī.87531	1.333	0.8236	1.91570	1.214
	36	1017.88	.906	.95709	.104	•7939	.89979	.260	.8713	.94017	.148
	37	107 5.21	.957	.98088	.045	•8387	.92359	.192	.9204	.96397	.087
	38	1134.11	1.012	0.00504	0.988	•8866	.94775	.128	.9730	.98813	.028
	39	1194.59	.063	.02661	.941	•9318	.96931	.073	1.0230	0.00969	0.978
	40	1256.64	1.118	0.0.4861	0.8941	0.980	ī.99131	1.0200	1.076	0.03169	0.9296
	41	1320.25	.175	.07005	.8511	1.030	0.01275	0.9711	.130	.05313	.8849
	42	1385.44	.233	.09098	.8110	.081	.03368	.9254	.186	.07406	.8432
	43	1452.20	.292	.11142	.7738	.133	.05412	.8828	.243	.09450	.8044
	44	1520.53	.353	.13139	.7389	.186	.07409	.8432	.302	.11447	.7683
	45	1 590.43	1.415	0.15091	0.7065	1.241	0.09361	0.8061	1.361	0.13399	0.7 345
	46	1661.90	•479	.17000	.6761	.296	.11270	.7714	.423	.15308	.7029
	47	17 34.94	•544	.18868	.6476	.353	.13138	.7389	.485	.17176	.67 34
	48	1809.56	.611	.20696	.6209	.411	.14967	.7085	.549	.19005	.6456
	49	1885.74	.678	.22487	.5958	.471	.16758	.6799	.614	.20796	.6195
	50	1963.50	1.7.48	0.24242	0.5722	1.532	0.18513	0.6530	1.681	0.22551	0.5950
	51	2042.82	.818	.25962	.5500	.593	.20232	.6276	•753	.24371	.5705
	52	2123.72	.890	.27649	.5291	.657	.21919	.6037	.818	.25957	.5501
	53	2206.18	.964	.29303	.5093	.721	.23574	.5811	.888	.27612	.5295
	54	2290.22	2.038	.30927	.4906	.786	.25197	.5598	•960	.29235	.5101
L	55	2375.83	2.114	0.32521	0.4729	1.853	0.26791	0.5396	2.034	0.30829	0.4917

METRIC UNITS.

Cross sections and weights of wires.

ch.		Com	r — Density	1 8 00	Iron	— Density	a 80	Brass	— Density	8 =6
thou- of a cm	cross	Coppe	r — Density	/ 8.90.		- Density			- Density	0.50.
Diam. in sandths o	Area of cr section.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre,	Log.	Metres per Gramme.
55	2375.83	2.114	0.32521	.4729	1.853	0.26791	.5396	2.034	0.30829	.4917
56	2463.01	.192	.34086	.4562	.921	.28356	.5205	.108	.32394	.4743
57	2551.76	.271	.35623	.4403	.990	.29893	.5024	.184	.33931	.4578
58	2642.08	.351	.37134	.4253	2.061	.31404	.4852	.262	.35442	.4422
59	2733.97	.433	.38618	.4112	.132	.32889	.4689	.340	.36927	.4273
60	2827.43	2.516	0.40078	·3974	2.205	0.34349	.4534	2.420	0.38387	.4132
61	2922.47	.601	.41514	·3845	.280	.35784	.4387	.502	.39823	•3997
62	3019.07	.687	.42926	·3722	.355	.37196	.4246	.584	.41235	•3869
63	3117.25	.774	.44316	·3604	.431	.38587	.4113	.668	.42625	•3748
64	3216.99	.863	.45684	·3493	.509	.39954	.3985	.760	.44092	•3623
65	3318.31	2.953	0.47031	.3386	2.588	0.41301	•3864	2.840	0.45339	.3521
66	3421.19	3 .045	.48357	.3284	.669	.42627	•3747	.929	-46665	.3415
67	3525.65	.138	.49663	.3187	.750	.43933	•3636	3.018	-47971	.3313
68	3631.68	.232	.50950	.3094	.833	.45220	•3530	.109	-49258	.3217
69	3739.28	.328	.52218	.3005	.917	.46488	•3429	.201	-50526	.3124
70	3848.45	3.426	0.53479	.2919	3.003	0.47749	•3330	3.295	0.51787	.3035
71	3959.19	.524	.54700	.2838	.088	.48970	•3238	.389	.53008	.2951
72	4071.50	.624	.55915	.2759	.176	.50185	•3149	.485	.54223	.2869
73	4185.39	.725	.57113	.2685	.265	.51383	•3063	:583	.55421	.2791
74	4300.84	.828	.5 ⁸² 94	.2612	.355	.52565	•2981	.682	.56603	.2716
75	4417.86	3.932	0.59460	.2543	3.446	0.53731	.2902	3.782	0.57769	.2644
76	4536.46	4.037	.60611	.2477	.538	.54881	.2826	.883	.58919	.2575
77	4656.63	.144	.61746	.2413	.632	.56017	.2753	.986	.60056	.2509
78	4778.36	.253	.62867	.2351	.727	.57137	.2683	4.090	.61175	.2445
79	4901.67	.362	.63974	.2292	.823	.5 ⁸ 244	.2615	.177	.62283	.2394
80	5026.55	4-474	0.65066	.2235	3.921	0.59336	.2550	4.303	0.63375	.2324
81	51 53.00	.586	.66145	.2180	4.019	.60415	.2488	.411	.64454	.2267
82	528 1.02	.700	.67211	.2128	.119	.61481	.2428	.521	.65519	.2212
83	54 10.61	.815	.68264	.2077	.220	.62534	.2369	.631	.66572	.2159
84	554 1.77	.932	.69304	.2027	-323	.63574	.2313	.744	.67612	.2108
85	5674.50	5.050	0.70332	.1980	4.426	0.64602	.2259	4.857	0.68640	.2059
S6	5808.80	.170	.71348	.1934	.531	.65618	.2207	.972	.69656	.2011
S7	5944.68	.291	.72352	.1890	.637	.66622	.2157	5.089	.70660	.1965
S8	6082.12	.413	.73345	.1847	.744	.67615	.2108	.206	.71653	.1921
89	6221.14	.537	.74326	.1806	.852	.68596	.2061	.325	.72634	.1878
90	6361.73	5.662	0.75297	.1766	·4.962	0.69567	.2015	5.446	0.73605	.1836
91	6503.88	.788	.76256	.1728	5.073	.70527	.1971	.567	.74565	.1796
92	6647.61	.916	.77206	.1690	.185	.71476	.1929	.690	.75514	.1757
93	6792.91	6.046	.78144	.1654	.298	.72414	.1887	.815	.76452	.1720
94	6939.78	.176	.79074	.1619	.413	.73344	.1847	.940	.77382	.1683
95	7088.22	6.309	0.79993	.1 58 5	5.529	0.74263	.1809	6.068	0.78301	.1648
96	7238.23	•442	.80902	.1 5 5 2	.646	.75173	.1771	.196	.79211	.1614
97	7389.81	•577	.81802	.1 5 20	.764	.76073	.1735	.326	.80111	.1581
98	7542.96	•713	.82693	.1 4 90	.884	.76964	.1670	.457	.81002	.1549
9 9	7697.69	•851	.83575	.1 4 60	6.004	.77846	.1665	.589	.81884	.1518
100	7853.98	6.990	0.84448	.1431	6.126	0.78718	.1632	6.723	0.82756	.1487

Cross sections and weights of wires.

The cross section and the weight, in different units, of Aluminium wire of the diameters given in the first column. For one tenth the diameter divide sectious and weights by 100. For ten times the diameter multiply by 100, and so on.

	Area of			A	luminium	— Density	2.67.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.0000909	5.95862	11000.	.001455	3.16274	687.5	.02097	2.32160	47.69
11	95.03	01100	4.04139	9091.	01760	.24551	602.4	.02537	.40437	39.41
12	113.10	01309	.11699	7638.	02095	.32111	477.4	.03020	.47997	33.11
13	132.73	01536	.18650	6509.	02458	.39062	406.8	.03544	.54948	28.22
14	153.94	01782	.25088	5612.	02851	.45500	350.8	.04110	.61386	24.33
15	176.71	.0002045	4.31079	4889.	.003273	3.51491	305.6	.04718	2.67377	21.19
16	201.05	02327	.36685	4297.	03724	.57097	268.5	.05368	.72984	18.63
17	226.98	02627	.41952	3876.	04204	.62364	237.9	.06060	.78250	16.50
18	254.47	02946	.46917	3395.	04713	.67329	212.2	.06794	.83215	14.72
19	283.53	03282	.51613	3047.	05251	.72025	190.4	.07570	.87911	13.21
20	314.16	.0003636	4.56068 .60306 .64346 .68208 .71904	27 50.	.005818	3.76480	171.9	.08388	2.92366	11.922
21	346.36	04009		2494.	06415	.80718	155.9	.09248	.96604	10.813
22	380.13	04400		227 3.	07040	.84758	142.0	.10149	1.00644	9.853
23	415.48	04809		2079.	07697	.88630	129.9	.11093	.04506	9.014
24	452.39	05237		1910.	08378	.92316	119.4	.12079	.08202	8.279
25	490.87	.0005682	4.7 5450	1760.	.00909	3.95862	110.00	.1311	1.11748 .15155 .18433 .21592 .24640	7.630
26	530.93	06147	.78867	1627.	0983	.99269	101.70	.1418		7.054
27	572.56	06628	.82135	1509.	1060	2.02547	94.30	.1529		6.541
28	615.75	07127	.85293	1403.	1140	.05705	87.69	.1644		6.083
29	660.52	07646	.88341	1308.	1223	.08753	81.75	.1764		5.670
30 31 32 33 34	706.86 754.77 804.25 855.30 907.92	.000\$1\$2 0\$737 09309 09900 10509	4.91286 .94134 .96892 .99565 3.02158	1222. 1145. 1074. 1010. 952.	.01309 1398 1489 1584 1681	2.11698 .14546 .17304 .19977 .22570	76.39 71.54 66.89 63.13 59.47		1.27584 .30433 .33190 .35863 .38456	5.299 4.962 .657 .379 .125
35	962.11	.001114	3.04675	897.9	.01782	2.25087	56.12	.2569	1.40973 .43421 .45800 .48216 .50373	3.893
36	1017.88	1178	.07123	848.8	1885	.27535	53.05	.2718		.680
37	1075.21	1245	.09502	803.5	1991	.29914	50.22	.2871		.483
38	113.4.11	1316	.11918	760.0	2105	.32329	47.50	.3035		.295
39	1194.59	13 ⁸ 3	.14075	723.2	2212	.34487	45.20	.3190		.135
40	1 2 5 6. 6 4	.001455	3.16275	687.5	.02327	2.36687	42.97	•3355	ī.52573	2.980
41	1 3 2 0. 2 5	1528	.18419	654.4	2445	.38831	40.90	•3525	.54717	.837
42	1 3 8 5 . 4 4	1604	.20512	623.6	2566	.40924	38.97	•3699	.56810	.704
43	1 4 5 2 . 2 0	1681	.22556	594.9	2690	.42968	37.18	•3 ⁸ 77	.58854	.579
44	1 5 2 0 . 5 3	1760	.24552	568.2	2816	.44964	35.51	•4060	.60851	.463
45 46 47 48 49	1 590.43 1661.90 17 34.94 1809.56 1885.74	.001841 1924 2008 2095 2183	3.26504 .28413 .30281 .32110 .33901	543.2 519.8 498.0 477.4 458.1	.02946 3078 3213 3351 3492	2.46916 .48825 .50693 .52522 .54313	33.95 32.49 31.12 29.84 28.63	.4632 .4832	1.62803 .64712 .66580 .68408 .70199	2.355 .254 .159 .070 1.986
50	1963.50	.002273	3.35656	4.40.0	.03636	2.56068	27.50		1 .71954	1.907
51	2042.82	2365	.37376	422.9	3783	.57788	26.43		.73674	.833
52	2123.72	2458	.39063	406.8	3933	.59475	25.42		.75361	.764
53	2206.18	2554	.40717	394.2	4086	.61129	24.47		.77015	.698
54	2290.22	2651	.42341	377.2	4242	.62753	23.57		.78639	.635
55	2375.83	.002750	3.43934	363.6	.04400	2.64346	22.73	.6343	T.80233	1.576

* Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

	Area of				Aluminiu	m — Densi	ity 2.67.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
55	2375.8 3	.0027 50	3.43934	363.6	.04400	2.64346	22.73	0.6343	1.80233	1.576
56	2463.01	28 51	.45500	350.8	.04562	.65912	21.92	.6576	.81798	.521
57	2551.76	29 54	.47037	338.6	.04726	.67449	21.16	.6813	.83335	.468
58	2642.08	30 58	.48547	327.0	.04893	.68959	20.44	.7054	.84846	.418
59	2733.97	31 6 5	.50032	316.0	.05063	.70444	19.75	.7300	.86331	.370
60	2827.43	.003273	3.51492	305.5	.05236	2.71904	19.10	0.7 549	T.87790	1.325
61	2922.47	3383	.52928	295.6	.05413	.73340	18.48	.7803	.89226	.282
62	3019.07	3495	.54340	286.2	.05591	.74752	17.88	.8061	.90638	.241
63	3117.25	3608	.55730	277.1	.05773	.76142	17.32	.8323	.92028	.201
64	3216.99	3724	.57098	268.5	.05958	.77510	16.78	8589	.93396	.164
65	3318.31	.003841	3.58445	260.3	.06146	2.78857	16.27	0.8860	T.94743	1.129
66	3421.19	3960	.59771	252.5	.06336	.80183	15.78	.9135	.96069	.095
67	3525.65	4081	.61077	245.0	.06530	.81489	15.31	.9413	.97375	.062
68	3631.68	4204	.62364	237.9	.06726	.82777	14.87	.9697	.98662	.031
69	3739.28	4328	.63632	231.0	.06925	.84044	14.44	.9984	.99930	.002
70	3848.45	.004456	3.64893	224.4	.07129	2.85305	14.03	1.028	0.01191	0.9730
71	3959.19	4583	.66114	218.2	.07333	.86526	13.64	.057	.02412	.9460
72	4071.50	4713	.67328	212.2	.07541	.87740	13.26	.087	.03627	.9199
73	4185.39	4845	.68526	206.4	.07751	.88938	12.90	.117	.04825	.8949
74	4300.84	4978	.69708	200.9	.07965	.90120	12.55	.148	.06006	.8708
75	4417.86	.005114	3.70874	195.5	.08182	2.91286	12.22	1.180	0.07172	0.8477
76	4536.46	5251	.72025	190.4	.08402	.92437	11.90	.211	.08323	.8256
77	4656.63	5390	.73160	185.5	.08624	.93572	11.60	.243	.09458	.8043
78	4778.36	5531	.74281	180.8	.08850	.94693	11.30	.276	.10579	.7838
79	4901.67	5 ⁶ 74	.75387	176.2	.09078	.95799	11.02	.309	.11686	.7641
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	.005818 5965 6113 6263 6415	3.76480 •77559 .78625 .79678 .80718	171.9 167.6 163.6 159.7 155.9	.09309 .09544 .09781 .10021 .10264	2.96892 .97971 .99037 1.00090 .01130	10.742 10.479 10.224 9.979 9.743	.410	0.12778 .13857 .14923 .15976 .17016	
85	567.4.50	.006568	3.81746	152.2	.1051	T.02158	9.515	.624	0.18044	0.6600
86	5808.80	6724	.82762	148.7	.1076	.03174	9.295		.19060	.6448
87	5944.68	6881	.83766	145.3	.1101	.04178	9.082		.20064	.6300
88	6082.12	7040	.84758	1.42.0	.1126	.05170	8.878		.21057	.6158
89	6221.14	7201	.85740	138.9	.1152	.06152	8.679		.22038	.6020
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	.007 364 7 528 7695 7863 80 33	3.86710 .87670 .88619 .89558 .90487	135.8 132.8 130.0 127.2 124.5	.1178 .1205 .1231 .1258 .1285	T.07122 .08082 .09031 .09970 .10899		.814	0.23009 .23968 .24918 .25856 .26786	.5514
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69		3.91407 .92316 .93216 .94107 .94989	121.9 119.4 116.9 114.5 112.2	.1313 .1341 .1369 .1397 .1426	T.11819 .12728 .13628 .14519 .15401	7-459 7-307 7.158 7.015	.973 2.014 .055	0.27705 .28614 .29514 .30405 .31287	.5174 .5068 .4965
100	7853.98	.009091	3.95862	110.0	.1455	1.16274	6.875	2.097	0.32160	0.4769

* Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Platinum wire of the diameters given in the first column. For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

					Platinum	— Density	21.50.			
Diam. in Mils.	Area of cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Oun ce .	Grammes per Metre.*	Log.	Metres per Granime.
10	78.54	.0007321	4.86455 .94732 3.02292 .09243 .15681	1 366.0	.01171	2.06867	85.38	0.1689	1.22753	5.922
I	95.03	008858		1 1 29.0	.01417	.15144	70.56	.2043	.31030	4.894
I2	113.10	01054		948.6	.01687	.22704	59.29	.2432	.38590	4.113
I3	132.73	01237		808.3	.01979	.29655	50.52	.2854	.45541	3.504
I4	153.94	01435		696.9	.02296	.36093	43.56	.3310	.51979	3.021
15	176.71	.001647	<u>3</u> .21672	607 .1	.02635	2.42084	37.95	0.3799	ī.57970	2.632
16	201.06	01874	.27278	533.6	.03005	•47790	33.27	+4323	.63576	2.311
17	226.98	02116	.32544	472.7	.03385	•52956	29.54	-4880	.68843	2.049
18	254.47	02372	.37509	421.6	.03795	•57921	26.35	-5471	.73808	1.828
19	283.53	02643	.42206	378.4	.04228	•62618	23.65	-6096	.78504	1.640
20	314.16	.002928	3.46661	341.5	.04685	2.67073	21.34	0.6754	ī.82959	1.481
21	346.36	03228	.50898	309.7	.05165	.71310	19.36	.7447	.87197	•343
22	380.13	03543	.54939	282.2	.05669	.75351	17.64	.8173	.91237	.224
23	415.48	03873	.58801	258.2	.06196	.79213	16.14	.8933	.95099	.119
24	452.39	04217	.62497	237.2	.06747	.82909	14.82	.9726	.9 ⁸ 795	.028
25	490.87	.004 57 5	3.66042	218.6	.07321	2.86454	13.66	I.055	0.02341	0.9475
26	530.93	04949	.69449	202.1	.07918	.89861	12.63	.142	.05748	.8760
27	572.56	05 324	.72628	187.8	.08539	.93140	11.71	.23I	.09026	.8124
28	615.75	057 39	.75886	174.2	.09183	.96298	10.89	.324	.12184	.7553
29	660.52	061 57	.78934	162.4	.09851	.99346	10.15	.420	.15232	.7042
30	706.86	.006589	3.81879	151.8	.1054	ī.02291	9.486	1.520	0.18177	0.6580
31	754.77	07035	.84727	142.1	.1126	.05139	8.884	.623	.21025	.6162
32	804.25	07496	.87485	133.4	.1199	.07897	8.338	.729	.23783	.5783
33	855.30	07972	.90157	125.4	.1276	.10569	7.840	.839	.26456	.5438
34	907.92	08463	.92750	118.2	.1354	.13162	7.385	.952	.29049	.5123
35	962.11	.008968	3.95268	111.52	.1435	I.15680 .18127 .20507 .22923 .25080	6.970	2.069	.031566	0.4834
36	1017.88	09488	.97715	105.41	.1518		6.588	.188	.34014	.4569
37	1075.21	10022	2.00095	99.78	.1604		6.236	.312	.36393	.4326
38	1134.11	10595	.02511	94.38	.1695		5.899	.444	.38809	.4092
39	1194.59	11134	.04668	89.81	.1782		5.613	.568	.40966	.3893
40	1256.64	.01171	2.06867	85.38	.1874	I.27279 .29423 .31516 .33560 .35557	5.336	2.702	0.43166	0.3701
41	1320.25	1231	.09011	81.26	.1969		5.079	.839	.45309	.3523
42	1385.44	1291	.11104	77.44	.2066		4.840	.979	.47403	.3346
43	1452.20	1354	.13148	73.88	.2166		4.617	3.122	.49446	.3203
44	1520.53	1417	.15145	70.56	.2268		4.410	.269	.51443	.3059
45	1 590.43	.01482	2.17097	67.46	.2372	I.37509	4.216	3.419	0.53395	0.2924
46	1661.90	1549	.19006	64.56	.2478	.39418	4.035	.573	.55304	.2799
47	17 34.94	1617	.20874	61.84	.2587	.41286	3.865	.730	.57172	.2681
48	1809.56	1687	.22703	59.29	.2699	.43115	3.705	.891	.59001	.2570
49	188 5.74	1758	.24494	56.89	.2812	.44906	3.556	4.054	.60792	.2467
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	.01830 1904 1979 2056 2135	2.26249 .27969 .29655 .31310 .32933	54.64 52.52 50.52 48.63 46.84	.2928 •3047 •3167 •3290 •3415	1.46661 .48381 .50067 .51722 .53345		4.222 .392 .566 .743 .924	0.62547 .64267 .65954 .67608 .69232	0.2369 .2277 .2190 .2108 .2031
55	2375.83	.02214	2.34527	45.16	•3543	ī.54939	2.822	5.108	0.70825	0.1958

* Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

					Platinum -	– Density 2	1.50.			
Diam. in Mils.	Area of eross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
56 57 58	2 37 5.83 2463.01 2551.76 2642.08 2733.97	.02214 2296 2378 2463 2548	2.34527 .36092 .37630 .39140 .40625	45.16 43.56 42.04 40.61 39.24	0.3543 .3673 .3806 .3940 .4077	Ī.54939 .56504 .58042 .59552 .61037	2.822 .722 .628 .538 .453	5.108 .295 .486 .680 .878	0.70825 .72300 .73928 .75438 .76923	.1958 .1888 .1823 .1760 .1701
61 62 63	2827.43 2922.47 3019.07 3117.25 3216.99	.02635 2724 2814 2906 2 999	2.42085 •43521 •44933 •46323 •47691	37.94 36.71 35.54 34.42 33.35	0.4217 -4358 -4502 -4649 -4798	T.62497 .63933 .65345 .66735 .68103	2.372 .294 .221 .151 .084	6.079 .283 .491 .702 .917	0.78383 .79819 .81231 .82621 .83989	.1645 .1592 .1541 .1492 .1446
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.03093 3189 3286 3385 3485	2.49037 .50363 .51670 .52956 .54224	32.33 31.36 30.43 29.54 28.69	0.4949 .5102 .5258 .5416 .5577	1 .69449 .70775 .72082 .73368 .74636	2.021 1.960 .902 .846 .793	7.134 .356 .580 .808 8.039	0.85336 .86662 .87968 .89255 .90523	.1402 .1360 .1319 .1281 .1244
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	.03588 3690 3795 3901 4009	2.55485 .56706 .57921 .59119 .60301	27.87 27.10 26.35 25.63 24.95	0.5741 .5904 .6072 .6242 .6414	1.75897 .77118 .78333 .79531 .80713	1.742 .694 .647 .602 .559	8.276 .512 .754 .999 9.247	0.91784 .93004 .94219 .95417 .96599	.1208 .1175 .1142 .1111 .1081
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	.04118 4228 4340 4454 4569	2.61467 .62617 .63753 .64874 .65980	24.28 23.65 23.04 22.45 21.89	0.6589 .6765 .6945 .7126 .7310	1.81879 .83029 .84165 .85286 .86392	1.518 .478 .440 .403 .368	9.498 9.753 10.012 10.273 10.539	0.97765 .98916 1.00051 .01172 .02278	
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	.04685 4803 4922 5043 5165	2.67073 .68152 .69217 .70270 .71310	21.34 20.82 20.32 19.83 19.36	0.7496 .7685 .7876 .8069 .8265	1.87485 .88564 .89629 .90682 .91722	1.334 .301 .270 .239 .210	10.81 11.08 11.35 11.63 11.91	1.03371 .04450 .05516 .06568 .07609	.08807 .08596
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	.05289 5414 5541 5669 5799	2.72338 •73354 •74358 •75351 •76333	18.91 18.47 18.05 17.64 17.25	0.8463 .8663 .8866 .9070 .9278	T.92750 .93766 .94770 .95763 .96745	.128	12.20 12.49 12.78 13.08 13.37	1.08637 .09652 .10657 .11649 .12631	.07807 .07647
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	.05930 6062 6196 6332 6469	2.77303 .78263 .79212 .80151 .81080	16.50 16.14 15.79	0.9487 .9699 .9914 1.0130 .0350	1.97715 .98675 .99624 0.00563 .01492	.0310 .0087 0.9871	14.29 14.60	1.13601 .14561 .15510 .16449 .17378	.07152 .06997 .06847 .06702
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	6747 6888 7031	2.81999 .82909 .83809 .84700 .85582	14.82 14.52 14.22	1.057 .079 .102 .125 .148	0.02411 .03321 .04221 .05112 .05994	.889c .8711	15.56 15.89 16.22 16.55	1.18298 .19207 .20107 .20998 .21880	.06426 .06294 .06166 .06042
100	7853.98	.07321	2.86455	13.66	1.171	0.06867	0.8538	16.89	1.227 53	.05922

* Diameters and sections in terms of thousandths of a millimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Gold wire of the diameters given in the first column. For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

	Area of				Gold — I	Density 19.	30.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.00958	3.98152	104.35	4.600	0.66276	.2174	0.1516	1.18065	6.597
11	95.03	.01160	2.06429	86.24	5.566	•74553	.1797	.1834	.26342	5.452
12	113.10	.01380	.13989	72.46	6.624	•82114	.1510	.2183	.33902	4.581
13	132.73	.01657	.21940	60.34	7.774	•89064	.1286	.2562	.40853	3.904
14	153.94	.01878	.27378	53.24	9.016	•95503	.1109	.2971	.47291	3.366
15	176.71	.02156	2.33369	46.38	10.35	1.01493	.09662	0.3411	1.53282	2.932
16	201.06	.02453	.38976	40.76	11.78	.07100	.08492	.3880	.58888	·577
17	226.98	.02770	.44242	36.11	13.29	.12366	.07522	.4381	.64154	.283
18	254.47	.03105	.49207	32.21	14.90	.17331	.06710	.4911	.69119	.036
19	283.53	.03460	.53903	28.90	16.61	.22027	.06022	.5472	.73816	1.827
20	314.16	.03833	2.58358	26.09	18.40	1.26482	.05435	0.6063	1.78271	1.649
21	346.36	.04226	.62596	23.66	20.29	.30720	.04939	.6685	.82509	.496
22	380.13	.04638	.66636	21.56	22.26	.34761	.04492	.7337	.86549	.363
23	415.48	.04954	.69498	20.18	24.33	.38622	.04109	.8019	.90411	.248
24	452.39	.05520	.74194	18.12	26.50	.42319	.03774	.8731	.94107	.145
25	490.87	.05990	2.77740	16.70	28.75	1.45865	.03478	0.9474	1 .97652	1.0555
26	530.93	.06478	.81147	15.44	31.10	.49271	.03216	1.0247	0.01059	0.9759
27	572.56	.06986	.84425	14.31	33.53	.52549	.02982	.1050	.04338	9050
28	615.75	.07513	.87584	13.31	36.06	.55708	.02773	.1884	.07496	.8415
29	660.52	.08060	.90632	12.41	38.69	.58756	.02585	.2748	.10544	.7844
30	706.86	.08625	2.93577	11.594	41.40	1.61701	.02415	1.364	0.13489	0.7330
31	754.77	.09210	.96425	10.858	44.21	.64549	.02262	.457	.16337	.6912
32	804.25	.09813	.99182	10.190	47.10	.67306	.02123	.552	.19095	.6442
33	855.30	.10436	1.01855	9.582	50.09	.69979	.01996	.651	.21768	.6058
34	907.92	.11078	.04448	<u>9.</u> 02 7	53.18	.72572	.01881	.752	.24360	.5707
35	962.11	.1174	T.06965	8.518	56.35	1.7 5089	.01775	1.857	0.26878	0.5385
36	1017.88	.1242	.09413	8.051	59.62	•77 537	.01677	.965	.29325	.5090
37	1075.21	.1312	.11792	7.622	62.97	•79917	.01588	2.070	.31605	.4830
38	1134.11	.13 ⁸ 7	.14208	7.210	66.58	•82332	.01502	.194	.34121	.4558
39	1194.59	.1458	.16365	6.861	69.97	•84489	.01429	.306	.36278	.4337
40	1256.64	.1533	1. 18565	6.521	73.60	1.86689	.01359	2.425	0.38478	0.4123
41	1320.25	.1611	.20709	6.207	77.33	.88833	.01293	.548	.40621	.3924
42	1385.44	.1691	.22802	5.915	81.14	.90926	.01232	.674	.42715	.3740
43	1452.20	.1772	.24846	5.643	85.05	.92970	.01176	.803	.44758	.3568
44	1520.53	.1855	.26843	5.390	89.06	.94967	.01123	.935	.46755	.3408
45	1 59 0. 43	.1941	T.28795	5.15 3	93.15	1.96919	.010735	3.070	0.48707	0.3258
46	1661.90	.2028	.30704	4.931	97.34	.98828	.010273	.207	.50616	.3118
47	17 34.94	.2117	.32572	4.724	101.61	2.00696	.009842	.348	.52484	.2986
48	1809.56	.2208	.34400	4.529	105.99	.02525	.009435	.492	.54313	.2863
49	188 5.74	.2301	.36191	4.346	110.45	.04315	.009054	.639	.56104	.2748
50	1963.50	.2396	1.37946 .39666 .41353 .43007 .44631	4.174	115.0	2.06070	.008696	3.790	0.57859	0.2639
51	20.42.82	.2493		4.012	119.6	.07790	.008358	.9.43	.59579	.2537
52	2123.72	.2591		3.859	124.4	.09477	.008039	4.099	.61265	.2440
53	2206.18	.2692		3.715	129.2	.11131	.007739	.258	.62920	.2349
54	2290.22	.2795		3.578	134.1	.12755	.007455	.420	.64543	.2262
55	2375.83	.2899	ī.46225	3.449	1 39.2	2.14349	.007186	4.585	0.66137	0.2181

* Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

					Gold —	Density 10	9.30.			
Diam. in Mils.	Area of cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
55 56 57 58 59	2375.83 2463.01 2551.76 2042.08 2733.97	.2899 .3005 .3114 .3224 .3336	1.46225 .47790 .49327 .50838 .52323	3.449 .327 .212 .102 2.998	1 39.2 1 44.3 1 49.5 1 54.7 1 60.1	2.14349 .15914 .17451 .18962 .20447	.007186 6932 6691 6462 6245	4.585 4.754 4.925 5.099 5.277	0.66137 .67702 .69240 .70750 .72235	.2181 .2104 .2031 .1961 .1895
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	.3450 .3566 .3684 .3804 .3925	1.53782 .55218 .56630 .58020 .59388	2.899 .804 .715 .629 .548	165.6 171.2 176.8 182.6 188.4	2.21906 .23342 .24754 .26144 .27512	.006039 5842 5655 5477 5307	5.457 5.640 5.827 6.016 6.209	0.73695 .75131 .76543 .77933 .79301	.1833 .1773 .1716 .1662 .1611
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.4049 .4175 .4302 .4431 .4563	T.60735 .62061 .63367 .64654 .65922	2.470 •395 •324 •257 •192	194.4 200.4 206.5 212.7 219.0	2.288 59 .3018 5 .31491 .32778 .34046	.005145 4991 4843 4701 4566	6.404 6.603 6.805 7.010 7.217	0.80647 .81973 .83280 .84566 .85835	.1561 .1514 .1470 .1427 .1386
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	.4697 .4831 .4968 .5107 .5248	T.67183 .68404 .69619 .70817 .71998	2.129 .070 .013 1.958 .905	225.5 231.9 238.4 245.1 251.9	2.35307 .36528 .37743 .38941 .40123	.004435 4312 4195 4079 3970	7.641 7.858 8.078	0.87096 .88316 .89531 .90729 .91911	.1346 .1309 .1273 .1238 .1204
75 76 77 78 79	4656.63	.5682	T.73164 .74315 .75450 .76571 .77678	1.855 .807 .760 .715 .672	258.8 265.7 272.7 279.9 287.1	2.41288 .42439 .43574 .44695 .45801	.003865 3764 3666 3573 3483	8.755 8.987 9.222	0.93077 .94227 .95363 .96484 .97590	.1173 .1142 .1113 .1084 .1057
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	.6133 .6288 .6444 .6602 .6762	T.78770 .79849 .80915 .81968 .83008	1.630 .590 .552 .515 .479	294.4 301.8 309.3 316.9 324.6	2.46894 •47973 .49039 •50092 •51132		9.945 10.192 10.442	0.98683 .99762 1.00828 .01880 .02921	.10308 .10055 .09812 .09577 .09349
85 86 87 88 88 89	5808.80 5944.68 6082.12	.6924 .7088 .7254 .7421 .7591	T.84036 .85052 .86056 .87049 .88030	I.444 .411 .379 .347 .317	332.4 340.2 348.2 356.2 364.4	2.52160 .53176 .54180 .55173 .56154		11.21 11.47 11.74	1.03948 .04964 .05969 .06961 .07943	.09131 .08919 .08716 .08519 .08328
90 91 92 93 94	6503.88 6647.61 6792.91	.7763 .7936 .8111 .8291 .8468	1.89001 .89960 .90910 .91858 .92778	1.288 .260 .233 .206 .181	372.6 380.9 389.3 397.9 406.5	2.57125 .58085 .59034 .59972 .60902	.002684 2625 2568 2513 2460	12.55 12.83 13.11	1.08913 .09873 .10822 .11761 .12690	.08145 .07967 .07794 .07628 .07466
95 96 97 98 99	7238.23 7389.81 7542.96	.8649 .8832 .9017 .9204 .9393	T.93697 .94606 .95507 .96397 .97279	1.156 .132 .109 .086 .065	415.2 423.9 432.8 441.8 450.9	2.61821 .62731 .63631 .64521 .65403	.002409 2359 2310 2263 2218	13.97 14.26 14.56	1.13609 .14519 .15419 .16310 .17192	.07310 .07158 .07011 .06869 .06731
100	7853.98	.9583	1.98152	1.043	460.0	2.66276	.002174	15.16	1.18065	.06597

* Diameters and sections in terms of thousandths of a centimetre.

SMITHSONIAN TABLES.

12

Cross sections and weights of wires.

The cross section and the weight, in different units, of Silver wire of the diameters given in the first column. For one tenth the diameters divide the section and weights by 100. For ten times the diameter muliply by 100, and so on.

	A				Silver	— Density	10.50.			
Diam. in Mils.	Area of cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.005214	3.71715	191.79	2.503	0.39839	.3996	0.08247	2.91628	12.126
11	95.03	.006308	.79992	158.52	3.028	.48117	.3302	.09978	.99905	10.022
12	113.10	.007508	.87553	133.19	3.604	.55677	.2775	.11876	1.07465	8.420
13	132.73	.008811	.94503	113.49	4.229	.62627	.2364	.13937	.14416	7.175
14	153.94	.010219	2.00942	97.86	4.905	.69066	.2039	.16164	.20854	6.186
15	176.71	.01173	2.06932	85.24	5.631	0.75057	.1776	0.1855	T.26845	5.389
16	201.06	.01335	.12539	74.92	6.407	.80663	.1561	.2111	.32452	4.737
17	226.98	.01507	.17805	66.37	7.233	.85929	.1383	.2383	.37718	4.196
18	254.47	.01689	.22770	59.20	8.109	.90894	.1233	.2672	.42683	3.743
19	283.53	.01882	.27466	53.13	9.034	.95590	.1107	.2977	.47379	3.359
20	314.16	.02086	2.31921	47.95	10.01	1.00046	.09990	0.3299	1.51834	3.031
21	346.36	.02299	.36159	43.49	11.04	.04283	.09060	.3637	.56072	2.750
22	380.13	.02523	.40200	39.63	12.11	.08324	.08256	.3991	.60112	.505
23	415.48	.02758	.44061	36.26	13.24	.12186	.07553	.4363	.63974	.292
24	452.39	.03003	.47758	32.99	14.42	.15882	.06937	.4750	.67670	.105
25	490.87	.03259	2.51303	30.69	1 5.64	1.19427	.05425	0.5154	1.71216	1.940
26	530.93	.03525	.54710	28.37	16.92	.22834	.05911	.5575	.74623	•794
27	572.56	.03801	.57988	26.31	18.24	.26113	.05481	.6012	.77901	.663
28	615.75	.04088	.61147	24.46	19.62	.29271	.05097	.6465	.81059	•547
29	660.52	.04385	.64195	22.81	21.05	.32319	.04751	.6935	.84108	•442
30	706.86	.04692	2.67140	21.31	22.52	1.35264	.04440	0.7422	1.87052	1.347
31	754.77	.05010	.69988	19.96	24.05	.38112	0.4158	.7925	.89900	.262
32	804.25	.05339	.72745	18.73	25.63	.40870	0.3902	.8445	.92658	.184
33	855.30	.05678	.75418	17.61	27.25	.43542	0.3669	.8981	.95331	.113
34	907.92	.06027	.78011	16.59	28.93	.46135	0.3457	.9533	.97924	.049
35	962.1 1	.06387	2.80528	1 5.66	30.66	1.48653	.03262	1.010	0.00441	0.9899
36	1017.88	.06757	.82976	14.80	32.43	.51100	.03083	.069	.02889	.9356
37	107 5.21	.07138	.85356	1 4.01	34.26	.53480	.02919	.129	.05268	.8857
3 ⁸	1134.11	.07546	.87772	1 3.25	36.22	.55896	.02761	.194	.07684	.8378
39	1194.59	.07930	.89928	1 2.61	38.06	.58052	.02627	.254	.09841	.7973
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	.09197 .09640	2.92128 .94272 .96365 .98409 1.00406	11.99 11.41 10.87 10.37 9.91	40.04 42.07 44.15 46.27 48.45	1.60252 .62396 .64489 .66533 .68530	.02497 .02377 .02265 .02161 .02064	1.319 .386 .455 .525 .597	0.12041 .14185 .16278 .18322 .20318	0.7579 .7213 .6874 .6558 .6263
45 46 47 48 49	1 590.43 1661.90 17 34.94 1809.56 1885.74	.1103 .1152 .1201	ī .02358 .04267 .06135 .07964 .09755	9.471 9.065 8.683 8.325 7.988	50.68 52.96 55.28 57.66 60.09	1.70482 .72391 .74259 .76088 .77879	.01973 .01888 .01809 .01734 .01664	1.670 .745 .822 .900 .980	0.22270 .24179 .26047 .27876 .29667	0.5988 .5731 .5489 .5263 .5050
50	1963.50		1.11 509	7.672	62.57	1.79634	.01 598	2.062	0.31422	0.4850
51	2042.82		.13229	7.374	65.09	.81354	.01 536	.145	.33142	.4662
52	2123.72		.14916	7.093	67.67	.83040	.01 478	.230	.34829	.4484
53	2206.18		.16570	6.828	70.30	.84695	.01 422	.316	.36483	.4317
54	2290.22		.18194	6.578	72.99	.86328	.01 370	.405	.38107	.4158
55	2375.83	.I 57 7	1.19788	6.340	75.70	1.87912	.01321	2.495	0.39700	0.4009

* Diameters and sections in terms of thousandths of a centimetre.

+

Cross sections and weights of wires.

1	1				C1).	- Develo				1
	Area of				Silve	r — Densit	y 10.50.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Fool.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
56 57 58	2375.83 2463.01 2551.76 2642.08 2733.97	0.1577 .1635 .1694 .1754 .1815	T.19788 .21353 .22890 .24401 .25886	6.340 .116 5.903 .701 .510	75.70 78.48 81.31 84.19 87.12	1.87912 .89477 .91014 .92525 .94010	.01321 1274 1230 1188 1148	2.495 .586 .679 .774 .871	0.39700 .41266 .42803 .44314 .45798	0.4009 .3867 .3732 .3605 .3484
61 62 63	2827.43 2922.47 3019.07 3117.25 3216.99	0.1877 .1940 .2004 .2069 .2136	ī.27346 .28781 .30193 .31584 .32951	5.328 .155 4.990 .832 .683	90.09 93.12 96.20 99.33 102.51	1.95470 .96906 .98318 .99708 2.01075	.01110 1074 1040 1007 0975	2.969 3.069 .170 .273 .378	0.47258 .48694 .50106 .51496 .52864	0.3368 .3259 .3155 .3055 .2961
66 67 68	3318.31 3421.19 3525.65 3631.68 3739.28	0.2203 .2271 .2340 .2411 .2482	ī.34298 •35624 •36930 •38217 •39485	4.540 .403 .273 .148 .029	105.7 109.0 112.3 115.7 119.1	2.02422 .03748 .05054 .06341 .07609	.009457 09173 08903 08642 08393	3.484 -592 .702 .813 .926	0.54211 .55537 .56843 .58130 .59398	0.2870 .2784 .2701 .2622 .2547
71 72 73	3848.45 3959.19 4071.50 4185.39 4300.84	0.2555 .2628 .2703 .2778 .2855	1.40746 .41967 .43182 .44380 .45560	3.913 .805 .700 .599 .502	122.7 126.2 129.7 133.4 137.0	2.08870 .10091 .11306 .12504 .13686	.0081 53 07926 07708 07498 07297	4.042 .157 .275 .395 .516	0.60659 .61880 .63094 .64293 .65474	0.2474 .2406 .2339 .2275 .2214
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	0.2933 .3011 .3091 .3172 .3254	1.46728 .47878 .49014 .50134 .51241	3.410 .321 .235 .152 .073	140.8 144.6 148.4 152.3 156.2	2.14852 .16002 .17138 .18258 .19365	.007104 06918 06739 06568 06402	5.017	0.66640 .67791 .68926 .70047 .71153	0.2156 .2099 .2045 .1993 .1943
80 81 82 83 84	5026.55 51 53.00 5281.02 5410.61 5541.77	0.3337 .3421 .3506 .3592 .3679	ī.52 333 .53412 .54478 .55531 .56571	2.997 .923 .852 .784 .718	160.2 164.2 168.3 172.4 176.6	2.20458 .21537 .22602 .23655 .24695		•545 .681	0.72246 •73325 •74391 •75444 •76484	0.1895 .1848 .1803 .1760 .1719
85 86 87 88 88 89	56 7 4.50 5808.80 5944.68 6082.12 6221.14	.3856 .3946 .4038	1.57599 .58615 .59619 .60612 .61593	·534 ·477	180.8 185.1 189.4 193.8 198.2	2.25723 .26739 .27743 .28736 .29717	05403 05279 05160	6.099 .242 .386	0.77512 .78528 .79532 .80524 .81506	0.1678 .1640 .1602 .1566 .1531
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	.4318 .4413 .4509	1.62564 .63524 .64473 .65411 .66341	.316	202.7 207.2 211.8 216.4 221.1	2.30688 .31648 .32597 .33535 .34465	04825 04721 04620	.829 .980 7.132	0.82476 .83436 .84385 .85324 .86254	.1433 .1402 .1372
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	.4805 .4906 .5007	1.67260 .68170 .69070 .69961 .70842	.081 .038 1.997	225.9 230.6 235.5 240.4 245.3	2.35384 .36294 .37194 .38085 .38967	04336 04247 04161	.600 •759 •920 8.083	0.87173 .88082 .88982 .89873 .90755	.1316 .1289 .1263 .1237
100	7853.98	0.5214	1.71715	1.918	250.3	2.39839	.003990	8.247	0.91628	0.1213

* Diameters and sections in terms of thousandths of a centimetre.

Silver.	105.0 210.0 315.0 525.0	630.0 735.0 840.0 945.0 1050.0
Gold.	193.0 386.0 579.0 965.0	1158.0 1351.0 1544.0 1737.0 1930.0
Platinum.	215.0 430.0 645.0 860.0 1075.0	1290.0 1505.0 1720.0 1935.0 2150.0
Aluminium.	26.7 53.4 80.1 133.5	160.2 186.9 213.6 240.3 267.0
Brass.	85.6 171.2 256.8 342.4 428.0	513.6 599.2 684.8 770.4 856.0
Copper.	89.0 178.0 267.0 356.0 445.0	534.0 623.0 712.0 801.0 890.0
Iron.	78.0 156.0 312.0 390.0	468.0 546.0 624.0 702.0 780.0
Thick- ness in thou- sandths of a cm.	H 0 00 4 20	100 8/1 0

TABLE 63. - Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grammes of a plate one metre square and of the thickness stated in the first column.

SMITHSONIAN TABLES.

WEIGHT OF SHEET METAL.

⁵⁶

Measure.)
(British
Metal.
of Sheet
Weight
64. – W
TABLE

er.*	Grains per Sq. Foot.	382.4 765.8 1147.2 1529.6 1912.0 2676.8 3059.2 3059.2 3411.6 3244.0
Silver.*	Ounces per Sq. Foot.	0.7967 1.5933 2.3900 3.1867 3.9867 3.9833 4.7800 5.5767 5.5767 5.5767 7.1700 7.9667
d.*	Grains per Sq. Foot.	702.8 1405.7 2108.5 2811.3 3514.2 4217.0 4217.0 4217.0 4217.0 6325.5 7028.3
Gold.*	Ounces per Sq. Foot.	1.4642 2.9285 4.3927 5.8570 7.3212 8.7854 10.2497 11.7139 13.1782 14.6424
.mun	Ounces per Sq. Foot.	1.790 3.579 5.369 7.158 8.948 10.738 10.738 11.317 14.317 14.317 16.106 17.896
Platinum.	Pounds per Sq. Foot.	.1119 .2237 .3356 .4474 .5593 .6711 .5593 .8948 1.0067 1.1185 1.1185
Aluminium.	Ounces per Sq. Foot.	.2222 .4445 .6667 .8890 1.1112 1.3335 1.5557 1.7780 2.0002 2.2224
Alumi	Pounds per Sq. Foot.	.01389 .02778 .04167 .05556 .06945 .08334 .09723 .11112 .13890
Brass.	Pounds per Sq. Foot.	.04454 .08908 .13363 .17817 .22271 .22711 .22725 .31179 .35634 .40088 .44542
Copper.	Pounds per Pounds per Sq. Foot.	.04630 .09260 .13890 .18520 .23150 .23150 .23150 .37041 .41671 .41671
Iron.	Pounds per Sq. Foot.	.04058 .08116 .08116 .12173 .16231 .20289 .22347 .224347 .28405 .32463 .36520 .40578
	Thickness in Mils.	Haw4n 0rado

WEICHT OF SHEET METAL.

^{*} Gold and silver are given in Troy ounces.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
0.4600	0.2116	0.1662	0.6412	1.80701	1.560
.4096	.1678	.1318	.5085	.70631	1.967
.3648	.1331	.1045	.4033	.60560	2.480
.3249	.1055	.0829	.3198	.50489	3.127
0.2893	0.08369	0.06573	0.2536	ī.40419	3·943
.2576	.06637	.05213	.2011	.30348	4.972
.2294	.05263	.04134	.1595	.20277	6.270
.2043	.04174	.03278	.1265	.10206	7·905
.1819	.03310	.02600	.1003	.00136	9.969
0.1620	0.02625	0.02062	0.07955	2.90065	12.57
.1443	.02082	.01635	.06309	.79994	15.85
.1285	.01651	.01297	.05003	.69924	19.99
.1144	.01309	.01028	.03968	.59 ⁸ 53	25.20
.1019	.01038	.00815	.03146	.49782	31.78
0.09074	0.008234	0.006467	0.02495	2.39711	40.08
.08081	.006530	.005129	.01979	.29641	50.54
.07196	.005178	.004067	.01569	.19570	63.72
.06408	.004107	.003225	.01244	09499	80.35
.05707	.003257	.002558	.00987	3.99429	101.32
0.05082	0.002583	0.002028	0.007827	3.89358	127.8
.04526	.002048	.001609	.006207	.79287	161.1
.04030	.001624	.001276	.004922	.69217	203.2
.03589	.001288	.001012	.003904	.59146	256.2
.03196	.001021	.000802	.003096	.49075	323.1
0.028.46	0.0008101	0.0006363	0.002455	3.39004	408.2
.02535	.0006424	.00050.46	.001947	.28934	513.6
.02257	.0005095	.000.4001	.001544	.18863	647.7
.02010	.0004040	.0003173	.001224	.08792	816.7
.01790	.0003204	.0002517	.000971	4.98722	1029.9
0.01594	0.0002541	0.0001996	0.0007700	4.88651	1298.
.01419	.0002015	.0001583	.0006107	.78580	1638.
.01264	.0001598	.0001255	.000.4843	.68510	2065.
.01126	.0001267	.0000995	.0003841	.58439	2604.
.01003	.0001005	.0000789	.0003046	.48368	3283.
0.008928 .007950 .007080 .006304 .005614	0.00007970 .00005013 .00003975 .00003152	0.00006260 .00004964 .00003937 .00003122 .00002476	0.0002415 .0001915 .0001519 .0001205 .0000955	4.38297 .28227 .18156 .08085 5.98015	4140. 5221. 6583. 8301. 10468.
0.005000	0.00002500	0.00001963	0.00007 576	5.87944	1 3200.
.004453	.00001983	.00001557	.00006008	.77873	16644.
.003965	.00001372	.00001235	.00004765	.67802	20988.
.003531	.00001247	.00000979	.00003778	.57732	26465.
.003145	.00000989	.00000777	.00002996	.47661	3337 <i>2</i> .
	. Inches. . Inches. . Inches. . 1000 . 4096 . 3648 . 3249 0.2893 . 2576 . 2294 . 2043 . 1819 0.1620 . 1443 . 1285 . 1144 . 1019 0.09074 . 08081 . 07196 . 06408 . 05707 0.05082 . 04526 . 04030 . 03589 . 03196 0.02846 . 02535 . 02535 . 02257 . 02010 . 01790 0.01594 . 01419 . 01264 . 01033 0.008928 . 007950 . 007080 . 005014 0.005000 . 005014 0.005000 . 003531	Diameter in Inches.Diameter (Circular Inches).0.4600 $.4096$ $.3648$ $.3249$ 0.2116 $.1678$ $.3648$ $.3249$ $.1055$ 0.2893 $.2576$ $.2043$ $.2043$ $.2043$ $.1819$ $.03310$ 0.8369 $.2576$ $.06037$ $.2294$ $.05263$ $.2043$ $.1819$ $.03310$ 0.1620 $.1620$ $.1285$ $.1144$ $.08081$ $.005178$ $.06408$ $.004107$ $.05707$ $.005178$ $.06408$ $.004107$ $.05707$ $.005234$ $.005178$ $.00408$ $.004107$ $.05707$ $.003257$ 0.05082 $.0.02583$ $.0.02583$ $.0.01624$ $.0.02535$ $.001624$ $.003196$ $.001021$ 0.02846 $.0.008101$ $.02535$ $.0006424$ $.001594$ $.001218$ 0.01594 $.0002015$ $.001003$ 0.01594 $.0002015$ $.0001005$ 0.008928 $.00000001005$ 0.008928 $.000000000000000000000000000000000000$	Diameter in Inches.Diameter (Circular Inches).Section in Sq. Inches.0.46000.21160.1662.4096.1678.1318.3648.1331.1045.3249.1055.08290.28930.083690.06573.2576.06637.05213.2294.05263.04134.2043.04174.03278.1819.03310.026000.16200.026250.02062.1443.02082.01635.1285.01651.01297.1144.01309.01028.007740.008234.006467.05408.004107.003225.05707.003257.002588.05638.002178.004067.06408.004107.003225.05707.002583.001629.04526.002048.001609.0430.001624.001276.03589.00128.001612.03196.001021.000363.02535.0006424.0005046.02257.000505.004001.0210.000215.000196.02126.0001267.0003173.01790.0002541.000217.003531.00007970.00003204.0003204.0001267.00003937.005344.0000375.0000196.005354.0000127.00003152.000355.00001372.00001975.000354.00003152.0000163.003531 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Diameter in Inches.Diameter Circular Inches).Section in Sq. Inches.Point Per Foot.Log.0.4600 .4006 .32490.2116 .1678 .1311 .3645 .32490.1662 .1055 .06329 .3198 .504890.66412 .70631 .4033 .504897.80701 .70631 .4033 .504890.2893 .2294 .2014 .2376 .2014 .20140.03369 .0523 .04134 .2378 .1205 .1205 .10237 .20130.04134 .1595 .1205 .10206 .10237 .2013 .2014 .2014 .20144 .03310 .02620 .10237 .20130.2533 .02533 .04134 .1595 .1205 .10206 .10237 .20137 .20137 .201310 .02600 .10237 .201310 .02600 .10237 .201327 .201327 .201327 .201327 .201327 .201327 .20262 .01226 .01207 .01207 .05033 .00152 .01208 .003146 .005120 .01797 .20146 .201797 .20146 .49782 .203068 .203068 .59853 .005120 .01797 .20146 .497821.06147 .49782 .203068 .203068 .59853 .203067 .005127 .01509 .01797 .20414 .497820.00074 .000524 .000525 .000537 .001127 .002558 .000577 .002558 .000577 .002558 .000502 .000304 .000304 .001021 .000802 .000304 .000304 .001021 .000802 .000304 .000304 .001021 .000802 .000304 .001021 .000802 .000304 .000304 .001047 .001531 .0001231 .0003051 .000304 .0003075Log.0.051504 .0001241 .0000598 .0003173 .0001241 .000039710.0021455 .0003051 .0003051 .0003051 .00007891.00147 .28297 .0003051 .0003051 .00003971 .0003051 .0003051 .00003778 .0003377</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Diameter in Inches.Diameter Circular Inches).Section in Sq. Inches.Point Per Foot.Log.0.4600 .4006 .32490.2116 .1678 .1311 .3645 .32490.1662 .1055 .06329 .3198 .504890.66412 .70631 .4033 .504897.80701 .70631 .4033 .504890.2893 .2294 .2014 .2376 .2014 .20140.03369 .0523 .04134 .2378 .1205 .1205 .10237 .20130.04134 .1595 .1205 .10206 .10237 .2013 .2014 .2014 .20144 .03310 .02620 .10237 .20130.2533 .02533

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. British Measure. Temperature o° C. Density 8.90.

Electrical Constants.

	R	esistance and Co	nductivity.		
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm,	Gauge Number.
0.00004629	5.66551	21601.	0.00007219	13852.	0000
.00005837	.76622	17131.	.00011479	8712.	000
.00007361	.86693	13586.	.00018253	5479.	00
.00009282	.96764	10774.	.00029023	3445.	0
0.0001170	4.06834	8544.	0.000.4615	2166.8	1
.0001476	.16905	6775.	.0007338	1362.8	2
.0001861	.26976	5373.	.0011668	857.0	3
.0002347	.37046	4261.	.0018552	539.0	4
.0002959	.47117	3379.	.0029499	339.0	5
0.000373I	4.57188	2680.	0.004690	213.22	6
.0004705	.67259	2125.	.007458	134.08	7
.0005933	.77329	1685.	.011859	84.32	8
.0007482	.87400	1337.	.018857	53.03	9
.0009434	.97471	1060.	.029984	33.35	10
0.001190	3.07541	840.6	0.04768	20.973	11
.001500	.17612	666.6	.07581	13.191	12
.001892	.27683	528.7	.12054	8.296	13
.002385	.37753	419.2	.19166	5.218	14
.003008	.47824	33 ² .5	.30476	3.281	15
0.003793	3.57895	263.7	0.4846	2.0636	16
.004783	.67966	209.1	.7705	1.2979	17
.006031	.78036	165.8	1.2252	0.8162	18
.007604	.88107	131.5	1.9481	-5133	19
.009589	.98178	104.3	3.0976	.3228	20
0.01209	2.08248	82.70	4.925	0.20305	21
.01525	.18319	65.59	7.832	.12768	22
.01923	.28390	52.01	12.453	.08030	23
.02424	.38461	41.25	19.801	.05051	24
.03057	.48531	32.71	31.484	.03176	25
0.03855	2.58602	25.94	50.06	0.019976	26
.04861	.68673	20.57	79.60	.012563	27
.06130	.78743	16.31	126.57	.007901	28
.07729	.88814	12.94	201.26	.004969	29
.09746	.98885	10.26	320.01	.003125	30
0.1229	T.08955	8.137	508.8	0.0019654	31
.1550	.19026	6.452	809.1	.0012359	32
.1954	.29097	5.117	1286.5	.0007773	33
.2464	.39168	4.058	2045.6	.0004889	34
.3107	.49238	3.218	3252.6	.0003074	35
0.3918	ī. 59309	2.552	5172.	0.0001934	36
.4941	.69380	2.024	8224.	.0001216	37
.6230	.79450	1.605	13076.	.0000765	38
.7856	.89521	1.273	20792.	.0000481	39
.9906	.99592	1.009	33060.	.0000303	40

SIZE, WEICHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1684	1.3652	1.0722	954•3	2.97966	0.001048
000	.0405	.0826	0.8503	756.8	.87896	.001322
00	0.9266	0.8586	.6743	600.1	.77825	.001666
0	.8251	.6809	.5348	475•9	.67754	.002101
1	0.7 348	0.5400	0.4241	377-4	2.57684	0.002649
2	.6544	.4282	.3363	299-3	.47613	.003341
3	.5827	.3396	.2667	237-4	.37542	.004213
4	.5189	.2693	.2115	188-2	.27472	.005312
5	.4621	.2136	.1677	149-3	.17401	.006699
6	0.4115	0.16936	0.13302	118.39	2.07 330	0.008.45
7	.3665	.13431	.10549	93.88	1.97259	.01065
8	.3264	.10651	.08366	74.45	.87189	.01343
9	.2906	.08447	.06634	59.04	.77118	.01694
10	.2588	.06699	.05261	46.82	.67047	.02136
11	0.2305	0.05312	0.04172	37.13	1.56977	0.02693
12	.2053	.04213	.03309	29.45	.46.906	.03396
13	.1828	.03341	.02624	23.35	.36835	.04282
14	.1628	.02649	.02081	18.52	.26764	.05400
15	.1450	.02101	.01650	14.69	.16694	.06809
16	0.12908	0.016663	0.013087	11.648	1.06623	0.0859
17	.11495	.013214	.010378	9.237	0.96552	.1083
18	.10237	.010479	.008231	7.325	.86482	.1365
19	.09116	.008330	.006527	5.809	.76411	.1721
20	.08118	.006591	.005176	4.607	.66340	.2171
21	0.07229	0.005227	0.004105	3.653	0.56270	0.27 37
22	.06438	.004145	.003255	2.898	.46199	.3450
23	.05733	.003287	.002582	2.298	.36128	.4352
24	.05106	.002607	.002047	1.822	.26057	.5488
25	.04545	.002067	.001624	1.445	.15987	.6920
26	0.04049	0.0016394	0.0012876	1.1459	0.05916	0.873
27	.03606	.0013001	.0010211	.9088	1.95845	1.100
28	.03211	.0010310	.0008098	.7207	.85775	1.388
29	.02859	.0008176	.0006422	.5715	.75704	1.750
30	.02546	.0006484	.0005093	.4532	.65633	2.206
31	0.02268	0.0005142	0.0004039	0.3594	T.55562	2.782
32	.02019	.0004078	.0003203	.2850	-45492	3.508
33	.01798	.0003234	.0002540	.2261	-35421	4.424
34	.01601	.0002565	.0002014	.1793	-25350	5.578
35	.01426	.0002034	.0001597	.1422	-15280	7.034
36	0.01270	0.0001613	0.0001267	0.1127	1.05209 2.95138 .85068 .74997 .64926	8.87
37	.01131	.0001279	.0001005	.0894		11.18
38	.01007	.0001014	.0000797	.0709		14.10
39	.00897	.0000804	.0000632	.0562		17.78
40	.00799	.0000638	.0000501	.0446		22.43
34	.01601	.0002565	.0002014	.1793	.25350	5.578
35	.01426	.0002034	.0001597	.1422	.15280	7.034
36	0.01270	0.0001613	0.0001207	0.1127	T.05209	8.87
37	.01131	.0001279	.0001005	.0894	Z.95138	11.18
38	.01007	.0001014	.0000797	.0709	.85068	14.10
39	.00897	.0000804	.0000632	.0562	.74997	17.78

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. Metric Measure. Temperature oº C. Density 8.90.

Electrical Constants.

		Resistance a	nd Conductivity.		
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001519	4.18150	6584.	0.0000001592	6283000.	0000
.0001915	.28221	5221.	.0000002531	3951000,	000
.0002415	.38191	4141.	.0000004024	2485000.	00
.0003045	.48362	3284.	.0000006398	1563000.	0
0.0003840	4.58433	2604.	0.000001017	982900.	1
.0004842	.68503	2065.	.000001618	618200.	2
.0006106	.78574	1638.	.000002572	388800.	3
.0007699	.88645	1299.	.000004090	244500.	4
.0009709	.98715	1030.	.000006504	153800.	5
0.001224	3.08786	816.9	0.00001034	96700.	6
.001544	.18857	647.8	.00001644	60820.	7
.001947	.28928	513.7	.00002615	38250.	8
.002455	.38998	407.4	.00004157	24050.	9
.003095	.49069	323.1	.0000610	15130.	10
0.003903	3.59140	256.2	0.00010511	9514.	11
.004922	.69210	203.2	.00016712	5984.	12
.006206	.79281	161.1	.00026574	3763.	13
.007826	.89352	127.8	.00042254	2367.	14
.009868	.99423	101.3	.00067187	1488.	13
0.01244	2.09493	80.37	0.0010683	936.1	16
.01569	.19564	63.73	.0016987	588.7	17
.01979	.29635	50.54	.0027010	370.2	18
.02495	.39705	40.08	.0042948	232.8	19
.03146	.49776	31.79	.0068290	146.4	20
0.03967	2.59847	25.21	0.0108 5 9	92.09	21
.05002	.69917	19.99	.017266	57.92	22
.06308	.79988	15.85	.027454	36.42	23
.07954	.90059	12.57	.043653	22.91	24
.10030	T.00130	9.97	.069411	11.88	25
0.12647	T.10200	7.907	0.11037	9.060	26
.15948	.2027 I	6.270	.17549	5.698	27
.20110	.30342	4.973	.27904	3.584	28
.25358	.404 I 2	3.943	.44369	2.254	29
.31976	.5048 3	3.127	.70550	1.417	30
0.4032	T.60554	2.480	1.1218	0.8914	31
.5084	.70624	1.967	1.7837	.5606	32
.6411	.80695	1.560	2.8362	.3526	33
.8085	.90766	1.237	4.5097	.2217	34
1.0194	0.00837	0.981	7.1708	.1394	35
1.2855	0.10907	0.7779	11.376	0.08790	36
1.6210	.20978	.6169	18.130	.05516	37
2.0440	.31049	.4892	28.828	.03469	38
2.5775	.41119	.3880	45.838	.02182	39
3.2501	.51190	.3076	72.885	.01372	40

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches),	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
7-0	0.500	0.2500	0.1963	0.75760	ī.87944	1.320
6-0	.464		.1691	.65243	.81453	1.583
5-0	0.432	0.1866	0.1466	0.56554	1.75247	1.768
4-0	.400	.1600	.1257	.48486	.68562	2.062
3-0	.372	.1384	.1087	.41936	.62258	2.385
2-0	.348	.1211	.0951	.36699	.56466	2.725
0	.324	.1050	.0825	.31812	.50259	3.143
1	0.300	0.09000	0.07069	0.27274	ī.43574	3.667
2	.276	.07618	.05983	.23084	.36332	4.332
3	.252	.06350	.04988	.19244	.28430	5.196
4	.232	.05382	.04227	.16310	.21246	6.131
5	.212	.04494	.03530	.13620	.13417	7.342
	0.192	0.03686	0.02895	0.11171	<u>1</u> .04810	8.95
7 8 9	.176 .160 .144 .128	.03098 .02560 .02074 .01638	.02433 .02010 .01629 .01287	.09387 .07758 .06284 .04965	2.97252 .88974 .79822 .69592	10.65 12.89 15.91 20.14
11	0.116	0.013456	0.010568	0.04078	2.61041	24.52
12	.104	.010816	.008495	.03278	.51557	30.51
13	.092	.008464	.006648	.02565	.40907	38.99
14	.080	.006400	.005027	.01939	.28768	51.56
15	.072	.005184	.004071	.01571	.19616	63.66
16	0.064	0.004096	0.003217	0.012412	2.09386	80.6
17	.056	.003136	.002463	.009503	3.97787	105.2
18	.048	.002304	.001810	.006982	.84398	143.2
19	.040	.001600	.001257	.004849	.68562	206.2
20	.036	.001296	.001018	.003927	.59410	254.6
21	0.032	0.0010240	0.0008042	0.003103	3.49180	322.3
22	.028	.0007840	.0006157	.002376	.37581	420.9
23	.024	.0005760	.0004524	.001746	.24192	572.9
24	.022	.0004840	.0003801	.001467	.16634	681.8
25	.020	.0004000	.0003141	.001212	.08356	824.9
26	0.0180	0.0003240	0.0002545	0.0009818	4.99209	1018.
27	.0164	.0002690	.0002112	.0008151	.91119	1227.
28	.0148	.0002190	.0001728	.0006638	.82202	1506.
29	.0136	.0001850	.0001453	.0005605	.74858	1784.
30	.0124	.0001538	.0001208	.0004660	.66834	2146.
31	0.0116	0.00013456	0.00010568	0.000.4078	4.61041	2452.
32	.0108	.00011664	.00009161	.0003535	.54 ⁸ 35	2829.
33	.0100	.00010000	.00007854	.0003030	.48150	3300.
34	.0092	.00008464	.00006648	.0002565	.40907	3899.
35	.0084	.00007056	.00005542	.0002138	.33006	4677.
36	0.0076	0.0000 5776	0.00004536	0.0001750	4.24313	5713.
37	.0068	.0000.4624	.00003632	.0001404	.14752	7120.
38	.0060	.0000.3600	.00002827	.0001091	.03780	9167.
39	.0052	.0000.270.4	.00002124	.0000819	5.91351	12200.
40	.0048	.0000.230.4	.00001810	.0000682	.84398	14660.
41	0.0044	0.00001936	0.00001521	0.00005867	5.76840	170 50.
42	.0040	.00001600	.00001257	.00004849	.68562	20620.
43	.0036	.00001296	.00001018	.00003927	.59410	25460.
44	.0032	.00001024	.00000804	.00003103	.49180	322 30.
45	.0028	.00000784	.00000616	.00002381	.37681	41990.
46	0.0024	0.00000 576	0.00000452	0.00001746	5 .24192	57 290.
47	.0020	.00000400	.00000314	.00001212	.08356	8 2490.
48	.0016	.00000256	.00000201	.00000776	6 .88974	I 28900.
49	.0012	.00000144	.00000113	.00000436	.63986	229200.
50	.0010	.00000100	.00000079	.00000303	.48150	330000.

CONSTANTS OF COPPER WIRE.

according to the British Standard Wire Gauge. British Measure. Temperature oº C. Density 8.90.

Electrical Constants.

		Resistance and	Conductivity.		
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.
0.00003918	5 .59310	25520.	0.0000 51 7 1 9	19335.	7-0
.00004550	.65799	21980.	.0000 697 36	14339.	6-0
0.00005249	5.72006	19050.	0.00009281	1077 5.	5-0
.00006122	.78691	16330.	.00012627	7920.	4-0
.00007078	.84994	14130.	.00016880	5924.	3-0
.00008089	.90787	12360.	.00022040	4537.	2-0
.00009331	.96994	10720.	.00029333	3409.	0
0.0001088 .0001286 .0001543 .0001820 .0002180	-90994 4.03679 .10921 .18823 .26005 .33836	9188. 7777• 6483. 5495• 4588.	0.0003991 .0005570 .0008015 .0011158 .0016002	2505.8 1795.2 1247.7 896.2 624.2	1 2 3 4 5 6
0.0002657	4.42443	3763.	0.0023786	420.4	6
.0003162	.50000	3162.	.0033688	296.9	7
.0003826	.58279	2613.	.0049323	202.7	8
.0004724	.67430	2117.	.0075176	133.0	9
.0005979	.77661	1673.	.0084978	117.7	10
0.0007280	4.86211	1 37 3.6	0.017853	56.013	11
.0009056	.95696	1104.2	.027631	36.191	12
.0011573	3.06345	864.1	.045121	22.163	13
.0015305	.18485	653.4	.078927	12.669	14
.0018896	.27636	529.2	.120282	8.314	15
0.002391	3.37867	418.1	0.19267	5.1902	16
.003124	.49465	320.2	.32868	3.0423	17
.004252	.62855	235.2	.60893	1.6423	18
.006122	.78691	163.3	1.26268	0.7919	19
.007558	.87842	132.3	1.92451	.5196	20
0.00957	3.98073	104.54	3.0827	0.32439	21
.01249	2.09671	80.04	5.2599	.19011	22
.01701	.23061	58.80	9.7429	.10264	23
.02024	.30618	49.41	13.7988	.07246	24
.02506	.38897	39.91	20.2028	.04951	25
0.03023	2.48048	33.08	30.792	0.032478	26
.03642	.56134	27.46	56.254	.017778	27
.04472	.65051	22.36	67.373	.014843	28
.05296	.72395	18.88	94.488	.010583	29
.06371	.80419	15.70	136.724	.007314	30
0.07449	2.87211	1 3.42	182.68	0.005474	31
.08398	.92418	1 1.91	237.59	.004209	32
.09796	.99103	10.21	323.25	.003094	33
.11573	1.06345	8.64	451.21	.002216	34
.13883	.14247	7.20	649.25	.001540	35
0.16959	1.22940 .32601 .43473 .55902 .62855	5.897	968.9	0.0010321	36
.21184		4.720	1 508.3	.0006630	37
.27210		3.675	2494.2	.0004009	38
.36226		2.760	4421.0	.0002262	39
.42515		2.352	6089.3	.0001642	40
0.5060	1.70412 .78691 .87842 .98073 0.09671	1.976	8624.	0.00011596	41
.6122		.633	12627.	.00007919	42
.7558		.323	19245.	.00005196	43
.9566		.045	30827.	.00003244	44
1.2494		0.800	52468.	.00001906	45
1.7006	0.23061	0.5880	97429.	0.000010264	46
2.5059	.38897	.3991	202028.	.000004950	47
3.8264	.58279	.2613	493232.	.000002027	48
6.8025	.83267	.1470	1558851.	.000000642	49
9.7956	.99103	.1021	3232451.	.000000196	50

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
7-0	1.2700	1.6129	1.267	1127.4	3.05209	0.000887
6-0	.1786	.3890	.091	970.9	2.98719	.001032
5-0 4-0 3-0 2-0	1.0973 .0160 0.9449 .8839 .8230	1.2040 .0323 0.8928 .7815 .6773	0.9456 .8107 .7012 .6136 .5319	841.6 721.6 624.1 546.3 484.4	2.92512 .85827 .79524 .73741 .68524	0.001188 .001386 .001602 .001831 .002064
1	0.7620	0.58065	0.4560	405.9	2.60839	0.002464
2	.7010	.49157	.3858	343.6	.53607	.002910
3	.6401	.40970	.3218	286.4	.45695	.003492
4	.5893	.34725	.2727	242.7	.38512	.004120
5	.5385	.28996	.2277	202.7	.30682	.004934
6	0.4877	0.23783	0.18679	166.25	2.2207 5	0.006015
7	.4470	.19984	.15696	139.69	.14517	.007159
8	.4064	.16516	.12973	115.45	.06239	.008662
9	.3658	.13378	.10507	93.51	1.97087	.010694
10	.3251	.10570	.08302	73.89	.86857	.013533
11	0.2946	0.08681	0.06818	60.68	1.78307	0.01648
12	.2642	.06978	.05480	48.78	.68822	.02051
13	.2337	.05461	.04289	38.17	.58172	.02620
14	.2032	.04129	.03243	28.86	.46033	.03465
15	.1829	.03344	.02627	23.38	.36881	.04278
16	0.16256	0.026426	0.020755	18.514	1.26751	0.05401
17	.14224	.020233	.015890	14.142	.15053	.07071
18	.12192	.014865	.011675	10.390	.01663	.09625
19	.10160	.010323	.008107	7.216	0.85827	.13858
20	.09144	.008361	.006567	5.845	.76675	.17109
21	0.08128	0.006606	0.005188	4.618	0.66445	0.2165
22	.07112	.005058	.003972	3.536	.54 ⁸ 47	.2828
23	.06096	.003716	.002922	2.598	.41457	.3850
24	.05588	.003123	.002452	2.183	.33 ⁸ 99	.4581
25	.05080	.002581	.002027	1.804	.25621	.5544
26	0.0.4572	0.0020903	0.0016417	1.4625	0.16509	0.6838
27	.0.4166	.0017352	.0013628	.2129	.08384	.8245
28	.03759	.0014132	.0011099	0.9878	1.99467	1.0123
29	.03454	.0011922	.0009363	.8333	.92083	.2000
30	.03150	.0009920	.0007791	.6934	.84099	.4422
31	0.02946	0.000868 t	0.0006818	0.6068	T.78307	1.648
32	.02743	.0007 52 5	.0005910	.5260	.72100	1.901
33	.02540	.0006 4 52	.0005067	.4510	.65415	2.217
34	.02337	.000 546 t	.0004289	.3817	.58172	2.620
35	.02134	.000 4 55 2	.0003575	.3182	.50271	3.143
36	0.01930	0.0003726	0.0002927	0.2605	ī.41578	3.839
37	.01727	.0002983	.0002343	.2090	.31917	4.784
38	.01524	.0002323	.0001824	.1623	.21045	6.160
39	.01321	.0001746	.0001370	.1219	.08616	8.201
40	.01219	.0001486	.0001167	.1039	.01663	9.625
41	0.01118	0.0001249	0.0000982	0.0873	2.94105	11.45
42	.01016	.0001032	.0000813	.0722	.85827	13.86
43	.00914	.0000836	.0000656	.0584	.76675	17.11
44	.00813	.0000661	.0000519	.0462	.66445	21.65
45	.00711	.0000506	.0000397	.0354	.54847	28.28
46	0.00610	0.00003716	0.0000292	0.0260	2.41.457	3 ^{8.5}
47	.00508	.00002581	.0000203	.0180	.25621	55.4
48	.00406	.00001652	.0000129	.0115	.06239	86.6
49	.00305	.00000929	.0000073	.0065	3.81251	154.0
5 0	.00254	.00000645	.0000051	.0045	.65415	221.8
L						

CONSTANTS OF COPPER WIRE.

according to the British Standard Wire Gauge. Metric Measure. Temperature o° C. Density 8.90.

Electrical Constants.

		Resistance	and Conductivity.	-	
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001286	4.10907	7779.	0.0000001140	8770000.	7-0
.0001493	.17398	6699.	.0000001537	6504000.	6-0
0.0001722 .0002009 .0002322 .0002053 .0003001	4.23605 .30289 .36593 .42376 .48592	5814. 4979. 4306. 3769. 3266.	0.0000002046 .0000002784 .0000003721 .0000004857 .0000006319	4887000. 3592000. 2687000. 2059000. 1583000.	5-0 4-0 3-0 2-0
0.0003571 .0004218 .0005061 .0005971 .0007151	4.55277 .62510 .70421 .77604 .85434	2801. 2371. 1976. 1675. 1398.	0.0000008798 .0000012275 .0000017671 .0000024600 .0000035279	1137000. 814700. 565900. 406500. 283500.	1 2 3 4
0.0008718 .0010375 .0012554 .0015499 .0019615	4.94041 3.01599 .09877 .19029 .29259	1147.1 963.9 796.6 645.2 509.8	0.000005244 .00000350 .000010874 .000016573 .000026547	190700. 107000. 91960. 60340. 37670.	5 6 7 8 9 10
0.002388	3.37810	418.7	0.00003936	25410.	11
.002978	-47295	335.8	.00006092	16420.	12
.003796	-57934	263.4	.00009945	10060.	13
.005022	.70083	199.1	.00017398	5748.	14
.006199	-79235	161.3	.00026518	3771.	15
0.007846	3.89465	127.45	0.0004238	2359.6	16
.010248	2.01064	97.58	.0007246	1380.1	17
.013949	.14453	71.69	.0013425	744.9	18
.020086	.30289	49.79	.0027837	359.2	19
.024798	.39441	40.32	.0042428	235.7	20
0.03138	2.49671	31.86	0.005398	185.25	21
.04099	.61270	24.39	.011594	86.25	22
.05579	.74659	17.92	.021479	46.56	23
.006.40	.82217	15.06	.030421	32.87	24
.08034	.90495	12.45	.044539	22.45	25
0.09919	2.99647	10.082	0.06782	14.745	26
.11949	1.07733	8.369	.09851	10.151	27
.14672	.16649	6.816	.14853	6.732	28
.17391	.24034	5.750	.20869	4.792	29
.20901	.32017	4.784	.30142	3.318	30
0.2388	1.37810	4.187	0.3936	2.5407	31
•2755	.44017	3.629	.5238	1.9091	32
•3214	.50701	3.112	.7126	1.4033	33
•3797	.57944	2.634	.9947	1.0053	34
•4555	.65846	2.196	1.4313	0.6987	35
0.5564	1.74539	1.7973	2.136	0.46816	36
.6950	.84200	.4388	3.333	.30003	37
.8927	.95070	.1202	7.019	.14247	38
1.1885	0.07501	0.8414	9.747	.10260	39
.3949	.14453	.7169	13.424	.07449	40
1.660	0.22011	0.6024	19.01	0.05260	41
2.009	.30289	-4979	27.84	.03592	42
2.480	.39441	-4033	42.43	.02357	43
3.138	.49671	-3186	67.96	.01471	44
4.099	.61270	-2440	115.94	.00863	45
5.579	0.74659	0.1792	210.4	0.004753	46
8.034	.90495	.1245	445.4	.002245	47
12.554	1.09877	.0797	1087.4	.000920	48
22.318	.34865	.0448	3436.7	.000291	49
32.138	.50701	.0311	7126.3	.000140	50

SIZE, WEICHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Diameter (Circular		per	Log.	per
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	125 .380	.1806 .1440	.14186 .11341	•5474 •4376	.7 3828 .64107	1.827 2.285
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	.284	.08065	.06335	.2444	.38814	4.091
	3	.259	.06708	.05269	.2033	.30810	4.919
	4	.238	.05664	.04449	.1717	.23465	5.826
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	.180	.03240	.02545	.09818	2.99204	10.185
	8	.165	.02723	.02138	.08250	.91647	12.121
	9	.148	.02190	.01720	.06638	.82202	15.065
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	.109	.011881	.009331	.03600	.55635	27.77
	13	.095	.009025	.007088	.02735	.43695	36.56
	14	.083	.006889	.005411	.02088	.31965	47.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	.058	.003364	.0026421	.010194	.00835	98.10
	18	.049	.002401	.0018857	.007276	3.86189	137.44
	19	.042	.001764	.0013854	.005346	.72800	187.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	.028	.00078.4	.0006158	.002376	.37581	420.9
	23	.025	.00062 5	.0004909	.001894	.27738	528.0
	24	.022	.00048.4	.0003801	.001467	.16634	681.8
32 .009 .000081 .00006362 .00024546 .38998 4074. 33 .008 .000064 .00005027 .00019395 .28768 5156. 34 .007 .000025 .00001963 .00007576 5.87944 13200.	27	.016	.000256	.0002011	.0007758	.88974	1289.
	28	.01.4	.000196	.0001539	.0005940	•77375	1684.
	29	.013	.000169	.0001327	.0005121	•7939	1953.
36 0.004 0.000016 0.00001257 0.00004849 <u>5.68562</u> 20620.	32	.009	180000.	.00006362	.00024546	.38998	4074.
	33	.008	100000.	.00005027	.00019395	.28768	5156.
	34	.007	190000.	.00003848	.00014849	.17169	6734.
	36	0.00.1	0.000016	0.00001257	0.00004849	5.68562	20620.

CONSTANTS OF COPPER WIRE.

	R	esistance and Cor	ductivity.		
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds pe r Ohm.	Gauge Number.
0.00004752	<u>5</u> .67692	21040.	0.0000761	13140.	0000
.00005423	.73425	18440.	.0000991	10090.	000
.00006784	.83146	14740.	.0001550	6451.	00
.00008474	.92807	11800.	.0002419	4134.	0
0.0001088	4.03679	9188.	0.0003991	2505.8	1
.0001214	.08439	8234.	.0004969	2012.5	2
.0001460	.16443	6848.	.0007183	1392.2	3
.0001729	.23788	5783.	.0010074	992.6	4
.0002024	.30618	4941.	.0013799	724.7	5
0.0002377	4.37604	4207.	0.001903	525.26	6
.0003023	.48048	3308.	.003079	324.76	7
.0003598	.55606	2779.	.004361	229.30	8
.0004472	.65051	2236.	.006737	148.43	9
.0005455	.73682	1833.	.010025	99.75	10
0.0006802	4.83267	1470.2	0.01559	64.148	11
.0008245	.91618	1212.9	.02290	43.670	12
.0010854	3.03558	921.3	.03969	25.195	13
.0014219	.15287	703.3	.06811	14.682	14
.0018896	.27636	529.2	.12028	8.314	15
0.002318	3.36520	431.3	0.1811	5.5225	16
.002980	.47417	335.6	.2923	3.4211	17
.004080	.61064	245.1	.5607	1.7835	18
.005553	.74453	180.1	1.0388	0.9627	19
.007996	.90289	125.1	2.1541	.4643	20
0.009566	3.98073	104.54	3.083	0.32439	21
.012494	2.09671	80.04	5.259	.19015	22
.015709	.19515	63.66	8.275	.12085	23
.020239	.30618	49.41	13.799	.07246	24
.024489	.38897	40.83	20.203	.04950	25
0.02887	2.46048	34.64	29.41	0.034006	26
.03826	.58279	26.13	49.32	.020275	27
.04998	.69877	20.01	84.14	.011885	28
.05796	.76314	17.25	113.18	.008835	29
.06802	.83266	14.70	155.88	.006415	30
0.09796	2.99103	10.209	323.2	0.0030936	31
.12095	T.08254	8.269	492.7	.0020290	32
.15306	.18485	6.533	789.2	.0012671	33
.19991	.30083	5.002	1346.3	.0007420	34
.39182	.59309	2.552	5171.9	.0001933	35
0.61222	1.78691	1.663	12627.	0.00007920	36

Electrical Constants.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1532	1.3298	1.0444	929.5	2.96826	0.001076
000	.0795	.1653	.9152	814.6	.91093	.001228
00	0.9652	0.9316	.7317	651.2	.81372	.001536
0	.8636	.7458	.5858	521.3	.71711	.001918
1	0.7620	0.5806	0.4560	405.9	2.60839	0.002464
2	.7214	.5216	.4087	363.7	.56079	.002749
3	.6579	.4328	.3399	302.5	.48075	.003306
4	.6045	.3655	.2870	255.4	.40730	.003915
5	.5588	.3123	.2452	218.3	.33899	.004581
6	0.5156	0.2659	0.20881	185.84	2.26914	0.005381
7	.4572	.2090	.16417	146.11	.16469	.006844
8	.4191	.1756	.13795	122.78	.08912	.008145
9	.3759	.1413	.11099	98.78	1.99467	.010124
10	.3404	.1158	.09098	80.98	.90836	.012349
11	0.3048	0.09290	0.07297	64.94	1.81251	0.01540
12	.2769	.07665	.06160	54.83	.73900	.01824
13	.2413	.05823	.04573	40.70	.60960	.02457
14	.2108	.04445	.03491	31.07	.49231	.03219
15	.1829	.03345	.02627	23.43	.36981	.04268
16	0.16510	0.027258	0.021409	19.054	1.27998	0.05248
17	.1.4732	.021703	.017046	15.171	.18101	.06592
18	.12446	.015490	.012166	10.828	.03454	.09235
19	.10658	.011381	.008938	7.955	0.90065	.12571
20	.08890	.007903	.006207	5.524	.74229	.18103
21	0.08128	0.006606	0.005189	4.618	0.66445	0.2165
22	.07112	.005058	.003973	3.536	.54847	.2828
23	.06350	.004032	.003167	2.820	.45003	.3547
24	.05588	.003123	.002452	2.183	.33899	.4581
25	.05080	.002581	.002027	1.804	.25621	.5544
26	0.04572	0.0020903	0.0016418	1.4611	0.16469	0.6 ⁸ 44
27	.04064	.0016516	.0012972	.1545	.06239	.8662
28	.03556	.0012645	.0009932	0.8839	1.94641	1.1313
29	.03302	.0010903	.0008563	.7621	.88204	.3122
30	.03048	.0009290	.0007297	.6494	.81251	.5399
31	0.02540	0.0006452	0.0005067	0.4510	T.65415	2.217
32	.02286	.0005226	.0004104	.3653	.56263	2.738
33	.02032	.0004129	.0003243	.2886	.46033	3.465
34	.01778	.0003161	.0002483	.2210	.34435	4.525
35	.01270	.0001613	.0001267	.1127	.05209	8.870
36	0.01016	0.0001032	0.0000811	0.0722	2.85827	1 3.861

Size and Weight.

CONSTANTS OF COPPER WIRE.

	ŀ	Resistance and Co	nductivity.		
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001559	4.19290	6414.	0.0000001677	5962000.	0000
.0001779	.25024	5620.	.0000002184	4578000.	000
.0002226	.34745	4493.	.0000003418	2926000.	00
.0002780	.44406	3597.	.0000005333	1875000.	0
0.0003571	4.55277	2800.	0.0000008798	1137000.	1
.0003985	.60038	2510.	.0000010955	912800.	2
.0004791	.68041	2087.	.0000015837	631400.	3
.0005674	.75386	1763.	.0000022210	450200.	4
.0006640	.82217	1506.	.0000030420	328700.	5
0.0007799	4.89202	1282.2	0.000004196	238300.	6
.0009257	99647	1080.3	.000006789	147300.	7
.0011804	3.07205	847.2	.000009615	104000.	8
.0014672	16649	681.6	.000014853	67330.	9
.0017898	.25280	558.7	.000022103	45240.	10
0.002232	3.34865	448.1	0.00003437	29100.	11
.002643	.42216	378.3	.00004822	20740.	12
.003561	.55157	280.8	.00008749	11430.	13
.004665	.66886	214.4	.00015016	6660.	14
.006185	.79135	161.7	.00026396	3789.	15
0.007607	3.88119	131.46	0.0003992	2504.9	16
.009553	.98016	104.68	.0006297	1588.0	17
.013385	2.12662	74.71	.0012362	808.9	18
.018219	.26052	54.89	.0022902	436.6	19
.026235	.41888	38.12	.0047489	210.6	20
0.03138	2.49671	31.86	0.006796	147.14	21
.04099	.61270	24.39	.011594	86.25	22
.05142	.71113	19.45	.018243	54.82	23
.06640	.82217	15.06	.030421	32.87	24
.08034	.90495	12.45	.044539	22.45	25
0.09919	2.99647	10.08	0.06789	14.731	26
.12583	T.09877	7.947	.10874	9.196	27
.16397	.21476	6.099	.18550	5.391	28
.19016	.27913	5.259	.24951	4.008	29
.22138	.34865	4.517	.34367	2.910	30
0.3214	1.50701 .59853 .70083 .81682 0.10907	3.112	0.7126	1.4032	31
.3968		2.520	1.0862	0.9206	3 ²
.5022		1.991	1.7398	.5748	33
.6559		1.525	2.9861	.3349	34
1.2855		0.778	11.4020	.0877	35
2.0086	0.30289	0.498	27.8370	0.0359	36

Electrical Constants.

TABLE 71.

STRENCTH OF MATERIALS.*

TABLE /1.	518	ENGI	1.3	UF	VIA	IERI	ALS	2 4		
		(.	a)	MET	AL	s.				
	N	ame of m	etal.							Tensile strength in pounds per sq. in.
Aluminium wire		•								30000-40000
Brass wire, hard drawn	; •		*	•		•				50000-1 50000
Bronze, phosphor, hard	drawn	•	•	•	*	•	•		•	110000-140000
Bronze, phosphor, hard "silicon " Copper wire, hard drawn	•	•	•	•				۰	٠	95000-115000 60000-70000
Gold † wire	· ·	•	*	•	•	•	•	•	•	38000-41000
Iron,† cast			•	•		•	•		*	13000-29000
Iron,‡ cast " wire, hard drawn							:			S0000-120000
" " annealed			•			•				50000-60000
Lead, cast or drawn Palladium † Platinum † wire .			•							26000-33000
Palladium†										39000
Platinum † wire .										50000
Silver † wire										42000
Steel, mild, hard drawn	• •									100000-200000
" hard " "	• •	•	۰		•	٠			•	1 50000-33000
Tin, cast or drawn .	• •	•				•			•	4000-5000
Zinc, cast " drawn	• •	•	•	•	•			•		7000-13000
urawn	• •	•		*	•		•		•	22000-30000
		····								
	(b)	STO	NE	S AN	ID	BRIC	KS.			
	Nan	ne of subs	tanc	с.						Resistance to crush- ing in pounds per sq. in.
Basalt										18000-27000
Brick, soft										300-1500
"hard										I 500-5000
" vitrified										9000-26000
Granite	• •									17000-26000
Limestone	• •			•		٠				4000-9000
Marble	• •	٠	•		•	•	•		+	9000-22000
Sandstone Slate	• •	٠	٠	٠						4500-8000
State	* •	٠	*	٠	•			•	•	11000-30000
			,	TIM						

(C) [ΓI	[]	I	В	E	R.

		N	Tame of	f woo	d.			Tensile strength in pounds per sq. in.	Resistance to crushing in pounds per sq. in.
Ash								11000-21000	6000-9000
Beech .								11000-18000	9000-10000
Birch .								12000-18000	5000-7000
Chestnut .								10000-13000	4000-6000
Elm.								I 2000-I Š000	6000-10000
Hackberry			٠					10000-16000	
Hickory .	٠							I 5000-25000	7000-12000
Maple .								S000-12000	6000-8000
Mulberry .								S000-1.4000	
Oak, burr.								I 5000-20000	7000-10000
" red .								13000-18000	5000-7000
" water								12000-16000	4000-6000
" white								20000-25000	6000-0000
Poplar .								10000-15000	5000-8000
Walnut .								8000-14000	4000-8000

The strength of most materials is so variable that very little is gained by simple tabulation of the results which have been obtained. A few approximate results are given for materials of common occurrence, mainly to indicate the limits between which the strength of fairly good specimens may lie. Some tables are also given indicating the relation of strength to composition in the case of alloys. It has not been thought worth while to state these results in other than the ordinary inch pound units.
† On the authority of Wertheim.
‡ The crushing strength of cast iron is from 5.5 to 6.5 times the tensile strength. Notes. — According to Boys, quartz fibres have a tensile strength of between 116000 and 167000 pounds per square inch.

inch. Leather belting of single thickness bears from 400 to 1600 pounds per inch of its breadth.

PHYSICAL PROPERTIES OF STEEL.

TABLE 72.

Percentages of										stht	sn	vield pounds.	ipture - 100.	cent.
S.	Р.	Si.	C.	Mn.	Cu.	Co.	Ni.	Sb.	Strength at yield point ÷ 100.	Ultimate strength† ÷ 100.	Young's Modulus ÷ 10 ⁶ .	Resilience to vield point in inch pounds.	Resilience to rupture in inch pounds + 100.	Elongation per cent.
.004 .009 .011 .027 .014	.014 .084 .109 .247 .029	.145 .163 .168 .216 .037	.257 .009 .042 .036 .161	.020 .020 .051 .072 .121	.002 .023 .028 .027 .001	.co8 .021 .028 .048 trace	.010 .016 .044 .070 trace		216 252 276 322 317	379 434 481 529 534	246 260 234 243 277	9.5 12.3 17.4 24.7 18.4	106 129 119 117 151	30.9 32.6 27.5 24.9 32.0
trace .008 .056 .004 .058	.039 .034 .113 .024 .128	.084 .073 .007 .087 .013	.234 .316 .139 .447 .254	.000 .064 .165 .072 .341	.014 .008 .364 .005 .278	.036 .016 .076 .018 .045	.057 .023 .107 .023 .065	.115	260 419 478 461 487	605 649 687 755 785	250 263 261 271 293	1 5.6 37.9 46.3 46.0 55.0	110 130 110 124 91	20.8 22.3 18.1 18.6 15.5
.066 .002 .008 .041 .062	.099 .022 .062 .125 .138	.016 .123 .071 .028 .018	.326 •595 •447 •355 •390	.525 .124 .493 .404 .584	.306 .001 .007 .253 .344	.054 .007 .040 .049 .073	.078 .006 .065 .102 .110		549 480 484 543 565	793 828 859 880 953	255 267 284 254 259	58.0 42.7 38.2 55.9 73.7	38 151 174 49 44	5.6 21.0 22.7 6.7 5.6
.002 .002 .043 .028 .003	.020 .026 .104 .065 .031	.096 .164 .07.1 .028 .204	.652 .935 .756 .690 .929	.061 .099 .465 .459 .129	.030 .004 .346 .022 .007	.007 .018 .052 .000 .013	.018 .016 .120 .coo .010		510 557 652 516 590	955 957 1010 1022 1050	269 278 237 285 284	50.2 65.3 94.6 55.6 62.1	112 123 14 37 148	13.7 16.6 1.7 4.6 16.0
.038 .001 .000 .014	.092 .015 .019 .063	.070 .150 .192 .043	.387 .971 1.105 .681	.625 .074 .226 .625	.210 .003 .001 .038	.050 .003 .002 .000	.115 .015 .004 .000		631 555 668 614	1112 1171 1254 1288	279 262 272 260	83.2 65.6 82.7 82.2	135 99 93 108	13.7 9.9 9.0 9.9
				S	TEEL	CONTA	INING	Снго	MIUM.					
trace .001 trace	.020 .019 .007	.116 .136 .154	.461 .454 .639 .600 1.100	.027 .023 .050	trace .000 .008	.000 .000 trace	.92 1.04 2.20	2 Cr. 1 Cr. 4 Cr. 5 Cr. 5 Cr. 5 Cr.	370 495 500 675 1770	810 915 967 1030 1778	287 281	28.3 44.8 56.1	110 157 25 —	15.6 19.1 3.5 19.9 7.5
				5	Steel	CONT	AINING	Tunc	STEN.					
Same	e after	.09 .05 heatii .21		.19 2.66 ull red .35	6.73 and c	uench	nt tung ing in c nt tung	oil .		1464 760 940 1900	_			0.0 0.0 0.0 0.75
A-1				S	TEEL (CONTA	INING	MANG	ANESE	•				
.06	.08	•37	.72	9.8		e test other te	est	• •	=	1065		-	-	22.0 28.9

* The samples here given are arranged in the order of ultimate strength. The table illustrates the great complexity of the problem of determining the effect of any given substance on the physical properties. It will be noticed that the specimens containing moderately large amounts of copper are low in ductility, — that high carbon or high sum of carbon and manganese generally gives high strength. The first specimen seems to indicate a weakening effect of silicon when a moderate amount of carbon is present. It has to be remembered that no table of this kind proves much unless nearly the same amount of work has been spent on the different specimens in the process of manufacture. Most of the lines give averages of a number of tests of similar steels. The table has been largely compiled from the Report of the Board on Testing Iron and Steel, Washington, 1881, and from results quoted in Howe's "Metallurgy of Steel."

t The strengths and elasticity data here given refer to bar or plate of moderate thickness, and are in pounds per square inch. Mild steel wire generally ranges in strength between 100000 and 20000 pounds per square inch, with an elongation of from 8 to 4 per cent. Thoroughly annealed wire does not differ greatly in strength from the data given in the table unless it has been subjected to special treatment for the purpose of producing high density and fine-grained structure. Drawing or stretching and subsequent rest tend to increase the Young's Modulus.

ELASTICITY AND STRENCTH OF IRON.*

$ \begin{array}{ c c c c c c c c } \hline 3 & 100 & 144 & \\ \hline 4 & 104 & 140 & \\ \hline 5 & 103 & 130 & \\ \hline 7 & 101 & 114 & \\ \hline 10 & 100 & 100 & \\ \hline 15 & 98 & 92 & \end{array} \right\} $ The variation of the yield point is not regular, and seems to have been much affected by the temperature of rolling.
--

TABLE 74.

APPROXIMATE VARIATION OF THE STRENCTH OF BAR IRON, WITH VARIATION OF SECTION.[†]

Diameter	Strength per sq.	Total strength of bar.	Diameter	Strength per sq.	Total strength
in inches.	in. in pounds.		in inches.	in. in pounds.	of bar.
2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2	59000 58300 57600 57100 56700 56300 555900 55500 55100 54700	224000 203000 182000 163000 145000 129000 113000 99000 85000 73000 62000	I.I I.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	54300 54000 53700 53300 53000 52700 52400 52100 51900 51600 51300	52000 42000 34000 27000 20000 14900 10300 6600 3700 1600 400

* This table was computed from the results published in the Report of the U.S. Board on Testing Iron and Steel, Washington, 1881, and shows approximately by the relative effect of different amounts of reduction of section from the pile to the rolled bar. A reduction of the pile to 10 per cent of its original volume is taken as giving a strength of 100, and the others are expressed in the same units.

† The strength of bar iron may be taken as ranging from 15 per cent above to 15 per cent below the numbers here given, which represent the average of a large number of tests taken from various sources.

NOTES. — The stress at the yield point averages about 60 per cent of the ultimate strength, and generally lies between 50 and 70 per cent. The variation depends largely on the temperature of rolling if the iron be otherwise fairly pure.

According to the experiments of the U. S. Board for Testing Iron and Steel, above referred to, a bar of iron which has been subject to tensile stress up to its limit of strength gains from 10 to 20 per cent in strength if allowed to rest ^f ree from stress for eight days or more before breaking. The effect of stretching and subsequent rest in raising the clastic limit and tensile strength was discovered by Wöhler, and has been investigated by Bauschinger, who shows that the modulus of clasticity is also raised after rest. The strengthening effect of stretching with rest, or continuous Yery slowly increased loading, has been rediscovered by a number of experimenters.

SMITHSONIAN TABLES.

72

EFFECT OF RELATIVE COMPOSITION ON THE STRENGTH OF ALLOYS OF COPPER, TIN, AND ZINC.*

Percentage of copper.	ercentage of tin.	Tensile strength.	Yield point.	Crushing t strength.	Percentage elongation.	Percentage compression.
Perc	Per	Pounds	s per squ	Per el	Per	
100	00	28000	14000	42000	8.	44
95	5	31000	17000	46000	10.	41
90	IO	29000	21000	5.1000	4.	31
85	15	33000	26000	74000	т.б	24
So	20	32000	28000	124000	0.5	14
75	25	18000	18000	1 50000	0.0	8
70	30	6500	6500	143000	0.0	2
65	35	2800	2800	7 5000	0.0	4
		1000		, , , , , , , , , , , , , , , , , , , ,		

TABLE 75. — Copper-Tin Alloys. (Bronzes.)

TABLE 76. - Copper-Zinc Alloys. (Brasses.

Percentage of copper.	Percentage of zinc.	Tensile strength.	Vield Vield s pcr squa	Crushing t strength.	Percentage elongation.
100 95 90 85 80 75 70 65 60 55 50 45	0 5 10 25 30 35 40 45 50 55	27000 28000 30000 32000 34000 37000 41000 46000 49000 44000 30000 14000	1.4000 1.2000 1.0000 8000 9000 1.0000 1.3000 1.3000 1.7000 2.0000 2.4000 1.4000	41000 28000 29000 33000 46000 54000 63000 74000 90000 116000 126000	7 12 18 25 33 38 38 38 33 19 10 4

TABLE 77. -- Copper-Zinc-Tin Alloys.§

	Percentage of				Tensile strength		
Copper.	Zinc.	Tin.	in pounds per sq. in.	Copper.	Zinc.	Tin.	in pounds per sq. in.
45 50 55 55 60 65		5 5 10 2 5 10 15 3 5 10 20 5 10 20 5 10 25	1 5000 50000 1 5000 6 5000 6 2000 3 2 500 1 5000 6 0000 5 2 500 4 0000 1 0000 5 0000 4 2000 3 0000 1 8000 1 2000	70 75 80 85 90	<pre> 25 20 15 10 5 10 5 10 5 10 5 10 5 10 5 10 5 5 </pre>	5 10 15 20 25 5 10 15 20 5 10 15 5 10 5 5	4 5000 44000 37000 30000 24000 4 5000 4 5000 4 5000 4 5000 4 5000 4 5000 4 5000 4 3500 4 3500 4 0 500 4 2000

* These tables were compiled from the results published by the U. S. Board on Testing of Metals. The numbers refer to unwrought castings, and are subject to large variations for individual specimens.

t The crushing strengths here given correspond to 10 per cent compression for those cases where the total compression exceeds that amount.

‡ For crushing strength, 10 per cent compression was taken as standard.

§ This table covers the range of triple combinations of these three metals which contain alloys of useful strength and moderate ductility. The weaker cases here given, and those lying outside the range here taken, are generally weak and brittle. The absolute strength may of course be varied by the method of fusing and casting, and certainly can be greatly increased by working. The object of the table is to show relative values, and to give an idea of the strength of sound castings of these alloys.

ELASTIC MODULI.

Rigidity Modulus.*

	Modulus	of Rigidity.	
Substance.	Pounds per square inch \div 10 ⁶ .	Grammes per square centi- metre $\frac{\cdot}{\cdot}$ 10 ⁶ .	Authority.
Metals : — Aluminium Brass and Bronze wire Copper, drawn """"""""""""""""""""""""""""""""""""	3.4-4.8 4.6-5.8 5.6-6.7 5.0 6.2 7.1 5.6 4.0 9.6 10-14 8.9 9.4 3.8 3.6 3.8 10.6 11.8 2.2 5.1 5.4 3.3 3.9 2.5 1.8 1.7 3.2 2.7 .117	$\begin{array}{c} 241 - 335\\ 320 - 410\\ 393 - 473\\ 352\\ 432\\ 496\\ 395\\ 281\\ 671\\ 700 - 800\\ 622\\ 663\\ 270\\ 256\\ 265\\ 746\\ 829\\ 154\\ 360\\ 382\\ 235\\ 273\\ 177\\ 128\\ 119\\ 229\\ 189\\ 7 - 12\end{array}$	Thomson [†] -Katzenelsohn. Various. Thomson. [†] Katzenelsohn. " Gray. Katzenelsohn. Thomson. [†] Wertheim. Various. Thomson. [†] Pisati. Thomson. [†] Pisati. Baumeister. Wertheim. Pisati. Kiewiet. Thomson. [†] Kiewiet. Thomson. [†] Kiewiet. Wertheim. Kowalski. Gray & Milne. Gray.

* The modulus of rigidity as used in this table may be shortly defined by the following equation : --

Modulus of rigidity = Intensity of tangential stress.

Distortion in radians.

To interpret the equation imagine a cube of the material, to four consecutive faces of which a tangential stress of uniform intensity is applied, the direction of the stress being opposite on adjacent faces. The modulus of rigidity is the number obtained by dividing the numerical value of the tangential stress per unit of area by the number representing the change of the angles on the nonstressed faces of the cube measured in radians.

† Lord Kelvin.

SMITHSONIAN TABLES.

ELASTIC MODULI.

Young's Modulus.*

	Young's Modulus.	
Substance.	Pounds per square inch \div 106.Grammes per square centi- metre \div 106.	Authority.
	-	
Metals : —		
Brass and bronze, cast	8.6-10 600-700	Various.
Brass, drawn Copper, drawn annealed	14-17 1000-1200	6.6
Copper, drawn	16-18 1150-1250	"
" annealed	15 1052	Wertheim.
German silver, drawn	17-20 1209-1400	Various.
Gold, drawn	12-14 813-980	
" annealed	18 558	Wertheim.
Iron, cast	8-17† 550-1200	Various.
" wrought	24-30 1700-2100	"
Iron wire		66
Lead, cast or drawn		Wertheim.
Palladium, soft	14 979 17 1176	W CI LIICIIII.
Platinum, drawn	17 1176 23-26 1600-1700	Various.
" soft	22 1552	Wertheim.
Silver, drawn	10-10.7 700-750	Various.
Steel	23-30‡ 1600-2100	66
" hard drawn.	27-30 1900-2100	Various.
Tin	16 417	Wertheim.
Zinc	12-14 870-960	Various.
Bone abt.	2.3 160	-
Carbon	2.2-3.6 151-255	Beetz.
Glass.	8.6-11.4 600-800	Various.
Glass	7-10 500-700	66
Stone :		
Clay rock	4.7 329	
Granite	5.9 416	Gray
Marble.	5.7 400	3.4
Slate	9.8 686	Milne.
Tuff	2.7 189	
Whalebone abt.	0.85 60	Various.
Wood	1.0-2.2 70-154	various.
	1	

* The Young's Modulus of elasticity is used in connection with elongated bars or wires of elastic material. It is the ratio of the number representing the longitudinal stress per unit of area of transverse section to the number representing the elongation per unit of length produced by the stress, or : --

Young's Modulus = Intensity of longitudinal stress. Elongation per unit length.

In the case of an isotropic substance the Young's Modulus is related to the elasticity of form (or rigidity modulus) and the elasticity of volume (or bulk modulus) in the manner indicated in the following equation : --

$$E = \frac{9^{nk}}{3^{k+n}}$$

where E is Young's Modulus, n the rigidity modulus and k the bulk modulus.

The bulk modulus is the ratio of the number expressing the intensity of a uniform normal stress applied all over the bounding surface of a body (solid, liquid or gas) to the number expressing the change of volume, per unit volume, produced by the stress.

† The modulus for cast iron varies greatly, not only for different specimens, but in the same specimen for different intensities of stress. It is diminished for tension stress by permanent elongation.

‡ See also Table 72.

ELASTIC MODULI.

TABLE 80. - Variation of the Rigidity of Metals with Temperature.*

The modulus of rigidity at temperature t is given by the equation $n_t = n_0 (1 + at + \beta t^2 + \gamma t^3)$.

Metal.		 130	a	β	γ	Authority.
Brass Copper Iron Platinum Silver Steel	•	$\begin{array}{c} 320 \times 10^{6} \\ 265 \times 10^{5} \\ 397 \times 10^{5} \\ 390 \times 10^{5} \\ 694 \times 10^{6} \\ 811 \times 10^{6} \\ 663 \times 10^{6} \\ 257 \times 10^{6} \\ 829 \times 10^{5} \end{array}$	000455 002158 002716 000572 000206 000111 000387 000187	00000136 00000023 00000023 00000012 00000019 00000019 00000038 00000059		K. & L. Pisati. " K. & L. " Pisati. "

TABLE 81. — Ratio ρ of Transverse Contraction to Longitudinal Extension under Tensile Stress
(Poisson's Ratio).

Name of substance.	Range of the value of ρ .	Mean of each range.	Final mean.	ź	Authority.
Brass	0.340-0.500 	0.469 0.420 0.387 0.325 0.315 0.226 0.348 0.332 0.310 0.253 0.304 0.253 0.304 0.294 0.294 0.294 0.294 0.306 0.253 0.304 0.253 0.304 0.253 0.304 0.253 0.306 0.255 	0.357 0.340 0.277 0.375 0.295 0.299 0.205 0.389 0.500 0.500 0.500 0.502 0.500	Bau Kir Mal We Litt Mal Bau Litt Mal Kir Oka Sch Oka Sch Mal Goo Mal	erett. meister. chhoff. llock. rtheim. mann. llock. omson. erett. llock. meister. mann. llock. chhoff. atow. neebeli. atow. neebeli. llock. etz & Kurz. llock. " " ntgen. agat. urer.
Katzenelsohn gives the following values, to	gether with the per	centage varia	ition δ betw	een o ^o	and 100 ⁰ C.
Substance.		P	ρδ		

Aluminium . Brass		٠						0.13	I 5.7
Brass								0.42	3.9
German silver	٠			٠			•	0.33	3.4
Gold		•						0.17	2.5
Iron	•	•			•		•	0.27	3.7
Platinum .	٠				•	•		0.16	5.5
Silver					•			0.37	12.2

* According to the experiments of Kohlrausch and Loomis (Pogg. Ann. vol. 141), and of Pisati (N. Cim. (3) vols. 4, 5). SMITHSONIAN TABLES.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for terminal rigidity. The moduli are in grammes per square centimetre.

* These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35). SMITHSONIAN TABLES.

TABLE 83.

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated.

(a) REGULAR SYSTEM.*										
Subst	ance.	E _a	E	E _c		T,	1	A	ithority.	
Kock salt Sylvine . Sodium ch Potash alu Chrome al	luor spar . 1473×10^6 yrites . 3530×10^5 ock salt . 416×10^6 '' . . ylvine . . '' . . '' . . odium chloride . . otash alum . . hrome alum . . 00 alum . .			6 2310 ×	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.‡ t.	
			(b) RHOMBIC	C System.]]						
Substance.	E1	E_2	E ₃	E4		E5	E	6	Authority.	
Barite . Topaz .	620×10^{6} 2304 × 10 ⁶		$ \begin{vmatrix} 6 \\ 959 \times 10^6 \\ 2652 \times 10^6 \end{vmatrix} $	376×10^{6} 2670 × 10 ⁶	$\begin{array}{c} 376 \times 10^{6} & 702 \times 10^{6} \\ 2670 \times 10^{6} & 2893 \times 10^{6} \\ 3180 \end{array}$		740 3180	\times 10 ⁶	Voigt. "	
	Substance.		$T_{12} = T_{21}$	$T_{13} = T_3$	1	$T_{23} = T_{32}$			uthority.	
Barite . Topaz .	••••	• • •	283×10^{6} 1336 × 10 ⁶	293 × 10 1353 × 10		121 1104)	\times 10 ⁶	Vo	igt.	
In the M		$\lim \begin{cases} E_{max} = \\ E_{min} = \\ \int E_{max} = \end{cases}$	Coromilas (Z = 887×10^{6} at = 313×10^{6} at = 2213×10^{6} i = 1554×10^{6} c	21.9° to the 75.4° " n the princip	prin pal a	ncipal an " '	vis. •			
In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal. $E_0 = 2165 \times 10^6$, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$, $T_0 = 667 \times 10^6$, $P_{90} = 883 \times 10^6$. The smallest cross dimension of the prism experimented on (see Table 82), was in the principal axis for this last case.										
In the RHOMBOHEDRIC SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system. $E_0 = 1030 \times 10^6$, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$, $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$. Baumgarten ¶ gives for calcspar $E_0 = 501 \times 10^6$, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.										

distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively. † Voigt, "Wied. Ann." vol. 31, 34-35. ‡ Koch, "Wied. Ann." vol. 18. § Beckenkamp, "Zeit. für Kryst." vol. 10. || The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes. * Baumgarten, "Pogg. Ann." vol. 152.

COMPRESSIBILITY OF CASES."

These tables give the relative values of the product $\not \sim$ for different pressures and temperatures, and hence show the departure from Boyle's law. The pressures are in metres of mercury, or in atmospheres, the volume being arbitrary. The temperatures are in centigrade degrees.

TABLE 84. - Nitrogen.

Pressure in	Relative values of pv at -							
metres of mercury.	17 ⁰ .7	30 ⁰ , 1	50 ⁰ .4	75 ⁰ •5	1000.1			
30 60 100 140 180 220 260 300 320	2745 2740 2790 2890 3015 3140 3290 3450 3525	2875 2930 3040 3150 3285 3440 3600 3675	3080 3100 3275 3390 3530 3685 3840 3915	3330 3360 3445 3550 3675 3820 3975 4130 4210	3575 3610 3695 3820 3950 4090 4240 4400 4475			

TABLE 85. - Hydrogen.

Pressure in	Relative values of fr at -						
metres of mercury.	170.7	400.4	60°.4	810.1	1000,1		
30 60 100 140 180 220 260 300 320	2830 2885 2985 3080 3185 3290 3400 3500 3550	3045 3110 3200 3300 3420 3520 3625 3730 3780	3235 3295 3400 3500 3620 3725 3830 3935 3990	3430 3500 3620 3710 3830 3930 4040 4140 4200	3610 3680 3780 3880 4010 4110 4220 4325 4385		

TABLE 86. - Methane.

Pressure in metres of mercury.		Relative values of pv at								
	14 ⁰ .7	29 ⁰ .5	40 ⁰ .6	60 ⁰ . х	79 ⁰ .8	100 ⁰ .1				
30 60 100 140 180 220	2580 2400 2275 2260 2360 2510	2745 2590 2480 2480 2560 2690	2880 2735 2640 2655 2730 2840	3100 2995 2935 2940 3015 3125	- 3230 3180 3190 3260 3360	3460 3435 3460 3525 3625				

TABLE 87. - Ethylene.

Pressure in		Relative values of p_{77} at —								
metres of mercury.	16°.3	200.3	30 ⁰ . I	40 ⁰ .0	50 ⁰ .0	60 ⁰ .0	70.0	79 ⁰ -9	89° .9	100 ⁰ .0
30 60 90 120 150 186 210 240 270 300 320	1950 810 1065 1325 1590 1855 2110 2360 2610 2860 3035	2055 900 1115 1370 1625 1890 2145 2395 2640 2890 3065	2220 1190 1195 1440 1690 1945 2200 2450 2710 2960 3125	2410 1535 1325 1540 1785 2035 2285 2540 2790 3040 3200	2580 1875 1510 1660 1880 2130 2375 2625 2875 3125 3285	2715 2100 1710 1780 1990 2225 2470 2720 2965 3215 3375	2865 2310 1930 1950 2125 2450 2680 2910 3150 3380 3545	2970 2500 2160 2115 2250 2450 2680 2910 3150 3380 3545	3090 2680 2375 2305 2390 2565 2790 3015 3240 3470 3625	3225 2860 2565 2470 2540 2700 2910 3125 3345 3560 3710

* Tables 84-89 are from the experiments of Amagat; "Ann. de chim. et de phys.," 1881, or "Wied. Bieb.," 1881, p. 418.

COMPRESSIBILITY OF CASES.

Pressure in		Relative values of pr at -								
metres of mercury.	187.2	35 ⁰ . I	40° .2	50 ⁰ .0	60 ⁰ .0	7 0 ⁰ .0	80 ⁰ .0	90 ⁰ .0	1000.0	
30 50 80 110 140 170 200 230 260 290 320	liquid - 625 825 1020 1210 1405 1590 1770 1950 2135	2360 1725 750 930 1120 1310 1500 1690 1870 2060 2240	2.460 1900 825 980 1175 1360 1550 1730 1920 2100 2280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 2525 1975 1550 1525 1645 1810 1990 2166 2340 2525	2995 2685 2225 1845 1715 1780 1930 2090 2265 2440 2620	3120 2845 2.440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830	

TABLE 88. - Carbon Dioxide.

TABLE 89. - Carbon Dioxide.*

Pressure in		Value of the rat	io pr//p171 at	
atmospheres.	50 ⁰	1000	200 ⁰	250 ⁰
0.725 1.440 2.850	1.0037 1.0075 1.1045	1.0021 1.0048 1.0087	1.0009 1.0025 1.0040	1.0003 1.0015 1.0020

TABLE 90. - Air, Oxygen, and Carbon Monoxide at Temperature between 18° and 22°.†

The pressure p_1 is in metres of mercury; the product pv is simply relative.

A	ir.	Oxy	gen.	Carbon monoxide.		
t	ţv	Þ	þυ	ħ	þυ	
24.07 34.90 45.24 55.30 64.00 72.16 84.22 101.47 133.89 177.60 214.54 250.18 304.04	26968 26908 26791 26789 26778 26792 26840 27041 27608 28540 29585 30572 32488	24.07 34.89 - 55.50 64.07 72.15 84.19 101.46 133.88 177.58 214.52 - 303.03	26843 26614 	24.06 34.91 45.25 55.52 64.00 72.17 84.21 101.48 133.90 177.61 214.54 250.18 304.05	27147 27102 27007 27025 27060 27071 27158 24420 28092 29217 30467 31722 33919	

* Similar experiments made on air showed the ratio pv/p_1v_1 to be practically constant.

† Amagat, "Compte Rendu," 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA."

TABLE 91. - Sulphur Dioxide.

Pressure in Atmos.	Correspon perimen	ding Volur ts at Tempo	ne for Ex- erature —	Volume.	Pressure Experime	Pressure in Atmospheres for Experiments at Temperature —		
Press Au	5 ^{8°.0}	99 ⁰ .6	183°.2	volume.	58°.0	99 ⁰ .6	183°.2	
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120 140 160	8560 6360 4040 	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450 - - - - - - -	- - - - - 2640 2260 2260 2240 1640 1375 1130 930 790 680 545 430 325	10000 9000 8000 7000 6000 5000 3500 3500 3500 3000 2500 1500 1000 500	- 9.60 10.40 11.55 12.30 13.15 14.00 14.40 - - - -	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60 -	- - - - - - 29.10 33.25 40.95 55.20 76.00 117.20	

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

TABLE 92. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon perimen	nding Volum ts at Tempe	ne for Ex- erature —	Volume.	Pressure	in Atmospl at Temp	eres for Exp erature —	periments
Pressure Atmos	46`.6	99 ⁰ .6	183 ⁰ .6	v ordine.	30 ⁰ .2	467.6	99 .6	1830.0
10 12.5 20 25 30 35 40 45 50 55 60 70 80 90 100	9500 7245 5880 - - - - - - - - - - - - - - - - -	- 7635 6305 4645 3560 2875 2440 2080 1795 1490 1250 975 - -	- - 4875 3835 3485 2680 2345 2035 1775 1590 1450 1245 1125 1035 950	10000 9000 8000 7000 6000 5000 4000 3500 3500 3000 2500 2000 1500 1000	8.85 9.60 10.40 11.05 11.80 12.00 - - - -	9.50 10.45 11.50 13.00 14.75 16.60 18.35 18.30 - -	12.00 13.60 15.55 18.60 22.70 25.40 29.20 34.25 41.45 49.70 59.65	- - - - 19.50 24.00 27.20 31.50 37.35 45.50 58.00 93.60

* From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

TABLE 93.

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

	Temp.	ession t vol- r atmo.	e or f pres- atmos-		Calculated values of bulk modulus in —		
Liquid.	С. р.	Compression per unit vol- ume per atmo X 10 ⁶ .	Pressure range of J sure in at pheres.	Authority.	Grammes per sq. cm.	Pounds per sq. in.	
Water, sea " pure " u u " u u u u u u u u u u u u u u u u u u u	12 12 0 17.6 0 10 20 30 40 50 60 70 50 60 70 50 90 100	44* 47* 49.65 42.9 50.3 47.0 44.5 42.5 40.9 39.7 38.9 39.0 39.6 40.2 41.0	$ I \\ I \\ I -24 \\ I -262 \\ I -5 \\ $	Tait	234.8×10^{5} 220.0 " 208.0 " 241.1 " 206.0 " 220.0 " 232.0 " 243.2 " 253.1 " 265.0 " 264.3 " 260.8 " 257.3 " 252.4 "	3.34×10^{5} 3.13 " 2.96 " 3.43 " 2.93 " 3.13 " 3.30 " 3.30 " 3.46 " 3.60 " 3.70 " 3.77 " 3.76 " 3.71 " 3.66 " 3.59 "	

TABLE 94.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

Solid.	sssion t vol- r atmo.	A .1 %	Calculated values of bulk modulus in —		
Sona.	Compression per unit vol- ume per atmo X 10 ⁶ .	Authority.	Grammes per sq. cm.	Pounds per sq. in.	
Crystals : Barite	1.93 0.747 1.20 1.14 2.67 4.2† 7.45† 0.61 0.113 0.95 0.86 1.02 2.76 0.68 2.2-2.9	Voigt	535×10^{6} 1384 " 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 1090 " 1202 " 1012 " 374 " 1518 " 405 "	7.61×10^{6} 19.68 " 12.24 " 12.89 " 5.50 " 3.50 " 1.97 " 24.11 " 130.10 " 15.48 " 17.10 " 14.41 " 5.32 " 21.61 " 5.76 "	

* Tait finds for fresh water the value .0072 (1 - 0.034 p) and for sea water .00666 (1 - 0.034 p) where p is the pressure in tons per square inch. The range of variation of p was from 1 to 3 tons.

† Röntgen and Schneider by piezometric experiments obtained 5.0×10^{-6} for rock salt and 5.6×10^{-6} for sylvine (Wied. Ann., vol. 31).

SMITHSONIAN TABLES.

•

TABLE 95. DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.*

E 664 1	COBIC				
	C	Dounda		Grammes	Pounds
C. Lange	Grammes	Pounds per cubic	Substance.		per cubic
Substance.	centimetre.	foot.	Substance.	centimetre.	foot.
	centimetre.	1000		commence.	1000
		6 . 60	Caracter	. 00	
Agate	2.5-2.7	156-168	Gas carbon	1.88	119
Alabaster:			Glass:		1
Carbonate	2.69-2.78	168-173	Common	2.4-2.8	1 50-175
Sulphate	2.26-2.32	141-145	Flint		180-280
		106	Glauber's salt	2 . 2 .	
Alum, potash	1.7			1.4-1.5	87-93
Amber	1.06-1.11	66-69	Glue	I.27	80
Anthracite	1.4-1.8	87-112	Gneiss	2.4-2.7	1 50-168
Apatite	3.16-3.22	197-201	Granite	2.5-3.0	156-187
		187	Graphite		120-140
Aragonite	3.0				
Arsenic	5.7-5.72	356-358	Gravel		94-112
Asbestos	2.0-2.8	125-175	Gray copper ore .	4-4-5-4	27 5-335
Asphaltum	I.I-I.2	69-75	Green stone	2.9-3.0 1	180-185
Barite	4.5	281	Gum arabic	1.3-1.4	80-85
				1.2 1.4	00 03
Basalt	2.7-3.I	168-193	Gunpowder:		
Beeswax	0.96-0.97	60-61	Loose	0.9	56
Bole	2.2-2.5	137-156	Tamped	I.75	109
Bone	1.7-2.0	106-125	Gypsum, burnt	1.81	113
Boracite	2.9-3.0	181-187	Hornblende	3.0	187
				0.88-0.91	
Borax	1.7-1.8	106-112	lce	- 1	55-57
Borax glass	2.6	162	Iodine	4.95	309
Boron	2.68-2.69	167-168	Ivory	1.83-1.92 1	114-120
Brick	2.0-2.2	125-137	Kaolin	2.2	137
Butter	0.86-0.87		Lava :		51
	· · ·	53-54	T) 1/1-	2.8-3.0	175-18-
Calamine	4.1-4.5	255-280		2.0-3.0	175-185
Calespar	2.6-2.8	162-175	Trachytic	2.0-2.7 1	125-168
Carbon.			Lead acetate	2.4	150
See Graphite, etc.			Leather:		
Caoutchouc	0.92-0.99	57-62	Dry	0.86	5.1
			0 1	1.02	54 64
Celestine	3.9	243		1.02	04
Cement:			Lime:		
Pulverized loose .	1.15-1.7	72-105	Mortar		103-111
Pressed	1.85	115	Slaked		81-87
Set	2.7-3.0	168-187	Lime		144-200
Cetin	0.88-0.94	55-59	Limestone	2.46-2.86	154-178
Chalk	1.9-2.8	118-175	Litharge :		0
Charcoal:			Artificial	9.3-9.4	580-585
Oak	0.57	35	Natural		489-492
TO!	0.28-0.44	17 5-27 5	Magnesia	3.2	200
		17.5-27.5			187
Chrome yellow	6.00	374	Magnesite	3.0	
Cinnabar	8.12	507	Magnetite		306-324
Clay	1.8-2.6	122-162	Malachite		231-256
Clayslate	2.8-2.9	175-180	Manganese:		
1 (- 1 - 6)	1.2-1.5		Red ore	3.46	216
		75-94	751 1		
Cobaltite	6.4-7.3	400-455			243-256
Cocoa butter	0.89-0.91	56-57	Marble		157-177
Coke	1.0-1.7	62-105	Marl	1.6-2.5	100-156
Copal	1.04-1.14	65-71	Masonry		116-144
Corundum	3.9-4.0	245-250	Meerschaum	.99-1.28 6	1.8-79.9
			Melaphyre	2.6	162
Diamond	3.5-3.6	220-225			
Anthracitic	1.66	104	Mica		165-200
Carbonado	3.01-3.25	188-203	Mortar	1.75	109
Diorite	2.8-3.1	175-193	Mud	1.6	102
Dolomite	3.8-2.9	175-181	Nitroglycerine	1.6	99
			Ochre		218
Earth, dry	1.6-1.9	100-120		3.5	
Ebonite	1.15	72	Opal	2.2	137
Emery	4.0	250	Orpinient	3.4-3.5	212-218
Epsom salts:			Paper	0.7-1.15	44-72
Crystalline	1.7-1.8	106-112	Paraffin	0.87-0.91	54-57
4 7 7	2.6	162	Peat	0.8.4	
					52
Feldspar	2.53-2.58	158-161	Phosphorus, white	1.82	114
Flint	2.63	164	Pitch	I.07	67
Fluor spar	3.1.1-3.18	196-198	Porcelain	2.3-2.5	143-156
Gabronite	2.9-3.0	181-187	Porphyry		162-181
Gamboge	I.2	75	Potash	2.26	141
	1 1 4 6	1 / 5	1 Utabil + + +		
				10-52	206-224
Galena	7.3-7.6	460-470	Pyrites		306-324
					306–324 231–287

SMITHSONIAN TABLES.

* For metals, see Table 97.

DENSITY OF VARIOUS SOLIDS.

Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.
Quartz Resin Rock crystal . Sal ammoniac . Saltpetre Sand : Dry Damp . Sandstone . Selenium . Serpentine .	2.65 1.07 2.6 2.28–2.41 1.5–1 6 1.95–2.08 1.40–1.65 1.90–2.05 2.2–2.5 4.2–4.8 2.43–2.66 2.6 2.0–2.5 2.66 2.5–3.0 2.0–2.7	23-56 165 67 162 142-150 94-100 122-130 87-103 119-128 137-156 262-300 152-166 162 125-156 166 156-187 162-168 7.8	Spathic iron oreStarchStarchStibniteStrontianiteSyeniteSugarTalcTalcTallowTelluriumTileTinstoneTopazTourmalineTrachyte	$\begin{array}{c} 1.45\\ 3.7-3.9\\ 1.53\\ 4.6-4.7\\ 3.7\\ 2.6-2.8\\ 1.61\\ 2.7\\ .9197\\ 6.38-6.42\\ 1.4-2.3\\ 6.4-7.0\\ 3.5-3.6\\ 2.94-3.24\end{array}$	162-175 156 90 231-243 95 287-293 231 162 100 168 570-605 398-401 87-143 399-437 219-223 183-202 168-175 162-170

TABLE 96.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

Alloy.	Grammes per cubic centimetre.	Pounds per cubic foot.
Brasses : Yellow, 70Cu + 30Zn, cast	8.44	527
" " rolled	8.56	534
" " drawn	8.70	542
" Red, 90Cu + 10Zn	S.60	536
"White, $50Cu + 50Zn$	8.20	511
Bronzes: $90Cu + 10Sn$	8.78	548
" $\$_{5}Cu + \imath_{5}Sn$	8.89	555
$\frac{1}{20} \operatorname{SoCu} + 20\operatorname{Sn} \cdot \cdot$	8.74	545
" $75Cu + 25Sn$	8.83	551
German Silver : Chinese, 26.3 Cu + 36.6 Zn + 36.8 Ni	S.30	518
" "Berlin (1) $52Cu + 26Zn + 22Ni$	8.45	527
(2) 59Cu + 302n + 11N1.	8.34	520
(3) 03Cu + 30Zn + 0N1	8.30	518
INICKEIIII	S.77	547
Lead and Tin: $87.5Pb + 12.5Sn$	10.60	661
	10.33	644
$1 \rightarrow 1 \rightarrow$	10.05	627
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.43	588
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.73	545
30.510 ± 09.500	8.24	514
Bismuth, Lead, and Tin: $53Bi + 40Pb + 7Cd$.	10.56	659
Wood's Metal: $50Bi + 25Pb + 12.5Cd + 12.5Sn$	9.70	605
Cadmium and Tin : $32Cd + 68Sn$	7.70	480
	18.84	1176
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.36	1145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.95	1120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.52	1093
	17.16 16.81	1071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.47	I049
Aluminium and Copper: $10Al + 90Cu$	7.69	1027 480
$\frac{1}{3} \frac{1}{3} \frac{1}$	7.09 8.37	522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.69	542
Aluminium and Zinc: $91Al + 9Zn$	2.80	54- 175
Platinum and Iridium: $90Pt + 10Ir$	21.62	1348
" " " S5Pt + 15Ir	21.62	1348
" " $66.67 \mathrm{Pt} + 33.33 \mathrm{Ir}$	21.87	1364
" " " $5Pt + 95Ir$	22.38	1396
		- 390

TABLE 97.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS."

When the value is taken from a particular authority that authority is given, but in most cases the extremes or average from a number of authorities are given.

Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C. †	Authority.
Aluminium	Cast Wrought Amorphous . Solid Liquid Cast Urought Liquid Cast Urought Liquid Cast Wrought Cast Cast Cast Cast Cast	$\begin{array}{c} 2.56-2.58\\ 2.65-2.80\\ 6.70-6.72\\ About 6.22\\ 3.75-4.00\\ 9.70-9.90\\ 9.673\\ 10.004\\ 8.54-8.57\\ 8.670\\ 8.366\\ 7.989\\ 1.88-1.90\\ 1.580\\ 6.62-6.72\\ 6.52-6.73\\ 8.50-8.70\\ 9.100\\ 7.10-7.40\\ 8.80-8.95\\ 8.85-8.95\\ 8.85-8.95\\ 8.85-8.95\\ 8.217\\ 6.540\\ 5.930\\ 5.460\\ 1.86-2.06\\ 19.26-19.34\end{array}$	$\begin{array}{c} 160-161\\ 165-175\\ 418-419\\ 388\\ 234-250\\ 605-618\\ 604\\ 624\\ 533-535\\ 541\\ 522\\ 498\\ 117\\ 98.6\\ 475-482\\ 407-420\\ 530-542\\ 563\\ 443-462\\ 549-558\\ 552-558\\ 552-558\\ 513\\ 408\\ 370\\ 341\\ 116-127\\ 1202-1207\\ \end{array}$	27 I 27 I 318 318 24 20	 Vincentini and Omodei. Vincentini and Omodei. Roberts & Wrightson. Lecoq de Boisbaudran. Winkler.
" . Indium . Iridium . Iron . . . <t< td=""><td>Wrought Gray cast White cast . Wrought Liquid Cast Wrought Solid Liquid Liquid</td><td>19.33–19.34 7.27–7.42 21.78–22.42 7.03–7.13 7.58–7.73 7.80–7.90 6.880 6.05–6.16 11.340 11.360 11.360 11.005 10.645 0.590 1.69–1.75 6.86–8.03 Av. abt. 7.4 13.596 8.40–8.60</td><td>1207 $454-463$ $1359-1399$ $439-445$ $473-482$ $485-493$ 429 $377-384$ 708 709 686 664 39 $105-109$ $428-501$ 462 848 $524-536$</td><td>24 24 325 325</td><td>Roberts & Wrightson. Hildebrand & Norton. Reich. '' Vincentini and Omodei.</td></t<>	Wrought Gray cast White cast . Wrought Liquid Cast Wrought Solid Liquid Liquid	19.33–19.34 7.27–7.42 21.78–22.42 7.03–7.13 7.58–7.73 7.80–7.90 6.880 6.05–6.16 11.340 11.360 11.360 11.005 10.645 0.590 1.69–1.75 6.86–8.03 Av. abt. 7.4 13.596 8.40–8.60	1207 $454-463$ $1359-1399$ $439-445$ $473-482$ $485-493$ 429 $377-384$ 708 709 686 664 39 $105-109$ $428-501$ 462 848 $524-536$	24 24 325 325	Roberts & Wrightson. Hildebrand & Norton. Reich. '' Vincentini and Omodei.
Nickel Osmium Palladium Platinum Potassium " " Rhodium Ruthenium Silver "	Solid Solid Liquid Cast Wrought Liquid	8.30-8.90 21.40-22.40 11.00-12.00 21.20-21.70 0.86-0.88 0.8510 0.8298 11.00-12.10 11.00-11.40 10.40-10.50 10.55-10.57 9.500	$\begin{array}{c} 5-4 & 536\\ 517-555\\ 1335-1398\\ 686-749\\ 1322-1354\\ 54-55\\ 53.7\\ 53.8\\ 686-755\\ 686-755\\ 686-755\\ 686-755\\ 686-755\\ 686-755\\ 658-659\\ 593\\ \end{array}$	62.1 62.1	} Vincentini and } Omodei. Roberts & Wrightson.

* This table has been to a large extent compiled from Clark's "Constants of Nature," and Laudolt & Börnstein's "Phys. Chem. Tab."
† When the temperature is not given, ordinary atmospheric temperature is to be understood.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.

Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C.*	Authority.
" Strontium Thallium Tin	Cast Wrought Crystallized . Solid Liquid	0.97-0.99 0.9519 0.9287 0.7414 2.50-2.58 11.8-11.9 7.290 7.300 6.97-7.18 7.1835 6.988 5.300 9.4-10.1 19.120 18.33-18.65 7.04-7.16 7.190 6.480 4.140	605-618 59.4 58.0 46.3 156-161 736-742 455 455 455 435-448 454 436 341 587-630 1193 1143-1163 439-447 449 404 258	97.6	Ramsay. Matthieson. Matthieson.

TABLE 98.

MASS IN GRAMMES PER CUBIC CENTIMETRE AND IN POUNDS PER CUBIC FOOT OF DIFFERENT KINDS OF WOOD.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.	Wood.	Grammes per cubic centimetre.	Pounds percubic foot.
Alder	$\begin{array}{c} 0.42 - 0.68\\ 0.66 - 0.84\\ 0.65 - 0.85\\ 0.70 - 0.90\\ 0.84\\ 0.51 - 0.77\\ 0.95 - 1.16\\ 1.05\\ 0.38\\ 0.49 - 0.57\\ 0.70 - 0.90\\ 0.22 - 0.26\\ 1.11 - 1.33\\ 0.54 - 0.60\\ 0.35 - 0.56\\ 0.83 - 0.85\\ 0.48 - 0.70\\ 0.43 - 0.53\\ 0.48 - 0.70\\ 0.37 - 0.60\\ \end{array}$	$\begin{array}{c} 26-42\\ 41-52\\ 40-53\\ 43-56\\ 52\\ 32-48\\ 59-72\\ 65\\ 24\\ 30-35\\ 43-56\\ 14-16\\ 69-83\\ 34-37\\ 22-31\\ 31-35\\ 52-53\\ 30-44\\ 27-33\\ 30-44\\ 23-37\\ \end{array}$	Greenheart	0.93-1.04 0.60-0.80 0.60-0.93 1.03 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 0.56 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.66-0.78 0.35-0.5 0.95 0.40-0.60 0.64-0.70 1.00 0.40-0.60	58-65 37-49 37-58 64 57 42-62 73-83 20-37 42-44 35 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

* When the temperature is not given, ordinary atmospheric temperature is to be understood.
† The density of titanium is inferential, and actual determination a year or two ago gave a lower value.
‡ The lower value for thorium represents impure material.

DENSITY OF LIQUIDS.

Density or mass in grammes per cubic centimetres and in pounds per cubic foot of various liquids.

Liquid.			Grammes per cubic centimetre.	Pounds per cubic foot.	Temp. C.
Acetone			cubic centimetre. 0.792 0.791 0.810 0.916 1.035 0.899 3.187 0.950-0.965 1.293 1.480 0.736 1.260 13.596 0.848-0.810 0.665 0.800 0.996 0.910 0.969 0.925 0.926 1.040-1.100 0.920 0.877 0.844 0.942 0.900-0.925 0.918 0.905 0.850-0.860 0.924	cubic foot. 49.4 49.4 50.5 57.2 64.5 56.1 199.0 59.2-60.2 80.6 92.3 45.9 78.6 836.0 52.9-50.5 41.5 49.9 61.1 56.8 60.5 57.7 60.2 64.9-68.6 57.4 54.7 52.7 58.8 56.2-57.7 57.3 56.5 53.0-54.0 57.7	$ \begin{array}{c} 0^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Rapeseed (crude) (refined) Resin Train or Whale	· · · · · · · · · · · · · · · · · · ·	• • • • • •	0.915 0.913 0.955 0.918–0.925	57.1 57.0 59.6 57.3-57.7	15 15 15 15
Turpentine.Valerian.Petroleum."(light)Pyroligneous acid.Sea water.	· · · · · · · · · · · · · · · · · · ·	• • • • • •	0.873 0.965 0.878 0.795-0.805 0.800 1.025	54.2 60.2 54.8 49.6–50.2 49.9 64.0	16 16 0 15 0 15
Soda lye Water	• •	• •	1.210 1.000	75.5 62.4	17 4

SMITHSONIAN TABLES.

DENSITY OF GASES.

		Gas	•					Sp. gr.	Grammes per cubic centimetre.	Pounds per cubic foot.
Air	0	•	ō	•				I.000	0.001293	0.0807 1
Ammonia	•	•	٠		•		•	0.597	0.000770	0.04807
Carbon dioxide	•	•	•	•		•	0	1.529	0.001974	0.12323
Carbon monox	ide	٠	•	٠	٠	٠		0.967	0.001234	0.07704
Chlorine .	a	٠	0	4	•			2.422	0.003133	0.19559
Coal gas .						fro	m	0.340	0.000421	0.0 2628
coargas .	۰	•	a	•	٠	to		0.450	0.000558	0.03483
Cyanogen	•	•	•	•	•	٠	0	1.806	0.002330	0.14546
Hydrofluori c ac	cid	•	•	•			•	2.370	0.002937	0.18335
Hydrochloric a	cid		٠	٠	•	6	•	1.250	0.001616	0.10088
Hydrogen	•	*	•		•	٠		0.0696	0.000090	0.00562
Hydrogen sulpl	hide		•		•	•	•	1.191	0.001476	0.09214
Marsh gas	•	•	٠	¢	•	•		0.559	0.000727	0.04538
Nitrogen	•	0	٠	٠	•	٠		0.972	0.001257	0.0 7 847
Nitric oxide, N	0	0	•	•	•		•	1.039	0.001343	0.08384
Nitrous oxide,	N_2O	0	•	•	•	٠		1.527	0.001970	0.12298
Oxygen .	•	8	•	•	•	٠		1.105	0.001430	0.08927
Sulphur dioxide	•	0	0	•	•	٠		2.247	0.002785	0.17386
Steam at 100° C	2.	0	٠	•	•	0		0.469	0.000581	0.03627

The following table gives the specific gravity of gases at 0° C. and 76 centimetres pressure relative to air at 0° and 76 centimetres pressure, together with their mass in grammes per cubic centimetre and in pounds per cubic foot.

SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grammes per cubic centimetre. For brevity the substance is indicated by formula only.

Substance.	W	eight of	the dise	solved s th	ubstanc e soluti	e in 100 on.	parts by	v weight	of	p. C.	Authority.
	5	IO	15	20	25	30	40	50	60	Temp.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.040 1.073 1.058	1.082 1.144	1.218 1.169	1.076 1.284 1.224	1.284 1.229 1.354 1.279 0.909	1.286 1.421 1.331	1.410 1.557	1.538	1.666 1.829	15. 15.	Schiff. " Carius.
NII4CI KCl NaCl LiCl CaCl ₂	1.031	1.065 1.072 1.057	1.099 1.110 1.085	1.150 1.116	-	- - 1.181 1.286	- - 1.255 1.402			15. 15. 15. 15. 15.	Gerlach. " "
$\begin{array}{c} CaCl_2 + 6H_2O\\ AlCl_3 & \cdot & \cdot \\ MgCl_2 & \cdot & \cdot \\ MgCl_2 + 6H_2O\\ ZnCl_2 & \cdot & \cdot \end{array}$	1.035	1.072 1.085 1.032	1.111 1.130	1.153 1.177 1.067	1.105 1.196 1.226 1.085 1.236	1.241 1.278 1.103	1.340	1.225 - 1.183 1.563	_	15. 15.	Schiff. Gerlach. " Schiff. Kremers.
$\begin{array}{c} CdCl_2 \\ SrCl_2 \\ SrCl_2 + 6H_2O \\ BaCl_2 \\ BaCl_2 + 2H_2O \end{array}$	1.044 1.027 1.045	1.092 1.053 1.094	1.143 1.082 1.147	1.198 1.111 1.205	1.254 1.257 1.042 1.269 1.217	1.321 1.174 -	-	1.653 - 1.317 - -	1.887 - - -	19.5 15. 15. 15. 21.	" Gcrlach. " Schiff.
$\begin{array}{cccc} CuCl_2 & \ldots & \ddots \\ NCl_2 & \ldots & \ddots & \ddots \\ HgCl_2 & \ldots & \ddots & \ddots \\ Fe_2Cl_6 & \ldots & \ddots & \ddots \\ PtCl_4 & \ldots & \ddots & \ddots \end{array}$	1.048	1.098 1.092 1.086	1.157 - 1.130	1.223 - 1.179	1.291 1.299 - 1.232 1.285	-	-	- - 1.5.15 1.785	- 1.668 -	17.5 17.5 20. 17.5 -	". Mendelejeff.
$\begin{array}{c} \mathrm{SnCl}_2 + 2\mathrm{II}_2\mathrm{O}\\ \mathrm{SnCl}_4 + 5\mathrm{II}_2\mathrm{O}\\ \mathrm{LiBr} & \cdot & \cdot \\ \mathrm{KBr} & \cdot & \cdot \\ \mathrm{NaBr} & \cdot & \cdot \end{array}$	1.029 1.033 1.035	1.058 1.070 1.073	1.089 1.111 1.114	I.122 I.154 I.157	1.157 1.202	1.193 1.252 1.254	1.274 1.366 1.364	1.365 1.498 -	1.467 - -		Gerlach. " Kremers. "
$\begin{array}{ccccc} MgBr_2&\cdot&\cdot\\ ZnBr_2&\cdot&\cdot\\ CdBr_2&\cdot&\cdot\\ CaBr_2&\cdot&\cdot\\ BaBr_2&\cdot&\cdot\\ \end{array}$	1.0.13 1.0.11	1.091 1.088 1.087	1.194 1.139 1.137	1.202 1.197 1.192	1.263	1.328 1.324 1.313	1.473 1.479	1.648 1.678 1.639	1.873	19.5 19.5 19.5 19.5 19.5	64 68 66 66
SrBr ₂ KI LiI NaI ZnI ₂	1.036 1.036 1.038	1.076 1.077 1.080	1.118 1.122 1.126	1.164 1.170 1.177	1.260 1.216 1.222 1.232 1.253	1.269 1.278 1.292	1.394 1.412 1.430	1.693 1.544 1.573 1.598 1.648	1.732 1.775 1.808	19.5 19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{c} CdI_2 \ \cdot \ \cdot \ \cdot \\ MgI_2 \ \cdot \ \cdot \ \cdot \\ CaI_2 \ \cdot \ \cdot \ \cdot \\ SrI_2 \ \cdot \ \cdot \ \cdot \\ BaI_2 \ \cdot \ \cdot \ \cdot \end{array}$	1.0.11 1.0.12 1.0.13	1.086 1.088 1.089	1.137 1.138 1.140	1.192 1.196 1.198	1.251 1.252 1.258 1.260 1.263	1.318 1.319 1.328	1.475 1.489	1.678 1.666 1.663 1.693 1.702	1.908 1.953	19.5 19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.039 1.031 1.031	1.081 1.064 1.065	1.127 1.099 1.101	1.176 1.135 1.140	1.229 - 1.180	1.287 - 1.222	1.329 - 1.313 1.479	- - 1.416 1.675	- - 1.918	19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.

* Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	W	eight of	the dis	solved s th	ubstanc e solutio	e in 100 on.	parts b	y weigh	t of	. C	Authority.
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Authority.
NII_4NO_3 $ZnNO_3$	1.020 1.048	1.041	1.063 1.1.46			1.131		1.229	1.282	17.5	Gerlach. Franz.
$ZnNO_3+6H_2O$.	-	1.05.1	-	1.113	-	1.178	1.250	1.329		1.1.	Oudemans.
$\begin{vmatrix} Ca(NO_3)_2 & \cdots \\ Cu(NO_3)_2 & \cdots \end{vmatrix}$	1.037	1.075	1.118	1.162	1.211 1.263	1.260 1.328	1.367	1.482	1.604	17.5	Gerlach. Franz.
$Sr(NO_3)_2$	1.039	1.083	1.129		_	-	_	_	-	19.5	Kremers.
$Pb(NO_3)_2 \dots$	1.043	1.091	1.143	1.199	1.262		-	-	-	17.5	Gerlach.
$\begin{array}{c} \operatorname{Cd}(\operatorname{NO}_3)_2 & \ldots \\ \operatorname{Co}(\operatorname{NO}_3)_2 & \ldots \end{array}$	1.052	1.097 1.090	1.150 1.137			1.355 1.318	1.530	1.759	-	17.5	Franz.
$Ni(NO_3)_2$	1.045	1.090	1.137	1.192	1.252		1.465		-	17.5	66
$\frac{\text{Fe}_2(\text{NO}_3)_6}{\text{Mg}(\text{NO}_3)_2+6\text{H}_2\text{O}}$	1.039 1.018	1.076 1.038	1.117 1.060		1.210 1.105	1.261	1.373	1.496	1.657	17.5 21	" Schiff.
$Mn(NO_3)_2+6H_2O$	1.025	1.052	1.079	1.1082	1.138	1.169	1.235	1.307	1.386	S	Oudemans.
K_2CO_3 $K_2CO_3 + 2H_2O$.	1.044 1.037	1.092 1.072	1.141 1.110	/	1.245 1.191	1.300 1.233	1.417 1.320	I.5.43 I.415	-	15 15.	Gerlach.
$Na_2CO_3IOH_2O$.	1.019	1.038	1.057	1.150 1.077	1.098	133 1.118	-			15.	"
$(NH_4)_2SO_4$	1.027	1.055	1.084	1.113	1.142	I.170	1.226		_	19.	Schiff.
$Fe_2(SO_4)_3$ $FeSO_4 + 7H_2O$.	1.045 1.025	1.096 1.053	1.150 1.081	I.207 I.III	1.270 1.141	1.336 1.173	1.489 1.238	_	_	18. 17.2	Hager. Schiff.
$MgSO_4$	1.051	1.104		1.221	1.28.4	-	-	-	-	15	Gerlach.
$MgSO + 7H_2O$.	1.025	1.050		1.101	1.129		1.215		-	15.	66 66
$\begin{array}{c} \mathrm{Na_2So_4 + 10H_2O} \\ \mathrm{CuSO_4 + 5H_2O} \end{array}.$	1.019 1.031	1.039	1.059 1.098	1.081 1.134	1.102 1.173	1.124 1.213	_	_	_	15. 18.	Schiff.
$ MnSO_4 + _4H_2O$.	1.031	1.064	1.099	1.135	1.174	1.214	1.303	~ r	-	I 5.	Gerlach.
$ZnSO_4 + 7H_2O$ $Fe_2(SO)_3 + K_2SO_4$	1.027	1.057	1.089	1.122	1.156	1.191	1.269	1.351	1.443	20.5	Schiff.
$+24H_{2}O$ $Cr_{2}(SO)_{3}+K_{2}SO_{4}$	1.026	1.0.45	1.066	1.088	1.112	1.141	_	-	-	17.5	Franz.
$+24H_{2}O$	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	I.454	17.5	66
$\begin{array}{c} MgSO_4 + K_2SO_4 \\ + 6H_2O \\ (NH_4)_2SO_4 + \end{array}$	1.032	1.066	1.101	1.138	-	-	-	-	-	1 5.	Schiff.
$FeSO_4 + 6H_2O$	1.028	1.058	1.090	I.122	1.154	1.191	-	-	-	19.	66
K_2CrO_4	1.039		1	1.174	1.225	1.279	1.397	-	-	19.5	Kremers.
$K_2Cr_2O_7$ Fe(Cy) ₆ K ₄		1.071		1.126	_	_	_	_	_	19.5 15.	Schiff.
$Fe(Cy)_6K_3 \dots$	1.025				-	-	-	-	-	13	6.6
$\begin{array}{c} Pb(C_2\Pi_3O_2)_2 +\\ 3H_2O & \cdot & \cdot \\ 2NaOH + As_2O_5 \end{array}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	I 5.	Gerlach.
$+ 24 H_2 O$.	1.020	1.042	1.066	1.089	1.114	1.140	1.194	-	-	14.	Schiff.
	5	IO	15	20	30	40	60	80	ICO		
SO_3					1.277	1.389	1.564	1.840	-	15.	Brineau.
SO_2		1.028			-	- 1.294	-	-	-	4. 15.	Schiff. Kolb.
$C_4H_6O_6$	1.021	1.0.17	1.070	1.096		1.207	-	-		15.	Gerlach.
$C_6H_8O_7$		1.038			1.123	1.170		-	-	т <u>5</u> .	66 · · ·
Cane sugar HCl	1.019 1.025	1.039	1.000 1.075		1.129 1.151	1.178 1.200	1.289	_	_	17.5	"Kolb.
HBr	10.35	1.073	1.114	1.158	1.257	1.376	-	-	-	14.	Topsöc.
$\begin{array}{cccc} \mathrm{HI} & \cdot & \cdot & \cdot \\ \mathrm{H}_2\mathrm{SO}_4 & \cdot & \cdot & \cdot \end{array}$	1.037 1.032			1.165		I.400	I.501	- 1.732	1.838	I 3. I 5.	Kolb.
H_2SiFl_6	1.0.10			I.I74	-	-	-	-	-	17.5	Stolba.
P ₂ O ₅	1.035	1.077	1.119	1.167	1.271	1.385		-	-	17.5	Hager.
	1.027 1.028				1.188 1.184			- 1.459	1.528	15. 15.	Schiff. Kolb.
$C_2H_4O_2$	1.007	1.014	1.021	1.028	1.0.11	1.052	1.068	1.075	1.055	15.	Oudemans
											j

TABLE 102.

DENSITY OF WATER AT DIFFERENT TEMPERATURES BETWEEN 0° AND 32° C.*

The following table gives the relative density of water containing air in solution, — the maximum density of water free from air being taken as unity. The correction required to reduce to densities of water free from air are given at the foot of the table. For all ordinary purposes the correction may be neglected. The temperatures are for the hydrogen thermometer.

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
-0	0.9998742	8678	8613	8547	8478	8408	8336	8263	8188	8111	
+0 1 2 3 4	0.9998742	8804	8864	8922	8979	9035	9088	9140	9191	9240	
	9287	9332	9376	9419	9460	9499	9536	9572	9607	9640	
	9671	9701	9729	9755	9780	9803	9825	9846	9864	9881	
	9897	9911	9923	9934	9944	9952	9958	9963	9966	9968	
	9968	9966	9964	9959	9953	9946	9933	9927	9915	9901	
5	0.99999886	9870	9852	9833	9812	9790	9766	97 40	9714	9685	
6	9656	9625	9592	9558	9522	9485	9446	9407	9365	9322	
7	9278	9232	9185	9137	9087	9035	8982	8928	8873	8815	
8	8758	8697	8636	8573	8509	8443	8376	8 308	8238	8167	
9	8095	8021	7946	7869	7791	7712	7631	7 549	7466	7381	
10	0.9997295	7 208	7119	7029	6937	6844	67 50	6654	6558	6459	
11	6360	62 59	6157	6053	5949	5842	57 35	5626	5516	5405	
12	5292	51 78	5063	4947	4829	4710	4 590	4468	4345	4221	
13	4096	3969	3841	3712	3581	3450	3 3 1 7	3182	3047	2910	
14	2772	2633	2493	2351	2208	2064	1 9 1 9	17 7 2	1624	1475	
15	0.9991 325	1174	1021	0867	0712	0556	0399	0240	0080	9919	
16	897 57	7594	9429	9264	9097	8929	8760	8589	8418	8245	
17	807 1	7896	7720	7543	7365	7185	7004	6823	6640	6456	
18	6270	6084	5897	5708	5518	5328	5136	4943	4749	4553	
19	4357	4160	3961	3762	3561	3359	3157	2953	2748	2542	
20	0.9982335	<u>4126</u>	<u>1917</u>	<u>1707</u>	<u>1496</u>	<u>1283</u>	1070	0855	0640	0423	
21	0205	9987	9767	9546	9325	9102	8878	8653	8427	8200	
22	77972	7744	7514	7283	7051	6818	6584	6340	6114	5 ⁸ 77	
23	5639	5400	5160	4920	4678	4435	4191	3947	3701	3455	
24	3207	2959	2709	2459	2208	1956	1702	1448	1193	0937	
25	0.9970681	0423	0164	9904	9644	9382	<u>9120</u>	8857	8592	8327	
26	68061	7794	7527	7258	6988	6718	6447	6175	5901	5628	
27	5353	5077	4801	4523	4245	3966	3686	3405	3124	2841	
28	2558	2274	1989	1703	1416	1129	0840	0551	0261	9971	
29	59679	9387	9094	8800	8505	8209	8913	7616	7318	7019	
30	0.9956720	6419	6118	5816	5514	5210	4906	4601	4296	3989	
31	3682	3374	3066	2756	2446	2135	1823	1511	1198	0884	
If we p from air,	If we put D'_t for the density of water containing air and D_t for the density of water free from air, we get the following corrections on the above table to reduce to pure water : —										
$t = 10^7 (D_t - D)$	-			3 4 31 32		6 33	7 34	8 34	9 33	10 3 ²	
t = 10 ⁻ (D _t -D				1 4 15 25 22		17 16	18 12	19 8	20 — 4 ne	32 gligible.	

* This table is given by Marek in "Wied. Ann.," vol. 44, p. 172, 1891.

VOLUME IN CUBIC CENTIMETRES AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETRE OF WATER AT THE TEMPERATURE OF MAXI-MUM DENSITY.*

The water in this case is supposed to be free from air. The temperatures are by the hydrogen thermometer.

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0°	1.000127	120	114	108	102	096	091	086	080	075
I	070	066	061	057	052	048	044	040	037	033
2	030	027	024	021	019	017	014	012	010	009
3	007	006	004	003	002	002	001	001	000	000
4	000	000	001	001	001	002	003	004	005	007
5	1.000008	010	012	014	016	018	020	023	026	029
6	032	035	038	041	045	049	053	057	061	065
7	069	074	079	084	089	094	099	105	110	116
8	122	128	134	141	147	154	160	167	174	181
9	189	196	204	211	219	227	235	244	252	260
10	1.000269	278	28 7	296	305	314	324	334	343	353
11	363	373	383	394	405	415	426	437	448	459
12	471	482	494	505	517	529	541	553	566	578
13	591	603	616	629	642	655	668	681	695	709
14	722	736	750	765	779	794	809	823	838	853
15	1.000868	884	899	914	930	945	961	977	993	009
16	1025	042	058	075	091	108	125	142	159	177
17	194	211	229	247	265	283	301	319	338	356
18	374	393	412	431	450	469	488	507	527	546
19	566	585	605	625	645	666	686	707	727	748
20	1.001768	789	810	8 <u>31</u>	852	8 <u>74</u>	895	<u>916</u>	<u>938</u>	960
21	981	003	025	047	069	092	114	137	159	182
22	2205	228	251	274	297	320	343	367	391	414
23	43 ⁸	462	486	510	534	559	5 ⁸ 3	607	632	657
24	682	707	732	757	782	807	8 ₃₃	858	884	910
25	1.002935	961	987	014	040	066	092	119	146	172
26	3199	226	253	280	307	335	362	389	417	445
27	472	500	528	556	584	612	641	669	697	726
28	754	783	812	841	870	899	928	957	987	016
29	4045	075	105	134	164	194	224	254	284	315
30	1.004345	375	406	436	467	498	529	560	591	622
31	653	684	<u>716</u>	748	<u>780</u>	<u>811</u>	<u>843</u>	875	<u>907</u>	<u>939</u>
32	971	003	036	068	101	1 <u>33</u>	166	199	231	264
33	5297	330	363	396	430	463	497	530	564	597
34	631	665	699	733	767	801	835	870	904	939
35	1.005973	008	042	077	III	146	181	217	252	287

* The table is quoted from Landolt and Börnstein's "Physikalische Chemie Tabellen," and depends on experiments by Thiesen, Scheel, and Marek. SMITHSONIAN TABLES.

DENSITY AND VOLUME OF WATER.*

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
	0.998145	1.001858	25°	0.99712	1.00289
	8427	1575	26	687	314
	8685	1317	27	660	341
	8911	1089	28	633	368
	9118	0883	29	605	396
-5	0.999298	1.000702	30	0.99577	1.00425
-4	9455	0545	31	547	455
-3	9590	0410	32	517	486
-2	9703	0297	33	485	518
-1	9797	0203	34	452	551
0	0.999871	1.000129	35	0.99418	1.00586
I	9928	0072	36	3 ⁸ 3	621
2	9969	0031	37	347	657
3	9991	0009	38	310	694
4	1.000000	0000	39	273	732
5	0.9999990	1.000010	40	0.99235	1.00770
6	9970	0030	41	197	809
7	9933	0067	42	158	849
8	9886	0114	43	118	889
9	9824	0176	44	078	929
10	0.999747	1.000253	45	0.99037	1.00971
11	9655	0345	46	8996	014
12	9549	0451	47	954	057
13	9430	0570	48	910	101
14	9299	0701	49	865	148
15	0.999160	1.000841	50	0.98820	1.00195
16	9002	0999	55	582	439
17	8841	1160	60	338	691
18	8654	1348	65	074	964
19	8460	1542	70	7794	256
20	0.998259	1.001744	75	0.97498	1.00566
21	8047	1957	80	194	887
22	7826	2177	85	6879	221
23	7601	2405	90	556	567
24	7367	2641	95	219	931
25	0.997120	1.002888	100	0.95865	1.00312

The mass of one cubic centimetre at 4° C. is taken as unity.

SMITHSONIAN TABLES.

* Rossetti, "Berl. Ber." 1867.

DENSITY OF MERCURY.

Density or mass in grammes per cubic centimetre, and the volume in cubic centimetres of one gramme of mercury. The density at of is taken as 13.5956,* and the volume at temperature t is $V_t = V_0 (1 + .000181792 t + 175 \times 10^{-12} t^2 + 35116 \times 10^{-13} t^3)$.

	Mass in	Volume of		Mass in	Volume of
Temp. C.	grammes per cub. cm.	ı gramme in cub. cms.	Temp. C.	grammes per cub. em.	r gramme in cub. cms.
-10°	13.6203 6178	0.0734195 4329	30° 31	13.5218 5194	0.073 9544 9678
-9 -8 -7	6153 6129	4463 4596	3^{2} 33	5169 5145	9812 994 5
-7 - 6	6104	47.30	34	5120	40079
— 5 — 4	13.6079 6055	0.07 3 4864 4997	35 36	13.5096 5071	0.0740213 0346
$-3 \\ -2$	6030 6005	5131 5265	37 38	5047 5022	0480 0614
— I	5981	5398	39	4998	0748
О I	13.5956 5931	0.0735532 5666	40 50	13.4974 4731	0.0740882 2221
2 3	5907 5882	5800 5933	60 70	4488 4246	3561 4901
4	5 ⁸ 57	6067	80	4005	6243
5 6	13.5833 5808	0.0736201 6334	90 100	13.3764 3524	0.0747586 8931
7 8	5783 5759	6468 6602	I 10 I 20	3284 3045	50276 1624
9	5734	67 36	130	2807	2974
10 11	13.5709 5685	0.0736869 7003	140 150	13.2569 2331	0.0754 325 5679
12 13	5660 5635	7137 7270	160 170	2094 1858	7°35 8394
14	5611	7404	180	1621	97 55
15 16	13.5586 5562	0.0737538 7672	190 200	13.1385 1150	0.0761120 2486
17 18	5537 5513	7805 7939	210 220	0915 0680	3854 5230
19 20	5488	S073	230 240	0445	6607
21	13.5463 5439	0.0738207 8340	250 260	13.0210 12.9976	0.0767988 9372
22 23	5414 5390	8474 8608	270 280	9742 9508	70760 1252
²⁴ 25	5365	8742	280 290	9274	3549
26	13.5341 5316	0.0738875 9009	300	12.9041 8807 8573	0.0774950 6355 7765
27 28 29	5292 5267	9143 9277 9411	310 320 330	8340 8107	9180 80600
30	5 ² 43 13.5218	0.0739544	340	12.7873	0.0782025
	13.5~10	0.07 39344	350 360	7640	3455 4891
			1 300	/400	40.91

* Marek, "Trav. et Mém. du Bur. Int. des Poids et Més." 2, 1883.

† Broch, l. c.

SPECIFIC CRAVITY OF AQUEOUS ETHYL ALCOHOL.

ture,	numbers he of water co temperatur	ntaining th	ed are the	e spe <mark>cific</mark> g ages by w	gravities a eight of al	t 60° F., cohol of s	in terms o pecific gra	of water a wity .7938	at the san , with refe	ne tempera- rence to the
ntage bhol ight.	0	1	2	3	4	Б	6	7	8	9
Percentage of alcohol by weight.		Spec	ific gravity	7 at 15 ⁰ .56	C. in terr	ns of wate	r at the sa	me tempe	rature.	
0 10 20 30 40	1.0000 .9841 .9716 .9578 .9396	.9981 .9828 .9703 .9560 .9376	.9965 .9815 .9691 .9544 .9356	.9947 .9802 .9678 .9528 .9335	.9930 .9789 .9665 .9511 .9314	.9914 .9778 .9652 .9490 .9292	.9766 .9638	· 9753 .9623 · 9452	3 .9741 3 .9600 -943-	1 .9728 9 .9593 4 .9416
50 60 70 80 90	0.9184 .8956 .8721 .8483 .8228	.9160 .8932 .8696 .8459 .8199	.9135 .8908 .8672 .8434 .8172	.9113 .8886 .8649 .8408 .8145	.9090 .8863 .8625 .8382 .8118	.9069 .8840 .8603 .8357 .8089		.8793	8 .8760 .8533 5 .8279) .8745 3 .8508) .8254
based at 15°	(b) The following are the values adopted by the "Kaiserlichen Normal-Aichungs Kommission." They are based on Mendelejeff's formula, [†] and are for alcohol of specific gravity .79425, at 15° C., in terms of water at 15° C.; temperatures measured by the hydrogen thermometer.									
Percentage of alcohol by weight.	0	1	2	3	4	5	6	7	8	9
Perc of al by w		Spe	ecific grav	ity at 15 ⁰	C. in term	s of water	at the sar	ne temper	ature.	
0 10 20 30 40	1.00000 .98393 .97164 .95 7 70 .93973	.99812 .98262 .97040 .95608 .93773	.99630 .98135 .96913 .95443 .93570	·99454 .98010 .96783 .95273 .93365	.99284 .97888 .96650 .95099 .93157	.99120 .97768 .96513 .94920 .92947	.98963 .97648 .96373 .94738 .92734	.98812 .97528 .96228 .94552 .92519	.98667 .97.408 .96080 .94.363 .92.303	.98528 .9728 7 .95927 .94169 .92088
50 бо 70 80 90	0.91865 89604 87265 84852 82304	.91644 .89373 .87028 .84606 .82036	.91421 .89141 .86789 .84358 .81763	.91197 .88909 .86550 .84108 .81488	.90972 .88676 .86310 .83857 .81207	.90746 .88443 .86070 .83604 .80923	.90519 .88208 .85828 .83349 .80634	.90292 .87974 .85586 .83091 .80339	.90063 .87738 .85342 .82832 .80040	.89834 .87502 .85098 .82569 .79735
instea	following v d of by weig ic gravity of	ght, and th	ie temper	ature 15°.	56 C. on t	t; the per- he mercur	centage of y in Thur	alcohol b ingian gla	eing given Iss thermo	by volume meter; the
ntage ohol hume.	0	1	2	3	4	5	6	7	8	9
Percentage of alcohol by volume.		Sp	ecific grav	ity at 15°.	56 C. in to	erms of wa	iter at sam	ie tempera	ature.	
0 10 20 30 40	1.00000 .98657 .97608 .96541 .95185	.998.47 .98543 .97507 .96.421 .95029	.99699 .98432 .97406 .96298 .94868	·99555 ·98324 ·97304 ·96172 ·94704	.99415 .98218 .97201 .96043 .94536	.99279 .98114 .97097 .95910 .94364	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824	•9 ⁸ 774 •97708 •96658 •95338 •93636
50 60 70 80 90	0.93445 .91358 .89010 .86395 .83400	.93250 .91134 .88762 .86116 .83065	.93052 .90907 .88511 .85833 .82721	.92850 .90678 .88257 .85547 .82365	.92646 .90447 .88000 .85256 .81997	.92439 .90214 .87740 .84961 .81616	.92229 .89978 .87477 .84660 .81217	.92015 .89740 .87211 .84355 .80800	.91799 .89499 .86943 .84044 .80359	.91 580 .892 56 .86670 .837 26 .79891

* Fownes, "Phil. Trans. Roy. Soc." 1847. † "Pogg. Ann." vol. 138, 1869.

DENSITY OF AQUEOUS METHYL ALCOHOL. TABLE 107.

Densities of aqueous methyl alcohol at 0° and 15.56 C., water at 4 °C. being taken as 100000. The numbers in the columns a and b are the coefficients in the equation $p_t \equiv p_0 - at - bt^2$ where p_t is the density at temperature t. This equation may be taken to hold between 0 and 20 °C.

1								
Percent- age of CH4O.	Density at o ^c C.	Density at 15°.56 C.	a	в	Percent- age of CH4O.	Density at o' C.	Density at 15 ^{°,} 56 C.	a
0	999987	99907		0.705	50	92873	91855	65.41
1	99806	99729		.694	51	92691	91661	66.19
2	99631	99554		.681	52	92507	91465	66.95
3	99462	99382		.670	53	92320	91267	67.68
4	99299	99214		.659	54	92130	91066	68.39
5	99142	99048	$ \begin{array}{c} - 2.2 \\ - 1.2 \\ - 0.2 \\ + 0.9 \\ 2.1 \end{array} $	0.648	55	91938	90863	69.07
6	98990	98893		.634	56	91742	90657	69.72
7	98843	98726		.621	57	91544	90450	70.35
8	98701	98569		.609	58	91343	90239	70.96
9	98563	98414		.596	59	91139	90026	71.54
10	98429	98262	3.3	0.581	60	90917	89798	71.96
11	98299	98111	4.8	.569	61	90706	89580	72.37
12	98171	97962	6.2	.552	62	90492	89358	72.91
13	98048	97814	7.8	.536	63	90276	89133	73.45
14	97926	97668	9.5	.519	64	90056	88905	73.98
15	97806	97 523	11.0	0.500	65	89835	88676	74.51
16	97689	97379	12.5	.480	66	89611	88443	75.05
17	97573	97235	14.5	.461	67	89384	88208	75.57
18	97459	97093	16.2	.440	68	89154	87970	76.10
19	97346	96950	18.3	.420	69	88922	87714	76.62
20	97233	96808	20.0	0.398	70	88687	87487	77.14
21	97120	96666	22.2	.373	71	88470	87262	77.66
22	97007	96524	24.3	.350	72	88237	87021	78.18
23	96894	96381	26.4	.321	73	88003	86779	78.69
24	96780	96238	29.0	.291	74	87767	86535	79.20
25	96665	96093	31.3	0.261	75	87530	86290	79.71
26	96549	95949	33.8	.230	76	87290	86042	80.22
27	96430	95802	36.0	.191	77	87049	85793	80.72
28	96310	95655	38.8	.151	78	86806	85542	81.23
29	96387	95506	41.1	.106	79	86561	85290	81.73
	Equation	$\rho_t \equiv \rho_0 - a$	t		80	86314	85035	82.22
30	96057	95367	44.36		81	86066	84779	82.72
31	95921	95211	45.66		82	85816	84521	83.21
32	9578 3	95053	46.93		83	85564	84262	83.70
33	95643	94894	48.17		84	85310	84001	84.19
34	95500	94732	49.39	zible.	85	85055	83 738	84.67
35	95354	94567	50.58		86	84798	83473	85.16
36	95204	94399	51.75		87	84 5 39	83207	85.64
37	95051	94228	52.89		88	84278	82938	86.12
3 ⁸	94895	94255	54.01		89	8401 5	82668	86.59
39 40 41 42	94571 94734 94571 94400 94239	93 ⁶ 97 93 ⁶ 97 93510 93335	56.16 55.20 58.22	Term <i>bt</i> ² negligible.	90 91 92 93 94	83751 83485 83218 82948 82677	82396 82123 81849 81572 8129 3	87.07 87.54 88.01 88.48 88.94
43 44 45	94076 93911 93744	93155 92975 92793	59.20 60.17 61.10	Ter	95 96	82404 82129 81853	81013 80731 80448	89.40 89.86 90.32
46 47 48 49	93575 93403 93229 930 52	92610 92424 92237 92047	62.01 62.90 63.76 64.60		97 98 99 100	81 57 6 81 295 8101 5	80164 79872 79589	90.78 91.23 91.68
11								

* Quoted from the results of Dittmar & Fawsitt, "Trans. Roy. Soc. Edin." vol. 33. SMITHSONIAN TABLES.

VARIATION OF THE DENSITY OF ALCOHOL WITH TEMPERATURE.

	(a) The density of alcohol at t^{γ} in terms of water at 4° is given * by the following equation : $d_t = 0.80025 - 0.0008340t - 0000029t^2$. From this formula the following table has been calculated.									
Temp, C.	Density or Mass in grammes per cubic centimetre. 0 1 2 3 4 5 6 7 8 9									
0 10 20 30	.80625 .79788 .7894 5 .78097	.80541 .79704 .78860 .78012	.80457 .79620 .7877 5 .77927	.80374 .79535 .78691 .77841	.80290 .79451 .78606 .77756	.80207 .79367 .78522 .77671	.80123 .79283 .78437 .77585	.80039 .79198 .78352 .77500	.79956 .79114 .78267 .77414	.79872 .79029 .78182 .77329

(b) Variations with temperature of the density of water containing different percentages of alcohol. Water at 4 C, is taken as unity.[†]

Percent-						Density at temp. C.			
age of alcohol by weight.	oo	100	20 ⁰	300	age of alcohol by weight.	00	100	20 ⁰	300
0 5 10 15 20	0.99988 .99135 .98493 .97995 .97566	0.99975 .99113 .98409 .97816 .97263	0.99831 .9894 5 .98195 .97527 .96877	0.99579 .98680 .97892 .97142 .96413	50 55 60 65 70	0.92940 .91848 .90742 .89595 .88420	0.92182 .91074 .89944 .88790 .87613	0.91400 .90275 .89129 .97961 .86781	0.90577 .89456 .88304 .87125 .85925
25 30 35 40 45 50	0.97115 .96540 .95784 .94939 .93977 0.92940	0.96672 .95998 .95174 .94255 .93254 0.92182	0.96185 .95403 .94514 .93511 .92493 0.91400	0.95628 .94751 .93813 .92787 .91710	75 80 85 90 95 100	0.87245 .86035 .84789 .83482 .82119 0.80625	0.86427 .85215 .83967 .82665 .81291 0.79788	0.85580 .84366 .83115 .81801 .80433 0.78945	0.84719 .83483 .82232 .80918 .79553 0.78096

* Mendelejeff, "Pogg. Ann." vol. 138.
† Quoted from Landolt and Börnstein, "Phys. Chem. Tab." p. 223.

SMITHSONIAN TABLES.

VELOCITY OF SOUND IN AIR.

Rowland has discussed (Proc. Am. Acad. vol. 15, p. 144) the principal determination of the velocity of sound in atmospheric air. The tollowing table, together with the footnotes and references, are quoted from his paper. Some later determinations will be found in Table 111, on the velocity of sound in gases.

Observer. (Sce References below.) Date.	Place of determination.	Number of obser- vations made.	Temperature ob- served.	Velocity observed.	Velocity reduced to o C. and ordi- nary air.	Velocity reduced to 0° and dry air.	Velocity approxi- mately reduced to o'C, and dry air (mean). ^d	Estimated weight of observation.
1 1738 2 1811 3 1821 4 1822 5 1822 6 1823 7 1824- 8 1839 9 1844 10 1868*	Alps	- 40 120 70 30 88 22 shots 14 " 51 - 34 149	$5^{\circ}-7^{\circ}.5$ C. $83^{\circ}.95$ F. $79^{\circ}.9$ F. $15^{\circ}.9$ C. $9^{\circ}.4$ C. $11^{\circ}.6$ C. $11^{\circ}.6$ C. -38° F. to $+33^{\circ}$ F. $5^{\circ}.5$ to 9° C. $8^{\circ}.17$ C. 2° to 20° C.	172.56 T. 1149.2 ft. 1131.5 ft. 340.37 339.27 	332.9m. 333.7 ^b 333.0 ^c 329.6 ^c 331.36 332.96 333.62 332.62 332.27 ^f 332.20 ^g 332.11	- - - 332.82 ^d	332.6 m. 332.7 330.9 330.8 332.5 	2 2 4 3 7 1 1 4 10

General mean deduced by Rowland, 331.75.

Correcting for the normal carbonic acid in the atmosphere, this becomes 331.78 metres per second in pure dry air at 0° C.

References.

- I French Academy : "Mém. de l'Acad. des Sci." 1738, p. 128.
- 2 Benzenburg : Gibberts's "Annalen," vol. 42, p. 1.
- 3 Goldingham : "Phil. Trans." 1823, p. 96.
- 4 Bureau of Longitude : "Ann. de Chim." 1822, vol. 20, p. 210; also, "Œuvres d'Arago," "Mem. Sci." ii. 1.
- 5 Stampfer und Von Myrbach: "Pogg. Ann." vol. 5, p. 496.
- 6 Moll and Van Beek : "Phil. Trans." 1824, p. 424.
- 7 Parry and Foster: "Journal of the Third Voyage," 1824-5, App. p. 86; "Phil. Trans." 1828, p. 97.
- 8 Savant : "Ann. de Chim." sér. 2, vol. 71, p. 20. Recalculated.
- 9 Bravais and Martins : "Ann. de Chim." sér. 3, vol. 13, p. 5.
- 10 Regnault : "Rel. des Exp." iii. p. 533.

a I believe that I calculated these reduced numbers on the supposition that the air was rather more than half saturated with moisture.

b Reduced to o^2 C. by empirical formula.

c Wind calm.

d Moll and Van Beek found 332.049 at 0° C. for dry air. They used the coefficient .00375 to reduce. I take the numbers as recalculated by Schröder van der Kolk.

e An error of 0.21° C. was made in the original. See Schröder van der Kolk, "Phil. Mag." 1865.

- f Corrected for wind by Galbraith.
- g Recalculated from Savart's results.

* This is given as 1864 in Rowland's table. The original paper is in "Mém. de l'Institut," vol. 37, 1868. SMITHSONIAN TABLES.

TABLE 110.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

-					
	Substance.	Temp. C. o	Velocity in metres per second.	Velocity in feet per second.	Authority.
Various	Aluminium Brass Cadmium Cobalt Copper " " Gold (soft) " " Gold (soft) " " Gold (hard) Iron and soft steel Iron " " " " " " " " " " " " " " " " " " "	- - - - - - - - - - - - - - - - - - -	second. 5104 3500 2307 4724 3560 3290 2950 1743 1720 1735 2100 5000 5130 4720 4990 4920 4720 4990 4920 4720 4990 4920 4720 2570 2460 2640 2570 2460 2640 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2570 2480 2500 3700 3652 3480 3950 3810 4510 2850 5000 6000 3013 54 31 69 344 4670 1390 1260 3340 1840 1415 4120 1460 320	second. 167 40 11480 7570 15500 11670 10800 9690 5717 5640 5691 6890 16410 16820 17390 15480 16320 15300 15710 15100 16320 12140 1980 12500 14800 9350 16410 19690 9886 177 102 226 111 15310 4570 4140 10960 6030 4640 13516 4665 3324 15220 13470 12620 13470 13470 12620 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13470 13400 1	Masson. Various. Masson. " Wertheim. " " " Various. " Wertheim. " " " Melde. Masson. Various. Various. Various. Wertheim. " " " " " " " " " " " " " " " " " " "
	TABITE				

VELOCITY OF SOUND IN LIQUIDS AND CASES.

Substance.		Temp. C. o	Velocity in metres per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol 	Geneva) . Seine river) " " " 	$ \begin{array}{c} 8.4 \\ 23 \\ 0 \\ 24 \\ 9 \\ 15 \\ 30 \\ 60 \\ 3.9 \\ 13.7 \\ 25.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			Martini. Wertheim. " " Colladon & Sturm. Wertheim. " " Martini. " " Dulong. Wertheim. Masson. Le Roux. Schneebeli. Kayser. Wullner. Blaikley. Violle & Vautier. Greely. " " " Stone. Masson. Wullner. Dulong. " Masson. Martini. Strecker. Dulong. " Masson. Martini. Strecker. Dulong. " Masson. Martini.
•		96	410	1345	

SMITHSONIAN TABLES.

IOI

TABLE 112. FORCE OF CRAVITY FOR SEA LEVEL AND DIFFERENT LATITUDES.

			υψ	546 E		iere or is the latt
Lati- tude φ.	<i>y</i> in cms. per sec. per sec.	Log.	g in inches per sec. per sec.	Log.	g in feet per sec. per sec.	Log.
0°	97 7 .989	2.990334	385.034	2.585498	32.0862	1.506318
5	8.029	0352	.050	5517	.0875	6336
10	.147	0404	.096	5570	.0916	6388
15	.339	0490	.173	5055	.0977	6474
20	.600	0605	.275	5771	.1062	6590
25	978.922	2.990748	385.402	2.585914	32.1168	1.506732
30	9.295	0913	.548	6079	.1290	6898
31	•374	0949	.580	6114	.1316	6933
32	•456	0985	.612	6150	.1343	6969
33	•538	1021	.644	6187	.1370 *	7005
34	979.622	2.991059	385.677	2.586224	32.1398	1.507043
35	.707	1096	.711	6262	.1425	7080
36	.793	1135	.745	6300	.1454	7119
37	.880	1173	.779	6339	.1490	7167
38	.968	1212	.813	6377	.1511	7196
39	980.057	2.991251	385.849	2.586417	32.1540	1.507236
40	.147	1291	.884	6457	.1570	7275
41	.237	1331	.919	6496	.1607	7325
42	.327	1372	.955	6537	.1630	7356
43	.418	1411	.990	6577	.1659	7395
44	980.509	2.991452	386.026	2.586617	32.1688	1.507436
45	.600	1492	.062	6657	.1719	7476
46	.691	1532	.098	6698	.1748	7516
47	.782	1573	.134	6738	.1778	7557
48	.873	1613	.170	6778	.1808	7597
49	980.963	2.991653	386.205	2.586818	32.1838	1.507637
50	1.053	1693	.241	6858	.1867	7677
51	.143	1732	.276	6898	.1896	7716
52	.231	1772	.311	6937	.1924	7756
53	.318	1810	.345	6975	.1954	7794
54	981.407	2.991849	386.380	2.587014	32.1983	1.507833
55	-493	1887	-414	7053	.2011	7871
56	-578	1925	-447	7090	.2039	7909
57	-662	1962	-480	7127	.2067	7946
58	-744	1998	-513	7164	.2094	79 ⁸ 3
59	981.825	2.992034	386.545	2.587200	32.2121	1.508018
60	.905	2070	.576	7235	.2147	8054
65	2.278	2234	.723	7 400	.2276	8229
70	.600	2377	.849	7542	.2375	8361
75	.861	2492	.952	7657	.2460	8476

This table has been calculated from the formula $\mathcal{E}_{\phi} = \mathcal{E}_{45} [1 - .002662 \cos 2\phi]$,* where ϕ is the latitude.

* The constant .002662 is based on data given by Harkness (Solar Parallax and Related Constants, Washington, $_{1891}$). The force of gravity for any latitude ϕ and elevation above sea level k is very nearly 1 ation

387.028

.074

.000

2.992577

2629

2646

$$g_{\phi} = g_{45} \left(1 - .002662 \cos 2\phi\right) \left[1 - \frac{2h}{R} \left(1 - \frac{3\delta}{A}\right)\right],$$

2.587742

7794 7812

32.2523 .2562

.2575

1.508561

8613 8631

where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta \equiv 0$ we get the formula for elevation in air. For ordinary elevations on land $\frac{\delta}{\Delta}$ is nearly $\frac{1}{2}$, which gives for the correction at latitude 45° for elevated portions of the earth's surface

$$\mathcal{E}_{45} \frac{5h}{4R} = 930.6 \times \frac{5h}{4R} = 1225.75 \frac{h}{R} \text{ in dynes.}$$

= 386.062 × $\frac{5h}{4R} = 432.562 \frac{h}{R} \text{ in inch pound units.}$
= 32.1719 × $\frac{5h}{4R} = 40.2149 \frac{h}{R} \text{ in poundals.}$

This gives per 100 feet elevation a correction of

.00588 dynes .003232 inch pound units diminution.

SMITHSONIAN TABLES.

80

85

90

983.053

.171

.210

102

. 200193 poundals

CRAVITY.

In this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 112. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

	Latitude.	Elevation	Gravity i	n dynes.	Refer-	
Place.	N. +, S	in metres.	Observed.	Reduced to sea level.	ence.	
Singapore	-35 41 -36 52	$\begin{array}{c} 14\\ 5\\ 686\\ 46\\ 2\\ 18\\ 10\\ 533\\ 3001\\ 3\\ 3001\\ 3\\ 1282\\ 1282\\ 114\\ 114\\ 10\\ 1645\\ 1282\\ 1282\\ 114\\ 114\\ 10\\ 1645\\ 122\\ 651\\ 348\\ 11\\ 288\\ 165\\ 450\\ 100\\ 405\\ 572\\ 466\\ 67\\ 7\\ 49\\ 6\\ 0\\ 7\\ 8\\ 12\\ 5\\ 572\\ 466\\ 67\\ 7\\ 49\\ 6\\ 0\\ 7\\ 8\\ 12\\ 5\\ 5\\ 4\\ 4\\ 12\\ 5\\ 572\\ 466\\ 67\\ 7\\ 49\\ 6\\ 0\\ 7\\ 8\\ 12\\ 5\\ 5\\ 4\\ 4\\ 4\\ 12\\ 5\\ 572\\ 466\\ 67\\ 7\\ 49\\ 6\\ 0\\ 7\\ 8\\ 12\\ 5\\ 5\\ 5\\ 4\\ 4\\ 4\\ 12\\ 5\\ 5\\ 5\\ 4\\ 4\\ 12\\ 5\\ 5\\ 5\\ 4\\ 4\\ 12\\ 5\\ 5\\ 5\\ 4\\ 12\\ 5\\ 5\\ 4\\ 12\\ 5\\ 5\\ 5\\ 4\\ 12\\ 5\\ 5\\ 5\\ 4\\ 12\\ 5\\ 5\\ 5\\ 5\\ 4\\ 12\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	978.07 978.24 978.08 978.14 978.36 978.16 978.52 978.52 978.52 978.90 979.75 979.61 979.94 979.67 979.64 979.63 979.63 979.63 980.12 980.12 980.26 979.68 980.26 979.68 980.34 980.34 980.34 980.34 980.58 980.60 980.61 980.61 980.67 980.61 980.67 980.61 980.67 980.61 980.61 980.67 980.61 980.61 980.67 981.26 981.68 981.66 981.81 981.81 981.82	978.07 978.24 978.21 978.15 978.36 978.16 978.66 978.58 978.84 978.85 979.75 979.68 979.94 979.94 979.94 979.92 979.92 979.92 979.92 979.92 980.10 980.20 980.15 980.26 980.37 980.42 980.	1 2 2 2 3 2 2 2 3 3 3 3 2 1 2 1 2 1 2 1	

Smith: "United States Coast and Geodetic Survey Report for 1884," App. 14.
 Preston: "United States Coast and Geodetic Survey Report for 1860," App. 12.

Preston: "United States Coast and Geodetic Survey Report for 1860," App. 12.
 Preston: Ibid. 1888, App. 14.
 Mendenhall: Ibid. 1891, App. 15.
 Defforges: "Comptes Rendus," vol. 118, p. 231.
 Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893.
 Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17."
 Messerschmidt: Same reference as 7.

* In all the values given under references 1-4 gravity at Washington has been taken at 980.100, and the others derived from that by comparative experiments with invariable pendulums. SMITHSONIAN TABLES.

SUMMARY OF RESULTS OF THE VALUE OF CRAVITY (7) AT STATIONS IN THE UNITED STATES, OCCUPIED BY THE U. S. COAST AND GEODETIC SURVEY DURING THE YEAR 1894.*

TABLE 115.

LENCTH OF SECONDS PENDULUM AT SEA LEVEL FOR DIFFERENT LATITUDES.‡

Latitude.	Length in centimetres.	Log.	Length in inches.	Log.	Latitude.	Length in centimetres.	Log.	Length in inches.	Log.
0 5 10 15 20	99.0910 .0950 .1079 .1265 .1529	1.996034 6052 6104 6190 6306	39.0121 .0137 .0184 .0261 .0365	1.591200 1217 1270 1356 1471	50 55 60 65 70	99.4014 -4459 -4876 -5255 -5581	1.997 393 7 587 777 0 7935 8077	39.1344 .1520 .1683 .1832 .1960	1.592558 2753 2935 3100 3242
25 30 35 40 45	99.1855 .2234 .2651 .3096 .3555	1.996448 6614 6796 6991 7192	39.0493 .0642 .0806 .0982 .1163	1.591614 1779 1962 2157 2357	75 80 85 90	99.5 ⁸ 45 .6040 .6160 .6200	1.998192 8277 8329 8347	39.2065 .2141 .2188 .2204	1.593358 .3442 .3494 .3512

* G. R. Putnam, Phil. Soc. of Washington, Bull. vol. xiii. † Taken as standard. The other values were obtained from this by means of invariable pendulums. ‡ Calculated from force of gravity table by the formula $l = g/\pi^2$. For each 100 feet of elevation subtract 0.000596 centimetres, or 0.000235 inches, or .0000196 feet.

LENGTH OF THE SECONDS PENDULUM.*

Date of determi- nation.	Number of obser- vation stations.	Range of latitude included by the stations.	Length of pendulum in metres for latitude φ.	Correspond- ing length of pendulum for lat. 45".	Refer- ence.		
1799 1816 1821 1825 1827 1829 1830 1833 1869 1876 1884 Comb	$ \begin{array}{r} 15 \\ 31 \\ 8 \\ 25 \\ 41 \\ 5 \\ 49 \\ - \\ 51 \\ 73 \\ 123 \\ \end{array} $ ining the	From $+ 67^{\circ} 05' to - 33^{\circ} 56'$ $+ 74^{\circ} 53' + 51^{\circ} 21'$ $+ 38^{\circ} 40' + 60^{\circ} 45'$ $+ 79^{\circ} 50' + 12^{\circ} 59'$ $+ 79^{\circ} 50' + 51^{\circ} 35'$ $+ 79^{\circ} 51' + 67^{\circ} 04'$ $+ 79^{\circ} 51' + 67^{\circ} 04'$ $+ 79^{\circ} 51' + 51^{\circ} 35'$ $+ 79^{\circ} 50' + 62^{\circ} 56'$ $+ 79^{\circ} 50' + 62^{\circ} 56'$	$\begin{array}{c} 0.990631 + .005637 \sin^2 \phi \\ 0.990743 + .005466 \sin^2 \phi \\ 0.990880 + .005340 \sin^2 \phi \\ 0.990880 + .005340 \sin^2 \phi \\ 0.990977 + .005142 \sin^2 \phi \\ 0.991026 + .005072 \sin^2 \phi \\ 0.990555 + .005679 \sin^2 \phi \\ 0.9909555 + .005679 \sin^2 \phi \\ 0.990941 + .005142 \sin^2 \phi \\ 0.990970 + .005185 \sin^2 \phi \\ 0.990970 + .005185 \sin^2 \phi \\ 0.990918 + .005262 \sin^2 \phi \\ 0.990910 + .005290 \sin^2 \phi \end{array}$	0.993450 0.993976 0.993550 0.993548 0.993562 0.993395 0.993560 0.993554 0.993555	I 2 3 4 5 6 7 8 9 10 11 12		
Combining the above results							
2 M Addit 3 B 4 S Sir Ed 5 S MM. matiq 6 P 7 A 8 F 9 U 1869, 10 col. S 11 däsie, 12	lathieu : ions, pp. iot et A abine : ' lward S aigey : ' Biot, Ka ues, etc. ontécou .iry : '' I coisson : e-33; an Unferdin p. 316. Fischer 7. Helmerf von Dr Harknes Hill, As	"Traité de Mécanique Céleste "Sur les expériences du pend .314-341, p. 332. rago: "Recueil d'Observations 'An Account of Experiments to abine." London, 1825, p. 352. "Comparaison des Observation tter, Sabine, de Freycinet, et D ," T. I, pp. 31-43, and 171-184. lant: "Théorie analytique du S Figure of the Earth;" in "Ency "Traité de Mécanique," T. I, d Puissant: "Traité de géodés ger: "Das Pendel als geodätis : "Die Gestalt der Erde und di t: "Die mathematischen und p. F. R. Helmert," II., Theil. La ss. ttronomical paper prepared for anac," vol. 3, p. 339.	ule;" in "Connaissance de géodésiques, etc." Paris, o determine the Figure of th s du pendule à diverses latit uperry; "in "Bulletin des Paris, 1827. Système du monde," Paris, 1 7c. Met." 2d Div. vol. 3, p. 2 p. 377; "Connaissance de ie," T. 2, p. 464. ches Instrument;" in Grun e Pendelmessungen; " in "2 physikalischen Theorieen de eipzig, 1884, p. 241.	es Temps I 1821, p. 575 ne Earth, et Sciences M 1829, T. 2, p 30. 25 Temps," nert's "Arc Ast. Nach." cr höheren	c., by s par lathé- o. 466. 1834, 1834, chiv," 1876, Geo-		

^{*} The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891). † Calculated from a logarithmic expression given by Unferdinger.

TABLE 117.

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.*

	Length of the seconds pendulum at sea level \cdot \cdot \cdot \cdot \cdot \cdot \cdot $= l = 39.012540 + 0.208268 sin2 \phi inches.$
	Acceleration produced by gravity per sec- $= 3.251045 + 0.017356 \sin^2 \phi \text{ feet.}$ $= 0.9909910 + 0.005290 \sin^2 \phi \text{ metres.}$
	ond per second mean solar time $g = 32.086528 \pm 0.171293 \sin^2 \varphi$ feet. = 977.9886 + 5.2210 sin ² φ centimetres.
	Equatorial semidiameter $a = 20925293 \pm 409.4$ feet. = 3963.124 ± 0.078 miles. = 6377972 ± 124.8 metres.
	Polar semidiameter $b = 20855590 \pm 325.1$ feet. = 3949.922 ± 0.062 miles. = 6356727 ± 99.09 metres.
	One earth quadrant $= 393775819 \pm 4927$ inches. $= 3281.4652 \pm 410.6$ feet. $= 6214.896 \pm 0.078$ miles.
	Flattening $=\frac{a-b}{a} = \frac{1}{300.205 \pm 2.964}$ = 10001816 ± 125.1 metres.
	Eccentricity = $\frac{a^2 - b^2}{a^2}$ = 0.006651018.
	Difference between geographical and geocentric latitude = $\phi - \phi'$ = 688.2242" sin 2 ϕ - 1.1482" sin 4 ϕ + 0.0026" sin 6 ϕ .
	Mean density of the Earth = 5.576 ± 0.016 .
	Surface density of the Earth = 2.56 ± 0.16 .
	Moments of inertia of the Earth; the principal moments being taken as A , B , and C , and C the greater:
	$\frac{C-A}{C} = 0.00326521 = \frac{1}{306.259};$
	$C - A = 0.001064767 \ Ea^2;$ $A = B = 0.325029 \ Ea^2;$ $C = 0.326094 \ Ea^2;$
	where E is the mass of the Earth and a its equatorial semidiameter.
	Length of sidereal year = 365.2563578 mean solar days ; = 365 days 6 hours 9 minutes 9.314 seconds.
	Length of tropical year
	$= 365.242199870 - 0.0000062124 \frac{t - 1850}{100} \text{ mean solar days ;}$
	$= 365 \text{ days } 5 \text{ hours } 48 \text{ minutes} \left(46.069 - 0.53675 \frac{t - 1850}{100} \right) \text{ seconds.}$
	Length of sidereal month $t = 1800$
	$= 27.321661162 - 0.000000262.10 \frac{7 - 1800}{100} \text{ days};$
	$= 27 \text{ days 7 hours 43 minutes} \left(11.524 - 0.022671 \frac{t - 1800}{100}\right) \text{ seconds.}$
	Length of synodical month $= 20.5205$ (state = 2000 cost = 1800 c
	$= 29.530588.435 - 0.00000030696 \frac{7 - 1800}{100} \text{ days};$
	= 29 days 12 hours 44 minutes $\left(2.841 - 0.026522 \frac{t - 1800}{100}\right)$ seconds.
	Length of sidereal day = 86164.09965 mean solar seconds.
	N. B. — The factor containing t in the above equations (the epoch at which the values of the quantities are required) may in all ordinary cases be neglected.
0	* Harkness, "Solar Parallax and Allied Constants."
5	MITHSONIAN TABLES.

TABLE 117.

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.

SMITHSONIAN TABLES.

* Earth + Moon.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = kwav^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, A the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula $P = .00492 v^2$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

 $P = .00228 v^2$.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's † experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle α less than 90° to the direction of the wind the pressure may be expressed as $P_{\alpha} = F_{\alpha} P_{90}$.

Table 118, founded on the experiments of Langley, gives the value of F_a for different values of a. The word *aspect*, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

Plane 30 in. X 4.8 in. Aspect 6 (nearly).		Plane 12 in. X 12 in. Aspect 1.		Plane 6 in. X 24 in. Aspect }.	
a	Fα	a	Fα	a	Fa
0° 5 10 15 20 25	0.00 0.28 0.4.1 0.55 0.62	0° 5 10 15 20 25	0.00 0.15 0.30 0.44 0.57	0° 5 10 15 20 25	0.00 0.07 0.17 0.29 0.43
30 35 40 45 50	0.66 0.69 0.72 0.74 0.76 0.78	30 35 40 45 50	0.69 0.78 0.84 0.88 0.91	23 30 - - -	0.58 0.71 - -

TABLE 118. — Values of \mathbf{F}_a in Equation $\mathbf{P}_a = \mathbf{F}_a \mathbf{P}_{00}$.

* The pressure on a spherical surface is approximately 0.36 that on a plane circular surface of the same diameter as the sphere; on a cylindrical surface with axis normal to the wind, about 0.5 that on a rectangular surface of length equal to the length, and breadth equal to the diameter of the cylinder.

† The data here given on Professor Langley's authority were communicated by him to the author.

SMITHSONIAN TABLES.

AERODYNAMICS.

On the basis of the results given in Table 118 Langley states the following condition for the soaring of an aeroplane 76.2 centimetres long and 12.2 centimetres broad, weighing 500 grammes, — that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

Inclination to the horizontal α .	sec. sec. 20.0 66 15.2 50 12.4 41 11.2 37 10.6 35		Work expen (act	ded per minute ivity).	Weight of pl. form, capab at speed v v penditure of power.	le of soaring
		•	Kilogramme metres.	Foot pounds.	Kilogrammes.	Pounds.
2° 5 10 15 30 45	15.2 12.4 11.2 10.6	50 41 37	24 41 65 86 175 336	174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29 15

TABLE 119. — Data for the Soaring of Planes 76.2×12.2 cms. weighing 500 Grammes, Aspect 6.

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$

Soaring speed $v = \sqrt{\frac{\rho}{k} \frac{1}{F_a \cos a}}$

Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

 $v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_a \cos \beta}}$, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination $a = -3$	° 00	$+3^{\circ}$	6°	9°	I 2 ⁰
Inclination factor $F_a = 0.20$	0.50	0.75	0.90	1.00	1.05
$\tan \beta = 0.01$	0.02	0.03	0.0.4	0.10	0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $\alpha = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TABLE 120. - Total Intensity of the Terrestrial Magnetic Field.

This table gives in the top line the total intensity of the terrestrial magnetic field for the longitudes given in the first column and the latitudes given in the body of the table. Under the headings 13, 13.5, and 13.75 there are sometimes several entries for one longitude. This indicates that these lines of total force cut the same longitude line more than once. The isodynamic lines are peculiarly curved and looped north of Lake Ontario. The values are for the epoch January 1, 1885, and the intensities are in British and C. G. S. units.

Longi- tude.	10.5 or .4841	11.0 or .5072	11.5 or .5302	12.0 or •5533	12.5 or .57 ⁶ 4	13.0 OF	•5994		13.5 or	.6225		13.75 0	r .6340
67 68 70 72 75	0	0 	0	0	0 	° 44.5 43.1 41.9 40.6 36.7	° 45.5 48.2 – –	0	0	0	0	0 1	0
76 77 78 80 81		- 22.6 22.8 22.8	- 24.5 24.5 24.5	- - 27.9 27.1	- - 31.2 31.2	36.4 36.0 34.1 35.1 35.5	-	44.7 43.6 43.3 43.9 41.4	- 45.4 45.2 44.6 41.9	- - - 44·3	- - 4 5.8		1 1 1 1
82 83 85 86 87	- 19.6 19.8 20.0	22.8 22.7 22.2 22.3 22.5	24.6 24.8 25.0 -	26.4 26.6 27.9 28.3 28.6	31.3 31.2 30.8 30.6 30.4	35-5 35-2 34-4 35-3 35-5		41.2 41.0 40.8 41.1 41.9	42.1 46.2 47.6 48.0 48.4	43.6 - - -	45.8 - - -	- 45.5 45.2 43.2	- 46.1 47.4 47.7
90 92 95 100 105	20.1 20.1 20.0 20.0 21.7	22.5 22.3 22.3 22.8 24.4	-	29.9 29.3 28.3 30.0 33.1	31.9 33.3 33.1 34.1 36.1	36.6 37.4 37.2 39.0 39.8		41.6 41.7 41.2 41.4 43.6	49.1 50.2 - -	-	-	43.2 44.7 43.7 42.7 44.8	48.2 48.2 - -
110 115 120 124	23.2	26.9 29.1 30.7 -	31.2 31.8 34.7	34.4 36.2 37.8 39.6	37.7 40.1 42.3 44.2	41.6 44.5 46.4		45.2 - -				47.0 - - -	-

TABLE 121. - Secular Variation of the Total Intensity.

Values in Brilish units of total intensity of terrestrial magnetic force at stations given in the first column and epochs January 1 of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge New Haven . New York . Sandy Hook . Albany	1 3.48 1 3.47 1 3.56 1 3.70 1 3.68	1 3.33 1 3.40 1 3.51 1 3.59 1 3.65	13.21 13.25 13.39 13.36 13.72	1 3.22 1 3.11 1 3.27 1 3.17 1 3.80	13.37 13.20 13.32 13.23 13.23 13.87	13.45 13.33 13.36 13.35 13.93	13.49 13.41 13.36 13.40 13.92	13.39 13.41 13.31 13.39 13.82	13.14 13.29 13.19 13.30 13.61	12.79 13.05 12.99 13.13 13.27
Philadelphia . Baltimore Washington . Toronto Cleveland . Detroit	13.52 13.56 13.43 14.03 13.85 13.85	13.44 13.45 13.36 13.93 13.78 13.80	1 3.45 1 3.38 1 3.31 1 3.95 1 3.76 1 3.71	13.47 13.37 13.34 13.91 12.75 13.68	1 3.51 1 3.44 1 3.39 1 3.82 1 3.78 1 3.72	13.55 13.40 13.42 13.82 13.83 13.83	13.58 13.48 13.42 13.77 13.84 13.76	13.57 13.48 13.38 13.78 13.81 13.78	13.49 13.38 13.29 13.78 13.74 13.73	1 3.25 1 3.22 1 3.20 1 3.76 1 3.61 1 3.62

* Tables 120-125 have been compiled from a very full discussion of the magnetic dip and intensity for the United States and adjacent countries, given in Appendix 6 of the Report of the United States Coast and Geodetic Survey for 1885. Later Reports of the survey have been consulted, particularly in connection with the extrapolation of the values of horizontal intensity to 1890 and 1895, but most of the data are taken from Mr. Schott's Appendix to the 1885 Report.

TABLES 122, 123.

TERRESTRIAL MACNETISM.

TABLE 122. - Values of the Magnetic Dip.

This table gives for the epoch January 1, 1885, the values of the magnetic dip, stated in first column, corresponding to the longitudes given in the top line and the latitudes given in the body of the table. Thus, for longitude 95° and latitude 30° the dip was 59° on January 1, 1885. The longitudes are west of Greenwich. For positions above the division line in the table the dip was increasing, and for positions below that line decreasing, in 1885.

D .					Lo	ngitudes	west of	Greenw	rich.				
Dip.	66 ⁰	70 ⁰	75 ⁰	80 ⁰	85°	900	95 ⁰	1000	1050	1100	115 ⁰	1200	1240
0	0	0	0	0	0	0	0	0	0	0	0	0	0
44	-	—	-	-	—	17.9	18.4	19.1	19.6	-	-	-	-
45	-	-	-	_	-	18.7	19.2	19.8	20.3	-	-	-	- 1
6	_	_	-	_	_	19.2 20.0	19.8	20.6	21.1 21.8	-	-	-	- 1
78	_	_	17.9	_	_	20.0	20.5 21.2	21.2 21.0	21.0	23.3	_	_	
9	-	-	18.7	-	-	21.2	21.9	22.6	23.2	24.0	_	-	-
50	-	-	-	—	21.4	22.1	22.7	23.5	24.1	24.7	_	_	- 1
I	-	-	-	-	22.2	22.8	23.6	24.3	24.8	25.5	-	-	-
2	_	_	_	22.4	23.0	23.7	24.4	25.1	25.6	26.3	27.4	_	-
3	_	_	_	23.3 24.0	23.9 24.7	24.5 25.3	25.2 26.0	25.9 26.7	26.5 27.2	27.1 28.1	28.2 29.0	_	_
55	_	_	_	24.8	25.5	26.1	26.8	27.5	28.1	28.9	29.9	_	_
6	—	-	24.7	25.6	26.3	26.9	27.5	28.1	28.9	29.7	30.6	-	-
7	-	-	-	26.4	27.1	27.7	28.3	28.9	29.7	30.6	31.4	_	-
8	-	-	-	27.3 28.0	27.9 28.7	28.5	29.I	29.8	30.5	31.4	32.3	-	-
9 60		_		28.6		29.4	30.0	30.6	31.5	32.4	33-3	34.4	-
	_	_	_		29.6	30.2	30.8	31.5	32.4	33.4	34.3	35.3	-
				29.9 30.6	30.3 31.3	<u> 30.9 </u> 31.9	31.7 32.5	32.4	33.3	34.2 35.2	35·3 36.3	.36.2 37.1	-
3	_	_	-	31.6	32.0	32.7	33.6	33·3 34.2	34·3 35.2	36.2	37.1	37.1	39.0
4	_	-	-	32.7	33.2	33.6	34.5	35.2	36.1	37.2	38.1	39.0	40.3
65	-	-	-	33.5	3.4.0	34.6	35.5	36.2	37.1	38.2	39.2	40.3	41.5
6	-	-	-	34.3	35.0	35.8	36.5	37.2	38.I	39.2	40.3	41.5	42.5
78	-	-	35.1 35.8	35·3 36.0	35.9 36.6	36.6 37.5	37.2 38.2	38.2 39.2	39.1 40.0	40.2	41.4	42.5 43.6	43.6 44.7
9	-	-	37.0	37.5	37.6	37.5 38.5	39.2	40.0	41.2	42.2	43.5	44.6	45.7
70	-	_	38.0	38.5	39.0	39.6	40.4	41.0	42.1	43.3	44.5	45.6	46.9
I	-	-	39.1	39.5	39.8	40.7	41.1	41.8	43.2	44.3	45.7	47.2	47.9
23		41.7	40.4 41.2	40.3	40.9	41.6	42.I	43.1	44.3	45.5	47.1	48.6 50.0	49.2
	43.5	41.7 43.1	42.9	43.1	43.4	43.9	43.4 44.5	44.4	45.5	48.3	49.7	-	
75	44.9	44.5	44.3	4.1.0	44.5	45.0	45.7	46.7	48.0	49.5	51.0	_	_
6	45.7	45.9	45.5	45.4	45.5	46.1	47.1	48.2	49.5	50.7	- 1	~	-
7	47.3	47.6	46.7	46.9 48.2	47.0 48.0	47·4 48.8	48.3	49.4	50.6 51.8	_	-	-	_
9	_	_	-	49.3	49.3	40.0	49.7 51.0	50.7 51.9	51.0	~	-	_	_
80	-	_	-	50.4	50.4	-	_	_	-	-	_	_	_
					5 7								

 TABLE 123. — Secular Variation of the Magnetic Dip.

Values of magnetic dip at stations given in the first column, and epochs, January 1, of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge .	74.25	74.29	74.35	74.40	74.42	74.38	74.26	74.02	73.65	73.12
New Haven	73.47	73.51	73.56	73.61	73.64	73.62	73.54	73.38	73.11	72.72
New York .	72.75	72.73	72.75	72.78	72.80	72.78	72.71	72.56	72.31	71.93
Sandy Hook	72.63	72.61	72.63	72.66	72.68	72.66	72.59	72.44	72.19	71.81
Albany .	74.75	74.80	74.88	74.96	75.02	75.02	74.95	74.77	74.46	73.99
Philadelphia	71.99	72.02	72.08	72.15	72.20	72.21	72.16	72.02	71.77	71.38
Baltimore .	71.74	71.66	71.66	71.69	71.74	71.77	71.76	71.67	71.48	71.16
Washington	71.39	71.39	71.38	71.36	71.32	71.25	71.15	71.00	70.80	70.55
Toronto	75.28	75.25	75.32	75.39	7541	75.35	75.27	75.20	75.03	74.88
Cleveland .	73.22	73.19	73.21	73.24	73.28	73.29	73.27	73.18	73.03	72.78
Detroit	73.61	73.61	73.63	73.66	73.68	73.69	73.67	73.60	73.47	73.28

TABLE 124 - Horizontal Intensity.

This table gives, for the epoch January 1, 1855, the horizontal intensity, H, corresponding to the longitudes in the top line and the latitudes in the body of the table. At epoch 1885 the force was increasing for positions above the division line, and was decreasing for positions below the division line.

H	Longitudes west of Greenwich.													
in British units.	65 ⁰	70 ⁰	75 ⁰	Sop	85 ⁰	90 ⁰	95 ⁰	1000	105 ⁰	1100	1150	1200	124 ⁰	in C. G. S. units.
2.50 2.75	1 1 0	0 - -	0 - -	° 	° 498 43.8	° - 49.8	0 - -	。 -	0 	0 -	0 	0 — —	0 	. 1153 .1268
3.00 3.25 3.50	48 3 45·5 43·2	47.3 45.6 43.8	46.6 45.5 43.6	47.2 45.8 44.0	47.6 46.1 44.6	48.5 46.7 45.1	49.1 47.6 45.8	50.1 48.5 47.2	- - -		- - -	-		.1383 .1498 .1614
3.75 4.00 4.25 4.50 4.75		42.2 40.7 - -	42.5 41.2 39.6 38.1 36.6	42.6 41.5 40.2 38.7 37.4	43.2 42.1 40.4 39.2 37.6	43.6 42.4 41.0 39.7 38.4	44.6 43.4 41.8 40.4 39.1	45.8 44.6 43.0 41.6 39.9	47·3 45·7 44.2 42.8 41.0	48.4 46.8 45.4 43.8 42.0	49·4 47·7 46.3 44.6 42.8	- 48.7 47.0 45.2 43.6	- 49.6 47.6 45.7 44.2	. 1729 .1844 .1959 .2075 .2190
5.00 5.25 5.50 5.75 6.00			35.1 - - -	35.8 34.6 33.0 31.0 28.8	36.2 35.2 33.8 32.2 30.6	36.9 35.4 33.8 32.1 30.3	37.8 35.9 34.5 32.7 31.0	38.5 37.0 35.3 33.6 31.6	39.3 38.0 36.3 34.7 31.9	40.3 37.7 36.7 34.8 32.3	41.1 39.2 37.2 35.2 33.1	41.9 39.6 37.7 35.6 33.6	42.6 39.8 37.4 -	.2305 .2422 .2536 .2651 .2766
6.25 6.50 6.75 7.00 7.25			- 24.I - I8.2 -	27.4 25.8 23.6 20.8 –	29.2 27.3 - 22.1 -	28.1 27.3 22.5 19.5	29.8 27.7 22.8 19.9	29.9 28.0 - 23.0 20.3	- 28.2 - 23.2 20.5	- 28.4 26.1 24.0 21.2	31.1 28.6 - -			.2997 .3112 .3228 .3343

TABLE 125. - Secular Variation of the Horizontal Intensity.

Values of the horizontal intensity, H, in British units, for stations given in first column and epochs given in top line. The values for 1890 and 1895 have been extrapolated from the values up to 1885. The epochs are for January 1 of the different years given.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885	1890	1895
Cambridge New Haven New York Sandy Hook . Albany Philadelphia . Baltimore Washington . Toronto	3.66 3.83 4.02 4.09 3.60 4.18 4.25 4.28 3.56	3.61 3.80 4.01 4.06 3.58 4.15 4.23 4.26 3.54	3.56 3.75 3.97 3.99 3.58 4.14 4.21 4.25 3.53	3.55 3.70 3.93 3.92 3.58 4.13 4.20 4.26 3.51	3.59 3.72 3.94 3.94 3.58 4.13 4.21 4.29 3.48	3.62 3.76 3.95 3.98 3.60 4.14 4.21 4.31 3.49	3.66 3.80 3.97 4.01 3.61 4.16 4.22 4.33 3.50	3.68 3.83 3.99 4.04 3.63 4.19 4.24 4.35 4.52	3.70 3.86 4.01 4.07 3.64 4.22 4.25 4.37 3.56	3.71 3.87 4.03 4.10 3.66 4.23 4.27 4.39 3.58	3.73 3.87 4.05 4.13 3.67 4.24 4.28 4.41 4.60	3.74 3.86 4.07 4.16 3.69 4.24 4.30 4.42 4.61
Cleveland Detroit San Diego Santa Barbara . Monterey San Francisco . Fort Vancouver	4.00 3.91 6.12 5.87 5.63 5.49 4.44	3.98 3.89 6.19 5.93 5.71 5.54 4.51	3.97 3.86 6.22 5.94 5.75 5.56 4.55	3.96 3.85 6.25 5.95 5.77 5.57 4.56	3.96 3.85 6.26 5.96 5.76 5.59 4.58	3.97 3.86 6.24 5.95 5.75 5.59 4.58	3.98 3.87 6.20 5.94 5.72 5.58 4.57	3.99 3.89 6.15 5.92 5.69 5.54 4.56	3.90 6.10 5.88 5.66 5.51 4.54	4.03 3.92 6.07 5.84 5.65 5.49 4.53	4.05 3.93 6.04 5.80 5.64 5.47 4.52	4.07 3.94 6.03 5.77 5.63 5.45 4.52

TABLE 126.

7

TERRESTRIAL MACNETISM.

Secular Variation of Declination in the Form of a Function of the Time for a Number of Stations.

More extended tables will be found in App. 7 of the United States Coast and Geodetic Survey Report for 1883, from which this table has been compiled. The variable m is reckoned from the epoch 1850 and thus $\equiv t - 1850$.

Station.	Latitude.	West longitude.	The magnetic declination (D) expressed as a function of time.
(a)	Eastern S	eries of Sta	ations.
St. Johns, N. F	° ' 47 34-4 46 48-4	° ' 52 41.9 71 14.5	$\begin{array}{c} \circ & \circ \\ 21.94 + & 8.89 \sin (1.05 m + 63.4)^* \\ 14.66 + & 3.03 \sin (1.4 m + 4.6) \\ & + & 0.61 \sin (4.0 m + 0.3) \end{array}$
Charlottetown, P. E. I Montreal, Canada	46 14.0 45 30.5	63 27.0 73 34.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bangor, Me Halifax, N. S Albany, N. Y Cambridge, Mass	44 82.2 44 39.6 42 39 2 42 22.9	68 46.9 63 35.3 73 45.8 71 07.7	+ 0.36 sin (4.9 m + 19.0) 13.86 + 3.55 sin (1.30 m + 8.6) 16.18 + 4.53 sin (1.00 m + 46.1)* 8.17 + 3.02 sin (1.44 m - 8.3) 9.54 + 2.69 sin (1.30 m + 7.0) + 0.18 sin (3.20 m + 44.0)
New Haven, Conn New York, N. Y	41 18.5 40 42.7	72 55.7 74 00.4	$7.78 + 3.11 \sin (1.40 m - 22.1) 7.04 + 2.77 \sin (1.30 m - 18.1) + 0.14 \sin (6.30 m + 64.0)$
Harrisburg, Pa Philadelphia, Pa	40 1 5.9 39 56.9	70 52.6 75 09.0	$\begin{array}{rrr} 2.93 + & 2.98 \sin \left(1.50 m + & 0.2 \right) \\ 5.36 + & 3.17 \sin \left(1.50 m - & 26.1 \right) \end{array}$
Washington, D. C	38 53.3	77 00.6	+ 0.19 sin $(4.00 m + 14.0)$ 2.73 + 2.57 sin (1.45 m - 21.6) + 0.14 sin $(12.00 m + 27)$
Cape Henry, Va Charleston, S. C	36 55.6 32 46.6	76 00.4 70 55.8	$\begin{array}{c} 2.42 + 2.25 \sin \left(1.47 \ m - 30.6 \right) \\ - 1.82 + 2.75 \sin \left(1.40 \ m - 12.1 \right) * \end{array}$
Paris, France	48 50.2	† 2 20.2	$6.479 + 16.002 \sin (0.765 m + 118.77) + [0.85 - 0.35 \sin (0.69 n)] \sin [(4.04)]$
	32 23.0 —22 54.8	64 42.0 43 09.5	$ + 0.0054 n + .000035 n^2)n]^{\ddagger} 6.95 + 0.0145 m + 0.00056 m^2 * 2.19 + 9.91 sin (0.80 m - 10.4)* $
(b)	Central S	eries of St	ations.
York Factory, B. N. A Fort Albany, B. N. A Sault Ste Marie, Mich Toronto, Canada	56 59.9 52 22.0 46 29.9 43 39.4	82 38.0 84 20.1	$7.34 + 16.03 \sin (1.10 m - 97.9)$ $15.78 + 6.95 \sin (1.20 m - 99.6)*$ $1.54 + 2.70 \sin (1.45 m - 58.5)$ $3.60 + 2.82 \sin (1.40 m - 44.7)$ $+ 0.09 \sin (9.30 m + 136)$ $+ 0.08 \sin (19.00 m + 247)$
Chicago, Ill Cleveland, Ohio Denver, Colo A thens, Ohio Cincinnati, Ohio St. Louis, Mo New Orleans, La Key West, Fla Kingston, Port Royal, Jamaica .	41 50.0 41 30.4 39 45.3 39 19.0 39 08.4 38 38.0 29 52.2 24 33.5 17 55.9	81 41.5 104 59.5 82 02.0 84 25.3 90 12.2 90 03.9 81 48.5	$\begin{array}{r} -3.77 + 2.48 \sin \left(1.45 \ m - 62.5\right) \\ 0.47 + 2.39 \sin \left(1.30 \ m - 14.8\right) \\ -15.30 + 0.011 \ m + 0.0005 \ m^2 \\ -1.51 + 2.63 \sin \left(1.40 \ m - 24.7\right) \\ -2.59 + 2.43 \sin \left(1.42 \ m - 37.9\right) \\ -5.91 + 3.00 \sin \left(1.40 \ m - 51.1\right)^* \\ -5.20 + 2.98 \sin \left(1.40 \ m - 69.8\right) \\ -4.31 + 2.86 \sin \left(1.30 \ m - 23.9\right) \end{array}$
(b) St	ations on t	he Pacific	Coast, etc.
City of Mexico, Mex. Cerros Island, Lower Cal., Mex. San Francisco, Cal. Vancouver, Wash. Sitka, Alaska Port Etches, Alaska Petropavlovsk, Siberia	19 26.0 28 04.0 37 47.5 45 37.5 57 02.9 60 20.7 53 01.0	1 1 5 12.0 1 22 27.3 1 22 39.7 1 35 19.7 1 46 37.6	$-7.40 + 4.61 \sin(1.05 m - 107.0)$

* Approximate expression. ‡ Compiled from a series of observations extending back to 1541. The primary wave follows the sum of the con-stant and first periodic term closely. The period seems to be about 470 years. In the expression for the secondary wave $n \equiv t - 1700$.

Secular Variation of the Declination. - Eastern Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
St. Johns, N. F	°	。	°	0	°	°	°	°	°	°	э
Quebec, Canada	23.5	25.0	26.5	28.0	29.0	29.9	35.0	30.8	30.8	30.5	29.9
Charlottetown,	12.1	12.1	12.3	12.9	13.8	14.9	16.0	16.9	17.4	17.5	17.5
P. E. I	-	-	-	19.3	20.7	21.9	22.8	23.4	23.7	23.7	23.3
Montreal, Canada .	8.0	7.8	7.9	8.4	9.4	10.7	12.0	13.0	13.8	14.4	15.0
Eastport, Me	13.2	1.4.0	1.4.8	15.6	16.4	17.1	17.8	18.3	18.7	18.9	19.0
Bangor, Me	10.9	11.4	12.1	12.8	1 3.6	14.4	15.2	1 5.9	16.5	16.9	17.3
Halifax, N. S	15.9	16.7	17.4	18.2	18.9	19.4	19.9	20.3	20.6	20.7	20.7
Burlington, Vt	7.3	7.2	7.5	8.1	8.9	9.7	10.3	1 1.0	11.9	12.8	13.5
Hanover, N. H	5.8	6.0	6.5	7.2	7.9	8.8	9.8	1 0.8	11.7	12.5	13.1
Portland, Me	8.5	8.9	9.5	10.1	10.8	11.6	12.3	1 3.0	13.6	14.1	14.4
Rutland, Vt	6.3	6.2	6.5	6.9	7.6	8.5	9.4	10.4	11.3	12.3	1 3.0
Portsmouth, N. H	7·4	7.7	8.1	8.7	9.5	10.3	11.1	11.9	12.7	13.3	1 3.7
Chesterfield, N. H	-	6.0	6.4	7.0	7.7	8.5	9.4	10.3	11.2	12.0	1 2.6
Newburyport, Mass.	7·3	7.6	8.1	8.6	9.3	10.0	10.7	11.4	12.0	12.5	1 2.8
Williamstown, Mass.	5·7	5.9	6.3	6.8	7.4	8.1	8.8	9.6	10.3	10.9	1 1.4
Albany, N. Y	–	5.4	5.8	6.3	7.0	7.7	8.5	9.2	9.9	10.5	10.9
Salem, Mass	6.3	6.6	7.2	7.9	8.7	9.6	10.6	11.5	12.3	13.0	13.5
Oxford, N. Y	3.0	3.1	3.4	3.9	4.5	5.1	5.9	6.6	7.4	8.0	8.6
Cambridge, Mass	7.1	7.5	8.0	8.6	9.3	10.0	10.6	11.2	11.6	11.9	12.0
Boston, Mass	6.9	7.3	7.8	8.4	9.0	9.7	10.3	10.9	11.5	11.9	12.2
Provincetown, Mass.	7.2	7.7	8.2	8.9	9.6	10.2	10.9	11.5	12.0	12.4	12.6
Providence, R. 1	6.5	6.5	6.7	7·3	8.2	9.2	9.8	10.2	10.8	11.6	12.1
Hartford, Conn	5.2	5.2	5.5	5.8	6.2	6.8	7.4	8.0	8.6	9.2	9.8
New Haven, Conn	4.7	4.7	5.0	5·4	5.9	6.6	7.3	8.1	8.8	9.5	10.1
Nantucket, Mass.	6.8	7.2	7.7	8.7	9.0	9.6	10.1	10.6	11.0	11.3	11.5
Cold Spring Harbor, N.Y New York, N.Y. Bethlehem, Pa Huntingdon, Pa New Brunswick,	4.7 4.3 2.6 1.0	4.9 4.5 2.3 0.8	5.2 4.6 2.3 0.9	5.6 5.0 2.5 1.1	6.1 5.6 2.9 1.5	6.7 6.3 3.5 2.1	7·3 6.9 4.2 2.7	7•9 7•4 5.0 3•5	8.4 7.9 5.8 4.2	8.9 8.5 6.7 4.9	9·3 9.1 7·4 5.6
N. J	2.5	2.9	3.4	4.0	4.7	5.3	6.0	6.6	7.1	7.5	7.9
Jamesburg, N. J	3.1	3.I	3.4	3.8	4.3	4.9	5.6	6.3	7.0	7.6	8.2
Harrisburg, Pa	0.0	0.3	0.8	1.4	2.2	2.9	3.7	4.4	5.0	5.5	5.8
Hatboro, Pa	1.8	2.0	2.5	3.0	3.7	4.3	5.0	5.7	6.7	7.6	8.0
Philadelphia, Pa	2.1	2.2	2.4	2.9	3.4	4.1	4.7	5.4	6.2	7.0	7.7
Chambersburg, Pa	-0.3	—0.5	0.3	0.2	0.7	1.4	2.0	2.7	3.4	4.2	5.0
Baltimore, Md Washington, D. C Cape Henlopen, Del. Williamsburg, Va Cape Henry, Va	0.6 0.2 0.8 	0.7 0.2 0.9 -0.3 0.2	0.9 0.4 1.1 -0.2 0.2	1.2 0.7 1.5 0.0 0.5	1.7 1.1 2.0 0.4 0.8	2.3 1.8 2.6 0.9 1.3	2.9 2.5 2.4 1.5 1.8	3.5 2.9 4.1 2.1 2.4	4.2 3.7 4.9 2.7 2.9	4.7 4.3 5.6 3.3 3.5	5.2 4.6 6.2 3.9 3.9
Milledgeville, Ga.		$ \begin{array}{c} -1.9 \\ -5.3 \\ -4.4 \\ -4.7 \\ 22.3 \end{array} $	-1.6 -5.6 -4.0 -4.7 21.9	-5.6 -3.6		0.2 5.3 2.4 3.8 20.9	-1.7	-1.1	1.7 4.0 0.4 2.1 16.6	0.1	2.7 2.7 0.5 0.9
St. George's Town, B. I.	-	_	-	6.9	6.9	6.9	7.1	7.5	7.9	8.4	
Rio de Janeiro, Bra- zil	-5.4	-4.5	-3.4	-2.2	-0.9	0.4	1.8	3.1	4.5	5.8	

* This table gives the secular variation of the declination since the year 1800 for a series of stations in the Eastern States and adjacent countries. Compiled from a paper by Mr. Schott, forming App. 7, Report of the United States Coast and Geodetic Survey for 1888. The minus sign indicates eastern declination.

Secular Variation of the Declination. - Central Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
York Factory, Brit. N. A Fort Albany, Brit.									7.2 9.6	— <u>5</u> .6	
N. A. Duluth, Minn. Superior City, Wis. Sault Ste. Marie,	1 3.4 } -	-	10.9 -	-	-	-9.8	—10.0	-10.1	I O. I	-9.9	-9.5
Mich Pierrepont Manor, N. Y	0.5	0 .9	—1.1 2.6				—0.3 5·4				
Toronto, Canada . Grand Haven, Mich. Milwaukee, Wis Buffalo, N. Y	- - 0.2	- - - 0.2	- 5.0 - 0.4	0.8 5.2	ī.3	1.6 4.9 7.4	-4.4 -6.9	2.7 3.7 6.2	3.6 —2.7	4.1 —1.5 —4.5	- 3.6
Detroit, Mich Ypsilanti, Mich Erie, Pa Chicago, Ill Michigan City, Ind.	- 0.5 -	3.1 4.1 0.5 	—3.6 —0.4	3.0 0.1 6.3	-2.2 0.4 6.2	-1.4 0.9 6.0		0.2 2.3 —5.1	0.9 3.0 4.6	1.5 3.6 —4.0	1.9 4.2 -3.3
Cleveland, Ohio . Omaha, Neb Beaver, Penn Pittsburg, Pa Denver, Colo		-12.5	-12.6	-12.6	-12.4	-12.0 -0.3	—11.5 0.2 1.3	–10.9 0.9 1.9	—10.2 1.5 2.5	-9.5 2.2	8.7 2.8 3.5
Marietta, Ohio Athens, Ohio Cincinnati, Ohio . St. Louis, Mo Nashville, Tenn	-4.1 -4.9 -	-4.1 -5.0	—3.9 —5.0		-3.1 -4.5 -8.6	-2.6 -4.1 -8.2	$ \begin{array}{c}1.3 \\2.0 \\3.6 \\7.7 \\6.3 \end{array} $		-0.7 -2.4 -6.4	-0.1 -1.8 -5.6	0.4 1.3 4.9
Florence, Ala Mobile, Ala Pensacola, Fla New Orleans, La San Antonio, Texas	-5.8 -6.8 -7.1	-6.3 -7.2 -7.6		7.6 7.6 8.1	-7.1 -7.4 -8.2		-6.7	-6.4 -6.0 -7.2	-5.8 -5.3	-5.2 -4.6 -5.9	-4.6 -3.8
Key West, Fla Havana, Cuba Kingston, Port	-7.0	6.9	6.6	-6.3	—5.8	-5.3	; 4.8		-3.6	-3.0	
Royal, Jamaica . Barbadoes, Car. Isl. Panama, New Gra- nada				1			1				
haua · · · ·	1.9	7.0	/.0	1.3	/.0						1.0

* This table gives the secular variation of the declination since the year 1800 for a series of stations in the Central States and adjacent countries. The minus sign indicates eastern declination. Reference same as Table 127.

Secular Variation of the Declination. - Western Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
Acapulco, Mex Vera Cruz, Mex City of Mexico, Mex San Blas, Mex Cape San Lucas, Mex	° 7.6 8.6 7.5 7.1 6.2	° 8.1 9.0 7.9 7.8 6.9	° 8.5 9.3 8.2 8.4 7.6	° 8.7 9.3 8.5 8.9 8.3	° 8.9 9.2 8.6 9.3 8.8	° 8.9 8.9 8.6 9.4 9.2	° 8.7 8.4 8.5 9.4 9.5	° 8.5 7.8 8.4 9.3 9.6	° 8.1 7.0 8.1 9.0 9.6	° 7.6 6.2 7.8 8.5 9.4	0 7.1 5.3 7.4 7.9 9.0
Magdalena Bay, L. Cal Ceros Island, Mex El Paso, Mex San Diego, Cal Santa Barbara, Cal	6.6 9.0 - 10.3 11.6	7.4 9.8 - 10.8 12.3	8.2 10.5 - 11.4 12.9	8.9 11.0 - 11.9 13.4	9.5 11.5 - 12.3 13.9	10.0 11.8 12.3 12.7 14.3	10.3 12.0 12.5 13.0 14.6	10.5 12.0 12.4 13.2 14.8	10.5 11.9 12.3 13.3 14.8	10.3 11.6 11.9 13.3 14.8	10.0 11.2 11.4 13.2 14.6
Monterey, Cal San Francisco, Cal Cape Mendocino Salt Lake City, Utah Vancouver, Wash	12.3 13.6 15.1 16.8	12.9 14.1 15.6 - 17.5	13.4 14.5 16.0 - 18.2	13.9 15.0 16.5 	14.4 15.4 16.9 	14.9 15.8 17.2 16.0 20.2	15.3 16.1 17.4 16.4 20.6	16.6 16.3 17.6 16.6 20.9	15.9 16.5 17.7 16.6 21.0	16.0 16.6 17.7 16.3 21.0	16.1 16.6 17.6 15.7 20.8
Walla Walla, Wash. Cape Disappointment, Wash. Seattle, Duwanish Bay,	- 17.7	- 18.2	- 18.7	- 19.2	- 19.8	20.4 20.3	20.8 20.8	21.0 21.2	21.1 21.6	21.0 21.8	20.8 21.9
Wash	- 18.1 18.3	18.8 18.9	- 19.6 19.6	- 20.3 20.3	- 20.9 21.0	21.3 21.4 21.6	21.8 21.7 22.1	22.1 21.8 22.5	22.3 21.8 22.7	22.2 21.5 22.7	22.1 21.1 22.6
Nootka, Vancouver Island Captain's and Iliuliuk Har- bors, Unilaska Island Sitka, Alaska	19.6 19.3	20.1 19.6	20.7 19.7	21.3 19.8	22.0 19.7	22.5 19.7	23.0 19.5	23.5 19.3	23.8 18.9	23.9 18.6	24.0 18.2
St. Paul, Kadiak Island . Port Mulgrave, Yakutat	26.4 25.5 27.8	27.1 26.4 29.2	27.8 27.0 30.4	28.3 27.3 31.2	28.7 27.4 31.7	29.0 27.1 31.8	29.1 26.6 31.4	29.0 25.9 30.7	28.8 25.0 29.7	28.4 23.9 28.4	27.9 22.7 26.8
Port Clarence, Alaska Chamisso Island, Kotze-	27.8	29.3	30.4 26.6	31.2 27.0	31.6 26.9	31.5 26.4	31.0 25.6	30.1 24.4	28.8 22.9	27.3 21.2	25.5 19.5
bue Sound Petropavlovsk, Kamchatka, Siberia	- 5·7	- 5.2	31.1 4·7	31.3 4.1	31.1 3·4	30.5 2.7	29.6 2.1	28.3 1.5	26.8 1.0	25.2 0.7	23.5 0.5

* This table gives the secular variation of the declination since the year 1800 for a series of stations in the Western States and adjacent countries. The declinations are all east of north. Reference same as Table 127.

SMITHSONIAN TABLES.

Agenic Lines.*

	Longitud	les of the ago	nic line for th	e years —
Lat. N.	1800	1850	1875	1890
0	0	0	0	0
25	-	-	-	75.5
30	-	-	-	78.6
35	-	76.7	79.0	79.9
6	75.2	77.3	79.7	So. 5
7	76.3	77.7	80.6	82.2
8	76.7	78.3	81.3	82.6
9	76.9	78.7	81.6	82.2
40	77.0	79·3	81.6	82.7
I	77.9	So.4	81.8	82.8
2	79.1	S1.0	82.6	83.7
3	79.4	81.2	83.1	84.3
4	79.8	-	83.3	84.9
45		_	83.6	85.2
6	_	-	84.2	84.8
7	-	-	85.1	85.4
8		-	86.o	85.9
9	-	-	86.5	86.3
ļ				

The line of no declination is moving westward in the United States, and east declination is decreasing west of, while west declination is increasing east of the agonic line.

* Reference same as Table 127.

SMITHSONIAN TABLES.

Date of Maximum East Declination.*

This table gives the date of maximum east declination for a number of stations, beginning at the northeast of the United States and extending down the Atlantic coast to New York and west to the Pacific.

Station.				Date.
Halifax,† N. S.	4	٠		1714
Eastport, Me.		٠		1753
Bangor, Me			e	1774
Portland, Me.		٠	4	1779
Boston, Mass.		٠		1780
New Haven, Conn.		•		1800
New York, N.Y				1784
Jamesburg, N. J.	•	٠		1802
Philadelphia, Pa.	٠			1802
Pittsburg, Pa	•	•		1808
Cincinnati, Ohio .	•	٠		1814
Florence, Ala.		•		1821
St. Louis, Mo	٠	•		1822
Nashville, Tenn	•	٠	٠	1834
Chicago, Ill	•		٠	1831
Denver, Colo		۰	٠	1839
Salt Lake, Utah .	0			1873
Vancouver, Wash.	٠	¢		1883
Cape Mendocino, Cal.				1886
San Francisco, Cal.	a	۴	ø	1893

* Reference same as Table 127.

t The opposite phase of maximum west declination is now located at Halifax.

PRESSURE OF COLUMNS OF MERCURY AND WATER.

.

British and metric measures. Correct at 0° C. for mercury and at 4° C. for water.

	METRIC MEAS	SURE.		BRITISH MEAS	SURE.
Cms. of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34.533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
IO	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of H_2O .	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036227
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0 995658	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	ю	25.40	0.361274

SMITHSONIAN TABLES.

TABLE 133.

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE."

	or brass scale and 1 measure.		· brass scale and measure.		r glass scale and measure.
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm.	a in mm. for temp. C.	Height of barometer in n.m.	a in mm. for temp. C.
15 0 16.0 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0	0.00135 .00145 .00154 .00158 .00163 .00167 .00172 .00176 0.00181 .00185 .00190 .00194 .00199 .00203 .00212 0.00217 .00221 .00226 .00231 .00236	400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600	0.0651 .c663 .0684 .0700 .0716 .0732 .0749 .0765 .0781 .0797 0.0813 .0830 .0846 .0862 .0878 .0894 .0911 .0927 .0943 .0959 0.0975	50 100 150 200 250 300 350 400 450 500 520 540 540 560 580 600 610 620 630 640 650 660	0.0086 .0172 .0258 .0345 .0431 .0517 .0603 0.0689 .0775 .0861 .c898 .0934 .0971 .1007 0.1034 .1051 .1068 .1085 .1103 .1120 .1137
26.5 27.0 27.5 28.0 28.5 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 31.6	.00240 .00245 .00249 0.00254 .00258 .00263 .00265 .00267 .00270 .00272 0.00274 .00276 .00277 .00277 .00277 .00279 .00281 .00283 .00285 .00287	610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 750 760 770 780 700 800	.0992 .1008 .1024 .1040 .1056 .1073 .1089 .1105 .1121 0.1137 .1154 .1170 .1186 .1202 .1218 .1202 .1218 .1235 .1251 .1267 .1283 .1299	670 680 690 700 710 720 730 740 750 760 750 760 750 750 750 750 750 750 750 750 750 75	0.1154 .1172 .1189 .1206 .1223 .1240 .1258 0.1275 .1292 .1309 .1327 .1344 .1361 .1378 0.1464 .1551 .1639 .1723

* The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_t = Ht' - a$ (t'-t) where H_t is the height at the standard temperature, Ht' the observed height at the tem-perature t', and at the correction for temperature. The standard temperature is $o^\circ C$. for the metric system, and $28^\circ, 5$ F. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately $28^\circ, 5$ F., because of the fact that the brass scale is graduated so as to be standard at 62° F., while mercury has the standard density at 32° F. EXAMPLE. — A barometer having a brass scale gave H = 765 mm. at 25° C.; required, the corresponding reading at $o^\circ C$. Here the value of a is the mean of .1235 and .1251, or .1243; $\therefore a(t'-t) = .1243 \times 25 = 3.11$. Hence $H_0 = 765 - 3.11 = 761.89$.

N. B. — Although α is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all harometers have not the same values for α , and when great accuracy is wanted the proper coefficients have to be determined by experiment.

Height above sea			Obse	erved heig	ht of bar	ometer in	millimetr	es.				
level in metres.	400	450	500	550	600	650	700	750	Soo			
100 200 300 400 500 600 700	fres sea and	orrection for ele level in height op line.	vation first_c	above olumn		.06.1 .077 .090	.014 .028 .041 .055 .068 .082 .096	.015 .030 .044 .059 .073 .088 .102	.016 .032 .047 .063 .078	-		
800 900 1000 1100 1200 1300 1400 1500			.147	.108 .118 .129 .140 .151 .162	.118 .130 .142 .153 .165 .176	.103 .115 .128 .141 .154 .166 .179 .191	.109 .123 .137 .150 .164 .178 .191 .205	.117 .131 .146				
1600 1700 1800 1900 2000 2100 2200 2300	.147 .157 .167 .177 .187 .176 .196 .185 .206 .194 .216 .203 .226			.172 .183 .194 .204 .215 .226 .237 .248	.188 .200 .212 .224 .235 .247 .259 .271	.204 .217 .230 .242 .255	1.345	1.340 1.292 1.244 1.196	1.245 1.203 1.162 1.120 1.088 1.046	1 5000 1 4 500 1 4000 1 3 500 1 3 500 1 3 000 1 2 500		
2.400 2500 2000 2700 2800 2900 3000 3100	.195 .203 .211 .219 .227 .235 .243	.212 .220 .229 .238 .247 .256 .265 .274	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.315 1.255 1.196 1.136 1.076 1.016	1.291 1.237 1.184 1.130 1.076 1.022 .969 .915	1.149 1.101 1.053 1.005 .957 .909 .861 .813	1.004 .962 .920 .879 .837 .795 .753	1 2000 1 1 500 1 1 000 1 0 500 1 0 000 9 500 9 500 8 500		
3200 3300 3400 3500 3600 3700 3800 3900	.251 .259 .267 .275 .283 .291 .299 .307	.283 .292 .201 .309	•779	1.077 1.005 .934 .862 .790 .718	.853 .787 .721 .655 .789 .724 .658	.957 .897 .837 .777 .718 .658 .598	.861 .807 .753 .700	.765		8000 8000 7500 7000 6500 6000 5500 5000		
.192 .095	.307 .314 .359 .269 .179 .090	.513 .429 .345 .261 .177 .084	.701 .623 .545 .467 .389 .311 .233 .155 .078	.646 .574 .503 .431 .359 .287 .215	.592 .526 .461 .395	of an sea le	rections inch for e vel in la t of baron	levation a st column	above and	4500 4000 3500 2500 2000 1500 1000 500		
32	30	28	26	24	22	20	18	16	I.4	Height above sea		
		0	bserved	height of	baromete	r in inche	:5.			level in feet.		

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - English Scale.

N. B.	From latitude	o ^o to 44 ^o the correction is to be subtracted.
	From latitude	90° to 46° the correction is to be added.

The second secon]	Height c	of the ba	rometer	in inclu	es.			
Latit	ude.	19	20	21	22	23	24	25	26	27	28	29	30
0°	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.0б1	Inch. 0.06.4	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080
5	85	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	0.079
6	84	.049	.052	.055	.057	.060	.062	.065	.068	.070	.073	.076	.078
7	83	.049	.052	.054	.057	.059	.062	.065	.067	.070	.072	.075	.077
8	82	.049	.051	.054	.056	.059	.061	.064	.067	.069	.072	.074	.077
9	81	.048	.051	.053	.056	.058	.061	.063	.066	.068	.071	.073	.076
10	80	0.048	0.050	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.073	0.07 5
11	79	.047	.049	.052	.054	.057	.059	.062	.064	.067	.069	.072	.07 4
12	78	.046	.049	.051	.054	.056	.058	.061	.063	.066	.068	.071	.07 3
13	77	.045	.048	.050	.053	.055	.057	.060	.062	.065	.067	.069	.07 2
14	76	.045	.048	.049	.052	.054	.056	.059	.061	.063	.066	.068	.07 1
15	75	0.044	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069
16	74	.043	.045	.047	.050	.052	.054	.056	.059	.061	.063	.065	.068
17	73	.042	.044	.046	.049	.051	.053	.055	.057	.060	.062	.064	.066
18	72	.041	.043	.045	.047	.050	.052	.054	.056	.058	.060	.062	.065
19	71	.040	.042	.044	.046	.048	.050	.052	.055	.057	.059	.061	.063
20	70	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.061
21	69	.038	.040	.042	.044	.045	.047	.049	.051	.053	.055	.057	.059
22	68	.036	.038	.040	.042	.044	.046	.048	.050	.052	.054	.056	.057
23	67	.035	.037	.039	.041	.043	.044	.046	.048	.050	.052	.054	.055
24	66	.034	.036	.037	.039	.041	.043	.045	.046	.048	.050	.052	.053
25	65	0.033	0.034	0.036	0.038	0.039	0.041	0.043	0.044	0.046	0.048	0.050	0.051
26	64	031	.033	.034	.036	.038	.039	.041	.043	.044	.046	.048	.049
27	63	.030	.031	.033	.034	.036	.038	.039	.041	.042	.044	.045	.047
28	62	.028	.030	.031	.033	.034	.036	.037	.039	.040	.042	.043	.045
29	61	.027	.028	.030	.031	.032	.034	.035	.037	.038	.039	.041	.042
30	60	0.025	0.027	0.028	0.029	0.031	0.032	0.033	0.035	0.036	0.037	0.039	0.040
31	59	.024	.025	.026	.027	.029	.030	.031	.032	.034	.035	.036	.037
32	58	.022	.023	.025	.026	.027	.028	.029	.030	.032	.033	.034	.035
33	57	.021	.022	.023	.024	.025	.026	.027	.028	.029	.030	.031	.032
34	56	.019	.020	.021	.022	.023	.024	.025	.026	.027	.028	.029	.030
35	55	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.025	0.026	0.027
36	54	.016	.016	.017	.018	.019	.020	.021	.021	.022	.023	.024	.025
37	53	.014	.015	.015	.016	.017	.018	.018	.019	.020	.021	.021	.022
3 ⁸	52	.012	.013	.014	.014	.015	.015	.016	.017	.017	.018	.019	.019
39	51	.011	.011	.012	.012	.013	.013	.014	.014	.015	.015	.016	.017
40	50	0.009	0.009	0.010	0.010	0.011	0.011	0.012	0.012	0.012	0.013	0.013	0.014
41	49	.007	.007	.008	.008	.009	.009	.009	.010	.010	.010	.011	.011
42	48	.005	.006	.006	.006	.006	.007	.007	.007	.008	.008	.008	.008
43	47	.001	.004	.004	.004	.004	.004	.005	.005	.005	.005	.005	.co6
44	46	.002	.002	.002	.002	.002	.002	.002	.002	.003	.003	.003	.003

* "Smithsonian Meteorological Tables," p. 58.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitudo 45°. - Metric Scale.

N. B. — From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

					Не	eight of	the baro	meter in	millime	etres.			
Latit	ude.	520	560	600	620	640	660	680	700	720	740	760	780
0°	90°	.00m. 1.38	mm. 1.49	mm. 1.60	mm. 1.65	mm. 1.70	тт. 1.7б	mm. 1.81	mm. 1.86	mm. 1.92	mm. 1.97	mm. 2.02	mm. 2.08
5	85	1.36	1.47	1.57	1.63	1.68	1.73	1.81	1.84	1.89	1.94	1.99	2.04
6	84	1.35	1.46	1.56	1.61	1.67	1.72	1.78	1.82	1.87	1.93	1.98	2.03
7	83	1.34	1.45	1.55	1.60	1.65	1.70	1.77	1.81	1.86	1.91	1.96	2.01
8	82	1.33	1.43	1.54	1.59	1.64	1.69	1.76	1.79	1.84	1.89	1.94	2.00
9	81	1.32	1.42	1.52	1.57	1.62	1.67	1.74	1.77	1.82	1.87	1.92	1.97
10	80	1.30	1.40	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95
11	79	1.28	1.38	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.83	1.88	1.93
12	78	1.26	1.36	1.46	1.51	1.56	1.60	1.65	1.70	1.75	1.80	1.85	1.90
13	77	1.24	1.34	1.44	1.48	1.53	1.58	1.63	1.67	1.72	1.77	1.82	1.87
14	76	1.22	1.32	1.41	1.46	1.50	1.55	1.60	1.65	1.69	1.74	1.79	1.83
15	75	1.20	1.29	1.38	1.43	1.48	1.52	1.57	1.61	1.66	1.71	1.75	1.80
16	74	1.17	1.26	1.35	1.40	1.44	1.49	1.54	1.58	1.63	1.67	1.72	1.76
17	73	1.15	1.24	1.32	1.37	1.41	1.45	1.50	1.54	1.59	1.63	1.68	1.72
18	72	1.12	1.21	1.29	1.34	1.38	1.42	1.46	1.51	1.55	1.59	1.64	1.68
19	71	1.09	1.17	1.26	1.30	1.34	1.38	1.43	1.47	1.51	1.55	1.59	1.64
20	70	1.06	1.14	I.22	1.26	1.31	1.35	1.39	1.43	1.47	1.51	1.55	1.59
21	69	1.03	1.11	I.19	1.23	1.27	1.31	1.35	1.38	1.42	1.46	1.50	1.54
22	68	1.00	1.07	I.15	1.19	1.23	1.26	1.30	1.34	1.38	1.42	1.46	1.49
23	67	0.96	1.04	I.11	1.15	1.18	1.22	1.26	1.29	1.33	1.37	1.41	1.44
24	66	.93	1.00	I.07	1.10	1.14	1.18	1.21	1.25	1.28	1.32	1.35	1.39
25	65	0.89	0.96	1.03	1.06	1.10	1.13	1.16	1.20	1.23	1.27	1.30	1.33
26	64	.85	.92	0.98	1.02	1.05	1.08	1.11	1.15	1.18	1.21	1.25	1.28
27	63	.81	.88	.94	0.97	1.00	1.03	1.06	1.10	1.13	1.16	1.19	1.22
28	62	.77	.83	.89	.92	0.95	0.98	1.01	1.04	1.07	1.10	1.13	1.16
29	61	.73	.79	.85	.87	.90	.93	0.96	0.99	1.02	1.04	1.07	1.10
30	60	0.69	0.75	0.80	0.83	0.85	0.88	0.91	0.94	0.96	0.98	1.01	1.04
31	59	.65	.70	.75	.77	.80	.82	.85	.87	.90	.92	0.95	0.97
32	58	.61	.65	.70	.72	.75	.77	.79	.82	.84	.86	.89	.91
33	57	.56	.61	.65	.67	.69	.71	.74	.76	.78	.80	.82	.84
34	56	.52	.56	.60	.62	.64	.66	.68	.70	.72	.74	.76	.78
35	55	0.47	0.51	0.55	0.56	0.58	0.60	0.62	0.64	0.66	0.67	0.69	0.7 I
36	54	.43	.46	.49	.51	·53	•54	.56	.58	•59	.61	.63	.64
37	53	.38	.41	.44	.45	·47	•48	.50	.51	•53	.54	.56	.57
38	52	.33	.36	.39	.40	·41	•43	.44	.45	•46	.48	.49	.50
39	51	.29	.31	.33	.34	·35	•37	.38	.39	•40	.41	.42	.43
40	50	0.24	0.26	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.35	0.36
41	49	.19	.21	.22	.23	.24	.24	.25	.26	.27	.27	.28	.29
42	48	.14	.16	.17	.17	.18	.18	.19	.19	.20	.21	.21	.22
43	47	.10	.10	.11	.12	.12	.12	.13	.13	.13	.14	.14	.14
44	46	.05	.05	.06	.06	.06	.06	.06	.07	.07	.07	.07	.07

* "Smithsonian Meteorological Tables," p. 59.

CORRECTION OF THE BAROMETER FOR CAPILLARITY."

		1. METRIC MEASURE.											
		Height of Meniscus in Millimetres.											
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8					
	Correction to be added in millimetres.												
4 5 6 7 8 9 10 11 12 13	0.83 .47 .27 .18 - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
				TISH MEA		NCURE							
Diameter													
of tube in inches.	.01	.02	.03 Correction	.04 to be added	.05 in hundredth	.06	.07	.08					
.15 .20 .25 .30 .35 .40 .45 .50 .55	2.36 1.10 0.55 .36 - - -	4.70 2.20 1.20 0.79 .51 .40 - -	6.86 3.28 1.92 1.26 0.82 .61 .32 .20 .08	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35 .20	11.56 5.94 3.68 2.30 1.49 1.02 0.68 .47 .31	7.85 4.72 2.88 1.85 1.22 0.83 .56 .40	- 5.88 3.48 2.24 1.42 0.96 .64 .47	- 4.20 2.65 1.62 1.15 0.71 .52					

• The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1867). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

A number of tables, mostly based on theoretical formulæ and the capillary constants of mercury in glass tubes in air and vacuum, were given in the fourth edition of Guyot's Tables, and may be there referred to. They are not repeated here, as the above is probably more accurate, and historical matter is excluded for convenience in the use of the book.

SMITHSONIAN TABLES.

Temperature			ABSOF	APTION CORFF	ICIENTS, a _t , I	FOR GASE	S IN	WATE	R.		
Centigrade.	Carb dioxi CU	de. 1	Carbon monoxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxid N(e.	ox	rons ide. 20	0>	ovygen. O
0 5 10 15 20 25 30 40 50 100	1.74 1.4 1.11 1.00 0.90 0.7 	50 85 02 01 72 - 06	0.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608 .01600	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195 .01074	0.073 .064 .057 .051 .047 .043 	6 1 5 1	I.(0.) 0.	305 095 920 778 670 - - - -	0. 0. 0. 0. 0. 0.	04925 04335 03852 03456 03137 02874 02646 022316 02280 01690
Temperature Centigrade. t	Air		Ammonia. NH3	Chlorine. Cl	Ethylene. C ₂ H ₄	Metha CH		Hydrogen sulphide. 11 ₂ S		di	ulphur oxide. SO ₂
0 5 10 15 20 25	0.024 .021 .019 .017 .017	79 53 '95	1174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 .048 .043 .039 .034 .025	89 67 03 99	3. 3. 3. 2.	37 I 965 586 233 905 604	e 9 4 3	29.79 57.48 56.65 17.28 39.37 32.79
		Ав	SORPTION	COEFFICIENTS	, α_t , for GA	SES IN A	LCOH	DL, C ₂	Н ₅ ОН.		
Temperature Centigrade. t	Carbon dioxide. CO ₂	Ethyle C ₂ H			. Nitrogen. N	Nitric oxide. NO	ox	rous ide. 20	Hydrog sulphio H ₂ S	le.	Sulphur dioxide. SO ₂
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3.59 3.32 3.08 2.88 2.71 2.57	3 .508 6 .495 2 .482 3 .471	6 .0685 3 .0679 8 .0673 0 .0667	0.1263 .1241 .1228 .1214 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	3.8 3. 3. 3.	190 338 52 5 215 515 319	17.8 14.7 11.9 9.5 7.4 5.6	Я 9 4 1	328.6 251.7 190.3 144.5 114.5 99.8

ABSORPTION OF CASES BY LIQUIDS.*

* This table contains the volumes of different gases, supposed measured at 0° C. and 76 centimetres' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature *t* and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

NOTE. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$a_{23} \equiv 69$$
 74 79 84 88

According to Setschenow the effect of varying the pressure from 45 to 85 centimetres in the case of carbonic acid in water is very small.

100

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority.

Acetone. C_3H_6O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form. CHCl ₃	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether, C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH4O	Turpen- tine. C ₁₀ H ₆
	- .58 .88 1.29 1.83	- 4.73 6.16 7.94 10.13	.98 1.35 1.85 2.48		-33 .51 .65 .91	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35 1.92	
- - - 17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	- - 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.21 - .29 - .44
22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.7 5 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	- .69 - 1.08 -
62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 3 ⁸ 3.55	103.21 123.85 147.09 174.17 205.17	- 6.13 - 9.06 -
279.73 317.70 359.40 405.00 454.69	1 34.01 1 53.18 174.14 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621.46 693·33 771.92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80		736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	34.90 - 46.40 -
	433.37 478.65 527.14 568.30 634.07	909.59 - - -	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - - -			936.13 - - -	60.50 68.60 77.50 –
	C ₃ H ₆ O - - - - - - - - - - - - -	$\begin{array}{ccccc} C_{3}H_{6}O & C_{6}H_{6} \\ \hline \\ \hline \\ - & - & .58 \\ - & .58 \\ - & .88 \\ - & 1.29 \\ - & 1.83 \\ \hline \\ - & 2.53 \\ - & 3.42 \\ - & 4.52 \\ - & 5.89 \\ 17.96 & 7.56 \\ \hline \\ 22.63 & 9.59 \\ 28.10 & 12.02 \\ 34.52 & 14.93 \\ 42.01 & 18.36 \\ 50.75 & 22.41 \\ 62.29 & 27.14 \\ 72.59 & 32.64 \\ 86.05 & 39.01 \\ 101.43 & 46.34 \\ 118.94 & 54.74 \\ 138.76 & 64.32 \\ 161.10 & 75.19 \\ 186.18 & 87.46 \\ 214.17 & 101.27 \\ 245.28 & 116.75 \\ 279.73 & 134.01 \\ 317.70 & 153.18 \\ 359.40 & 174.14 \\ 405.00 & 197.82 \\ 454.69 & 223.54 \\ 508.62 & 251.71 \\ 566.97 & 282.43 \\ 629.87 & 315.85 \\ 697.44 & 352.07 \\ - & 391.21 \\ \hline \\ - & 433.37 \\ - & 478.65 \\ - & 527.14 \\ - & 568.30 \\ \end{array}$	Acctone. C_3H_6O Benzol. C_6H_6 bisul- phide. CS_2 584.73886.16-1.297.94-1.8310.13-2.5312.79-3.4216.00-4.5219.85-5.8924.4117.967.5629.8022.639.5936.1128.1012.0243.4634.5214.9351.9742.0118.3661.7550.7522.4172.9562.2927.1485.7172.5932.64100.1686.0539.01116.45101.4346.34134.75118.9454.74155.21138.7664.32177.99161.1075.19203.25186.1887.46231.17214.17101.27206.63279.73134.01332.51317.70153.18372.72359.40174.14416.41405.00197.82463.74454.69223.54514.88508.62251.71569.97566.97282.43629.16629.87315.85692.59697.44352.07760.40-391.21832.69-433.37909.59-478.65527.14568.30-	Acetone. C_3H_6O Benzol. C_6H_6 bisul- phide. CS_2 tetra- chloride. CCl_4 584.73.98-1.297.941.85-1.8310.132.48-2.5312.793.29-3.4216.004.32-4.5219.855.60-5.8924.417.1717.967.5629.809.1022.630.5936.1111.4328.1012.0243.4614.2334.5214.9351.9717.5542.0118.3661.7521.4850.7522.4172.9526.0862.2927.1485.7131.4472.5932.64100.1637.6386.0539.01116.4544.74101.4346.34134.7552.87118.9454.74155.2162.11138.7664.32177.9972.57161.1075.19203.2584.33186.1887.46231.1797.51214.17101.27201.91112.23245.28116.75296.63128.69279.73134.01332.51146.71167.5296.63128.69279.7315.85692.59333.86697.44352.07760.40370.90-315.85692.59333.86697.44352.07760.40 <td< td=""><td>Acetone. C_3H_6OBenzol. C_6H_6bisul- phide. CS_2tetra- chloride. CCl4Chlorom- CHCl3584.73.981.297.941.851.297.941.853.294.324.5219.85-5.8924.417.175.8924.417.17.967.5629.809.1016.0522.639.5936.1111.4320.0228.1012.0243.4614.2324.7534.5214.9351.9717.5534.5214.9351.9717.5535.0722.4172.5932.64100.1637.6366.2027.1485.7131.4453.6050.7522.4172.5932.64100.1637.6363.53116.4544.7475.54101.4346.34134.7552.8788.97118.9454.74155.2162.11104.21138.7664.32177.9972.57121.42161.1075.19203.2584.33140.76153.18372.72166.72275.4035.40174.14<td>Acetone, C_3H_6OBenzol. C_6H_8bisul- phide. CS_2tetra- chloride. CCl_4Chrone- form. $CHCl_3$Alcohol C_2H_6O584.73.9833886.161.3551-1.297.941.8565-1.8310.132.4891-3.4216.004.32-1.76-4.5219.855.60-2.42-5.8924.417.17-3.3017.967.5629.809.1016.054.4522.639.5936.1111.4320.025.9428.1012.0243.4614.2324.757.8534.5214.9351.9717.5530.3510.2942.0118.3661.7521.4836.0313.3750.7522.4172.9526.0844.6617.2262.2927.1485.7131.4453.5021.0972.5932.64100.1637.6363.7727.8686.0539.01116.4544.747.5435.02101.4346.34134.7552.8788.9743.69118.9454.74155.2162.11104.2154.11138.7664.32177.9972.57121.4266.55161.1075.19203.2584.33140</td><td>Acctone. C_3H_6OBenzol. C_6H_8bisul. phide. CS2tetra. choride. CCL4Choride. orm. CHC13Data C2H_6OData C4Her. C4H13584.73.98336.89-1.297.941.85518.93-1.297.941.856511.47-1.8310.132.489114.61-2.5312.793.29-1.2718.44-3.4216.604.32-1.7623.094.5219.855.60-2.4228.68-5.8924.417.17-3.3035.3617.967.5629.809.1016.054.4543.2822.639.5936.1111.4320.025.9452.5928.1012.0243.4614.2324.757.8563.4834.5214.9351.9717.5530.3510.2976.1242.0118.3661.7521.4836.0317.22107.4262.2927.1485.7131.4453.5021.09126.4872.5932.64100.1637.6303.7727.86148.1186.6539.01116.4544.7475.5435.02172.50101.4346.34134.7552.8786.9743.69199.89<</td><td>Acctone. Benzoh. bisub- Phide. tetra- chloride. Chlore. CCl4 Chlore. CHlore. Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo CcHaolo CcHaolo</br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td<>	Acetone. C_3H_6O Benzol. C_6H_6 bisul- phide. CS_2 tetra- chloride. CCl4Chlorom- CHCl3584.73.981.297.941.851.297.941.853.294.324.5219.85-5.8924.417.175.8924.417.17.967.5629.809.1016.0522.639.5936.1111.4320.0228.1012.0243.4614.2324.7534.5214.9351.9717.5534.5214.9351.9717.5535.0722.4172.5932.64100.1637.6366.2027.1485.7131.4453.6050.7522.4172.5932.64100.1637.6363.53116.4544.7475.54101.4346.34134.7552.8788.97118.9454.74155.2162.11104.21138.7664.32177.9972.57121.42161.1075.19203.2584.33140.76153.18372.72166.72275.4035.40174.14 <td>Acetone, C_3H_6OBenzol. C_6H_8bisul- phide. CS_2tetra- chloride. CCl_4Chrone- form. $CHCl_3$Alcohol C_2H_6O584.73.9833886.161.3551-1.297.941.8565-1.8310.132.4891-3.4216.004.32-1.76-4.5219.855.60-2.42-5.8924.417.17-3.3017.967.5629.809.1016.054.4522.639.5936.1111.4320.025.9428.1012.0243.4614.2324.757.8534.5214.9351.9717.5530.3510.2942.0118.3661.7521.4836.0313.3750.7522.4172.9526.0844.6617.2262.2927.1485.7131.4453.5021.0972.5932.64100.1637.6363.7727.8686.0539.01116.4544.747.5435.02101.4346.34134.7552.8788.9743.69118.9454.74155.2162.11104.2154.11138.7664.32177.9972.57121.4266.55161.1075.19203.2584.33140</td> <td>Acctone. C_3H_6OBenzol. C_6H_8bisul. phide. CS2tetra. choride. CCL4Choride. orm. CHC13Data C2H_6OData C4Her. C4H13584.73.98336.89-1.297.941.85518.93-1.297.941.856511.47-1.8310.132.489114.61-2.5312.793.29-1.2718.44-3.4216.604.32-1.7623.094.5219.855.60-2.4228.68-5.8924.417.17-3.3035.3617.967.5629.809.1016.054.4543.2822.639.5936.1111.4320.025.9452.5928.1012.0243.4614.2324.757.8563.4834.5214.9351.9717.5530.3510.2976.1242.0118.3661.7521.4836.0317.22107.4262.2927.1485.7131.4453.5021.09126.4872.5932.64100.1637.6303.7727.86148.1186.6539.01116.4544.7475.5435.02172.50101.4346.34134.7552.8786.9743.69199.89<</td> <td>Acctone. Benzoh. bisub- Phide. tetra- chloride. Chlore. CCl4 Chlore. CHlore. Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo Chlore. CcHaolo CcHaolo CcHaolo</br></br></br></br></br></br></br></br></br></br></br></br></br></td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Acetone, C_3H_6O Benzol. C_6H_8 bisul- phide. CS_2 tetra- chloride. CCl_4 Chrone- form. $CHCl_3$ Alcohol C_2H_6O 584.73.9833886.161.3551-1.297.941.8565-1.8310.132.4891-3.4216.004.32-1.76-4.5219.855.60-2.42-5.8924.417.17-3.3017.967.5629.809.1016.054.4522.639.5936.1111.4320.025.9428.1012.0243.4614.2324.757.8534.5214.9351.9717.5530.3510.2942.0118.3661.7521.4836.0313.3750.7522.4172.9526.0844.6617.2262.2927.1485.7131.4453.5021.0972.5932.64100.1637.6363.7727.8686.0539.01116.4544.747.5435.02101.4346.34134.7552.8788.9743.69118.9454.74155.2162.11104.2154.11138.7664.32177.9972.57121.4266.55161.1075.19203.2584.33140	Acctone. C_3H_6O Benzol. C_6H_8 bisul. phide. CS2tetra. choride. CCL4Choride. orm. CHC13Data C2H_6OData C4Her. C4H13584.73.98336.89-1.297.941.85518.93-1.297.941.856511.47-1.8310.132.489114.61-2.5312.793.29-1.2718.44-3.4216.604.32-1.7623.094.5219.855.60-2.4228.68-5.8924.417.17-3.3035.3617.967.5629.809.1016.054.4543.2822.639.5936.1111.4320.025.9452.5928.1012.0243.4614.2324.757.8563.4834.5214.9351.9717.5530.3510.2976.1242.0118.3661.7521.4836.0317.22107.4262.2927.1485.7131.4453.5021.09126.4872.5932.64100.1637.6303.7727.86148.1186.6539.01116.4544.7475.5435.02172.50101.4346.34134.7552.8786.9743.69199.89<	Acctone. Benzoh. bisub- Phide. tetra- chloride. Chlore. CCl4 Chlore. CHlore. Chlore. CcHaolo Chlore. 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tem- pera- ture, Centi- grade.	Ammonia. NH3	Carbon dioxide. CO2	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. $6_4CS_2 + 46CO_2$ Weight per cent.	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
—30 °	86.61	-	I I.O2	-	57.90	57.65	-	58.52	28.75	_
-25 -20 -15 -10 -5	1 10.43 1 39.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	1 1 1 1	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1 569.49 17 58.66 1 968.43 2 200.80 2 4 57.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374-93 443.85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 307 5.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	1 39.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 – –	41 5.10 477.80 - - -	4664.14 5170.85 6335.98 – –	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1 51 5.83 1721.98 1948.21 2196.51 2467.55	- - - -	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22 -				521.36 _ _ _ _	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57		498.27 561.41 630.16 704.75 785.39		-		- - - -		-	
100	4660.82	-	872.28	-	-	-	-	-	-	-

SMITHSONIAN TABLES.

CAPILLARITY .- SURFACE TENSION OF LIQUIDS.*

TABLE 140. - Water and Alcohol in Contact with Air.

TABLE 142. - Solutions of Salts in Water.†

Density.

1.2820

1.0497

1.3511

1.2773

1.1100

1.0887

1.0242

1.1699

1.1011

1.0463

1.2338

1.1694

1.0362

1.1932

1.1074

1.0360

1.0758

1.0535

1.0281

Temp.

15-16

15-16

19

19

20

20

20

15-16 15-16

15-16

15-16

15-16

15-16

20

20

20

16

16

16

15-16

15-16

15-16

15-16

15-16

15-16

14-15

14-15

14-15

1.4

14

12 12

15-16

15-16

15 15

15

15-16

15-16 15-16

15-16

15-16

15-16

15-16

15-16 15-16

С.

Salt in

solution.

BaCl₂

CaCl₂

HCI

66

KCI

66

66

 MgCl_2

66

NaC1

66

NH₄Cl

66

Tension

in dynes

per cm.

81.8

77.5

95.0

90.2

73.6

74.5

75.3 82.8

So.1

78.2

90.1

85.2

78.0 85.8

So. 5

77.Ğ

84.3

81.7 78.8 85.6

79.4

77.8

90.9

81.8

77.5

79.3

77.8 77.2 78.9

77.6 83.5

80.0

78.6

77.0

79.7

79.7

78.0 77.4

83.2

77.8

79**. I**

77-3 833

80.7 77.8

63.0?

Temp.	in dy	e tension mes per netre.	Temp.	in dy	e tension mes per netre.	Temp.	Surface tension in dynes per cen- timetre.
C.	Water.	Ethyl alcohol.	C. '	Water.	Ethyl alcohol.	С.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5 - -

TABLE 141. - Miscellaneous Liquids in Contact with Air.

						1.0201
ſ					$SrCl_2$	1.3114
ŀ.			Surface		4	1.1204
E	.	Temp.	tension	Auchaniter		1.0567
ł	Liquid.	Temp. C.°	in dynes per cen-	Authority.	K_2CO_3	1.3575
			timetre.			1.1576
ł					46	1.0400
l					Na ₂ CO ₃	1.1329
ł	Aceton	1.4.0	25.6	Average of various.		1.0605
	Acetic acid	17.0	30.2	6.6	66	1.0283
	Amyl alcohol	15.0	24.8	46	KNO3	1.1263
	Benzene	15.0	28.8	65		1.0466
	Butyric acid	15.0	28.7	66	$NaNO_3$	1.3022
Į	Carbon disulphide	20.0	30.5	Quincke.	4.6	1.1311
	Chloroform.	20.0	28.3	Average of various.	CuSO ₄	1.1775
	Ether	20.0	18.4	<u> </u>		1.0276
	Glycerine	17.0	63.14	Hall.	H_2SO_4	1.8278
ł	Héxane	0.0	21.2	Schiff.		1.4453
	56 · · · · · ·	68.0	14.2	4.6		1.2636
	Mercury	20.0	470.0	Average of various.	K_2SO_4	1.0744
l	Methyl alcohol	15.0	24.7	"		1.0360
	Olive oil	20.0	34.7	66	MgSO ₄	1.2744
	Petroleum	20.0	25.9	Magie.	 	1.0680
ł	Propyl alcohol	5.8	25.9	Schiff.	Mn ₂ SO ₄	1.1119
	46 46	97.1	18.0	4.6	66	1.0329
	Toluol	15.0	29.1	66	ZnSO ₄	1.3981
	44	109.8	18.9	6.6		1.2830
	Turpentine	21.0	28.5	Average of various.		1.1039
			5			07
l						

* This determination of the capillary constants of liquids has been the subject of many careful experiments, but the * This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30). The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters. † From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS. TABLE 143. - Surface Tension of Liquids.*

	I	.iquid.						Specific		ision in dyn iquid in con	
									Air.	Water.	Mercury.
Water								0. I	75.0	0.0	(392)
Mercury .								13.543	513.0	392.0	0
Bisulphide of carb	on							1.2687	30.5	41.7	(387)
Chloroform .							-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol						٠		0.7906	(24.1)	-	364
Olive oil .								0.9136	34.6	18.6	317
Turpentine .		•						0.8867	28.8	11.5	241
Petroleum .						•		9.7977	29.7	(28.9)	271
Hydrochloric acid								1.10	(729)	-	(392)
Hyposulphite of s	oda	solut	ion	•		•	•	1.1248	69.9		429

TABLE 144. - Surface Tension of Liquids at Solidifying Point.

Subst	ance.			Tempera- ture of solidifi- cation. Cent. ⁰	Surface tension in dynes per centimetre.	Substance.	Tempera- ture of solidifi- cation. Cent. ^o	Surface tension in dynes per centimetre.	
Platinum Gold . Zinc . Tin . Mercury Lead . Silver . Bismuth	• • • • •			2000 1200 360 230 40 330 1000 265	1691 1003 877 599 588 457 427 1390	Antimony Borax Carbonate of soda Chloride of sodium Water Selenium Sulphur Phosphorus	•	432 1000 1000 - 0 217 111 43	2.49 216 210 116 87.9‡ 71.8 42.1 42.0
Potassium Sodium	•	•	•	58 90	37 I 258	Wax	•	68	34.1

TABLE 145. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimetres, the average being 12.1 micromillimetres. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 146).

When the percentage of KNO₃ is diminished, the thickness of the black patch increases. KNO3 For example, = 3I 0.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

1 part soap to 30 of water gave thickness 21.6 micro-mm.

I part soap to 40 of water gave thickness 22.1 micro mm.

I part soap to 60 of water gave thickness 27.7 micro-mm.

I part soap to So of water gave thickness 29.3 micro-mm.

* This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in degrees per centimetre of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20⁸ C.

about 20° C.
† Quincke, "Pogg. Ann." vol. 135, p. 661.
‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.
|| "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver cadmium tin and conner at that of and nalladium of and het of actions. silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

NEWTON'S RINCS.

Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for re- flected light.	Color for transmitted	mill	tickness ionths o nch for -	fan	Order.	Color for re- flected light.	Color for trans- mitted	milli	Thickness i millionths of inch for —	
Or	nected right.	light.	Air.	Water.	Glass.	Ő	neerea ngin.	light.	Air.	Water.	Glass.
I.	Very black Black Beginning of black . Blue	White Yellowish	0.5 1.0 2.0	0.4 0.75 1.5	0.2 0.9 1.3		Yellow Red Bluish red	Bluish green	27.1 29.0 32.0	20.3 21.7 24.0	17.5 18.7 20.7
	White Yellow Orange . Red	red Black Violet . Blue	2.4 5.2 7.1 8.0 9.0	1.8 3.9 5.3 6.0 6.7	1.5 3.4 4.6 4.2 5.8	IV.	Bluish green . Green . Yellowish green . Red	Red . Bluish	24.0 35·3 36.0	25.5 26.5 27.0	22.0 22.7 23.2
II.	Violet Indigo Blue Green Vellow Orange .	Yellow . Red Violet .	11.2 12.8 14.0 15.1 16.3 17.2	13.0	7.2 8.4 9.0 9.7 10.4 11.3	V.	Greenish blue Red	green Red . —	40.3 46.0 52.5	30.2 34·5 39·4	26.0 39.7 34.0
III.	Bright red Scarlet Purple Indigo	Blue Green .	18.2 19.7 21.0 21.1	14.7 15.7	11.8 12.7 13.5 14.2	VI.	Greenish blue Red Greenish		58.7 65.0	46 48.7	38.0 42.0
	Blue Green	Yellow . Red	23.2 25.2	17.5 18.6	15.1 16.2		blue Reddish white .	-	72.0 71.0	53.2 57.7	45.8 49·4

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: $R_{1.5}$ indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimetre.

Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.
I. II. III.	Blue Green . Yellow * Orange * Red Purple . Blue	$\begin{array}{c} V_{2} \ 5\\ B_{2} \ 5\\ G_{2} \ 5\\ V_{2} \ 5\\ O_{2} \ 5\\ R_{2} \ 5\\ B_{3} \ 0\\ B_{3} \ 5\\ G_{3} \ 5\\ G_{3} \ 5\end{array}$	30.5 35.3 40.9	IV. V.	Red * . Bluish red * . Green . Yellow green * Red * . Green . Green *. Red . Red * .	R _{4 5} G _{5 0} G _{5 5} R _{5 0}	76.5 81.5 84.1 89.3 96.4 105.2 111.9 118.8 126.0 133.5	VI. VII. VIII.	Green . Green* Red Red * . Green . Green*. Red Green . Red	G 6 0 G 6 5 R 6 0 R 6 5 G 7 0 G 7 5 R 7 0 R 7 5 G 8 0 R 8 0	154.8 162.7 170.5

* The colors marked are the same as the corresponding colors in Newton's table.

CONTRACTION PRODUCED BY SOLUTION.*

Across the top of the heading are given the formulas of the salt dissolved, its molecular weight (M. W.), and the density of the salt, with the authority for that density.

_			sity of the sal	it, with the aut	hority for that d	Chisteye			
	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
	M. W.		$_{2}^{2}$ O. sity = 2.656 (K:	ursten).	M. W. =	NaC : 39.95. Der)H. nsity = 2.130 (Filhol).	
		(Hager.)				(Schiff.)			
	4.702 9.404 14.106 18.808 23.510 28.212 32.914 37.616 42.318 47.020 70.530 79.934	99.88 99.92 100.18 100.60 101.20 102.00 102.90 103.90 104.96 106.10 112.20 114.88	101.77 103.55 105.32 107.09 108.86 110.64 112.41 114.18 115.96 117.73 126.59 130.14	1.86 4.20 4.88 6.06 7.04 7.81 8.46 9.01 9.80 9.88 11.37 11.73	3.995 7.990 1.985 15.980 19.975 23.970 27.965 31.960 35.955 39.950 59.925 79.900 119.850	99.4 99.4 99.6 100.2 100.8 101.7 102.7 103.8 105.0 106.2 113.4 121.2 138.6	101.88 103.75 105.63 107.50 109.38 111.26 113.13 115.01 116.88 118.76 128.14 137.52 156.28	2.43 4.19 5.71 6.79 7.84 8.59 9.22 9.75 10.17 10.58 11.50 11.87 11.31	
	M. V		OH. sity=2.044 (Fil	hol).	1 59.800 1 59.800 1 99.7 50 2 39.970	1 56.6 1 56.6 1 7 4.8 1 9 3.6	175.04 193.80 212.56	10.54 9.80 8.92	
		(Schiff.)							
	5.6 11.2 16.8 22.4 28.0	101.2 102.6 104.0 105.4 106.8	102.74 105.48 108.22 110.26 113.70	1.50 2.73 3.90 5.01 6.07	M. W. =		$H_{3}.$ ty = 0.616 (A	(Andreef).	
	33.6 39.2 44.8 50.4 56.0 84.0 112.0 168.0 224.0	108.4 110.0 111.6 113.2 115.0 124.2 134.6 157.6 181.8	116.44 119.18 121.92 124.66 127.40 141.10 154.80 182.20 209.60	6.91 7.70 8.46 9.19 9.72 11.98 13.05 13.50 13.26	1.7 3.4 5.1 6.8 8.5 10.2 11.9 13.6 15.3	102.5 105.0 107.4 109.8 112.2 114.6 117.0 119.4 121.8	102.76 105.52 108.28 111.04 113.80 116.56 119.32 122.08 124.84	0.25 0.49 0.81 1.12 1.41 1.68 1.95 2.20 2.44	
	M. W.		a20. nsity = 2.805 (K	arsten).	17.0 25.5 34.0 51.0	124.2 135.8 147.3 169.7	127.60 141.40 155.20 182.80	2.66 3.96 5.09 7.17	
		(Hager.)							
	3.097 6.194 9.291 12.388 15.485 18.582	99.01 98.26 97.76 97.45 97.29 97.23	101.10 102.21 103.31 104.42 105.52 106.63	2.07 3.86 5.37 6.67 7.80 8.81	M. W. =		$H_4Cl.$ sity = 1.52 (Sec.	chrocder).	
	21.679 24.776 27.873 30.970 46.455 52.649	97.32 97.55 97.84 98.20 100.94 102.30	107.73 108.83 109.94 111.04 116.56 118.77	9.66 10.37 11.00 11.56 13.40 13.87	5.338 10.676 16.014 21.352 26.690	103.7 107.5 111.5 115.3 119.2	103.51 107.02 110.54 114.05 117.56	0.18 0.45 0.87 1.10 1.40	
L									

* The table was compiled from a paper by Gerlach (Zeits. für Anal. Chem. vol. 27).

SMITHSONIAN TABLES.

~ 7

TABLE 147.

CONTRACTION PRODUCED BY SOLUTION.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M. W.		.Cl. psity=1.945 (C	larke).	M. W. ==		Cl ₂ . sity = 3.75 (Sci	hroeder).	
	(Gerlach.)				(Gerlach.)			
7.441 14.882 22.323	102.8 105.8 108.9	103.83 107.65 111.48	0.99 1.72 2.31	10.377 20.754 31.131	101.6 102.9 104.9	102.77 105.53 108.30	1.14 2.50 3.14	
M. W.		aCl. nsity = 2.150 (C	larke).	M. W. :	K = 166.57. De	1. ensity=3.07 (C	Clarke).	
	(Gerlach.)				(Kremers.)			
5.836 11.672 17.508 23.344 29.180	101.7 103.7 105.8 107.9 110.1	102.71 105.43 108.14 110.86 113.58	0.99 1.64 2.16 2.67 3.06	16.657 33.314 49.971 66.628 83.285	104.5 109.3 114.2 119.1 124.0	105.39 110.77 116.18 121.57 126.97	0.85 1.34 1.70 2.20 2.34	
M. W.		Cl. (Ger)	lach).	M. W. =	KCl = 122.29. De	10_{3} . misity = 2.331 (C	Clarke).	
	(Gerlach.)				(Kremers.)			
4.2 8.4 12.6	101.9 103.8 105.8	102.14 104.28 106.42	0.24 0.46 0.58	6.114	102.3	102.62	0.314	
16.8 21.0 42.0	107.8 110.0 120.7	108.56 110.70 121.40	0.70 0.63 0.58	M. W. =	KN 100.93. Der (Gerlach.)	O_{3} . posity = 2.092 (C	larke).	
M. W. = 1	Ca(10.64. Densi	Cl_2 . ity = 2.216 (Scl	proeder).	5.046 10.093 20.186	101.90 104.84 108.40	102.41 104.83 109.65	0.50 0.79 1.14	
5.532	(Gerlach.)	102.50	1.26	M. W. =	NaN = 84.88. Den	IO_{3} . sity = 2.244 (C	larke).	
11.c64 16.596	102.2 103.5	104.99 107.49	2.66 3.7 I		(Kremers.)			
22.128 27.660 33.192 66.384	104.8 106.3 108.0 118.6	109.99 112.48 114.98 129.96	4.72 5.50 6.07 8.74	8.488 16.976 42.440 84.880	102.9 106.1 116.2 134.3	103.78 107.56 118.91 137.82	0.85 1.36 2.28 2.55	
M. W. =		l₂. sitv≡ 3.05 (Schi	rocder).	M. W. =	NH4 79.90. Densi	$NO_3.$ 1y=1.74 (Schr	ocder).	
	(Gerlach)				(Gerlach.)			
7.895 1 5.799 23.685 31.580 39.475	101.4 102.5 10.4.0 105.5 107.2	102.59 105.17 107.76 110.34 112.93	1.16 2.55 3.43 4.39 5.07	7.990 15.980 39.950 79.900	104.6 109.3 124.4 149.8	104.59 109.18 122.96 145.92	0.076 0.106 1.170 2.660	

SMITHSONIAN TABLES.

CONTRACTION PRODUCED BY SOLUTION. TABLE 147.

					-				
Grammes of the salt in 100 of water	volume	Calculated volume.	Per cent of contraction.	Grammes of the salt in too of water.	Observed volume.	Calculated volume.	Per cent of contraction.		
M. W		$\rm NO_3)_2.$	larke).	M. W. = 105.	-	CO3. 476 (Clarke and	Schroeder).		
	(Gerlach.)				(Gerlach)				
1.637 3.274 4.910	100.45 100.90 101.35	100.69 101.39 102.08	0.2.4 0.48 0.72	5.292 10.582 15.875	100.00 100.44 101.06	102.14 104.27 106.41	2.09 3.68 5.03		
6.547 8.184 16.368 32.736 49.104 65.472 81.840	101.85 102.30 104.70 109.90 115.55 121.50 127.65	102.77 103.47 106.94 113.87 120.81 127.74 134.68	0.90 1.13 2.09 3.49 4.35 4.89 5.22	M. W	-	504. Density 2.647 (C	llarke).		
				8.695	101.94	103.29	1.30		
	BaC	NO ₃) ₂ .		0.095	101.94	103.29	1.30		
M. W	. = 260.58. D	ensity = 3.23 (C)	Clarke).			1) ₂ SO ₄ .			
	(Gerlach.)			M. W	$1 \equiv 131.84.$ I	Density 1.762 (C	larke).		
2.606 5.212	100.5	100.81 101.61	0.30 0.60		(Schiff.)				
7.817	7. = 210.98. D	102.42 NO ₃) ₂ . ensity = 2.93 (C	0.90 Clarke).	6.592 13.184 19.776 26.369 65.920 98.880	102.92 105.96 109.20 112.60 135.20 154.50	103.74 107.48 112.26 114.97 137.42 156.13	0.792 1.418 1.821 2.060 1.615 1.044		
2.110 4.220 6.329	(Gerlach.) 100.48 100.95 101.40	100.72 101.44 102.16	0.24 0.48 0.74	FeSO4. M. W. = 151.72. Density 2.99 (Clarke).					
8.439 10.549	101.95	102.88 103.60	0.90		*				
21.098 42.196 63.294	104.95 110.20 116.15	107.20 114.40 121.60	2.10 3.67 4.48	7.586 15.172 22.758 30.344	100.52 101.30 102.40 103.70	102.54 105.07 107.61 110.15	1.97 3.59 4.84 5.85		
M. W		$(O_3)_2$. Density = 4.41 (O	Clarke).			1			
	(Gerlach.)			MA		SO4. ensity 2.65 (Cl	arke).		
16.509	102.4 105.1	103.74 107.49	I.29 2.22		*				
82.545	114.0	107.49 118.72	3.97	5.988 11.976 17.964	100.13 100.40 101.26	102 26 10.1.52 106.78	2.08 3.0.4 5.16 6.36		
M. W. = 1		2.29 (Clarke ar	nd Schroeder).	23.952	102.10	109.04	0.50		
6.897	(Gerlach.)	103.01	1.99	M W		₂ SO ₄ . ensity = 2.656	(Clarke).		
13.793	102.22	106.02	3.59		(Gerlach.)	2.030			
20.689 27.586 68.965 96.551	103.78 105.44 118.20 128.10	109.08 112.05 130.12 142.16	4.82 5.90 9.16 9.89	7.09 14.18	(Gerlach.) 100.95 102.26	102.67 105.34	1.67 2.92		
					Call Designed Street	and the second se	and the second		

SMITHSONIAN TABLES.

* Authority not given.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M. W		SO4. Density 3.49 (Cl:	arke).	the salt in too of water. Observed volume. Calculated volume. Action of of contract of contrelation of contract of contract of contrelation of contract of co				
	*				(Gerlach.)			
8.036 16.072 24.108 32.144 40.180	100.06 100.44 101.08 101.90 102.86	102.30 104.61 106.91 109.21 111.51	2.19 3.98 5.45 6.69 7.76	19.58 48.95	110.5 127.3	113.30 133.26	1.36 2.47 4.47 6.07	
M. W. =	* *	$(SO_4)_4.$ nsity = 2.228 ((M. W.	~ ,		·lach).	
	(Gerlach.)				(Gerlach.)			
6.450	100.58	102.90	2.25	0.			2.33	
M. W. =	-	H_3O_2 . sity = 1.476 (Ge	zrlach).	67.716			3.66 4.46 4.73 4.95 5.15 5.10	
8.185 16.360	104.1 108.3	105.55 111.09	1.37 2.51		170.0	179.70	5.10	
M. W. :		H ₄ O ₆ . ensity 1.83 (Ger	lach).	$Pb(C_2H_3O_2)_2.$ M. W. = 162.06. Density 3.251 (Schroeder). (Gerlach.)				
19.362 38.724	(Gerlach.) 106.6 114.2	1 10.57 1 21.1 5	3·59 5·74	16.206 32.412 81.030	104.7 109.5 124.6	104.98 109.96 124.91	0.27 0.42 0.25	

CONTRACTION PRODUCED BY SOLUTION.

TABLE 148.

TABLE 147.

CONTRACTION DUE TO DILUTION OF A SOLUTION.

The first column gives the name of the salt dissolved, the second the amount of the salt required to produce saturation and the third the contraction produced by mixing with an equal volume of water.

Water with equal volume of saturated solution of following salts.	Parts of an- hydrate salt dissolved by roo parts of H_2O at 10° C.	nixed. of saturated solution of	Parts of an- hydrate salt dissolved by 100 parts of H_2O at 10° C.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.97 0.33 10.10 0.05 20.77 0.14 88.72 2.68 35.75 0.49 8.04 0.16 84.30 0.97 16.66 0.20 36.60 0.27 - 1.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18500 0.772 63.30 1.135 33.30 0.235 30.50 0.677 48.36 0.835 19.90 0.327 4.99 0.033 20.92 0.218 48.30 0.228

* Authority not given. † R. Broom, "Proc. Roy. Soc. Edin." vol. 13, p. 172.

FRICTION.

The following table of coefficients of friction f and its reciprocal 1/f, together with the angle of friction or angle of repose ϕ , is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

Material.				ſ	1/f	φ
Wood on wood, dry		*		.2550	4.00-2.00	14.0-26.5
" " " soapy				.20	5.00	11.5
Metals on oak, dry		•		.5060	2.00-1.67	26.5-31.0
""" wet "" soapy				.24–.26	4.17-3.85	13.5-14.5
" " " soapy				.20	5.00	11.5
" " elm, dry				.2025	5.00-4.0Q	11.5-14.0
Hemp on oak, dry				.53	1.89	28.0
" " " wet				.33	3.00	18.5
Leather on oak				.2738	3.70-2.86	15.0-19.5
" " metals, dry		•		.56	1.79	29.5
" " wet				.36	2.78	20.0
" " " greasy			•	.23	4.35	1 3.0
" " " oily			•	.15	6.67	8.5
Metals on metals, dry			•	.1520	6.67-5.00	8.5-11.5
" " " wet				.3	3.33	16.5
Smooth surfaces, occasionally greased	1.		•	.07–.08	14.3-12.50	4.0-4.5
" " continually greased			•	.05	20.00	3.0
" best results .			•	.03–.036	33.3–27.6	1.75-2.0
Steel on agate, dry * """"oiled *		•	•	.20	5.00	11.5
""""oiled *	•		•	.107	9.35	6.1
Iron on stone			·	.3070	3.33-1.43	16.7–35.0
Wood on stone		•	•	About .40	2.50	22.0
Iron on stone		•	\cdot	.60–.70	1.67-1.43	33.0-35.0
damp mort	ar	•	•	•74	1.35	36.5
" on dry clay			•	.51	1.96	27.0
"" " moist clay			•	•33	3.00	18.25
Earth on earth			•	.25-1.00	4.00-1.00	14.0-45.0
""""dry sand, clay, and mi	xed	earth		.38–.75	2.63-1.33	21.0-37.0
" " damp clay			+	I.00	I.00	45.0
""" wet clay		•	•	.31	3.23	17.0
" " " shingle and gravel					I.23-0. 9	39.0-48.0

* Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

SMITHSONIAN TABLES.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiscuille * gave the following formula for calculating the viscosity coef- $\frac{\pi h r^4 s}{\delta r l}$, where h is the pressure height, r the radius of the tube, 8 the ficient in this case : $\mu =$ density of the fluid, z' the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence h and l are different. The product hs is the pressure under which the flow takes place. Hagenbach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{v^2}{r}$, where g is the acceleration due to gravity. Gartenmeister ‡ points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h should be simply $\frac{v^2}{2}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formulæ take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the "viscosimeter" commonly used for testing oils useless for our purpose.

The term "specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified temperature.

Temp.				Authorities				Mean	Absolute value in	
in C ¹	Poiseuille.	Gral	am.	Rellstab.	Sprung.	Wagner.	Slotte.	value.	C. G. S. units.	
0 5 10 15 20 25 30 35 40 45 50	100.0 85.2 73.5 64.3 56.7 - 45.2 - - 30.8	100.0 84.4 73.6 63.5 56.0 49.5 44.7 40.2 36.8 33.9 31.1	100.0 84.8 72.9 63.7 56.0 50.5 45.0 41.1 37.0 33.9 31.1	100.0 85.3 73.5 63.0 55.5 48.7 45.0 40.0 37.2 34.5 31.2	100.0 84.9 73.2 63.9 56.2 50.5 45.2 40.8 37.0 34.0 31.3	100.0 - 63.9 50.2 50.3 44.6 40.3 36.7 34.5 31.7	100.0 - 56.4 - 45.2 - 36.9 -	100.0 84.9 73.3 63.7 56.2 49.9 45.0 40.5 36.9 34.2 31.2	0.0178 0.0151 0.0131 0.0113 0.0100 0.0089 0.0080 0.0072 0.0066 0.0056	

TABLE 150. - Specific Viscosity of Water at different Temperatures relative to Water at 0° C.

* "Comptes rendus," vol. 15, 1842. "Mém. Serv. Etr." 1846.

† " Pogg. Ann." vol. 109, 1860.

‡ "Zeits, für Phys. Chim." vol. 6, 1890.

§ The value 0.0178 is taken from a paper by Crookes (Phil. Trans. R. S. L. 1886), where the coefficient is given as $\mu = 0.0177931P$, where $P^{-1} = 1 \pm 0.036793T \pm 0.0022099367^2$, where T is the temperature of the water in degrees Centigrade. The numbers in the table were calculated not from the formula but from the numbers in the column headed "mean value."

TABLE 151. - Solution of Alcohol in Water.*

Temp.			Percei	ntage by wei	ght of alcoh	ol in the mi	xture.		
C.	0	8.21	16.60	34-58	43-99	53.36	75.75	87.45	99.72
0 °	0.0181	0.0287	0.0453	0.07 32	0.0707	0.0632	0.0407	0.0294	0.0180
5	.0152	.0234	.0351	.0558	.0552	.0502	.0344	.0256	.0163
10	.0131	.0195	.0281	.0435	.0438	.0405	.0292	.0223	.0148
15	.0114	.0195	.0230	.0347	.0353	.0332	.0250	.0195	.0134
20	.0101	.0195	.0193	.0283	.0286	.0276	.0215	.0172	.0122
25	0.0090	0.0123	0.0163	0.0234	0.0241	0.0232	0.0187	0.01 52	0.0110
30	.0081	.0108	.0141	.0196	.0204	.0198	.0163	.01 35	.0100
35	.0073	.0096	.0122	.0167	.0174	.0171	.0144	.01 20	.0092
40	.0067	.0086	.0108	.0143	.0150	.0149	.0127	.0107	.0084
45	.0061	.0077	.0095	.0125	.0131	.0130	.0113	.0097	.0077
50	0.0056	0.0070	0.0085	0.0109	0.0115	0.0115	0.0102	0.0088	0.0070
55	.0052	.0063	.0076	.0096	.0102	.0102	.0091	.0086	.0065
60	.0048	.0058	.0069	.0086	.0091	.0092	.0083	.007 3	.0060

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

The following tables (152-153) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.[†]

TABLE 152. - Mineral Oils.‡

TABLE 153. - Mineral Oils.

sity.	Flashing point.	Burning point.	Sp. visc	osity. W o° C. = 1.	ater al	Oil.	Density.	Flashing point.	Burning point.	Viscosity at 10° C., water at 19° C.=1.
Density.	o C.	o Bu oq	20° C.	50° C.	100° C.		A 	° C.	° C.	
.931	243 216	274 246	_	11.30	2.9	Cylinder oil Machine oil Wagon oil	.917 .914 .914	227 213 148	274 260 182	191 102 80
.921 .906	189	240 20S	_	7.31 3.45	2.5 1.5	Naphtha residue	.911 .910	157 134	187 162	70 55
.921 .917	163 132	190 168	_	27.80	2.8 2.6	Oleo-naphtha .	.910	219 201	257 242	121 66
.904 .891	170 151	207 182	8.65 4.77	2.65 1.86	1.7 1.3	Oleonid	.Ś94 .884	184 185	222 217	26 28
.878 .855	108 42	148 45	2.9.4 1.65	1.4S -	-	" best quality	.881	188	224	20
.905 .894 .866	165 139 90	202 270 224	- 7.60 2.50	3.10 3.60 1.50	1.5 1.3 -	Olive oil Whale oil "" · · ·	.916 .879 .875		-	22 9 8

* This table was calculated from the table of fluidities given by Noack (Wied, Ann. vol. 27, p. 217), and shows a maximum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic acid

acid.
† Table 152 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 153 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity.
‡ The different groups in this table are from different residues.

	1	Coefficient		
Liquid.	G. %	of viscosity.	Temp. Cent. ⁰	Authority.
Ammonia		0.0160 0.0149	11.9 14.5	Poiseuille.
Anisol		0.0111	20.0	Gartenmeister.
Glycerine		42.20	2.8 8.1	Schottner.
66		25.18 13.87	0.1 14.3	66
66		8.30	20.3	66
66		4.94	26.5	66
Glycerine and water	94.46	7.437	8.5	66
66 66	S0.31	1.021	8.5	66
66 68	64.05	0.222	8.5	66
۰۰ ۰۰ ۰۰	49.79	0.092	8.5	
Glycol		0.0219	0.0	Arrhenius.
Mercury*		0.0184	20	Koch.
		0.0170	0.0	66
		0.01 57	20.0	66
44 · · · · · ·	{	0.0122	100.0	66
		0.0102	200.0	66
		0.0093	300.0	
Meta-cresol		0.1878	20.0	Gartenmeister.
Olive oil		3.2653†	0.0	Reynolds.
Paraffins: Decane		0.0077	22.3	Bartolli & Stracciati.
Dodecane		0.0126	23.3	66 66
Heptane		0.0045	24.0	66 66 66 66
Hexadecane		0.0359	22.2	66 66
Hexane Nonane		0.0033	23.7	66 66
Nonane		0.0002	22.3	
Octane		0.0053	22.2	66 66
Pentane		0.0026	21 0	66 68
Pentadecane		0.0281	22.0	66 66 66 66
Tetradecane Tridecane		0.0213	21.9	66 66
Undecane		0.0155	23.3 22.7	66 66
Petroleum (Caucasian)		0.0190	17.5	Petroff.
Rape oil		25.3	0.0	O. E. Meyer.
64 66 0 0 0 0		3.85	10.0	ec -
		1.63	20.0	66
· · · · · · · · · · · · · · · · · · ·		0.96	30.0	66

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

* Calculated from the formula $\mu = .017 - .000066t + 00000021t^2 - .0000000025t^3$ (vide Koch, Wied. Ann. vol. 14. p. 1).

† Given as \equiv 3.2653 $e^{-.0123T}$, where T is temperature in Centigrade degrees.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

		Temper	atures Cent	tigrade.		
Liquid.	100	20 ⁰	3 0 ⁰	40 ⁰	50 ⁰	Authority.
Acetone	.0043	.0039	.0036	.0032	.0028	Pribram & Handl.
Acetates : Allyl	.0043	.0059	.0054	.0049	.0044	66 66
Amyl	.0106	.0089	.0077	.0065	.00 58	66 66
Ethyl	.0051	.0044	.0040	.0035	.0032	68 66
Methyl	.0046	.004 I	.0036	.0032	.0030	66 66
Propyl	.0066	.00 59	.0052	.0044	.0039	66 66
Acids: † Acetic	.0150	.0126	.0109	.0094	.00Š2	
Butyric	.0196	.0163	.0136	.0118	.0102	Gartenmeister.
Formic	.0231	.0184	.0149	.0125	.0104	66
Propionic	.0125	.0107	.0092	.0081	.0073	Rellstab.
	.0139	.0118	1010.	10001	.0080	Pribram & Handl.
Salicylic	.0320	.0271	.0222	.0181	.01 50	Rellstab.
Valeric	.0271	.0220	.0183	.0155	.0127	
Alcohols: Allyl	.0206	.0163	.01 28	.0103	.0083	Pribram & Handl.
Amyl	.0651	.0470	.0344	.0255	.0196	
Butyl	.0424	.0324	.0247	.0190	.0150	Gartenmeister.
Ethyl	.01 50	.0122	.0102	.0085	.0072	"
Isobutyl	.0580	.0411	.0301 .0185	.0223	.0170 .0108	
Isopropyl	.0338	.0248 .0062		.0140	.0041	66
Methyl	.0073	.0002	.0054 .0179	.00.47 .0142	.0115	"
Propyl Aldehyde	.0293	.0037	.01/9	.0142	.0115	Rellstab.
Aldehyde	.0037	.0037	.0319	.0241	.0189	Wijkander.
Benzene	.0073	.0064	.0055	.0048	.0043	"
Benzoates : Ethyl	.0265	.0217	.0174	.0146	.0124	Rellstab.
Methyl	.0231	.0196	.0160	.0134	.0115	
Bromides : Allyl	.0061	.0053	.0048	.00.45	.0041	Pribram & Handl.
Ethyl	.0043	.0037	.0035	- 1	- ·	66 6
Ethylene		.0169	.0149	-	-	66 66
Carbon disulphide	_	.0036	.0035	.0034	-	Wijkander.
Carbon dioxide (liquid) .	.0008	.0007	.0005	-	-	Warburg & Babo.
Chlorides: Allyl	.0039	.0036	.0033	-	-	Pribram & Handl.
Ethylene	-	.0083	.0072	.0063	.0056	66 66
Chloroform	.0064	.0057	.0052	.0046	.0043	66 66 66 66
Ether	.0026	.0023	.002I	-	-	66 66
Ethyl sulphide	.0048	.0043	.0039	.0035	.0032	66 66
Iodides : Allyl	.0080	.0072	.0065	.0059	.0053	66 66
Ethyl	.0064	.00 57	.0052	.0048	.0044	66 66
Metaxylol.	.0075	.0066	.0058	.0052	.00.17	66 66
Nitro benzene	-	.0203	.0170	.0144	.0124 .0069	66 66
Dutance • • • •	.0119 .0800.	.0103 .0071	.0089 .0064	.0078 .0057	.0009	66 66
" ethane	.0000	.0071	.0004	.0057	.0052	66 66
" toluene	.0099	.0037	.0190	.01 59	.0136	46 66
Propyl aldehyde	.0047	.0041	.0036	.0033	-	46 66
Toluene	.0068	.0059	.0052	.0047	.0042	66 66
		57				
		1	1	I		

* Calculated from the specific viscosities given in Landolt & Boernstein's "Phys. Chem. Tab." p. 289 et seq., on the assumption that the coefficient for water at 0° C. is .0178.

† For inorganic acids, see Solutions.

SMITHSONIAN TABLES.

VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity \times 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific conductivity, and t for temperature Centigrade.

Salt.	Percentage by weight of sait in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
BaCl ₂ 	7.60 15.40 24.34	-	77.9 86.4 100.7	10 	44.0 56.0 66.2	30 	35.2 39.6 47.7	50 		-	Sprung. "
$\operatorname{Ba}(\operatorname{NO}_3)_2$	2.98 5.24	1.027 1.051	62.0 68.1	15 	51.1 54.2	25	42.4 44.1	35	34.8 36.9	4,5	Wagner.
CaCl ₂ 	15.17 31.60 39:75 44:09		110.9 272.5 670.0 -	10 	71.3 177.0 379.0 593.1	30 	50.3 124.0 245.5 363.2	50 			Sprung. " "
Ca(NO ₃) ₂ 	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15 	74.6 112.7 217.1	25 	60.0 90.7 1 56.5	3 <u>5</u> "	49-9 7 5-1 1 28-1	45	Wagner.
CdCl ₂ "	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 	60.5 70.5 80.4	25 	49.1 57.5 64.6	3 <u>5</u> "	40.7 47.2 53.6	45	66 66 66
$\operatorname{Cd}(\operatorname{NO}_3)_2$ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15 "	50.1 58.7 69.0	25 11	41.1 48.8 57.3	35	3.4.0 41.3 47.5	45	66 86 86
CdSO ₄ "	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15 	61.8 72.4 91.8	25 "	49•9 58.1 73•5	3 <u>5</u> "	41.3 48.8 60.1	45	66 66 66
CoCl ₂ "	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15 	65.1 85.1 126.6	25 	53.6 73.7 101.6	3 <u>5</u> "	44·9 58.8 85.6	45 "	66 66
Co(NO ₃) ₂ "	8.28 1 5.96 24.53	1.073 1.144 1.229	74-7 87.0 110.4	15 	57.9 69.2 88.0	25 	48.7 55.4 71.5	35	39.8 44.9 59.1	45	66 66 66
CoSO4 "	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 	68.7 95.5 146.2	25 	55.0 76.0 113.0	3 <u>5</u>	45.1 61.7 89.9	45 	86 66 66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	I 5 	67.8 95.8 137.2	25 	55.1 77.0 107.6	3.5	45.6 63.2 87.1	45 	66 66 66
Cu(NO ₃) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97.3 126.2 382.9	I 5 ., .,	76.0 98.8 283.8	25 	61.5 80.9 215.3	3.5 	51.3 68.6 172.2	45 .,	66 66 66
CuSO4 "	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 	61.8 74.0 96.8	25 	49.8 59.7 75.9	35 	41.4 52.0 61.8	45 	66 66 66
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	۲ <u>5</u> "	57-9 66.5 79-9	25 	48.3 56.4 65.9	35	40.1 48.1 56.4	45 "	66 66 66
HgCl ₂ ,,	0.23 3·55	1.023 1.033	76.75	10	58.5 59.2	20	46.8 46.6	30	38.3 38.3	40 "	66 66

TABLE 156

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	ŧ	μ	t	μ	t	μ	t	Authority.
HNO ₃ "	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	5.4.8 57·3 65·5	25	45-4 47-9 54-9	3.5	37.6 .40.7 46.2	45	Wagner.
H ₂ SO ₄ "	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15 	61.0 75.0 95·5	25 	50.0 00.5 77-5	35	41.7 49.8 64.3	4 <u>5</u> 	66 66 66
KCl	10.23 22.21	-	70.0 70.0	10	46.1 48.6	30	33.1 36.4	50	-	-	Sprung.
KBr "	14.02 23.16 34.64		67.6 66.2 66.6	IO .(44.8 44.7 47.0	30 	32.1 33.2 35.7	50 		-	66 66 66
KI " "	8.42 17.01 33.03 45.98 54.00		69.5 65.3 61.8 63.0 68.8	IO .6 .6 .6	44.0 42.9 42.9 45.2 48.5	 	31.3 31.4 32.4 35.3 37.6	50 ., ., .,	-		66 66 66 66 66
KCIO3	3.51 5.69	-	71.7	10 "	44.7 45.0	30 "	31.5 31.4	50	-	_ _	66 66
KNO ₃ "	6.32 12.19 17.60		70.8 68.7 68.8	10 46 46	44.6 44.8 46.0	30 **	31.8 32.3 33.4	50 		-	66 66 66
$\mathrm{K}_{2}\mathrm{SO}_{4}$	5.17 9.77	-	77-4 81.0	10 "'	48.6 52.0	30	34·3 36.9	50	-		66
K ₂ CrO ₄ 	11.93 19.61 24.26 32.78	- 1.233 -	75.8 85.3 97.8 109.5	10 	62.5 68.7 74.5 88.9	30 	41.0 47.9 54.5 62.6	40 	-	-	" Slotte. Sprung.
$K_2Cr_2O_7$	4.7 I 6.97	1.032 1.049	72.6 73.1	10 .,	55.9 56.4	20	45·3 45·5	30 .,	37.5 37.7		Slotte.
LiCl "	7.76 13.91 26.93		96.1 121.3 229.4	10 **	59.7 75.9 142.1	30	41.2 52.6 98.0	50 	-		Sprung. "
$Mg(NO_3)_2$	18.62 34.19 39.77	1.102 1.200 1.430	99.8 213.3 317.0	15	81.3 16.4.4 250.0	25	66.5 132.4 191.4	3,5	56.2 109.9 158.1	45	Wagner. "
MgSO ₄ "	4.98 9.50 19.32		96.2 1 30.9 302.2	10 	59.0 77.7 166.4	30	.40.9 53.0 106.0	50 		-	Sprung. "
MgCrO ₄ "	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 	84.8 125.3 172.6	20	67.4 99.0 133.9	30 	55.0 79.4 106.6	40	Slotte.
MnCl ₂ "	8.01 1 5.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 1 30.9 2 56.3 5 37 • 3	I 5 	7 1.1 104.2 193.2 393.4	25	57.5 84.0 155.0 300.4	3,5	48.1 68.7 123.7 246.5	45	Wagner. "

141

TABLE 156.

VISCOSITY OF SOLUTIONS.

			-		-			- 1	-		and the second se
Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{``}{\operatorname{Mn}(\operatorname{NO}_3)_2}$	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	15 	76.4 126.0 301.1	25 	64.5 104.6 221.0	3 <u>5</u> "	55.6 88.6 188.8	45	Wagner. "
MnSO ₄ 	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	I 5 	98.6 172.2 474·3	25	78.3 1 37.1 347.9	3,5	63.4 107.4 266.8	45	66 66 66
NaCl "	7.95 14.31 23.22	-	82.4 94.8 128.3	IO 	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50 "	_ _ _		Sprung. "
NaBr "	9.77 18.58 27.27	-	7 5.6 82.6 95.9	10 46 46	48.7 53.5 61.7	30 	34.4 38.2 43.8	50 			66 66
NaI "	8.83 17.15 35.69 55.47	_ _ _ _	73.1 73.8 86.0 157.2	10 .: :: ::	46.0 47.4 55.7 96.4	30 	32.4 33.7 40.6 66.9	50 			66 66 66
NaClO ₃ "	11.50 20.59 33·54	6009 600	78.7 88.9 121.0	10 .: ::	50.0 56.8 75.7	30 	35·3 40·4 53.0	50 ., ,,	-		66 66 66
NaNO3 " "	7.25 12.35 18.20 31.55	_	75.6 81.2 87.0 121.2	10 66 66 66	47.9 51.0 55.9 76.2	30 	33.8 36.1 39.3 53.4	50 	-	1 1 1 1	66 66 66
Na ₂ SO ₄ " "	4.98 9.50 14.03 19.32		96.2 130.9 187.9 302.2	10 	59.0 77.7 107.4 166.4	30 	40.9 53.0 71.1 106.0	50 			66 66 66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	IO "	66.6 79.3 97.1	20 "	53·4 63.5 77·3	30	43.8 52.3 63.0	40 "	Slotte. "
NII ₄ Cl "	3.67 8.67 15.68 23.37		71.5 69.1 67.3 67.4	IO (i (i	45.0 45.3 46.2 47.7	30 	31.9 32.6 34.0 36.1	50 			Sprung. " "
NII ₄ Br "	1 5.97 2 5.33 36.88	-	65.2 62.6 62.4	IO ** **	43.2 43.3 44.6	30 	31.5 32.2 34.3	50 *: ·:	-		66 66 66
NII4NO3 " "	5.97 12.19 27.08 37.22 49.83		69.6 66.8 67.0 71.7 81.1	10 41 41 41 41	44·3 44·3 47·7 51.2 63.3	30 	31.6 31.9 34.9 38.8 48.9	50 			66 66 66 66 66
(NII ₄) ₂ SO ₄ "	8.10 15.94 25.51	-	107.9 120.2 148.4	10 "	52.3 60.4 74.8	30 	37.0 43.2 54.1	50 	-	-	66 66 66

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
(NH ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10 	62.4 70.0 80.7	20 .:	- 57.8 60.8	- 30	42.4 48.4 56.4	-40 -	Slotte. "
(NH ₄) ₂ Cr ₂ O ₇ 	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	IO ** **	56.3 57.2 58.8	20 **	45.8 46.8 48.7	30 	38.0 39.1 40.9	40 "	66 66 66
NiCl ₂ "	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15 	70.0 109.7 171.8	25 "	57.5 87.8 139.2	35	48.2 72.7 111.9	45 "	Wagner. "
Ni(NO ₃) ₂ 	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	I 5 .'	70.1 105.9 169.7	25 "	57.4 85.5 128.2	35 	48.9 70.7 152.4	4.5 	66 66 66
NiSO ₄ "	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15 	73.5 119.9 224.9	25 	60.1 99.5 173.0	35 	49.8 75.7 152.4	45 "	66 66 66
$Pb(NO_3)_2$	17.93 32.22	1.179 1.362	74.0 91.8	15 	59.1 72 .5	25 "	48.5 59.6	3,5	40.3 50.6	45	66
Sr(NO ₃) ₂ "	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	I 5 "	56.0 69.2 93.3	25 	45.9 57.8 76.7	35	39.1 48.1 62.3	45 	66 66 66
ZnCl ₂	1 5.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15 	72.7 86.6 117.9	25 "	57.8 69.8 90.0	35 	48.2 57.5 72.6	45 	66 66 66
$Zn(NO_3)_2$	1 5.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15 "	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35	43.8 57.7 87.9	4,5 	66 66 66
ZnSO ₄ "	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	I 5 "	79.3 118.6 177.4	25 4	62.7 94.2 135.2	35	51.5 73.5 108.1	45 	66 66 66

SMITHSONIAN TABLES.

SPECIFIC VISCOSITY.*

	Normal s	solution.	1 nori	nal.	1 nor	mal.	i nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{rrrr} Acids:Cl_2O_3&\ldots\\ HCl&\ldots\\ HClO_3&\ldots\end{array}$	1.0562 1.0177 1.0485	1.012 1.067 1.052	1.0283 1.0092 1.0244	1.003 1.034 1.025	1.0143 1.0045 1.0126	1.000 1.017 1.014	1.0074 1.0025 1.0064	0.999 1.009 1.006	Reyher.
HNO_3 $\mathrm{H}_2\mathrm{SO}_4$	1.0332 1.0303	1.027 1.090	1.0168 1.0154	1.011 1.043	1.0086 1.0074	1.005 1.022	1.0044 1.0035	1.003 1.00S	"Wagner.
Aluminium sulphate Barium chloride " nitrate	1.0550 1.0884	1.406 1.123	1.0278 1.0441	1.178 1.057	1.013 8 1.0226	1.082 1.026	1.0068 1.0114	1.038 1.013	66 66 66
Calcium chloride . " nitrate	1.04.16 1.0596	- 1.156 1.117	1.0518 1.0218 1.0300	1.044 1.076 1.053	1.0259 1.0105 1.0151	1.021 1.036 1.022	1.0130 1.0050 1.0076	1.008 1.017 1.008	66
Cadmium chloride . "nitrate . "sulubate	1.0779 1.0954	1.134 1.165	1.0394 1.0479	1.063 1.074	1.0197 1.0249	1.031 1.038	1.0098 1.0119	1.020 1.018	66 66 66
"sulphate. Cobalt chloride "nitrate "sulphate	1.0973 1.0571 1.0728 1.0756	1.348 1.204 1.166 2.354	1.0487 1.0286 1.0369 1.0383	1.157 1.097 1.075 1.160	1.0244 1.0144 1.0184 1.0193	1.078 1.048 1.032 1.077	1.0120 1.0058 1.0094 1.0110	1.033 1.023 1.018 1.040	66 66 66
Copper chloride " nitrate	1.062.1 1.07 55	1.205 1.179	1.0313 1.0372	1.098 1.080	1.0158 1.0185	1.047 1.040	1.0077 1.0092	1.027 1.018	66
" sulphate . Lead nitrate Lithium chloride . " sulphate .	1.0790 1.1380 1.02.43 1.0453	1.358 1.101 1.142 1.290	1.0.402 0.0699 1.0129 1.0234	1.160 1.042 1.066 1.137	1.0205 1.0351 1.0062 1.0115	1.080 1.017 1.031 1.065	1.0103 1.0175 1.0030 1.0057	1.038 1.007 1.012 1.032	6.6 6.6 6.6
Magnesium chloride	I.1 37 5 I.0 51 2	1.201 1.171	1.0188 1.0259	1.094 1.082	1.0091 1.0130	I.044 I.040	1.0043 1.0066	1.021 1.020	66 66
" sulphate Manganese chloride " nitrate . " sulphate	1.058.1 1.0513 1.0090	1.367 1.209 1.183	1.0297 1.0259 1.0349	1.164 1.098 1.087	1.0152 1.0125 1.0174	1.078 1.048 1.043	1.0076 1.0063 1.0093	1.032 1.023 1.023	66 66 66 66
Nickel chloride	1.0728 1.0591	1.364 1.205	1.0365 1.0308	1.169 1.0 <u>9</u> 7	1.0179 1.0144	1.076 1.044	1.0087 1.0067	1.037 1.021	66
" nitrate " sulphate Potassium chloride.	1.0755 1.0773 1.0466	1.180 1.361 0.987	1.0381 1.0391 1.0235	1.084 1.161 0.987	1.0192 1.0198 1.0117	1.042 1.075 0.990	1.0096 1.0017 1.0059	1.019 1.032 0.993	66 66 86
" chromate " nitrate . " sulphate	1.0935 1.0605 1.0664	1.113 0.975 1.105	1.0.175 1.0305 1.0338	1.053 0.982 1.049	1.0241 1.0161 1.0170	1.022 0.987 1.021	1.0121 1.0075 1.0084	1,012 0,992 1.coS	66
Sodium chloride "bromide "chlorate .	1.0.101 1.0786	1.097 1.004	1.0208 1.0396	1.047 1.030	1.0107 1.0190	1.024 1.015	1.0056 1.0100	1.013 1.008	Reyher.
" nitrate Silver nitrate	1.0710 1.055.1 1.1386	1.090 1.065 1.058	1.0359 1.0281 1.0692	1.042 1.026 1.020	1.0180 1.0141 1.0348	1.022 1.012 1.006	1.0092 1.0071 1.0173	1.012 1.007 1.000	 Wagner.
Strontium chloride . "nitrate . Zinc chloride	1.0676 1.0522	1.1.11 1.115	1.0336 1.0.119 1.0302	1.067 1.049	1.0171 1.0208 1.0152	1.034 1.024	1.0084 1.0104	1.014 1.011	66 66
" nitrate " sulphate	1.0509 1.0755 1.0792	1.189 1.164 1.367	1.0352 1.0404 1.0402	1.096 1.086 1.173	1.0152 1.0191 1.0198	1.053 1.039 1.082	1.0077 1.0096 1.0094	1.024 1.019 1.036	8.6 6.6

* In the case of solutions of salts it has been found (*vide* Arrhennius, Zeits, für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1^n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and α the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits, für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits, für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C.

VISCOSITY OF CASES AND VAPORS.

Substance.	Temp. ° C.	μ	Authority.	Substance.	Temp. C.	μ	Authority.
Acetone	18.0	78	Puluj.	Carbon dioxide .	12.8 100.0	147 208	Schumann.
$\operatorname{Air}_{\mathcal{A}} \cdot $	0.0 0.0	172 168		Carbon monoxide	0.0	163	Obermeyer.
Alcohol: Methyl .	16.7 66.8	183 135	Puluj. Stendel.	Chlorine	0.0 20.0	129 147	Graham. "
Ethyl . Normal	78.4	142 142	66	Chloroform Ether	17.4 16.0	103 73	Puluj.
propyl Isopropyl Normal		162	66	Ethyl iodide	73.3	216	
butyl Isobutyl Tertiary	116.9 108.4	143 144	66 66	Methyl" Mercury		232 489	" Koch.*
butyl	82.9	160	66	66 · · · ·	300.0	536 582	66
Ammonia " · · ·	0.0 20.0	96 108	Graham. "	66 · · · · · · · · · · · · · · · · · ·	360.0 390.0	627 671	66
Benzene	19.0 100.0	79 118	Schumann. "	Water	0.0 16.7	90 97	Puluj.
Carbon disulphide	16.9	99	Puluj.	"	100.0	1 32	L. Meyer & Schumann.

The values of μ given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

* The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu = 489[1 + 746 (t - 270)]$.

SMITHSONIAN TABLES.

COEFFICIENT OF VISCOSITY OF CASES.

The following are a few of the formulæ that have been given for the calculation of the coefficient of viscosity of gases for different temperatures.

Gas.	Value of μ .	Authority.
Air	$\mu_0 (1 + .002751 t00000034 t^2)$.000172 (1 + 00273 t) .0001683 (1 + .00274 t)	Holman. O. E. Meyer. Obermeyer.
Carbon dioxide	μ_0 (1 + .003725 <i>t</i> 00000264 <i>t</i> ² + .00000000417 <i>t</i> ³) .0001414 (1 + .00348 <i>t</i>)	Holman. Obermeyer.
Carbon monoxide .	.0001630 (1 + .00269 <i>t</i>)	66
Ethylene	.0000966 (1 + .00350 <i>t</i>)	66
Ethylene chloride .	.0000935 (1 + .00381 <i>t</i>)	66
Hydrogen	.0000822 (1 + .00249 <i>t</i>)	66
Nitrogen	.0001635 (1 + .00269 <i>t</i>)	66
Nitrous oxide (N_2O)	.0001408 (1 + .00345 <i>t</i>)	66
Oxygen	.0001873 (1 + .00283 <i>t</i>)	66

SMITHSONIAN TABLES.

DIFFUSION OF LIQUIDS AND SOLUTIONS OF SALTS INTO WATER.

The coefficient of diffusion as tabulated below is the constant which multiplied by the rate of change of concentration in any direction gives the rate of thow in that direction in C. G. S. units. Suppose two liquids diffusing into each other, and let ρ be the quantity of one of them per unit volume at a point A, and ρ' the quantity per unit volume at an adjacent point B, and x the distance from A to B. Then if x is small the rate of flow from A towards B is equal to $k(\rho - \rho')/x$, where k is the coefficient of diffusion. Similarly for solutions of salts diffusing into the solvent medium, ρ and ρ' being taken as the quantities of the salt per unit volume. The results indicate that k depends on the absolute density of the solution. Under c will be found the concentration in percentage of "normal solution" of the salt; under u the number of grammes of water per gramme of salt or of acid or other liquid.

Substance.	e		$k \times 10^7$	Temp. C.	Authority.
Ammonia	_	16.0	1 23	4.5	Scheffer.*
Ammonium chloride	- 23	85.0 _	123 135	4.5	Schumeister.†
44 64 · · · ·	-	61.0	152	17.5	Scheffer
Barium chloride	-	.46.0 13.0	76 83	S.o 9.0	.6
Calcium chloride	_	297.0	74	9.0	66
ci ci		384.0	79	9.0	" Schumeister.
Cobalt chloride	10 10		79 53	10.0	Schumeister.
Copper "	10	_	50	10.0	66
Copper sulphate	IO	-	24	10.0 0.0	Scheffer.
Hydrochloric acid	_	5.0 9.8	267 215	0.0	"
ss 66 · · ·	_	14.1	195	0.0	66
66 66 66 66	-	27.1	176 161	0.0	66
46 66	_	129.5	309	11.0	66
66 66	-	27.6	245	II.0	66
	-	69.4 108.4	234	I I.O I I.O	
Lead nitrate	_	136.0	213 76	12.0	66
66 sa a a a a	_	514.0	82	I 2.0	66 Calumnaintan
Lithium chloride	14		81 93	I0.0 I0.0	Schumeister.
" bromide	20 38	_	100	10.0	66
" iodide	17	-	93	10.0	66
Magnesium sulphate	10	-	32 32	10.0 5.5	Scheffer.
		45.0 184.0	37	5.5	66
44 44	_	30.0	31	10.0	66
Potassium chloride		248.0 32.0	39 98	10.0 7.0	66
Potassium chioride	_	107.0	106	7.0	66
	10	-	127	10.0	Schumeister.
" " bromide	30	_	147 131	10.0 10.0	66
" Dromide	30	-	1.14	10.0	66
" iodide	10	-	130	10.0	66
66 65 · · · · · · · · · · · · · · · · ·	<u>30</u> 00	_	145 168	10.0 10.0	66
" nitrate	15	-	93 87	10.0	"
" sulphate	13	-		10.0 10.0	66
Sodium chloride	10 30	_	97 106	10.0	16
" bromide	30	-	99	10.0	66
"iodide · · · ·	15	-	93 100	I 0.0 I 0.0	66
" " nitrate	30	_	69	10.0	66
" carbonate	13	umit	45	10.0	66
" sulphate	IO		76	10.0 9.0	Scheffer.
Nitric acid	-	2.9 7·3	225	9.0	66
	-	35.0	206	9.0	66
" " · · · · ·	-	426.0 18.8	200 124	9.0 8.0	66
Sulphuric acid	_	125.0	115	8.5	66
66 68	-	686.0	132	9.0	66
	-	0.5 35.0	1 50 1 4 4	1 3.0 1 3.0	66
		33.0		- 3.0	

* "Chem. Ber." vol. 15, p. 788. Smithsonian Tables. † "Wien. Akad. Ber." vol. 78, 2. Abth. p. 957.

DIFFUSION OF CASES AND VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimetres of mercury.*

Vapor.		8	Temp. C.	<i>kt</i> for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	<i>kt</i> for vapor diffusing into carbon dioxide.
Acids: Formic .	•	- 4	0.0	0.5131	0.1315	0.0879
		• •	65.4	0.7873	0.2035	0.1343
		• •	84.9	0.8830	0.2244	0.1519
Acetic .			0.0	0.1010	0.1061	0.0713
	•	• •	65.5	0.6211	0.1 578	0.10.48
Isovaleric .		• •	98.5	0.7481	0.1965	0.1321
isovalette .		• •	0.0 98.0	0.2118	• 0.0555	0.0375
•		• •	90.0	0.3934	0.1031	0.0696
Alcohols: Methyl .			0.0	0.5001	0.1325	0.0880
.6			25.6	0.6015	0.1620	0.1046
6.6			49.6	0.6738	0.1809	0.1234
Ethyl .	•		0.0	0.3806	0.009.1	0.0693
56			40.4	0.5030	0.1372	0.0898
66		•	66.9	0.5430	0.1475	0.1026
Propyl .	•		0.0	0.3153	0.0803	0.0577
4.6 · · · · · · · · · · · · · · · · · · ·			66.9	0.4832	0.1237	0.0001
66 •			83.5	0.5434	0.1379	0.0976
Butyl .	• •		0.0	0.2716	0.0681	0.0.176
		•	99.0	0.50.45	0.1265	0.0884
Amyl .		•	0.0	0.2351	0.0589	0.0.122
•		•	99.1	0.4362	0.1094	0.0784
Hexyl .	•	•	0.0	0.1998	0.0499	0.0351
		•	99.0	0.3712	0.0927	0.0651
Democra						
Benzene	• •	*	0.0	0.29.40	0.07 51	0.0527
66	• •	•	19.9	0.3409	0.0877	0.0609
• • •	• •	•	45.0	0.3993	0.1011	0.0715
Carbon disulphide .			0.0	0.3690	0.0883	0.0629
	• •		19.9	0.3090	0.1015	0.0726
66 66		•	32.8	0.4626	0.1120	0.0789
			5210	0.4020	0.1120	0.0709
Esters : Methyl acetate			0.0	0.3357	0.0852	0.0572
66 66			20.3	0.3928	0.1013	0.0679
Ethyl "			0.0	0.2373	0.0630	0.0450
66 66		4	46.I	0.3729	0.0970	0.0666
Methyl butyrat	e		0.0	0.2422	0.06.10	0.0438
65 66			92.1	0.4308	0.1139	0.0809
Ethyl "	• •		0.0	0.2238	0.0573	0.0406
66 66	• •	•	96.5	0.4112	0.1064	0.07 56
"valerate	0 0	•	0.0	0.2050	0.0505	0.0366
1.0 5.0	0 0	•	97.6	0.3784	0.0932	0.0676
Ether				0.2060	0.0557	0.0111
istner · · · ·	• •	9	0.0	0.2960	0.0775	0.0552
• • •	• •	•	19.9	0.3410	0.0893	0.0636
Water			0.0	0.6870	0.1980	0.1210
		•	49.5	I.0000	0.2827	0.1310
4.6 · · ·			92.4	1.1794	0.3451	0.2384
			9-4	/54	0.040*	0.2304

* Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Losehnidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{76}{p}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_2$, n = 1.968; $CO_2 - N_2O$, n = 2.05; $CO_2 - H$, n = 1.742; CO - O, n = 1.785; H - O, n = 1.755; O - N, n = 1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

COEFFICIENTS OF DIFFUSION FOR VARIOUS CASES AND VAPORS."

Gas or vapor diffusing.	Gas or vapor diffused into.	Temp. C.	Coetticient of diffusion.	Anthority.
Air	Carbon dioxide	0	0.1343	Obermayer.
	Oxvgen	0	0.1775	46
Carbon dioxide	Air	0	0.1.423	Loschmidt.
	· · · · · ·	0	0.1360	Waitz.
66 84	Carbon monoxide .	0	0.1405	Loschmidt
6. 6	6.6 6.6 e a	0	0.1314	Obermayer.
46 44	Ethylene	0	0.1006	66
· · · · · · · · · · · · · · · · · · ·	Hydrogen	0	0.5437	66
64 ** + + + + - + - + - + - + - + - + - +	Methane	0	0.1465	
64 64 e	Nitrous oxide	0	0.0983	Losehmidt.
64 44 - 0 0	Oxygen	0	0.1802	
Carbon disulphide	Air	0	0.0995	Stefan.
Carbon monoxide	Carbon dioxide	0	01314	Obermayer.
· · · · · ·	Ethylene	0	0.1164	
66 60 0 0 60 55	Hydrogen	0	0.6422	Losehmidt.
	Oxygen	0	0.1802	
£6	2. C/ 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	0	0.1872	Obermayer.
Ether	Air	0	0.0827	Stefan.
	Hydrogen	0	0.3054	
Hydrogen	Air	0	0.63.10	Obermayer.
	Carbon dioxide	0	0.5384	"
	" monoxide .	0	0.6488	66
	Ethane	0	0.4593	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
• • • • •	Ethylene	0	0.4863	
	Methane	0	0.6254	56
	Nitrous oxide Oxygen	0	0.5347 0.6788	44
	Oxygen Oxygen	0	0.0788	66
		0	0.1757	66
Oxygen		0	0.7217	Loschmidt.
66	Hydrogen Nitrogen	0	0.1710	Obermayer.
Sulphur dioxide	Hydrogen	0	0.4828	Loschmidt.
Water	Air	8	0.2390	Guglielmo.
water		18	0.2390	"
	IIydrogen	18	0.8710	66
• • • •			0.07.0	

* Compiled for the most part from a similar table in Landolt & Boernstein's " Phys. Chem. Tab."

SMITHSONIAN TABLES.

OSMOSE.

The following table given by H. de Vries * illustrates an apparen	t relation between the isotonic coefficient t of solu-
tions and the corresponding lowering of the freezing-point and	the vapor pressure. The freezing-points are taken
on the authority of Raoult, and the vapor pressures on the aut	hority of Tammann.‡

Substance.		Formula.	Isotonic coefficient × 100.	Molecular lowering of the freezing point × 100.	Molecular lowering of the vapor pressure X 1000.
Glycerine Cane sugar Tartaric acid . Magnesium sulphate Potassium nitrate Sodium nitrate . Potassium chloride . Ammonium chloride . Ammonium chloride Potassium acetate Potassium oxalate Potassium sulphate Magnesium chloride Calcium chloride	• •	$\begin{array}{c} C_{3}H_{8}O_{3}\\ C_{12}H_{22}O_{11}\\ C_{4}H_{6}O_{6}\\ MgSO_{4}\\ KNO_{3}\\ NaNO_{3}\\ KCl\\ NaCl\\ NH_{4}Cl\\ KC_{2}H_{3}O_{2}\\ K_{2}C_{2}O_{4}\\ K_{2}SO_{4}\\ MgCl_{2}\\ CaCl_{2} \end{array}$	178 188 202 196 300 287 305 300 393 393 392 433 433	171 185 195 308 337 336 351 348 345 450 390 488 466	- 188 156 267 296 313 330 313 331 372 351 513 517

TABLE 164.

OSMOTIC PRESSURE.

The following numbers give the result of Pfeffer's § measurement of the magnitude of the osmotic pressure for a one per cent sugar solution. The result was found to agree with that of an equal molecular solution of hydrogen. The value for the hydrogen solution is given in the third column of the table.

Temperature C.	Osmotic pressure in atmospheres.	0.649(1+.003671)
6.8	0.664	0.665
13.7	0.691	0.681
14.2	0.671	0.682
15.5	0.684	0.686
22.0	0.721	0.701
32.0	0.716	0.725
36.0	0.746	0.735

* "Zeits. für Phys. Chem." vol. 2, p. 427. † The isotonic coefficient is the relative value of the molecular attraction of the different salts for water or the relative value of the osmotic pressures for normal solutions. In the above table the coefficient for KNO₃ was taken as 3 arbitrarily and the others compared with it. The concentrations of different salts which give equal osmotic pres-sures are called by Tammann and others isosmotic concentrations; they are sometimes called isotonic concentrations. The reciprocals of the numbers of molecules in the isotonic concentrations are called by De Vries the isotonic coeffi-cients. cients. ‡ See also Tammann, "Wied. Ann." vol. 34, p. 315. § Winkelmann's " Handbuch der Physik," vol. 1, p. 632.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO RECNAULT.

The last four columns were calculated from the data given in the second column and the density of mercury.

												_	
Temp. ° Cent.	Pressure : mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure : inches of mercury.	Pressure : atmospheres.	Temp. ° Fahr.	Temp. Cent.	Pressure : mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure : inches of mercury.	Pressure : atmospheres.	Temp. ° Fahr.
0 1 2 3 4	4.60 4.94 5.30 5.09 6.10	6.254 6.716 7.206 7.736 8.291	0.0890 .0955 .1025 .1100 .1180	0.181 .194 .209 .224 .240	0.0061 .0065 .0070 .0075 .0080	32.0 33.8 35.6 3 7 .4 39.2	40 41 42 43 44	54.91 57.91 61.01 64.35 67.79	74.653 78.678 82.9.17 87.488 92.165	1.061 1.121 1.216 1.244 1.312	2.162 2.280 2.404 2.533 2.669	0.072 .076 .080 .085 .085	104.0 105.8 107.6 109.4 111.2
5 6 7 8 9	6.53 7.00 7.49 8.02 8.57	8.878 9.517 10.183 10.904 11.651	0.1263 .1354 .1452 .1551 .1657	0.2 57 .276 .295 .316 .338	0.0086 .0092 .0099 .0107 .0114	41.0 42.8 44.6 46.4 48.2	45 46 47 48 49	71.39 75.16 79.09 83.20 87.50	97.059 102.184 107.528 113.115 118.962	1.381 1.454 1.530 1.609 1.692	2.811 2.959 3.114 3.276 3.444	0.094 .099 .104 .109 .115	113.0 114.8 116.6 118.4 120.2
10 11 12 13 14	9.17 9.79 10.46 11.16 11.91	12.467 13.310 14.207 15.173 16.192	0.1773 .1893 .2023 .2158 .2303	0.361 .386 .412 .439 .469	0.012 .013 .01.1 .015 .016	50.0 51.8 53.6 55.4 57.2	50 51 52 53 54	91.98 96.66 101.54 106.64 111.95	131.42 138.04 144.98	1.78 1.87 1.96 2.06 2.17	3.62 3.81 4.00 4.20 4.41	0.121 .127 .134 .140 .147	122.0 123.8 125.6 127.4 129.2
15 16 17 18 19		17.266 18.408 19.605 20.883 22.229	0.2456 .2618 .2789 .2970 .3162	0.500 .533 .568 .605 .644	0.017 .018 .019 .020 .022	59.0 60.8 62.6 64.4 66.2	55 56 57 58 59	117.48 123.24 129.25 135.51 142.02	167.55 175.72 184.23	2.27 2.39 2.50 2.62 2.75	4.63 4.85 5.09 5.33 5.59	0.155 .163 .170 .178 .187	1346
20 21 22 23 24	20.89	25.152 26.729 28.401	0.3363 •3577 •3802 •4040 •4289	0.685 .728 .774 .822 .873	0.023 .024 .026 .028 .029	68.0 69.8 71.6 73.4 75.2	60 61 62 63 64	148.79 155.84 163.17 170.79 178.71	211.87 2 21. 84	2.88 3.01 3.16 3.30 3.46	5.86 6.14 6.42 6.72 7.04	0.196 .205 .215 .225 .235	140.0 141.8 143.6 145.4 147.2
25 26 27 28 29	23.55 24.99 26.51 28.10 29.78	33.975 36.042	0.4554 .4833 .5126 .5434 .5759	0.927 .984 1.044 .106 .172	0.031 .033 .034 .037 .039	77.0 78.8 80.6 82.4 84.2	65 66 67 68 69	186.95 195.50 204.38 213.60 223.17	265.79 277.87	3.62 3.78 3.95 4.13 4.32	7.36 7.70 8.05 8.41 8.79	0.246 .257 .267 .281 .494	149.0 150.8 152.6 154.4 156.2
30 31 32 33 34	33.41	42.894 45.423 48.074 50.861 53.798	.6461 .6838 .7234	1.242 .315 .392 .473 .558	.044 .047 .049	86.0 87.8 89.6 91.4 93.2	70 71 72 73 74		360.49	4.51 4.71 4.91 5.12 5.35	9.18 9.58 10.00 10.44 10.89	.320	
35 36 37 38 39	44.20 46.69 49.30	56.870 60.093 63.478 67.026 70.752	.855 .903 .954	1.647 .740 .838 .941 2.049	.065	95.0 96.8 98.6 100.4 102.2	75 76 77 78 79	31 3.60 326.81	409.01 426.36	5.58 5.82 6.06 6.32 6.58	11.36 11.84 12.35 12.87 13.40	.396 .414 .430	167.0 168.8 170.6 172.4 174.2
	1								1	1			

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

Temp. Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure : atmospheres.	Temp. Fahr.	Temp. © Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetres.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure : atmospheres.	Temp. Fahr.
80 81 82 83 84	354.64 369.29 3 ⁸ 4.44 400.10 416.30	482.15 502.07 522.67 543.96 565.99	7.14 7.44 7.74	13.96 14.54 15.14 15.75 16.39	.506 .526	176.0 177.8 179.6 181.4 183.2	121 122 123	1491.28 1539.25 1588.47 1638.96 1690.76	2092.70 2159.62		58.71 60.61 62.54 64.53 66.56	2.025 .091 .157	248.0 249.8 251.6 253.4 255.2
85 86 87 88 89	433.04 450.34 468.22 486.69 505.76	588.7.4 61 2.26 636.57 661.68 687.61	8.71 9.05 9.41	17.73 18.43	.616. .640	185.0 186.8 188.6 180.4 192.2	126 127 128	1854.20 1911.47	2444.96 2520.89	35.86 36.97	68.66 70.80 73.00 75.25 77.57	.430 .515	257.0 258.8 260.6 262.4 264.2
90 91 92 93 94	525-45 545-78 566-76 588-41 610-74	714.3 ⁸ 740.31 770.54 799.98 830.34	10.56 10.95 11.38	21.49 22.31 23.17	.719 .746 .774	194.0 195.8 197.6 199.4 20 1. 2	131 132	2091.94 2155.03 2219.69	2760.29 2844.12 2929.89 3017.80 3107.85	40.47 41.68 42.93	79-93 82.36 84.84 87.39 89.99	·7 53 .836 .921	267.8 269.6
95 96 97 98 99	633.78 657.54 682.03 707.28 733.31	861.66 893.97 927.26 961.59 996.98	12.71 13.19 13.68	25.89 26.85 27.85	.897 .931	203.0 204.8 206.6 208.4 210.2	135 136 137 138 139	2494.23 2567.00	3200.04 3294.43 3391.06 3489.99 3591.29	46.87 48.24 49.65		.188 .282 .378	275.0 276.8 278.6 280.4 282.2
100 101 102 103 104	787.59 816.01 8.45.28	1033.26 1070.78 1109.41 1149.21 1190.17	1 5.23 1 5.79 16.35	31.01 32.13 33.28	.036 .074 .112	212.0 213.8 215.6 217.4 219.2	143	2795-57 2875-30		54.07 55.60 57.16	106.99 110.06 113.20 116.41 119.69	.678 .783 .890	285.8 287.6 289.4
	938.31 971.14 1004.91	1232.32 127 5.69 1320.32 1366.24 1413.47	18.15 18.78 19.44	36.94 38.23 39.50	.235 .278 .322	221.0 222.8 224.6 226.4 228.2	147 148	3212.74 3301.87 3392.98	4249.37 4367.91 4489.09 4612.96 4739.55	62.13 63.86 65.62	129.99 133.58	.227 .344 .464	293.0 294.8 296.6 298.4 300.2
111 112 113 114	1112.09 1149.83 1188.61 1228.47	1462.03 1511.97 1563.26 1615.99 1670.18	21.51 22.24 22.99 23.76	43.78 45.25 46.80 48.37	.463 .513 .564 .616	230.0 231.8 233.6 235.4 237.2	151 152 153 154	3581.2 3678.4 3777.7 3879.2 3982.8	4868.9 5001.1 5136.1 5275.0 5414.8	71.14 73.06 75.02	141.0 144.8 148.7 152.7 156.8	.840 .971 5.104 .240	302.0 303.8 305.6 307.4 309.2
116 117 118	1311.47 1354.66 1399.02	1725.84 1783.02 1841.74 1902.05 1963.95	25.37 26.20 27.06	51.63 53.34 55.08	.726 .782 .841	239 0 240.8 242.6 244.4 246.2	156 157 158	4088.6 4196.6 4306.9 4419.5 4534.4	5558.6 5705.5 5855.5 6008.5 6164.7	81.22 83.29 85.47	161.0 165.2 169.6 17.4.0 178.5	.522 .667 .815	311.0 312.8 314.6 316.4 318.2

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO RECNAULT.

Temp. Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure : inches of mercury.	Pressure: atmospheres.	Temp. Fahr.	Temp. Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	l'ressure : inches of mercury.	Pressure : atmosį heres.	Temp. Fahr.
160 101 162 163 164	4651.6 4771.3 4893.4 5017.9 5145.0	6324.2 6486.8 6652.8 6822.2 6994.9	94.03 97.04	187.9	6.603	321.8 323.0	196 197 198	10510.6 10746.0 10975.0 11209.8 11447.5	1.4009.8 1.4921.2 1.5240.4	207.81 212.25 216.77	423.1 432.1 441.3	14.139 14.441 14.749	3-4-8 386-6 388.4
165 160 167 168 169	5541.4 5678.8	7171.1 7350.7 7533.9 7720.7 7911.1	104.56 107.18 109.84	212.9 218.2 223.6	7.11.4 7.291 7.472	329.0 330.8 332.6 334.4 336.2	201 202 203	11689.0 11934.4 12183.7 12437.0 12694.3	16225.5 16564.7 16908.8	230.79 235.61 240.54	469.8 479.7 489.6	15.703 16.031 16.364	39 3 8 305.6 397.4
170 171 172 173 174	6560.6		118.11 120.98 123.90 126.87	240.4 246.3 252.2 258.3	8.036 8.231 8.430 8.632	338.0 339.8 341.6 343.4 345.2	206 207 208 209	12955.7 13221.1 13490.8 13764.5 14042.5	17974.9 18341.5 18713.7 19091.6	255.67 260.88 266.18 271.55	520.5 531.2 541.0 552.9	17.396 17.751 18.111 18.477	402.8 404.6 406.4 408.2
175 176 177 178 179	6877.2 7040.0 7205.7 7374.5		133.00 136.15 139.35	270.8 277.2 283.7	9.049 9.263 9.481	347.0 348.8 350.6 352.4 354.2	211 212 213 214	14324.8 14611.3 14902.2 15197.5 15497.2	19864.9 20260.5 20661.9 21069.3	282.58 288.21 293.92 299.72	57 5·3 586.7 598.3 610.2	19.226 19.608 19.997 20.391	411.8 413.6 415.4 417.2
180 181 182 183 184	7721.4 7899.5 8080.8 8265.4	102 59.7 10497.7 107 39.9 10986.4 11237.3	1.49.32 1.52.77 1.56.32 1.59.84	304.0 311.0 318.1 325.4	10.150 10.394 10.633 10.876	359.6 361.4 363.2	216 217 218 219	15801.3 16109.9 16423.2 16740.9 17063.3	21902.4 22328.3 22760.3 23198.6	311.57 317.62 323.78 330.01	634.2 646.(659.1 671.8	21.197 21.690 22.027 22.452	420.8 422.6 424.4 426.2
185 186 187 188 189	8644.4 8838.8 9036.7 9238.0	11490.0 11752.5 12016.9 12285.9 12559.6	167.17 170.94 174.76 178.65	340.3 348.0 355.8 363.7	11.374 11.630 11.885 12.155	366.8 368.6 370.4 372.2	221 222 223 224	17390.4 17722.1 18058.6 18399.9 18746.1	24094.3 24551.8 25015.8 25486.4	342.70 349.21 355.81 362.50	697.7 711.0 724.4 738.0	23.319 23.761 24.210 24.660	429.8 431.6 433.4 435.2
191 192 193	9442.7 9650.9 9862.7 10078.0 10297.0	13121.0 13408.9 13701.7	186.63 190.72 194.88	380.0 388.3 396.8	12.699 12.977 13.261	375.8 377.6 379.4	226 227 228	19097.0 19.452.9 19813.8 20179.6 20550.5	26447.4 26938.0 27435.4	376.17 383.13 390.22	765.8 780.9 794-5	25.596 26.071 26.552	438.8 440.6 442.4

SMITHSONIAN TABLES.

TABLE 166.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.*

Temp. C.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.3
28	0.46	0.45	0.44	0.43	0.43	0.42	0.41	0.40	0.40	0.39
26	0.55	0.54	0.53	0.52	0.51	0.50	0.50	0.49	0.48	0.47
24	0.66	0.65	0.64	0.63	0.62	0.61	0.60	0.58	0.57	0.56
22	0.79	0.78	0.77	0.75	0.74	0.73	0.71	0.70	0.69	0.68
20	0.94	0.93	0.91	0.90	0.88	0.87	0.85	0.84	0.82	0.81
18	1.12	1.10	1.08	1.06	1.05	1.03	1.01	0.99	0.98	0.96
16	1.32	1.30	1.28	1.26	1.24	1.22	1.20	1.18	1.16	1.14
14	1.56	1.54	1.51	1.49	1.46	1.44	1.42	1.39	1.37	1.35
12	1.84	1.81	1.78	1.75	1.72	1.69	1.67	1.64	1.61	1.59
10	2.15	2.12	2.08	2.05	2.02	1.99	1.96	1.93	1.90	1.87
8	2.51	2.48	2.44	2.40	2.36	2.33	2.29	2.26	2.22	2.19
6	2.93	2.89	2.84	2.80	2.76	2.72	2.67	2.63	2.59	2.55
4	3.41	3.36	3.31	3.26	3.21	3.16	3.11	3.07	3.03	2.98
2	3.95	3.89	3.84	3.78	3.72	3.67	3.62	3.56	3.51	3.46
-0	4.57	4.50	4.44	4.37	4.31	4.25	4.19	4.13	4.07	4.01
+ 0	4.57	4.64	4.70	4.77	4.84	4.91	4.98	5.05	5.12	5.20
2	5.27	5.35	5.42	5.50	5.58	5.66	5.7.4	5.82	5.90	5.99
4	6.07	6.15	6.24	6.33	6.42	6.51	6.60	6.69	6.78	6.88
6	6.97	7.07	7.17	7.26	7.36	7.47	7.57	7.67	7.78	7.88
8	7.99	8.10	8.21	8.32	8.43	8.55	8.66	8.78	8.90	9.02
10	9.14	9.26	9.39	9.51	9.64	9.77	9.90	10.03	10.16	10.30
12	10.43	10.57	10.71	20.85	10.99	11.14	11.28	11.43	11.58	11.73
14	11.88	12.04	12.19	12.35	12.51	12.67	12.84	13.00	13.17	13.34
16	13.51	13.68	13.86	14.04	14.21	14.40	14.58	14.76	14.95	15.14
18	15.33	15.52	15.72	15.92	16.12	16.32	16.52	16.73	16.94	17.15
20	17.36	17.58	17.80	18.02	18.24	18.47	18.69	18.92	19.16	19.39
22	19.63	19.87	20.11	20.36	20.61	20.86	21.11	21.37	21.63	21.89
24	22.15	22.42	22.69	22.96	23.24	23.52	23.80	24.08	24.37	24.66
26	24.96	25.25	25.55	25.86	26.16	26.47	26.78	27.10	27.42	27.74
28	28.07	28.39	28.73	29.06	29.40	29.74	30.09	30.44	30.79	31.15
30	31.51	31.87	32.24	32.61	32.99	33·37	33.75	34.14	34.53	34.92
32	35.32	35.72	36.13	36.54	36.95	37·37	37.79	38.22	38.65	39.08
34	39.52	39.97	40.41	40.87	41.32	41.78	42.25	42.72	43.19	43.67
36	4.4.16	44.65	45.14	45.64	46.14	46.65	47.16	47.68	48.20	48.73
38	49.26	49.80	50.34	50.89	51.44	52.00	52.56	53.13	53.70	54.28
40	5.4.87	55.46	56.05	56.65	57.26	57.87	58.49	59.11	59.74	60.38
42	61.02	61.66	62.32	62.98	63.64	64.31	64.99	65.67	66.36	67.05
44	67.76	68.47	69.18	69.90	70.63	71.36	72.10	72.85	73.60	7.4.36
46	75.13	75.91	76.69	77.47	78.27	79.07	79.88	80.70	81.52	82.35
48	83.19	84.03	84.89	85.75	86.61	87.49	88.37	89.26	90.16	91.06
50	91.98	92.90	93.83	94.77	95.71	96.66	97.63	98.60	99.57	100.56
52	101.55	102.56	103.57	104.59	105.62	106.65	107.70	108.76	109.82	110.89
54	111.97	113.06	114.16	115.27	116.39	117.52	118.65	119.80	120.95	122.12
56	123.29	124.48	125.67	126.87	128.09	129.31	130.54	131.79	133.04	134.30
58	135.58	136.86	138.15	139.46	140.77	142.10	143.43	1.44.78	146.14	147.51
60	148.88	1 50.27	151.68	153.09	154.51	1 55.95	1 57.39	1 58.8 5	160.32	161.80
62	163.29	164.79	166.31	167.83	169.37	170.92	172.49	174.06	175.65	177.25
64	178.86	180.48	182.12	183.77	185.43	187.10	188.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75	204.56	206.38	208.21	210.06	211.92
68	213.79	215.68	217.58	219.50	221.43	223.37	225.33	227.30	229.29	231.29

• This table is based on Regnault's experiments, the numbers being taken from Broch's reduction of the observations (Trav. et Mén. du Bur. Int. des Poids et Més. fom. 1). The numbers differ very slightly from those of Regnault (see Table 165). The direct measurements of Marvin given in Table 169 show that the numbers in this table are high for temperature below zero centigrade.

TABLE 166.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.

Temp. °C.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
70	233-31	235-34	237-39	239.45	241.52	2.43.62	245.72	247.85	2.49.98	252.1.4
72	254-30	256-49	258.69	200.91	263.14	265.38	267.65	269.63	272.23	274.54
74	276.87	279-21	281.58	283.95	280.35	288.76	291.19	293.64	296.11	298.59
76	301.09	303-60	306.14	308.09	311.26	313.85	316.45	319.67	321.72	324.38
78	327.05	329-75	332-47	335.20	337.95	340.73	343.52	3.46.33	3.49.16	352.01
80	354.87	357.76	360.67	363.59	366.54	369.51	372-49	37 5.50	378.53	381.58
82	384.64	3 ⁸ 7.73	390.84	393.97	397.12	400.29	403-49	.106.70	409.94	413.19
84	416.47	419.77	423.09	426.44	429.81	433.19	436.60	4.10.0.1	443.49	446.97
86	450.47	454.00	457+54	461.11	464.71	468.32	471-96	47 5.63	479.32	483.03
88	486.76	490.52	494-31	498.12	501.95	505.81	509.69	51 3.60	517.53	521.48
90 92 94 96 98 100	525.47 566.71 610.64 637.40 707.13 760.00	529.48 570.98 615.19 662.23 712.27 765.47	533.51 575.28 619.76 667.10 717.44 770.97	537.57 579.61 624.37 672.00 722.65 776.50	5.41.65 583.96 629.00 676.00 727.89 782.07	545.77 588.33 633.66 681.88 733.16 787.67	549.90 592.74 638.35 686.87 738.46	554.07 597.17 643.06 691.89 743.80	558.26 601.64 647.81 696.93 749.17	562.47 606.13 652.59 702.02 754.57

TABLE 167. WEICHT IN GRAINS OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC FOOT OF SATURATED AIR.*

Temp. ^{or} F.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8 0	9.0
10	0 356	0.340	0.324	0.309	0.294	0.280	0.267	0.254	0.242	0.230
0	0.564	0.540	0.516	0.493	0.471	0.450	0.430	0.411	0.391	0.373
+ 0	0.564	0.590	0.617	0.645	0.674	0.705	0.735	0.767	0.801	0.837
10	0.873	0.010	0.950	0.991	1.033	1.077	1.122	1.169	1.217	1.268
20	1.321	1.374	1.430	1.488	1.549	1.611	1.675	1.743	1.812	1.882
30	1.956	2.034	2.113	2.19.4	2.279	2.366	2.457	2.550	2.646	2.746
40	2.849	2.955	3.064	3.177	3.294	3.414	3.539	3.667	3.800	3.936
50	4.076	4.222	4.372	4.526	4.685	4.849	5.016	5.191	5.370	5.555
60	5.7.45	5.941	6.142	6.349	6.563	6.782	7.009	7.241	7.480	7.726
70	7.980	8.240	8.508	8.782	9.066	9.356	9.655	9.962	10.277	10.601
80	10.934	11.275	11.626	11.987	12.356	12.736	13.127	13.526	13.937	14.359
90	14.790	15.234	15.689	16.155	16.634	17.124	17.626	18.142	18.671	19.212
100 110	19.766 26.112	20.335 26.832	20.917 27.570	21 .514 28.325	22.125 29.096	2 2.7 50 29.887	23.392 _	24.048	2.4.7 20	25 408

TABLE 168.

WEICHT IN CRAMMES OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC METRE OF SATURATED AIR.

Temp. ° C.	0 0	1.0	2.0	3.0	4.0	5.0	6.0	70	8.0	90
20	1.078	0 992	0.913	0 839	0.770	0.706	0.6.17	0.593	0.542	0196
10	2.363	2.192	2.032	1.882	1.742	1.611	1189	1.375	1.269	1.170
0	4.835	4.513	4.211	3.926	3.659	3.407	3.171	2.949	2.741	2.546
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

SMITHSONIAN TABLES.

* See "Smithsonian Meteorological Tables," pp. 132-133.

TABLE 169.

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURE.*

Pressures are given in inches and millimetres of mercury, temperatures in degrees Fahrenheit and degrees Centigrade.

	((a) Pressur	es in inche	s of mercu	ry; temper	atures in d	egrees Fal	irenheit.		
Temp. F.	0.2.0	1°.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	82.0	9°.0
-50° -40 -30 -20 -10	0.0021 .0039 .006) .0120 .0222	0.0019 .0037 .0065 .0119 .0210	0.0018 .0035 .0061 .0112 .0199	0.0017 .0033 .0057 .0106 .0188	0.0016 .0031 .0054 .0100 .0178	0.0015 .0029 .0051 .0094 .0168	0.0013 .0027 .0048 .0089 .0159	0.0013 .0026 .0046 .0083 .0150	0.0012 .0024 .0044 .0078 .014I	0.0011 .0022 .0041 .0074 .0133
-0 +0 10 20 30	0.0383 .0383 .0631 .1026 .1641	0.0263 .0403 .0665 .1077 .1718	0.0244 .0423 .0699 .1130 .1798	0.0225 .0444 .0735 .1185	0.0307 .0467 .0772 .1242	0.0291 .0491 .0810 .1302	0.0275 .0515 .0850 .1365	0.0260 .0542 .0891 .1430	0.0247 .0570 .0933 .1497	0.023.4 .0600 .0979 .1568

(b) Pressures in millimetres of mercury; temperatures in degrees Fahrenheit.

Temp. F.	0°.0	1°.0	2°.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	82.0	9°.0
	0.053 .100 .176 .319 .564	0.049 .094 .165 .301 .534	0.046 .089 .155 .284 .505	0.043 .084 .146 .268 .478	0.0.40 .079 .138 .253 .452	0.037 .074 .130 .239 .427	0.034 .069 .123 .225 .403	0.032 .065 .117 .212 .384	0.030 .061 .111 .199 .35 ⁸	0.028 .057 .105 .187 .338
-0 +0 10 20 30	0.972 .972 1.603 2.607 4.169	0.922 1.023 1.688 2.735 4.364	0.873 1.075 1.776 2.869 4.568	0.826 1.129 1.867 3.009	0.781 1.186 1.961 3.155	0.7 38 1.246 2.058 3.307	0.698 1.309 2.158 3.466	0.661 1.376 2.262 3.631	0.627 1.447 2.371 3.803	0.595 1.523 2.486 3.982

(c) Pressures in inches of mercury; temperatures in degrees Centigrade.

Temp. C.	0 ⁵ .0	1.0	2 .0	3.0	4°.0	5.0	6 '.0	7.0	8°.0	9 ⁻ .0
0 ⁻¹ (0.1798	0.1655	0.1524	0.1395	0.1290	0.1185	0.1091		0.0916	0.0842
10	.0772	.0706	.0645	.0588	.0537	.0491	.0449		.0375	.0341
20	.0307	.0278	.0252	.0229	.0208	.0188	.0171		.0138	.0124
30	.0112	.0101	.0091	.0082	.0073	.0065	.0059		.0048	.0044
40	.0040	.0036	.0032	.0029	.0025	.0022	.0020		.0015	.0013

(d) Pressures in millimetres of mercury; temperatures in degree

Temp. C.	0 ⁻² .0	1.0	2°.0	3°.0	4.0	5 .0	6°.0	7.0	0. 8	9°.0
0	4.568	4.208	3.875	3.565	3.277	3.009	2.767	2.534	2.327	2.138
10	1.961	1.704	1.637	1.493	1.363	1.246	1.140	1.0.1.1	0.952	0.864
20	0.781	0.706	0.641	0.583	0.528	0.478	0.432	0.389	0.350	0.315
30	0.284	0.256	0.231	0.20 7	0.185	0.165	0.148	0.133	0.121	0.110
40	0.100	0.090	0.081	0.072	0.064	0.057	0.050	0.044	0.039	0.034

* Marvin's results (Ann. Rept. U. S. Chief Signal Officer, 1891, App. 10).

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t - t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t - t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimetres of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 70 centimetres, and a correction is given for each centimetre at the top of the columns.*

tı	$\begin{bmatrix} t - t_1 \\ = 0 \end{bmatrix}$	2	4	6	8	10	12	14	16	18	20	ce per
	ions for er centi- e.†	.013	.020	•040	.053	.060	.079	.092	.100	+119	.132	D'ifference $\frac{1}{2}$ of $t - t_1$
$-10 \\ -9 \\ -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1$	1.96 2.14 2.33 2.53 2.76 3.01 3.28 3.57 3.88 4.22 4.60 4.94	0.96 1.14 1.33 1.53 1.70 2.01 2.28 2.57 2.88 3.22 3.60 3.93	0.1.4 0.33 0.53 0.76 1.00 1.27 1.56 1.87 2.21 2.59 2.92	0.27 0.56 0.87 1.21 1.59 1.92	0.21 0.59 0.92			Exan $ber = 6.$ for $B =$ Hence	<i>t</i> 12-6×	8=	0.0 4-5 5-51 -07	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
2 3 4 5 6 7 8 9 10 11	5.30 5.69 6.10 6.53 7.00 7.49 8.02 8.57 9.17 9.79	4.29 4.68 5.09 5.52 5.99 6.48 7.01 7.56 8.16 8.77	3.29 3.68 4.09 4.51 4.98 5.47 5.99 6.54 7.14 7.76	2.28 2.67 3.08 3.50 3.97 4.45 4.98 5.53 6.12 6.74	1.28 1.66 2.07 2.49 2.96 3.44 3.97 4.51 5.11 5.73	0.27 0.66 1.06 1.48 1.95 2.43 2.96 3.50 4.09 4.71	0.05 0.48 0.94 1.42 1.94 2.49 3.08 3.69	0.41 0.93 1.48 2.07 2.68	0.46 1.06 1.66	0.05 0.64		0.100 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.102
12 13 14 15 16 17 18 19 20	10.46 11.16 11.91 12.70 13.54 14.42 15.36 16.35 17.39	9.44 10.14 10.S9 11.68 12.52 13.40 14.34 15.33 16.37	8.43 9.12 9.87 10.66 11.50 12.37 13.31 14.30 15.34	7.41 8.10 8.85 9.64 10.47 11.35 12.29 13.27 14.31	6.39 7.09 7.83 8.62 9.45 10.33 11.20 12.25 13.28	5.37 6.07 6.81 7.60 8.43 9.31 10.24 11.22 12.26	4.36 5.05 5.79 6.58 7.41 8.28 9.21 10.20 11.23	3.34 4.03 4.77 5.56 6.39 7.26 8.19 9.17 10.21	2.32 3.01 3.71 4.54 5.37 6.24 7.17 8.15 9.18	1.30 1.99 2.69 3.52 4.35 5.22 6.15 7.13 8.15	0.28 0.97 1.67 2.50 3.33 4.20 5.13 6.11 7.12	0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.103
21 22 23 24 25 26 27 28 29	18.50 19.66 20.89 22.18 23.55 24.99 26.51 28.10 29.78	17.47 18.63 19.86 21.15 22.52 23.96 25.48 27.07 28.75	16.45 17.60 18.83 20.12 21.49 22.92 24.44 26.03 27.71	20.45 21.89 23.40 24.99 26.67	1.4.39 15.54 16.77 18.05 19.43 20.86 22.37 23.96 25.63	18.39 19.82 21.34 22.92 24.59	17.36 18.79 20.30 21.89 23.56	11.31 12.46 13.68 14.96 16.33 17.76 19.27 20.85 22.52	15.30 16.73 18.24 19.82 21.49	14.27 15.70 17.21 18.79 20.46	8.22 9.37 10.60 11.88 13.24 14.67 16.18 17.76 19.43	0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103
30 31 32 33 34 35 36 37 38 3 9	31.55 33.41 35.36 37.41 39.57 41.83 44.20 46.69 49.30 52.04	30.51 32.37 34.32 36.37 38.53 40.79 43.16 45.65 48.26 51.00	29.47 31.33 33.28 35.33 37.48 39.74 42.11 44.60 47.21 49.95	28.43 30.29 32.24 34.29 36.44 38.70 41.07 43.56 46.17 48.91	27.40 29.25 31.21 33.25 35.40 37.66 40.03 42.52 45.13 47.86	26.36 28.22 30.17 32.22 34.36 36.62 38.99 41.48 44.08 46.82	25.32 27.18 29.13 31.18 33.32 35.68 37.95 40.44 43.04 45.77	24.29 20.14 28.09 30.14 32.28 34.64 36.90 39.39 41.99 44.73	23.25 25.10 27.05 29.10 31.24 33.60 35.86 38.35 40.95 43.78	22.22 24.07 26.01 28.06 30.20 32.56 34.82 37.31 30.91 42.74	21.18 23.03 24.97 27.02 29.16 31.52 33.78 36.27 38.87 41.69	0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.105

* The table was calculated from the formula $p = p_1 - 0.00066 B(t-t_1)(1+0.00115t_1)$ (Ferrel, Annual Report U. S. Chief Signal Officer, 1886, App. 24). † When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

TABLE 171.

DEW-

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimetres. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

t ₁	$t - t_2 = 1$	2	3	4	5	6	7	8
	Dew-point	s correspond we	ling to the t-bulb therm	difference of ometer readi	temperatur ng given in fi	e given in t irst columu.	he above lin	e and the
$\begin{array}{c} \delta \ T/\delta \ B = -10 \\ -9 \\ -8 \\ -7 \\ -6 \\ \delta \ T/\delta \ B = -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ \delta \ T/\delta \ B = -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ \delta \ T/\delta \ B = -5 \\ -6 \\ 7 \\ 8 \\ 0 \\ 1 \\ 2 \\ 3 \\ \delta \ T/\delta \ B = -5 \\ 6 \\ 7 \\ 8 \\ 5 \\ 7 \\ 6 \\ 7 \\ 8 \\ 5 \\ 7 \\ 7 \\ 8 \\ 9 \\ \delta \ T/\delta \ B = -5 \\ -1 \\ 1 \\ 1 \\ 2 \\ 3 \\ \delta \ T/\delta \ B = -5 \\ -1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	Dew-point .04 -13.2 12.0 10.7 9.5 8.3 .03 -7.1 6.0 4.8 3.6 2.5 .02 -1.3 0.3 +0.6 1.7 2.8 .02 3.8 4.9 6.0 7.0 8.1 .01 9.1 10.2 11.2 12.3 13.3 .01 9.1 10.2 11.2 12.3 13.3 .01 14.4 15.4 16.4 17.5 18.5 .005 22.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 24.6 25.6 24.6 25.6 24.6 25.6 24.6 25.6 24.6 25.7 .003 29.7 30.7 31.7 32.8 33.8 35.8 35.8 35.8 35.8 37.8 38.3 37.8 38.3 38.3 37.8 38.3 3	s correspond we .11 -17.9 16.0 14.3 12.7 11.2 .06 -9.7 8.3 6.9 5.5 4.2 .04 -2.9 1.7 0.7 +0.2 1.4 .03 2.6 3.7 4.9 6.0 7.1 .02 8.3 9.3 10.4 11.5 12.6 .02 8.3 9.3 10.4 11.5 12.6 .02 8.3 9.3 10.4 11.5 12.6 .02 13.7 14.8 15.8 16.9 18.0 .01 19.0 20.1 21.1 22.2 23.2 .01 24.2 25.3 26.3 27.3 28.4 .006 29.4 30.5 31.5 32.5 35.5 35.6 35.6 37.6 38.6	ding to the the bulb therm .22 -22.0 19.4 17.1 14.9 .11 -12.9 11.1 9.4 7.8 6.2 .07 -4.8 3.5 2.2 1.0 0.0 .05 +1.2 2.5 3.7 4.9 6.1 .03 7.3 8.4 9.6 10.7 11.9 .03 7.3 8.4 9.6 10.7 11.9 .03 7.3 8.4 9.6 10.7 11.9 .03 13.0 14.1 15.2 16.3 17.4 .015 18.5 19.6 20.7 21.7 22.8 .015 23.9 24.9 26.0 27.0 28.1 .01 30.2 31.2 32.2 33.3 .008 34.3 35.3 36.4 37.4 38.4	difference of ometer readi -49 -24.0 20.3 .18 -17.5 14.8 12.6 10.5 8.5.10 -6.8 5.3 3.9 2.6 1.3 .07 -0.1 +1.1 2.4 3.7 5.0 .05 6.3 7.5 8.7 9.9 11.1 2.4 3.7 5.0 .05 6.3 7.5 8.7 9.9 11.1 2.4 3.7 5.0 .05 6.3 7.5 8.7 9.9 11.1 2.4 3.7 5.0 .05 6.3 7.5 8.7 9.9 11.1 2.2 1.3 13.5 14.0 15.7 16.9 .02 18.0 19.1 20.2 21.3 22.4 .02 23.5 24.5 25.0 26.7 27.8 .013 22.4 .02 23.5 24.5 25.0 20.7 27.8 .013 28.8 29.9 30.9 32.0 33.0 .010 34.1 35.1 36.2 37.2 38.2	$\begin{array}{c} .31\\ \hline .31\\ \hline .31\\ \hline .31\\ \hline .31\\ \hline .31\\ \hline .32\\ 24.5\\ 20.1\\ 16.8\\ 13.9\\ 11.5\\ .14\\ \hline .9.3\\ 7.6\\ 6.1\\ 4.6\\ 3.1\\ .09\\ \hline 1.6\\ 0.2\\ + 1.1\\ 2.5\\ 3.9\\ .06\\ 5.2\\ 6.5\\ 7.8\\ 9.1\\ 10.3\\ .05\\ 11.5\\ 12.7\\ 13.9\\ 15.1\\ 16.3\\ .027\\ 17.4\\ 18.6\\ 19.7\\ 20.8\\ 22.0\\ .025\\ 23.1\\ 24.2\\ 25.3\\ 26.4\\ 27.4\\ .017\\ 28.5\\ 29.6\\ 30.7\\ 31.7\\ 32.8\\ .013\\ 33.8\\ 34.9\\ 36.0\\ 37.0\\ 38.0\\ \end{array}$	e given in tirst column. -43 -23.4 18.9 15.4 .19 -12.3 10.2 8.3 6.4 4.7 .11 -3.2 1.7 0.3 4.1 5.5 6.8 4.1 5.5 6.8 4.1 5.5 6.8 8.2 9.05 .06 10.8 12.0 13.3 14:5 15.7 .033 14:5 15.7 .033 14:5 15.7 .033 14:5 15.7 .033 14:5 15.7 .033 14:5 15.7 .033 14:5 15.7 .03 22.7 23.8 24.9 26.0 27.1 .019 28.2 29.3 30.4 31.5 32.5 .016 33.6 34.6 35.7 30.8 37.9	he above lin -21.0 .26 -16.5 13.5 11.1 8.9 6.9 .14 -5.0 3.3 1.8 0.3 +1.2 .10 2.8 4.3 5.8 7.2 8.6 .07 9.9 11.3 12.6 13.8 15.1 .04 16.3 17.5 18.7 19.9 21.1 .035 22.2 23.4 24.5 25.7 20.8 .022 27.9 29.0 30.1 31.2 32.3 .019 33.4 34.4 35.5 37.6	e and the -38 -22.9 18.3 14.7 1.9 9.4 .18 -7.1 5.2 3.4 1.5 0.1 .12 +1.5 3.1 4.7 6.2 7.6 .08 9.1 10.5 11.8 13.1 14.4 .05 15.7 17.0 18.2 19.4 20.6 .04 21.8 23.0 24.1 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 26.4 .026 27.6 25.3 36.4 37.5 36.4 37.5

TABLE 171.

POINTS.

between the dry and the wet bulb, when the dew-point has the values given at corresponding point in the body of from 76 centimetres the corresponding numbers in the lines marked $\delta \Gamma / \delta B$ are to be multiplied by the difference, or above 76. See examples.

<i>t</i> ₁	$t-t_1=9$	10	11	12	13	14	15
	Dew-points	corresponding wet-b	to the different ulb thermomet				ne and the
			Then Also ∴ Co Henc (2) Given Then δT/δ Corre	$B = \frac{72}{72} \cdot t_1$ tabular numb $\frac{76}{72} = \frac{72}{72} = \frac{4}{4} \text{ and } \frac{1}{76} = \frac{72}{72} = \frac{4}{4} \text{ and } \frac{1}{76} = \frac{71}{72} \cdot \frac{5}{74}$ the dew-point $B = \frac{71}{72} \cdot \frac{5}{74} + \frac{1}{72} = \frac{1}{72} + 1$	er for $t_1 = 1 = 7$ od $\delta T = \delta B = 0$ $\delta X_1 = 0$ $\tau_1 t_1 = 8$. oulated numbe = 0.15 $t_1 = 5$	r =	is 5.2 -24 5-44 3-4 .67 4-07
$\delta T/\delta B = 0$	-45	.б7					
$I = 2$ $3 + \frac{1}{5} T/\delta B = 5$ $6 - 7$ $S = 9 + \frac{10}{11}$ $I = 12$ $13 + \frac{1}{5} T/\delta B = 15$ $16 + \frac{17}{18}$ $19 - \frac{5}{5} T/\delta B = 20$ $21 + \frac{22}{23}$ $24 + \frac{5}{5} T/\delta B = 25$ $26 + \frac{27}{28}$ $29 - \frac{5}{5} T/\delta B = 30$ $31 + \frac{32}{33}$ $34 + \frac{5}{5} T/\delta B = 35$ $36 + \frac{35}{36}$ $37 + \frac{35}{36}$ $39 + \frac{10}{5} T/\delta B = 35$ $36 + \frac{10}{5} T/\delta B = 35$ $37 + \frac{10}{5} T/\delta B = 35$ $39 + \frac{10}{5} T/\delta B = 35$ $57 + \frac{10}{5} T/\delta B = 35$	15.1 16.4 17.6 18.9 20.1 .045 21.4 22.6 23.7 24.9 26.1 .031 27.2 28.4 29.5 30.7 31.8	$-22.2 \\ 16.8 \\ .29 \\ -13.1 \\ 10.1 \\ 7.6 \\ 5.2 \\ 3.2 \\ .17 \\ -1.3 \\ +0.3 \\ 2.2 \\ 3.9 \\ 5.6 \\ .11 \\ 7.2 \\ 8.7 \\ 10.2 \\ 11.7 \\ 13.1 \\ .07 \\ 14.5 \\ 15.8 \\ 17.1 \\ 18.4 \\ 19.6 \\ .05 \\ 20.9 \\ 22.1 \\ 23.4 \\ 24.5 \\ 25.7 \\ .035 \\ 26.9 \\ 22.1 \\ 23.4 \\ 24.5 \\ 25.7 \\ .035 \\ 26.9 \\ 28.1 \\ 29.2 \\ 30.4 \\ 31.5 \\ .027 \\ 32.6 \\ 33.7 \\ 34.9 \\ 35.9 \\ 37.1 \end{bmatrix}$	$\begin{array}{r} \cdot 37 \\ - 17.7 \\ 13.4 \\ 10.1 \\ 7.4 \\ 5.1 \\ .20 \\ - 3.0 \\ 1.0 \\ + 0.8 \\ 2.7 \\ 4.5 \\ .12 \\ 6.2 \\ 7.8 \\ 9.4 \\ 10.9 \\ 12.4 \\ .08 \\ 13.8 \\ 15.2 \\ 16.5 \\ 17.9 \\ 19.2 \\ .06 \\ 20.4 \\ 21.7 \\ 22.9 \\ 24.2 \\ 25.4 \\ .041 \\ 26.6 \\ 27.8 \\ 28.9 \\ 30.1 \\ 31.2 \\ .029 \\ 32.4 \\ 33.5 \\ 34.0 \\ 35.7 \\ 36.8 \end{array}$	$\begin{array}{r} .44 \\ -18.1 \\ 13.5 \\ 10.1 \\ 7.2 \\ .22 \\ -4.7 \\ 2.6 \\ 0.6 \\ +1.3 \\ 3.3 \\ .14 \\ 5.1 \\ 6.8 \\ 8.5 \\ 10.1 \\ 11.6 \\ .09 \\ 13.1 \\ 14.5 \\ 15.9 \\ 17.3 \\ 18.7 \\ .06 \\ 20.0 \\ 21.3 \\ 22.5 \\ 23.8 \\ 25.0 \\ .047 \\ 26.2 \\ 27.4 \\ 28.6 \\ 29.8 \\ 30.9 \\ .032 \\ 32.1 \\ 33.3 \\ 34.4 \\ 35.5 \\ 36.6 \end{array}$	$\begin{array}{r} .54 \\ -18.3 \\ 13.5 \\ 9.9 \\ .25 \\ -6.8 \\ 4.3 \\ 2.1 \\ 0.1 \\ +1.9 \\ .16 \\ 3.9 \\ 5.8 \\ 7.5 \\ 9.2 \\ 10.8 \\ .10 \\ 12.4 \\ 13.9 \\ 15.3 \\ 16.8 \\ 18.1 \\ .07 \\ 19.5 \\ 20.8 \\ 22.1 \\ 23.4 \\ 24.6 \\ .053 \\ 25.9 \\ 27.1 \\ 23.4 \\ 24.6 \\ .053 \\ 25.9 \\ 27.1 \\ 28.3 \\ 29.5 \\ 30.7 \\ .037 \\ 31.8 \\ 33.0 \\ 34.2 \\ 35.3 \\ 36.4 \end{array}$	$\begin{array}{r} .66 \\ -18.3 \\ 13.1 \\ .29 \\ -0.4 \\ 6.3 \\ 3.7 \\ 1.6 \\ +0.5 \\ .18 \\ 2.7 \\ 4.7 \\ 6.5 \\ 8.3 \\ 10.0 \\ .11 \\ 11.6 \\ 13.2 \\ 14.7 \\ 16.2 \\ 17.6 \\ .08 \\ 19.0 \\ 20.3 \\ 21.7 \\ 23.0 \\ 24.2 \\ .06 \\ 25.5 \\ 26.8 \\ 29.2 \\ 30.4 \\ .037 \\ 31.6 \\ 32.8 \\ 33.9 \\ 35.1 \\ 36.2 \end{array}$	$\begin{array}{r} .72 \\ -17.2 \\ .36 \\ -12.5 \\ 8.8 \\ 5.7 \\ 3.1 \\ 0.9 \\ .20 \\ +1.3 \\ 3.5 \\ 5.5 \\ 7.4 \\ 9.1 \\ .13 \\ 10.8 \\ 12.5 \\ 14.0 \\ 15.7 \\ 17.0 \\ .09 \\ 18.5 \\ 19.9 \\ 21.2 \\ 22.6 \\ 23.9 \\ .07 \\ 25.2 \\ 26.4 \\ 27.7 \\ 28.9 \\ 30.1 \\ .04 \\ 31.4 \\ 32.5 \\ 33.7 \\ 34.8 \\ 36.0 \end{array}$

TABLE 172.

VALUES OF 0.378 e.*

This table gives the humidity term 0.378 e, which occurs in the equation $\delta = \delta_0 \frac{\hbar}{760} = \delta_0 \frac{B - 0.378 e}{760}$ for the calcu-
lation of the density of the dry air in a sample containing aqueous vapor at pressure e; so is the density at normal
of $\frac{h}{760}$ see Table 174. Temperatures are in degrees Centigrade, and pressures in millimetres of mercury.

Dew- point.	Vapor pressure.	0.378 <i>e</i> .	Dew- point.	Vapor pressure. e	0.378 e.	Dew- point.	Vapor pressure. e	0.378 e.
	0.38	0.14	0	4.57	1.73	30 °	31.51	11.91
	.42	.16	I	4.91	1.86	31	33·37	12.61
	.46	.17	2	5.27	1.99	32	35·32	13.35
	.50	.19	3	5.66	2.14	33	37·37	14.13
	.55	.21	4	6.07	2.29	34	39·52	14.94
$ \begin{array}{r} -25 \\ -24 \\ -23 \\ -22 \\ -21 \\ \end{array} $	0.61	0.23	5	6.51	2.46	35	41.78	1 5.79
	.66	.25	6	6.97	2.63	36	44.16	1 6.69
	.73	.28	7	7.47	2.82	37	46.65	1 7.63
	.79	.30	8	7.99	3.02	38	49.26	1 8.62
	.87	.33	9	8.55	3.23	39	52.00	1 9.66
- 20	0.94	0.36	10	9.14	3.45	40	54.87	20.74
- 19	1.03	.39	11	9.77	3.69	41	57.87	21.86
- 18	.12	.42	12	10.43	3.94	42	61.02	23.06
- 17	.22	.46	13	11.14	4.21	43	64.31	24.31
- 16	.32	.50	14	11.88	4.49	44	67.76	25.61
	1.44	0.54	15	12.67	4.79	45	71.36	26.97
	.56	.59	16	13.51	5.11	46	75.13	28.40
	.69	.64	17	14.40	5.44	47	79.07	29.89
	.84	.70	18	15.33	5.79	48	83.19	31.45
	.99	.75	19	16.32	6.17	49	87.49	33.07
	2.15	0.81	20	17.36	6.56	50	91.98	34.77
	•33	.88	21	18.47	6.98	51	96.66	36.54
	•51	.95	22	19.63	7.42	52	101.55	38.39
	•72	1.03	23	20.86	7.89	53	106.65	40.31
	•93	.11	24	22.15	8.37	54	111.97	42.32
-5	3.16	1.19	25	23.52	8.89	55	117.52	44.42
-4	.41	.29	26	24.96	9.43	56	123.29	46.60
-3	.67	.39	27	26.47	10.01	57	129.31	48.88
-2	.95	.49	28	28.07	10.61	58	135.58	51.25
-1	4.25	.61	29	29.74	11.24	59	142.10	53.71

* This table is quoted from "Smithsonian Meteorological Tables," p. 225.

SMITHSONIAN TABLES.

тбо

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of		Dev	v-point	(d).		Depression of the dew-point.		Dev	v-point	(<i>d</i>).	
the dew-point. t-d	- 10	0	+ 10	+ 20	+ 30	t - d	- 10	0	+ 10	-+- 20	+ 30
C. 0 ³ .0 0.2 0.4 0.6 0.8	100 98 97 95 94	100 99 97 96 94	100 99 97 96 95	100 99 98 96 95	100 99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 52 51	57 56 56 55 54	60 59 58 57 57	62 61 60 60 59	6.4 63 63 62 61
1.0 I.2 I.4 I.6 I.8	92 91 90 88 87	93 92 90 89 88	94 92 91 90 89	94 93 92 91 90	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48 48	53 53 52 51 51	56 55 55 54 53	58 58 57 56 56	61 60 59 59 58
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 38 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 75	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 3 ²	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 72 71 70	75 75 74 73 72	17.5 18.0 18.5 19.0 19.5	28 27 26 25 24	31 30 29 28 27	34 33 3 ² 31 3 ⁰	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	7 I 7 I 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7.2 7.4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14 13	19 18 17 16 15	22 21 20 19 18		
8.0	54	57	60	62	64	30.0	I 2	14	17		

* Abridged from Table 45 of "Smithsonian Meteorological Tables."

DENSITY OF AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 174. – Values of $\frac{h}{760}$, from h = 1 to h = 9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of air at pressure h in terms of the density at normal atmosphere pressure. When the air contains moisture, as is usually the case with the atmosphere, we have the following equation for the dry air pressure: $h \equiv B - 0.378e$, where e is the vapor pressure, and B the observed barometric pressure corrected for temperature. When the necessary observations are made the value of e may be taken from Table 170, and then o 378e from Table 172, or the dew-point may be found and the value of 0.378e taken from Table 172.

h	h 760	Examples of Use of the Table. To find the value of $\frac{h}{760}$ when $h = 754$.
1 2 3 4 5 6 7 8 9	0.0013158 .0026316 .0039474 0.0052632 .0065789 .0078947 0.0092105 .0105263 .0184210	h = 700 gives .92105 50 "065789 4 "05263 <u>3</u> "00395 <u>3</u> "00395 <u>3</u> "00395 <u>3</u> "00395 <u>992407</u> To find the value of $\frac{h}{760}$ when $h = 5.73$ h = 5 gives .0065789 <u>3</u> "007895 <u>03</u> "000395 <u>3</u> "0074079

TABLE 175. – Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

h					Values of	$f \log \frac{\hbar}{760}$.				
	0	1	2	3 4		5	6	7	8	9
80	T.02228	ī.02767	T.03300	ī.03826	ī.04347	1.0.1861	T.05368	ī.05871	T.06367	ī.06858
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11.482
100	ī.11919	ī.12351	1.12779	ī.13202	1.13622	T.14038	1.14449 .18364 .21956 .25273 .28354	1.14857	T.15261	1.15661
110	.16858	.16451	.16840	.17226	.17609	.17988		.18737	.19107	.19473
120	.19837	.20197	.20555	.20909	.21261	.21611		.22299	.22640	.22978
130	.23313	.23646	.23976	.24304	.24629	.24952		.25591	.25907	.26220
1.40	.26531	.26841	.27147	.27452	.27755	.28055		.28650	.28945	.29237
150	1.29528	1.29816	1.30103	1.30388 .33137 .35723 .38164 .40474	1.30671	1.30952	T.31231	1.31509	ī.31784	1.32058
160	.32331	.32616	.32870		·33403	.33667	·33929	.34190	.34450	•34707
170	.34964	.35218	.35471		·35974	.36222	·36470	.36716	.36961	•3720.4
180	.37446	.37686	.37926		·38400	.38636	·38870	.39128	.39334	•39565
190	.39794	.40022	.40249		·40699	.40922	·41144	.41365	.41585	•41804
200	1.42022	T.42238	1.42454	1.42668	T.42882	T.43094	1.43305	1.43516	T.43725	1.43933 .459'3 .47902 .49758 .51539
210	.44141	-44347	.44552	•4.1757	.44960	.45162	.45364	-45565	.45764	
220	.46161	-46358	.46554	•46749	.46943	.47137	.47329	-47521	.47712	
230	.48091	-48280	.48467	•48654	.48840	.49025	.49210	-49393	.19576	
240	.49940	-50120	.50300	•50479	.50658	.50835	.51012	-51188	.51364	
250	1.51713	T.51886	1.52059	1.52231	1.52402	1.52573	1.52743	1.52912	1.53081 •54732 •56323 •57858 •59340	1.53249
265	-53416	.53583	•53749	.53914	.54079	.54243	.54407	.54570		.54894
270	-55055	.55216	•55376	.55535	.55694	.55852	.56010	.56167		.56479
280	-56634	.56789	•56944	.57097	.57250	.57403	.57555	.57707		.58008
290	-58158	.58308	•5 ⁸ 457	.58605	.5 ⁸ 753	.58901	.59048	.59194		.59486
300	1.59631	I.50775	1.50919	1.60063	1.60206	1.60349	1.60491	1.60632	1.60774	1.60914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	.62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201

DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h botween 350 and 800.

1 1						1				
h					Values of	$\log \frac{h}{700}$.				
11	0	1	2	3	4	5	6	7	8	9
350 360 370 380 390	1 .66325 .67549 .68739 .69897 .71025	1.66449 .67669 .68856 .70011 .71136	T.66573 .67790 .68973 .70125 .71247	T.66696 .67909 .69090 .70239 .71358	T.66819 .68029 .69206 .70352 .71468	T.66941 .68148 .69322 .70465 .71578	T.67064 .68267 .69437 .70577 .71688	1.67185 .68385 .69553 .70690 .71798	1.67 307 .68 50 3 .69668 .70802 .71907	T.67428 .68621 .69783 .70914 .72016
400 410 420 430 440	T.72125 .73197 .74244 .75265 .76264	1 .72233 .73303 .74347 .75366 .76362	T.72341 .73408 .74450 .75407 .76461	1 .72449 .73514 .74553 .75567 .76559	1.72557 .73619 .74655 .75668 .76657	T.72664 .73723 .74758 .75768 .76755	1.72771 .73828 .74860 .75867 .76852	T.72878 .73932 .74961 .75967 .76949	T.72985 .74036 .75663 .76666 .77046	T.73091 .74140 .75164 .76165 .77143
450 460 470 480 490	1.77240 .78194 .79128 .80043 .80938	ī.77336 .78289 .79221 .80133 .81027	T.77432 .78383 .79313 .80223 .81115	T.77528 .78477 .79405 .80313 .81203	T.77624 .78570 .79496 .80403 .81291	1.77720 .78664 .79588 .80493 .81379	1.77815 .78757 .79679 .80582 .81467	T.77910 .78850 .79770 .80672 .81554	1.78005 .78943 .78961 .80761 .81642	ī.78100 .79036 .79952 .80850 .81729
500 510 520 530 540	T.81816 .82676 .83519 .84346 .85158	I.81902 .82761 .83602 .84428 .85238	7.81989 .82846 .83686 .84510 .85319	.84591	.84673	1.82248 .83099 .83935 .84754 .85558	T.82334 .83184 .84017 .84835 .85638	T.82419 .83268 .84100 .84916 .85717	T.82505 .83352 .84182 .84997 .85797	T.82590 .83435 .84264 .85076 .85876
550 560 570 580 590	T.85955 .86737 .87506 .88261 .89004	T.86034 .86815 .87282 .88336 .89077	1.86113 .86892 .87658 .88411 .89151	T.86191 .86969 .87734 .88486 .89224	.88 560	T.86348 .87123 .87885 .88634 .89370	T.86426 .87200 .87961 .88708 .89443	T.86504 .87277 .88036 .88782 .89516	T.86582 .87353 .88111 .88856 .89589	T.86660 .87430 .88186 .88930 .89661
600 610 620 630 640	T.89734 .90452 .91158 .91853 .92537	T.89806 .90523 .91228 .91922 .92604	T.89878 .90594 .91298 .91990 .92672		.90735 .91437 .92128	T.90094 .90806 .91507 .92196 .92875	T.90166 .90877 .91576 .92264 .92942	T.90238 .90947 .91645 .92333 .93009	T.90309 .91017 .91715 .92401 .93076	1.90380 .91088 .91784 .92469 .93143
650 660 670 680 690	T.93210 .93873 .94526 .95170 .95804	1.93277 .93930 .94591 .95233 .95866	.94656 .95297	.94070 .94720 .95361	.94135 .94785 .95424	1.93543 .94201 .94849 .95488 .96117	T.93601 .94266 .94913 .95551 .96180	1.93675 .94331 .94978 .95614 .96242	T.93741 .94396 .95042 .95077 .90304	1.93807 .94401 .95106 .95741 .96366
700 710 720 730 740	.98251	T.96490 .97106 .97712 .98310 .98900	.97167 .97772 .98370	.97 228 .97832 .98429	.98,488	•97 349 •97951 •98547	7.96799 .97410 .98012 · .98606 .99193	1.96861 .97471 .98072 .98065 .99251	1.06922 .97531 .98132 .98724 .99309	1.96983 .97592 .98191 .98783 .99367
750 760 770 780 790	.00568 .01128	.00624	0.00114 .00680 .01239	0.00171 .00737 .01295	0.00228 0.00793 01350	1.99713 0.002%5 .00849 .01406 .01955	0.003.42 .00905 .01461	1.09828 0.00398 .00961 .01516 .02064	1.99886 0.00455 .01017 .01571 .02119	0.00511 .01072 .01626

VOLUME OF PERFECT CASES.

Values of 1 + .00367 t.

- The quantity 1 + .00367 t gives for a perfect gas the volume at t° when the pressure is kept constant, or the pressure at t° when the volume is kept constant, in terms of the volume or the pressure at o° .
- (a) This part of the table gives the values of $1 \pm .00367t$ for values of t between 0° and 10° C. by tenths of a degree.
- (b) This part gives the values of 1 + .00367 t for values of t between 90° and + 1990° C. by 10° steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows: — In the (δ) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (α) table which corresponds to the difference between the nearest temperature in the (δ) table and the actual temperature. For example, let the temperature be $682^{\circ}.2$:

We have for 680 in table (b) the number				3.49560
And for 2.2 in table (a) the decimal .		٠		.0 0807
Hence the number for 682.2 is		۰	٠	3.50367

- (c) This part gives the logarithms of $1 \pm .00367 t$ for values of t between -49° and $\pm 399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of 1 + .00367 t for values of t between 400° and 1990° C. by 10° steps.

(a) Values of 1+.00367t for Values of t between 0° and 10° C. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0	1.00000	1.00037	1.00073	1.00110	1.00147
1	.00367	.00404	.00440	.00477	.00514
2	.00734	.00771	.00807	.00844	.00881
3	.01101	.01138	.01174	.01211	.01248
4	.01468	.01505	.01541	.01578	.01615
5	1.01835	1.01872	1.01908	1.01945	1.01982
6	.02202	.02239	.02275	.02312	.02349
7	.02569	.02606	.02642	.02679	.02716
8	.02936	.02973	.03009	.03046	.03083
9	.03303	.03340	.03376	.03413	.03450
t	0.5	0.6	0.7	0.8	0.9
0	1.00184	1.00220	1.00257	1.00294	1.00330
1	.00550	.00587	.00624	.00661	.00697
2	.00918	.00954	.00991	.01028	.01064
3	.01284	.01321	.01358	.01395	.01431
4	.01652	.01688	.01725	.01762	.01798
5	1.02018	1.02055	1.02092	1.02129	1.02165
6	.02386	.02422	.02459	.02496	.02532
7	.02752	.02789	.02826	.02863	.02899
8	.03120	.03156	.03193	.03290	.03266
9	.03486	.03523	.03560	.03597	.03633

VOLUME OF PERFECT CASES.

(b) Values of 1 + .00367t for Values of t between -90° and +1990 C. by 10 Steps.

t	00	10	20	30	40
-000	I.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.93670	1.07310	1.11010	1.1.4680
100	1.36700	1.40370	I.440.10	1.44710	1.51380
200	1.73400	1.77070	1.807.40	1.8.1.10	1.88080
300	2.10100	2.13770	2.17.440	2.21110	2.24780
400	2.46800	2.50.170	2.54140	2.57810	2.61.480
500	2.83500	2.87170	2.90840	2.9.4510	2.98180
600	3.20200	3.23870	3.27540	3.31210	3.34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
Soo	3.93600	3.97270	4.009.40	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40.400	5.44070	5.47740	5.51.410	5.55080
1 300 1 400	5.77100	5.80770	5.84440	5.88110	5.91780
1.400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.66600	7.64270	7.67940	7.71610	7.75280
1900	7.97300	8.00970	8.04640	8.08310	8.119So
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
t 000	50 0.81650	60 0.77980	70 0.74310	80 0.70640	90 0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
	0.81650 1.18350	0.77980 1.22020	0.74310	0.70640 1.29360	0.66970 1.33030
-000 +000	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
-000 +000 100	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020	0.74310	0.70640 1.29360	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
000 +000 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
000 +000 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330
000 +000 200 300 400 500 600 700 800 900 1000 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.89930 4.26630 4.63330 5.00030
000 +000 100 200 300 400 500 600 700 500 600 700 500 1000 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
000 +000 100 200 300 400 500 600 700 500 600 700 500 1000 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.58750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.59660 4.96360 5.33060 5.69760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
000 +000 100 200 300 400 500 600 700 500 600 700 500 1000 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
000 +000 100 200 300 400 500 600 700 500 600 700 500 1000 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.22790 6.39490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
000 000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.58750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.2790 6.39490 6.76190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.6530 4.26630 4.26630 4.26630 5.36730 5.36730 5.36730 5.73430 6.10130 6.46830 6.83530
000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.22050 5.22050 5.258750 5.95450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.16560 7.53260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230
000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 3.75250 4.11950 4.48050 4.85350 5.22050 5.22050 5.258750 5.95450 6.32150 6.68850 7.05550 7.42250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.2790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.49560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.6530 4.26630 4.26630 4.63330 5.00030 5.36730 5.36730 5.36730 5.36730 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630
000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48050 4.85350 5.22050 5.22050 5.22050 5.258750 5.95450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.16560 7.53260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.6530 4.26630 4.26630 4.26630 5.36730 5.36730 5.36730 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
000 +000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 3.75250 4.11950 4.48050 4.85350 5.22050 5.22050 5.258750 5.95450 6.32150 6.68850 7.05550 7.42250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.2790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.49560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.53230 3.6530 4.26630 4.26630 4.63330 5.00030 5.36730 5.36730 5.36730 5.36730 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630

TABLE 176.

VOLUME OF

(c) Logarithms of 1 + .00367 t for Values

		1	2	3	4	Mean diff.
t	0	1				per degree.
40	ī.931051	T.929179	ī.927299	1.925410	1.923513	1884
30	.949341	.947546	-945744	.943934	.942117	1805
20	.966892	.965169	.963438	.961701	.959957	1733
10	.983762	.982104	.980440	.978769	.977092	1667
0	0.000000	.998403	.996801	.995192	.993 5 77	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.015653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.07 58 53	0.077190	0.078522	1335
60	.086.431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	.201635	.202635	.203634	.204630	1000
170	.210559	.211540	.212518	.213494	.214468	976
180	.220265	.221224	.222180	.223135	.224087	956
190	.229959	.230697	.231633	.232567	.233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	-249044	.249942	.250837	.251731	897
220	.257054	-257935	.258814	.259692	.260567	878
230	.265784	-266648	.267510	.268370	.269228	861
240	.274343	-275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.2860.48	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	.329947	.330692	.331435	.332178	.332919	743
320	.337339	.338072	.338803	.339533	.340262	730
330	.344608	.345329	.345048	.346766	.347482	719
340	.351758	.352466	.353174	.353880	.354585	707
350	0.35 ⁸ 791	0.359488	0.360184	0.360879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	.373875	.374549	.375221	674
380	.379233	.379898	.380562	.381225	.381887	664
390	.3 ⁸ 5439	.386494	.387148	.387801	.388453	654

SMITHSONIAN TABLES.

PERFECT CASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.
	T.921608	T.919695	1.917773	1.915843	T.913904	1926
	.940292	.938400	.936619	.934771	.932915	18.4 5
	.958205	.956.147	.954681	.952909	.951129	1771
	.975409	.973719	.972022	.970319	.968669	1699
	.991957	.990330	.988697	.987058	.985413	1636
+0	0.007807	0.009.459	0.011016	0.012567	0.01.4113	1554
10	.023273	.024781	.026284	.027782	.029274	1500
20	.038123	.039581	.041034	.042481	.0.43924	1450
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095516	.096715	.098031	1281
70	.10559 5	.106843	.108088	.109329	.110566	1243
80	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.154034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
150	0.195581	0.196596	0.197608	0.198619	0.199626	1011
160	.205624	.206615	.207605	.208592	.209577	988
170	.215439	.216409	.217376	.218341	.21990.4	966
180	.225038	.225986	.226932	.227876	.228819	946
190	.234429	.235357	.236283	.237207	.238129	925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296860	.297445	.298248	805
270	.303034	.303827	.304618	.305407	.306196	790
280	.310895	.311673	.312450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	•333659	•334397	-335135	-335871	.336606	737
320	•340989	•341715	-342441	-343164	.343887	724
330	•348198	•348912	-349624	-350337	.351048	713
340	•355289	•355991	-356693	-357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	.371849	678
370	.375892	.376562	.377232	.377900	.378567	668
380	.382548	.383208	.383868	.38.1525	.385183	658
390	.389104	.3 ⁸ 9754	.390403	.391052	.391699	648

SMITHSONIAN TABLES.

(d) Logarithms of 1 + .00367t for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.515264	.520103	.524889
700	.552547	.556990	.561388	.565742	.570052
800	.595055	.599086	.603079	.607037	.610958
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	.705325	.708455	.711563	.714648
1200	.732715	.735655	.738575	.741745	.744356
1300	.761251	.764004	.766740	.769459	.772160
1400	.788027	.790616	.793190	.795748	.798292
1500	0.813247	0.815691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	.843986	.846263
1700	.859679	.861875	.864060	.866234	.868398
1800	.881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	.905602	.907578	.909545
t	50	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500	0.479791	0.485040	0.490225	0.495350	0.500415
600	.529623	-534305	.538938	.543522	.548058
700	.574321	-578548	.582734	.586880	.590987
800	.614845	.618696	.622515	.626299	.630051
900	.651908	.655446	.658955	.662437	.665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	.717712	.720755	•723776	.726776	•729756
1200	.747218	.750061	•752886	.755692	•758480
1300	.774845	.777514	•780166	.782802	•785422
1400	.800820	.803334	•805834	.808319	•810790
1500	0.825329	0.827705	0.830069	0.832420	0.834758
1600	.848828	.850781	.853023	.855253	.857471
1700	.870550	.872692	.874824	.876945	.879056
1800	.891510	.893551	.895583	.897605	.899618
1900	.911504	.913454	.915395	.917327	.919251

SMITHSONIAN TABLES.

DETERMINATION OF HEICHTS BY THE BAROMETER.

Formula of Babinet: $Z = C \frac{B_0 - B}{B_0 + B}$ C (in feet) = 52494 $\left[1 + \frac{t_0 + t - 6.4}{900}\right]$ English measures. C (in metres) = 16000 $\left[1 + \frac{2(t_0 + t)}{1000}\right]$ metric measures.

In which Z = difference of height of two stations in feet or metres. $B_0, B =$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , $t \equiv$ air temperatures at the lower and upper stations respectively.

Eng	LISH MEAS	URES.	METRIC MEASURES.				
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C		
Fahr. 10° 15 20 25	Feet. 49928 50511 51094 51677	4.69834 •7°339 4.7°837 •71330	Cent. 10° 8 6 4 2	Metres, 15360 15488 15616 15744 15872	4.18639 .19000 .19357 .19712 .20063		
30 35 40 45	52261 52844 53428 54011	4.71818 .72300 4.72777 .73248	0 + 2 4 6 8	16000 16128 16256 16384 16512	4.2041 2 .207 58 .21101 .21442 .21780		
50 55 60 65	54595 55178 55761 56344	4.73715 .74177 4.74 ⁶ 33 .75 ⁰⁸ 5	10 12 14 16 18	16640 16768 16896 17024 17152	4.22115 .22448 .22778 .23106 .23431		
70 75 80 85	56927 57511 58094 58677	4.7 5532 .7 597 5 4.7641 3 .76847	20 22 24 26 28	17280 17408 17536 17664 17792	4.23754 .24075 .24393 .24709 .25022		
90 95 100	59260 59844 60427	4.77276 .77702 4.78123	30 32 34 36	17920 18048 18176 18304	4.25334 .25643 .25950 .26255		

Val	lue	S 0	1 (<i>U</i> •
-----	-----	-----	-----	------------

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

Temp. F.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
185°	17.05	17.08	17.12	17.16	17.20	17.23	17.27	17.31	17.35	17.39
186	17.42	17.46	17.50	17.54	17.58	17.61	17.65	17.69	17.73	17.77
187	17.81	17.84	17.88	17.92	17.96	18.00	18.04	18.08	18.12	18.16
188	18.20	18.24	18.27	18.31	18.35	18.39	18.43	18.47	18.51	18.55
189	18.59	18.63	18.67	18.71	18.75	18.79	18.83	18.87	18.91	18.95
190	19.00	19.04	19.08	19.12	19.16	19.20	19.24	19.28	19.32	19.36
191	19.41	19.45	19.49	19.53	19.57	19.61	19.66	19.70	19.7.4	19.78
192	19.82	19.87	19.91	19.95	19.99	20.04	20.08	20.12	20.17	20.21
193	20.25	20.29	20.34	20.38	20.42	20.47	20.51	20.55	20.60	20.6.4
194	20.68	20.73	20.77	20.8 <i>2</i>	20.86	20.90	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.26	21.30	21.35	21.39	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85	21.89	21.94	21.99
197	22.03	22.08	22.12	22.17	22.22	22.26	22.31	22.36	22.40	22.45
198	22.50	22.54	22.59	22.64	22.69	22.7 3	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.11	23.16	23.21	23.26	23.31	23.36	23.40
200	23.45	23.50	23.55	23.60	23.65	23.70	23.75	23.80	23.85	23.89
201	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24.39
202	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.80	24.85	24.90
203	24.95	25.00	25.05	25.10	25.15	25.21	25.26	25.31	25.36	25.41
20.1	25.46	25.52	25.57	25.62	25.67	25.73	25.78	25.83	25.88	25.94
205	25.99	26.04	26.10	26.15	26.20	26.25	26.31	26.36	26.42	26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207	27.07	27.12	27.18	27.23	27.29	27.34	27.40	27-45	27.51	27.56
208	27.62	27.67	27.73	27.79	27.84	27.90	27.95	28.01	28.07	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.64	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211	29.33	29.39	29.45	29.51	29.57	29.62	29.68	29.74	29.80	29.86
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

(a) British Measure.

SMITHSONIAN TABLES.

PRESSURES.

temperatures of the boiling-point of water. in place of the barometer for the determination of heights.

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
80°	354.6	356.1	357.5	359.0	360.4	361.9	363.3	36.1.8	366.3	367.8
Sī	369.3	370.8	372.3	37 3.8	37 5.3	376.8	378.3	379.8	381.3	382.9
82	384.4	<u>3</u> 85.9	387.5	389.0	390.6	392.2	393.7	395-3	396.9	398.5
83	.400. I	401.7	403.3	404.9	406.5	408.1	409.7	411.3	413.0	.41.4.6
84	416.3	417.9	419.6	421.2	422.9	424.6	426.2	427.9	429.6	431.3
85	433.0	434.7	436.4	438.1	439-9	441.6	443-3	445.1	446.8	448.6
86	450.3	452.1	453.8	455.6	457-4	459.2	461.0	462.8	464.6	466.4
87	468.2	470.0	471.8	473.7	475.5	477.3	479-2	481.0	482.9	484.8
88	486.6	488.5	490.4	492.3	494-2	496.1	498.0	499.9	501.S	503.8
89	505.7	507.6	509.6	511.5	513.5	515.5	517.4	519.4	521.4	523.4
90	525.4	527.4	529.4	531.4	533-4	535-5	537.5	539.6	541.6	543.7
91	545.7	547.S	549.9	551.9	554.0	556.1	558.2	560.3	562.4	564.6
92	566.7	568.8	571.0	57 3.1	57 5-3	577.4	579.6	581.8	584.0	586.1
93	588.3	590.5	592.7	595.0	597.2	599-4	601.6	603.9	606.1	608.4
94	610.7	612.9	615.2	617.5	619.8	622.1	624.4	626.7	629.0	631.4
95	633.7	636.0	638.4	640.7	643.1	645.5	647.9	650.2	652.6	655.0
96	657.4	659.9	662.3	664.7	667.1	669.6	672.0	674.5	677.0	679.4
97	681.9	684.4	686.9	689.4	691.9	694.5	697.0	699.5	702.I	704.6
98	707.2	709.7	712.3	714.9	717.5	720.1	722.7	725-3	727.9	730.5
99	7 33.2	735.8	73 ^{8.5}	7.41.2	743.8	746.5	749.2	751.9	754.6	757.3
100	760.0	762.7	765.5	768.2	770.9	773.7	776.5	779.2	782.0	78.4.8

(b) Metric Measure.*

* Pressures in millimetres of mercury.

SMITHSONIAN TABLES.

STANDARD WAVE-LENCTHS.

This table is an abridgment of the table published by Rowland (Phil. Mag. [5] vol. 36, pp. 49-75). The first column gives the number of the line reckoned from the beginning of Rowland's table, and thus indicates the number of lines of the table that have been omitted. The second column gives the chemical symbol of the element represented by the line of the spectrum. The third column indicates approximately the relative intensity of the lines recorded and also their appearance; R stands for reversed, d for double, ? for doubtful or difficult. The fourth column gives the relative "weights" to be attached to the values of the wave-lengths as standards. The last column gives the values of the wave-lengths in Angström's units, *i.e.*, in ten millionths of a millimetre in ordinary air at about 20 C. and 760 millimetres pressure. When two or more elements are on the same line of the table it indicates that they have apparently coincident lines in the spectrum for that wave-length. When two or more lines are bracketed it means that the first one has a line coinciding with one side of the corresponding line in the solar spectrum and so on in order. Lines marked A(o) and A(wv) denote lines due to absorption by the oxygen or water vapor in the earth's atmosphere. The letters placed in front of some of the numbers in the first column are the symbols of well-known lines in the spectrum. The footnotes are from Rowland's paper.

No. of line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (arc spectrum).	No. of line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (arc spectrum).
1 4 7 9 1 I	Sr Si Si Al Ca	2 3 2 4 20 <i>R</i>	I 2 2 3	2152.912 2210.939 2218.146 2269.161 2275.602	115 117 121 124 126	Fe Fe Fe Fe	10 <i>R</i> 7 <i>R</i> 8 <i>R</i> 12 <i>R</i> 10 <i>R</i>	4 4 12 15 15	2937.020 2954.058 2967.016 2973.358 2983.689
14 16 19 22 24	Ba Fe Al Fe Ca	20 R - 7 25 R	1 2 3 2 5	2335.267 2348.385 2373.213 2388.710 2398.667	129 131 135 136 141 151	Fe Ca Fe Fe Fe	8 R 10 R 8 R 15 R 6 R 25 R	18 3 15 3 15 18	2994.547 2997.430 3001.070 3006.978 3008.255 3020.759
29 31 33 37* 46	Si Si C Bo	8 3 10 20	15 10 10 15 20	2435.247 2443.460 2452.219 2478.661 2497.821	163 169 136	Fe Fe	20 R 10 R	13 15	3020.759 3047.720 3059.200 (Sun spectrum.) 3005.160
51 55 59† 63 68	Si Si Hg Al Mn	15 9 50 <i>R</i> 10 -	7 10 2 5 2	2516.210 2524.206 2536.648 2568.085 2593.810	144 154 158 164 171	? ? Co	5 5 3 d 3	- 7 5 5	3012.557 3024.475 3035.850 3050.212 3061.930
273 77 78 82 85	Si Fe Ca Fe Fe	5	7 3 1 3 3	2631.392 2720.989 2721.762 2742.485 2756.427	177 187 197 201 203	Fe? ? Va ‡ 	4 2 5 3 1	6 9 5 5	3078.148 3094.739 3121.275 3140.869 3167.290
99 102 106 111 112	Mg Mg Fe Mg Si	20 <i>R</i> 20 <i>R</i> 4 100 <i>R</i> 15	12 10 7 15 12	2795.632 2802.805 2832.545 2852.239 2881.695	207 209 211 215 222	Cr? Ti Ti Ti Cu	4 4 3 4 9	5 5 6 3 5	3188.164 3200.032 3218.390 3224.368 3247.680

• Seems to be the only single carbon line not belonging to a band in the arc spectrum. It was determined to belong to carbon by the spark spectrum.

† This line appears as a sharp reversal, with no shading, in the spectra of all substances tried that contained any trace of a continuous spectrum in the region.

‡ There is a faint line visible on the violet side.

STANDARD WAVE-LENCTHS.

No. of Line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (sun spectrum).
224 229 235 239 241	Va Na Ti Zr Fe	4 6 5 1 2	10 6 10 8 12	3267.839 3302.501 3318.163 3356.222 3389.887	409† 410 417 420 422	Fe? Fe Fe Mn Fe	10 3 20 5 15	3 7 7 13 7	4005.305 4010.578 4045.975 4055.701 4003.756
244 250 255 261 265	Fe Co Co, Fe, Ni Fe Co	4 4 3 5	18 10 10 4 10	3406.955 3455.384 3478.001 3500.721 3518.487	424 428 431 434 436	Fe Fe Fe Fe	4 2 4 3 3	14 8 14 17 20	407 3.920 4088.716 4114.600 4157.948 4185.003
269 274 278 279	Fe { Ti } { Fe } Fe Fe ?	5 4 <i>d</i> ? 40 4	10 12 6 12	3540.266 3564.680 3581.344 3583.483	439 & 445 448 451 456	Fe Ca Cr Fe ?	5 10 7 8 4	4 10 15 9 14	4202.188 4226.892 4254.502 4271.924 4293.249
284 290 292 294 298	Fe Fe Fe Fe	4 15 4 20 4	12 10 15 10 14	3597.192 3609.015 3612.217 3618.924 3623.332	G 462 f 465 467	Ca Fe Fe Fe	$\begin{vmatrix} 2 \\ - \\ 5 \\ 8 \\ 3 \end{vmatrix} d$	3 3 10 15 17	4307.904 4308.034 4308.071 4325.940 4352.903
301 307 311 313	$ \begin{array}{c} Fe \\ Fe \\ Co \\ Fe \\ Fe \\ Va \\ \end{array} $	20 10 3 6	10 11 13 13	3631.619 3647.995 3667.397 3683.202	<i>d</i> 471 473 477 480‡ 484	Fe Fe Ca Fe Fe	10 8 4 5 5	11 11 7 18 18	43 ⁸ 3 721 4404.927 4425.609 4447.899 4494.735
320 324 327 33 ⁸ 341	Fe Fe Fe Fe Fe	5 50 5 20 15	11 10 15 8 7	3707.186 3720.086 3732.542 3789.633 3758.379	490 493 496 500 505	Ti Ba Ti Fe { Ti } Co {	4 7 6 4 5	17 8 14 20 13	4508.456 4554.213 4572.157 4602.183 4629.515
348 355 358 361 369	Fe Fe Fe Fe	3 30 20 5	15 15 4 4 8	3781.330 3804.153 3820.567 3826.024 3843.406	508 512 515 518§ 524	Fe Fe Ni Mg Mn	4 6 4 9 6	17 12 12 11 11	4643.645 4679.028 4686.395 4703.180 4783.601
37 ¹ 37 5 37 9 38 2 <i>K</i> 387*	Fe C Fe Ti Ca	10 7 4 300	3 3 12 15 5	3860.048 3883.472 3897.599 3924.669 3933.809	528 F 531 537 545	Mn H Fe { Ti } Fe }	6 15 7 3	12 5 4 10	4823.697 4861.496 4919.183 4973-274
391 393 397 H 399 404	Al Fe Fe Ca Fe, Ti	10 4 3 200 4	7 t5 II 5 I4	3944.159 3950.101 3960.429 3968.620 3981.914	549 558 561 564 567	Fe Ti Fe Fe Fe	4 3 5 4 2	7 8 12 14 9	4994.316 5020.210 5050.008 5068.946 5090.959
				6					

* This line is doubly reversed and spread out in broad shading for 6.000 to 7.000 on either side. In each case the second reversal is slightly excentric with respect to the other, being displaced towards the red.

† Seven or eight lines, the brightest, and most of the others are due to iron.

[‡] There is a faint side line towards the red.

§ This line is shaded towards the violet, probably due to a close side line.

STANDARD	WAVE-LENGTHS.
----------	---------------

No. of Line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (sun spectrum).
570 575 580 589	Fe Fe Fe Fe	2 4 3 4	11 9 5 13	5109.825 5127.530 5141.916 5162.448	762 764 770 774 778	Fe Si Fe Mn Fe	6 6 6 6	14 14 7 5 8	5930.410 5948.761 5987.286 6013.717 6024.280
$b_4 \begin{cases} 59^2 \\ 593 \\ 594 \\ 595 \\ 596 \\ 597 \end{cases}$	Mg Fe Fe Fe	$\begin{vmatrix} 8 \\ - \\ 6 \end{vmatrix} d$ $\begin{vmatrix} 4 \\ - \\ 4 \end{vmatrix} d$	3 7 3 3 5 3	5167.501 5167.572 5167.686 5169.066 5169.161 5169.218	782 786 792 797 804	Fe Ca Ca Ca Fe	7 6 9 10 8	13 9 11 9 10	6065.708 6102.941 6122.428 6162.383 6191.770
b ₂ 599 b ₁ 601 610 614 618	Mg Mg Fe Fe Fe	10 20 4 8 3	9 11 10 9 12	5172.871 5183.792 5215.352 5233.124 5253.649	808 811 815 822 827	Fe, Va Fe Fe Fe Fe	7 7 5 7 6	12 9 11 7 12	6230.946 6252.776 6265.347 6301.719 6335.550
$E_{2} \ \begin{array}{c} 6_{30} \ast \\ 6_{31} \\ 6_{32} \\ 6_{33} \\ 6_{39} \end{array}$	Fe Ca Fe Fe	$\begin{cases} 8 d? \\ 4 \\ - \\ 4 \\ 4 \\ 6 \end{cases} d$	16 12 11	5269.722 5270.448 5270.495 5270.533 5283.803	834 838 843 846 850	Fe Fe Ca Ca Fe { Ti }	7 7 7 5 7	9 10 11 7 9	6393.818 6411.864 6439.298 6471.881 6495.209
643 647 655 659 662	Fe Fe Fe Fe	4 8 6 6 7	10 8 8 11 14	5307.546 5324.373 5367.670 5383.576 5405.987	856 C 858 863 867 870	{ Fe } H Fe Ni Fe	6 30 5 5 5 5	11 13 11 10 10	6546.486 6563.054 6593.161 6643.482 6678.232
668 674 676 679 682	Fe Fe Ni Fe Mg	7 4 4 4 7	9 10 10 8 8	5347.130 5463.493 5477.128 5501.685 5528.636	877 879 883 886 <i>B</i> 896	Fe Ni Fe A(o)	4 4 3 4 d	12 9 8 6 12	67 50.412 6768.044 6810.519 6441.591 6870.186
687 690 695 699† 700†	Fe Ca Ca Fe Fe, Va	5 6 4 2 4	8 9 4 12 14	5569.848 5588.980 5601.501 5624.253 5624.768	911 925 931 938 940	A(0) A(0) A(0) A(wv) A(wv)	4 6 4 8 8	13 9 9 10 12	6884.083 6909.675 6919.245 6947.781 6956.700
706 710 717 720 725	Fe Na Fe Fe Cu?Co?	5 5 7 <i>d</i> ?	9 7 10 10 9	5662.745 5688.434 5731.973 5753.342 5782.346	957 961 969 977 984	? ? A(wr) A(wr) A(wr)	6 10 15 10	8 5 4 3	7035.159 7122.491 7200.753 7243.904 7290.714
$\begin{array}{c} 73^{2} \\ 737^{\dagger} \\ D_{3}740^{\circ} \\ D_{2}743 \\ D_{1}745 \end{array}$	Fe Ca He Na Na	5 7 15 10	7 14 - 20 20	5806.954 5857.672 5875.982 5890.182 5896.154	990 997 998 1004 1010	? A(o) A(o) ?	7 10 14 4	2 4 5 3 1	7389.696 7594.059 7621.277 7660.778 7714.686

* Component about .088 apart on the photographic plate. It is an exceedingly difficult double.

† Lines used by Pierce in the determination of absolute wave-lengths.

‡ There is a nickel line near to the red.

§ This value of the wave-length is the result of three series of measurements with a grating of 20,000 lines to the inch and is accurate to perhaps .02.

|| Beginning at the head of A, outside edge.

WAVE-LENCTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimetre on the supposition that the D line value is 5896.156. The table is for the most part taken from Rowland's table of standard wave-lengths, but when no corresponding wave-length is there given, the number given by Kayser and Runge has been taken. These latter are to two places of decimals.

Index letter.	Line due to —	Wave-length in centimetres \times 10 ⁸ .	Index letter.	– Line due to —	Wave-length in centimetres × 10 ⁴ .
A	10	7621.277*	G' or H_{γ}	H	4340.66 §
A	10	7594.059*		(Fe	4308.07 I
a	-	7184.781	G	{	4308.034
В	0	6870.186†		Ca	4307.904
C or IIa	H	6563.054	g	Ca	4226.892
a	О	6278.289‡	h or H _δ	H	4101.87
D_1	Na	5896.1 54	Н	Ca	3968.620
D_2	Na	5890.182	K	Ca	3933.809
D_3	He	587 5.982	L	Fe	3820.567
	Fe	5270.533	М	Fe	3727.763
E ₁	-	5270.495	N	Fe	3581.344
	Ca	5270.448	0	Fe	3441.135
E_2	Fe	5269.722	Р	Fe	3361.30
b ₁	Mg	5183.792	Q	Fe	3286.87
b_2	Mg	5172.871	R∥	∫ Ca	3181.40
	(Fe	5169.218		(Ca	3179.45
b ₈	-	5169.161	v¶	Fe	3144.58 (?)
	Fe	5169.066	C	Fe	3100.779
	Fe	5167.686	S1	{ Fe	3100.415
b4		5167.572	S_2	Fe	3100.064
	Mg	5167.501	S	Fe	3047.720
F or H_{β}	Н	4861.496	Т	Fe	3020.7 59
d	Fe	4383.721	t	Fe	2994-542
f	Fe	4325.940	U	Fe	2947.993

* The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A."

† The principal line in the head of B.

[‡] Chief line in the a group.

§ Ames, " Phil. Mag." (5) vol. 30.

|| Cornu gives 3179.8, which, allowing for the different value of the standard D line, corresponds to about 3180.3.

T Cornu gives 3144.7, which would correspond to about 3145.2.

TABLE 181.

DETERMINATIONS OF THE VELOCITY OF LICHT, BY DIFFERENT OBSERVERS.*

Date of determi- nation.	No. of experi- ments made.	Method.	Interval worked across in kilometres.	Velocity in kilometres per second.	Velocity in miles per second.	Refer- ence.	Wt. of obser- vation as esti- mated by Hark- ness.
1849	-	Toothed wheel	8.633	31 5324	195935	I	0
1862	So	Revolving mirror	0.02	298574±204	185527 ± 127	2	I
1872	658	Toothed wheel	10.310	298500 <u>+</u> 995	185481 <u>+</u> 618	3	I
1874	546	66 66	22.91	300400 ± 300	186662 <u>+</u> 186	4	2
1879	100	Revolving mirror	0.6054	299910 <u>+</u> 51	186357±31.7	5	3
18So	12	Toothed wheel	{ 5.1 31 3 } { 5.5510 }	301 384 <u>+</u> 263	187273±164	6	I
1880	148	Revolving mirror	5.1019	299709	186232	7	-
to {	39	66 66	7.4.42.4	299776	186274	7	-
1002	65	66 66	7.4424	299860	186326	7	6
1882	23	66 66	0.6246	299853±60	186322±37	8	3
Mean f	rom all	weighted measurem	ents	299 ⁸ 35±154	186310±95.6	9	
Mean f	rom tho	se having weights >	►I	299893 ± 23	186347 ± 14.3	9	

I Fizeau, "Comptes Rendus," 1849.

Foucault, "Complete Reliefus," 1049.
 Foucault, "Recueil des travaux scientifiques," Paris, 1878.
 Cornu, "Jour. de l'Ecole Polytechnique," Paris, 1874.
 Cornu, "Annales de l'Observatoire de Paris," Memoires, tome 13, p. A. 298, 1876.

5 Michelson, "Proc. A. A. A. S." 1878. 6 Young and G. Forbes, "Phil. Trans." 1882.

7 Newcomb, "Astronomical Papers of the American Ephemeris," vol. 2, pp. 194, 201, and 202. 8 Michelson, "Astronomical Papers of the American Ephemeris," vol. 2, p. 244.

9 Harkness.

TABLE 182.

PHOTOMETRIC STANDARDS.

Name of standard.	Violle units.	Carcels.	Star candles.	German candles.	English candles.	Hefner- Alteneck lamps.	
Violle units ‡ · · · Carcels · · · Star candles · · German candles · English candles · Hefner-Alteneck lamps	· · · · · · · · · · · · · · · · · · ·	1.000 0.481 0.062 0.061 0.054 0.053	2.08 1.00 0.130 0.127 0.112 0.114	16.1 7.75 1.00 0.984 0.870 0.853	16.4 7.89 1.02 1.00 0.886 0.869	18.5 8.91 1.15 1.00 0.98	18.9 9.08 1.17 1.15 1.02 1.00

* Quoted from Harkness, "Solar Parallax," p. 33. † This table, founded on Violle's experiments, is quoted from Paterson's translation of Palaz' "Industrial Pho-tometry," p. 173. ‡ The Violle unit is sometimes called the absolute standard of white light. It is the quantity of light emitted normally by one square centimetre of the surface of melted platinum at the temperature of solidification.

SOLAR ENERCY AND ITS ABSORPTION BY THE EARTH ATMOSPHERE.

This table gives some of the results of Langley's researches on the atmospheric absorption of solar energy. The first column gives the wave-length λ , in microns, of the spectrum line, while the second and third columns give the corresponding absorption, according to an arbitrary scale, for high and low solar attitudes. The fourth column, E, gives the relative values of the energy for the different wave-lengths which would be observed were there no terrestrial atmosphere.

λ	<i>a</i> 1	ag	E
0 ⁴ .375	112	27	353
.400	235	63	683
.450	424	140	1031
.500	570	225	1203
.600	621	311	1083
.700	553	324	849
.800	372	246	519
.900	238	167	316
1.000	235	167	309

TABLE 184.

THE SOLAR CONSTANT.

The "solar constant" is the amount of heat per unit of area of normally exposed surface which, at the earth's mean distance, would be received from the sun's radiation if there were no terrestrial atmosphere. The following table is taken from Langley's researches on the energy of solar radiation.[†] The first column gives the wave-length in microns. The second and third columns give relatively on an arbitrary scale an upper and a lower limit to the possible value of spectrum energy.

Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).	Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).
0 ^{<i>µ</i>} .530	203.9	122.5	1 ^μ .000	105.0	102.3
·375	196.6	110.0	1.200	78.2	61.3
·400	242.2	139.1	1.400	65.1	52.2
·450	783.2	105.5	1.600	48.0	45.0
·500	852.9	374.1	1.800	39.2	36.4
·600	514.7	333.0	2.000	29.1	27.1
·700	317.7	255.4	2.200	19.4	17.5
·800	173.9	167.3	2.400	7.0	6.8

The areas of the energy curves are respectively . . . 149,060 and 95,933 The solar constants deduced from these areas are . . . 3.505 and 2.630

Langley concludes that "in view of the large limit of error we can adopt *three calories* as the most probable value of the solar constant," or that "at the earth's mean distance, in the absence of its absorbing atmosphere, the solar rays would raise one gramme of water three degrees per minute, for each normally exposed square centimetre of its surface."

* "Am. Jour. of Sci." vols. xxv., xxvii., and xxxii.

† "Professional Papers of U. S. Signal Service," No. 15, 1884.

TABLE 185.

INDEX OF REFRACTION FOR CLASS.

The table gives the indices of refraction for the Fraunhofer lines indicated in the first column. The kind of glass, the density, and, where known, the corresponding temperature of the glass are indicated at the top of the different columns. When the temperature is not given, average atmospheric temperature may be assumed.

(a) FRAUNHOFER'S DETERMINATIONS. (Ber. Münch. Akad. Bd. 5.)															
			Flint glass.			Crown glass.									
	Density = Temp. C. =		3.723 18 ³ .75		512	2.756			2.535 17 ⁰ .5		2.535				
B C D F G		.629 .635 .642 .648 .660	.62965 .6 .63504 .6 .64202 .6 .64826 .6 .66029 .6		204 380 849 453 2004 8077	1.55477 .55593 .55908 .56315 .56674 .57354		1.52583 .52685 .52959 .53301 .53605 .54166		1.52431 .52530 .52798 .53137 .53434 .53991					
Н		.671	67106 .6403		037		·57947 ·		•54	.54657		•54468	3		
(b) BAILLE'S DETERMINATIONS. (Quoted from the Ann. du Bur. des Long. 193, p. 620.)															
Flint glass.															
Density Temp. C. :	= 2.98 = 23 ^o .2	3.22 18 ⁰ .4	3.24 22 ⁰ .0		3•44 19 ⁰ •5	2	3.54 23 ⁰ .2		3.63 3 ⁰ .7	3.68 24 ⁰ .0		4.08 12 ⁰ .4		5.00 22 ⁰ .5	
$\begin{array}{c cccc} B & 1.5609 \\ C & .5624 \\ D & .5660 \\ b_1 & .5715 \\ F & .5748 \\ G & .5828 \\ H & .5898 \end{array}$		1.5659 .5675 .5715 .5776 .5813 .5902	.601	5783 .5982 5822 .6027		اء اء اء اء	6045 6062 6109 6183 6225 6335 6128	•	6131 6149 6198 6275 6321 6435	1.6237 .6255 .6304 .6384 .6429 .6549		1.677 .679 .685 .695 .701 .717	5 8 9 9 1	1.7801 .7831 .7920 .8062 .8149 .8368 8-67	
H .5898 .5979 .6098 .6338 .6428 .6534 .6647 .7306 .8567 Crown glass. (Baille, <i>ibid.</i>)															
	Density =	2.49			50		2.55	, 	2.8			3.00	[]		
	Temp. C. =		230.5 17		5.8 1S ⁰ .4		21°.2			210,9					
	B C D b ₁ F G H		00 .52)8 .53 22 .53		254 280 320 343 397	54 .5237 80 .5265 20 .5307 43 .5332 97 .5392			1.5157 .5166 .5192 .5234 .5256 .5313 .5360		1.5554 .5568 .5604 .5658 .5690 .5769 .5836				
	(c)	HOPKINSC	N'S DE	TERM	INATION	<s.< td=""><td>(Proc.</td><td>Ro</td><td>y. Soc.</td><td>vol. 26</td><td>5.)</td><td></td><td></td><td></td></s.<>	(Proc.	Ro	y. Soc.	vol. 26	5.)				
	Hard crown.	Soft crown.	Tita sili crov	cic					Flint	glass.					
Density =	Density = 2.486		2.5	53	2.866	2.866		3.206		3.659		3.889		4.422	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.508956 .510916 .511904 .514591 .518010 .518686 .520996 .526207 .526595 .529359 .531416	I.539 -540 -541 -541 -554 -559 -559 -559	$\begin{array}{c cccc} - & \mathbf{I.534}\\ 539155 & .536\\ 540255 & .5376\\ 543249 & .5416\\ 547088 & .545\\ 547852 & .546\\ 550471 & .549\\ 556386 & .555\\ 556830 & .556\\ 559999 & .560\\ 559999 & .560\\ 552392 & .562\\ \end{array}$		50 1.568558 73 .570011 11 .57401 56 .57922 66 .580271 21 .583886 63 .592196 72 .59282 50 .597332		011 223 271 886 190 824 33 ²	1 .617484 5 .622414 3 .628895 1 .630204 6 .634748 0 .645267 4 .646068 2 .651840		.642874 .644866 .650388 .657653 .659122 .664226 .676111 .677019 .683577			1.696531 .701060 .703478 .710201 .719114 .720924 .727237 .742063 .743204 .751464 .757785	
N. B. — D is the more refrangible of the pair of sodium lines; (G) is the hydrogen line near G.															

INDEX OF REFRACTION FOR CLASS.

(d) Mascar	(0) LANGLEY'S DETERMINATIONS. (Silliman's Jour- nal, 27, 1884.)									
Flir		glass.	Crown glass.				Flint g	nt glass.		
$Density \equiv Temp. \equiv$	3.615 30`.0	3.239 20.0	2.578 28.0			Wave le n mm.≯		Index of refraction.		
\mathbf{A} \mathbf{B}	1.60927 .61268	1.57829 .58114	1.52814 .53011			2030 1918	3	1.5515		
C D	.61443 .61929	. 58261 . 5867 1	.53113 .53386			1870 1810 1580	D C	•5535 •5544 •5572		
${ m E}_{ m b_4}$.62569 .62706	.59197 .59304	·53735 .53801			1540 1360 1270 1130 940 910 890		.5576 .5604 .5616		
F G	.63148 .64269	.59673 .60589	.54037 .54607					.5636 .5668 .5674 .5678		
H L	.65268 .65817	.61390 .62012	.55093 .55349			850 81 760.1 =	5	.5687 .5687 .5697		
M N	.66211 .66921	.62138 .62707	.55531 .55 ⁸ 53			656.2 = 588.9 = 516.7 =	= C $= D_1$	·5757 ·5798 ·5862		
O P Q	.67733	.63341 .63754 .64174	.56198 .56419 .56646			486.1 = 396.8 = 344.0 =	$= F = H_1 $.5899 .6070 .6266		
	1	(f) Effec	t of Tempera vol	TURE. (' 25.)	Vogel,	Wied	Ann.			
		where <i>nt</i> temperatu peratures following	$nt + nt' = \alpha (t - t') + \beta (t - t')^2$, is the absolute index of refraction for the tre t, and α and β are constants. For tem- ranging from 12° to 260° Vogel obtains the values of α and β for the Fraunhofer lines he tops of the columns.							
				На	D	H _β	Η _γ			
		White gla	$ass \begin{cases} a \cdot 10^8 = \\ \beta \cdot 10^{10} = \end{cases}$	96 107	123 106	224 97	327 93			
		Flint glas	$S \left\{ \begin{array}{l} \alpha \cdot 10^8 = \\ \beta \cdot 10^{10} = \end{array} \right\}$	190 101	190 147	362 221	575 221			
	(g) Effect o	F TEMPBRAT	TURE. (Müller,	Publ. d.	Astro	phys. O	bs. zu l	Potsdam, 1885.)		
Fraun-		1	Flint glass.					Crown glass.		
hofer line.	Density = Temp. C. =	= 3.855. = -1° to 24°	. De Temp	nsity \equiv 3.218. p. C. \equiv -3° IO 21°.				Density $\equiv 2.522$. Temp. C. $\equiv -5^{\circ}$ to 23° .		
B C D	.645745+	.00000474 .00000486 .00000495	t .5758	$28 \pm .00000333t$.513558 -			512588 — .000 513558 — .000 516149 + .000	000033t		

Fraun- hofer line.	Flint	Crown glass.							
	Density = 3.855. Temp. C. = -1° to 24° .	Density $\equiv 3.218$. Temp. C. $\equiv -3^{\circ}$ Io 21° .	Density \equiv 2.522. Temp. C. \equiv - 5 to 23°.						
$B \\ C \\ D \\ b_{I} \\ F \\ H_{\gamma} \\ h$	$\begin{array}{c} 1.643776 + .00000474 t \\ .645745 + .00000486 t \\ .651193 + .00000495 t \\ .659632 + .00000710 t \\ .664936 + .00000653 t \\ .676720 + .00000783 t \\ .684144 + .00000861 t \end{array}$	1.574359 + .00000324 t .575828 + .00000323 t .579856 + .00000323 t .586000 + .00000443 t .589828 + .00000439 t .598205 + .00000560 t .603398 + .00000636 t	$\begin{array}{c} 1.51258800000043 t \\ .51355800000033 t \\ .516149 + .00000017 t \\ .520004 + .00000054 t \\ .522349 + .00000048 t \\ .527360 + .0000082 t \\ .520376 + .00000143 t \end{array}$						
N. B. — The above examples on the effect of temperature give an idea of the order of magnitude of that effect, but are only applicable to the particular specimens experimented on.									

INDEX OF REFRACTION.

Indices of Refraction for the various Alums.*

	Density. Temp. C.º	Index of refraction for the Fraunhofer lines.									
R		Temp.	a	В	с	D	Е	b	F	G	
Aluminium Alums. $RAl(SO_4)_2 + 12H_2O.\dagger$											
Na NH ₃ (CH ₃) K Rb Cs NH4 Te	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	I.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 -45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288 .50209	1.44412 .45941 .46181 .46192 .46386 .46481 .50463	1.44804 .46363 .46609 .46618 .46821 .46923 .51076	
Indium Alums. R In(SO ₄) ₂ +12H ₂ O.†											
Rb Cs NH4	2.065 2.241 2.011	3-13 17-22 17-21	1.45942 .46091 .46193	1.46024 .46170 .46259	1.46126 .46283 .46352	1.46381 .46522 .46636	1.46694 .46842 .46953	1.46751 .46897 .47015	1.46955 .47105 .47234	1.49402 .47562 .47750	
	Gallium Alums. $RGa(SO_4)_2 + 12H_2O.\dagger$										
Cs K Rb NH4 Te	2.113 1.895 1.962 1.777 2.477	17-22 19-25 13-15 15-21 18-20	1.46047 .46118 .46152 .46390 .50112	1.46146 .46195 .46238 .46485 .50228	1.46243 .46296 .46332 .46575 .50349	1.46495 .46528 .46579 .46835 .50665	1.46785 .46842 .46890 .47146 .51057	1.46841 .46904 .46930 .47204 .51131	1.47034 .47093 .47126 .47412 .51387	1.47481 .47548 .47581 .47864 .52007	
	Chrome Alums. $RCr(SO_4)_2+12H_2O.†$										
Cs K Rb NH4 Te	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280		1.48491 .48513 .48522 .48794 .52787			
Iron Alums. $R \operatorname{Fe}(SO_4)_2 + \mathfrak{12} \operatorname{H}_2O.\dagger$											
K Rb Cs NH4 Te	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112	

According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
 R stands for the different bases given in the first column.

Index of Refraction of Metals and Metallic Oxides.

						Ind	lex of refraction	for		
Name of substance.							Red.	White.	Blue.	
Silver	•		•		•			_	0.27	_
Gold					٠			0.38	0.58	I.00
Copper								0.45	0.65	0.95
Platinum					+	٠		1.76	1.6.4	1.44
Iron		•						1.81	1.73	1.52
Nickel					•			2.17	2.01	1.85
Bismuth								2.61	2.26	2.13
Gold and	gold	oxid	е	٠	•		1	1.04	-	1.25
6.6	"			٠	•	٠		0.89	0.99	1.33
66	66	66	†			•	•	-	2.03	-
Bismuth	oxide					٠		-	1.91	-
Iron oxid	e			٠	•	•		1.78	2.11	2.36
Nickel on	cide				•			2.18	2.23	2.39
Copper o							•	2.63	2.84	3.18
Platinum	and j			oxide			*	3.31	3.29	2.90
6.6		66		"				4.99	4.82	4.40

The experiments were similar to those of Kundt, and were made with the same spectrometer. Somewhat greater accuracy is claimed for these results on account of some improvements intro-duced, mainly by Prof. Kundt, into the method of experiment. There still remains, however, a somewhat large chance of error.

	Index of	refraction for lig	ht of the following	ng color and way	ve-length.
Name of metal.	Red (Li _a). $\lambda = 67.1$	"Red." $\lambda = 64.4$	Yellow (D). $\lambda \equiv 58.9$	Blue (F). $\lambda \equiv 48.6$	Violet (G). $\lambda \equiv 43.1$ ‡
Nickel Iron Cobalt	2.04 3.12 3.22	1.93 3.06 3.10	1.84 2.72 2.76	1.71 2.43 2.39	1.54 2.05 2.10

(c) Experiments of Drude.

The following table gives the results of some of Drude's experiments.§ The index of refrac-tion is derived in this case from the constants of elliptic polarization by reflection, and are for sodium light.

Me	tal.			Index of refraction.	Me	etal.		Index of refraction.
Aluminium Antimony Bismuth Cadmium Copper . Gold . Iron . Lead . Magnesium	•	• • •	•	1.44 3.04 1.90 1.13 0.641 0.366 2.36 2.01 0.37		0 0 0 0 0	•	1.73 1.79 2.06 0.181 2.41 1.48 2.10 2.12

* "Wied. Ann." vol. 34, and "Phil. Mag." (5) vol. 26. ‡ Wave-lengths λ are in millionths of a centimetre.

† Nearly pure oxide. § "Wied. Ann." vol. 39.

SMITHSONIAN TABLES.

. .

TABLES 188, 189. INDEX OF REFRACTION.

	mined by l Temp. 24°		Determin	ned by Ru Snow.	ibens and	D	etermined by	y other authorities.
Line of spec- trum.	Wave- length in cms. \times 10 ⁶ .	Index of refraction.	Line of spec- trum.	Wave- length in cms. \times 10 ⁶ .	Index of refrac- tion.	Line of spec- trum.	Index of refraction.	Authority.
$\begin{array}{c} \mathbf{M} \\ \mathbf{L} \\ \mathbf{H}_{2} \\ \mathbf{H}_{1} \\ \mathbf{G} \\ \mathbf{F} \\ \mathbf{b}_{4} \\ \mathbf{b}_{1} \\ \mathbf{D}_{1} \\ \mathbf{D}_{2} \\ \mathbf{C} \end{array}$	37.27 38.20 39.33 39.68 43.03 48.61 51.67 51.83 57.89 58.95 65.62	1.57486 .57207 .56920 .56833 .56133 .55323 .54991 .54975 .54418 .54414 .54051	H _y F D C	43.4 48.5 58.9 65.6 75.5 79.0 83.1 87.6 92.3 97.8 103.5	1.5607 .5531 .5441 .5404 .5370 .5358 .5347 .5337 .5329 .5321 .5313	$ \begin{array}{c} H_{a} \\ H_{\beta} \\ H_{\gamma} \\ H_{a} \\ H_{\beta} \\ H_{\gamma} \\ B \\ C \\ D \end{array} $	1.54046 .55319 .56056 1.54095 .55384 .52515 1.53884 .54016 .54381	Haagen at 20° C. Bedson and Carleton Williams at 15° C. Mülheims.
$ \begin{array}{c} B\\ A\\ \rho \sigma \tau\\ \phi\\ \Psi\\ \Omega \end{array} $ Determin	68.67 76.01 94. 113. 139. 132.	.53919 .5367 .5328 .5305 .5287 .5268 en Powell.		110.7 118.6 127.7 138.4 151.1 166.0 184.5 207.6 237.2 277.1	-5305 -5299 -5293 -5280 -5280 -5275 -5270 -5264 -5257 -5247	E F A B { C { D {	.54866 .55280 1.53663 .53918 .53902 .54050 .54032 .54418 .54400	Stefan at 17° and 22° C. The up- per values are
B C D F G H		I.5403 .5415 .5448 .5498 .5541 .5622 .5691		302.2 332.0 369.0 415.0 474.5 554.0 644.7 830.7	-5239 -5230 -5217 -5208 -5197 -5184 -5163 -5138	E { F { G { H {	.54901 .54882 .55324 .55304 .56129 .56108 .56823 .56806	at 17° and the lower at 22° for each line.

TABLE 188. - Index of Refraction of Rock Salt.

TABLE 189. — Index of Refraction of Sylvine (Potassium Chloride).

Deterr	nined by Rul	ens and Sno)w.	D	etermined by c	other authorities.
Wave-length in cms. \times 10 ⁶ .	Index of refraction.	Wave- length in cms. \times 10 ⁶ .	Index of refraction.	Line of spec- trum.	Index of refraction.	Authority.
(0	
$43.4 (H_{\gamma})$	1.5048	1.45.8	1.4766	A	1.48377	
48.6 (F)	.4981	160.3	.4761	B C	.4 ⁸ 597	
58.9 (D)	.4900	178.1	·4755	C	.48713	
65.6 (C)	.4868	200.5	•4749	D	.49031	Stefan at 20 C.
				E	+49455	
80.2	1.4829	229.1	1.4742	\mathbf{F}	.49830	
84.5	.4819	267.3	.4732	G	.50542	
89.3	.4809	320.9	.4722	П	.51061	J
94.4	.4807	356.1	.4717	В	•47 54	
	1			С	.4767	
100.3	1.4795	400.I	1.4712	D	.4825	} Grailich.
107.0	.4789	457-7	.4708	E	.4877	Gramen
114.5	.4781	534 ·5	.4701	F	.4903	
123.4	.4776	641.2	.4693	G	.5005	
				D	.4904	Tschermak.
1337	1.477 I	802.2	1.4681	D	.4930	Groth.

Index of Refraction of Fluor-Spar.

Determin Rubens and	ed by I Snow.		Determined Sarasin.			Determined authorities q	by the uoted.
Wave-length in cms. × 10 ⁶ .	Index of refraction.	Line of spectrum.	Wave- length in cms. × 10 ⁶ .	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
43.4(II _y)	1.4393	А	76.040	1.431010	D	1.4339	Fizeau.
48.5(F)	•4372	a	71.836	·43 ¹ 57 5			
58.9(D)	.4340	В	68.671	.431997	A	1.43003	
65.6(C)	-4325	с	65.618	-432571	а	.43153	
So.7	.4307	D	58.920	•433937	В	.43200	
85.0	.4303	F	48.607	.437051	с	.43250 }	Mülheims.
89.6	-4299	h	41.012	.441215	D	.43384	
95.0	.4294	Η	39.681	.442137	E	-43551	
100.9	.4290	Cđ	36.090	.445356	F	.43696)	
107.6	.4286	66	34.655	.44697 0			
115.2	.4281	66	34.015	•447754	В	1.43200	
124.0	.4277	66	32.525	.449871	D	.43390	
134.5	.4272	16	27.467	.459576	F	.43709	Stefan.
146.6	.4267	6.6	25.713	.464760	G	.43982	
161.3	.4260	66	23.125	.47 51 66	H	.44204]	
179.2	.4250	.6	22.645	.477622			
201.9	.4240		21.935	.481 51 5	Red	1.433	DesCloi-
230.3	.4224	66	21.441	.484631	Yellow	.435)	seaux.
268.9	.4205	Zn	20.988	.487655			
322.5	.4174	66	20.610	.490.406	Na	1.4324*	
403.5	.4117	66	20.243	.493256	66	.4342†)	rausch.
462.0	.4080	Al	19.881	.496291			
538.0	.4030	66	19.310	.502054			
646.0	.3960	6.6	18.560	.509404			
S07.0	.3780						

* Gray at 23° C. † Black at 19° C.

TABLE 191.

INDEX OF REFRACTION.

Various Monorefringent or Optically Isotropic Solids.

Agate (light color) red 1.5374 De Senarmont. Arsenite D 1.6422 Destinich. Barlum nitrate D 1.5716 Destent. Barlum nitrate D 1.5216 Destent. Bell metal D 1.6323 Beer. Biel metal P 1.6323 Remsay. Boric acid P 1.43933 Ramsay. Borax (vitrified) P 1.43933 Redson and Camphor D 1.532 Bedson and Carleton Williams. Diamond (colorless) If green 2.443 DesCloiseaux. Ebonite D 1.532 Nutheims. DesCloiseaux. Garnet (different varieties) D 1.54 Jestent. Wernicke. Garnet (different varieties) D 1.4303 Jarnin. Wollaston. Yarous D 1.4304 Yarious. Garada balsam Garada balsam	Sub	stance	e.				Line of Spectrum.	Index of Refraction.	Authority.
Ammonium chloride . D 1.6422 Grailleh. Arsenite . D 1.5716 Fock. Barlum nitrate . D 1.5716 Fock. Bielmetal . D 1.5916 Beer. Bielmeta . . D 1.6922 Beer. Bielmeta . . . Signeta Beer. Boric acid Beer. Beer. Boric acid Beer. Beer. Beer. Borax (vitrified) Betson and Carleton Williams. Diamond (colorless) Betson and Carleton Williams. Diamond (brown) Betson and Carleton Williams. Fuchsin <td>Agate (light color)</td> <td></td> <td></td> <td>٠</td> <td></td> <td></td> <td></td> <td>1.5374</td> <td>De Senarmont.</td>	Agate (light color)			٠				1.5374	De Senarmont.
Barlium nitrate D 1.5716 Fock, Bell metal D 1.0052 Beer, Blende X_{12} 2.31053 Ramsay. Boric acid X_{12} 2.3063 Ramsay. Boric acid Y_{11} 2.4060 Bedson and Carleton Williams. F 1.46303 Bedson and Carleton Williams. Borax (vitrified) D Y_{15322} Kohlrausch. Diamond (colorless) Y_{1542} DesCloiseaux. Diamond (brown) Y_{1542} DesCloiseaux. Ebonite D Y_{174} Natucheins. Fuchsin D Y_{174} Natucheins. Garnet (different varieties) D Y_{174} Various. Gum arabic D Y_{1450} Various. Garnet (different varieties) D Y_{130} Various. Gum arabic D Y_{1450} Various. <	Ammonium chloride	е.				•			Grailich.
Bell metal . . D 1.0022 Beer. Blende . <td.< td=""><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></td.<>					*				
Blende Image: Second seco		•	•			•			
Blende . . Na 2.5027 $T1$ 2.40609 2.40609 Ramsay. Boric acid Boric acid Boric acid .<	Bell metal .	•							Beer.
Boric acidImage: Constraint of the second seco									
Boric acidBedson and Carleton Williams.Borax (vitrified)Bedson and Carleton Williams.Borax (vitrified)Bedson and Carleton Williams.CamphorBedson and Carleton Williams.Diamond (colorless)Diamond (brown)<	Blende	٠	•	٠	*	•			Ramsay.
Boric acid									
Borax (vitrified) \cdot <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Borax (vitrified)C1.51222 1.51454 FCarleton Williams.CamphorD1.51454 1.52065Carleton Williams.CamphorD $\{1,532$ 1.532 FKohlrausch. Mulheims.Diamond (colorless) $\{red \\ green \\ 2.46056 \\ D \\ 2.4605 \\ D \\ 2.40$	Boric acid .	•	•	•	•	•			
Borax (vitrified)CamphorKohlrausch.Diamond (colorless)Mulheims.Diamond (brown)DesCloiseaux.Diamond (brown)DesCloiseaux.Diamond (brown)DesCloiseaux.EboniteFuchsinGarnet (different varieties)<								1 · · · >	
Camphor (F) $f.22668$ $f.532$ $f.533$ $f.533$ $f.533$ $f.533$ $f.533$ $f.533$ $f.6574$ <td>Dener (site: G = 1)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Carleton Williams.</td>	Dener (site: G = 1)								Carleton Williams.
CamphorD $\left\{ \begin{array}{c} 1.32\\ 1.5362 \\ 1.5462 \\ 2.414 \\ green \\ 2.428 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.46086 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.4608 \\ 2.47902 \\ 2.4608 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.478 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 \\ 2.47902 \\ 2.488 $	borax (vitrified)	*		*		•			
CampuolCampuolCampuolMulheims.Diamond (colorless) $\begin{cases} reen \\ green \\ 2.448 \\ 2.448 \\ 2.448 \\ 2.448 \\ 2.4602 \\ 2.47902 \end{cases}$ DesCloiseaux.Diamond (brown) $\begin{cases} B \\ 2.4602 \\ 2.47902 \\ D \\ 2.47902 \end{cases}$ Schrauf.EboniteD1.6A1.73 \\ B \\ 1.31 \\ H \\ 1.90							([L'abba a sh
Diamond (colorless). $\left\{ \begin{array}{c} \text{red} \\ \text{green} \\ 2.47902 \\ \text{Diamond (brown)} \\ \text{Diamond (brown)} \\ \text{Leonite} \\ \text{Looite} \\ \text$	Camphor						D		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							(red		
Diamond (brown)B 2.46962 2.46986 2.46986 2.46986 	Diamond (colorless)								DesCloiseaux.
Diamond (brown) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1 0 -</td> <td></td> <td></td>							1 1 0 -		
Ebonite $\begin{pmatrix} E \\ D \end{pmatrix}$ $2.47902 \\ D \end{pmatrix}$ Ayrton & Perry.Fuchsin $\begin{pmatrix} A \\ 1.73 \\ B \\ 1.81 \end{pmatrix}$ $1.66 \\ D \end{pmatrix}$ Ayrton & Perry.Fuchsin $\begin{pmatrix} A \\ 1.73 \\ B \\ 1.31 \\ H \end{pmatrix}$ $1.60 \\ 1.31 \\ H \end{pmatrix}$ Wernicke.Garnet (different varieties) $D \\ 1.90 \\ 1.90 \\ 1.90 \end{bmatrix}$ $Various.$ Gum arabic $Presconder 1.480 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.90 \\ 1.482 to]$ Various.Hanyne $Presconder 1.480 \\ 1.496 \\ 1.485 to]$ Jamin.Hanyne $Presconder 1.480 \\ 1.485 to]$ Uevy & Lecroix.Obsidian $Presconder 1.531 \\ 1.450 \\ 1.450 \\ 1.450 \\ 1.450 \\ 1.450 \\ 1.455 \\ 1.450 \\ 1.455 \\ 1.553$	Diamond (brown)								Schrauf
EboniteAyrton & Perry.FuchsinGarnet (different varieties)D $\begin{cases} 1.74 \text{ to} \\ 1.90 \\ 1.482 \\ 1.535 \\ 1$		•	•	•	•	٠			Schrauf.
FuchsinImage: Construct of the second s	Ebonite								Aurton & Perry
Fuchsin $\begin{bmatrix} B \\ C \\ 1.00 \\ G \\ 1.31 \\ H \\ 1.54 \end{bmatrix}$ Wernicke.Garnet (different varieties).D $\begin{cases} 1.74 \text{ to} \\ 1.90 \\ 1.90 \end{cases}$ Various.Gum arabicD $\begin{cases} 1.74 \text{ to} \\ 1.90 \\ 1.90 \end{bmatrix}$ Various.Gum arabicD $\begin{cases} 1.480 \\ 1.490 \\ 1.480 \end{bmatrix}$ Jamin.'' '' '' '' '' '' '' '' '' '' '' '' ''		·	•		•	•			righton de i enty.
FuchsinImage: Constraint of the systemImage: Constraint of the systemCons									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fuchsin .							- 1	Wernicke
Garnet (different varieties).D $\begin{bmatrix} H \\ 1.54 \\ 1.90 \\ 1.90 \\ 1.90 \end{bmatrix}$ Various.Gum arabicD $\begin{bmatrix} 1.74 \text{ to} \\ 1.90 \\ 1.90 \end{bmatrix}$ Jamin.Gum arabicD1.480 \\ 1.514 Wollaston.HanyneDI.480 \\ 1.739 Levy & Lecroix.ObsidianD $\begin{bmatrix} 1.482 \text{ to} \\ 1.486 \\ 1.486 \end{bmatrix}$ Various.OpalD $\begin{bmatrix} 1.482 \text{ to} \\ 1.486 \\ 1.450 \end{bmatrix}$ Various.PitchD $\begin{bmatrix} 1.486 \\ 1.450 \\ 1.450 \end{bmatrix}$ "Pitchred1.531 \\ 1.6574					•				
Garnet (different varieties)D $\begin{bmatrix} 1.74 \text{ to} \\ 1.90 \\ 1.90 \\ 1.90 \end{bmatrix}$ Various.Gum arabicredred1.480 \\ 1.514 \\ Wollaston.Jamin.HanyneDD1.4961 \\ 1.4961 \\ 1.4826 \\ 1.4826 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.486 \\ 1.466 \\ 1.466 \\ 1.466 \\ 1.466 \\ 1.450 \\									
Gum arabicImage: Construct (uniform variables)Image: Construct variables)Image: Construct variables)Gum arabicImage: Construct variables)Image: Construct variables)Image: Construct variables)HanyneImage: Construct variables)Image: Construct variables)Image: Construct variables)HanyneImage: Construct variables)Image: Construct variables)Image: Construct variables)ObsidianImage: Construct variables)Image: Construct variables)Image: Construct variables)ObsidianImage: Construct variables)Image: Construct variables)Image: Construct variables)OpalImage: Construct variables)Image: Construct variables)Image: Construct variables)ObsidianImage: Construct variables)Image: Construct variables)Image: Construct variables)PitchImage: Construct variables)Image: Construct variables)Image: Construct variables)PitchImage: Construct variables)Image: Construct variables)Image: Construct variables)PitchImage: Construct variables)Image: Construct variables)Image: Construct variables)PhosphorusImage: Construct variables)Image: Construct variables)Image: Construct variables)Construct variables)<	Correct (1:55 - mont - mo								
Gum arabicred1.480Jamin.'''''''''''''''''''''''''''''''''''		rietie	es)	*	٠		D		Various.
"""							red		Jamin.
HelvineD 1.739 Levy & Lecroix.ObsidianD 1.48210 1.48210 Various.OpalD 1.450 1.466 "PitchD 1.450 ""PitchD 1.5593 Wollaston.Potassium bromideD 1.5593 Topsöe andChorstannateChorstannate" 1.6574 ""chlorstannate" 1.6574 Gladstone & Dale.PhosphorusCanada balsam" 1.528 Wollaston.Colophony"" 1.548 Jamin.Copal"" 1.548 Jamin.Copal"" 1.548 Jamin.Copal"" 1.528 Wollaston.Peru balsamD 1.593 Baden Powell.Selenium, vitreousD 2.533 Sirks.Silver $\begin{cases} bromide \\ choride \\ iodide \\ chear like water \\ chear like water \\ clear like water \\ $	•		٠				66	1.51.4	Wollaston.
ObsidianD $\left\{ \begin{array}{c} 1.432 \text{ to} \\ 1.486 \\ 1.486 \\ 1.450 \\ 1.$	Hanyne								Tschichatscheff.
ObstitualImage: Construct of the systemImage: Construct of th	Helvine						D	1.739	Levy & Lecroix.
OpalD $\begin{bmatrix} 1.486 \\ 1.496 \\ 1.450 \end{bmatrix}$ "Pitchred1.531 Uvollaston.Potassium bromideD1.533 Topsöe and" chlorstannate" 1.6574 in 1.6574 dialation." iodide" 1.6574 in 1.6574 dialation." iodide" 1.6574 in 1.6574 dialation." iodide" 1.6574 dialation." Canada balsam" 1.528 dialation.Colophony" 1.528 dialation.Colophony" 1.528 dialation.Colophony" 1.528 dialation.Mastic" 1.535 dialation.Peru balsamD 1.593 dialation.B2.730 dialation.Selenium, vitreous $\begin{bmatrix} A & 2.063 dialation. dialation.Silverbromide" 2.08 dialation.bromide" 2.08 dialation.Sodalite \begin{cases} blue & & & " 1.4827 dialation.Sodium chlorate" 1.5150 dialation.Spinel" 1.7155 dialation.Spinel" 1.7155 dialation.$	Obsidian						D	§ 1.482 to)	Various
OpartImage: Constraint of the system of the sy	obsidiant	•	•	•	•	•	D		various.
Pitch (1.450) Wollaston.Potassium bromide (1.531) Topsöe and (1.5593) (1.6574) Topsöe and (1.6574) (1.6574) Christiansen. (1.6574) (1.6574) Gladstone & Dale. (1.6574) (1.6666) Jamin.Phosphorus (1.528) Wollaston.Resins : Aloes (1.528) Wollaston.Canada balsam (1.528) Wollaston.Colophony (1.528) Wollaston.Colophony (1.528) Wollaston.Copal (1.528) Wollaston.Peru balsam (1.528) Wollaston.Peru balsam (1.528) Wollaston.Baden Powell. (1.523) Baden Powell.Selenium, vitreous (1.523) Sirks.Silver { bromide (1.223) (1.223) Sodalite { blue (1.223) (1.482) Sodalite { blue (1.482) Clear like water (1.483) Sodium chlorate (1.423) Spincl (1.5150) Dussaud.Spincl (1.7155) DesCloiseaux.	Opal						D	2 2	46
Potassium bromideD 1.5593 1.6574 Topsöe and Christiansen."iodide" 1.6666 ""iodide" 1.6666 "Phosphorus" 2.1442 Gladstone & Dale.Resins : Aloes"red 1.610 Jamin.Canada balsam" 1.528 Wollaston.Colophony"" 1.548 Jamin.Copal"" 1.535 Wollaston.Peru balsam"" 1.593 Baden Powell.Selenium, vitreous"D 1.593 Biden Powell.Silverbromide"" 2.661 Sodaliteblue"" 1.4827 Sodium chlorate"" 1.4833 Feusner."" 1.4833 Spinel"" 1.7155 DesCloiseaux." 1.7155	-	•	•	•	•	•		1.450	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•	•	٠	•			Wollaston.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		•	٠	٠	•	•		1.5593	Topsöe and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	chlorstan	nate	•	•	٠	•		1.0574	Christiansen.
PhosphorusCladstone & Dale.Resins : Aloesred1.619Jamin.Canada balsamColophonyCopalMasticPeru balsamSelenium, vitreousSilverbromideBromideSodaliteblueSodaliteblueSodium chlorateSpinelDotBromideSodaliteblueSodium chlorateDotBreuserSelenium, vitreousColorideDot. <td>" lodide</td> <td>•</td> <td>•</td> <td>•</td> <td>+</td> <td></td> <td>1</td> <td></td> <td></td>	" lodide	•	•	•	+		1		
$\begin{array}{c ccccc} Canada balsam & & & & & & & & & & & & & & & & & & &$	Posing Alere	•	•	•	٠	•			
MasticISignalISignalWollaston.Peru balsamID1.593Baden Powell.Selenium, vitreousIImage: SignalSirks.Selenium, vitreousImage: SignalImage: SignalSirks.SilverbromideImage: SignalImage: SignalSilverbromideImage: SignalImage: SignalImage: SignalSodaliteblueImage: SignalImage: SignalImage: SignalSodium chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: SignalSolution SignalImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: Signal <t< td=""><td>Canada bala</td><td>· ·</td><td>•</td><td></td><td>٠</td><td>•</td><td></td><td></td><td></td></t<>	Canada bala	· ·	•		٠	•			
MasticISignalISignalWollaston.Peru balsamID1.593Baden Powell.Selenium, vitreousIImage: SignalSirks.Selenium, vitreousImage: SignalImage: SignalSirks.SilverbromideImage: SignalImage: SignalSilverbromideImage: SignalImage: SignalImage: SignalSodaliteblueImage: SignalImage: SignalImage: SignalSodium chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: SignalSolution SignalImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: Signal <t< td=""><td>Colophony</td><td>am</td><td>٠</td><td>•</td><td>٠</td><td>•</td><td>1</td><td>1.520</td><td></td></t<>	Colophony	am	٠	•	٠	•	1	1.520	
MasticISignalISignalWollaston.Peru balsamID1.593Baden Powell.Selenium, vitreousIImage: SignalSirks.Selenium, vitreousImage: SignalImage: SignalSirks.SilverbromideImage: SignalImage: SignalSilverbromideImage: SignalImage: SignalImage: SignalSodaliteblueImage: SignalImage: SignalImage: SignalSodium chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSpinelImage: SignalImage: SignalImage: SignalSolum chlorateImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: SignalSolution SignalImage: SignalImage: SignalImage: SignalSignalImage: SignalImage: SignalImage: Signal <t< td=""><td>Copal</td><td>*</td><td>•</td><td></td><td>٠</td><td>•</td><td></td><td>1.540</td><td>Jamm. "</td></t<>	Copal	*	•		٠	•		1.540	Jamm. "
Selenium, vitreous $\begin{pmatrix} A & 2.653 \\ B & 2.730 \\ C & 2.86 \\ D & 2.98 \end{pmatrix}$ Sirks.Silver $\begin{cases} bromide & . & . & . & . \\ chloride & . & . & . & . & . \\ iodide & . & . & . & . & . & . & . & . & . & $	Mastic	•	•		•	i	66		Wollaston
Selenium, vitreous $\begin{pmatrix} A & 2.653 \\ B & 2.730 \\ C & 2.86 \\ D & 2.98 \end{pmatrix}$ Sirks.Silver $\begin{cases} bromide & . & . & . & . \\ chloride & . & . & . & . & . \\ iodide & . & . & . & . & . & . & . & . & . & $	Peru balcan	'n	•	•	•		1		
Selenium, vitreousB 2.730 CSirks.Silverbromide C 2.86 DD 2.98 Wernicke.Silverchloride C 2.61 CSodaliteblue C 1.4827 	i ci u Daisali		•	•	•	•		2652	Datien 1 Owen.
Selenium, vitreous<	0.1								011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenium, vitreous	•	+		٠	•		2.86	Sirks.
SilverbromideD 2.533 2.061 Wernicke.Solute 1.4827 1.4833 Feusner.Sodalite 1.4827 1.4833 Feusner.Sodium chlorate 1.5150 1.7155 Dussaud.									
(iodide	(bromide								
(iodide	Silver { chloride .								Wernicke.
Sodium chlorate Dussaud. Spinel	(iodide .						66		
Sodium chlorate Dussaud. Spinel	Sodalite f blue .						66		Fourner
Sodium chlorate Dussaud. Spinel) clear like	wate	r						reusher.
Spinel DesCloiseaux.	Sodium chlorate								
Strontium nitrate " 1.5667 Fock.	Spinel	•						1.7155	
	Strontium nitrate	•	•			•	66		Fock.

Index of Refraction of Iceland Spar.

The determinations of Carvallo, Mascart, and Sarasin cover a considerable range of wave-length, and are here given. Many other determinations have been made, but they differ very little from those quoted.

Line of	Wave-	Index of ref	raction for —		Waye-	Index of ref	raction for –	
spectrum.	length in cms. \times 10 ⁶ .	Ordinary ray.	Extraordi- nary ray.	Line of spectrum.	length in cms. X 10 ⁶ .	Ordinary ray,	Extraordi- nary ray.	
	Authority	: Carvallo.		Authority : Sarasin.				
	215	oner	1.4753	Cd_{12}	32.53	1.707.40	1.50857	
-	198	1.6279	-	Cd ₁₇	27.46	.74151	.52276	
-	177	-	.4766	Cd_{18}	25.71	.76050	.53019	
-	1 54	.6350	-	Cd_{23}	23.12	.80248	.54559	
-	145	.6361	•4779	Cd_{24}	22.64	.81300	.54920	
-	122	.6403	-	Cd_{25}	21.93	.83090	-55514	
-	108	.6424	•44799	Cd_{26}	21.43	.84580	·55993	
A	76.04	.65006	.48275					
В	68.67	.65293	.48406		Authority	: Mascart.		
			J	A	-	1.65013	1.48285	
	Authority	y: Sarasin.		a	-	.65162		
Α	76.04	1.65000	1.48261	В	-	.65296	.48409	
a	71.84	.65156	.48336	C	-	.65446	.48474	
В	68.67	.65285	.48391	D	-	.65846	.48654	
CdI	64.37	.65501	.48481	E	_	.66354	.48885	
D	58.92	.65839	.4864.4	b_4	_	.66446	-	
Cd_2	53.77	.66234	.48815	F	-	.66793	.49084	
Cd ₃	53.36	.66274	.48843	G	-	.67620	.49470	
Cd_4	50.84	.66525	.48953	Н	-	.68330	•49777	
F	48.61	.66783	49079	L	-	.68706	.49941	
Cd ₅	47.99	.66858	.49112	М	-	.68966	.50054	
Cd ₆	46.76	.67023	.49185	N	-	.69441	.50256	
Cd7	44.14	.67417	.49367	0	-	.69955	.50.486	
h	41.01	.68036	.49636	Р	-	.70276	.50628	
н	39.68	.68319	-49774	Q	-	.70613	.50780	
Cd ₉	36.09	.69325	. 50228	R	-	.71155	.51028	
Cd10	34.65	.69842	.50452	S	-	.71580	-	
Cd11	34.01	.70079	.50559	Т	-	.71939	-	

Index of Refraction of Quartz.

Line or wave-	Index	for —	Line	Inde	x for —		
length in cms. X 10 ⁶ .	Ordinary ray.	Extraordinary ray.	of spectrum.	Ordinary ray.	Extraordinary ray.		
	Authority: Sarasin.	*	Quincke (right-handed quartz).				
			B C D	1.53958 .54087	1.54780 ·54933		
$\begin{array}{c} Cd_1\\ D\\ Cd_2\\ Cd_3\\ Cd_4\end{array}$	1.54227 .54419 .54655 .54675	1.55124 ·55335 ·55573 ·55595	E F G	•54335 •54649 •54868 •55241	.55199 .55508 .55758 .56193		
Cd_4 Cd_5 Cd_6 Cd_7	.54825 .55014 .55104	•55749 •55943 •56038	Qui	ncke (left-handed q	uartz).		
$\begin{array}{c} Cd_9 \\ Cd_{10} \\ Cd_{11} \\ Cd_{12} \\ Cd_{17} \\ Cd_{18} \\ Cd_{23} \end{array}$.55318 .56348 .56617 .56744 .57094 .58750 .59624 .61402	.56270 .57319 .57599 .57741 .58097 .59812 .60713 .62561	B C D E F G	1.54022 .54092 .54318 .54575 .54845 .55246	1.54880 ·54945 ·55245 ·55533 ·55801 ·56163		
$\begin{array}{c} \mathrm{Cd}_{24}\\ \mathrm{Cd}_{25}\\ \mathrm{Cd}_{26}\\ \mathrm{Zn}_{27}\end{array}$.61816 .62502 .63040	.62992 .63705 .64268	Authority : Mascart.				
$\begin{array}{c} Zn_{27} \\ Zn_{28} \\ Zn_{29} \\ Al_{30} \\ Al_{31} \\ Al_{32} \end{array}$.63569 .64041 .64566 .65070 .65990 .67500	.64813 .65308 .65852 .66410 .67410 .68910	A a B C D E	1.53902 54018 .54099 .54188 .54423 .54718	1.54812 .54919 .55002 .55095 .55338 .55636		
	Authority: Rubens.		b ₄ F G H L	•54770 •54966 •55429 •55816 •56019	•55694 •55897 •56372 •56770 •56974		
43.4(Hγ) 48.5(F) 59.0(G) 65.6(C) 83.9 90.4	1.5538 -5499 -5442 -5419 -5376 -5364		M N O P Q R	.56150 .56400 .56668 .56842 – –	-57121 -57381 -57659 -57822 -57998 -58273		
97.9 106.7 117.4	•5353 •5342 •5325	-	Authority: Var	n der Willigen (left-	handed quartz).		
1 30.5 146.8 167.9 195.7 234.8	1 30.5 .5310 1 46.8 .5287 167.9 .5257 195.7 .5216		A B C D E	1.53914 .54097 .54185 .54419 .54715	1.54806 .54998 .55085 .55329 .55 <u>9</u> 33		
			F G H	.54966 .55422 .55811	•55 ⁸ 55 •56365 •56769		

* For wave-lengths, see Tables 190 and 192.

SMITHSONIAN TABLES.

ъ

T.	ABLE	194. —	Uniaxial	Crystals.
----	------	--------	----------	-----------

Substar	ice.				Line of spec- trum,	Index of r Ordinary ray.	efraction. Extraordi- nary ray.	Authority.
Alunite (alum stone) . Ammonium arseniate . Anatase Apatite Benzil Beryl Brucite Calomel Corundum (ruby, sapph Dioptase Corundum (ruby, sapph Dioptase Emerald (pure) Ice at — S° C Idocrase Idocrase Silver (red ore) Sodium arseniate . " " " " Silver (red ore) Sodium arseniate . " " " … Silver (red ore) Sodium arseniate . " " " … Silver (red ore) Sodium arseniate . " " … Silver (red ore) Sodium arseniate . " " … Silver (red ore) Sodium arseniate . " " … Silver (red ore) . Sodium arseniate . " " …	ire, etc	· · · · · ·			D red D D D D F ed red green green D D D D C D D D D D D D D D D D D D C	1.573 1.577 2.5354 1.6390 1.6588 1.589 to 1.570 1.560 1.96 2.854 1.767 to 1.769 1.667 1.584 1.309 1.719 to 1.722 1.539 1.717 1.564 1.493 3.084 1.459 1.587 1.446 1.614 1.997 1.637 to 1.633 to 1.650 1.92	1.592 4.524 2.4959 1.6345 1.6784 1.582 to 1.566 1.581 2.60 3.199 1.759 1.702 1.723 1.717 to 1.720 1.541 1.515 1.515 1.515 1.501 2.881 1.467 1.336 2.452 1.519 2.093 1.619 1.616 to 1.625 1.97	Levy & Lacroix. De Senarmont. Schrauf. " DesCloiseaux. Various. Kohlrausch. De Senarmont. DesCloiseaux.
66 b6 e	•	•	•	+	D	1.924	1.968	Sanger.

TABLE 195. - Biaxial Crystals.

	Line of	Inc	lex of refracti	ion.	Authority.
Substance.	spe c- Irum.	Minimum.	Interme- diate.	Maximum.	Autionity.
Anglesite.Anhydrite.Antipyrin.Aragonite.Aragonite.Aragonite.Barite.Borax.Borax.Copper sulphate.Gypsum.Mica (muscovite).Olivine.Orthoclase.Potassium bichromate." nitrate." sulphate.Sugar (cane).Sulphur (rhombic).Topaz (Brazilian).	D D D D D D D D D D D D D D D D D D D	1.8771 1.5693 1.5101 1.5301 1.6720 1.636 1.4467 1.5140 1.5208 1.5601 1.5601 1.5190 1.7202 1.3346 1.4932 1.5397 1.9505 1.6294	1.8823 1.5752 1.6812 1.6816 1.6779 1.637 1.4694 1.5368 1.5228 1.5936 1.678 1.5237 1.7380 1.5056 1.4946 1.5667 2.0383 1.6308	1.8936 1.6130 1.6858 1.6859 1.6810 1.648 1.4724 1.5433 1.5298 1.5977 1.697 1.5260 1.8197 1.5064 1.4980 1.5716 2.2405 1.6375	Arzruni. Mülheims. Glazebrook. Rudberg. DesCloiseaux. Various. Dufet. Kohlrausch. Mülheims. Pulfrich. DesCloiseaux. " Dufet. Schrauf. Topsöe & Christiansen. Calderon. Schrauf. Mülheims.
Topaz (different kinds) Zinc sulphate	D { D	1.630 to 1.613 1.4568	1.631 to 1.616 1.4801	1.637 to 1.623 1.4836	{ Various. Topsöe & Christiansen.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

			[Indi	ices of re	fraction	for sp	ectrum l	ines.				
Su	bstance.	Density.	Temp. C.	C	D	F		Η _γ	H	An	thority.		
			(a) S	SOLUTIONS	s in Wa	TFR.							
	ium chloride chloride . "	1.067 .025 .398 .215 .143	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.4427	0 .355 9 .449 2 .402	515 38 206	- 1.39336 36243 46001 41078 38666		3 1 3	igen.		
Nitric ad Potash (" " double		20.75 18.75 11.0 solution normal normal	1.40817 .39893 .40052 .34087 .34982 .35831	.4018 .4028 .3427 .3517	1 .408 1 .408 8 .347 9 .350	1.41774 - .40857 - .40808 - .34719 1.3504 .35645 .3599		.40857 – .40808 – .34719 1.35049 .35645 .35994		1.42810 .4196 .4163 _ _ _ _		
Soda (ca Sodium "	austic) chloride "	1.376 .189 .109 .035	21.6 18.07 18.07 18.07 18.07	1.41071 .37562 .357 51 .34000	·3778 ·3595	9 .364	322 I 42	- .38746 .36823 .34969	1.4287: 	2 Will Schu "	itt.		
	" " ··································			1.38283 •43444 •42227 •36793 •33663	.4366 .4246 .3700	9 .441 6 .429 9 .374	.44168 – .42967 – .37468 –		44883 43694		igen.		
Zinc chlo	orid e " ·	1.359 .209	26.6 26.4	1.39977 .37292			1.40797 – .38026 –		1.4173 .3884	,	6		
			(b) Solu	TIONS IN	ETHYL	ALCOHO	! L.						
Ethyl ald	4.6	0.789 .932	25.5 27.6	1.35791 -35372				-	1.3709. .3666		igen.		
urated	(nearly sat- l) (saturated) .	-	16.0 16.0	.3918 .3831				.3759 Kundt. .3821 "					
a 4.5 p	re. — Cyanin ber cent. solut 9.9 pe r cent. s	ion µ _A ==	I.4593, 1	$\iota_B = 1.40$	$595, \mu_{F}$	(green)	= 1	.4514, /	u _a (blu	e) == 1	.4554.		
	(c) Solutio	NS OF POT	TASSIUM]	Permano	GANATE	IN V	VATER.*					
lin cms.	Spec- trum line, 1% sol.	Index for 2 % sol.	Index for 3 % sol.	Index for 4 % sol.	Wave- length in cms. \times 10 ⁶ .	Spe c- trum line.	Ind for 1%	r f	or	ndex for % sol.	Index for 4 % sol.		
68.7 65.6 61.7 59.4 58.9 56.8 55.3 52.7 52.2	B 1.3328 C .3335 3343 3354 D .3353 3362 3366 E .3363 3362	1.3342 .3348 .3365 .3373 .3372 .3387 .3395 - .3395	I. 3365 .3381 .3393 	1.3382 .3391 .3410 .3426 .3426 .3426 .3445 .3438 - -	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	- F - - -	1.33 -33 -33 -33 -34 -34 -34	74 ·3 77 81 ·3 97 ·3 97 ·3 17	- 395 402 421	3386 3398 3414 3426 - - 3457	- 1.3404 .3408 .3413 .3423 .3439 .3452 .3468 -		

SMITHSONIAN TABLES.

* According to Christiansen.

.

INDEX OF REFRACTION.

Indices of Refraction of Liquids relative to Air.

Substance.	Temp.	Inc	lex of refra	ction for s	pectrum lir	108.	Authority.
Substance.	C.*	0	D	F	Η _γ	H	
Acetone Almond oil Analin * Aniseed oil "" "	10 ⁰ 0 20 21.4 15.1	1.3626 -4755 -5993 -5410 -5508	1.3646 .4782 .5863 .5475 .5572	1.3694 .4847 .6041 .5647 .5743	1.3732 .6204 _	- - 1.6084	Korten. Olds. Weegmann. Willigen. Baden Powell.
Benzene † "Bitter almond oil . Bromnaphtalin	10 21.5 20 20	1.4983 -4934 -5391 -6495	1.5029 -4979 - .6582	1.5148 .5095 .5623 .6819	- - 5775 .7041	1.5355 •5304 - •7289	Gladstone. " Landolt. Walter.
Carbon disulphide ‡ """" Cassia oil """	0 20 10 19 10 22.5	1.6336 .6182 .6250 .6189 .6007 .5930	1.6433 .6276 .6344 .6284 .6104 .6026	1.6688 .6523 .6592 .6352 .6389 .6314	1.6920 .6748 	1.7175 .6994 .7078 .7010 .7039 .6985	Ketteler. " Gladstone. ' Dufet. Baden Powell. """
Chinolin Chloroform " Cinnamon oil	20 10 30 20 23.5	1.6094 .4466 - .4437 .6077	1.6171 .4490 .4397 .4462 .6188	1.6361 •4555 - •4525 .6508	1.6497 	.4661 .4561 –	Gladstone. Gladstone & Dale. """ Lorenz.' Willigen.
Ether Ethyl alcohol """" """	15 15 0 10 20 15	1.3554 .3573 .3677 .3636 .3596 .3621	1.3566 -3594 -3695 -3654 -3614 -3638	1.3606 .3641 .3739 .3698 .3657 .3683	- - - - - 3773 - 3690 -	1.3683 .3713 - - .3751	Gladstone & Dale. Kundt. Korten. " Gladstone & Dale.
Glycerine Methyl alcohol Olive oil Rock oil	20 1 5 0	1.4706 .3308 .4738 .4345	- 1.3326 .4763 .4573	1.4784 .3362 .4825 .4644	1.4828 - - -	- .342I -	Landolt. Baden Powell. Olds. "
Turpentine oil " " Toluene Water § "	10.6 20.7 20 16 16	1.4715 .4692 .4911 .3318 .3318	1.4744 .4721 .4955 .3336 .3337	1.4817 -4793 -5070 -3377 -3378	- .5170 .3409 -	1.4939 .4913 - - .3442	Fraunhofer. Willigen. Bruhl. Dufet. Walter.

* Weegmann gives $\mu_D \equiv 1.59668 - .000518t$. Knops gives $\mu_P \equiv 1.61500 - .00056t$.

† Weegmann gives $\mu_D = 1.51474 - .000665 t$. Knops gives $\mu_D = 1.51399 - .000644 t$.

‡ Wüllner gives $\mu_c \equiv 1.63407 - .00078 t$; $\mu_F \equiv 1.66908 - .00082 t$; $\mu_h \equiv 1.69215 - .00085 t$.

§ Dufet gives $\mu_D = 1.33397 - 10^{-7} (125t + 20.6t^2 - .000435t^3 - .00115t^4)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D = 1.33373 - 10^{-7} (20.14t^2 + .000494t^4)$.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 = \frac{n_0 - 1}{1 + \alpha t 760}$, where n_t is the index of refraction for temperature *t*, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimetres of mercury. Taking the mean value, for air and white light, of $n_0 - 1$ as 0.0002936 and α as 0.00367 the formula becomes

$$n_t - 1 = \frac{.0002936}{1 + .00367t} \cdot \frac{P}{1.0136 \times 10^6} = \frac{.0002895}{1 + .00367t^6} \frac{P}{10^6}$$

where
$$P$$
 is the pressure in dynes per square centimetre, and t the temperature in degrees Centigrade.

Spectrum	Index	of refraction accord	Spectrum	Index of refraction according to		
line.	Ketteler.	Lorenz.	Kayser & Runge.	line.	Kayser & Runge.	
A B C D	1.0002929 2935 2938 2947	1.0002893 2899 2902 2911	1.0002905 2911 2914 2922	M N O	1.0002993 3003 3015	
E F	2958 1.0002968	2922 1.0002931	2933 1.0002943 2962	P Q R	1.0003023 3031 3043	
G H K L	2987 3003 –	2949 2963 – –	2978 2980 2987	S T U	1.0003053 3064 3075	

(b) The following data have been compiled from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia " Argon Benzene	D white D D D	1.001079–1.001100 1.000381–1.000385 1.000373–1.000379 1.000281 Rayleigh. 1.001700–1.001823	Hydrogen "Hydrogen sul- phide { Methane	white white D white	1.000138–1.000143 1.000139–1.000143 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide "" Carbon disul- phide {	D white D white D	1.001152 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	" Methyl alcohol. Methyl ether Nitric oxide. """	D D white D	1.000444 Mascart. 1.000549–1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- oxide { Chlorine " Chloroform	white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436–1.001464	Nitrogen Nitrous oxide . 	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000043 Rayleigh.	"Pentane Sulphur dioxide ""Water	D D white D white	1.000271–1.000272 1.001711 Mascart. 1.000665 Dulong. 1.000686 Ketteler. 1.000261 Jamin.
Hydrochloric { acid}	white D	1.000449 Mascart. 1.000447 ''	۰۰ · · · ·	D	1.000249-1.000259

TABLE 199. ROTATION OF PLANE OF POLARIZED LICHT.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimetre of the solution. The examples are quoted from Landolt & Bornstein's "Phys. Chem. Tab." The tollowing symbols are used : -he solution.

$$p \equiv$$
 number grammes of the active substance in 100 grammes of the

$$c \equiv 0$$
 solvent 0 $u = 0$
 $q = 0$ d active 0 u cubic centimetre 0

Right-handed rotation is marked +, left-handed -..

Line of spectrum.	Wave-length according to Angström in cms. × 10 ⁶ .	Tartaric acid, * CuH_0O_0 , dissolved in water. $q \equiv 50$ to 95, temp. $\equiv 24$ C.	Camphor, • (dissolved in q = 50 t temp. = 2	alcohol.	Santonin,† C dissolved in cl q = 75 to temp. = 2	hloroform. 96.5,			
$B \\ C \\ D \\ E \\ b_1 \\ b_2 \\ F \\ e$	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ + 1.950 + 0.13030 q + 0.153 + 0.17514 q - 0.832 + 0.19147 q - 3.598 + 0.23977 q - 9.657 + 0.31437 q	$38^{\circ}.549 - 6$ 51.945 - 6 74.331 - 6 -79.348 - 6 99.601 - 6 149.696 - 6	0.0964 q 0.1343 q 0.1451 q 0.1451 q 0.1912 q	$ \begin{array}{r} -1.40^{\circ}.1 + \\ -1.49.3 + \\ -202.7 + \\ -285.6 + \\ -302.38 + \\ -365.55 + \\ -534.98 + \end{array} $	0.1555 <i>q</i> 0.3086 <i>q</i> 0.5820 <i>q</i> 0.6557 <i>q</i> 0.8284 <i>q</i>			
		Santonin,† $C_{15}H_{18}O_3$, * dissolved in alcohol. $c \equiv 1.782$. temp. $\equiv 20^{\circ}$ C.	Santonin,† dissolved in alcohol. c = 4.046. temp. = 20° C.	$C_{15}11_{18}O_3,$ dissolved in chloroform $c \equiv 3, 1-30.5.$ temp. \equiv 20 C.	Santonic acid, † $C_{15}H_{20}O_{41}$ dissolved in chloroform. c = 27.192. temp. = 20°C.	Cane sugar, 1 C ₁₂ $\Pi_{22} \Theta_{11}$, dissolved in water. $p \equiv 10$ to 30.			
B C D E b ₁ b ₂ F e G g	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.07 42.26	$- 110.4^{\circ} - 118.8 - 161.0 - 222.6 - 237.1 - 261.7 - 380.0 - 261.7 - 260.7 - 261.7 $	442° 504 693 991 1053 - 1323 2011 - 2381	484° 549 754 1088 1148 - 1444 2201 - 2610	$ \begin{array}{r} -49^{\circ} \\ -57 \\ -74 \\ -105 \\ -112 \\ -137 \\ -197 \\ -230 \end{array} $	47°.56 52.70 60.41 84.56 57.88 101.18 131.96			
* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. † Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.									

ROTATION OF PLANE OF POLARIZED LICHT.

TABLE 200.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quartz	z (Soret & S	arasin, Arch.	de Gen.	1882, or C. R	95, 1882).
Spec- trum line.	Wave- length.	Temp. C.	Rotation per nm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
α B C D E F G G H L M N P Q R T C d ₁₇ C d ₁₅	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.544 33.931 32.341 30.645 29.918 28.270 25.038	I 5°.0 17.4 20.6 I 8.3 16.0 11.9 10.1 I 4.5 I 3.3 I 4.0 10.7 I 2.9 I 2.1 I 1.9 I 3.1 I 2.8 I 2.2 I 1.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	$ \begin{array}{c} A\\a\\B\\C\\D_2\\D_1\\E\\F\\G\\h\\H\\K\\L\\M\end{array} $	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 27.262	12°.668 14.304 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	$\begin{array}{c} Cd_9 \\ N \\ Cd_{10} \\ O \\ Cd_{11} \\ P \\ Q \\ Cd_{12} \\ R \\ Cd_{17} \\ Cd_{18} \\ Cd_{23} \\ Cd_{23} \\ Cd_{24} \\ Cd_{25} \\ Cd_{26} \end{array}$	36.090 35.518 34.655 34.400 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63 ² .268 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

* The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines. SMITHSONIAN TABLES.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Under P is the number of grammes of the substance dissolved in 100 cubic centimetres of water. Under C is the amount of lowering of the freezing-point. The data have been obtained by interpolation from the results published by the authorities quoted.

Substance and observer.	Р	C°	Substance and observer.	Р	C°	Substance and observer.	Р	C°
AgNO3 F. M. Raoult.*	5 10 15 20 25	0.93 1.71 2.38 2.97 3.53	ZnSO₄ F. M. Raoult.*	I 2 3 4 5	0.10 0.23 0.36 0.49 0.61	MgCl ₂ S. Arrhenius.†	0.5 1.0 1.5 2.0 2.5	0.26 0.53 0.81 1.10 1.39
	30 35 40 45 50	4.00 4.43 4.80 5.15 5.45		10 15 20 25 30	1.23 1.85 2.50 3.19 3.94		3.0 3.5 4.0 4.5 5.0	1.69 2.00 2.32 2.65 2.98
	55 60 65	5·75 6.00 6.26	CuSO4 F. M. Raoult.*	I 2	0.15	BaCl ₂	5.5 6.0	3.32 3.67
Ca(NO ₃) ₂ F. M. Raoult.*	1 2 3 4	0.28 0.56 0.84 1.12		3 4 5 6 7	0.40 0.51 0.62 0.72 0.82	Harry C. Jones.§	0.5 1.0 1.5 2.0	0.119 0.234 0.344 0.450
	5 10 15 20	1.40 2.78 4.26 6.00		7 8 9 10	0.92 1.02 1.12	SrCl ₂ S. Arrhenius.†	0.5 1.0 1.5 2.0	0.17 0.34 0.50 0.65
Cd(NO ₃)2 Harry C. Jones.§	0.5 1.0	0.112 0.217	CdSO4 F. M. Raoult.*	1 2 3 4	0.09 0.19 0.28 0.38		2.5 3.0 3.5 4.0	0.80 0.95 1.12 1.29
Na2SO4 F. M. Raoult.*	1 2 3 4 5	0.28 0.56 0.84 1.12 1.40		5 10 15 20 25	0.48 1.00 1.54 2.11 2.77		4·5 5.0 5·5 6.0	1.44 1.60 1.76 1.93
K ₂ SO ₄ S. Arrhenius.	0.5 1.0 1.5	0.14 0.27 0.39	NaCl	30 35 0.5	3.51 4.40 0.32	CuCl ₂ + 2H ₂ O S. Arrhenius.†	0.5 1.0 1.5 2.0	0.15 0.30 0.44 0.58
	2.0 2.5 3.0 3.5 4.0	0.51 0.63 0.74 0.85 0.96	S. Arrhenius.†	1.0 1.5 2.0 2.5 3.0	0.62 0.92 1.22 1.52 1.82		2.5 3.0 3.5 4.0 4.5	0.72 0.86 1.00 1.14 1.29
	4.5 5.0 5.5 6.0 6.5 7.0	1.07 1.17 1.27 1.37 1.47 1.57	KCl Harry C. Jones.‡	0.5 1.0 1.5 2.0 2.5	0.234 0.464 0.693 0.915 1.136		5.0 5.5 6.0 6.5 2.0	I.43 I.57 I.7I I.85 2.00
MgSO4	7.5 8.0 I	1.67 1.77 0.18	LiCl S. Arrhenius.†	3.0 0.5 1.0	1.359 0.45 0.89	CdCl ₂ Harry C. Jones.§	0.5 1.0 1.5	0.120 0.227 0.322
F. M. Raoult.*	2 3 4 5	0.35 0.52 0.70 0.89		1.5 2.0 2.5	1.34 1.78 2.23	CaCl2 S. Arrhenius.†	0.5 1.0 1.5 2.0	0.23 0.45 0.68 0.91
	10 15 20	1.77 2.78 3.68	NH4Cl Harry C. Jones.‡	0.5 1.0 1.5	0.326 0.644 0.957		2.5 3.0 3.5 4.0	1.14 1.37 1.61 1.85

* In "Zeits. für Physik. Chem." vol. 2, p. 489, 1888. † Ibid. vol. 2, p. 491, 1888. ‡ Ibid. vol. 11, p. 110, 1893. § Ibid. vol. 11, p. 529, 1893.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Substance and observer.	Р	Ch	Substance and observer.	Р	C°	Substance and observer.	P	C°
ZnCl ₂ Harry C. Jones.* CdBr ₂	0.5 1.0 0.5	0.185 0.348 0.080	Alcohol, C ₂ 11 ₆ O Harry C. Jones.‡	0.3 0.4	0.044 0.087 0.129 0.170	H ₂ SO ₃ S. Arrhenius.†	0.5 1.0 1.5 2.0	0.15 0.30 0.45 0.60
Harry C. Jones.*	1.0 1.5 2.0 2.5 3.0	0.142 0.195 0.248 0.300 0.352		0.5	0.212 0.402		2.5 3.0 3.5 4.0 4.5	0.75 0.90 1.05 1.20 1.35
CdI2 S. Arrhenius.†	1 2 3 4	0.06 0.12 0.19 0.25	Acetic acid, C2H4O2 Harry C. Jones.‡	0.1 0.2 0.3 0.4 0.5	0.034 0.067 0.099 0.131 0.162		5.0 5.5 6.0 6.5 7.0	1.50 1.65 1.80 1.95 2.10
	5 10 15 20 25	0.32 0.63 0.92 1.22 1.52	Р(ОН)3	1.0 0.5	0.313	H ₂ SO ₄ Harry C. Jones.‡	0.1 0.2 0.3 0.4	0.044 0.088 0.131 0.172
NaOH Harry C. Jones.‡	0.I 0.2 0.3 0.4	0.092 0.178 0.260 0.337	S. Arrhenius.†	1.0 1.5 2.0	0.35 0.50 0.65	H₃PO₄ S. Arrhenius.†	0.5 1.0 0.5 1.0	0.212 0.402 0.14 0.27
KOH Harry C. Jones.‡	0.4 0.5 0.1 0.2	0.410 0.064 0.126	HIO ₃ S. Arrhenius.†	0.5 1.0 1.5	0.09 0.18 0.27		1.5 2.0 2.5 3.0	0.38 0.49 0.60 0.70
	0.3 0.4 0.5 0.6 0.7	0.189 0.252 0.312 0.370 0.430		2.0 2.5 3.0 3.5 4.0	0.35 0.44 0.52 0.61 0.69	Cane sugar. F. M. Raoult.§	3.5 4.0 0.5 1.0	0.80 0.90 0.030 0.060
NII4OH Harry C. Jones.‡	0.05 0.10 0.15	0.028 0.056 0.084		4.5	0.78 0.86		2.0 3.0 4.0 5 0	0.118 0.176 0.234 0.292
Na₂CO₃ Harry C. Jones.‡	0.20 0.25 0.1 0.2	0.113 0.143 0.048 0.096	HCI Harry C. Jones.‡	0.1 0.2 0.3 0.4	0.099 0.198 0.296 0.395		10.0 15.0 20.0 25.0 30.0	0.587 0.881 1.174 1.465 1.752
	0.3 0.4 0.5 1.0	0.143 0.188 0.228 0.417		0.5	0.493	Glycerine.	35.0 40.0 1.0	2.048 2.333 0.22
K ₂ CO ₃ Harry C. Jones.‡	0.1 0.2 0.3 0.4 0.5 1.0	0.039 0.078 0.116 0.152 0.187 0.343	HNO3 Harry C. Jones.‡	0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.061 0.118 0.175 0.232 0.285 0.33 ⁸ 0.390	S. Arrhenius.†	2.0 3.0 4.0 5.0 6.0 8.0 10.0	0.42 0.64 0.87 1.11 1.34 1.83 2.32
	1.0	0.343		0.7	5.555		12.0	2.83

* In "Zeits. für Physik. Chem." vol. 11, p. 529, 1883. † Ibid. vol. 2, p. 491, 1888. ‡ Ibid. vol. 12, p. 623, 1893. § F. M. Raoult, C. R. 114, p. 268. $\| 50\%$ solution solidifies at -31° C., according to Fabian, "Ding. Poly. Journ." vol. 155, p. 345. This gives an average of .3 per gramme.

TABLE 202.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gramme-molecules of the salt in a litre of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimetres barometric pressure.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccc} Al_2(SO_4)_3 & & & & \\ AlCl_3 & & & & \\ Ba(SO_3)_2 & & & \\ Ba(OH)_2 & & & \\ Ba(NO_3)_2 & & & \\ \end{array}$	12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.8 16.4 16.8 9.9 16.4	33.3 36.7 38.8 23.0 34.8	70.5 77.6 91.4 56.0 74.6	108.2 150.0 106.0 139.3	204.7 161.7	205.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.0 17.7 4.1 7.6	39.8 44.2 8.9 14.8	95.3 105.8 18.1 33.5	166.6 191.0 52.7	241.5 283.3	319.5 368.5			
$\begin{array}{cccc} CdBr_{2} & \cdot & \cdot & \cdot \\ CdCl_{2} & \cdot & \cdot & \cdot \\ Cd(NO_{3})_{2} & \cdot & \cdot \\ Cd(ClO_{3})_{2} & \cdot & \cdot \end{array}$	8.6 9.6 15.9 17.5	17.8 18.8 36.1	36.7 36.7 78.0	55.7 57.0 122.2	80.0 77•3	99.0			
$\begin{array}{ccc} \operatorname{CoSO}_4 & \cdot & \cdot \\ \operatorname{CoCl}_2 & \cdot & \cdot & \cdot \end{array}$	5.5 15.0	10.7 34.8	22.9 83.0	45.5 136.0	186.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.3 5.8 6.0 6.6 7.3	39.2 10.7 12.3 14.0 15.0	89.0 24.0 25.1 28.6 30.2	1 52.0 42.4 38.0 45.2 46.4	218.7 51.0 62.0 64.9	282.0 81.5	332.0 103.0	146.9	189.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.9 10.2 10.3 10.6 10.9	26.5 19.5 21.1 21.6 22.4	62.8 33·3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2 126.3	148.0
KHSO4 KNO2 KClO4	10.9 11.1 11.5	21.9 22.8 22.3	43·3 44.8	65.3 67.0	85.5 90.0	107.8 110.5	1 29.2 1 30.7	170.0 167.0	198.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.2 11.6	24.4 23.6	48.8 59.0	74.1 77.6	100.9 104.2	128.5 132.0	152.2 160.0	210.0	255.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.5 13.9 13.9 14.4 15.0	25.3 28.3 33.0 31.0 29.5	52.2 59.8 75.0 68.3 64.0	82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	141.5 226.4 209.0 181.8	171.8 258.5 223.0	225.5 350.0 309.5	278.5 387.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	1 5 5.1 17 5.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393·5 438.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.8 13.6 15.4 15.9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	1 30.0 1 54.5 171.0	168.0 206.0	264.0	357.0	445.0

* Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47.5 183.3 174.8 205.3	277.0 298.5	377.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0 15.0 10.5 10.9 10.6	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	1 26.7 1 89.7 1 67.8	1 57.1 231.4 198.8
NaClO ₃ (NaPO ₃) ₆	10.5	23.0	.48.4	73.5	98.5	123.3	147-5	196.5	223.5
(NaPO ₃) ₆ NaOH NaNO ₂ NaHPO ₄	11.0 11.8 11.6 12.1	22.8 24.4 23.5	48.2 50.0 43.0	77.3 75.0 60.0	107.5 98.2 78.7	1 39.1 1 22.5 99.8	172.5 146.5 122.1	243.3 189.0	31.4.0 226.2
NaHCO ₂ NaSO ₄ NaCl NaBrO ₃ NaBr	1 2.9 1 2.6 1 2.3 1 2.1 1 2.6	24.1 25.0 25.2 25.0 25.0	48.2 48.9 52.1 54.1 57.0	77.6 74.2 80.0 81.3 89.2	102.2 111.0 108.8 124.2	127.8 143.0 136.0 159.5	152.0 176.5 197.5	198.0 268.0	239.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.1 13.2 14.3 14.5 14.8	25.6 22.0 27.3 30.0 33.6	53.5 53.5 65.8 71.6	99.5 80.2 105.8 115.7	1 36.7 111.0 146.0 162.6	177.5	221.0	301.5	370.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5 17.1 12.8 11.5 12.0	30.0 36.5 22.0 25.0 23.7	52.5 42.1 44.5 45.1	62.7 69.3	82.9 94.2	103.8 118.5	121.0 138.2	1 52.2 179.0	180.0 213.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.5 11.0 11.9 12.9 5.0	22.0 24.0 23.9 25.1 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94·5 93.0 99·4 104·5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0		218.0 228.5 243.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.1 16.1 12.3 7.2 15.8	37.0 37.3 23.5 20.3 31.0	86.7 91.3 45.0 `47.0 64.0	1.47.0 156.2 63.0 97.4	212.8 235.0 131.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 17.8 4.9 9.2 16.6	38.8 42.0 10.4 18.7 39.0	91.4 101.1 21.5 46.2 93.5	1 56.8 179.0 42.1 7 5.0 1 57.5	66.2 107.0	281.5	195.0		

SMITHSONIAN TABLES.

195

.

TABLE 203.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER."

This table gives the number of grammes of the salt which, when dissolved in 100 grammes of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimetres.

Salt.	1°C. 2	2° 3°	4 °	5 °	7 °	10 °	15°	20 °	25°
$\begin{array}{cccc} BaCl_2 + 2H_2O & & \\ CaCl_2 & & \\ Ca(NO_3)_2 + 2H_2O & \\ KOH & & \\ KC_2H_3O_2 & & \\ \end{array}$	6.0 I I 2.0 2 4.7	1.1 47.3 1.5 16.5 5.5 39.5 9.3 13.6 2.0 18.0	63.5 21.0 53.5 17.4 24.5	(71.6 gi 25.0 68.5 20.5 31.0		.5 rise 41.5 152.5 34.5 63.5	of temp 55.5 240 0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl K ₂ CO ₃ KClO ₃ KI KNO ₃	11.5 2: 13.2 2: 15.0 30	6.7 23.4 2.5 32.0 7.8 44.6 0.0 45.0 1.0 47.5	29.9 40.0 62.2 60.0 64.5	36.2 47·5 74.0 82.0	48.4 60.5 99.5 120.5	(57.4 78.5 134. 188.5	103.5		8°.5) 152.5 res 18°.5)
$\begin{array}{cccc} K_{2}C_{4}H_{4}O_{6}+\frac{1}{2}H_{2}O & . \\ KNaC_{4}H_{4}O_{6} & . & . \\ KNaC_{4}H_{4}O_{6}+4H_{2}O \\ LiCl & . & . & . \\ LiCl+2H_{2}O & . & . \end{array}$	18.0 30 17.3 3. 25.0 5 3.5 7	6.0 54.0 4.5 51.3 3.5 84.0 7.0 10.0 3.0 19.5	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0 32.0	126.5 119.0 266.0 18.5 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510.0 50.0 160.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.5 87 4.3 8 6.6 12	2.0 33.0 7.5 138.0 8.0 11.3 2.4 17.2 8.5 28.0	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	110.0 30.0 (40.7 g 99.5	170.0 41.0 gives 8° 156.0	241.0 51.0 .8 rise) 222.0	334·5 60.1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.0 27 17.2 3. 21.4 44	0.0 46.1 7.0 39.0 4.4 51.4 4.4 68.2 5.0 78.6	62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3 139.3	118.1 76.0 183.0 216.0		484.0 147.0 gives 8 1765.0	6250.0 214.5 °.4 rise)	302.0
$\begin{array}{rcl} Na_{2}CO_{3} + 10H_{2}O & .\\ Na_{2}B_{4}O_{7} + 10H_{2}O & .\\ NH_{4}CI & . & .\\ NH_{4}NO_{3} & . & .\\ NH_{4}SO_{4} & . & .\\ SrCl_{2} + 6H_{2}O & . & . \end{array}$	39. 9(6.5 12 10.0 20 15.4 30	6.7 177.6 3.2 254.2 2.8 19.0 5.0 30.0 5.1 44.2 5.0 60.0	369.4 898.5 24.7 41.0 58.0 81.0	1052.9 (5555.5 29.7 52.0 71.8 103.0	gives 39.6 74.0 99.1	56.2 108.0	88.5 172.0 gives	248.0 108.2)	337.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.0 4 17.0 3	5.0 63.6 4.4 52.0 5.0 62.0	81.4 70.0 86.0 116.0	97.6 87.0 112.0 145.0	123.0 169.0 208.0	177.0 262.0	524.0 273.0 536.0 553.0	374.0 1316.0 952.0	484.0 50000.0
Salt. 40	° 60°	80 °	100 °	120°	140°	160°	180	200	240°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 121. .5 150. .0 1370.	.7 I 52.6 .8 230.0 .0 2400.0	345.0 4099 . 0	526.3 8547.0	800.0				

* Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

CONDUCTIVITY FOR HEAT.

Metals and Alloys.

The coefficient k is the quantity of heat in therms which is transmitted per second through a plate one continetre thick per square contimetre of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0 (1 + \alpha t)$. In the table k_0 is the value of k_t for $0 - C_{t,t}$ the temperature Centigrade, and α a constant.

Substance.	e	li _t	α	Authority.	Substance.	t	k,	Authority.
Aluminium Antimony Bismuth Brass (yellow) " (red) Cadmium Cadmium Copper German silver Iron " (wrought)* Lead Lead Mercury Silver Tin Wood's alloy Zinc	0 100 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3435 { .3619 } .0442 { .0396 } .0177 { .0164 } .2041 { .2540 } .2460 { .2827 } .2200 { .2045 } .2200 { .2045 } .7189 } .7226 .0700 } .0887 { .1665 { .1657 } .2070 } .1667 { .0836 { .0764 } .0189 { .0201 .3760 .0620 } .1110 .0960 .1528 { .1423 } .3030 }	.005357 001041 000735 002445 001492 000705 .000039 .000051 .002670 000228 000861 - .001267 .000000 - - - - .000687 - -	I I I I I I I I I I I I I I I I I I I	Clay slate, (Devonshire) Granite { from age { to slate : along cleav- across cleav- grows cleav- compact do- lomite Marbles, in- cluding lime- stone, cal- cite, and compact do- lomite Micaceous flagstone : along cleavage across cleavage across cleavage across cleavage Sand (white dry) Sandstone and h ar d grit (dry) Snow in compact layers Pasteboard Paraffin Sawdust		.00272 .00510 .00550 .00550 .00550 .00315 .00300 .00470 .00500 .00632 .00411 .00093 .00545 .00545 .00545 .00545 .00051 .00012 .00051 .0003 .00054 .0003 .00054 .0003 .00001	6 6 6 6 6 6 6 6 6 6 6 6 6 6
I Lorenz. 3 2 Berget. 4	J. Forb H. F. V	es. Veber.	Author 5 Kohlra 6 H. L. S	usch	. 7 Hjeltström.		R. Wel Stefan.	

* A repetition of Forbes's experiments by Mitchell, under the direction of Tait, shows the conductivity to increase with rise of temperature. (Trans. R. S. E. vol. 33, 1887.)

† Herschel, Lebour, and Dunn (British Association Committee).

CONDUCTIVITY FOR HEAT.

TABLE 205. - Various Substances.

Substance.	t	k _t	Au- thor- ity.			
Carbon	0 0 - 49 0 - - - - - - - - -	.000405 .000162 .000717 .000043 .000033 .002000 .000370 .000037 .000035 .0005 .00023 .000042 .00223 .000687 .000042 .00223 .00568 .00433 .00211	I I I I I I I I I I I I I I I I I I I			
AUTHORITIES. 1 G. Forbes. 3 Various. 2 H., L., & D.* 4 Neumann.						

Substance.	Density.	t	k _t	Au- thor- ity.		
Water		- 9-15 4 30 18	.002 .00120 .00136 .00129 .00157 .00124	I 2 2 3 4 5		
$\begin{array}{c} \text{Solutions in} \\ \text{water.} \\ \hline \\ \text{CuSO}_4 & \cdot \\ \text{KCl} & \cdot \\ \text{NaCl} & \cdot \\ \text{NaCl} & \cdot \\ \text{H}_2\text{SO}_4 & \cdot \\ \\ \\ \\ \text{unsO}_4 & \cdot \\ \\ \end{array}$	1.160 1.026 33 ¹ 3% 1.054 1.100 1.180 1.134 1.136	4.4 13 10-18 20.5 20.5 21 4.5 4.5	.00118 .00116 .00267 .00126 .00128 .00130 .00118 .00115	2 4 6 5 5 5 2 2		
AUTHORITIES. 1 Bottomley. 4 Graetz. 2 H. F. Weber. 5 Chree. 3 Wachsmuth. 6 Winkelmann.						

TABLE 206. - Water and Salt Solutions.

TABLE 207. — Organic Liquids.

Substance.	t	$\frac{k_t}{\times 1000}$	a	Authority.		
A cetic acid Alcohols : amyl . ethyl . methyl Carbon disulphide Chloroform Ether Glycerine Oils : olive castor petroleum . turpentine .	9-15 9-15 9-15 9-15 9-15 	-495 -343 .288 -303	- - - - - 0.12 - - .011 .0067	I I I I I 2 3 3 2 2		
AUTHORITIES. 1 H. F. Weber. 2 Graetz. 3 Wachsmuth.						

TABLE 208. - Gases.

Substance.	t	$k_t \times 1000$	a	Authority.			
Air Ammonia Carbon monoxide " dioxide .	0 0 0	.568 .458 .499 .307	.00190 .00548 _	I I I			
Ethylene Hydrogen Methane	0 0 7-S	•395 •327 •647	.00445 .00175	I I I			
Nitrogen Nitrous oxide Oxygen	7-8 7-8 7-8	.524 .350 .563	-00446 -	I I I			
AUTHORITY. 1 Winkelmann.							

* Herschel, Lebour, and Dunn (British Association Committee).

FREEZING MIXTURES.*

Column r gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (therms when A is grammes). Temperatures are in Centigrade degrees.

Substance.	А	В	C	D	E	F	G	11
$\begin{array}{c} NaC_{2}H_{3}O_{2} (cryst.) \\ NH_{4}Cl & & \\ NaNO_{3} & & \\ Na_{2}SO_{2} (cryst.) & \\ KI & & \\ CaCl_{2} (cryst.) & \\ NH_{4}NO_{3} & & \\ (NH_{4})_{2}SO_{4} & & \\ NH_{4}Cl & & \\ CaCl_{2} & & \\ NaNO_{3} & & \\ Na_{2}SO_{4} & & \\ NaNO_{3} & & \\ Na_{2}CO_{3} (cryst.) & \\ KNO_{3} & & \\ CaCl_{2} & & \\ Nh_{4}Cl & & \\ Nh_{4}Cl & & \\ NaNO_{3} & & \\ NaCl & & \\ H_{2}SO_{4} + H_{2}O & \\ (66.1 \% H_{2}SO_{4}) & \\ \end{array}$	85 30 75 140 250 60 25 30 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>10.7 13.3 13.2 10.7 10.8 13.2 10.7 10.8 13.0 -</td> <td>$\begin{array}{c} -4.7 \\ -5.1 \\ -5.3 \\ -8.0 \\ -11.7 \\ -12.4 \\ -13.6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$</td> <td>1 5.4 18.4 18.5 18.7 22.5 23.2 27.2 20.0 20.0 20.0 20.0 18.7 22.5 23.2 22.0 20.0 20.0 19.0 1.85 9.9 14.4 15.75 16.75 20.3 36.0 35.0 34.0 29.0 24.0 19.0 15.0 - <</td> <td>- - - - - - - -</td> <td>- - - - - - - - - - - - - - - - - - -</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.7 13.3 13.2 10.7 10.8 13.2 10.7 10.8 13.0 -	$\begin{array}{c} -4.7 \\ -5.1 \\ -5.3 \\ -8.0 \\ -11.7 \\ -12.4 \\ -13.6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	1 5.4 18.4 18.5 18.7 22.5 23.2 27.2 20.0 20.0 20.0 20.0 18.7 22.5 23.2 22.0 20.0 20.0 19.0 1.85 9.9 14.4 15.75 16.75 20.3 36.0 35.0 34.0 29.0 24.0 19.0 15.0 - <	- - - - - - - -	- - - - - - - - - - - - - - - - - - -

 Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.
 † Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF CASES.*

 $\theta = Critical temperature.$

P = Pressure in atmospheres.

 $\phi \equiv$ Volume referred to air at 0° and 76 centimetres pressure.

 $d \equiv$ Density in grammes per cubic centimetre.

Substance.	θ	Р	φ	d	Observer.
Air		39.0 62.76 - 78.5	- 0.00713 -	0.288 - -	Olszewski. Ramsay and Young. Jouk (lowest value recorded). Ramsay and Young.
Ammonia Argon Benzene	1 30.0 —121.0 288.5	115.0 50.6 47.9	- - 0.00981	_ 1.5 0.355	Dewar. Olszews ki. Young.
Carbon dioxide " monoxide " disulphide Chloroform	30.92 —141.1 277.7 260.0	77 35-9 78.1 54-9	0.0066 _ _ _		Andrews. Wroblewski. Dewar. Sajotschewski.
Chlorine Ether	141.0 148.0 19.7 194.4 9.2 13.0	83.9 - 35.77 35.61 58.0 -	 0.01584 0.01344 0.00569	- 0.208 0.246 - 0.21	Dewar. Ladenburg. Battelli. Ramsay and Young. Van der Waals. Cailletet.
Hydrogen " chloride " sulphide Methane	-220.0 51.25 52.3 100.0 -81.8 -99.5	20.0 86.0 88.7 54.9 50.0		- 0.61 - -	Olszewski. Ansdell. Dewar. Olszewski. " Dewar.
Nitric oxide (NO) Nitrogen "	93.5 146.0 146.0 354.0	71.2 35.0 33.0 75.0		- 0.44 - -	Olszewski. Wroblewski. Dewar.
Oxygen Sulphur dioxide " " Water "		50.0 78.9 – 195.5	- - 0.001874 -	0.6044 - 0.429 -	Wroblewski. Sajotschewski. Clark. Nadejdine. Dewar.

* Abridged for the most part from Landolt and Boernstein's " Phys. Chem. Tab."

NOTE. — Guldberg shows (Zeit. für Phys. Chem. vol. 5, p. 375) that for a large number of organic substances the ratio of the absolute boiling to the absolute critical temperature, although not constant, lies between 0.58 and 0.7, the majority being between .65 and .7. Methane, ethane, and ammonia gave approximately 0.58. H_2S gave .566, and CS_2 , N_2O , and O gave about .59.

SMITHSONIAN TABLES.

200

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO_2 or SO_2 and water, which is assumed to be in a state of vapor.

Substance.	Therms per gramme of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols : Amyl	8958	Favre and Silbermann.
Ethyl	7183	46 45 54
Methyl	5307	66 66 66
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	66 ss 6s
Coke	7000	<i> 4</i> .
Carbon disulphide	3244	Berthelot.
Dynamite, 75 %	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	1 3063	Favre and Silbermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	44
Oils: Lard	9200–9400	"
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" " refined .	11045	16
" Russian.	10800	66
Woods : Beech with 12.9% H ₂ O	4168	Gottlieb.
Birch " 11.83 "	4207	66
Oak " 13.3 "	3990	.1
Pine " 12.17 "	4422	16

HEAT OF

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

Substance.	Combined with oxygen forms —	Heat units.	Combined with chlorine forms —	Heat units.	Combined with sulphur forms—	Heat units.	Author- ity.
Calcium	$\begin{array}{c} CaO\\ CO_2\\ CO\\ CO_2\\ CO\\ CO_2\\ Cl_2O\\ Cu_2O\\ Cu_2O\\ Cu_2O\\ Cu_2O\\ M_2O\\ M_2O\\$	$\begin{array}{r} 3284\\ 7859\\ 2141\\ 7796\\ -254\\ 321\\ 585\\ 593\\ 34154\\ 34800\\ 34417\\ 1353\\ -\\ 177\\ 243\\ 6077\\ 1721\\ 105\\ 153\\ -\\ 654\\ -1541\\ -1541\\ -1541\\ -1541\\ -1541\\ -1541\\ 272\\ 5747\\ 5964\\ 1745\\ 27\\ 5964\\ 1745\\ 27\\ 5964\\ 1745\\ 27\\ 5964\\ 1745\\ 27\\ 5964\\ 1745\\ 27\\ 3293\\ 2241\\ 2165\\ 573\\ -\\ 1185\\ 1314\\ \end{array}$	CaCl ₂ - - - CuCl CCl ₂ - HCl - FeCl ₂ FeCl ₃ - PbCl ₂ MgCl ₂ MgCl ₂ HgCl HgCl HgCl IIgCl ₂ - - - - - - - - - - - - -	4255 	CaS - - - CuS - H ₂ S - FeSH ₂ O - PbS MgS MuSH ₂ O ₂ - HgS - - - - - - - - - - - - -	2300 - - - - - - - - - - - - -	I 2 3 3 1 1 4 3 5 6 3 3 1 1 1 4 3 5 6 3 3 1 1 1 1 4 3 5 6 3 3 1 1 1 1 4 3 5 6 3 3 1 1 1 1 4 3 5 6 3 3 1 1 1 1 1 4 3 5 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Substance.	Combined with SO ₄ to form —	Heat units.	Combined with NO_3 to form —	Heat units.	Combined with CO ₃ to form —	Heat units.	Author- ity.
Calcium Copper Hydrogen Iron Lead Magnesium Mercury Potassium Silver Sodium	$\begin{array}{c} {\rm CaSO_4} \\ {\rm CuSO_4} \\ {\rm H_2SO_4} \\ {\rm FeSO_4} \\ {\rm PbSO_4} \\ {\rm MgSO_4} \\ \hline \\ {\rm K_2SO_4} \\ {\rm Ag_2SO_4} \\ {\rm Na_2SO_4} \\ {\rm ZnSO_4} \end{array}$	7997 2887 96450 4208 1047 12596 - 4416 776 7119 3538	Ca(NO ₃) ₂ Cu(NO ₃) ₂ HNO ₃ Fe(NO ₃) ₂ Pb(NO ₃) ₂ - KNO ₃ AgNO ₃ NaNO ₃	5080 1304 41500 2134 512 - 3061 266 4834 -	$\begin{array}{c} CaCO_3 \\ - \\ - \\ - \\ PbCO_3 \\ - \\ - \\ K_2CO_3 \\ Ag_2CO_3 \\ Na_2CO_3 \\ - \\ - \end{array}$	6730 - - 814 - 3583 561 5841	I I I I I I I I I I I I I I I I I I I
1 Thomsen. 3 Favre a 2 Berthelot. 4 Joule.	A nd Silberma		TIES. Hess. Average of s	even dif		Andrew: Woods.	5.

SMITHSONIAN TABLES.

* Combustion at constant pressure.

COMBINATION.

caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from 0° to 1° C. by the addition of that heat.

			In dilute solutio	ns.			101-
Substance.	Forms —	Heat units,	Forms -	Heat units.	Forms —	Heat units.	Author- ity.
Calcium Carbon — Diamond .	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	$CaS + \Pi_2O$	2457	I 2
64 46	-	-	-	-	-	-	3
" — Graphite .	-	-	-	-	-	-	3
Chlorine Copper	-		_		_	_	I
	_	_		-	_	-	I
	-	-	-	—		-	4
Hydrogen	-	-	-	-	-		3
66 e e e e	-	_	_	_	_		5
Iron	$FeO + H_2O$	1220*	$\operatorname{FeCl}_2 + \operatorname{H}_2\operatorname{O}$ FeCl_3	1785 2280	~	-	3
Iodine .	_	_	-	_	_	-	i
Lead	-	-	$PbCl_2$	368	-	-	I
Magnesium	MgO_2H_2	9050	${f MgCl_2}\ {f MnCl_2}$	7779	MgS	4784	E T
Manganese Mercury	-	_		2327	_		I
in	_	-	$HgCl_2$	299	-	-	I
Nitrogen	-	-	-	-	-	-	I
		-	-	-	-	-	I
Phosphorus (red)	_		_	_	_		I
" (yellow) .	_	-	_	_	_	-	7
se	-	-	-	-	-	-	I
Potassium	K ₂ O	2110*	KCl	2 5 9 2	$ m K_2S$	1451	S I
Silver Sodium	Na_2O	-	NaCl	4190	Na ₂ S	2260	8
Sulphur		3375	-	4190	-	-	I
	-	-	-	-	-	-	2
$\operatorname{Tin}_{\alpha}$	-	-	$SnCl_2$	691	-	-	7
Zinc	-	_	SnCl ₄	134.4		_	7
	_	_	ZnCl ₂	1735	-	-	I
			In dilute solutio				
			In difute solutio	ons.	1	1	Author- ity.
Substance.	Forms —	Heat units.	Forms —	Heat units.	Forms —	Heat units.	Aut
C.L.			$Ca(NO_3)_2$	5175		_	r
Calcium Copper	0.20	31 50	$Cu(NO_3)_2$ $Cu(NO_3)_2$	1310	-	-	I
Hydrogen .	H_2SO_4	10530	H_2NO_3	24550		-	I
Iron	TE-CO	4210	$Fe(NO_3)_8$	2134	-	-	I
Lead .		-	$\operatorname{Pb}(\mathrm{NO}_3)_2$ $\operatorname{Mg}(\mathrm{NO}_3)_2$	475 8595	_	_	I
Magnesium Mercury	MgSO ₄	13420	$Hg(NO_3)_2$	335		-	I
Potassium .	T CO	4324	KNO ₃	2860	-	-	I
Silver	Ag_2SO_4	7 53	AgNO ₃	216		5005	I
Sodium	Na_2SO_4 ZnSO ₄	7160 3820	$NaNO_3$ Zn(NO_3) ₂	4620	-	5995	I
Zinc	20304	3020	1311(1103)2				
		Auti	IORITIES.				
1 Thomsen. 3	Favre and Sill	bermann.	5 Hess.			Andrey	
2 Berthelot. 4	Joule.		d Average of	seven	different. 8	Woods	•

SMITHSONIAN TABLES.

* Thomsen.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in calories per kilogramme or in therms per gramme by H; the total heat from 0° C. in the same units by H'. The pressure is that due to the vapor at the temperature T.

Substance.	Formula.	T	Н	H!	Authority.
Acetic acid	$C_2H_4O_2$	118°	84.9	_	Ogier.
Alcohol: Amyl	$C_5H_{12}O$	131	I 20	-	Schall.
Ethyl	C ₂ H ₆ O " "	78.1 0 50 100 150	209 205 236 - -	255 236 264 267 285	Favre and Silbermann. Wirtz. Regnault. "
Methyl	CH40 " " " "	64.5 0 100 150 200 238.5	2.67 289 - - - - -	307 289 274 246 206 152 44.2	Wirtz. Ramsay and Young. """" """ """ """ ""
Ammonia " "	NH3 "	7.8 11 16 17	294.2 291.3 297.4 296.5		Regnault. " "
Benzene	C_6H_6	80.1	92.9	127.9	Wirtz.
Bromine	Ba	88	45.6	-	Andrews.
Carbon dioxide, solid liquid """"". """". """". """. """.	CO2 " " "		- 72.23 57.48 44.97 31.8 14.4 3.72	138.7 - - - - -	Favre. Cailletet and Mathias. "" Mathias. " "
" disulphide " " " "	CS ₂ "	46.1 0 100 140	83.8 90 –	94.8 90 100.5 102.4	Wirtz. Regnault. "
Chloroform	CHCl ₃	60.9	58.5	78.8	Wirtz.
Ether	C ₄ H ₁₀ O " "	34.5 34.9 0 50 120	88.4 90.5 94 –	107 94 115.1 140	" Andrews. Regnault. "
Iodine	I	-	2.95	-	Favre and Silbermann.
Sulphur dioxide """"	SO ₂ "	0 30 65	91.2 80.5 68.4	-	Cailletet and Mathias.
Turpentine	$C_{10}H_{10}$	1 59.3	7.4.0.4	-	Brix.
Water	H ₂ O "	100 100	535.9	637	Andrews. Regnault.

SMITHSONIAN TABLES.

,

Substance, formula, and temperature.	$Z = $ total heat from fluid at \circ ' to vapor at t' . r = latent heat at t' .	Authority.
Acetone, C_3H_6O , -3° to 147°.	$l = 140.5 + 0.36644 t - 0.000516 t^{2}$ $l = 139.9 + 0.23356 t + 0.00055358 t^{2}$ $r = 139.9 - 0.27287 t + 0.0001571 t^{2}$	Regnault. Winkelmann. "
Benzene, C_6HI_6 , 7° to 215°.	$l = 109.0 + 0.24429 l - 0.0001315 l^2$	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°.	$r^2 = 118.485 (31 - t) - 0.4707 (31 - t^2)$	Cailletet and Mathias.
Carbon disulphide, CS_2 , -6° to 143°.	$l = 90.0 + 0.14601 t - 0.000412 t^{2}$ $l = 89.5 + 0.16993 t - 0.0010161 t^{2} + 0.000003424 t^{3}$ $r = 89.5 - 0.06530 t - 0.0010976 t^{2} + 0.000003424 t^{3}$	Regnault. Winkelmann. "
Carbon tetrachloride, CCl4, S° to 163°.	$l = 52.0 + 0.14625t - 0.000172t^{2}$ $l = 51.9 + 0.17867t - 0.0009599t^{2} + 0.00003733t^{3}$ $r = 51.9 - 0.01931t - 0.0010505t^{2} + 0.000003733t^{3}$	Regnault. Winkelmann. "
Chloroform, CHCl ₃ , — 5° to 159°.	l = 67.0 + 0.1375 t $l = 67.0 + 0.14716 t - 0.0000437 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann. "
Nitrous oxide, N2O, — 20° to 36°.	$r^2 = 131.75(36.4-t) - 0.928(36.4-t)^2$	Cailletet and Mathias.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.

LATENT HEAT OF VAPORIZATION."

* Quoted from Landolt and Boernstein's "Phys. Chem. Tab." p. 350.

SMITHSONIAN TABLES.

205

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances. It has been compiled principally from Landolt and Boernstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	С	T	H	Anthority.
Alloys: $30.5Pb + 69.5Sn$	PbSn ₄ PbSn ₃ PbSn Pb ₂ Sn	183 179 177.5 176.5 236	17 15.5 11.6 9.54 28.0*	Spring. " " Ledebur.
$\begin{array}{c} 24Pb + 27.3Sn + 48.7Bi \\ 24Pb + 27.3Sn + 48.7Bi \\ Wood's alloy \left\{ 25.8Pb + 14.7Sn \right\} \\ \left\{ + 52.4Bi + 7Cd \right\} \end{array}$	-	98.8 75.5	6.85 8.40	Mazzotto. "
Bromine Bismuth	$ \begin{array}{c} & Br \\ & Bi \\ C_6H_6 \\ Cd \\ CaCl_2 + 6H_2O \\ \hline \\ \hline \\ \hline \\ - \\ \hline \\ I \\ H_2O \\ \\ \end{array} $	7.32 266.8 5.3 320.7 28.5 - - 0 0	16.2 12.64 30.85 13.66 40.7 23 33 50 11.71 79.24 80.02	Regnault. Person. Fischer. Person. " Gruner. " Favre and Silbermann. Regnault. Bunsen.
" (from sea-water).LeadMercuryNaphthalene.Palladium.Phosphorus.Potassium nitrate.Phenol.Paraffin.Silver.Sodium nitrate.Sodium phosphate.	$ \left\{ \begin{array}{c} \text{II}_2\text{O} + 3.535 \\ \text{of solids} \end{array} \right\} \\ \text{Pb} \\ \text{Hg} \\ \text{C}_{10}\text{Hs} \\ \text{Pd} \\ \text{Pd} \\ \text{Pd} \\ \text{P} \\ \text{KNO}_3 \\ \text{C}_6\text{H}_6\text{O} \\ \hline \\ \hline \\ \text{Ag} \\ \text{NaNO}_3 \\ \left\{ \begin{array}{c} \text{Na}_2\text{HPO}_4 \\ + 12\text{H}_2\text{O} \end{array} \right\} \\ \end{array} \right\} $	8.7 3 ² 5 79.87 (1500)? 40.05 333.5 25.37 52.40 999 305.8 36.1	54.0 5.86 2.82 35.62 36.3 4.97 48.9 24.93 35.10 21.07 64.87 66.8	Petterson. Rudberg. Person. Piekering. Violle. Petterson. Petterson. Batelli. Person. "
Spermaceti .	S Zn	43.9 115 61.8 415.3	36.98 9.37 42.3 28.13	Batelli. Person. "

* Total heat from o^o C.

SMITHSONIAN TABLES.

20б

MELTING-POINT OF CHEMICAL ELEMENTS.

The melting-points of the chemical elements are in many cases somewhat uncertain, owing to the very different results obtained by different observers. This table gives the extreme values recorded except in a few cases where one observation differed so much from all others as to make its accuracy extremely improbable. The column headed "Mean" gives a probable average value.

Substance.	Ran Min.	nge. Max.	Mean.	Observer.	Substance.	Rar Min.	nge.	Mean.	()bserver
Aluminium Antimony Arsenic Barium Beryllium Bismuth Boron, amorph. Bromine Casmine Casmine Cassium Chlorine, liquid Chromium Cobalt Gallium Gold Indium Iodine Iridium	C. 600. 425. bet. above t below 266.8 melts -7.2 315. - above th 1500. 1050. - 1035. - 107. 1950.	C. 850. 450. Sb and hat of c that of 269.2 in elec -7.3 321. - 1300. 1330. - 1250. - 115. 1500.	ast iron silver 268,1 t. arc -7.27 318, 26.5 -102, latinum 1650, 1100, 30,15 900, 1080, 176, 112, 2225,	I 2 3 4 50	Lithium Magnesium Manganese Mercury Molybdenum . Nickeł Osmiam Nitrogen Palladium Platinum Phosphorus . Platinum Rhodium Rubidiam Silenium Silicon Silver Sodium	C. - 7 50. - - - - - - - - - - - - -	C. 	heat 1 500. 2 500. 	2 13 13 14 15 16 16 17 7 18
Iron (pure) " (white pig) " (gray pig) Steel " (cast) Lanthanum Lead ¹ Mallet. ² Frey. ³ Debray. ⁴ Despretz. ⁵ Setterberg, 188	1 500. 10 50. 11 00. 13 00. 	1800. 1100. 2275. 1400. 	326. 1884. 56. Bois- 1876.	11 Le 12 Hi	Zinc inkler, 1867. 14 debur, 1881. 15 Idebrand and 16 orton, 1875. 17	111. 452. 288. 226.5 Dove tha 400. Carnell Buchho Pictet, Hittorf, Matthie	t of mai 433. ey, 1879 ilz. 1879. 1851.	4 I 5.	19

BOILING-POINT OF CHEMICAL ELEMENTS.

TABLE 216.

The column headed "Range" gives the extremes of the records found. Where the results are from one observer the authority is quoted with date of publication.

	Range.				C. heteroo	Rat	nge.	Mean.	Observer.									
Substance.	Min.	Max.	Mean.		Min.	Max.	Mean.	Obs										
Aluminium Antimony Arsenic Bismuth Bromine Cadmium Chlorine Iodine Lead Magnesium Mercury	1470. 449. 1090. 59.27 720. - ov bet. 145	1700. 450. 1700. 63.05 860. - rer 200 ⁶	1 535. 1413. 62.08 779. 	I 2 3 4 5 6 7	Nitrogen Oxygen Ozone Phosphorus . Potassium Selenium Sodium Sulphur Thallium Zinc				8 9									
¹ Deville, 1854. ² Conechy.	⁸ Regnau ⁴ Stas, 18	ult, 186 865.	3. ⁵ Ca 6 Di	arnelle itte, 18	y, 1879. ⁷ Regnau 71. ⁸ Olszews	lt, 1862. ki, 1884	9 Ols	¹ Deville, 1854. ⁸ Regnault, 1863. ⁵ Carnelley, 1879. ⁷ Regnault, 1862. ⁹ Olszewski, 1887.										

TABLE 217.

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.*

		N	Ielting-poin	ts.	y.	
Substance.	Chemical formula.	Min.	Max.	Particular or average values.	Authority.	Date of publication.
Aluminium chloride " nitrate	$\begin{array}{c} \text{AlCl}_3\\ \text{Al}(\text{NO}_3)_3 + 911_2\text{O} \end{array}$	_	-	190.	I	1888
Ammonia	NH_3	-	-	72.8 -75.	23	1859 1875
Ammonium nitrate " sulphate .	$(\mathrm{N11}_4)\mathrm{NO}_3$ $(\mathrm{N11}_4)_2\mathrm{SO}_4$	145.	166.	156.		-
" phosphite .	$\rm NH_4H_2PO_3$	-	_	140. 123.	4	1837 1887
Antimonietted hydrogen . Antimony trichloride	SbH ₃ SbCl ₃	-	-	-91.5	5 6	1886
" pentachloride .	SbCl ₅	72.	73.2	72.8 —6,	7	1875
Arsenic trichloride Arsenictted hydrogen	AsCl ₃	-	-	—18.	7 8	1889
Barium chlorate	AsH ₃ Ba(ClO ₃) ₂	_	_		6	1884 1878
" nitrate	$Ba(NO_3)_2$	-	_	593.	9	1878
" perchlorate Bismuth trichloride	$\operatorname{Ba}(\operatorname{ClO}_4)_2$ BiCl_3	22 5.	- 230.	505. 227.5	10	1884 1876
Boric acid	$H_{3}BO_{3}$	184.	186.	185.	9	1878
" anhydride Borax (sodium borate) .	$\mathrm{B_2O_3}\ \mathrm{Na_2B_4O_7}$	-	-	577.	9	1878
Cadmium chloride	CdCl ₂	_		561. 541.	9	1878 1878
" nitrate Calcium chloride	$\operatorname{Cd}(\operatorname{NO}_3)_2 + _4\operatorname{H}_2\operatorname{O}_2$	-	-	59.5	2	1859
65 64	$CaCl_2 + 6H_2O$	719. 28.	7 <i>2</i> 3. 29.	721. 28.5	9	1878
nitrate	$Ca(NO_3)_2$	-	-	561.	9	1878
Carbon tetrachloride	$\frac{\operatorname{Ca}(\operatorname{NO}_3)_2 + 4\Pi_2 O}{\operatorname{CCl}_4}$	_	_	-44· 24.7	2	1859 1863
" trichloride	C_2CI_6	182.	187.	18.1.5	-	-
" monoxide " dioxide	CO CO_2	-199. -56.5	-207. -57.5	203.	-	1845
" disulphide	CS_2^-		- 5/.5	-57.	3	1883
Chloric acid Chlorine dioxide	$\begin{array}{c} \mathrm{HClO}_4 \neq \mathrm{H}_2\mathrm{O} \\ \mathrm{ClO}_2 \end{array}$	-	-	50.	I.1	1861
Chrome alum	$KCr(SO_4)_2 + 12H_2O$	-	_	-76. 89.	3	1845 1884
Chrome nitrate Cobalt sulphate	$\frac{\operatorname{Cr}_2(\operatorname{NO}_3)_6 + 1811_2 \mathrm{O}}{\operatorname{CoSO}_4}$	-	-	37.	2	1859
Cupric chloride	$CuCl_2$	96. -	<u>9</u> 8.	97. 498.	15	188.1 1878
Cuprous "	Cu_2Cl_2	-	-	434.	9	1878
Hydrobromic acid	$\frac{\operatorname{Cu}(\mathrm{NO}_3)_2 + 2\mathrm{H}_2\mathrm{O}}{\mathrm{HBr}}$	_	_		2	1859 1845
Hydrochloric acid	II CI	-	-	-112.5	30	1884
Hydroiodic acid		_	_	-92.3 -49.5	$\frac{6}{3}$	1886 1845
Hydrogen peroxide	11_2O_2	-	-	-30.	16	1818
" phosphide . " sulphide	$\frac{P1I_3}{H_2S}$	-	_	-132.5 -85.6	6	1886 1845
Iron chloride	FeC1 ₃	301.	307.	303.	3	-
" nitrate " sulphate	$\frac{\text{Fe}(\text{NO}_3)_3 + 9\text{H}_2\text{O}}{\text{Fe}\text{SO}_4 + 7\text{H}_2\text{O}}$	_	-	47.2	2	1859
Lead chloride	PbCl ₂	498.	<u>5</u> So.	6	15	- 1884
" metaphosphate . Magnesium chloride .	$\frac{Pb(PO_3)_2}{MgCl_2}$	-	-	Š00.	9	1878
" nitrate	$Mg(NO_3)_2 + 6H_2O$	_	_	708. 90.	$\frac{9}{2}$	1878 1859
" sulphate . Manganese chloride .	$MgSO_4 + 5H_2O$	-	-	54.	15	1884
" nitrate	$\frac{\text{MnCl}_2 + 4\text{H}_2\text{O}}{\text{Mn(NO}_3)_2 + 6\text{H}_2\text{O}}$		-	87.5 25.8	17	1859
" sulphate Mercuric chloride	$MnSO_4 + 5H_2O$		-	54.	15	1884
	HgCl ₂	287.	293.	290.	-	-
Friedel and Crafts. 5 Amat. 2 Ordway. 6 Olszew	9 Carnelley. ski. 10 Carnelley and O'	Shop 13		i and Olsze	wski.	
3 Faraday. 7 Kammu 4 Marchand. 8 Besson	crer. 11 Muir.	15		17 Clark, "	Cons	st. of Nat."
0 Desson	. 12 Regnault.	10	Thénard.			

* For more extensive tables on this subject, see Carnelley's "Melting and Boiling-point Tables," or Landolt and Boernstein's "Phys. Chem. Tab." SMITHSONIAN TABLES.

MELTING-POINTS OF VARIOUS INORCANIC COMPOUNDS.

		2	lelting-po	int.		
Substance.	Chemical formulæ.	Min.		Particular or probable value.	Authority.	Date of pub- lication.
" sulphate Sodium chloride " hydroxide . " nitrate " chlorate " perchlorate . " carbonate . " " " phosphate . " metaphosphate " pyrophosphate .	$\begin{array}{c} \mathrm{KCO}_3\\ \mathrm{KCIO}_3\\ \mathrm{KCIO}_4\\ \mathrm{KCI}\\ \mathrm{KNO}_3\\ \mathrm{KH}_2\mathrm{PO}_4\\ \mathrm{KHSO}_4\\ \mathrm{AgCI}\\ \mathrm{AgNO}_3\\ \mathrm{AgNO}_3\\ \mathrm{AgNO}_3\end{array}$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	5 8.5	617. 888. 42. 863. 34. 47. 78. 10.4 -0.5	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1870-1886 1889 - 1875 1856 1854
2 Ordway. 6 Olszewski. 2 Tilden. 7 Ramsay.	10 Wroblewski & Olszewski. 11 Genther & Michaelis. 12 Ramme. 13 V. & C. Meyer. 18 Carr 14 Lemoine.	16 Mitse	nerlich. S. D'Shea.	20 Curtius. 21 Mendel 22 Marign 23 Besson. 24 Clark, '	ejeff. ac.	25 Braun. 26 Engel. t. of Nal.''

SMITHSONIAN TABLES.

* Under pressure 138 mm. mercury.

BOILING-POINTS OF INORGANIC COMPOUNDS.*

	11	1	Boiling-po	e e e e int.	1 :5				
Substance.	Chemical formula.	Min.	Max.	Particulat or aver- age values.	Ē	Date of 1 ublication.			
Air †	Chemical formula. 	Min. 	Max. 	or aver-	$\begin{array}{c} 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 2 \\ 6 \\ - \\ 7 \\ 10 \\ 4 \\ 4 \\ - \\ 4 \\ 5 \\ 6 \\ - \\ - \\ 7 \\ 17 \\ - \\ 17 \\ $				
" trioxide Silicon chloride Sulphuric acid Sulphur trioxide " dioxide " chloride " stannous chloride " stannic " . Zinc chloride " nitrate	$\begin{array}{c} P_2O_3\\ SiCl_4\\ 12H_2SO_4+H_2O\\ SO_3\\ SO_2\\ S_2Cl_2\\ SnCl_2\\ SnCl_4\\ ZnCl_2\\ Zn(NO_3)_2+6H_2O\end{array}$	56.8 - 46. - 8. 1 38. 606. - 676. -	59. - 47. - 10.5 1.44. 628. - 7.30. -	173. 58. 338. 46.3 —9.6 139. 617. 113.9 703. 131.	18 19 8 4	1890 1853 - - - 1876 - 1859			

For a more complete table, see Clark's "Constants of Nature" (Smithsonian Collections).
† Pressure 76 cm. ‡ Pressure 2.64 atmos. § Pressure 68 mm. || Pressure 75.8 cm. ,

MELTING-POINTS OF MIXTURES."

TAELE 219.

Metals and observer.	Atomic ratio.	Per cent of metal.	Per cent of metal.	Melting- point.	Metals and observer.	Atomic ratio,	Per cent of metal.	Per cent of metal.	Per cent of metal.	Per cet t of metal.	Meltirg- Joint.
Pb and Sn ⁻¹	Pb ₄ Sn Pb ₃ Sn Pb ₂ Sn PbSn PbSn ₂	Pb 87.5 84.0 77.8 63.7 40.7	Sn 12.5 16.0 22.2 36.3 53.3	C ² . 292. 283. 270. 235. 197.	Cd, Sn, Pb and Bi ⁶	$Cd_4Sn_5Pb_5Bi_{10}$ $Cd_3Sn_1Pb_4Bi_8$ $CdSn_2Pb_2Bi_4$ $CdSn_2PbBi$	Cd 10.8 10.2 7.0 13.1	Sn 14.2 14.3 14.8 13.8	Pb 24.9 25.1 26.0 24.3	Bi 50.1 50.4 52.2 48.8	C. 65.5 67.5 68.5 68.5
Pb and Bi ²	PbSu ₃ PbSu ₄ Pb ₃ Bi ₅	36.9 30.5 Pb 27.2	63.1 69.5 Bi 72.8	181. 187. 125.3	Cd, Pb and Bi ⁶	CdPb ₃ Bi ₄ Cd ₂ Pb ₇ Bi ₈	Cd 7.1 6.7	Pb 39-7 43-4	Bi 53-2 49-9	_	89.5 95.0
Cd and Bi ²	CdBi4	Cd 21.2	Ві 78.8	146.3	Sn, Pb and Bi ⁷		Sn 25.0 18.8	Pb 25.0 31.2	Bi 50.0 50.0	-	95.0 95.0
Cd and Sn ²	CdSn_2	Cd 32.2	Sn 67.8	173.8	Zn, Pb and Sn ⁸	-	Zn 4.2	Pb 26.9	Sn 68.9	-	16S.
Sn and Bi²	Sn ₃ Bi ₄	Sn 29.8 Zn	Ві 70.2 РЪ	136.4	Cu and Zn (white	-	Cu 50.0	Zn 50.0	-	-	912.
Zn and Pb ³		83.3 69.5 50.0	16.7 30.5 50.0	205. 190. 202.	brass) ⁹		Ag 100. 80.	Au - 20.	-		954· 975·
Zn and Sb ³		Zn 90. 82.	Sb 10. 18.	236. 250.	Ag and Au ¹⁰		60. 40. 20.	40. 60. 80. 100.		-	995. 1020. 1045. 1075.
Pb and Sb ³	-	Pb 90. 82.	Sb 10. 18.	240. 260.		_	Au 100. 95.	Pt - 5.	-	-	1075.
Na and K ⁴	-	Na 50.	K 50.	6.		-	95. 90. 85. 80. 75.	5. 10. 15. 20. 25.		1 1 1	1130. 1160. 1190. 1220.
Ag and Cu ⁵		Ag 100. 92.5 82.1 79.8 77.4 75.0 71.9 63.0 60.0 57.0 54.1 50.0 45.9 25.0	37.0 40.0 43.0 45.9 50.0 54.1	10.40. 931.0 886.0 858.0 855.0 850.0 857.0 900.0 920.0 920.0 941.0 961.0 111.4 1330	Au and Pt ⁸		70. 65. 55. 50. 45. 40. 35. 20. 25. 20. 15. 10. 5.	30. 35. 40. 45. 50. 55. 65. 70. 75. 80. 85. 90. 95. 100.			1255. 1285. 1320. 1350. 1385. 1420. 1405. 1405. 1535. 1570. 1610. 1650. 1600. 1730. 1775.
L A L'OCA	thody, "D) perg, "Pog bur, "Wid nfeld, "Ba Coberts, "	er i nei	IL URS.	1.001.	62. (5), 13, 118,	6 Von Ha 7 W. Spri 8 Svanber 9 Daniell, 1878. 10 Erhard					

* From Landolt and Boernstein's " Phys. Chem. Tab."

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORCANIC COMPOUNDS.

Substance.	Formula.	Temp. C.	Den- sity.	Melting- point.	Boiling-point.	Authority.
		(a) P	araffin	Series :	С _и Н _{2 и+2} .	
Methane*	CII4	<u> </u>	0.415	<u> </u>	—164.	Olszewski.
Ethanet Propane	$\begin{array}{c} C_2 H_6 \\ C_3 H_8 \end{array}$	_	-	_	-25 to -30	Roscoe and Schorlemmer.
Butane Pentane	$\begin{array}{c} { m C}_{4}{ m H}_{10} \\ { m C}_{5}{ m H}_{12} \end{array}$	0 17.	.60 .626	_	+1. +37.	Butlerow. Schorlemmer.
Ilexane	$C_{6}II_{14}$	17.	.663	_	+69.	64
Heptane	C_7H_{16}	0	.701	-	98.4	Thorpe.
Octane	C_8II_{18}	0	.719	-	125.5	" Krafft.
Nonane Decane	${f C_9 H_{20}}\ {f C_{10} H_{22}}$	20. 20.	.718 .730	-51. -31.	1 50. 1 <i>7</i> 3.	Krant.
Undecane	$C_{11}U_{24}$	<u> </u>	·730	-26.	195.	66
Dodecane	$C_{12}H_{26}$	—I 2.	.773	—I 2.	214.	66
Tridecane	$C_{13}\Pi_{28}$	6.	.775	<u> </u>	234.	66
Tetradecane Pentadecane	$C_{14}H_{30}$	+4.	•775	+4. +10.	252. 270.	66
Ilexadecane	$C_{16}H_{32}$	18.	.776 .775	18.	287.	66
Heptadecane	C17H36	22.	-777	22.	303.	66
Octadecane		28.	•777	28.	317.	66
Nonadecane Eicosane	$\begin{array}{c} { m C}_{19}{ m H}_{40} \\ { m C}_{20}{ m H}_{42} \end{array}$	32.	·777 .778	32.	330. 205 t	66
Heneicosane	$C_{20}^{-11}C_{21}^{-11}C_{44}^{-11}$	37. 40.	.778	37. 40.	205.‡ 215.‡	66
Docosane	C22II46	44.	.778	44.	224.1	66
	$C_{23}\Pi_{48}$	48.	·779	48.	234.1	66
Heptacosane	$C_{24}H_{50}$	51.	.779	51.	243.1	66
Pentriacontane .	$C_{27}T_{56} = C_{31}H_{64}$	60. 68.	.780 .781	60. 68.	270.‡ 302.‡	66
	$C_{32}H_{66}$	70.	.781	70.	310.‡	66
Penta-tria-contane	$C_{35}H_{72}$	7 5.	.782	75	331.‡	66
	(b) (Dlefines	, or the	e Ethylen	e Series : C_n	П ₂ <i>n</i> .
Edular	CU					
Ethylene Propylene	$egin{array}{c} C_2 H_4 \ C_3 \Pi_6 \end{array}$	_	_	—169. —		Wroblewski or Olszewski.
Butylene	C_4H_8	-13.5	0.635	-	1.	Sieben.
Amylone	C_5H_{10}	-		-	36.	Wagner or Saytzeff.
Hexylene	$C_6 H_{12}$	0	.76	-	69.	Wreden or Znatowicz.
Heptylene Octylene	$\begin{array}{c} \mathrm{C_7H_{14}}\\\mathrm{C_8H_{16}}\end{array}$	19.5 17.	.703	_	96.–99. 122.–123.	Morgan or Schorlemmer. Möslinger.
Nonylene	C_9H_{18}		-	_	153.	Bernthsen, "Org. Chem."
Decylene	$C_{10}H_{20}$	-		-	175.	66 65 66
Undecylene	$C_{11}H_{22}$	-	-	-	195.	li li li
Dodecylene ' Tridecylene	$C_{12}H_{24} = C_{13}H_{26}$	-31.	•795	<u> </u>	96.‡ 233.	Krafft. Bernthsen.
Tetradecylene	$C_{14}^{13} \Pi_{28}^{16}$	—I2.	.794		-33. 127.‡	Krafft.
Pentadecylene .	$C_{15}H_{30}$	-	-	-	247.	Bernthsen.
	$C_{16}\Pi_{32}$	+4.	-792	+.1.	155.‡	Krafft, Mendelejeff, etc.
Octadecylene Eicosylene	$-C_{18}H_{36} - C_{20}H_{40}$	18.	.791	+18.	179.‡	Krafft.
Cerotene	$C_{27}H_{54}$	_	_	<u>5</u> 8.	_	Bernthsen.
Melene	C ₃₀ H ₆₀	-	-	Ğ2.	-	66

N. B. - The data in this table refer only to normal compounds.

Liquid at — 11. C. and 180 atmospheres' pressure (Cailletet).
† '' +4.''' 46 ''''
Foiling-point under 15 mm. pressure.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical	Temp.		Melting-		Authority.
	formula.	С.	gravity.	point.	point.	
	(c) A	cetylene	Series :	$\mathbb{C}_n \prod_{2n}$	-2+	
Acetylene	$C_2 H_2$	-	-	-	-	
Ethylacetylene	$egin{array}{c} {\rm C}_3 \Pi_4 \ {\rm C}_4 \Pi_6 \end{array}$		-	-	+18.	Bruylants, Kutsche-
Propylacetylene	C_5H_8	-	_	-	.4850.	roft, and others. Bruylants, Taworski.
Butylacetylene Oenanthylidene	$egin{array}{c} \mathrm{C}_6\mathrm{H}_{10} \ \mathrm{C}_7\mathrm{H}_{12} \end{array}$	-	_	_	68.–70. 106.–108.	Taworski. Bruylants, Behal,
Caprylidene	C ₈ II ₁₄	0.	0.77 I	-	133134.	and others. Behal.
Undecylidene Dodecylidene	$C_{11}\Pi_{20}$	-	.810	-	210215.	Bruylants. Krafft.
Tetradecylidene	$C_{14}\Pi_{26}$	-9. + 6.5	.806	- 9. + 6.5	105.** 134.**	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Hexadecylidene Octadecylidene	${C_{16}\Pi_{30} \over C_{18}\Pi_{34}}$	20. 30.	.804 .802	20. 30.	160.* 184.*	56
	(d) Mona	tomic al	cohols :	С"П ₂₁₁ -	OII.	
Methyl alcohol		0.	0.812	-	66.	
Ethyl alcohol	C_2H_5OH	0. 0.	.806 .817	-130.†	78. 97•	From Zander, " Lieb.
Butyl alcohol	C_4H_9OH	0.	.823	-	117.	Ann." vol. 224, p. 85,1
Amyl alcohol Hexyl alcohol	C ₆ H ₁₃ OH	0. 0.	.829	-	1 <u>3</u> 8. 1 <u>5</u> 7.	and Krafft, "Ber." vol. 16, 1714,
Heptyl alcohol Octyl alcohol		0. 0.	.836	_	176.	" 19, 2221, " 23, 2360,
Nonyl alcohol Decyl alcohol	C ₉ H ₁₉ OH	0. + 7.	.8.12 .839	-5. +7.	213. 231.	and also Wroblew- ski and Olszewski,
Dodecyl alcohol	+C12H25OH	24.	.831	24.	143.*	" Monatshefte,"
Tetradecyl alcohol Hexadecyl alcohol	C ₁₆ H ₃₃ OH	50.	.824	38. 50.	167.* 190.*	vol. 4, p. 338.
Octadecyl alcohol			.813	59.	211,*	
	(e) Al	coholic e	ethers :	$C_n H_{2n+}$	-2 ^{O.}	
Dimethyl ether	$C_2 II_6 O$	-	-	-	- 23.6	Erlenmeyer, Kreich- baumer.
Diethyl ether	$\begin{array}{c} C_4 H_{10} O \\ C_6 H_{14} O \end{array}$	4.	0.731	-	+34.6 90.7	Regnault. Zander and others.
Dipropyl ether Di-iso-propyl ether	$C_6H_{14}O$	0.	.763 .743	-	69.	66
Di-n-butyl ether	C _s H _{1s} O	0.	.784	_	I.4I.	Lieben, Rossi, and others.
Di-sec-butyl ether Di-iso-butyl "	$\begin{array}{c} C_8 H_{18} O \\ C_8 H_{18} O \end{array}$	21. 15.	.756	-	121. 122.	Kessel. Reboul.
Di-iso-amyl "	$\begin{array}{c} C_{10}H_{22}O\\ C_{12}H_{26}O\end{array}$	ŏ.	•799	-	170175.	Wurtz. Erlenmeyer and
TH-Seconexyr .		17.	.805	_	280282.	Wanklyn.
Di-norm-octyl "	$C_{16}\Pi_{34}()$					
	1	Ethyl eth	ers: C _n	1 222+2		Wind AVIII
Ethyl-methyl ether " propyl "	$C_5 \Pi_{12} O$	20.	0.739	-	6364.	Wurtz, Williamson. Chancel, Bruhl.
" iso-propyl ether . " norm-butyl ether	$-C_5H_{12}O$	0. 0.	•745 •709	_	54· 92.	Markownikew. Lieben, Rossi.
" iso-butyl ether .	$C_{6}[1_{14}O$		·751	-	7880.	Wurtz. Williamson and
150 unityr cener	$C_7H_{16}O$.70.1			others.
" norm-hexyl ether " norm-heptyl ether	C ₉ H ₂₀ O	ı 6.	.790	_	134137.	Cross.
" norm-octyl ether		17.	•794	-	18218.4.	Moslinger.

Boiling-point under 15 mm. pressure.
 † Liquid at -11.° C, and 180 atmospheres' pressure (Cailletet).

TABLE 221.

.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Linear Expansion of the Chemical Elements.

In the heading of the columns T is the temperature or range of temperature, C the coefficient of linear expansion, A_1 the authority for C, \mathcal{M} the mean coefficient of expansion between 0° and 100° C, α and β the coefficients in the equation $l_t = l_0$ $(1 + \alpha t + \beta t^2)$, where l_0 is the length at 0° C, and l_t the length at t° C, A_2 is the authority for α , β , and m.

· · · · · · · · · · · · · · · · · · ·							
Substance.	T	$\overset{C}{\times}_{10^4}$	\mathcal{A}_1	$\stackrel{\mathcal{M}}{\times}$ 10 ⁴	$\overset{\mathfrak{a}}{\times}$ 10 ⁴	β_{10^6}	A 2
Aluminium	40 600	0.2313 .3150	Fizeau Les Chatelier.	0.2220	-	_	{ Calvert, John- { son and Lowe.
Antimony:							
Parallel to cryst.		.1692	Figoau				
axis	40	.0882	Fizeau.				
Mean	40 40	.1152	66	.1056	.0923	.0132	Matthieson.
Arsenic	40	.0559	66	.1030	.0923	.0132	
Bismuth :	44	557					
Parallel to axis	40	.1621	66				
Perp. to axis	40	.1208	66				
Mean	40	.1346	66 · · ·	.1316	.1167	.0149	Matthieson.
Cadmium	40	.3069	66	·3159	.2693	.0466	
Carbon : Diamond	10	.0118	66				
Gas carbon	40 40	.0118	66				
Graphite	40	.0786	66				
Anthracite	40	.2078	66				
Cobalt	40	.1236	66				
Copper	40	.1678	ss	.1666	.1481	.0185	Matthieson.
Gold	40	.1443	· · · ·	.1470	.1358	.0112	66
Indium	40	.4170	66				
Iron:			66				
Soft	40	.1210	66				
Cast	40 —18 to 100	.1061	Andrews.				
Wrought	40	.1140 .1322	Fizeau.				
" annealed	40	.1095	1 12Cau.	.1089	.1038	.0052	Benoit.
Lead	40	.2924	44	.2709	.0273	.0074	Matthieson.
Magnesium	40	.2694	66		10-75		
Nickel	40	.1279	66				
Osmium	40	.0657	66				
Palladium	40	.1176		.1104	.1011	.0093	Matthieson.
Phosphorus	0-40	1.2530	Pisati and De				
Distinum	10	0000	Franchis.	0000	OSET	00005	Matthieson.
Platinum Potassium	40	.0899 .8300	Fizeau Hagen.	.0000	.0851	.0035	Mattineson.
Rhodium	0-50 40	.0850	Fizeau.				
Ruthenium	40	.0050	1 12Cau. ((
Selenium	40	.3680		.6604	- 1	_	Spring.
Silicon	40	.0763	66				
Silver	40	.1921		.1943	.1809	.0135	Matthieson.
Sulphur:							G .
Cryst. mean.	40	.6413	66	1.180	-	-	Spring.
Tellurium Thallium	40	.1675	66	.3687	-		
Thallium	40	.3021	66	.2296	.2033	.2063	Matthieson.
Zinc	40 40	.2234	66	.2290	.2033	.2003	
	40	1.2910			/41	10-34	
	1	1	4			1	J

N. B. — The above table has been with a few exceptions compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthieson, "Proc. Roy. Soc.," vol. 15. SMITHSONIAN TABLES.

COEFFICIENT OF THERMAL EXPANSION.

Coefficient of Linear Expansion for Miscellancous Substances.

N. B. — The coefficient of cubical expansion may be taken as three times the linear coefficient. T is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

Substance.	7	$C \times 10^4$	A	Substance.	T	C X 104	21
							1
Brass:				Platinum-silver :			
Cast	0-1000	0.1875	I	$_{\rm IPt+2Ag}$	0-100°	0.1523	4
Wire		0.1930 .1783–.1930	2	Porcelain .	20-790	0.0.113	16
71.5Cu+27.7Zn+		.17051950	-	" Bayeux .	1000-1.100	0.0553	17
0.3Sn+0.5Pb	40	0.1859	3	Quartz :		550	<u> </u>
71Cu + 29Zu .	0-100	0.1906	4	Parallel to axis	o-So	0.0797	6
Bronze :			1 1	Perpend. to axis .	6.6	0.1337	6
$_{3Cu+1Sn}$.	16.6-100	0.1844	5	Speculum metal	0-100	0.1933	1
· · · · · ·	16.6-350	0.2116	5	Topaz :			
66 66	16.6-957	0.1737	5	Parallel to lesser	66		
86.3Cu+9.7Sn+				horizontal axis		0.0832	8
4Zn	40	0.1782	3	Parallel to greater	66	0.0836	S
97.6Cu+2.2Sn+			6	horizontal axis Parallel to verti-		0.0030	0
0.2P, hard	o-So	0.1713 0.1708	6	cal axis	6.6	0.0472	S
3010		.657686	2	Tourmaline :			
Caoutchouc	16.7-25.3	0.770	7	Parallel to longi-			
Ebonite	25.3-35.4	0.842		tudinal axis	66	0.0937	S
Fluor spar : CaF_2 .	0-100	0.1950	7 8	Parallel to hori-			
German silver .		0.1836	8	zontal axis		0.0773	S
Gold-platinum :				Type metal	16.6-254	0.1952	18
2Au+1Pt	66	0.1523	4	Vulcanite	0-18	0.6360	
Gold-copper:				Wedgwood ware .	0-100	0.0890	5
2Au+1Cu	66	0.1552	4	Wood:			
Glass:				Parallel to fibre :		0.00-1	10
Tube	66	0.0833	I	Ash Beach		0.0951	19
16	66	0.0828	9	Beech · · · · Chestnut · · ·	2-34	0.025/	
Plate	66	0.0891 0.0897	10 10	Elm	6.6	0.0565	
Crown (mean) .	50-60	0.0397	10	Mahogany .	<i></i>	0.0361	20
Flint	50-00	0.0954	II	Maple		0.0638	
Jena thermometer		0.0700		Oak	66	0.0492	
(normal)	0-100	0.081	12	Pine	6.6	0.05.11	
" " 59 ¹¹¹		0.058	12	Walnut	6.6	0.0658	20
Gutta percha	20	1.983	13	Across the fibre :	66		
Ice	-20 to -1	0.375	14	Beech	66	0.614	20
Iceland spar: .				Chestnut	66	0.325	20
Parallel to axis .	o-So	0.2631	6	Elm.	6.6	0.443	20
Perpendicular to	66		6	Mahogany . Maple		0.404	20
axis		0.0544	6	Oak	46	0.5.1.1	20
Lead-tin (solder)	0-100	0.2508	ΙT	Pine.	66	0.341	20
2Pb+1Sn Paraffin	0-16	1.0662	15	Walnut .	64	0.48.4	20
Paramn	16-38	1.3030	15	Wax: White .	10-26	2.300	21
	38-49	4.7707	15	66	. 26-31	3.120	21
Platinum-iridium	55 49	477-7		66	. 31-43	4.860	21
I I Iatinum Indiana IoPt+IIr	-10	0.088.4	3	46	· 43-57	15.227	21
		Au	THO	RITIES.			
I Smeaton. 6	Benoit.	1	пр	lfrich. 16 Braun.		21 Ko	pp.
2 Various. 7	Kohlrause			hott. 17 Deville a	nd Troost.		
3 Fizeau. 8	Pfaff.			ussner. 18 Mayer.			
+ Matthieson, Q	Deluc.		ŭ Bi	unner. 19 Glatzel.			
5 Daniell. 10 La	voisier an	d Laplace.	15 R				
5							
	_	_					

TABLE 223.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of some Crystalline and other Solids.* T =temperature or range of temperature, C =coefficient of cubical expansion, A = authority.

Substance.		T	$C \times 10^4$	А
Antimony	٠	0-100	0.3167	Matthieson.
Beryl		001-0	0.0105	Pfaff.
Bismuth	٠	-	0.4000	Kopp.
Diamond	•	40	0.0354	Fizeau.
Emerald		40	0.0168	66
Fluor spar		I.4-47	0.6235	Kopp.
Garnet	۰	0-100	0.2543	Pfaff.
Glass, white tube .		0-100	0.2648	Regnault.
" green tube .		0-100	0.2299	66
" Swedish tube .	*	0-100	0.2363	66
" hard French tube	٠	0-100	0.2142	66
" crystal tube .	٠	0-100	0.2101	66
" common tube .	٠	0-I	0.2579	
"Jena		0-100	0.2533	Reichsanstalt.
Ice		—20 to —1	1.1250	Brunner.
Iceland spar	٠	50-60	0.1.447	Pulfrich.
Idocrase	•	0-100	0.2700	Pfaff.
Iron	•	0-100	0.3550	Dulong and Petit.
"		0-300	0,4.110	66 66 66
Magnetite, Fe_3O_4 .		0-100	0.2862	Pfaff.
Manganic oxide, Mn ₂ O ₃		0-100	0.522	Playfair and Joule.
Orthoclase (adularia)		0-100	0.1794	Pfaff.
Porcelain		0-100	0.1080	Deville and Troost.
Quartz		50-60	0.3530	Pulfrich.
Rock salt		<u>5</u> 0-бо	1.2120	"
Spinel ruby		.40	0.1787	Fizeau.
Sulphur, rhombic .		0-100	2.2373	Kopp.
Topaz		0-100	0.2137	Pfaff.
Tourmaline		0-100	0.2181	
Zincite, ZnO	•	40	0.0279	Fizeau.
Zircon	9	0-100	0.2835	Pfaff.

* For more complete tables of cubical expansion, see Clarke's "Constants of Nature," (Smithsonian Collections), published in 1876. SMITHSONIAN TABLES.

.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of Liquids.

This table contains the coefficients of expansion of some liquids and solutions of salts. When not otherwise stated atmospheric pressure is to be understood. T gives the temperature range, C the mean coefficient of expan ion for range T in degrees C, and A₁ the authority for C. α , β , and γ are the coefficients in the volume equation $v_t = v_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$, and m the mean coefficient for range o -100° C, and A₂ is the authority for these.

			1					
Liquid.	T	C X 1000	A1	<i>m</i> × 100	a X 1000	$\beta \times 10^6$	$\gamma \times 10^6$	A_2
Acetic acid	16 [°] -107°	-	-	.1433	1.0630	0.126.4	1.0876	3
Acetone	0-54	-	-	.1616	1.3240	3.8090	0.0790	3
Amyl.	-15 to $+80$	_	_	_	0.8900	0.657.3	1.18.16	4
Ethyl, sp. gr8005	0-80	-	-		1.0414	0.7836	1.7168	5
" 50 % by volume	0-39		-	-	0.7450	1.850	0.730	6
··· 30 % ···	18-39	.866	 I	_	0.2928	17.900	11.87	-
" 500 atmo. press. " 3000 " "	0-10	.524	I	_	_	_	_	-
Methyl	-38 to +70		_	.1.4.33	1.1856	1.5649	0.9111	4 (
Benzene	11-81	-	-	.1385	1.1763	1.2775	0.8065	5
Bromine	-7 to +60	-	-	.1168	1.0382	1.7114	0.5.1.17	4
Calcium chloride : $CaCl_2$, 5.8 % solution	18-25	_	_	.0506	0.0788	4.2742	_	7
CaCl ₂ , 40.9 % "	17-24	-	_	.0510	0.4238	0.8571	_	7
Carbon disulphide	-34 to $+60$	-	-	.1468	1.1398	1.3706	1.9122	4
500 atmos. pressure.	0-50	.940	I	-	_		_	_
3000 " " · · · Chloroform · · · ·	0-50 0-63	.581	I 	.1399	- I.I071	4.6647	1.7433	4
Ether	-15 to +38	-	_	.2150	1.5132	2.3592	4.0051	4
Glycerine		-	-	.0534	0.4853	0.4895	-	S
Hydrochloric acid :				0-				
$11C1 + 6.25H_2O$.	0-30	_	-	.0489	0.4460	0.430 8.710	_	9
$HCl + 50H_2O$ Mercury	0-30 24-299	_	-	.0933	0.1818	0.000175	0.003512	10
Olive oil	-4 -99	-	_	.07.42	0.6821	1.1405	539	II
Potassium chloride :	1							
KCl, 2.5% solution .	-	-	-	.0572	-	—	_	77
KCl, 24.3% " Potassium nitrate :	-	-	-	.0.177	-	_		/
KNO_3 , 5.3 % sol'n	_	_	_	.0539	-	_	-	12
KNO3, 21.9% "	-	-	-	.0577	-	-	-	12
Phenol, $C_6 \Pi_6 O$	36-1 57	-	-	.0899	0.8340	0.1073	0.4446	13
Petroleum	7-38	.992	2	.1039	0.8994	1.396	_	1.4
Sp. gr. 0.8467 Sodium chloride :	24-120			1.1039	0.0994	1.390		
NaCl, 1.6% solution.	-	-	-	.1067	0.0213	10.462	-	9
Sodium sulphate :				06.00	0.0700	2 526		
$Na_2SO_4, 24\%$ sol'n .	10-40	-	-	.0611	0.3599	2.516		9
Sodium nitrate : NaNO3, 36.2 % sol'n.	20-78	_	-	.0627	0.5408	1.075	-	12
Sulphuric acid :								
\hat{H}_2SO_4	0-30	-	-	.0489		0.864	-	9
$H_2SO_4 + 50H_2O$.	-30 -9 to +106	-	_	.0799 .1051		5.160 1.959	_	9
Turpentine Water	-9 t0 + 100 0-200		_		0658	8.507	-6.769	5
			HORI					
I Amagat. 4 I	ierre.		ecker		10 Broch		Pinette. Frankenhc	im
2 Barrett. 5 K	lopp. lecknagel.	S Ei	no. a r ign	ac.	11 Sprin 12 Nicol		Scheel.	
3 Zander. 6 F	cecknaget.	9 11	angu	u Çi	12 111001	· · · >		
								_

TABLE 225.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

The numbers obtained by direct experiment on the change of volume at constant pressure, E_p , are separated in the table from those obtained from the change of pressure at constant volume, E_v . The two parts of the table are headed "Coefficient at constant pressure" and "Coefficient at constant volume," respectively. Ordinary changes of atmospheric pressure produce very httle change in the coefficient of expansion, and hence entries in the pressure column of t atm. have been made for all pressures near to 76 centimetres of mercury. The other numbers in the pressure columns are centimetres of mercury at o C, and approx. 45° latitude, unless otherwise marked. Thomson has given (vide Encyc. Brit. art. "Heat") the following equations for the calculation of the expansion, E, between σ° and 100° C, of the gases named. Expansion is to be understood as change of volume under constant pressure.

constant pressure.

Hydrogen . . . $E = .3662 \left(1 - .00049 \frac{F_0}{-0} \right)$ Common air . . E = .3662 (1 + .0026)Oxygen . . . E = .3662 (1 + .0032) $\left(\frac{V_0}{v_0}\right)$ Nitrogen . . . E = .3662 (1 + .0031)Carbon dioxide . E = .3662 (1 + .0164)210

where V_0/v_0 is the ratio of the actual density of the gas at 0° C. to the density it would have at 0° C. and one atmosphere of pressure. The same experiments (Thomson & Joule, Trans. Roy. Soc. 1860), — which, together with Regnault's data, led to these equations, — give for the absolute temperature of melting ice 2.731 times the temperature interval between the melting-point of ice and the boiling-point of water under normal atmospheric pressure.

Coefficient at co	nstant volume	•		Coefficient at co	nstant pressu	are.†	
Substance.	Pressure.	Ev X 100	Author- ity.	Substance.	Pressure.	E_p \times 100,	Author- ity.
Air """"""""""""""""""""""""""""""""""""	$\begin{array}{c} 0.6\\ 1.6\\ 7.6\\ 10.0\\ 26.0\\ 37.6\\ 75.0\\ 76-8_3\\ 11-15\\ 17-24\\ 37-51\\ 76\\ 2000\\ 10000\\ 76\\ 76\\ 1 \text{ atm.}\\ 1 \\ 1 \\ 76-104\\ 174-234\\ 793\\ 16.4 \text{ atm.}\\ 16.4 \\ 793\\ 16.53 \\ 33.53 \\ 1 \\ 33.53 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} .3765\\ .3703\\ .3665\\ .3663\\ .3666\\ .3662\\ .3665\\ .3670\\ .3648\\ .3651\\ .3658\\ .3655\\ .3690\\ .3658\\ .3655\\ .3690\\ .3887\\ .4100\\ .3669\\ .3669\\ .3671\\ .3669\\ .3766\\ .3766\\ .3766\\ .3766\\ .3766\\ .3766\\ .3752\\ .4252\\ .4754\\ .4607\\ .5728\\ .5406\\ .6973\\ .6334\\ .3667\\ .3669\\ .3656\\ .3668\\ .3676\\ .3656\\ .3668\\ .3676\\ .3656\\ .3668\\ .3676\\ .3654\\ .3674\\ .3845\end{array}$	I I I I I I 2 3 3 3 3 3 3 3 3 3 3 4 5 5 I 3 3 3 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Air " Hydrogen. " Carbon dioxide " " $(a \ 0^{\circ}-64^{\circ})$ " " $(a \ 0^{\circ}-7.5^{\circ})$ " " $(a \ 0^{\circ}-7.5^{\circ})$ " " $(a \ 0^{\circ}-7.5^{\circ})$ " " " $(a \ 0^{\circ}-7.5^{\circ})$ " " " $(a \ 0^{\circ}-7.5^{\circ})$ " " " " $(a \ 0^{\circ}-14^{\circ})$ " " " Water vapor, $0^{\circ}-119^{\circ}$ " " " " " " Water vapor, $0^{\circ}-119^{\circ}$ " " " " " " " " " " " " " Water vapor, $0^{\circ}-119^{\circ}$ " " " " " " " " " " " " " " " " " " "	24.81 " 24.81 " 24.81 " 34.49 " 34.49 "	0.3671 0.3695 0.36613 0.36616 0.3710 0.3845 0.5136 0.4747 0.7000 0.6204 0.5435 1.0970 0.8450 0.6574 0.3669 0.3719 0.3903 0.3980 0.4187 0.4189 0.4071 0.3938 0.3799	3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6

* Corrected by Mendelejeff to 45° latitude and absolute expansion of mercury. Rowland gets almost the same correction on Regnault, using Wüllner's value of the expansion of mercury. † The series of results at different pressures are given because of their interest. The absolute values are a little too low. (See preceding footnote.)

DYNAMICAL EQUIVALENT OF THE THERMAL UNIT.

Rowland in his paper quoted in Table 227 has given an elaborate discussion of Joule's determinations and the corrections required to reduce them to temperatures as measured by the air thermometer. The following table contains the results obtained, together with the corresponding results obtained in Rowland's own experiments. The variation for change of temperature in Rowland's result is due to the variation with temperature of the specific heat of water.

Date.	Method of experiment.	Temp. of water	Joule's value.	and lati	rmometer	Row- land's value.	J-R.	celative weight f. Joule's value s estimated by towlarid.
		C.°		Eng. units.	Met. units.			Rela of Jo as es Row
1847	Friction of water .	15	781.5	787.0	.4.4.2.8	427.4	+15.4	0
1850	66 66 66 .	1.4	772.7	778.0	.426.8	427.7	0.9	10
1850	" " mercury	9	772.8	779.2	427.5	428.8	-1.3	2 1
1850	66 66 66	9	775-4	781.4	42S.7	428.8	-0.1	2
1850	" " iron .	9	776.0	782.2	429.1	428. 8	+0.3	I
1850	«« «« «« .	9	773.9	780.2	428.0	428.8	—o .S	I
1867	Electric heating.	18.6	_	-	428.0	426.7	+1.3	3
1878	Friction of water .	14.7	772.7	776.1	425.8	427.6	—1.S	2
1878	66 66 66 .	12.7	774.6	778.5	427.I	428.0	0.9	3
1878	66 66 66 0	I 5.5	77 3.1	776.4	426.0	427.3	-1.3	5
1878	66 66 .	14.5	767.0	770.5	422.7	427.5	-4.8	I
1878	66 66 66 .	17.3	774.0	777.0	426.3	426.9	-0.6	I

From the above values and weights Rowland concludes as the most probable value from Joule's experiments, at the temperature 14.6° C. and the latitude of Baltimore, 426.75, and from his own experiments 427.52.

The mean of these results is 427.13 in metric units, or 778.6 in British units. Correcting back for latitude, and to mercury thermometer, this gives about 774.5 for the latitude of Manchester, instead of 772, as has been commonly used.

An elaborate determination recently made by Griffith and referred to in Table 227 gives a value about one tenth of one per cent higher than Rowland's. Probably when a mercury thermometer is involved in the measurements we may take 776 as the nearest whole number in foot-pounds and British thermal units for the latitude of Manchester, and 777 for that of Baltimore. The corresponding values in the metric system will be 425.8 and 426.3, or in round numbers 426 for both latitudes.

The following quantities should be added to the equivalent of Baltimore to give the equivalent at the latitude named : ---

Latitude 0°	10 °	20 °	30 °	40 °	50°	60 °	70 °	80°	90°
Kilogramme-metres 0.89	0.82	0.63	0.3.	0.08	-0.41	-0.77	<u> </u>	-1.26	-1.33
Foot-pounds 1.62	1.50	1.15	0.62	0.15	—0 .75	— I .4 I	-1.93	2.30	-2.43

TABLE 227.

MECHANICAL EQUIVALENT OF HEAT.

The following historical table of the principal experimental determinations of the mechanical equivalent of the unit of heat has been, with the exception of the few determinations bearing dates later than 1879, taken from Rowland.* The different determinations are divided into four groups, according to the method used. Calculations based on the constants of gases and vapors as determined by others are not included in this table.

Method.	Observer.	Date.	Result.
Compression of air	Joule ¹ Joule ¹	1845 1845	443.8 437.8
Experiments on steam engine	l lirn ² Hirn ²	1857 1860–1	413.0 420-432
Expansion and contraction of metals .	Edlund ³	1865 }	443.6 430.1
	Haga ⁴	1881 }	428.3 437.8 428.1
Measurement of the specific volume of vapor	Perot ⁵	1886	424.3
Boring of cannon	Rumford ⁶ Joule ⁷ Joule ¹	1798 1843 1845	940 ftlbs. 424.6 488.3
" " mercury in "	Joule ⁸ Joule ⁹ Joule ⁹	1847 1850 1850	428.9 423.9 424.7
" " plates of iron " " metals	Joule 9 Hirn 2 Favre 19	1850 1857	425.2 371.6
Boring " " : : : : : :	Hirn ² Hirn ²	1858 1858 1858	413.2 400-450 425.0
Water in <i>balance à frottement</i> Flow of liquids under strong pressure . Crushing of lead	Hirn ² Hirn ² Hirn ²	1860–1 1860–1 1860–1	432.0 432.0 425.0
Friction of metals	Puluj ¹¹ Joule ¹² Rowland ¹³	1876 1878 1879	426.6 423.9 426.3
" " metals	Sahulka ¹⁴	1890	427.5
Heating by magneto-electric currents .	Joule ⁷	1843	460.0 435.2
Ileat generated in a disc between the poles of a magnet	Violle ¹⁵	1870 {	434-9 435.8
Flow of mercury under pressure Heat developed in wire of known abso- {	Bartoli ¹⁶ Quintus Icilius, ¹⁷	ISSO	437-4 428-4
lute resistance Heat developed in wire of known abso-	also Weber Lenz	{ 1857 { 1859 {	399·7 396.4
lute resistance	Weber Joule ¹⁸	1867	478.2 429.5
Heat developed in wire of known abso- lute resistance	H. F. Weber ¹⁹	1877	428.15
Heat developed in wire of known abso- lute resistance	Webster ²⁰	1885 {	414.0 ergs per gramme degree.
lleat developed in wire of known abso- lute resistance	Dieterici ²¹	1888	424.36
Refe	RENCES.		
See opp	osite page.		

* " Proc. Am. Acad. Arts and Sci." vol. 15.

MECHANICAL EQUIVALENT OF HEAT.

Method.	Öbserver.	Date.	Result.
 Diminishing the heat contained in a battery when the current produces work Diminishing the heat contained in a battery when the current produces work Heat due to electrical current, clectro-chemical equivalent of water = .009379, absolute resistance, electro-motive force of Daniell cell, heat developed by action of zine on sulphate of copper	$ \begin{array}{c} \text{Joule }^{7} \\ \text{Favre }^{22} \\ \left\{ \begin{array}{c} \text{Weber,} \\ \text{Boscha,} \\ \text{Favre,} \\ \text{and} \\ \text{Silbermann} \\ \text{Joule} \\ \text{Boscha }^{23} \end{array} \right\} \\ \text{Griffiths }^{24} \end{array} $	1843 1858 1857 1859 1893	.499.0 .443.0 .432.1 .419.5 .428.0
References	ò.		
 Joule, "Phil. Mag." (3) vol. 26. Hirn, "Théorie Méc. de la Chaleur," sé Edlund, "Pogg. Ann." vol. 114. Haga, "Wied. Ann." vol. 15. Perot, "Compt. Rend." vol. 102. Rumford, "Phil. Trans. Roy. Soc." 1798 Joule, "Phil. Mag." (3) vol. 23. Joule, "Phil. Mag." (3) vol. 23. Joule, " " " " " 27. Joule, " " " " " 31. Favre, "Compt. Rend." 1858 ; "Phil. M Puluj, "Pogg. Ann." vol. 157. Joule, " " " " 31. Favre, "Compt. Rend." 1858 ; "Phil. M Puluj, "Pogg. Ann." vol. 157. Joule, " Proc. Roy. Soc." vol. 27. Rowland, "Proc. Am. Acad. Arts & Sci Sahulka, "Wied. Ann." vol. 41. Violle, "Ann. de Chim." (4) vol. 22. Bartoli, "Mem. Acc. Lincei," (3) vol. S. Quintus Icilius, "Pogg. Ann." vol. 101. Joule, " Rep. Com. on Elec. Stand.," "H H. F. Weber, " Phil. Mag." (5) vol. 5. Webster, "Proc. Am. Acad. Arts & Sci. Dieterici, " Wied. Ann." vol. 33. Favre, "Compt. Rend." vol. 47. Boscha, " Pogg. Ann." vol. 108. Griffiths, " Phil. Trans. Roy. Soc." 1893. 	S; Favre, " Compt Iag." (4) vol. 15. ." vols. 15 & 16. 3. A. Proc." 1867. " vol. 20.	. Rend." 18	58.

SMITHSONIAN TABLES.

22I

•

SPECIFIC HEAT.

Specific Heat of Water.

The specific heat of water is a matter of considerable importance in many physical measurements, and it has been the subject of a number of experimental investigations, which unfortunately have led to very discordant results. Regnault's measurements, published in 1847,* show an increase of specific heat with rise of temperature. His results are approximately expressed by the equation

 $c = 1 + .0004 t + 0000009 t^2$

which makes the specific heat nearly constant within the atmospheric range. A different equation was found from Regnault's results by Boscha, who thought the temperatures required correction to the air-thermometer. Regnault, however, pointed out that the results had already been corrected. Jamin and Amaury † found, for a range from 9° to 76° C., the equation

$$c = 1 + .0011 t + .0000012 t^3$$

which nearly all the evidence available shows to be very much too rapid a change. Wüllner gives, for some experiments of Münchhausen, the equation

$$c = 1 + .00030102 t$$

in vol. 1, changed to

c = 1 + .000425t

in vol. 10, for a range of temperature from 17° to 64°. In 1879, experiments are recorded by Stamo.§ by Henrichsen, and by Baumgarten, all of them giving large variation with temperature.

In 1879, Rowland inferred from his experiments on the mechanical equivalent of heat that the specific heat of water really passes through a minimum at about 30°, and he attempted to verify this by direct experiment. The results obtained by direct experiments were not by any means so satisfactory as those obtained from the friction experiment; but they also indicated that the specific heat passed through a minimum. — but, in this case, at about 20° C. Further, direct experiments were made in 1883, in Rowland's laboratory, by Liebig, using the same calorimetric apparatus; and these experiments also show a minimum at about 20° C. Since the publication of Rowland's paper a number of new determinations have been made. Gerosa gave, in ISS1, a series of equations which show a maximum at 4° .4, then a minimum a little above 5° and afterwards a rise to 24° ! Neesen ** found a minimum near 30° , but got rather less variation than Rowland. Rapp,†† taking the mean specific heat between 0° and 100° as unity, gives the equation

$c = 1.039925 - .007068 t + .00021255 t^2 - .000001584 t^3,$

which gives a minimum between 20° and 30° and a maximum about 70°. Volten ‡‡ gives an equation which is even more extraordinary with regard to coefficients than the last, namely,

$c = 1 - .0014625512t + .0000237981t^2 - .00000010716t^3,$

which puts the minimum between 40° and 50°, and gives a maximum at 100°; which maximum is, however, less than unity. Dieterici, in his paper on the mechanical equivalent of heat, dis-cusses this subject; but his own results being in close agreement with Rowland's, his table practically only extends Rowland's results through a greater range of temperature, assuming straight-line variation to the two sides of the minimum. Bartoli and Stracciati \$ found a minimum at about 30°; while Johanson in the same year gives a minimum at about 4° and then a rise about 12 times as rapid as that of Regnault. Griffiths || finds the equation

$$c = 1 - .0002666 (t - 15)$$

to satisfy his experiments through the range from 15° to 26°. This agrees fairly well with Rowland through the same range, and indicates that the minimum is at a temperature higher than

The following table gives the results of Rowland, Bartoli and Stracciati, and Griffiths. The column headed "Rowland" has been calculated from Rowland's values of the mechanical equivalent of heat at different temperatures, on the assumption that the specific heat at 15° is equal to unity.

- "Mém. de l'Acad." vol. 21.
 † "Compt. Rend."

 ‡ "Wied. Ann." vols. 1 and 10.
 § "Wied. Beib." vol

 "Wied. Ann." vol. 8.
 Rowland, "Proc. Am. Acad." vol. 15, and Liebig, "Am. Jour. of Sci." vol. 26.

 "Wied. Ann." vol. 18, 1883.
 ‡ "Wied. Ann." vol. 18, 1883.

 # "Diss. Zürich."
 ‡‡ "Wied. Ann." vol. 15, 1891.

 † "Compt. Rend." vol. 70, 1870. § "Wied. Beib." vol. 3.

‡‡ "Wied. Ann." vol. 21, 1884.
|||| "Phil. Trans." 1893.

-

SPECIFIC HEAT.

Temp.	Rowland.	Bartoli and	Griffiths.	Temp.	Rowland.	Bartoli and	Griffiths.	Dieterici.		
С.		Stracciati.		C.*	Kowand.	Straccati.	Griatiis.	Temp. C.	Specific heat.	
0 ⁰	1.0075*	1.0006	_	100	0.998.	0.9995	0.9989	0	C000.1	
I	1.0070**	1.0060	-	20	0.9980	0.9995	0.9987	10	0.()() 13	
2	. I.OO05*	1.0054	-	21	0.9976	0.0005	0.0081	20	0.0503	
3	1.0060*	I.0049	-	22	0.9973	0.9996	0.9981	30	0.05 2	
4	1.0055*	1.0043	-	23	0.9971	0.9996	0.9979	.10	0.0031	
5	1.0050	1.0038	-	24	0.9968	0.9995	0.9976	50	0.0005	
	1.0045	1.0033	-	-25	0.9967	1.0001	0.9973	60	1.0057	
7 8	1.0040	1.0028	-	26	0.9965	1.0003	0.9971	70	1.0120	
	1.0034	1.0023	-	27	0.9964	1.0006	0.9967	80	1.0182	
9	1.0029	1.0019		-28	0.9963	1.0010	-	- 90	1.02.14	
10	I.0024	1.0015	-	- 29	0.9962	I.001.4		100	1.0300	
II	1.0019	1.0011	_	- 30	0.9962	1.0019		-	-	
12	1.001.1	1.000S	-	31	0.9963	1.0024	—	-	_	
13	1.0009	1.0005	-	32	0.9963	-	-	-		
14	1.0005	1.0002	-	33	0.9964	-	-	-	-	
15 16	1.0000	I.0000	1.0000	34	0.9965	-	-	-	-	
1	0.9996	0.9998	0.9997	35	0.9966	-	—	-	-	
17	0.9991	0.9997	0.9995	36	0.9967	-	-	-	-	
18	0.9987	0. 9996	0.9992							

TABLE 228. - Specific Heat of Water.

TABLE 229. - Specific Heat of Air.

The ratio of the specific heat at constant pressure to the specific heat at constant volume has been the subject of much investigation, and more particularly so in the case of atmospheric air, on account of its interest in connection with the velocity of sound. The following table gives the results of the principal direct determinations of this ratio for air. It may be remarked that the methods most commonly employed have been modifications of that employed by Clement and Desormes, and that the chances of error towards too small a ratio by this method are considerable.

Date. 1812 - 1853 1858 1859 1861	Ratio. 1.354 1.374 1.249 1.421 1.4196 1.4025 1.3815	Experimenters. Clement and Desormes. Gay Lussac and Welter. Delaroche and Berard. Favre and Silbermann. Masson. Weisbach. Hirn.	Some of these results are clearly too low; and hence neglecting all those that fall be- low 1.39 and giving equal weights to the remainder we obtain, with a somewhat large probable error, the value 1.4070. The values obtained indirectly from the velocity of sound are undoubtedly much more accurate judged either by the greater
1861 1862 1863 1864 1869 1873 1874 1883 1887	1.3845 1.41 1.399 1.41 1.300 1.302 1.4053 1.397 1.4052 1.384	Hirn. Cazin. Dupré. Jamin and Richards. Tresca and Laboulaye. Kohlrausch. Röntgen. Amagat. Müller. Lummer.	more accurate, judged either by the greater ease of the experiment or by the better agreement of the results. Assuming that the value 332 metres per second is good for the velocity of sound, the ratio of the specific heats must be near to 1.4063. Probably 1.4065 may be taken as fairly representing present knowledge of the subject.

* Variation assumed uniform below 7 with same slope as from 7 to 5.

NOTE. - For specific heats of metals, solids and liquids, see pp. 294 to 296.

TABLE 230.

SPECIFIC HEAT.

Specific Heat of Gases and Vapors.

Substance.	Range of temp. C.°	Sp. ht. pressure constant.	Authority.	Mean ratio of sp. hts.	Authority.	Calculated sp. ht. vol. const.
	06.130	0.0.68	337:			
Acetone	26–110 27–179	0.3468 0.3740	Wiedemann "	_	-	
66	129-233	0.4125	Regnault	_	_	
Air	-30 to $+10$	0.23771	- · · ·	-	-	
64	0-100	0.23741	44 64	-	-	
··· · · · ·	0-200 20-100	0.23751 0.2389	Wiedemann	_	—	
44	mean	0.23788	-	1.4066	Various	0.1691
Alcohol, ethyl	108-220	0.4534	Regnault	1.136	§ Jaeger	0.3991
" methyl			"	1.130	{ Neyreneuf	0.3991
Ammonia	101-223	0.4580 0.5202	Wiedemann	_	_	
66 6 5 5	27-200	0.5356	"	_	-	
	24-216	0.5125	Regnault	-	-	
· · · · · · · · · · · · · · · · · · ·	mean	0.5228	-	1.31	{ Cazin	0.3991
Benzene.	34-115	0.2990	Wiedemann	_	{ Wüllner	
	35-180	0.3325	"	_	_	
46	116-218	0.3754	Regnault	-	_	
Bromine	83-228	0.0555	G Chan alson	-	- C (
Carbon dioxide	19-388 -28 to +7	0.0553	Strecker Regnault	1.293	Strecker	0.0428
66 66 0 0	15-100	0.2025	"	_	_	
66 66	11-214	0.2169	66	_	-	
66 66	mean	0.2012	_	1.300	{ Röntgen	0.1 548
Carbon monoxide	23-99	0.2.425	Wiedemann	_	{ Wüllner	5.
	26-198		6		{ Cazin	
		0.2426		1.403	(Wüllner	0.1729
Carbon disulphide	86-190	0.1596 0.1210	Regnault	1.200	Beyne	0.1330
chionine	13-202 16-343	0.11210	Strecker	- 1.323	Strecker	0.0850
Chloroform	27-118	0.1441	Wiedemann	-	-	jeree je
64	28-189	0.1.489	66	1.106	∫ Beyme	0.1346
Ether	69-224		Regnault		(Müller	511 940
Ether	27-189	0.4797 0.4618	Wiedemann	_	_	
66	25-111	0.4280	66	-	_	
	mean	0.4565		1.029	Müller	0.4436
Hydrochloric acid	22-214	0.1852	Regnault Strecker	1 205	– Strecker	0 7 201
Hydrogen	13-100 -28 to +9	0.1940 3.3996	Regnault	1.395	Strecker	0.1391
	12-198	3.4090		-	-	
66 · · · · ·	21-100	3.4100	Wiedemann	-		
" sulphide (H_2S)	mean 20-206	3.4062 0.2451	– Regnault	1.410	Cazin Müller	0.2419
Methane	18-208	0.5929	"	1.316	"	0.4505
Nitrogen	0-200	0.2438	66	1.410	Cazin	0.1729
Nitric oxide (NO).	13-172	0.2317	44	-	-	
Nitrogen tetroxide (NO_2)	27-67 27-150	1.625	Berthelot and	_	_	
CC CC CC	27-280	0.650	S Ogier	-	_	
Nitrous oxide	16-207	0.2262	Regnault	-	-	
66 66 · · ·	26-103	0.2126	Wiedemann	-	-	
	27–206 mean	0.2241 0.2214	_	- 1.291	Wüllner	.1715
Sulphur dioxide (SO_2) .			Pequalit	1.291	{ Cazin }	
	16-202	0.1544	Regnault "	1.20	{Müller }	0.1225
Water	128-217	0.4805	" Macfarlane	-		
	100-125	0.3787	Gray	_	_	
	mean	0.4296		1.300	Various	0.3305

SMITHSONIAN TABLES.

E

224

.

VAPOR PRESSURE.

	0 0	1°	2 °	3 `	42	50	6	7 '	8,	9	
Temp.			Va	por pressur	e in millim	etres of me	ercury at o	C.			
0° 10 20 30	12.24 23.78 44.00 78.06	1 3.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22-34 .41.40 73.83 126.86	
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	1 55.80 253.80 400.40 61 3.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 66 5.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45	
From	From the formula $\log p = a + ba' + c\beta'$ Ramsay and Young obtain the following numbers.										
Ċ	0 °	10 °	20 °	30 °	40 °	50°	60°	70 °	80 °	90	

TABLE 231. - Vapor Pressure of Ethyl Alcohol."

U U	0 °	10 °	20 °	30 ⁰	40 °	50°	60 2	70°	℃ 08	90
Temp.			Va	por pressur	e in millime	tres of me	e rcury at o	° C.		
0°	12.24 1692.3	23.73 2359.8	43.97 3223.0	78.11 4318.7	1 33.42 5686.6	219.82 7368.7	350.21 9409.9	540.91 11858.	811.81 14764.	1186.5 18185.
200	22182.	26825.	32196.		45519.					

TABLE 232. - Vapor Pressure of Methyl Alcohol. ‡

	0 °	1°	2 °	3 2	4 °	5 2	6 °	7	8 °	90
Temp.	Vapor pressure in millimetres of mercury at o ^o C.									
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4

* This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil Trans. Roy. Soc., 1886).

† In this formula a = 5.0720301; $\log b = 2.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = 1.09782424$ (c is negative).

‡ Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0.2	1	2	3 °	4 °	50	6 °	7.	8°	90		
- Curby	0											
	(a) CARBON DISULPHIDE.											
0 10 20 30 40	127.90 198.45 298.05 434.60 617.50	1 33.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	1 53.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25		
				(b) C	HLOROBI	ENZENE.						
20 ° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	1 3.42 22.69 37.08	14.17 23.87 38.88		
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 7 3.11 1 10.41 1 61.95 2 31.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25		
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70 –	333·35 454.65 608.75 -	344.15 468.50 626.15	355.25 482.65 643.95 -	366.65 497.20 662.15 –	378.30 512.05 680.75 -	390.25 527.25 699.65 –		
				(c)]	Bromobe	ENZENE.						
40°	_		-	-	_	12.40	13.06	13.75	14.47	15.22		
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08		
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	1 50.57 212.44 292.60 395.10 523.90	1 56.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25		
150	649.05	666.25	683.80	701.65	719.95	7 38.55	757.55	776.95	796.70	816.90		
				(d) ANIL	INE.						
80 ° 90	18.80 30.10	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 .42.28	28.80 44.06		
100 110 120 130 140	45.90 68.50 100.40 1.44.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82		
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 .421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45		

* These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

SMITHSONIAN TABLES.

1

VAPOR PRESSURE.

Methyl Sallcyla	te, Bromona	phthaline,	and Morcury	7.
-----------------	-------------	------------	-------------	----

			itotilyr Su	iicylato, i	Bromonaph		Ind moreu	цу.			
Temp. C.	0.5	10	2	3	4	5 0	6 '	7 `	8	9	
	(e) METHYL SALICYLATE.										
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4-31	
80	4.60	4.87	5.15	5.1.1	5.7.4	6.05	6.37	6.70	7.05	7-1	
90	7.80	8.20	8.62	9.60	9.52	9.95	10.41	10.95	11.45	12 03	
100	12.60	13.20	13.82	1.4.47	15.1 5	15.85	16.58	17.34	18.13	18.95	
110	19.80	20.68	21.60	22.55	23.53	24.55	25.64	20.71	27.85	293	
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40-40	41.84	43.54	
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10	
140	66.55	69.08	71.69	7.4.38	77.15	80.00	82.94	85.97	89.09	92.30	
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121,53	125.66	129.90	
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168,19	173.56	179.06	
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228,30	235.15	242.15	
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304,48	313.05	321.85	
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399,60	.410.30	.421.20	
200 210 220	432-35 557-50 710.10	443.75 571.45 727.05	455-35 585.70 744-35	.467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	513 So 693.60 1	
				(f) Bro	MONAPH	THALINF					
110 °	3.60	3.74	3.89	4.05	4.22	4.40	4-59	4.79	5.00	5.22	
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12	
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60	
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03	
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83	
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	30.41	
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.90	54.68	
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82	
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05	
200	104. 05	107.12	110.27	113.50	116.81	1 20.20	123.67	127.22	1 30.86	134.59	
210	138.40	142.30	146.29	150.38	154.57	1 58.8 5	163.25	167.70	172.30	170.95	
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00	
230	235.95	242.05	248.30	254.65	261.20	267.8 5	274.65	281.60	288.70	295.95	
240	303.35	310.90	318.65	326.50	334.55	342.7 5	351.10	359.65	368.40	377.30	
250	386.35	395.60	405.05	41 4.65	424.45	434-45	444.65	455.00	465.60	471-35	
260	487.35	498.55	509.90	521.50	533.35	545-35	557.60	570.05	582.70	595.00	
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737-15	
				(g) MERCU	JRY.					
270 °	123.92	126.97	130.08	133.26	136.50	1 39.81	1.4.3.18	146.C1	1 50.1 2	1 53.70	
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	180.30	193.63	
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53	
300	246.81	252.18	257.65	263.21	268.87	27 4.63	280.48	286.43	292.49	205.66	
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366 25 1	
320	373.67	381.18	388.81	306.56	40.4.43	412.44	420.58	428.83	437.22	44 57 5	
330	454.41	463.20	472.12	481.10	490.40	499.74	509.22	518.85	528.63	5 35.56	
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	C46.36	
350 360	658.03 784.31	669.S 6	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87	

AIR AND MERCURY THERMOMETERS.

Rowland has shown (Proc. Am. Acad. Sci. vol. 15) that, when 0° and 100° are chosen for fixed points, the relation between the readings of the air and the mercury in glass thermometers can be very nearly expressed by an equation of the form t = T - at(100 - t)(b - t),

where t is the reading of the air thermometer and T that of the mercury one, a and b being constants. The smaller a is, the more nearly will the thermometers agree at all points, and there will be absolute agreement for t = 0 or 100 or 8

roo or b. Regnault found that a mercury thermometer of ordinary glass gave too high a reading between o° and 100°, and too low a reading between 100° and about 245°. As to some other thermometers experimented on by Regnanh, little is recorded of their performance between 0° and 100°, but all of them gave too high readings above 100°, indicating that below 100° the mercury thermometer probably reads too low. Regnault states this to be the case for a thermometer of Choisy le Roi crystal glass, and puts the maximum error at from one tenth to two tenths of a degree. Regnault's comparisons of the air and mercury thermometers and a comparison by Recknagel of a mercury thermometer of common glass with the air thermometer are compared with the above formula by Rowland. The tables are interesting as showing approximately the error to be expected in the use of a mercury thermometer The tables are interesting as showing approximately the error to be expected in the use of a mercury thermom-eter and the magnitude of the constants a and b for different glasses. They are given in the following Table. Regnault's results above 100° C, compared with the formula t = T - at(100 - t)(b - t), give for the constants aand b the following values:

Cristal de Choisy le Roi $a \equiv 0.0000032$, $b \equiv 0^{\circ}$. Verre ordinaire $a \equiv 0.0000034$, $b \equiv 245^{\circ}$. Verre vert $a \equiv 0.000000035$, $b \equiv -270^{\circ}$.* Verre de Suède $a \equiv 0.00000014$, $b \equiv 10^{\circ}$. Common glass (Recknagel) $a \equiv 0.0000033$, $b \equiv 290^{\circ}$.

(a) Temperatures between 0° and 100° C.

There are no observed results with which to compare the calculations for the Choisy le Roi thermometer through this range, and in the case of the *verre ordinaire*, the specimen for which the readings below 100° are given was not the same as that used above 100°, from which the constants *a* and *b* were calculated. Row-land shows that $a \equiv 0.00000044$ and $b \equiv 260$ give considerably better agreement.

		Regnault's tl	termometers.		Recki	nagel's thermor	neter.	
Air thermome- ter,	Choisy	Verre ordinaire.		T)'0'	Observed.	Calculated.	Difference.	
LCI.	le Roi. Calculated.	Observed.	Calculated.	Difference.	Observed.	Calculated.	Difference.	
		00.00	00.00		00.00	00.00	.00	
0	00.00	00.00			10.08	10.08	.00	
10	10.00	_	10.07	_			(
20	19.99	-	20.12		20.14	20.14	.00	
30	29.98	30.12	30.15	+.03	30.18	30.18	.00	
40	30.97	40.23	40.17	06	40.20	40.20	.00	
50	49.96	50.23	50.17	06	50.20	50.20	.00	
бо	59.95	Ğ0.24	60.15	00	60.18	60.18	.00	
70	69.95	70.22	70.12	10	70.14	70.15	+.01	
70 80	79.96	80.10	80.09	—.0I	80.10	Š0.11	+.01	
90	89.97	- 90.05		-	90.05	90.06	+.0I	
100	100.00	100.00	100.00	-	100.00	100.00	+.0	

Air	Ch	oisy le Ra	ວຳ.	Ver	re ordinai	ire.	V	erre vert		Ver	re de Suè	de.
ther.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.
100 120 140 160 200 220 240 260 280 300 320 340	100.00 120.12 140.29 160.52 180.80 201.25 221.82 242.55 263.44 284.48 305.72 327.25 349.30	180.83 201.28 221.86 242.56 263.46 284.52 305.76	+.03 +.04 +.03 03 03 04 01	159.74 179.63	179.68 199.69 219.78 239.96 260.21 280.00 301.12	+.02 05 +.01 +.02 06 01 02 04 .00	100.00 120.07 140.21 160.40 180.60 200.80 221.20 241.60 262.15 282.85	100.00 120.09 140.22 160.39 180.62 200.89 221.23 241.63 262.09 282.63	02 09 03 03 +.07	100.00 120.04 140.11 160.20 180.33 200.50 220.75 241.16	100.00 120.04 140.10 160.21 180.34 200.53 220.78 241.08	

(b) TEMPERATURES ABOVE 100° C., REGNAULT'S THERMOMETERS.

* Misprinted [+] 270 in Rowland's paper.

COMPARISON OF THERMOMETERS."

Chappius gives the following equations for comparing glass thermometers :

 $1000 (T_N - T_H) = .00543 (100 - T_m) T_m + 1.412 \times 10^{-4} (100^2 - T_m^2) T_m - 1.323 \times 10^{-6} (100^3 - T_m^3) T_m.$ $\operatorname{room}(T_{CO_2} - T_H) = .0359 (100 - T_m) T_m - 0.234 \times 10^{-4} (100^2 - T_m^2) T_m - 0.510 \times 10^{-6} (100^3 - T_m^2) T_m.$ $N \equiv$ nitrogen; $H \equiv$ hydrogen; $CO_2 =$ carbon dioxide; $m \equiv$ mercury.

TABLE 235. - Hydrogen Thermemeter compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the hydrogen thermometer.

	Chapp	bius's experim	ients.†		Mare	k's experime	a ts.‡			
Tempera- ture by	Hard		Carbon	Mercury in glass.						
hydrogen thermom- eter.	French glass mercury ther-	Nitrogen thermome- ter.	dioxide thermome- ter.	thermome- Hard French		Jena normal	Thuringtan glass.			
	mometer.			French glass.	crystal glass.	glass.	1830-40.	1588.		
	+0.172 +0.073 0.000 -0.052 -0.085 -0.102 -0.103 -0.103 -0.090 -0.072 -0.050 -0.026	+0.01.4 +0.007 0.000 -0.010 -0.011 -0.011 -0.005 -0.001 +0.002 +0.003	+0.071 +0.032 0.000 -0.025 -0.043 -0.054 -0.059 -0.059 -0.053 -0.044 -0.030 -0.016	0.000 0.044 0.073 0.091 0.095 0.096 0.086 0.070 0.050 0.026	0.000 -0.060 -0.100 -0.125 -0.134 -0.132 -0.118 -0.096 -0.068 -0.035	0.000 0.056 0.091 0.109 0.111 0.103 0.086 0.064 0.041 0.018	0.000 	0.000 -0.072 -0.125 -0.159 -0.178 -0.180 -0.168 -0.143 -0.106 -0.058		
100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

TABLE 236. - Air Thermometer compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the air thermometer.

Temperature by air thermome- ter.	Mercury in Thuringian glass thermometer (Grommach §).	Mercury in Jena glass thermome- ter (Wiebe and Böttcher).	Temperature by air thermonic- ter.	Mercury in Jena glass thermome- ter (Wiebe and Böttcher+).	Temperature by air thermome- ter.	Baudin alcohol thermometer (White *).
	+0.03 +0.02 0.00 -0.03 -0.11 -0.12 -0.08 - -0.04 - - -0.04 - - - - -0.04 - - - - - - - - - -	+0.153 +0.067 0.000 -0.049 -0.083 -0.103 -0.107 -0.078 -0.078 -0.078 -0.078 -0.054 -0.028 0.0000 -0.03 -0.05	130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 290 300	-0.07 -0.09 -0.10 -0.08 -0.06 -0.02 $+0.04$ $+0.11$ $+0.21$ $+0.32$ $+0.46$ $+0.63$ $+0.63$ $+0.82$ $+1.05$ $+1.30$ $+1.58$ $+1.91$	$ \begin{array}{c} 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -25 \\ -30 \\ -35 \\ -40 \\ -35 \\ -40 \\ -50 \\ -55 \\ -65 \\ -55 \\ -65 \\ -70 \\ -80 \\ -90 \\ -100 \\ \end{array} $	$\begin{array}{c} -0.000 \\ -0.144 \\ -0.382 \\ -0.704 \\ -1.100 \\ -1.563 \\ -2.082 \\ -2.648 \\ -3.253 \\ -3.887 \\ -4.511 \\ -5.206 \\ -5.872 \\ -6.531 \\ -7.174 \\ -8.371 \\ -9.392 \\ -10.103 \end{array}$

* These two tables are taken with some slight alteration from Landolt and Boernstein's "Phys. Chem. Tab."
† P. Chappius, "Trav. et Mém. du Bur. internat. des Poids et Més." vol. 6, 1888.
‡ Marck, "Zeits. für Inst.-K." vol. 10, p. 283.
§ Grommach, "Metr. Beitr. heraus. v. d. Kaiser. Norm.-Aich. Comm." 1872.
[] Wiebe und Böttcher, "Zeits. für Inst. K." vol. 10, p. 233.
¶ White, "Proc. Am. Acad. Sci." vol. 21, p. 45.

CHANCE OF THERMOMETER ZERO DUE TO HEATING.*

When a thermometer is used for measurements extending over a range of more than a few degrees, its indications are generally in error due to the change of volume of the glass lagging behind the change of temperature. Some data are here given to illustrate the magnitude of the change of zero after heating. This change is not permanent, but the thermometer may take several days or even weeks to return to its normal reading.

				Kind of glass		
No. of	Maximum temp. in	Time at maximum	Normal J	ena glass.	Thuringian	Composition of Jena glass
experi- ment.	deg. cent.	temp. in hours.	Ι.	II.	glass.	used.
			Depres	sion of freezin	ig-point.	<u></u>
1 2 3 4 5 6 7	290 290 290 290 290 290 290	5 5 5 5 5 25	1.0 1.3 1.5 1.6 1.7 1.8 2.0	1.0 1.5 1.7 1.8 1.9 2.0 2.2	2.I 2.7 3.I 3.4 3.6 3.7 4.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 238.

CHANCE OF THERMOMETER ZERO DUE TO HEATINC.

Description of thermometer.		Year of manufacture.		a and potash glass.	Depression of zero due to one hour's
		manufacture.	Na2O / K2O	K ₂ O / Na ₂ O	heating to 100° C.
Humboldt, No. 2 J. G. Greiner, F_1	• • • • • •	Before 1835 1848 1856 1872 1875 1875 1875 1878	0.04 0.08 0.22 - - -	- - 0.21 0.26 0.24 0.83	0.06 0.15 0.38 0.38 0.40 0.44 0.65

* Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

† W. Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189. See also, for this and following table, Wiebe in the "Zeitschrift für Instrumentenkunde," vol. 6, p. 167, from which Fresenius quotes. The thermometer referred to in this table belonged to the Kaiserlichen Normal-Aichungs Commission.

SMITHSONIAN TABLES.

230

EFFECT OF COMPOSITION ON THERMOMETER ZERO.*

Descriptive number.	Si ₂ O	Na ₂ O	KgO	CaO	$=$ Al_2O_3	B_2O_3	ZnO	Depte fon of zero due to ont hour's heating to too C.
IV VIII XXII XXXI XVII ^{III}	70 70 66 66 69	15 14 11.1 15	1 3.5 - 14 16.9 10.5	16.5 15 6 6 -	- - 5		-	0.08 0.08 1.05 1.03 1.06
XX ^{III} XIV ^{III} † XVI ^{III} XVIII	70 69 67.5 5 ²	7-5 14 14 -	7.5 - 9	15 7 7 -	1 2.5 -	- 2 9	- 7 30	0.17 0.05 0.05 0.05

Jena Glasses.

TABLE 240.

CHANGE OF ZERO OF THERMOMETER WITH TIME.

Closely allied to the changes illustrated in Tables 235-237 is the slow change of volume of the bulb of a thermometer with age. The following short table shows the change for the normal Jena thermometer.‡

	Da	te of observatio	n.	*
Thermometer number.	1886	1889	1890	Total rise.
106	0.00	0.3	0.0.1	0.04
108	0.01	0.2	0.0.1	0.03
665	0.01	0.3	0.05	0.04
667	0.02	0.4	0.05	0.03
668	0.02	0.5	0.06	0.0.1
670	0.00	0.3	0.04	0.0.1
67 1	0.05	0.9	0.09	0.04
672	0.05	0.8	0.08	0.03

* Fresenins, "Zeits. für Anal. Chem." vol. 27, p. 189.

† Normal Jena glass.
‡ Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

SMITHSONIAN TABLES.

231

TABLE 241.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM."

 $T \equiv t = 0.0000795 \ n \ (t' = t)$, in Fahrenheit degrees; $T \equiv t = 0.000143 \ n \ (t' = t)$, in Centigrade degrees. Where $T \equiv$ corrected temperature, $t \equiv$ observed temperature, $t' \equiv$ mean temperature of glass stem and mercury column, $n \equiv$ the length of mercury in the stem in scale degrees.

			(a) Corre		of 0.000795		MOMETER					
					<i>t'</i> - <i>t</i>							
n	10°	20 °	30°	40 °	50°	60°	70 °	80°	90°	100°		
10° 20 30 40 50	0 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.02 0.03 0.05 0.06 0.08 0.10 0.11 0.13 0.14 0.16 0.02 0.05 0.07 0.10 0.12 0.14 0.17 0.19 0.21 0.24 0.03 0.06 0.10 0.13 0.16 0.19 0.22 0.25 0.29 0.32 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40											
60 70 80 90 100	70 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.45 0.50 0.56 80 0.06 0.13 0.19 0.25 0.32 0.38 0.45 0.51 0.57 0.64 90 0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 0.64 0.72											
110 120 130	120 0.10 0.19 0.29 0.38 0.48 0.57 0.67 0.76 0.86 0.95											
			(b) Corr		FOR CENTIGE e of 0.000143		MOMETER					
					t'-t							
n	10 °	20	0	30°	40 °	50°	60	0	70 °	80°		
10 ° 20 30 40 50	0.01 0.03 0.04 0.06 0.07	0.0 0.0 0.0 0.1	б (9 (1 (0.04 0.09 0.13 0.17 0.21	0.06 0.11 0.17 0.23 0.29	0.07 0.1.4 0.21 0.29 0.36	0.0 0.1 0.2 0.3 0.4	7 6 4	0.10 0.20 0.30 0.40 0.50	0.11 0.23 0.34 0.46 0.57		
60 70 80 90 100	70 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 80 0.11 0.23 0.34 0.46 0.57 0.69 0.80 0.92 90 0.13 0.26 0.39 0.51 0.64 0.77 0.90 1.03											
		N. B	. — When	t'-t is	negative the	correction h	pecomes ad	ditive.				

* " Smithsonian Meteorological Tables," p. 12.

CORRECTION	FOR	TEMPERATURE OF	MERCURY	IN	THERMOMETER
		STEM			

(C) Correction to be added to Thermometer Reading."													
	7 0°	80°	90°	100	120	140	160	180	200	220°	71		
10 ° 20 30 40	0.02 0.13 0.24 0.35	0.03 0.15 0.28 0.41	0.05 0.18 0.33 0.48	0.07 0.22 0.39 0.56	0.11 0.29 0.48 0.68	0.17 0.38 0.59 0.82	0.21 0.46 0.70 0.94	0.27 0.53 0.78 1.04	0.33 0.61 0.88 1.16	0.38 0.67 0.97 1.28	10 ° 20 30 40		
50 60 70 80	0.47 0.57 0.69 0.80	0.53 0.66 0.79 0.91	0.62 0.77 0.92 1.05	0.72 0.89 1.06 1.21	0.88 1.09 1.30 1.52	1.03 1.25 1.47 1.71	1.17 1.42 1.67 1.94	1.31 1.58 1.86 2.15	1.44 1.74 2.04 2.33	1.59 1.90 2.23 2.55	50 60 70 80		
90 100 110 120	0.91 1.02 -	1.04 1.18 - -	1.19 1.35 -	1.38 1.56 1.78 1.98	1.73 1.97 2.19 2.43	1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.42 2.70 2.98 3.26	2.64 2.94 3.26 3.58	2 89 3.23 3.57 3.92	90 100 110 120		
130 140 150 160			-	-	2.68 2.92 - -	2.94 3.22 -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160		
170 180 190 200	-		-				4.27 4.54 -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200		
210 220	-			-	-	-	-	-	6.68 7.04	7·35 7·75	210 220		

* This table is quoted from Rimbach's results, "Zeit. für Instrumentenkunde," vol. 10, p. 153. The numbers represent the correction made by direct experiment for thermometers of Jena glass graduated from 0 to 360 C., the degrees being from 1 to 1.6 mm. long. The first column gives the length of the mercury in the part of the stem which is exposed in the air, and the headings under t - t' give the difference between the observed temperature and that of the air.

SMITHSONIAN TABLES.

233

TABLE 242. - Emissivity at Ordinary Pressures.

According to McFarlane * the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14 C., can be expressed by the equations

$$c = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^2$$

when the surface of the sphere is blackened, or

$$e = .00016S + 1.9S \times 10^{-6}t - 1.7 \times 10^{-8}t^2,$$

when the surface is that of polished copper. In these equations e is the emissivity in c. g. s. units, that is, the quantity of heat, in therms, radiated per second per square centimetre of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

	Differ- ence of	Valu	e of <i>e</i> .	Ratio.
	ture t	Polished surface.	Blackened surface.	Katio,
	5	.000178	.000252	.707
	IO	.000186	.000266	.699
ł	15	.000193	.000279	.692
	20	.000201	.000289	.695
	25	.000207	.000298	.694
	30	.000212	.000306	.693
	35	.000217	.000313	.693
	40	.000220	.000319	.693
	45	.000223	.000323	.690
	50	.000225	.000326	.690
	55	.000226	.000328	.690
	60	.000226	.000328	.690

TABLE 243. - Emissivity at Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

-								
	Polishe	ed surface.	Blacken	ed surface.				
	t	et	t	et				
	PRF	ESSURE 76 CM	IS. OF MERCURY.					
	63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278 .00210	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455 				
	Pres	SURE 10.2 CM	MS. OF MERCURY.					
	67.8 61.1 55 49.7 44.9 40.8	.00.192 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791 .00490				
	PR	ESSURE I CM	. of Merc	CURY.				
	65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124 _	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446 .00391				

" Proc. Roy. Soc." 1872.
† " Proc. Roy. Soc." Edinb. 1869.

SMITHSONIAN TABLES.

234

EMISSIVITY.

TABLE 244. - Constants of Emissivity.

The constants of radiation into vacuum have been determined for a few substance . The object of several of the investigations has been the determination of the law of variation with temperature or the relative merits of Dulong and Petit's and of Stefan's law of coolin . Dulong and Petit's law gives for the amount of heat radiated in a given time the equation

 $H = dsa^{\theta}(a^{t} - 1)$

where \mathcal{A} is a constant depending on the units employed and on the nature of the surface, β the surface, a a constant determined by Dulong and Petit to be 1.0077, θ the absolute temperature of the enclosure, and t the difference of temperature between the hot surface and the enclosure. The following values of A are taken from the experiments of W. Hopkins, the results being reduced to centimetre second units, and the therm as unit of heat.

> GlassA = .00001327Dry chalkA = .00001195Dry new red-sandstoneA = .00001162Sandstone (building) A = .00001232Polished limestone A = .00001263Unpolished limestone (same block) . . . A = .0001777

Stefan's law is expressed by the equation

$$H=\sigma s(T_1^4-T_0^4),$$

where H and s have the same meaning as above, σ is a constant, called Stefan's radiation con-stant, T_1 is the absolute temperature of the radiating body and T_0 the absolute temperature of the enclosure. Stefan's constant would represent, if the law held to absolute zero, the amount of heat which would be radiated per unit surface from the body at 1° absolute temperature to space at absolute zero. The experiments of Schleiermacher, Bottomley, and others show that this law approximates to the actual radiation only through a limited range of temperature.

Graetz * finds for glass	. $T_1 = 400, T_0 = 0, \sigma = 1.0846 \times 10^{-12}$
Schleiermacher † find for polished platinum wire	$\begin{cases} T_1 = 1085, T_0 = 0, \sigma = 0.185 \times 10^{-12} \\ T_1 = 1150, T_0 = 0, \sigma = 0.177 \times 10^{-12} \end{cases}$
For copper oxide	$\begin{cases} T_1 = 850, T_0 = 0, \ \sigma = 0.600 \times 10^{-12} \\ T_1 = 1080, \ T_0 = 0, \ \sigma = 0.701 \times 10^{-12} \end{cases}$

TABLE 245. - Effect of Absolute Temperature of Surface.

The following tabular results are given by Bottomley.[‡] The results of Schleiermacher were calculated from data given in the paper above quoted. The temperatures t_1 are in degrees centigrade, and e is the emis ivity or anomal of heat in therms radiated per square centimetre of surface per degree difference of temperature between the hot body and the enclosure. The results are all for high vacuum.

Schleiermacher's results. polished platin	Bottomley's realts for poished platinum, the enclosures leit g at 15 C					
$\begin{array}{c cccc} t_1 & & t_1 \\ & & t_1 \\ \hline 1 & 30 & 21.6 \times 10^{-6} \\ 200 & 30.0 & " \\ 300 & 30.0 & " \\ 337 & 53.8 & " \\ 581 & 137.0 & " \\ 826 & 315.0 & " \\ \end{array}$	110 232 3 ⁸ 3 740 1	$\begin{array}{c} e_2 \\ 14.5 \times 10^{-6} \\ 18.7 & " \\ 32.2 & " \\ 01.6 & " \\ 98.0 & " \\ 55.0 & " \end{array}$	13 16 38 94 228 403 585	c_3 60.9×10^{-6} 67.6 " $8_{3.7}$ " 1.47.0 " 293.0 " 5.40.0 "	302 425 613 741 806	6 $65.05 > 10^{-6}$ 120.3 " 252.0 " 537.0 " 653.0 "

"Wied, Ann." vol. 11, p. 297.
† "Wied, Ann." vol. 26, p. 305.
‡ "Phil. Trans. Roy. Soc." 1887, p. 429.

EMISSIVITY.

3

TABLE 246. - Radiation of Platinum Wire to Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers : --

$$t \equiv 40^{\circ}$$
 C., $et \equiv 378.8 \times 10^{-4}$, temperature of enclosure 16° C.
 $t \equiv 505^{\circ}$ C., $et \equiv 726.1 \times 10^{-4}$, " " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosur	re 16° C., $t = 408^{\circ}$ C.	Temp. of enclosure	$_{17^{\circ}}$ C., $t = 505^{\circ}$ C.
Pressure in mm.	et	Pressure in mm.	et
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0×10^{-4} 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached but not measured }	1688.0×10^{-4} 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 " 726.1 "

TABLE 247. - Effect of Pressure on Radiation at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimetre per second.

Temp. of		J	Pressure in m	m.	
wire in C ^o .	10.0	1.0	0.25	0.025	About o.1 M.
100 ⁰ 200 300 400 500 600 700 800 900	0.1.4 .31 .50 .75 - - - -	0.11 .24 .38 .53 .69 .85 - - -	0.05 .11 .18 .25 .33 .45 _ _ _	0.01 .02 .04 .07 .13 .23 .37 .56	0.005 .0055 .0105 .025 .055 .13 .24 .40 .61

NOTE. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows : —

> Dull black filament, 57.9 watts. Bright " " 39.8 watts.

PROPERTIES OF STEAM.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gramme or the kilogramme is taken as the unit of mass.

_		_											
	Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grammes per sq. contimetre $= p$.	Pressure în atmospheres.	Total heat of evaporation from \circ at $t = H$.	Heat of liquid $= k$.	Heat of evapora- tion $= H - h$.	Outer latent or ex- ternal-work heat $= A \rho \tau$.	Total heat of steam $= H - A A \tau$.	Inner latent or in- ternal-work heat =/I - (h + Afree)	Litres per gramme, or cubic metres per kilog. $= z_i$.	Ratio of inner la- tent heat to vol- ume of steam.t
	0° 5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017 .023	606.5 608.0 609.5 611.1 612.6	0.00 5.00 10.00 15.00 20.01	606.5 603.0 599.5 596.0 592.6	31.07 31.47 31.89 32.32 32.75	575-4 576.5 577-7 578.8 579.8	57 5-4 571-5 567-7 563-7 559.8	210.66 150.23 108.51 79.35 78.72	2.732 3.805 5.231 7.104 9.532
	25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	614.1 615.6 617.2 618.7 620.2	25.02 30.03 35.04 40.05 45.07	589.1 585.6 582.1 587.6 575.1	33.20 33.66 34.12 34.59 35. 06	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.64 16.59 21.54 27.70 35.26
	50 55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	621.7 623.3 624.8 626.3 627.8	50.09 55.11 60.13 65.17 70.20	568.2 564.7	35-54 36.02 36.51 37.00 37.48	586.2 587.2 588.3 5 ⁸ 9.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44.49 55.65 69.02 84.94 103.75
	75 So S5 90 95	348 353 358 363 368	288.50 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7	0.380 .446 .570 .691 .8 3 4	629.4 630.9 632.4 633.9 635.5	7 5.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	37.96 38.42 38.88 39.33 39.76	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181.5 216.0 255.7
	100 105 110 115 120	373 378 383 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	638.5 640.0 641.6	100.5 105.6 110.6 115.7 120.8	536.5 533.0 529.4 525.8 522.3	40.63 41.05 41.46	599.0 600.1	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
	125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 3125.6	2371. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	511.6 508.0	42.63 43.01		476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
	150 155 160 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4.712 5.380 6.120 6.940 7.844	653.8 655.3 656.8	151.5 156.5 161.7 166.9 172.0	497-2 493-5 489.9 486.3	45.09 45.40	609.3 610.5 611.7 612.9	452.8 4.18.8 444.8 440.9	0.2375	1 3 36. 1 496. 1 669. 1 8 56.
	175 180 185 190 195	448 453 458 463 468	6717.4 7546.4 8453.2 9442.7 10520.	9133. 10260. 11490. 12838. 14303.	8.839 9.929 11.123 12.425 13.842	661.4 662.9 664.4 666.0	192.8 198.0	479.0 -175-3 -471-7 -468.0	46.01 46.30 46.59 46.86	615.4 616.6 617.9 619.1		0.1901 0.1708 0.1538 0.1389	2277. 2512. 2763. 3031.
	200	473	11689.	1 5892.	1 5.380	667.5	203.2	464.3	47.13	620.4	417.1	0.1257	3318.

* Where A is the reciprocal of the mechanical equivalent of the thermal unit. $\dagger = \frac{H - (h + A \rho \tau)}{v} = \frac{\text{internal-work pressure}}{\text{mechanical equivalent of heat}}$. Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per square metre, — the mechanical equivalent being that of the therm and the kilogramme-degree or calorie respectively.

PROPERTIES OF STEAM. British Measure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
1	144	0.068	102.0	334.23	0.0030	70.1	980.6	62.34	1043.	1113.0
2	288	.136	126.3	173.23	.0058	94.4	961.4	64.62	1026.	1120.4
3	432	.204	141.6	117.98	.0085	109.9	949.2	66.58	1011.	1127.0
4	576	.272	153.1	89.80	.0111	121.4	940.2	67.06	1007.	1128.6
5	720	.340	162.3	72.50	.0137	130.7	932.8	67.89	1001.	1131.4
6	864	0.408	170.1	61.10	0.0163	138.6	926.7	68.58	995.2	1133.8
7	1008	.476	176.9	53.00	.0189	145.4	921.3	69.18	990.5	1135.9
8	1152	.544	182.9	46.60	.0214	151.5	916.5	69.71	986.2	1137.7
9	1296	.612	188.3	41.82	.0239	156.9	912.2	70.18	982.4	1139.4
10	1440	.680	193.2	37.80	.0264	161.9	908.3	70.61	979.0	1140. 9
11	1584	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	97 5.8	1142.3
12	1728	.816	202.0	31.90	.0314	170.7	901.5	71.34	972.8	1143.5
13	1872	.884	205.9	29.58	.0338	174.7	898.4	71.68	970.0	1144.7
14	2016	.952	209.5	27.59	.0362	178.4	895.4	72.00	967.4	1145.9
15	2160	1.020	213.0	25.87	.0387	181.9	892.7	72.29	965.0	1146.9
16	2304	1.088	216.3	24.33	0.0411	185.2	890.1	72.57	962.7	1147.9
17	2448	.156	219.4	22.98	.0435	188.4	887.6	72.82	960.4	1148.9
18	2592	.224	222.4	21.78	.0459	191.4	885.3	73.07	958.3	1149.8
19	2736	.292	225.2	20.70	.0483	194.3	883.1	73.30	956.3	1150.6
20	2880	.360	227.9	19.72	.0507	197.0	880.9	73.53	954.4	1151.4
21	3024	1.429	230.5	18.84	0.0531	199.7	878.8	73·74	952.6	1152.2
22	3168	•497	233.0	18.03	.0554	202.2	876.8	73·94	950.8	1153.0
23	3312	.565	235.4	17.30	.0578	204.7	874.9	74·13	949.1	1153.7
24	3456	.633	237.7	16.62	.0602	207.0	873.1	74·32	947.4	1154.4
25	3600	.701	240.0	15.99	.0625	209.3	871.3	74·51	945.8	1155.1
26	3744	1.769	242.2	15.42	0.0649	211.5	869.6	74.69	944-3	1155.8
27	3888	.837	244.3	14.88	.0672	213.7	867.9	74.85	942.8	1156.4
28	4032	.905	246.3	14.38	.0695	215.7	866.3	75.01	941.3	1157.1
29	4176	.973	248.3	13.91	.0619	217.8	864.7	75.17	939-9	1157.7
30	4320	2.041	250.2	13.48	.0742	219.7	863.2	75.33	938.5	1158.3
31	4464	2.109	252.1	1 3.07	0.0765	221.6	861.7	7 5.47	937-2	1158.8
32	4608	.177	253.9	1 2.68	.0788	223.5	860.3	7 5.61	935-9	1159.4
33	47 52	.245	255.7	1 2.32	.0811	225.3	858.9	7 5.76	934-6	1159.9
34	4896	.313	257.5	1 1.98	.0835	227.1	857.5	7 5.89	933-4	1160.5
35	5040	.381	259.2	1 1.66	.0858	228.8	856.1	7 6.02	932-1	1161.0
36	5184	2.449	260.8	11.36	0.0SS1	230.5	854.8	76.16	931.0	1161.5
37	5328	.517	262.5	11.07	.0903	232.2	853.5	76.28	929.8	1162.0
38	5472	.585	264.0	10.79	.0926	233.8	852.3	76.40	928.7	1162.5
39	5616	.653	265.6	10.53	.0949	235.4	851.0	76.52	927.6	1162.9
40	5760	.722	267.1	10.29	.0972	236.9	849.8	76.63	926.5	1163.4
41	5904	2.789	268.6	10.05	0.0995	238.5	8.48.7	76.75	925.4	1163.9
42	6048	.857	270.1	9.83	.1018	239.9	8.47.5	76.86	924.4	1164.3
43	6192	.925	271.5	9.61	.1040	241.4	8.46.4	76.97	923.3	1164.7
44	6336	.993	272.9	9.41	.1063	242.9	8.45.2	77.07	922.3	1165.2
45	6480	3.061	274.3	9.21	.1086	244.3	8.44.1	77.18	921.3	1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	8.43.1	77.29	920.4	1166.0
47	6768	.197	277.0	8.84	.1131	247.0	842.0	77.39	919.4	1166.4
48	6912	.265	278.3	8.67	.1153	248.3	841.0	77.49	918.5	1166.8
49	7056	.333	279.6	8.50	.1176	249.7	840.0	77.58	917.5	1167.2

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B T. U.
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	.469	282.1	8.19	.1221	252.2	838.0	77.76	915.7	1168.0
52	7488	.537	283.3	8.0.4	.1243	253.5	837.0	77.85	914.9	1168.3
53	7632	.605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	.673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	912.3	1169.4
56	8064	.801	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1169.8
57	8208	.878	289.2	7.38	.1355	259.5	832.3	78.29	910.6	1170.1
58	8352	.946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1170.5
59	8496	4.014	291.4	7.14	.1400	261.8	830.6	78.45	909.0	1170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	.150	293.6	6.92	.1444	264.0	828.9	78.61	907.5	1171.5
62	8928	.218	294.7	6.82	.1466	265.1	828.0	78.68	906.7	1171.8
63	9072	.286	295.7	6.72	.1488	266.1	827.2	78.76	905.9	1172.1
64	9216	.354	296.7	6.62	.1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67	9648	.558	299.8	6.34	.1577	270.4	824.0	79.04	903.1	1173.4
68	9792	.626	300.1	6.25	.1599	271.4	823.2	79.11	902.3	1173.7
69	9936	.694	301.8	6.17	.1621	272.4	822.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273.4	821.6	79.25	900.9	1174-3
71	10224	.830	303.7	6.00	.1665	274.3	820.9	79.32	900.2	1174-0
72	10368	.898	304.6	5.93	.1687	275.3	820.1	79.39	899.5	1174-9
73	10512	.966	305.5	5.85	.1709	276.3	819.4	79.46	898.8	1175-1
74	10656	5.034	306.5	5.78	.1731	277.2	818.7	79.53	898.1	1175-4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79.59	897.5	117 5.7
76	10944	.170	308.3	5.63	.1775	279.1	817.2	79.65	896.9	1176.0
77	11088	.238	309.2	5.57	.1797	280.0	816.5	79.71	896.2	1176.2
78	11232	.306	310.1	5.50	.1818	280.9	815.8	79.77	895.6	1176.5
79	11376	.374	310.9	5.43	.1840	281.8	815.1	79.83	895.0	1176.8
80 81 82 83 84	11520 11664 11808 11952 12096	5.442 .510 .578 .646 .714	311.8 312.7 313.5 314.4 315.2	5.37 5.31 5.25 5.19 5.13	0.1862 .1884 .1906 .1928 .1949	282.7 283.6 284.5 285.3 286.2	814.4 813.8 813.0 812.4 811.7	79.89 79.95 80.01 80.07 80.13	894.3 893.7 893.1 892.5 891.9	1177.0 1177.3 1177.6 1177.8 1177.8 1178.0
85 86 87 88 89	12240 11384 12528 12672 12816	5.782 .850 .918 .986 6.054	316.0 316.8 317.6 318.4 319.2	5.07 5.02 4.96 4.91 4.86	0.1971 .1993 .2015 .2036 .2058	287.0 287.9 288.7 289.5 290.4	811.1 810.4 809.8 809.2 808.5	So.19 So.25 So.30 So.35 So.40	891.3 890.7 890.7 890.7 890.5 888.9	1178.3 1178.6 1178.9 1179.0 1179.3
90	12960	6.122	320.0	4.81	0.2080	291.2	13	80.45	888.4	1179.5
91	13104	.190	320.8	4.76	.2102	292.0		80.50	887.8	1179.8
92	13248	.258	321.6	4.71	.2123	292.8		80.56	887.2	1180.0
93	13392	.327	322.4	4.66	.2145	293.6		80.61	886.7	1180.3
94	13536	.396	323.1	4.62	.2166	294.3		80.66	886.7	1180.5
95 96 97 98 99	13680 13824 13968 14112 14256	6.463 .531 .599 .667 .735	323.9 324.6 325.4 326.1 326.8	4.57 4.53 4.48 4.44 4.40	0.2188 .2209 .2231 .2252 .2274	295-9 296-7 297-4	803.7 803.1	80.71 80.76 80.81 80.86 80.91	885.6 885.0 884.5 884.0 883.4	1180.7 1180.9 1181.2 1181.4 1181.4

TABLE 249.

PROPERTIES OF STEAM.

British Measure.

[**		
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic fect.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of stean in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100	14400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181.8
101	14544	.871	328.3	.316	.2317	299.7	801.4	81.00	882.4	1182.1
102	14688	.939	329.0	.276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	.237	.2360	301.1	800.3	81.10	881.4	1182.5
104	14976	.075	330.4	.199	.2381	301.9	799.7	81.14	880.8	1182.7
105	1 51 20	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	1 5264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	1 5408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	1 5552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	1 5696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110 111 112 113 114	15840 15984 16128 16272 16416	7.483 .551 .619 .687 .757	334.5 335.2 335.8 336.5 337.2	3.984 .950 .917 .885 .853	0.2510 .2531 .2553 .2574 .2596	306.1 306.8 307.5 308.2 308.8	796.5 795.9 795.4 794.9 794.4	81.41 81.45 81.50 81.54 81.54 81.58	877.9 877.4 876.9 876.4 875.9	1184.0 1184.2 1184.4 1184.6 1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	875.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	81.82	873.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	81.86	872.7	1186.1
122	17568	.299	342.2	.615	.2766	314.1	790.3	81.90	872.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	81.94	871.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	81.98	871.4	1186.7
125	18000	8.503	344.1	3.534	0.2830	316.0	788.9	82.02	870.9	1 186.9
126	18144	.571	344.7	.507	.2851	316.6	788.4	82.06	870.5	1 187.1
127	18288	.639	345.3	.481	.2872	317.2	787.9	82.09	870.0	1 187.2
128	18432	.708	345.9	.456	.2893	317.8	787.5	82.13	869.6	1 187.4
129	18576	.776	346.5	.431	.2915	318.4	787.0	82.17	869.2	1 187.6
130	18720	8.844	347.1	3.406	0.2936	319.0	786.5	82.21	868.7	1187.8
131	18864	.912	347.6	.382	.2957	319.7	786.1	82.25	868.3	1188.0
132	19008	.980	348.2	.358	.2978	320.3	785.6	82.28	867.9	1188.1
133	19152	9.048	348.8	.334	.2999	320.9	785.1	82.32	867.5	1188.3
134	19296	.116	349.4	.310	.3021	321.5	784.7	82.35	867.0	1188.5
135	19440	9.184	349.9	3.287	0.3042	322.1	784.2	82.38	866.6	1188.7
136	19584	.252	350.5	.265	.3063	322.6	783.8	82.42	866.2	1188.8
137	19728	.320	351.1	.424	.3084	323.2	783.3	82.45	865.8	1189.0
138	19872	.388	351.6	.220	.3105	323.8	782.9	82.49	865.4	1189.2
139	20016	.456	352.2	.199	.3126	324.4	782.4	82.52	865.0	1189.4
140	20160	9.524	352.8	3.177	0.3147	325.0	782.0	82.56	864.6	1189.5
141	20304	.592	353·3	.156	.3168	325.5	781.6	82.59	864.2	1189.7
142	20448	.660	353·9	.135	.3190	326.1	781.1	82.63	863.8	1189.9
143	20592	.728	354·4	.115	.3211	326.7	780.7	82.66	863.4	1190.0
144	20736	.796	355·0	.094	.3232	327.2	780.3	82.69	863.0	1190.2
145	20880	9.864	355.5	3.074	0.3253	327.8	779 .8	82.72	862.6	1190.4
146	21024	.932	356.0	.054	·3274	328.4	779.4	82.75	862.2	1190.5
147	21168	10.000	356.6	.035	·3295	328.9	779.0	82.79	861.8	1190.7
148	21312	.068	357.1	.016	·3316	329.5	778.6	82.82	861.4	1190.9
149	21456	.136	357.6	.997	·3337	330.0	778.1	82.82	861.0	1191.0

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	To tal latent heat per pound of steam in B. T. U.	Total heat per penud of steam in R. T. C.
150 151 152 153 154	21600 21744 21888 22032 22176	10.204 .272 .340 .408 .476	358.2 358.7 359.2 359.7 360.2	2.978 .960 .941 .923 .906	0.3358 -3379 -3400 -3421 -3442	330.0 331.1 331.6 332.2 332.7	777.7 777.3 776.9 776.5 776.1	82.89 82.92 82.95 82.98 83.01	800.6 860.2 859.9 859. 5 859.1	1191.2 1191.3 1191.5 1191.7 1191.8
155 156 157 158 159	22320 22464 22608 22752 22896	10.544 .612 .680 .748 .816	360.7 361.3 361.8 362.3 362.8	2.888 .871 .854 .837 .820	0.3462 .3483 .3504 .3525 .3540	333.2 333.8 334.3 334.8 33 5 .3	77 5·7 77 5·3 77 4·9 77 4 5 77 4·1	83.04 83.07 83.10 83.13 83.16	85 <u>8</u> .7 858.3 858.0 857.6 857.2	1192.0 1192.1 1192.3 1192.4 1192.6
160 161 162 163 164	23040 23184 23328 23472 23616	10.884 .952 11.020 .088 .157	363.3 363.8 364.3 364.8 365.3	2.803 .787 .771 .755 .739	0.3567 .3588 .3609 .3630 .3650	335.9 336.4 336.9 337.4 337.9	773.7 773.3 772.9 772.5 772.1	83.19 83.22 83.25 83.28 83.31	8 56.9 8 56.5 8 56.1 8 55.8 8 55.4	1192.7 1192.9 1193.0 1193.2 1193.3
165 166 167 168 169	23760 23904 24048 24192 24336	11.225 .293 .361 .429 .497	365.7 366.2 366.7 367.2 367.7	2.724 .708 .693 .678 .663	0.3671 .3692 .3713 .3734 .3754	338.4 338.9 339.4 339.9 340.4	771.7 771.3 771.0 770.6 770.2	83.34 83.37 83.39 83.42 83.45	855.1 854.7 854.3 854.0 853.6	1193.5 1193.6 1193.8 1193.9 1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	11.565 .633 .701 .769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.8
175 176 177 178 179	25200 25344 25488 25632 25776	11.905 .973 12.041 .109 .177	370.5 371.0 371.4 371.9 372.4	2.578 .564 .550 .537 524	0.3879 .3900 .3921 .3942 .3962	343·4 343·9 344·3 344.8 345·3	767.9 767.6 767.2 766.8 766.5	83.62 83.64 83.67 83.70 83.73	851.6 851.2 850.9 850.5 850.2	1194.9 1195.1 1195.2 1195.4 1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	12.245 .313 .381 .449 .517	372.8 373·3 373·7 374·2 374.6	2.510 -497 .485 -472 -459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1195.6 1195.8 1195.9 1196.1 1196.2
185 186 187 188 189	26640 26784 26928 27072 27216	12.585 .653 .721 .789 .857	37 5 . 1 37 5 . 5 37 6.0 37 6.4 37 6.8	2.447 -434 -422 -410 -398	0.4087 .4108 .4129 .4150 .4170	348.1 348.6 349.1 349.5 350.0	763.6 763.3 762.9	83.88 83.90 83.92 83.95 83.95 83.97	848.2 847.9 847.5 847.2 846.9	1196.3 1196.5 1196.6 1196.7 1196.9
190 191 192 193 194	27360 27504 27648 27792 27936	12.925 .993 13.061 .129 .197	377.3 377.7 378.2 378.6 379.0	2.386 .374 .362 .351 .339	0.4191 .4212 .4233 .4254 .4275	350.4 350.9 351.3 351.8 352.2	761.9 761.6	83.99 84.02 84.04 84.06 84.08	846.6 846.3 845.9 845.6 845.3	1197.0 1197.1 1197.3 1197.4 1197.5
195 196 197 198 199	28080 28224 28368 28512 28656	13.265 -333 .401 -469 -537	379.4 379.9 380.3 380.7 381.1	2.328 .317 .306 .295 .284	-435 ⁸	353.1 353.6 354.0	760.5 760.2 759.9	84.10 84.13 84.16 84.19 84.21	845.0 84.4.7 84.4.4 8.44.0 843.7	1197.7 1197.8 1197.9 1198.1 1198.2

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
200	28800	13 605	381.6	2.273	0.4399	354•9	7 59.2	84.23	843.4	1198.3
201	28944	13.673	382.0	.262	.4420	355•3	7 58.9	84.26	843.1	1198.4
202	29088	13.742	382.4	.252	.4441	355.8	7 58.5	84.28	842.8	1198.6
203	29232	13.810	382.8	.241	.4461	356.2	7 58.2	84.30	842.5	1198.7
204	29376	13.878	383.2	.231	.4482	356.6	7 57.9	84.33	842.2	1198.8
205	29520	13.946	383.7	2.221	0.4503	357.1	7 57 ·5	84-35	841.9	1199.0
206	29664	14.014	384.1	.211	-4523	357.5	7 57·2	84-37	841.6	1199.1
207	29808	14.082	384.5	.201	-4544	357.9	7 56.9	84-40	841.3	1199.2
208	29952	14.150	384.9	.191	-4564	358.3	7 56.6	84-42	841.0	1199.3
209	30096	14.218	385.3	.181	-4585	358.8	7 56.2	84-44	840.7	1199.4
210	30240	14.386	385.7	2.171	0.4605	359.2	755.9	84.46	840.4	1199.6
211	30384	14.454	386.1	.162	.4626	359.6	755.6	84.48	840.1	1199.7
212	30528	14.522	386.5	.152	.4646	360.0	755.3	84.51	839.8	1199.8
213	30672	14.590	386.9	.143	.4666	360.4	755.0	84.53	839.5	1199.9
214	30816	14.658	3 ⁸ 7.3	.134	.4687	360.9	754.7	84.55	839.2	1200.1
215 216 217 218 219	30960 31104 31248 31392 31536	14.726 14.794 14.862 14.930 14.998	387.7 388.1 388.5 388.9 389.3	2.124 .115 .106 .097 .088	0.4707 .4727 .4748 .4768 .4788	361.3 361.7 362.1 362.5 362.9	7 54-3 7 54-0 7 53-7 7 53-4 7 53-1	84.57 84.60 84.62 84.64 84.66	838.9 838.6 838.3 838.0 838.0 837.7	1200.2 1200.3 1200.4 1200.5 1200.7

SMITHSONIAN TABLES.

242

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY (v) IN RELATION TO THE VELOCITY OF LIGHT.

	Ratio of elect	trical units.	Reference.	
Date of determina- tion.	t' in cms. per sec.*	Determined by —	Publication.	Year.
1856	$3.107 imes 10^{10}$	Weber & Kohlrausch .	Pogg. Ann.	1856
1868	$2.842 imes10^{10}$	Maxwell	Phil. Trans	t 868
1869	$2.808 imes10^{10}$	W. Thomson & King .	B. A. Report	1869
1872	$2.896 imes$ 10 10	McKichan	Phil. Trans	1872
1879	$2.960 imes 10^{10}$	Ayrton & Perry	Jour. Soc. Tel. Eng.	1879
1879	$2.968 imes$ 10 10	Hocken	B. A. Report	1879
1880	2.955 × 10 ¹⁰	Shida	Phil. Mag	1880
1881	2.99 $ imes$ 10 ¹⁰ †	Stoletow	Soc. de Phys	1881
1881	$3.019 imes 10^{10}$	Klemenčič	Wien. Ber	1884
1882	$2.923 imes 10^{10}$	Exner	Wien. Ber	1882
1883	$2.963 imes 10^{10}$	J. J. Thomson	Phil. Trans	1883
1888	$3.009 imes 10^{10}$	Himstedt	Wied. Ann. 35 .	1888
1889	$2.981 imes10^{10}$	Rowland	Phil. Mag	1889
1889	$3.000 imes 10^{10}$	Rosa	۰۰ ۰ <i>۰</i>	1889
1889	$3.004 imes10^{10}$	W. Thomson	Phil. Mag	1889
1890	$2.995 imes 10^{10}$	J. J. Thomson & Searle	Phil. Trans	1890

* The results in this column correspond to a value of the B. A. ohm $\equiv .98664 \times 10^9$ cms. per sec. If we neglect the first four determinations, and also that of Exner and Shida, because of their large deviation from the mean, the remaining determinations give a mean value of $2.9889 \pm .0137$, a value which practically agrees with the best determinations of the velocity of light. (Cf. Table 181.)

† Given as between 2.98 \times 10¹⁰ and 3.00 \times 10¹⁰.

TABLE 251.

DIELECTRIC STRENGTH.

Difference of Electric Potential required to produce a Spark in Air.

			(a) MEDIUM,	AIR. F	LECTRO	DR TRR	MINALS.	FLAT P	LATES			
			(a) MEDICM,									
	Spar	k length in	Difference	of poten	tial in vo	lts requ	ired to pr	oduce a	spark ac	cording	to —	
	centi	metres.	W. Thomson. ¹	De la	Rue. ²	MacH	⁷ arlane. ³	Bai	lle.4	Fre	yberg.⁵	
	0	.01	790	500		-			-		-	
	1	.02 .04	1 340 1840)70)00		_		-		_	
		.07	2940		70		-	-	-		-	
	-	.10	4010	43	30	3	507	44	101	4	344	
		.14 .20	5300		40 520		- 715	76	- 553	-	- 539	
		.30	-	104		7	818		503		559 5671	
		.40	-		_		879	134	131		3665	
		.50 .60	_		_		925 956	163 191			293 059	
	-	.80	-		-		206	254		-	465	
	1	.00	-		-	220	044	31(28	3800	
	1 "F 3 " F 5 " V	Reprint of Phil. Mag Vied. Ani	Papers on Elect ." vol. 10, 1880. n." vol. 38, 1889.	. and M	ag." p. 2	52. ² 4	" Proc. R " Ann. de	. Soc." Chim. e	vol. 36, p t de Phys). 151. s.'' vol.	25, 1882.	
	(b)	MEDIUM	AIR. ELECTR	ode Te	RMINALS	, Ball	S OF DIA	METER	d in Ce	NTIME'	TRES.	
				Exp	eriments	of Frey	berg.					_
Spark ir centin		$d \equiv 0$ (F	points). $d =$	0.50	$d \equiv$	1.0	d =	2.0	$d \equiv $	4.0	d = 0	6.0
0	. I	37	20 50	50	46	60	450	60	_		45.	30
	.2	47	00 86	00		,00	870	00	840		79	00
	•3		00 III 000 I34	1	117		1160	1	1120		105 128	
	.4 .6		00 139		140 193		1440 1950		1420		123	
	.8		00 184	1	232		2460	,	2580		260	
	.0		00 195	00	258	600	2900	00	299		316	00
	.0	101			354	00	-		-		-	
5	.0	131	00 307	00							-	
			table it appears, a								nere is a	par-

t	From icular siz	the above of ball	re table I whi <mark>c</mark> h	it appear requires	rs, as re the grea	marked atest dif	by Fre fference	yberg, of pot	that f ential	or e to p	ach le produc	ngth e the	of s spar	spark rk.	the	e is	за	par-	

(C) COMPARISON OF RESULTS OF DETERMINATIONS, THE TERMINALS BEING BALLS.

		Differet	nce of poter	ntial require	d to produc	e a spark ir	air accordi	ng to —	
Spark length in cms.	Baille.	Bichat and Blondlot. ¹	Paschen.	Freyberg.	Paschen.	Freyberg.	Quincke. ²	Baille.	Freyberg.
	Ba	alls 1 centim	etre diamet	er.	Balls	2 cms. dian	Balls 6 cms. diam.		
.I .2 .3 .4 .5 .6 .7 .8 .9 I.0	4 590 8040 11190 13650 16410 19560 23280 23280 24030 24930	4200 8130 10860 14130 16800 19350 21030 23190 24540 25800	4860 8430 11670 14830 17760 20460 22640 22640 24780	4660 9500 11670 13980 16800 19260 20970 23220 25110 25770	4830 8340 11670 14820 18030 20820 23670 - -	4560 8700 11550 14400 17040 19470 22530 24630 27240 29040	4440 7920 11190 14010 16920 19980 22590 25770	4440 7680 10830 13500 16530 19560 22620 26400 29220 33870	4530 7860 10470 12750 16410 19200 22590 26010 28770 31620
1 1	1 " E	lectricien,"	Aug. 1886.	1	2	"Wied. Ar	in." vol. 19,	1883.	

DIELECTRIC STRENCTH.

TABLE 252. - Effect of Pressure of the Gas on the Dielectric Strength."

Length of spark is indicated by / in centimetres. The pressure is in centimetres of mercury at o. C.

		Hydrogen.			Air.		Carbon dioxide.		
Pressure.	1=0.2	1=0.4	<i>l</i> =0.6	1= 0.2	1=0.4	10.6	1-0.2	1 0.4	1 0.6
2	510	606	-	819	1 202	1 536	1125	1446	1650
4	729	1017	1437	1140	17 2 5	2289	1431	1971	2373
6	945	1323	1839	1455	2 2 2 9	3012	1755	2484	3105
8	1098	1572	2172	1740	2 7 2 1	3684	2070	2913	3813
10	1242	1806	2463	2004	3 1 8 6	4272	2355	3288	4278
15	1584	2 37 6	3330	2664	4212	5736	2991	4227	5592
20	1866	29 37	4020	3294	5205	7074	3705	5235	6801
25	2169	34 44	4668	3816	6108	8346	4248	6120	8004
30	2475	39 57	5331	4347	7020	9570	4707	6921	9147
35	2748	44 97	5997	4845	7980	10797	5163	7737	10293
40	3051	4863	6681	5349	8853	12009	5772	8543	11397
45	3339	5334	7347	5853	9639	13224	6222	9303	12483
50	3606	5829	7971	6288	10431	14361	6489	10038	13557
55	2834	6294	8583	6711	11259	15441	6789	10650	14610
60	4107	6747	9222	7134	12084	16548	7197	11397	15702
65	4476	719 7	9867	7 569	12885	17688	7605	12114	16740
70	4731	7629	10476	8016	13710	18804	8001	12816	17727
75	4914	8031	11040	8487	14523	19896	8388	13506	18705

Paschen deduces from the above, and also shows by separate experiments, that if the product of the pressure of the gas and the length of spark be kept constant the difference of potential required to produce the spark also remains constant. In the following short table l is length of spark, P pressure, and V difference of potential, the unit being the same as above. The table illustrates the potential difference required to produce a spark for different values of the product l.P.

<i>l.P.</i>	V for H	V for Air.	V for CO_2	<i>l.P</i> .	V for H	V for Air.	\mathcal{V} for CO_2
0.2 0.4 0.6 1.0 2.0 4.0	456 567 660 846 1427 1884	669 837 996 1326 2019 3216	873 1110 1281 1599 2271 3468	6.0 10.0 20.0 30.0 45.0	2481 3507 5835 8004 11013	4251 6162 10392 13448 19848	4443 6198 10011 13527 18705

TABLE 253. — Dielectric Strength (or Difference of Potential per Centimetre of Spark Length) of Different Substances, in Kilo Volts.†

Substance.	Dielectric strength.	Substance.	Dielectric strength.	Substance.	Dielectric strength.
Air (thickness 5 mm.) Carbon dioxide " Coal gas " Hydrogen " Oxygen "	23.8 22.7 15.1 22.2 22.3	Beeswaxed paper . Paraffined paper . Paraffin (solid)	540. 360. 130.	Kerosene oil Oil of turpentine . Olive oil Paraffin oil Paraffin (melted) .	50. 94. 82. 87. 56.

Paschen.
† MacFarlane and Pierce, "Phys. Rev." vol. 1, p. 165, 1893.

TABLE 254.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

		(a) Double Fluid Bat	TERIES.		
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.
Bunsen.	Amalgamated zinc	$ \left\{ \begin{array}{l} 1 \text{ part } H_2SO_4 \text{ to } \\ 12 \text{ parts } H_2O \end{array} \right\} $	Carbon	Fuming H ₂ NO ₃ .	1.94
66	٤٤ ٤٤	64	66	HNO3, density 1.38	1.86
Chromate .		$ \left\{ \begin{array}{l} {}_{12} parts K_2 Cr_2 O_7 \\ {}_{to}\ \ 25 \ parts \ of \\ H_2 SO_4 \ and \ 100 \\ parts\ H_2 O \ . \ . \end{array} \right\} $	66	$ \left\{ \begin{array}{ll} 1 & \text{part} & \text{H}_2\text{SO}_4 & \text{to} \\ 12 & \text{parts} & \text{H}_2\text{O} \end{array} \right\} $	2.00
66 .	66 66	$\left\{ \begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to} \\ 12 \text{ parts } H_2O \end{array} \right\}$	66	$ \left\{ \begin{array}{ll} {12} \text{ parts } K_2 Cr_2 O_7 \\ {\text{to 100 parts } H_2 O} \end{array} \right\} $	2.03
Daniell* .	66 66	$ \left\{ \begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to} \\ 4 \text{ parts } H_2O \end{array} \right\} $	Copper	Saturated solution of CuSO4+5H2O	1.06
66 · ·	56 6 6	$\left\{ \begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to} \\ 12 \text{ parts } H_2O \end{array} \right\}$	66	4.6	1.09
66 v	66 66	$ \left\{ \begin{array}{l} 5\% \text{solution} \text{of} \\ \text{ZnSO}_4 + 6\text{H}_2\text{O} \end{array} \right\} $	66	66	1.08
66 -	66 66	$\left\{ \begin{array}{ccc} 1 & part NaCl to \\ 4 & parts H_2O \end{array} \right\}$	66		1.05
Grove	66 66	$ \left\{ \begin{array}{l} 1 \text{ part } H_2SO_4 \text{ to} \\ 12 \text{ parts } H_2O \text{ .} \end{array} \right\} $	Platinum	Fuming HNO_3	1.93
	66 86	Solution of $ZnSO_4$	66	HNO_{3} , density 1.33	1.66
66	66 66	$\left\{ \begin{array}{c} \mathrm{H}_2\mathrm{SO}_4 \text{ solution,} \\ \mathrm{density } 1.136 \end{array} \right\}$	66	Concentrated HNO_8	1.93
٤٤	66 66	$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ density 1.136 \end{array} \right\}$	66	HNO_3 , density 1.33	1.79
٤٤	66 66	H_2SO_4 solution, $density 1.06$.	66	66	1.71
	66 66	$\left\{ \begin{array}{c} \mathrm{II}_2\mathrm{SO}_4 \text{ solution,} \\ \mathrm{density 1.14} \end{array} \right\}$	66	HNO ₃ , density 1.19	1.66
	cí 66	$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ density 1.06 \end{array} \right\}$	66	6C 6G 66	1.61
66	£6 £6	NaCl solution	44	" density 1.33	1.88
Marié Davy		$ \left\{ \begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to} \\ 12 \text{ parts } H_2O \end{array} \right\} $	Carbon	Paste of protosul- phate of mercury and water	1.50
Partz	66 66	Solution of MgSO4	36	Solution of K ₂ Cr ₂ O ₇	2.06

* The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force. SMITHSONIAN TABLES.

TABLE 254.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

	pole	Positive pole.	F. M. F. in volts.						
	(b) Single Fluid Batteri	ES.							
Leclanche An	(mac)	{ Carbon surround- ed by powdered carbon and perox- ide of manganese }	1.46						
Chaperon	" Solution of caustic $\langle \\ \rangle$ potash \ldots $\langle \\ \rangle$	Copper and CuO	0.98						
Edison-Lelande .	$\begin{cases} 23 \% \text{ solution of sal-} \end{cases}$	" { Silver surrounded }	0.70						
	[by silver chloride	1.02						
Law "	15% """ (1pt. ZnO, 1pt. NH4Cl,)	Carbon	1.37						
Dry cell (Gassner) "	I outo plantan of man's I	66	1.3						
Poggendorff Am	al. zinc $\begin{cases} Solution of chromate \\ of potash \end{cases}$	66	1.08						
66	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	2.01						
J. Regnault	" $\left \left\{ \begin{array}{c} 1 \text{ part } \text{H}_2\text{SO}_4 + \\ 12 \text{ parts } \text{H}_2\text{O} + \\ 1 \text{ part } \text{CaSO}_4 \end{array} \right. \right. \right\}$	Cadmium	0.34						
Volta couple Zir	H_2O	Copper	0.98						
	(C) Standard Cells.								
Kelvin, Gravity, Daniell } Am	al. zinc {ZnSO ₄ solution, den- sity 1.40 }	$\left\{\begin{array}{l} Electrolytic cop- \\ per in CuSO_4 sol. \\ density 1.10 \\ \end{array}\right\}$	200016						
Clark standard .	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} Mercurous sulphate in \\ paste with saturated \\ \end{array} solution of neutral \\ \begin{array}{c} \end{array} ZnSO_4 \dots \end{array} \end{array} $	Mercury	$ \begin{cases} \frac{1.434 [1]{00077}}{(t-15)]} \end{cases} $						
Baille & Ferry .	" { Zinc chloride, density } { I.I 57	$ \left\{ \begin{array}{l} \text{Lead surrounded} \\ \text{by powdered} \\ \text{PbCl}_2 \\ \end{array} \right\} $	{ 0.50 tem- perature coeffic't about						
Gouy	" $\left\{ \begin{array}{l} \text{Oxide of mercury in a} \\ \text{IO } \% \text{ sol. of } \text{ZnSO}_4 \\ \text{(paste)} \dots \dots \end{array} \right\}$	Mercury	$\begin{cases} .00011 \\ 1.387 [1] \\0002 \\ (t-12) \end{bmatrix}$						
Lodge's standard cell and iell zinc-zinc sulphate, coppe	Fleming's standard cell are, like the Kel r-copper sulphate cell.	vin cell above, modifications	of the Dan-						
(d) Secondary Cells.									
Faure-Sellon- (Volckmar) . } Lea	d $\left\{ \begin{array}{c} H_2 SO_4 \text{ solution of} \\ \text{density } \mathbf{I}.\mathbf{I} \\ \end{array} \right\}$	PbO ₂	2.2*						
Regnier (1) Cop	per . $CuSO_4 + H_2SO_4$	66 · · · · · ·	0.85, av-						
	al.zinc $ZnSO_4$ solution al.zinc H_2SO_4 density ab't 1.1	" in H ₂ SO ₄ "	(erage 1.3. 2.36 2.50						

• F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different degrees of charge : --

E.	. M. F.	$dE / dt \times 10^6$	E. M. F.	$dE \int dt \times 10^6$	E. M. F.	$dE \neq dt \times 10^6$
	1.9223 1.9828	140 228	2.0031 2.0084 2.0105	335 285 255	2.07 7 9 2.2070	130 73

TABLE 255.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals at mean temperature t is the electromotive force in the circuit for one degree difference of temperature between the junctions. It is expressed by dE/dt = A + Bt, when dE/dt = 0, t = -A/B, and this the neutral point or temperature at which the thermoelectric power vanishes. The ratio of the specific heat of electricity to the absolute value of the temperature t is expressed by -B for any one metal when the other metal is lead. The thermoelectric power of different couples may be inferred from the table, as it is the difference of the tabulated values with respect to lead, which is here taken as zero. The table has been compiled from the results of Becquerel, Matthieson, and Tait. In reducing the results the electromotive forces of the Grove's and the Daniell cells have been taken as 1.95 and 1.07 volts respectively.

Substance.	A	$B \times 10^{-2}$	at mean	ctric power temp. of nicrovolts).	Neutral point $-\frac{A}{B}$	Author- ity.
Aluminium . Antimony, comm'l pressed wire "axial "equatorial "ordinary Argentan "axial "ordinary Argentan "axial "axial "ordinary Argentan "axial "axial	0.76 -11.94 -2.63 -1.34 -2.80 -17.15 -2.22	$\begin{array}{c} -0.39 \\$		$\begin{array}{c c} 50^{\circ} \text{ C.} \\ \hline 0.56 \\ - \\ - \\ - \\ - \\ 14.47 \\ 12.7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		ity. T M " B T B M " " B T B M T M B " " M B "
B = Ed. Becquerel, "Ann. de Chim. et $T = Tait$, "Trans. R. S. E." vol. 27, re	de Phys." duced by N	[4] vol. 8. Iascart.	$\frac{-3.7}{M = Mat}$	tthieson, "Pop educed by Fle	gg. Ann." vo ming Jenkin	M ol. 103,

THERMOELECTRIC POWER OF ALLOYS.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as a reference metal, the thermoelectric power of lead to copper was taken as -1.9.

Substance.	Relative quantity.	Thermo- electric power in microvolts.	Substance.	Relative quantity.	Thermo- electric power in microvolts.
Antimony Cadmium	806 } 696 ∫	227	Antimony Bismuth	I 0 }	8.8
Antimony Cadmium Zinc	$\begin{pmatrix} 4\\2\\1 \end{pmatrix}$	146	Antimony lron Antimony	4 1 } 8 }	2.5
Antimony Cadmium	806) 696 }	137	Magnesium Antimony	1 \$ 8 {	I.4 —0.4
Bismuth Antimony Zinc	121) 806 } 406 {	95	Lead Bismuth Bismuth	I { - 2 }	-43.8
Antimony Zinc Bismuth	806 406 121	S. 1	Antimony Bismuth Antimony		—33.4 —51.4
Antimony Cadmium	4 2	76	Bismuth Antimony	8 1	-63.2
Lead Zinc Antimony	$\begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$,	Bismuth Antimony Bismuth	10 { I } I 2 }	68.2 66.9
Cadmium Zinc Tin		46	Antimony Bismuth Tin	I { 2 } I {	6.0
Antimony Zinc Tin	$\begin{pmatrix} 2\\ 1 \end{pmatrix}$	43	Bismuth Selenium	10 { 1 }	-24.5
Antimony Cadmium	I) 12) 10}	35	Bismuth Zinc Bismuth	12 1 1 12 12	-31.1
Zinc Antimony Tellurium	3)	10.2	Arsenic Bismuth Bismuth sulphide		—46.0 68.1

TABLE 257.

TABLE 258.

NEUTRAL POINTS WITH LEAD.*

Substance.	Temp. C.	Substance.	Temp. C.
Bismuth . Nickel . Gold Argentan Cobalt . Palladium Antimony Silver Copper .	-424 -276 -238 -228 -172 -156 -144	Zinc Cadmium . Platinum . Tin Rhodium . Ruthenium Aluminium Magnesium Iron	-59

The numbers are the coefficients B in the equation $\frac{dE}{dt} = A + Bt$, and have to be multiplied by the absolute temperature T to give the specific heat of electricity. (See also Table 255.)

SPECIFIC HEATS OF ELECTRICITY.

Metal.	$\frac{\text{Sp.ht. of el}}{T}$. Metal.	Sp. ht. of el.
Alumin- ium	.00039	Magnesium . Nickel :	00094
Antimony	.02221	To 175° C.	00 507
Argentan	00 507	250°-310°	.00219
Bismuth .	01073	Above 340°.	00351
Cadmium	.00425	Platinum (soft)	00109
Cobalt .	01141	Palladium	00355
Copper .	.00094	Rhodium	00113
Gold	I0100.	Rubidium	00206
Iron	<u>—.004</u> S1	Silver	.00148
Iridium .	.00000	Tin	.00055
Lead	.00000	Zinc	.00235

* Tait's "Heat," p. 180. † Calculated from a table given by Tait by assuming the electromotive force of a Grove's cell = 1.95 volts. SMITHSONIAN TABLES.

THERMOELECTRIC POWER OF METALS AND SOLUTIONS.*

Thermoelectric power of circuits, the two parts of which are either a metal and a solution of a salt of that metal or two solutions of salts. The concentration of the solution was such that in 1000 parts of the solution there was one half gramme equivalent of the crystallized salt. The circuit is indicated symbolically; for example, Cu and CuSO₄ indicates that the circuit was partly copper and partly a solution of copper sulphate.

Substances forming circuit.	Thermoelec- tric power in microvolts.	Insoluble salts mixed with the corresponding zinc or ca	admium salts
Cu and CuSO ₄ Zn and ZnSO ₄ Cu and CuAc (acetate) . Pb and PbAc Zn and ZnAc	754 760 660 176 693	for the purpose of acting as The other part of the circuit of the insoluble salts. The res plcx and of doubtful value.	was the metal
$\begin{array}{cccc} Cd and CdAc & \cdot & \cdot & \cdot \\ Zn and ZnCl_2 & \cdot & \cdot & \cdot \\ Cd and CdCl_2 & \cdot & \cdot & \cdot \\ Zn and ZnBr_2 & \cdot & \cdot & \cdot \end{array}$	503 562 562 632	Substances forming circuit.	Thermoelectric power in microvolts.
$\begin{array}{cccc} \text{Zn and } \text{Zn } I_2 & \cdot & \cdot \\ \text{Cd and } \text{Cd} I_2 & \cdot & \cdot \end{array}$	602	Ag and AgCl in $ZnCl_2$.	143
	594	Ag and AgCl in $CdCl_2$.	310
CuSO ₄ and ZnSO ₄	40	Ag and AgBr in $ZnBr_2$.	327
CuAc and ZnAc	8	Ag and AgBr in $CdBr_2$.	461
ZnAc and CdAc	0	Ag and AgI in ZnI_2 .	414
CuAc and CdAc	0	Ag and Ag1 in CdI ₂	unsuccessful
PbAc and ZnAc	73	Hg and Hg ₂ Cl ₂ in ZnCl ₂ .	680
PbAc and CdAc.	54	Hg and Hg ₂ Cl ₂ in CdCl ₂ .	673
	133	Hg and Hg ₂ Br ₂ in ZnBr ₂ .	650
	9	Hg and Hg ₂ Br ₂ in CdBr ₂ .	815
$\operatorname{Zn}\operatorname{Br}_2$ and $\operatorname{Cd}\operatorname{Br}_2$	15	$\begin{array}{ll} \mathrm{Hg} \text{ and } \mathrm{Hg}_2\mathrm{I}_2 \text{ in } \mathrm{Zn}\mathrm{I}_2. & . \\ \mathrm{Hg} \text{ and } \mathrm{Hg}_2\mathrm{I}_2 \text{ in } \mathrm{Cd}\mathrm{I}_2 & . \end{array}$	948
$\operatorname{Zn}\operatorname{I}_2$ and $\operatorname{Cd}\operatorname{I}_2$	82		891

TABLES 260, 261.

PELTIER EFFECT.

TABLE 260. - Jahn's Experiments. †

TABLE 261. - Le Roux's Experiments.‡

Current flows from copper to metal mentioned. Table gives therms per ampere per hour.

Table gives therms per ampere per hour, and current flows from copper to substance named.

Metals.	Therms.	Metals.	Therms.
Cadmium . Iron Nickel	 0.616 	Antimony (Becquerel's) § " (commercial)	13.02 4.8
Platinum . Silver Zinc	 0.320 0.413 0.585	Bismuth (pure) " (Becquerel's)	19.1 25.8
Cd to CdSO ₄ Cu to CuSO ₄	 -1.4	Cadmium German silver	0.46 2.47
Ag to AgNO ₃ Zn to ZnSO ₄		Iron	2.5 0.39

Gockel, "Wied. Ann." vol. 24, p. 634.
† "Wied. Ann." vol. 34, p. 767.
‡ "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
§ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
∥ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

					_
Metals and alloys.	Composition by weight.	$\frac{C_0}{10^4}$	$a \times 10^6$	δ×10 ⁹	Authority.
Gold-copper-silver """" · · · · ·	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.5 ⁸ 6.83 28.06	574 529 1830	924 93 7280	I 1 1
Nickel-copper-zinc	${12.84 \text{ Ni} + 30.59 \text{ Cu} + }$ ${6.57 \text{ Zn} \text{ by volume} }$.	4.92	444	51	I
Brass	Various	12.2–15.6 12.16 14.35	I-2×10 ⁸ - -		233
German silver	Various	3-5	-	-	2
	$ \left\{ \begin{array}{l} 60.16 \mathrm{Cu} + 25.37 \mathrm{Zn} + \\ 14.03 \mathrm{Ni} + .30 \mathrm{Fe} \mathrm{with} \mathrm{trace} \\ \mathrm{of} \mathrm{cobalt} \mathrm{and} \mathrm{manganese} \end{array} \right\} $	3.33	360	-	4
Aluminium bronze	~	7.5-8.5	$5-7 imes10^2$	-	2
Phosphor bronze		10-20	-	-	2
Silicium bronze		41	-		5
Manganese-copper	30 Mn + 70 Cu	I.00	.40	-	4
Nickel-manganese-copper	$_{3}$ Ni + 24 Mn + 73 Cu	2.10	—30		4
Nickelin	$ \left\{ \begin{array}{c} 18.46 \mathrm{Ni} + 61.63 \mathrm{Cu} + \\ 19.67 \mathrm{Zn} + 0.24 \mathrm{Fe} + \\ 0.19 \mathrm{Co} + 0.18 \mathrm{Mn} \\ \end{array} \right\} $	3.01	300	-	4
Patent nickel	$\left\{\begin{array}{l} 25.1 \text{ Ni} + 74.41 \text{ Cu} + \\ 0.42 \text{ Fe} + 0.23 \text{ Zn} + \\ 0.13 \text{ Mn} + \text{trace of cobalt} \end{array}\right\}$	2.92	190	-	4
Rheotan	$ \left\{ \begin{array}{l} 53.28 \mathrm{Cu} + 25.31 \mathrm{Ni} + \\ 16.89 \mathrm{Zn} + 4.46 \mathrm{Fe} + \\ \mathrm{o}.37 \mathrm{Mn} + \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array} \right\} $	1.90	410	-	4
Copper-manganese-iron . """""	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe 69.7 Cu + 29.9 Ni + 36 Fe .	4.98 1.30 2.60	120 22 120	-	6 6 7
Manganin	84 Cu + 12 Mn + 4 Ni	2. <u>3</u> 3 " " " "	25 14 4 3 1 -1 -2 -4	Temp. C.º 10-20 20-30 30-35 35-40 40-45 45-50 50-55 55-68	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	W. Siemens. 5 Feusner and Lindeck. 6	Van der Ve Blood.	n. 7 F 8 L	eusner. indeck.	

Conductivity $C_t \equiv C_0 (1 + at + bt^2)$.

TABLE 263.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_0 were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mhos. The conductivity is

taken as $Ct = C_0 (1 - at + \beta t^2)$, and the range of temperature was from 0° to 100° C. The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between o' and 100° can be calculated from the formula $P = P_c \frac{l}{l}$, where l is the observed and l' the calculated conducting power of the mixture at 100° C.,

and P_e is the calculated mean variation of the metals mixed.

	Weight %	Vo lume %	C _o		1.54 0	Variation	per 100° C.
Alloys.	of first	named.	104	$a \times 10^6$	γ X 10 ₀	Observed.	Calculated.
	GROUP 1.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.04 82.41 78.06 64.13 24.76 23.05 7.37	83.96 83.10 77.71 53.41 26.06 23.50 10.57	7.57 9.18 10.56 6.40 16.16 13.67 5.78	3890 4080 3880 3780 3780 3850 3500	8670 11870 8720 8420 8000 9410 7270	30.18 28.89 30.12 29.41 29.86 29.08 27.74	29.67 30.03 30.16 29.10 29.67 30.25 27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) . Lead-silver (PbAg) . Lead-silver (PbAg ₂) .	95.05 48.97 32.44	94.64 46.90 30.64	5.60 8.03 13.80	3630 1960 1990	7960 3100 2600	28.24 16.53 17.36	19.96 7.73 10.42
Tin-gold (Sn ₁₂ Au) "" (Sn ₅ Au)	77•94 59•54	90.32 79.54	5.20 3.03	3080 2920	6640 6300	24.20 22.90	14.83 5.95
Tin-copper " " † " " † " " † " " † " " † " " † " " †	92.24 80.58 12.49 10.30 9.67 4.96 1.15	93.57 83.60 14.91 12.35 11.61 6.02 1.41	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070	28.71 26.2.4 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.09 4.40 5.22 7.83 20.53
Tin-silver	91.30 53.85	96.52 75.51	7.81 8.65	3820 3770	8190 8550	30.00 29.18	23.31 11.89
Zinc-copper † " " † " " † " " † " " † " " †	36.70 25.00 16.53 8.89 4.06	42.06 29.45 23.61 10.88 5.03	13.75 13.70 13.44 29.61 38.09	1370 1270 1880 2040 2470	1 340 1 240 1 800 3030 4 100	12.40 11.49 12.80 17.41 20.61	11.29 10.08 12.30 17.42 20.62

NOTE. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at o° C, and s the corresponding specific resistance, s(a+m) = n.

For platinum alloys Barus's experiments gave
$$m \equiv -.000194$$
 and $n \equiv .0378$.

For steel $m \equiv -.000303$ and $n \equiv .0620$.

Matthieson's experiments reduced by Barus gave for

Gold alloys $m \equiv -.00045$, $n \equiv .00721$. Silver " $m \equiv -.000112$, $n \equiv .00538$. Copper " $m \equiv -.000386$, $n \equiv .00055$.

* From the experiments of Matthieson and Vogt, " Phil. Trans. R. S." v. 154. † Hard-drawn.

CONDUCTING POWER OF ALLOYS.

		Gr	OUP 3.				
	Weight %	Volume%	C _o			Variation	per 100° C.
Alloys.	of first	named.	104	$a \times 10^6$	δ X 10 ⁹	Observed.	Calculated.
Gold-copper † " " †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53
Gold-silver † " " * " " † " " * " " * " " *	87.95 87.95 64.80 64.80 31.33 31.33	79.86 79.86 52.08 52.08 19.86 19.86	13.46 13.61 9.48 9.51 13.69 13.73	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31
Gold-copper † " " †	34.83 1.52	19.17 0.71	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86
Platinum-silver † " " † " " †	33·33 9.81 5.00	19.6 5 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88
Palladium-silver †	25.00	23.28	5.38	324	1 54	3.40	4.21
Copper-silver † "" † " " † " " † " " † " " †	98.08 94.40 76.74 42.75 7.14 1.31	98.35 95.17 77.64 46.67 8.25 1.53	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	27.30 25.41 21.92 24.00 25.57 29.77
Iron-gold † " " † " " †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40
Iron-copper †	0.40	0.46	24.51	1550	2090	I 3.44	14.03
Phosphorus-copper † . " † .	2.50 0.95	-	4.62 14.91	476 1320	145 1640		-
Arsenic-copper † "" † " " †	5.40 2.80 trace	-	3.97 8.12 38.52	516 736 2640	989 446 4830		

* Annealed.

SMITHSONIAN TABLES.

† Hard-drawn.

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin from Matthieson's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the densities found by Matthieson, namely, 10.468, 19.265, and 8.95.

Substance.	Resistance at o ^o C. of a wire one cm. long, one sq. cm. in section.	Resistance at 0° C, of a wire one metre long, one mm. in diam.	Resistance at o ^o C. of a wire one metre long, weighing one gramme.	Resistance at 0° C. of a wire one foot long, rdog in. in diam.	Resistance at 0° C. of a wire one foot long, weighing one grain.	Percentage increase of resistance for 1° C. in- crease of temp. at 20° C.
Silver annealed	1.460 + 106	0.01859	.1 523	8.781	.2184	0.377
" hard drawn	1.585 "	0.02019	.1659	9.538	.2379	_
Copper annealed	1.584 "	0.02017	.1421	9.529	.2037	0.388
" hard drawn	1.619 "	0.02062	.1449	9.74 I	.2078	-
Gold annealed	2.088 "	0.02659	.4025	12.56	. 577 I	0.365
" hard drawn	2.125 "	0.02706	.4094	1 2.78	.5870	-
Aluminium annealed	2.906 "	0.03699	.0747	17.48	.1071	-
Zinc pressed	5.613 "	0.07146	.4012	33.76	•5753	0.365
Platinum annealed	9.035 "	0.1150	1.934	54.35	2.772	۹
Iron "	9.693 "	0.1234	.75 51	58.31	1.083	-
Nickel "	12.43 "	0.1583	1.057	74.78	1.515	-
Tin pressed	13.18 "	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14 "	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35.42 "	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9 "	1.667	12.86	787.5 .	18.43	0.354
Mercury "	94.07 "	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, 1 part Pt, by weight	24.33 "	0.3098	2.919	146.4	4.186	0.031
German silver	20.89 ''	0.2660	1.825	125. 7	2.617	0.044
Gold-silver, 2 parts Au, 1 part Ag, by weight	10.84 ''	0.1380	1.646	65.21	2.359	0.065

SPECIFIC RESISTANCE OF METALS.

The specific resistance is here given as the resistance, in microhms, per centimetre of a bar one square centimetre in cross section.

Substance.	Physical state.	Specific resistance.	Temp. C.	Authority.
Aluminium	-	2.9-4.5	0	Various.
Antimony .	_ Solid	35.4-45.8 182.8	o Melting-point	" De la Rive.
66 .	Liquid —	1,29.2 137.7	860	66
Arsenic .	-	33.3	0	Matthieson and
Bismuth .	Electrolytic soft	108.0	0	Vogt. Van Aubel.
66 .	" hard Commercial	108.7 110–268	0	
Boron	Pulverized and com- pressed	$8 imes 10^{10}$	_	Moissan.
Cadmium .	Solid	6.2–7.0 16.5		Various. Vassura.
" . Gold .	Liquid	37.9	318	66
Calcium .	-	2.04-2.09 7.5 9.8	0 16.8	Various. Matthieson.
Cobalt Copper	Commercial	1.58-2.20	0	" Various.
Iron	" Electrolytic	9.7-12.0 11.2	o Ordinary	" Kohlrausch.
66	••	105.5 114.8	Red heat Yellow heat	66
66	66	114.5	Iron magnetic	66
Steel	Cast	19.1	heat Ord. temp.	66
66	66 66	85.8 104.4	Red heat Yellow heat	66
66	66	113.9	Nearly white heat	66
"	Tempered glass hard	45.7 (1 + .00161 <i>t</i>)	t	Barus and Strouhal.
	" light yellow	28.9(1 + .00244t)	t	
66	" blue	$\begin{array}{r} 26.3 (1 + .00280t) \\ 20.5 (1 + .00330t) \end{array}$	t t	
66	" light blue " soft	18.4 (1 + .00360t) 15.9 (1 + .00423t)	t t	66 66 66 66
Iron	Cast, hard " soft	97.8	0 0	66 66 66 66
Indium Lead	-	74.4 8.38	0	Erhard. Various.
Lithium .	-	18.4–19.6 8. 8	0 20	Matthieson.
Magnesium Nickel	-	4. I -5.0 I0.7-I2.4	0	Various. "
Palladium . Platinum .	-	10.6–13.6 9.0–15.5	0	66 66
Potassium.	– Fluid	25.I 50.4	0	Matthieson.
Silver Strontium .	-	1.5-1.7	0	Various. Matthieson.
Tellurium .	-	25.13 2.17 × 10 ⁵	20 19.6	66
• 6	-	55.05	294	Vincentini and Omodei.
Tin	-	9.53 - 11.4 9.53	0	Various. Vassura.
66 · · ·	Solid Liquid	20 .96 44.56	226.5 226.5	66 66
Zinc	Solid	5.56-6.04	0	Do la Pirro
"	Liquid	18.16 36.00	Melting-point	De la Rive. "

RESISTANCE OF METALS AND

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*

When the temperature is raised above 0° C. the coefficient decreases for the pure metals, as is shown by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature ==	1000	200	00	80°
Metal or alloy.	Specific resistance in c. g. s. units.			
Aluminium, pure hard-drawn wire	4745	3505	3161	-
Copper, pure electrolytic and annealed	1920	1457	1349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	13970†	9521	8613	-
Nickel, pure (prepared by Mond's process) from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	87 52	8221	6133
Silver, pure wire	2139	1647	1 5 5 9	1138
Tin, pure wire	1 3867	10473	9575	6681
German silver, commercial wire	35720	34707	34524	33664
Palladium-silver, 20 Pd $+$ 80 Ag \cdot .	15410	14984	14961	14482
Phosphor-bronze, commercial wire	9071	8588	8479	8054
Platinoid, Martino's platinoid with 1 to 2% .	44590	43823	43601	43022
Platinum-iridium, So Pt $+$ 20 Ir \cdot .	31848	29902	29374	27 504
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	13755	10778
Platinum-silver, 66.7 Ag $+$ 33.3 Pt	27404	26915	26818	26311
Carbon, from Edison-Swan incandescent } .	-	4046×10 ⁸	4092×10 ³	4189×10 ³
Carbon, from Edison-Swan incandescent } .	3834×103	3908×10 ³	395 5 ×10 ⁸	4054×10 ³
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6168×10 ³	6300×108	6363×10 ⁸	6495×10 ³

" " Phil. Mag." vol. 34, 1892.

† This is given by Dewar and Fleming as 13777 for 96°.4, which appears from the other measurements too high. SMITHSONIAN TABLES.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

Temperature =	— 100 ⁰	- 182°	— 197°	Mean value of temperature co-	
Metal or alloy.	Specific resistance in c. g. s. units.			efficient between -100° and $+100^{\circ}$ C.*	
Aluminium, pure hard-drawn wire	1928	894	-	.00446	
Copper, pure electrolytic and annealed	7 57	272	178	431	
Gold, soft wire	I 207	604	-	375	
Iron, pure soft wire	4010	1067	608	578	
Nickel, pure (prepared by Mond's process) from compound of nickel and carbon monoxide)	6110	1900	-	538	
Platinum, annealed	5295	2821	2290	341	
Silver, pure wire	962	472	-	377	
Tin, pure wire	567 1	2553	_	428	
German silver, commercial wire	33280	32512	-	035	
Palladium-silver, 20 Pd + 80 Ag	14256	I 3 7 97	-	039	
Phosphor-bronze, commercial wire	7883	7 37 I	-	070	
Platinoid, Martino's platinoid with 1 to 2% } .	42385	41454		025	
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	o\$7	
Platinum-rhodium, 90 Pt $+$ 10 Rh	9834	7134	-	312	
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	-	024	
Carbon, from Edison-Swan incandescent } .	4218×108	4321×10 ³	_	-	
Carbon, from Edison-Swan incandescent } .	4079×10 ³	4180×10 ³	-	031	
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6533×10 ⁸	-	_	029	

* This is a in the equation $R = R_0$ (1 + αt), as calculated from the equation $\alpha = \frac{R_{100} - R_{-100}}{200 R_0}$.

TABLE 267.

EFFECT OF ELONCATION ON THE SPECIFIC RESISTANCE OF SOFT METALLIC WIRES.*

Substance				Increase of specific resistance for 1 % of elongation -					
Substance.				Permanent elongation.	Elastic elongation.				
Copper	•	•	•	From .50 % to .60 %	From 2.5 % to 7.7 %				
Iron	•	٠	٠	" .70 " " .80 "	" 4.6 " " 4.8 "				
German silver .			•	" .5° " " .55 "	" 0.7 " " I.0 "				

TABLE 268.

EFFECT OF ALTERNATING THE CURRENT ON ELECTRIC RESISTANCE.

This table gives the percentage increase of the ordinary resistance of conductors of different diameters when the current passing through them alternates with the periods stated in the last column.[†]

Diam	eter in —	Area	in —	Percentage increase of	Number of complete	
Millimetres.	Inches.	Sq. mm.	Sq. in.	ordinary resistance.	periods per second.	
10	•3937	78.54	.122	Less than $\frac{1}{10}$)	
15	.5905	176.7	.274	2.5		
20	.7874	314.16	.487	8		
25	.9842	490.8	.760	17.5	80	
40	1.575	1256	1.95	68		
100	3.937	7854	12.17	3.8 times		
1000	39.39	785400	1217	35 times)	
9	•3543	63.62	.098	Less than $\frac{1}{100}$		
I 3.4	.5280	141.3	.218	2.5		
18	.7086	254.4	•394	8	100	
22.4	.8826	394	.611	17.5		
7.75	.3013	47-2	.07 I	Less than $\frac{1}{1000}$		
11.61	.4570	тоб	.164	2.5		
I 5.5	.6102	189	.292	8	F 133	
19.36	.7622	294	.456	17.5		

* T. Gray, "Trans. Roy. Soc. Edin." 1880. † W. M. Mordey, "Inst. El. Eng. London," 1889.

SMITHSONIAN TABLES.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field. The study of electrolytic conductivity, especially in the case of very dilute solutions, has fur-

nished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grammes of the pure salts proportional to their elec-trochemical equivalent, and using a litre of water as the standard quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grammes to the litre of water, we get what is called the normal or gramme molecule per litre solution. In the table, m is used to represent the number of gramme molecules to the litre of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner : ---

Let $K_{18} =$ conductivity of the solution at 18° C. relative to mercury at 0° C

 $K_{18}^{w} =$ conductivity of the solvent water at 18° C. relative to mercury at 0° C. Then $K_{18} - K_{18}^{w} = k_{18} =$ conductivity of the electrolyte in the solution measured.

 $\frac{k_{18}}{1} = \mu =$ conductivity of the electrolyte in the solution per molecule, or the "specific

molecular conductivity."

TABLE 269.—Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K_2SO_4	MgSO4
0.00000 I	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.000 I	12.09	10.29	10.78	9·34	12.49	10.34

TABLE 270. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grammes per cubic centimetre of the solution at the temperature given.

Salt dissolved.	Grammes per litre.	172	Temp. C.	Density.	Salt dissolved.	Grammes per litre.	772	Temp. C.	Density.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.59 53.55 58.50 42.48 104.0 68.0 165.9 101.17 85.08 169.9 65.28 61.29 98.18	1.0 1.0009 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 1.0005	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.6 18.7 - 18.3 18.6	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	I.0 I.0003 I.0007 I.0023 I.0 I.001 I.0006 I.0 I.0025 I.0041 I.0014 I.0006	18.9 18.6 18.6 18.6 18.2 18.3 17.9 18.8 18.6 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0477 1.0161 1.0318 1.0300

* "Wied. Ann." vol. 26, pp. 161-226.

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10^s.

· · · · · · · · · · · · · · · · · · ·				1					1
Salt dissolved.	<i>m</i> = 10	5	3	1	0.5	0.1	.05	.03	10.
1K2SO4 ŘCl KI NH4Cl KNO3		- 770 752 -	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- - 351	487 - 1 50 448	658 - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - - - - - - - - - - - - - - - - -	82 82 180 398	146 151 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 	- 240 - 1270 2.6	430 381 254 1560 5.2	б17 594 427 1820 12	694 671 510 1899 19	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
L POIT	боо 610 1.48 423 0.5	1420 1470 160 990 2.4	2010 2070 170 1314 3·3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	.001	•0006	.0002	1000.	.00006	.00002	•0000 I
KI	1130 1162 1176 1157 1140	1181 1185 1197 1180 1173	1 207 1 193 1 203 1 190 1 180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031 1068 982 740 1033	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744 773 933 939 976	861 881 980 979 998	919 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3438 3421 858 2141 116	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

* Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF µ.

Salt. Salt. Salt. Salt. μ μ μ μ $\frac{1}{2}K_2SO_4$ 1280 BaCl₂ MgSO4 . 1080 $\frac{1}{2}H_2SO_4$. 3700 1150 KCl. . . $\frac{1}{4}$ KClO₃. HCl . . 1220 1150 $\frac{1}{2}$ Na₂SO₄. 1060 3500 KI . . BaN2O6 . $\frac{1}{2}$ ZnCl . . 1220 1120 1040 HNO3. . 3500 NH₄Cl. 1210 $\frac{1}{2}$ CuSO₄. NaCl . . 1100 $\frac{1}{3}H_3PO_4$ 1030 1100 KNO₃. AgNO₃ NaNO₃. 1210 1090 980 KOH . 2200 JZnSO₄ 1080 $K_2C_2H_3O_2$ $\frac{1}{2}$ Na₂CO₃. 940 1.100

This table shows limiting values of $\mu = \frac{k}{m}$⁸ for infinite dilution for neutral salts, calculated from Table 271.

If the quantities in Table 271 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 272 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in milli-metres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is in-creased, which may be due to mutual interference. The decrease is not the same for

different salts, but becomes much more rapid in salts of high valence. Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H₂SO₄ shows two maxima, and like H₃PO₄ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 273.

TEMPERATURE COEFFICIENT.

Temp. Temp. Tomp

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing 0.01 gramme molecule of the salt.

Coeff.	Salt.	Coeff.	Salt.	Coeff.	Salt.	Coeff.
0.0221	KI	0.0219	$\frac{1}{2}K_2SO_4$.	0.0223	$\frac{1}{2}$ K ₂ CO ₃	0.0249
0.0226	KNO_3	0.0216	$\frac{1}{2}$ Na ₂ SO ₄ .	0.0240	$\frac{1}{2}$ Na $_2$ CO $_3$	0.0265
0.0238	NaNO ₃	0.0226	$\frac{1}{2}\mathrm{Li}_2\mathrm{SO}_4$.	0.0242	L'OH	
0.0232	AgNO ₃	0.022 I	<u>∔</u> MgSO ₄ .	0.0236	HC1	0.01 59
0.0234	$\frac{1}{2}$ Ba(NO ₈) ₂	0.0224	½ZnSO₃ .	0.0234		0.0162 0.0125
0.0239	KClO ₃ .	0.0219	¹ / ₂ CuSO ₄ .	0.0229		
0.0241	$\mathrm{KC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}$.	0.0229	~	~	$\frac{1}{2}H_2SO_4$ for $m = .001$	0.01 59
	Coeff. 0.0221 0.0226 0.0238 0.0232 0.0234 0.0239	Coeff.Salt. 0.0221 KI 0.0226 KNO3 0.0238 NaNO3 0.0232 AgNO3 0.0234 $\frac{1}{2}$ Ba(NO3)2 0.0239 KClO3	Coeff.Salt.Coeff. 0.0221 KI $.$ 0.0219 0.0226 KNO3 $.$ 0.0216 0.0238 NaNO3 $.$ 0.0226 0.0232 AgNO3 $.$ 0.0221 0.0234 $\frac{1}{2}Ba(NO3)_2$ 0.0224 0.0239 KClO3 $.$ 0.0219	Coeff.Salt.Coeff.Salt.0.0221KI. 0.0219 $\frac{1}{2}K_2SO_4$.0.0226KNO3. 0.0216 $\frac{1}{2}Na_2SO_4$.0.0238NaNO3. 0.0226 $\frac{1}{2}Li_2SO_4$.0.0232AgNO3. 0.0221 $\frac{1}{2}MgSO_4$.0.0234 $\frac{1}{2}Ba(NO_3)_2$ 0.0224 $\frac{1}{2}ZnSO_3$.	Coeff.Salt.Coeff.Salt.Coeff.0.0221KI \cdot 0.0219 $\frac{1}{2}K_2SO_4$ 0.0223 0.0226KNO3 0.0216 $\frac{1}{2}Na_2SO_4$ 0.0240 0.0238NaNO3 0.0226 $\frac{1}{2}Li_2SO_4$ 0.0242 0.0232 AgNO3 0.0221 $\frac{1}{2}MgSO_4$ 0.0236 0.0234 $\frac{1}{2}Ba(NO_3)_2$ 0.0224 $\frac{1}{2}ZnSO_3$ 0.0234 0.0239 KClO3 0.0219 $\frac{1}{2}CuSO_4$ 0.0229	Coeff.Salt.Coeff.Salt.Coeff.Salt.0.0221KI. 0.0219 $\frac{1}{2}K_2SO_4$ 0.0223 $\frac{1}{2}K_2CO_3$.0.0226KNO_3. 0.0216 $\frac{1}{2}Na_2SO_4$ 0.0240 $\frac{1}{2}Na_2CO_3$.0.0238NaNO_3. 0.0226 $\frac{1}{2}Li_2SO_4$ 0.0242 KOH.0.0232AgNO_3. 0.0221 $\frac{1}{2}MgSO_4$ 0.0236 KOH.0.0234 $\frac{1}{2}Ba(NO_3)_2$ 0.0224 $\frac{1}{2}ZnSO_3$ 0.0234 $\frac{1}{2}H_2SO_4$.0.0239KClO_3. 0.0219 $\frac{1}{2}CuSO_4$ 0.0229 $\frac{1}{2}H_2SO_4$.

TABLE 274.

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM, ETC.*

	Observer.	Date.	Method.	Value of B. A. U. in ohms.	Value of 100 cms. of Hg in B. A.U.	Value of ohm in cms. of Hg.				
I 2 3	Lord Rayleigh . Lord Rayleigh . Mascart	1882 1883 1884	Rotating coil Lorenz method Induced current .	.98651 .98677 .98611	(.95412) -95374	106.31 106.27 106.33				
4	Rowland Kohlrausch	1887 1887	Mean of several methods Damping of mag- nets	.98644 .98660	·95349	106.32				
6 7 8 9	Glazebrook Wuilleumeier Duncan & Wilkes Jones	1882 to 1888 1890 1890 1891	Lorenz method.	.98665 .98686 .98634	.95338 .95352 .95355 .95341	106.32 106.29 106.31 106.34 106.31				
	Strecker		Mean (An absolute de-) termination of re-)	.98653		106.31				
IO II I2 12	Strecker. . Hutchinson . Salvioni . Salvioni .	1885 1888 1890 –	sistance was not made. The value .98656 has been used.	-	•95334 •95352 •95332 •95354	106.32 106.30 106.33 106.30				
				• • • •	.95354	106.31				
13 14 15	H. F. Weber II. F. Weber Roti	1884 	Induced current . Rotating coil Mean effect of in-	Absolute	measure-	105.37 106.16				
16 17	Heinstedt Dorn	1885 1889	duced current . Damping of mag-	ments c with Gerr wire coil	compared nan silver ls issued	105.89 105.98				
18	Wild	1883	net	by Siem Strecker.	106.24 106.03					
19	Lorenz	1885	Lorenz method]	l	105.93				
Th	The Board of Trade committee recommended for adoption the values .9866 and 106.3. The specific resistance of mercury in ohms is thus .9407 \times 10 ⁻⁴ . Also I Siemens unit = .9407 ohm. = .9535 B. A. U.									

1 ohm . . . = 1.01358 B. A. U.

The following values have been found for the mass of silver deposited from a solution of silver nitrate in one second by a current of one ampere : --

Mascart, "J. de Physique," iii. 1884				.0011156
Rayleigh, "Phil. Trans." ii. 1884				.0011179
Kohlrausch, "Wied. Ann." xxvii. 1886 .			• •	.0011183
T. Gray, "Phil. Mag." xxii. 1886			about :	811100. †
Portier et Pellat, "J. de Physique," ix. 18	igo .	•		.0011192

The following values have been found for the electromotive force of a Clark cell at 15° C. They have been reduced from those given in the original papers on the supposition that 1 B. A. U. = .9866 ohm, and that the mass of silver deposited per second per ampere is .001118 gramme.

Rayleigh, "Trans." ii. 1884				1.4345 volt.
Carhart				I.4340 "
Kohle, "Zeitschrift für Instrumentenkunde," 1892			•	1.4341 "
Glazebrook and Skinner, "Proc. R. S." li. 1892	•	•	•	1. 4342 "

* Abstract from the Report of the British Association Committee on Practical Standards for Electrical Measurement, "Proc. Brit. Assoc." 1892. † ± .0000002 T. G.

SPECIFIC INDUCTIVE CAPACITY OF CASES.

With the exception of the results given by Ayrton and Perry, for which no temperature record has been found, the values are for 0° C. and 760 mm. pressure.

	Sp. ind. cap.	
Gas.	Vacuum $\equiv 1$. Air $\equiv 1$.	Authority.
Air	1.0015 1.0000	Ayrton and Perry.
"	1.00059 1.0000	Klemenčič.
" • • • • • • •	1.00059 1.0000	Boltzmann.
Carbon disulphide	1.0029 1.0023	Klemenčič.
Carbon dioxide, CO_2	1.0023 1.0008	Ayrton and Perry.
	1.00098 1.00039	Klemenčič.
" " " · · · ·	1.00095 1.00036	Boltzmann.
Carbon monoxide, CO	1.00069 1.00010	Klemenčič.
	1.00069 1.00010	Boltzmann.
Coal gas (illuminating)	1.0019 1.0004	Ayrton and Perry.
Hydrogen	1.0013 0.9998	Ayrton and Perry.
"	1.00026 0.99967	Klemenčič.
"	1.00026 0.99967	Boltzmann.
Nitrous oxide, N $_2$ O	1.00116 1.00057	Klemenčič.
" " "	1.00099 1.00040	Boltzmann.
Sulphur dioxide	1.0052 1.0037	Ayrton and Perry.
"	1.00955 1.00896	Klemenčič.
Vacuum 5 mm. pressure	1.0000 0.9985	Ayrton and Perry.
" 0.001 " " about	1.0000 0.94	Ayrton and Perry.
"	1.0000 0.99941	Klemenčič.
"	1.0000 0.99941	Boltzmann.

SMITHSONIAN TABLES.

TABLE 276.

SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR=UNITY).

Substance.	Sp. ind. cap.	Authority.
Calcspar parallel to axis	7.5	Romich and Nowak.
" perpendicular to axis	7.7	si ii ii
Caoutchouc	2.12-2.34	Schiller.
vulcanized	2.69-2.9.4	Elsas.
Celluvert, hard gray	1.19	LISAS.
" " black	1.44 1.89	"
" soft red	2.66	"
Ebonite	2.08	Rossetti.
	3.15-3.48	Boltzmann.
66 · · · · · · · ·	2.21-2.76	Schiller.
	2.72	Winkelmann.
	2.56	Wüllner.
	2.Š6	Elsas. Thomson (from Hertz's vibrations).
Fluor spar	1.9 6.7	Romich and Nowak.
	6.8	Curie.
Glass.* density 2.5 to 4.5	5-10	Various.
Double extra dense flint, density 4.5 .	9.90	Hopkinson.
Dense flint, density 3.66	7.38	÷ «¢
Light flint, " 3.20	6.70	66
Very light flint " 2.87	6.61	46
Hard crown "2.485	6.96	66 68
1 late	8.45	Schiller.
	5.8-6.3.4 6.46-7.57	Winkelmann.
	6.88	Donle.
"	6.44-7.46	Elsas.
Plate	3.31-4.12	Schiller.
65 · · · · · · ·	7.5	Romich and Nowak.
	6.10	Wüllner.
Guttapercha	3.3-4.9	Submarine cable data.
Gypsum	6.33	Curie.
	6.64 8.00	Klemenčič. Curie.
	7.98	Bouty.
	5.66-5.97	Elsas.
	4.6	Romich and Nowak.
Paraffin	2.32	Boltzmann.
	1.98	Gibson and Barclay.
	2.29	Hopkinson.
" quickly cooled translucent . " slowly cooled white	1.68-1.92	Schiller.†
"	1.85–2.47 2.18	Winkelmann.
	1.96-2.29	Donle, Wüllner.
" fluid — pasty	1.98-2.08	Arons and Rubens.
" solid	1.95	4 4 4
Porcelain	4.38	Curie.
Quartz, along the optic axis	4.55	66
Rocin	4.49	
Resin	2.48-2.57	Boltzmann.
ii ii	18.0 5.85	Hopkinson. Curie.
Selenium.	5.05	Romich and Nowak.
Shellac	3.10	Winkelmann.
	3.67	Donle.
44 · · · · · · ·	2.95-3.73	Wüllner.

* The values here quoted apply when the duration of charge lies between 0.25 and 0.00005 of a second. J. J. Thomson has obtained the value 2.7 when the duration of the charge is about $1/25 \times 10^6$ of a second; and this is confirmed by Blondlot, who obtained for a similar duration 2.8. t The lower values were obtained hy electric oscillations of duration of charge about 0.0006 second. The larger values were obtained when duration of charge was about 0.02 second.

SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR = UNITY).

	Su	bstand	e.			Sp. ind. cap.	Authority.
 •	•	•	• • • • • • • • •	• • • •	•	2.18 2.25 3.84-3.90 2.88-3.21 2.24 2.94 2.56	Rossetti. Felici. Boltzmann. Wüllner. J. J. Thomson. Blondlot. Trouton and Lilly.

TABLE 277.

SPECIFIC INDUCTIVE CAPACITY OF LIQUIDS.

Substance.	Sp. ind. cap.	Authority.
Alcohols: Amyl	15-15.9 24-27 32.65 22.8 7.5 1.93-2.45 2.3 2.1898 2.1534 2.1279 2.1103 1.859 1.934 1.966 2.201 2.175	Cohn and Arons; Tereschin. Various. Tereschin. " " Various. Negreano. " " " Landolt and Jahn. " " " Landolt and Jahn. " " "
Decylene, a 10°.7 C Oils : Arachid Castor Lemon Neatsfoot Olive Petroleum ether Petroleum ether Petroleum ether Sesame Sperm Turpentine Vaseline Ozokerite	2.236 3.17 4.6-4.8 3.07-3.14 2.25 3.07 3.08-3.16 2.02-2.19 1.92 2.2-3.0 3.17 3.02-3.09 2.15-2.28 2.17 2.13 2.2-2.4 2.3-2.6	Hopkinson. Various. Hopkinson. Tomaszewski. Hopkinson. Arons and Rubens; Hopkinson. Various. Hopkinson. Various. Hopkinson; Rosa. Various. Fuchs. Hopkinson. Various. "

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Соррег.	Iron.	Lead.	Platinum.	Tin.	Zinc.
Mercury	.092 {.01 to .17 - - - - - - - - - - - - - - - - - - -	.308 .269 to .100 127 .103 .070 475 396 - - - - - - - - - - - - - - - - - - -	.502 .148 653 - - 655 652 - - - - - - - - - - -	$ \begin{array}{c} -\\ .171\\139\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$		-.177 225 - -.334 364 - - - - - - - - - -	$\begin{cases}105 \\ to \\ +.156 \\536 \\536 \\637 \\238 \\430 \\444 \\344 \\344 \\344 \\54$
Concentrated nitric acid . Mercurous sulphate paste . Distilled water containing } trace of sulphuric acid }				-	.672 - -		_ 241

SMITHSONIAN TABLES.

* Everett's "Units and Physical Constants: "Table of

Liquids with Liquids in Air.*

during experiment about 16° C.

		_	_						_	
	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution : saturated at 16°.5 C.	Copper sulphate solution : saturated at 15° C.	Zinc sulphate solution : sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution : saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Mercury	-	-	-	-	_	-	-	_	-	-
Distilled water	.100	.231	-	-	-	043	-	.164	-	-
Alum solution : saturated $\{$ at 16°.5 C $\}$	-	014	-	-	-	-	-	-	-	-
Copper sulphate solution : sp. gr. 1.087 at 16°.6 C.	_	-	-	-	-	-	.090	_	-	-
Copper sulphate solution : 1	-	-	-	043	-	-	-	.095	.102	-
saturated at 15° C	-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: saturated at 15°.5 C.	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: (_	-	-	-	-	-	-	-	-	-
sp. gr. 1.125 at 16°.9 C. Zinc sulphate solution :	284	-	-	200	-	095	-	-	-	
saturated at 15°.3 C) One part distilled water +) 3 parts saturated zinc >	_	_	-	-		102	-	-	-	-
Strong sulphuric acid in										
distilled water : 1 to 20 by weight	-	-	-	-	-	-	-	-	-	-
I to 10 by volume	358	-	-	-	-	-	-	-	-	-
I to 5 by weight	429	1	-	-	-	-	-	-	-	-
5 to I by weight	. –	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid			-		-	-	-	-	-	-
Mercurous sulphate paste Distilled water containing trace of sulphuric acid.		-	•475	-	-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

SMITHSONIAN TABLES.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass,
Carbon	0	.370	.485	.8 58	.113	•795	1.096†	1.208†	.414†
Copper	370	0	.146	.542	—.238	.456	.7 50	.894	.087
Iron	- .485†	146	0	.401†	369	.313†	.600†	·7·44†	064
Lead	—.8 ₅ 8	542	- .401	0	—.77 I	099	.210	·357†	472
Platinum	113†	.238	.369	.77 I	0	.690	.981	1.125†	.287
Tin	795	458	313	.099	—.690	0	.281	.463	372
Zinc	—1 .096†	—·75°	600	216	—.981	.281	0	.144	679
" amalgam	-1.208†	894	744	357†	—1.125†	—.463	144	0	822
Brass	414	087	.06.1	.472	287	.372	.679	.822	ο

Temperature of substances during the experiment about 18° C.

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

* Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

SMITHSONIAN TABLES.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	h of the solution in ne molecules per	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.		
No. of molecules.	Salt.		Difference of potential in centivolts.						
0.5	$egin{array}{c} \mathrm{H}_2\mathrm{SO}_4 \ \mathrm{NaOH} \ \mathrm{KOH} \ \mathrm{Na}_2\mathrm{SO}_4 \ \mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3 \end{array}$	0.0	36.6	51.3	51.3	100.7	121.3		
1.0		32.1	19.5	31.8	0.2	80.2	95.8		
1.0		42.5	15.5	32.0	—1.2	77.0	104.0		
0.5		1.4	35.6	50.8	51.4	101.3	120.9		
1.0		5.9	24.1	45.3	45.7	38.8	64.8		
1.0	$egin{array}{c} \mathrm{KNO}_3 \ \mathrm{NaNO}_3 \ \mathrm{K}_2 \mathbb{C} r \mathrm{O}_4 \ \mathrm{K}_2 \mathbb{C} r_2 \mathrm{O}_7 \ \mathrm{K}_2 \mathbb{S} \mathrm{O}_4 \end{array}$	11.8‡	31.9	42.6	31.1	81.2	105.7		
1.0		11.5	32.3	51.0	40.9	95:7	114.8		
0. 5		23.9‡	42.8	41.2	40.9	94:6	121.0		
0.5		72.8	61.1	78.4	68. 1	123:6	132.4		
0.5		1.8	34.7	51.0	40.9	95:7	114.8		
0.5 0.25 0.167 1.0 1.0	${ m (NH4)_2SO_4}\ { m K_4FeC_6N_6}\ { m K_6Fe_2(CN)_2}\ { m KCNS}\ { m NaNO_3}$	-0.5-6.141.0-1.24.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 <u> </u>	125.7 87.8 124.9 72.5 104.6?		
0.5	SrNO ₃	14.8	38.3	50.6	48.7	103.0	119.3		
0.125	Ba(NO ₃) ₂	21.9	39·3	51.7	52.8	109.6	121.5		
1.0	KNO ₃	— ‡	35.6	47.5	49.9	104.8	115.0		
0.2	KClO ₃	15–10‡	39·9	53.8	57.7	105.3	120.9		
0.167	KBrO ₃	13–20‡	40·7	51.3	50.9	111.3	120.8		
I.0 I.0 I.0 I.0 I.0	NH4Cl KF NaCl KBr KCl	2.9 2.8 	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6		
0.5	Na ₂ SO ₃	8.2	28.7	41.0	31.0	68.7	103.7		
-	NaOBr	18.4	41.6	73.1	70.6‡	89.9	99.7		
1.0	C ₄ H ₆ O ₆	5.5	39.7	61.3	54.4§	104.6	123.4		
0.5	C ₄ H ₆ O ₆	4.1	41.3	61.6	57.6	110.9	125.7		
0.5	C ₄ H ₄ KNaO ₆	7.9	31.5	51.5	42-47	100.8	119.7		

* "Rend. della R. Acc. di Roma," 1890.

† Amalgamated.

‡ Not constant.

§ After some time.

|| A quantity of bromine was used corresponding to NaOH = 1.

SMITHSONIAN TABLES.

VARIATION OF ELECTRICAL RESISTANCE OF CLASS AND PORCELAIN WITH TEMPERATURE.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimetre of a rod one square centimetre in cross section.*

No.	Kind of glass.		Density.	а	Ъ	, C	Range of temp. Centigrade.
I	Test-tube glass		-	13.86	044	.000065	0°-250°
2	66 66 66	• 6	2.458	14.24	055	1000.	37-131
3	Bohemian glass	• •	2.43	16.21	043	.0000394	бо-174
4	Lime glass (Japanese manu	ifacture) .	2.55	13.14	031	000021	10-85
5	66 66	· ·	2.499	14.002	025	0000б	35-95
6	Soda-lime glass (French fla	ısk) .	2.533	14.58	049	.000075	45-120
7	Potash-soda lime glass .		2.58	16.34	0425	.0000364	66-193
S	Arsenic enamel flint glass		3.07	18.17	055	.000088	105-135
9	Flint glass (Thomson's ele jar)	ctrometer	3.172	18.021	—.036	—.0000091	100-200
IO	Porcelain (white evaporatin	ng dish) .	-	15.65	042	.00005	68–290
	Composition	OF SOME OF	THE ABOV	E SPECIM	ens of Gi	ASS.	
	Number of specimen ==	3	4		5	7 8	9

Number of s	pecime	$n \equiv$		3	4	6	7	8	9
Silica			•	61.3	57.2	70.05	75.65	54.2	55.18
Potash	٠	•		22.9	21.1	I.44	7.92	10.5	1 3.28
Soda	۰			Lime, etc.	Lime, etc.	14.32	6.92	7.0	-
Lead oxide	٠			by diff.	by diff.	2.70	-	23.9	31.01
Lime				1 5.8	16.7	10.33	8.48	0.3	0.35
Magnesia .	٠			-	-	~	0.36	0.2	0.06
Arsenic oxide				-	-	-	-	3.5	-
Alumina, iron o	oxide,	etc.	,	-	-	1.45	0.70	0.4	0.67

* T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

SMITHSONIAN TABLES.

RELATION BETWEEN THERMAL AND ELECTRICAL CONDUCTIVITIES.

That there is a close relation a. VALUES IN between the thermal and the electrical conductivities of metal was shown experimentally by Wiedemann and Franz tany by Wiedemann and Franz in 1853, and had been referred to by Forbes, with whom a difficulty arose with regard to the direction of the variation with temperature. The ex-periments of Tait and his stu-dents, have shown that this dents have shown that this difficulty was largely, if not entirely, due to experimental error. The same relation has error. The same relation has been shown to hold for alloys by Chandler Roberts and by Neumann. This relation was

a.	VALUES	IN ARB	TRARY	UNITS	лт 15 ⁰ С.
1		1			1

Substance.	l ₁₈	k 15	118
Lead	7.93	4.569	1.74
Tin	14.40	8.823	1.6.4
Zinc	25.45	14.83	1.72
Copper .	41.52	24.04	1.73
Iron, No. 1	14.18	6.803	2.08
"""	9.64	4.060	2.37
3	13.75	6.565	2.09

denied by H. F. Weber, and has been again experimentally investigated and apparently established by the experiments of Kirchhoff and Hansemann,

of L. Lorenz, of F. Kohl-rausch, and of Berget. Putting l = thermal conduc-tivity, and k = electrical con-ductivity, Kirchhoff and ductivity, Kirchnoff and Hansemann find the values in Table **a**. This table shows iron to deviate considerably from the other metals in the relationship of the two con-ductivities; but this may possi-bly be explained by its mag-netic properties netic properties.

Lorenz's results * show that the ratio l/k for the different metals, except iron, is nearly constant for values at 0° and 100° C, but that the ratio is generally greater for poorly conducting substances. He shows that the ratio $\frac{l_{100}}{k_{100}} \div \frac{l_0}{k_0}$ remains nearly constant for all metals examined, with the exception of iron, and has an average value, as shown by Table **b**, of about 1.37. He concludes that $l/k = \text{constant} \times T$, where T is the absolute temperature.

In this table the values of l and k are given in c. g. s. units, and the metals are arranged in the order of their heat conductivities. The same specimens were used for both the thermal and the electrical experiments.

Substan	ces.			l _o	l ₁₀₀	$k_0 imes 10^5$	$k_{100} imes 10^5$	$\frac{l_0}{k_0}$	$\frac{l_{100}}{k_{100}} \div \frac{l_0}{k_0}$
Copper . Magnesium Aluminium Brass, red . Cadmium . Brass, yellow Iron Tin Lead German silver Antimony . Bismuth .	9 • • • • • •	•	· · · ·	0.7198 c.3760 0.3435 0.2460 0.2200 0.2041 0.1665 0.1528 0.0836 0.0700 0.0442 0.0177	0.7226 0.3760 0.3619 0.2827 0.2045 0.2540 0.1627 0.1423 0.0764 0.0887 0.0396 0.0164	45.74 24.47 22.46 15.75 14.41 12.62 10.37 9.346 5.141 3.766 2.199 0.929	33.82 17.50 17.31 13.31 10.18 11.00 6.628 6.524 3.602 3.632 1.522 0.633	I 574 I 537 I 529 I 562 I 527 I 617 I 605 I 635 I 627 I 858 2011 I 900	1.35 ⁸ 1.398 1.367 1.360 1.315 1.428 1.530 1.334 1.304 1.314 1.294 1.372

b. VALUES IN C. G. S. UNITS.

C. BERGET'S EXPERIMENTS.[†]

The same specimens were used for both experiments. It will be seen that the ratio is nearly constant, but not exactly so.

Substance.	Z	$k \times 10^{-5}$	$\frac{l}{k}$ 10 ⁻³	Substance.	2	$k \times 10^{-5}$	$\frac{l}{k}$ 10 ⁻³
Copper	1.0405	65.13	1.6	Tin	0.151	8.33	1.8
Zinc	0.303	18.00	1.7	Lead	0.0810	5.06	1.6
Brass	0.2625	15.47	1.7	Antimony .	0.042	2.47	1.7
Iron	0.1587	9.41	1.7	Mercury	0.0201	1.06	1.8

d. KOHLRAUSCH'S RESULTS.

An interesting confirmation of the relationship of the two conductivities has been furnished by F. Kohlrausch, who has shown that tempering steel causes equal proportional changes in the thermal and electrical conductivities of the metal, thus leaving the ratio *l/k* unchanged by the process.‡

l = 0.062; k = 3.3; l/k = 0.019= 0.111; = 5.5; = 0.020Tempered steel Soft steel

In the consideration of this subject it must be borne in mind that closely accurate values of thermal conduc-tivity are very difficult to obtain, and hence fairly large variations are to be expected.

* "Wied. Ann." vol. 13, p. 598. † "Compt. Rend." vol. 110, p. 76.

 \ddagger *l* is in c. g. s. units and *k* in terms of mercury.

ELECTROCHEMICAL EQUIVALENTS.*

With the exception of the values in heavy type for copper and silver, the numbers in this table have been calculated from the atomic weights and valence, on the basis of the value given for silver which was adopted by the International Congress of Electricians at Chicago in 1804. Many of the substances have not been separated electrically, and in these cases the numbers are purely theoretical.

Subs	stance.	Relative atomic wt. Oxygen = 16.	Valence.	Relative combining weights; oxygen = 8.	Electrochemical equivalent in grammes per coulomb X 1000.
Aluminium Antimony . Arsenic . Barium . Bismuth .	· · · · ·	27.11 120.43 75.09 137.43 208.11	3 3 or 5 3 or 5 2 3 or 5	9.04 40.11 or 25.09 25.03 or 15.02 63.71 69.37 or 41.62	0.09358 0.4155 or 0.2492 0.2593 or 0.1555 0.7119 0.7218 or 0.4333
Boron . Bromine . Cadmium . Caesium . Calcium .	· · · · · ·	10.95 79.95 111.93 132.89 40.08	3 I 2 I 2	3.65 79 95 55.96 1 32.89 20.04	0.03783 0.8283 0.5798 1.3767 0.2076
Carbon . Cerium . Chlorine . Chronium Cobalt .	· · · · · · · · · · · · · · · · · · ·	1 2.01 1.40.2 35.45 52.14 58.93	4 2 3 or 6 2 or 3	3.0 70.1 35:45 17.38 or 8.69 29.46 or 19.64	0.03108 0.7262 0.3673 0.1801 or 0.0901 0.3052 or 0.2034
Columbium Copper Etbium Fluorine Gadolinium		9.4.0 63.6 166.3 19.03 156.1	1 or 2 2 1 -	18.8 63.6 or 31.8 83.15 19.03 –	0.1948 0.6589 or 0.3290 0.8614 0.1971 –
Gallium . Germanium Glucinum . Gold Hydrogen		69.0 72.3 9.08 197.24 1.008	3 2 3 1	23.0 4.54 65.75 1.008	0.2383
Indium . Iodine . Iridium . Iron Lanthanum		113.7 126.85 193.12 56.02 138.6	3 1 2 or 3 2	37.9 126.85 48.28 28.01 or 18.67 69.3	0.3926 1.3142 0.5002 0.2902 or .1934 0.7179
Lead Lithium . Magnesium Mangancse Mercury .		206.92 7.03 24.29 54.99 200.0	2 I 2 or 4 I or 2	103.46 7.03 12.15 27.5 or 13.75 200.0 or 100.0	1.0717 0.07283 0.1259 0.2849 or 0.1424 2.0720 or 1.0360
Molybdenum Neodidymium Nickel . Nitrogen . Osmium .		95.98 140.5 58.69 14.0.4 190.99	6 2 or 3 3 or 5 6	16.0 29.35 or 19.57 4.68 or 2.81 31.83	0.1658 0.2996 or 0.1997 0.04849 or 0.02909 0.3297
Oxygen . Palladium . Phosphorus Platinum . Potassium .		16.0 106.36 31.02 194.89 39.11	2 2 or 5 3 or 5 2 or 4 1	8.0 53.18 or 21.27 10.34 or 6.20 97.44 or 48.72 39.11	0.08288 0.5310 or 0.2124 0.117.4 or 0.07043 1.0095 or 0.5048 0.4052

* The atomic weights are from a paper by F. W. Clarke. "Journ. Am. Chem. Soc." vol. 18, p. 213, 1896. SMITHSONIAN TALES.

.

Substance.	Relative atomic wt. Val $Oxygen \equiv 16$.	ence. Relative combining weights; oxygen = 8.	Electrochemical equivalent in grammes per coulomb X 1000.
Praseodidymium Rhodium Rubidium Ruthenium Samarium	143.5 103.01 85.43 101.68 150.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3558 0.8851 0.2633 –
ScandiumSeleniumSiliconSilverSodium	44.0 79.0 28.4 107.92 23.05	 2 39.5 4 7.1 1 107.92 1 23.05	- 0.4092 0.07356 1.1180 0.2387
StrontiumSulphurTantalumTelluriumTerbium	87.61 32.07 182.6 127.0? 160.0	2 43.8 2 16.03 5 36.52 2 63.5 	0.4538 0.1661 0.3783 0.6578 -
ThalliumThoriumThuliumTinTitanium	204.15 232.63 170.7 119.05 48.15	I 204.15 2 116.31 or 4 59.52 or 29.76 4 12.04	2.0147 1.2049 0.6166 or 0.3083 0.1247
Tungsten Uranium Vanadium Ytterbium Yttrium		6 or 3 or 5 2 30.67 119.8 or 79.86 17.13 or 10.28 - - 44.47	0.3177 1.2410 or 0.8273 0.1778 or 0.1065
Zinc Zirconium	65.41 90.6	2 32.7 4 22.65	0.3385 0.2346

ELECTROCHEMICAL EQUIVALENTS.

SMITHSONIAN TABLES.

1

PERMEABILITY OF IRON.

TABLE 284. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction *B*, and permeability μ , corresponding to the magneto-motive forces *H* recorded in the first column. The first specimen is taken from a paper by Rowland,* and refers to a welded and annealed ring of "Burden's Best" wrought iron. The ring was 6.77 cms. in mean diameter, and the bar had a cross sectional area of 0.916 sq. cms. Specimens 2-4 are taken from a paper by Bosanquet,† and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.725 cms., and the thickness of the bars 2.535, 1.295, and .7544 cms. respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 5 is from Ewing's book,‡ and refers to one of his own experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

Н	Specin	1 nen 1	2		3		4		5		igh re- iity wu
<i>I</i> 1	В	μ	В	μ	В	μ	В	μ	В	μ	rively h r force rmeabil hin dra imen 5.
0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0	80 330 1.450 4840 9880 1.2970 1.4740 16390 -	400 660 1450 2420 1976 1297 737 328 -	126 377 1449 4564 9900 13023 14911 16217 17148	630 754 1449 2282 1980 1302 746 324 171	65 224 840 3533 8293 12540 14710 16062 17900	325 448 840 1766 1659 1254 735 321 179	85 214 885 2417 8884 11388 13273 13890 14837	425 428 885 1208 1777 1139 664 278 148	22 74 246 950 12430 15020 15790 -	110 148 246 475 2486 1502 789 -	NOTE. — The comparatively high value of the magnetizing force re- quired for maximum permeability when the specimen is a thin drawn wire is noticeable in specimen 5.

TABLE 285. - Permeability of Transformer Iron.§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/I the magneto-motive force per centimetre length of the iron circuit; B the total induction through the magnetizing coil; B/a the induction per square centimetre of the mean section of the iron core; M/B the magnetic reluctance of the iron circuit; BI/Ja the permeability of the iron, a being taken as the mean cross section of the iron circuit as it exists in the transformer, which is thus slightly greater than the actual cross section of the iron.

	77		First sp	ecimen.		Second specimen.					
M	0.597	В	$\frac{B}{a}$ $\frac{M}{B}$		Bl Ma	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma		
20 .40 60 80 120 120 140 160 200 220 260	0.597 1.194 1.791 2.338 2.985 3.582 4.179 4.776 5.373 5.970 0.567 7.761	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1406 3790 5660 7040 7860 8580 9060 9510 9880 10200 10430 10910	$\begin{array}{c} 0.917 \times 10^{-4} \\ 0.681 & `` \\ 0.683 & `` \\ 0.734 & `` \\ 0.819 & `` \\ 0.903 & `` \\ 0.904 & `` \\ 1.090 & `` \\ 1.180 & `` \\ 1.270 & `` \\ 1.360 & `` \\ 1.540 & `` \\ \end{array}$	2360 3120 3180 2960 2640 2410 2186 2000 1850 1720 1590 1410	$\begin{array}{c} 16 \times 10^{4} \\ 49 \\ 82 \\ 104 \\ 118 \\ 124 \\ 131 \\ 135 \\ 140 \\ 142 \\ 144 \\ \end{array}$	1032 3140 5290 6710 7610 8000 8450 8450 8710 9030 9160 9290	1.25×10^{-4} 0.82 0.73 0.77 0.85 0.97 1.07 1.18 1.29 1.41 1.53 $-$	1730 2640 2970 2820 2560 2250 2036 1830 1695 1540 1410		

"Phil. Mag." 4th series, vol. xlv. p. 151.
† Ibid. 5th series, vol. xix. p. 73.
‡ "Magnetic Induction in Iron and Other Metals." 4 Magnetic Induction in from and § T. Gray, from special experiments.

PERMEABILITY OF TRANSFORMER IRON.

		(b) W	ESTINGI	IOUSE NO). 6 T	(RANSFO	RMERS	(ав	our	1800 WAT	TTS CAPA	сіту).		
		М			First sp	ecim	en.			Second specimen.					
J.	r	T -		В	$\frac{B}{a}$		$\frac{M}{B}$		ta la		В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	
2 4 6 8 10 12 14 16 18 20		0.62 1.23 1.85 2.46 3.08 3.70 4.31 4.93 5.55 6.16	14 44 69 86 94 1010 106 106 1120	7 " 2 " 5 " 5 " 5 "	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		⁴ 21 32 33 3 ¹ 27 24 22 19 18 16	60 90 40 70 50 10 90 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1940 5540 7440 8880 9460 9910 10300 10500 10700 -	0.93×10^{-4} 0.64 " 0.72 " 0.81 " 0.95 " 1.09 " 1.23 " 1.37 " 1.51 "	3140 4490 3590 3060 2670 2430 2180 1970 -		
			UNGHOUSE NO. 4 TRANSFORMER DUT 1200 WATTS CAPACITY).				R	(d) 7	Гног	MSO	N-HOUSTOR	1 1500 W.	atts Transfo	RMER.	
M	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$		Bl Ma	М	<u>n</u>	[В	$\frac{B}{a}$	$\frac{M}{B}$	$\frac{Bl}{Ma}$	
20	0.69	147	×10 ³	1470	1.36×1	o-4	2140	20 40	0.2		70×10^{3}	1 560 3160	2.86×10 ⁻⁴ 2.81 "	3730 3780	
-10	1.38	406	66	4066	0.90	"	2940	60 80	1.1 1.(26	214 " 265 "	4770	2.81 " 3.02 "	3790 3520	
60	2.07	573	66	5730	1.05	66	2770	100 120	2.1	52	309 " 348 "	6890 7760	3.24 " 3.45 "	3280 3080	
So	2.76	0.	66	6590	الشعار.	" 2390 " 2070		160 200	3.	20	456 "	9100	3.92 4.39 "	2710 2430	
100 120	3.45	714 748	66	7140	1.40	66	2070 1810	240 280 320	5.0 5.8 6.3	SŚ	495 " 524 " 550 "	11000 11690 12270	4.87 " 5.35 " 5.82 "	2190 1990 1820	
140	4.83		66	7770		6	1610	360 400 440	7. 8. 9.	56 40	573 " 591 " 504 "	12780 12780 13180 13470	6.29 " 6.78 " 7.28 "	1620 1690 1570 1460	

COMPOSITION AND MACNETIC

This table and Table 289 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel, which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.					Chemic	al analys	is.	
of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos- phorus.	Other substances.
I	Wrought iron	Annealed	_	-	-	-	_	-
2	Malleable east iron	66	-	-	-	-	-	-
3	Gray cast iron	-	-	-	-		-	-
4	Bessemer steel	Annealed	0.045 0.090	0.200	0.030 0.016	None.	0.040 0.042	-
56	" " "	Annealeu "	0.320	0.153 0.438	0.017	0.0.12	0.042	_
	*	(Oil-hard-		"	"	"	"	
7	66 66 .	ened						-
S	66 66 .	Annealed	0.890	0.165	0.005	0.081	0.019	-
9	۰٬ ٬٬ .	{ Oil-hard- } ened	46	66	66	66	66	-
10	Hadfield's manganese } .	-	1.005	12.360	0.038	0.204	0.070	-
11	Manganese steel	Asforged	0.674	4.730	0.023	0.608	0.078	-
12	- 66 66 · · ·	Annealed	66	66	66	66	6.6	-
13	66 66 . .	{ Oil-hard- } ened	66	66	66	66	66	-
14	66 66 · · ·	As forged	1.298	8.740	0.024	0.094	0.072	-
15	66 66	Annealed	66	66	66	66	6.6	
16	66 66 + +	{ Oil-hard- } ened	"	66	66	66	66	-
17 18	Silicon steel	As forged Annealed	0.685	0.694	66	3.438	0.123	-
10		{ Oil-hard-	66	66	66	66	66	_
19	66 66	ened		••				-
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
2 I	66 66	Annealed	66	66	56	66	66	66
22	66 66	{ Oil-hard- } ened	6.6	66	66	66	66	66
23	66 66	As forged	0.687	0.028	66	0.134	0.043	1.195 Cr.
24	66 64	Annealed	"	66	66	"	66	
25		{ Oil-hard- } ened	46	"	66	66	66	66
26	Tungsten steel	As forged	1.357	0.036	None.	0.0.13	0.047	4.649 W.
27		Annealed	66		46	6	46	
		(Hardened	66		11			
28	66 66	in cold water		66	66	66	66	66
		(Hardened						
29	66 66	in tepid	66	66	66	61	66	66
		(water						
30	" " (French) .	{ Oil-hard- } ened	0.511	0.625	None.	0.021	0.028	3.444 W.
31	66 66	Very hard	0.855	0.312	-	0.151	0.089	2.353 W.
32	Gray cast iron	-	3-455	0.173	0.042	2.0.1.1	0.151	2.064 C.†
33	Mottled cast iron		2.581	0.610	0.105	1.476	0.435	1.477 C.†
34	White " "	-	2.036	0.386		0.764	0.458	-
35	Spiegeleisen	_	4.510	7.970	Trace.	0.502	0.128	_

* Phil. Trans. Roy. Soc. vol. xxxv.

SMITHSONIAN TABLES.

† Graphitic carbon.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated " was calculated from the formula: — Energy dissipated \equiv coercive force \times maximum induction $\div \pi$

No.	Duriting			И	lagnetic p	propertie	s.	Energy dis-
of Test.	Description of specimen.	Temper.	electri- cal resis- tance.	Maxi- mum in- duction.	Residual induc- tion.	Coer- cive force.	Demag- netizive force.	sipated per cycle.
I	Wrought iron	Annealed	.01378	18251	7248	2.30	_	1 3 3 5 6
2	Malleable cast iron	6.6	.03254	12408	7479	- <u>8.</u> 80	-	34742
3	Gray cast iron	-		10783	3928	3.80	-	1 3037
4	Bessemer steel	Annealed		18196 19840	7860 7080	2.96 1.63	_	17137 10289
5	" "	in a stated	.01030 .01446		9840	6.73		40120
	46 66	∫ Oil-hard-			I1040	11.00		65786
7	•	i ened	.01390		,		-	
8		Annealed (Oil-hard-	.01 5 59	16120	10740	8.26	-	42366
9) On-hard-	.01695	16120	8736	19.38	-	99401
10	Hadfield's manganese } .	-	.06554	-	-			-
II	Manganese steel	As forged	.05368	4623	2202	23.50	37.13	34567
12		Annealed { Oil-hard-	.03928	10578	5848	33.86	46.10	113963
13	46 66 . .	i ened	.05556		2158	27.64	40.29	41941
14	· · · · · · · · · · · · · · · · · · ·	As forged	.06993		-	-	-	-
15		Annealed (Oil-hard-	.06316		540	24.50	50.39	I 5474
16	66 66 • •) ened	.07066	733	-	-	-	-
17	Silicon steel	As forged	.06163		11073	9.49	12.60	45740
ıŚ	66 66	Annealed	.06185	14701	8149	7.80	10.7.4	36485
19	66 66	{ Oil-hard- { ened	.06195	14696	SoS.4	12.75	17.14	59619
20	Chrome steel	As forged	.02016		9318	12.24	13.87	61439
21		Annealed	.01942	14848	7 570	8.98	12.24	42425
22	66 66 0 0 0	{ Oil-hard- { ened		13960	8595	38.15	48.45	169455
23	66 66 × × ×	As forged	.01791	14680	7 568	18.40	22.03	85944
24	••••	Annealed (Oil-hard-	1	13233	6489	15.40	19.79	64842
25	<i>66 66 • • •</i> •	ened	.03035	12868	7891	40.80	56.70	167050
26	Tungsten steel	As forged		1 57 18	10144	15.71	17.75	78568
27		Annealed	.02250	16498	11008	15.30	16.93	80315
28		S Hardened in cold	.02274	_	_	-	_	-
		water						
	66 66	(Hardened			0.0			T 10 TOO
29		} in tepid water	.02249	15610	9482	30.10	34.70	149500
30	" " (French) .) Oil hard-	.0360.1	14480	8643	47.07	64.46	216864
) ened Very hard	-	1		51.20		1
31 32	Gray cast iron	-	.11400	12133 9148	3161	13.67		39789
33	Mottled cast iron	-		10546	5108	12.24		41072
34	White " "	-	05661	9342	5554	12.2.4		36383
35	Spiegeleisen	-	.10520	385	77	-	-	-
[1	1	1			

TABLE 287.

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 286.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 286. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	Specimen	ı (iron).	Specim (annealed		Specimen 9 8 tempe		Specimen 3 (cast iron).		
H	В	μ	В	μ	В	μ	В	μ	
I 2 3 5 10 20 30 40 50 70 100 150 200	- 200 - 10050 12550 14550 15200 15200 15800 16000 16360 16800 17400 17050	- 100 - 2010 1255 727 507 395 320 234 168 116 90	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- 7 50 16 50 58 7 5 98 7 5 11 600 12000 13 400 13 400 14 500 15800 16 100	- - 150 165 294 329 290 240 191 145 105 80	265 700 1625 3000 5000 6000 6500 7100 7350 7900 8500 9500 10190	265 350 542 600 500 300 217 177 149 113 85 63 51	

Tables 288-292 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimetres long and 0.6 centimetres diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cn; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The speciment was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, *H*, *B*, and μ have the same meaning as in the other tables, *S* is the magnetic moment per gramme, and *I* the magnetic moment per cubic centimetre. *H* and *S* are taken from the curves published by Du Bois; the others have been calculated using the densities given.

TABLE 288. MACNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C.

Soft iron at o ^{re} C.					Soft iron at 100° C.				
Н	S	I	В	μ	Н	S	Ι	В	μ
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6

TABLES 289.

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

Steel at o ^o C.					Steel at 100° C.				
H	S	Ι	В	μ	Н	S	Ι	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	162.40 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

* "Phil. Mag." 5 series, vol. xxix. † The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face nor-mal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 292.)

MACNETIC PROPERTIES OF METALS.

TABLE 290. - Cobalt at 100 C.

H	S	1	В	μ				
200	106	848	10850	54.2				
300	116	928	11960	39.9				
500	127	1016	1 3 2 6 0	26.5				
700	131	1048	13870	19.8				
I000	134	1076	14520	14.5				
I 500	138	1104	15380	10.3				
2500	143	1144	16870	6.7				
4000	145	1164	18630	4.7				
6000	147	1176	20780	3.5				
9000	149	1192	1 23980 l	2.6				
At o ^o C. this specimen gave the fol-								
lowing results :								
7900	154	1232	23380	3.0				

TABLE	291.	— Nickel	at	100 °	С.
-------	------	----------	----	--------------	----

Н	S	I	В	μ				
100	35.0	309	3980	39.8				
200	43.0	380	4966	24.8				
300	40.0	406	5399	18.0				
500	50.0	441	6043	12.1				
700	51.5	454	6.109	9.1				
1000	53.0	-468	6875	6.9				
1 500	56.0	494	7707	5.1				
2500	58.4	515	8973	3.6				
4000	59.0	520	10540	2.6				
6000	59.2	522	12561	2.I				
9000	59.4	524	15585	I.7				
12000	59.6	526	18606	1.5				
At o ^o C	At o° C. this specimen gave the fol-							
		ing resu						
12300	67.5	595	19782	1.6				

T.	AB	LE	292.	— Ma	gnetite.
----	----	----	------	------	----------

The following results are given by Du Bois * for a specimen of magnetite.

Н	Ι	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
12000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.[†] The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dII is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 293. — Lowmoor Wrought Iron.

H	Ī	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 294. -- Vicker's Tool Steel.

H	Ι	В	μ
6210	1530	25480	4.10
9970	I 570	29650	2.97
12120	1550	31620	2.60
14660	1 <u>5</u> So	34550	2.36
15530	1610	35820	2.31
1			

TABLE 295. — Hadfield's Manganese Steel.

Н	Ι	В	μ
1930	55	2620	1.36
2380	84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 296. — Saturation Values for Steels of Different Kinds.

	Н	Ι	В	μ
 Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon Crucible steel for making chisels, containing about 0.6 per cent carbon	18000 19470 18330 19620	1660 1480 1580 1440	38860	1.95

* " Phil. Mag." 5 series, vol. xxix.

† "Phil. Trans. Roy. Soc." 1885 and 1889.

TABLE 297.

MACNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur * and by Lord Rayleigh.† The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. The gives the formula $k = 15 \pm 100 H$, or I = 15 H + 100 H. The experiments were made on an annealed ring of round bar 1.013 cms. radius, the ring having a radius of 0.432 cms. Lord Rayleigh's results for an iron wire not annealed give $k = 6.4 \pm 5.1 H$, or $I = 6.4 H \pm 5.1 H^2$. The forces were reduced as low as 0.00004 c. g. s., the relation of k to H remaining constant.

F	irst experimen	Second experiment.		
H	k	1	H	k
.01580 .03081 .07083 .13188 .23011 .38422	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903 .3397	1 5.50 18.38 20.49 25.07 32.40 35.20

TABLES 298, 299. DISSIPATION OF ENERGY IN CYCLIC MACNETIZATION OF MACNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg ± in 1881, reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, | where similar curves are given for thermo-electricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. T Extensive investigations have since been made by a number of investigators.

TABLE 293.- Soft Iron Wire.

(From Ewing's 1885 paper.)

Total induction per sq. cm. B	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000 3000 4000 5000 6000 7000 8000 9000 10000 10000 12000 13000 13000 14000 15000	420 800 1230 2200 2760 3450 4200 5820 6720 7650 8650 9670	0.74 1.41 2.18 3.01 3.89 4.88 6.10 7.43 8.84 10.30 11.89 13.53 15.30 17.10

TABLE 299. - Cable Transformers.

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 soft iron wires 1 mm. diameter and 6 metres long.** The dissipation of energy in watts is for 100 complete cycles per second.

and the second s	Mean maxi- mum induc- tion density in core. <i>B</i>	Total ob- served dis- sipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs,	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of encrgy in ergs per cu. cm, per cycle.
	1 000	43.2	4	39.2	602
	2000	96.2	16	80.2	1231
	3000	158.0	36	122.0	1874
	4000	231.2	64	167.2	2566
	5000	309.5	100	209.5	3217
	6000	390.1	144	246.1	3779

* "Wied. Ann." vol. xi. † "Wied. Ann." vol. xiii. p. 141. || "Wied. Ann." vol. 6.

 † "Phil. Mag." vol. xxiii.

 § "Phil. Trans. Roy. Soc." vol. 175.

 ¶ "Proc. Roy. Soc." 1882, and "Trans. Roy. Soc." 1885.

 ** "Proc. Inst. of Elect. Eng." Lond., 1892.

DISSIPATION OF ENERCY IN THE CYCLIC MACNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $c = aB^{1.6}$, where c is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the satura-tion value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula is also subject to verification $\frac{1}{2}$ stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant α as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

1IronNorway iron \dots <th>Number of specimen.</th> <th>Kind of material.</th> <th>Description of specimen.</th> <th>Value of <i>a</i>.</th>	Number of specimen.	Kind of material.	Description of specimen.	Value of <i>a</i> .
Ist experiment, continuous cyclic variation of m. m. (f. 1So cycles per second . 2d experiment, 114 cycles per second . 3d "79–91 cycles per second	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	" " " " " " " " " " " " " " " " " " "	Wrought bar	.00326 .00548 .00458 .00286 .00425 .00349 .00848 .00457 .00318 .02792 .07476 .02670 .01899 .06130 .02700 .01445 .01300 .01459 .01459 .02348 .0122 .0156 .0385 .0120

* "Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

SMITHSONIAN TABLES.

.

TABLE 301.

DISSIPATION OF ENERGY IN THE CYCLIC MACNETIZATION OF TRANS-FORMER CORES.*

This table gives, for the most part, results obtained for transformer cores. The electromagnet core formed a closed iron circuit of about 320 sq. cms. section and was made up of sheets of Bessemer steel about 1-20 inch thick. The No. 20 transformer had a core of soft steel sheets about 7-1000 inch thick insulated from each other by sheets of thin paper. The cores of the other transformers were formed of soft steel sheets 15-1000 inch thick insulated from each other by their oxidized surfaces only. The following are the particulars of the data given in the different columns :

lumis: —
Column 1. Description of specimen.
2. The total energy, in joules per cycle, required to produce the magnetic induction given in column B
3. The energy, in joules per cycle, returned to the circuit on reversal of the magnetizing force.
4. The energy dissipated, in joules per cycle, or the difference of columns 2 and 3.
5. 6, and 7. The quantities in columns 2, 3, and 4 reduced to ergs per cubic centimetre of the core.
B. The maximum induction in c. g. s. units per sq. cm.

1	2	3	4	5	6	7	в
Electromagnet	6.5 24.4 66.8 81.4 96.6 126.2 153.0 178.4 221.2 275.6	0.9 2.6 10.4 15.4 21.8 38.2 57.6 79.2 116.8 168.0	5.6 21.8 56.4 66.0 74.8 88.0 95.4 99.2 104.4 107.6	1010 3800 10400 12700 15100 19700 23900 23900 27800 34500 42900	140 406 1620 2400 3400 5960 8990 12400 18300 26200	867 3400 8800 10300 11700 13700 14900 15500 16300 16800	2660 6700 11600 12700 14100 15200 15900 16600 17240 17420
Westinghouse No 20 transformer	1.31 4.65 8.25 10.36 12.20 18.20	0.30 1.10 1.62 1.89 2.98 5.15	1.01 3.55 6.63 8.47 9.22 13.05	1435 5110 9060 11350 13440 19980	328 1210 1780 2070 3280 5660	1107 3900 7280 9280 10160 14320	2330 4980 6620 7720 8250 9690
Westinghouse No. 8 transformer, specimen 1	0.45 0.80 1.66 2.42 3.54	0.055 0.102 0.199 0.406 0.795	0.400 0.101 1.460 2.010 2.750	875 1544 3200 4650 6820	105 196 380 780 1530	770 1348 2820 3870 5290	3480 5140 7570 9250 10940
Westinghouse No. 8 transformer, specimen 2	0.399 0.820 1.713 2.663	0.0.46 0.085 0.183 0.343	0.353 0.735 1.530 2.320	768 1 574 3 300 51 20	88 164 352 660	680 1410 2948 4460	3060 4830 7570 9270
Westinghouse No. 6 transformer, specimen 1	0.488 0.814 1.430 2.000	0.062 0.096 0.205 0.330	0.426 0.718 1.225 1.670	1 360 2260 3980 5560	172 266 570 918	1188 1994 3410 4642	4640 6760 9370 10950
Westinghouse No. 6 transformer, specimen 2	0.722 1.048 1.379 1.731	0.100 0.164 0.222 0.328	0.622 0.884 1.157 1.403	2000 2920 3830 4810	278 456 616 912	1722 2464 3214 3898	7290 9000 9990 11210
Westinghouse No. 4 transformer	0.355 0.549 0.783 0.970	0.044 0.074 0.126 0.175	0.475	1210 1880 2690 3340	1 52 255 433 603	1058 1625 2257 2737	4540 5920 7140 7800
Thomson-Houston 1500 watt transformer	0.413 0.681 1.207 1.797	0.105 0.189 0.389 0.710	0.308 0.492 0.818 1.087	1930 3190 5660 8420	490 880 1830 3320	1440 2310 3830 5100	61 50 8250 11 1 10 1 3290

* T. Gray, from special experiments; see Table 285 for other properties.

DISSIPATION OF ENERCY DUE TO MACNETIC HYSTERESIS IN IRON.*

The first column gives the maximum magnetic induction B per square centimetre in c. g. s. units. The other columns give the dissipation of energy in ergs per cycle per cubic centimetre for the iron specified in the foot-note.

В	1	2	3	4	5	6	7
2000	400	420	530	600	7 50	930	1100
3000	780	800	1050	1150	1350	1700	21 50
.4000	I 200	1 260	1670	1780	2030	2600	3300
5000	1680	1770	2440	2640	2810	3800	4700
6000	2200	2370	3170	3360	3700	5200	6200
7000	2800	31 50	4020	4300	4650	6600	7800
Sooo	3430	3940	5020	5300	57 7 0	8.400	9500
9000	4160	4800	6100	6380	6970	10100	11400
10000	4920	5730	7200	7 520	8340	11800	1 3400
11000	5800	6800	8410	87 50	9880	13600	15600
I 2000	6700	8000	97 50	10070	11550	1 5400	_
1 3000	7620	9200	11200	11460	13260	17300	-
14000	8620	10500	12780	13100	15180	-	-
1 5000	9730	12150	14600	14900	17300	_	-

The iron for which data are given in columns 1 to 7 is described as follows : ----

- I. Very soft iron wire (taken from a former paper).
- *2b.* Thin sheet iron 0.367 millimetres thick almost alike. 2a. Sheet iron 1.95 millimetres thick
- 3. Iron wire 0.975 millimetres diameter.
- 4. Iron wire of hedgehog transformer 0.602 millimetres diameter.
- 5. Thin sheet iron 0.47 millimetres thick.
- 6. Fine iron wire 0.2475 millimetres diameter.
- 7. Fine iron wire 0.34 millimetres diameter.

* Ewing and Klassen, "Phil. Trans. Roy. Soc." vol. clxxxiv. A, p. 1015.

MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the statistical way found to be the case kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula —

$$\theta = clII\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, l the length of the path through the substance, II the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If II be dif-ferent, at different parts of the path, IH is to be taken as the integral of the variation of mag-netic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 303-310. For variation with temperature the following formula is given by Bichat :-

 $R = R_0 (\mathbf{I} - 0.00104 t - 0.000014 t^2),$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used : --

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^{2}(\mu_1^{2} - 1)\lambda_2^{2}}{\mu_2^{2}(\mu_2^{2} - 1)\lambda_1^{2}},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative. The table has been for the most part compiled from the experiments of Verdet,† H. Becque-rel,‡ Quincke,§ Koepsel, Arons,¶ Kundt,** Jahn,†† Schönrock,‡‡ Gordon,§§ Rayleigh and Sidgewick, || Perkin,¶¶ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E.
J. G. Du Bois (Wied. Ann. vol. 35).
† "Ann. de Chim. et de Phys." [3] vol. 52.
‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90 and 100.
§ "Wied. Ann." vol. 24.
* "Wied. Ann." vol. 24.
* "Wied. Ann." vol. 23 and 27.
† "Wied. Ann." vol. 43.
‡ "Zeits, für Phys. Chem." vol. 11.

- ** "Wied. Ann." vol. 43.
 ** "Zeits. für Phys. Chem." vol. 11.
 ** "Proc. Roy. Soc." 1883.
 ** "Phil. Trans. R. S." 1885.
 ** "Jour. Chem. Soc." vols. 8 and 12.
 *** "Jour. de Phys." vols. 8 and 9.

MACNETO-OPTIC ROTATION.

Solids.

Substance.	Chemical formula.	Density or grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Amber	-	-	D	0.0095	18-20°	Quincke.
Blende	ZnS	-	66	0.2234	15	Becquerel.
Diamond	С	-	46	0.0127	46	44
Fluor spar	$CaFl_2$	-	66	0.0087	.6	66
Glass :						
Crown	-	-	66	0.0203	6.6	66
Faraday A	-	5.458	66	0.0782	18-20	Quincke.
"В		4.284	66	0.0649	"	66
Flint	-	-	"	0.0420	"	66
66	-	-	66	0.0325	15	Becquerel.
	-	-	"	0.0416	44	"
" dense	-	-		0.0576		66
۶ <i>۵</i> ۶۶ ۶ ۶ ۶	-	-	66	0.0647	66	66
Plate		-	66	0.0406	18-20	Quincke.
Lead borate	$\mathrm{PbB}_2\mathrm{O}_4$	-	66	0.0600	15	Becquerel.
Quartz (perpendicular to axis)	-	-	6.6	0.0172	18–20	Quincke.
Rock salt	NaCl	-	66	0.0355	15	Becquerel.
Selenium	Se	-	В	0.4625	46	66
Sodium borate	$\mathrm{Na_2B_4O_7}$	-	D	0.0170	6.6	66
Spinel (colored by chrome) .	_	_	66	0.0209	66	66
Sylvine	KCl	-	66	0.0283	66	66
Ziqueline (suboxide of copper)	Cu ₂ O	dagta	В	0.5908	66	66

SMITHSONIAN TABLES.

MAGNETO-OPTIC ROTATION.

Liquids.

Substance.	Chemical	Density in	Kind	Verdet's constant	Temp.	Authority.
Substance.	formula.	grammes per c. c.	light.	in minutes.	С.	
Acetone	$C_3\Pi_6O$	0.7947	D	0.0113	20	Jahn.
66	٤.6	0.7957	68	0.0115	15	Perkin.
	44	0.7947	66	0.0114	16	Schönrock.
Acids: (see also solutions in water)						
Acetic	$C_2H_4O_2$	1.0561	66 J	0.0105	21	Perkin.
Butyric	$C_4H_8O_2$	0.9663	66	0.0110	15	"
Formic	CH ₂ O ₂	1.2273	66	0.0105	15	66
Hydrochloric	IICI	1.2072	66	0.0224	15	66
	66	-	66	0.0206	15	Becquerel.
Hydrobromic	HBr	1.7859	66	0.0343	15	Perkin.
Hydroiodic	HI	1.9473	66	0.0513	15	.6
Nítric	HNO ₃	1.5190	66	0.0070	13	66
" (fuming)	66	-	66	0.0080	15	Becquerel.
Propionic	$C_3H_6O_2$	0.9975	66	0.0110	15	Perkin.
Sulphuric	H ₂ SO ₄	-	66	0.0121	15	Becquerel.
Sulphurous	H_2SO_3	-	66	0.0153	15	<u>.</u> .
Valeric.	$C_5H_{10}O_2$	0.9438	6.6	0.0121	15	Perkin.
Alcohols:						
Amyl	$C_5 \Pi_{11} O \Pi$	-	66	0.0131	15	Becquerel.
	66	0.8107	66	0.0128	20	Jahn.
Butyl	C ₄ H ₉ OH	0.8021	66	0.0124	20	66
	6.6	-	66	0.0124	15	Becquerel.
Ethyl	C_2H_5OH	0.7929	4.6	0.0107	18–20	Quincke.
	.6	0.7900	6.6	0.0112	20	Jahn.
· · · · · ·	66	0.7944	66	0.011.4	15	Perkin.
· · · · · · ·	66	0.7943	6.6	0.0113	16	Schönrock.
Methyl	CH ₃ OH	0.7915	66	0.0094	18–20	Quincke.
£6° , , , , , , , ,	66	0.7920	6.6	0.0093	20	Jahn.
· · · · · ·	66	-	66	0.0106	15	Becquerel.
	66	0.7966	66	0.0096	15	Perkin.
"		0.7903	66	0.0096	21.9	Schönrock.
Octyl	$C_8H_{17}OH$	0.8296	66	0.0134	15	Perkin.
Propyl	$C_{3}H_{7}OH$	0.8050	66	0.0120	20.8	Schönrock.
		0.8082	66	0.0120	15.0	Perkin.
66 · · · · ·			66	0.0118	15	Becquerel.
66		0.8042	66	0.0120	20	Jahn.
Benzene	C ₆ H ₆	0.8786	66	0.0297	20	Jalin.
66	66	0 8 0	66	0.0268	15	Becquerel. Schönrock.
		0.8718		0.0301	26.9	Schonfock.
Bromides:	CHBr ₃	2 0021		0.0217	Ĩ.C	Perkin.
Bromoform		2.9021	66	0.0317 0.0183	15	rerkin.
Ethyl	C_2H_5Br $C_2H_4Br_2$	1.4486 2.1871	66	0.0183	15	66
Ethylene	C2114D12	2.1871 2.1780	66	0.0208	15 20	Jahn.
	CH ₃ Br		66	0.0209	20	Perkin.
Methyl	CH_3Br_2	1.7331 2.4971	66	0.0205	15	1 CI KIII.
	$C_{8}II_{17}Br$	1.1170	66	0.0270	15	66
Octyl	$C_{3}II_{7}Br$	1.3600	66	0.0104	15	66
Carbon disulphide	$C_{3}^{117}D1$ CS_2	I.2644	56	0.0130	13-20	Quincke.
*	-	112044				(Becquerel,
	66	-	66	0.0434	0	1885.
	66	_	66	0.0433	0	Gordon.
66 66	66	-	66	0.0420	18	Rayleigh.
66 66	66	-	66	0.0420	18	Koepsel.
66 66	6.6	-	66	0.0439	0	Arons.
						· · · · · · · · · · · · · · · · · · ·

MACNETO-OPTIC ROTATION

Liquids.

Substance.	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Chlorides:						
Amyl	CHCl	0.8740	D	0.01.40	20	Jahn.
Arsenic	As	-	66	0.0.422	15	Becquerel.
Carbon	C	-	66	0.0170	15	4.6
" bichloride	CCl ₄	-	6.6	0.0321	15	66
Chloroform	CHCl ₃	1.4823	66	0.0164	20	Jahn.
66	64	1.4990	6.6	0.0166	15	Perkin.
Ethyl	C_2H_5Cl	0.9169	56	0.0138	Ğ	61
Ethylene	$C_2H_4Cl_2$	1.2589	66	0.0166	15	66
66	64	I. 2561	66	0.016.4	20	Jahn.
Methyl	CH ₃ Cl	—	66	0.0170	15	Becquerel.
Methylene	CH_2Cl_2	1.3361	66	0.0162	15	Perkin.
Octyl	$C_8H_{17}Cl$	0.8778	66	0.01.41	15	4.
Phosphorus protochloride .	PCl ₈	-	64	0.0275	15	Becquerel.
Propyl	C ₃ H ₇ Cl	0.8922	66	0.0135	15	Perkin.
Silicon	SiCl ₄	-	66	0.0275	15	Becquerel.
Sulphur bichloride	S_2Cl_2	-	66	0.0393	15	÷6
Tin bichloride	SnCl ₄	_	66	0.0151	15	66
Zinc bichloride	$ZnCl_2$	_	44	0.0437	15	66
Iodides:	2			107	5	
Ethyl.	C_2H_5H	1.9417	66	0.0296	15	Perkin.
Methyl	CH ₃ I	2.2832	4.6	0.0336	15	16
Octyl	C ₈ II ₁₇ I	1.3395	66	0.0213	15	66
Propyl.	C ₃ H ₇ I	1.7658	66	0.0271	15	66
Nitrates :	001-			/	- 5	
Ethyl.	$C_2H_5O.NO_2$	1.1149	66	0.0001	15	66
Ethylene (nitroglycol)	$C_2H_4(NO_3)_2$	1.4948	66	0.0088	15	66
	$CH_3O.NO_2$	1.21 57	66	0.0078	15	66
Propyl	$C_3H_7O.NO_2$	1.0622	66	0.0100	15	"
Trinitrin (nitroglycerine)	$C_3H_5(NO_3)_3$	1.5996	66	0.0000	15	66
Nitro ethane	$C_2H_5NO_2$	1.0552	66	0.0095	15	66
Nitro methane	CH ₃ NO ₂	1.1432	66	0.0084	15	66
Nitro propane	$C_3H_5NO_2$	1.0100	66	0.0102	15	66
Paraffins :	03110102				- 5	
Decane	$C_{10}II_{22}$	0.7218	66	0.0128	23.1	Schönrock.
Heptane	C_7H_{16}	0.6880	66	0.0125	15	Perkin.
Hexane	C_6H_{14}	0.6580	66	0.0122	22.I	Schönrock.
ii	() () () () () () () () () () () () () (0.6743	44	0.0125	15	
Octane	$C_8 II_{18}$	0.7011	66	0.0128	23.1	Schönrock.
Pentane	$C_5\Pi_{12}$	0.6196	6.	0.0110	21.1	(i
		0.6332	66	0.0118	15	Perkin.
Phosphorus (melted)	P		66	0.1316	33	Becquerel.
Sulphur (melted)	S	-	66	0.0803	114	• •
Toluene	C ₇ H ₈	0.8581	66	0.0269	28.4	Schönrock.
	6 11 18		66	0.0243	15	Becquerel.
Water	H_2O	0.9992	66	0.0130	15	16
"	44	0.9992	66	0.0131	18-20	Quincke.
66	66	0.9983	46	0.0132	20	Jahn.
Xylene	C ₈ H ₁₀		66	0.0221	15	Becquerel.
«	081110	0.87.46	66	0.0263	27	Schönrock.
		0.0/40		0.0203	-/	o chi chi contr

MACNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

	1					
Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Acetone	C ₃ II ₆ O	0.9715	D	0.0129	20 ⁰	Jahn.
Hydrobromic	HBr	1.7859		0.0343	I 5	Perkin.
66	64	1.610.4	66	0.0304	6.6	66
۵۵ م ۵۵ م		I.3775	66	0.0244	66	66
4 • •		1.2039	66	0.0194 0.0168	66	
Hydrochloric .	HCI	1.2072	66	0.0225	64	66
66 0 0 0	66	1.1856	66	0.0210	66	66
۵۵ · · · · · · · · · · · · · · · · · ·	66	1.1573	66	0.0204	66	66
66 • • •	66	1.1279	66	0.0193	4 6 4 6	66
	66	1.0762		0.0168 0.0150	20	Jahn.
66	66	1.0323 1.0158	66	0.0130	46	Jann.
Hydriodic	HI	1.9473	66	0.0513	66	Perkin.
· · · · · · · · · · · · · · · · · · ·	66 66	1.9057	4.6	0.0499	6.6	4.6
66 · · · ·	66	1.8229	66 66	0.0468	66 66	66 56
66	64	1.7007 1.4495	۲C	0.0421 0.0323	66	
66	66	1.2966	46	0.0258	6.6	66
	6.6	1.1760	66	0.0205	6.6	66
Nitric	HNO_3	1.5190	46	0.0010	66	66
Sulphuric $+ 3H_2O$	H_2SO_4	1.3560	4.6 6.6	0.0105	66	46 72 1
Ammonia	$ m NH_3$	0.8918	66	0.0121	15	Becquerel. Perkin.
Bromides:		0.0910		0.0155	12	I CIKIII.
Ammonium	$\rm NH_4Br$	1.2805	66	0.0226	66	66
u · · · ·	 D. D.	1.1576	66	0.0186	66	66
Barium	BaBr ₂	1.5399	66	0.0215	20	Jalın.
Cadmium	CdBr ₂	1.2855 1.3291	66	0.0176 0.0192	61	66
6	6 C -	1.1608	16	0.0162	6.6	66
Calcium	CaBr_2	1.2491	66	0.0189	66	66
Determine	KBr	1.1337	66	0.0164	66	66
	4	1.1424 1.0876	66	0.0163		66
Sodium	NaBr	I.135I	.6	0.0151	6.6	66
	66	1.0824		0.01 52	6.6	46
Strontium	SrBr_2	1.2901		0.0186	66	66
Carbonate of potassium	K ₂ CO ₃	1.1416	66	0.01 59		66
" " sodium	Na_2CO_3 N a_2CO_3	1.1906 1.1006	66	0.01.40	20	66
66 66 66		1.0564	**	0.0137		66
Chlorides:						
Ammonium (sal ammoniac)	NH ₄ Cl	1.0718	66	0.0178	15	Verdet.
Barium	BaCl ₂	1.2897	66	0.0168	20	Jahn.
Cadmium .	CdCl ₂	1.1338 1.3179	66	0.0149	"	
56	s 6	1.2755	46	0.0179	66	66
66 · · · ·	46 66	I.1732	66	0.0160	66	66
Calainm		1.1531	66	0.0157	66	66 ()
	CaCl_2	1.1504 1.0832	66	0.0165		66
66	56	1.1049	66	0.01 52	16	Schönrock.
Copper	CuCl ₂	1.5158	66	0.0221	15	Becquerel.
66 · · · · · ·	66	1.2789	46	0.0186		* ((
• • • • •		1.1330		0.0156		6.6

SMITHSONIAN TABLES.

.

MACNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

· · · · · · · · · · · · · · · · · · ·						
	Chemical	Density,	Kind	Verdet's	10	
Substance.	formula.	grammes	of	constant	Temp. C.	Authority.
		per c. c.	light.	in minutes.		
Chlorides:	T. CI					7. 1
Iron	FeCl_2	1.4331	D	0.0025	1 5°	Becquerel.
	66	1.2141	66	0.0099	55	66
66		1.1093	66	0.0118		
" (ferric)	Fe ₂ Cl ₆	1.0548	66	0.0124		
(ieme)	re ₂ C ₁₆	1.6933	46	-0.2026	66	
	66	1.5315	66	-0.1140		66
	66	1.3230 1.1681	66	0.0348 0.0015	6.	66
66	44	1.0864	66	0.0081	6.6	66
	66	1.0445	66	0.0113	46	66
66	66	1.0232	66	0.0122		66
Lithium	LiCl	1.0619	66	0.0145	20	Jahn.
66	66	1.0316	66	0.0143		
Manganese	MnCl ₂	1.1966	45	0.0167	15	Becquerel.
	¢¢	1.0876	66	0.01 50		11
Mercury	HgCl ₂	1.0381	66	0.0137	16	Schönrock.
	6.6	1.0349	66	0.01 37	66	66
Nickel	NiCl ₂	1.4685	66	0.0270	15	Becquerel.
· · · · ·	66	1.2432	66	0.0196		56
66 · · · ·	66 66	1.1233	66	0.0162	66	66
		1.0690		0.0146		66
Potassium	KCl	1.6000	66	0.0163		
		1.0732		0.0148	20	Jahn.
	NaCl	1.0418	66	0.0144	1	
Sodium	i NaCi	1.2051 1.1058		0.0150	15	Becquerel.
66	66	1.0546	56	0.0155 0.0144	66	66
66	66	1.0340	66	0.01.44	20	Jahn.
66	66	1.0418	66	0.0134	44	1 Jann.
Strontium	$SrCl_2$	1.1921	66	0.0162	66	16
	46	1.0877	66	0.01.46	66	56
Tin	$SnCl_2$	1.3280	66	0.0266	15	Verdet.
	66	1.1637	66	0.0198		66
66	66	1.1112	68	0.0175	66	66
Zinc	ZnCl ₂	1.2851	66	0.0196	66	66
· · · · · ·	6.6	1.1595	66	0.0161	66	6.6
Chromate of potassium.	K_2CrO_4	1.3598	66	0.0098	66	66
Bichromate of " .	$K_2Cr_2O_7$	1.0786	66	0.0126		
Cyanide of mercury .	$Hy(CN)_2$	1.0638	66	0.0136	16	Schönrock.
	66 66	1.0425	66	0.0134	66	66
· · · · · · · · · · · · · · · · · · ·		1.0605		0.0135		
Iodides :	NUT	2	66	0.0006	1.0	Perkin.
Ammonium	NH4I	1.5948	66	0.0396	15	Perkin.
66	66	1.5688 1.5109	66	0.0386 0.0358	66	66
66	66	1.2341	66	0.0353	6.6	6.6
Cadmium .	CdI	1.5156	66	0.0235	20	Jahn.
Gadminin	"	1.2770	66	0.0291		
66	66	1.1521		0.0177	66	66
Potassium	KI	1.6743	46	0.0338	15	Becquerel.
		1.3398	66	0.0237	46	66
cf .	2.6	1.1705	64	0.0182	6.6	66
66	6.6	1.0871	66	0.01 52	6.6	66
	6.6	1.2380	66	0.0211	20	Jahn.
	66	1.1245	66	0.017.4		
Sodium	NaI	1.1939	66	0.0200	66	6.6 6.6
6¢	66	1.1191		0.0175		

MACNETO-OPTIC ROTATION.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Nitrates : Ammonium Potassium	$\begin{array}{c} {\rm NH_4NO_3}\\ {\rm KNO_3}\\ {\rm NaNO_3}\\ {\rm U_2O_3.N_2O_5}\\ & \\ {}^{''}\\ {}^{''}\\ {}^{''}\\ {\rm (NH_4)_2SO_4}\\ {\rm NH_4.HSO_4}\\ {\rm BaSO_4}\\ {}^{''}\\ {\rm CdSO_4}\\ {}^{''}\\ {\rm Li_2SO_4}\\ {}^{''}\\ {\rm MnSO_4}\\ {}^{''}\\ {\rm K_2SO_4}\\ {\rm NaSO_4}\\ {}^{''}\\ {\rm NaSO_4}\\ \end{array}$	1.2803 1.0634 1.1112 2.0267 1.7640 1.3865 1.1963 1.2286 1.4417 1.1788 1.0938 1.1762 1.0890 1.1762 1.0890 1.1762 1.0942 1.2441 1.1416 1.0475 1.0661	D 	0.0121 0.0130 0.0131 0.0053 0.0078 0.0105 0.0115 0.0140 0.0085 0.0135 0.0136 0.0135 0.0135 0.0136 0.0135 0.0135	I 5 20 20 	Perkin. Jahn. Becquerel. " " Perkin. Jahn. " " " " " " " "

TABLE 305. - Solutions of Acids and Salts in Water.

TABLE 306. - Solutions of Salts in Alcohol.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Galcium " Galcium " Galcium " Gadmium chloride Strontium " Galcium " Galcium "	$\begin{array}{c} CdBr_2\\ aBr_2\\ CaBr_2\\ SrBr_2\\ cdCl_2\\ SrCl_2\\ cdI_2\\ cdI_2\\ dI_2\\ dI_2\end{array}$	1.0446 0.9420 0.9966 0.8846 0.9636 0.8814 0.8303 0.8313 0.8274 1.0988 0.9484	D 24 24 24 24 24 24 24 24 24 24	0.0159 0.0140 0.0154 0.0130 0.0140 0.0126 0.0118 0.0118 0.0117 0.0199 0.0156	20 () () () () () () () () () ()	Jahn. " " " " " " " "

TABLE 307	Solutions	in Hydrochloric	Acid.
-----------	-----------	-----------------	-------

Substance.		Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Anthority.
Antimony trichloride """" """" Bismuth """" """"	· · · · · · · · · · · · · · · · · · ·	SbCl ₃ " BiCl ₃ "	2.4755 1.8573 1.5195 1.3420 2.0822 1.6550 1.4156	D (4 (4 (4 (4 (4) (4) (4) (4) (4) (4) (4)	0.0603 0.0449 0.0347 0.0277 0.0396 0.0359 0.0350	I 5 	Becquerel. " " " "

MACNETO-OPTIC ROTATION.

Gases.

Substance.					Pressure.	Temp.	Verdet's constant in minutes.	Authority.	
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide ""	•	• • •	•	•		Ordinary 70° C. Ordinary " " 20° C.	$\begin{array}{c} 6.83 \times 10^{-6} \\ 13.00 & `` \\ 23.49 & `` \\ 34.48 & `` \\ 6.92 & `` \\ 16.90 & `` \\ 6.28 & `` \\ 31.39 & `` \\ 38.40 & `` \end{array}$	Becquerel. Bichat. Becquerel. " " Bichat.	

Du Bois discusses Kundt's results and gives additional experiments on nickel and cobalt. He shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 309.

VERDET'S AND KUNDT'S CONSTANTS.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

	Magnetic	Verdet's co	enstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant.
Cobalt Nickel Iron Oxygen : 1 atmo Sulphur dioxide . Water Nitric acid Alcohol Ether Arsenic chloride . Carbon disulphide . Faraday's glass .	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 0.0751 & " \\ - \\ - \\ 0.0633 & " \\ - \\ - \\ 0.0541 & " \\ - \\ - \\ 0.0541 & " \\ - \\ - \\ 0.0716 & " \\ - \\ - \\ 0.0982 & " \\ \end{array}$	$\begin{array}{c} & - \\ & - \\ & - \\ & - \\ & 0.000179 \times 10^{-5} \\ 0.302 & `` \\ 0.377 & `` \\ 0.356 & `` \\ 0.330 & `` \\ 0.315 & `` \\ 1.222 & `` \\ 1.222 & `` \\ 1.222 & `` \\ 1.738 & `` \end{array}$	Becquerel. "Arons Becquerel. De la Rive. " Becquerel. Rayleigh. Becquerel.	6.44 × 10 ⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 4.00 5.4 5.6 5.8 5.8 17.1 17.7

TABLE 310.

MAGNETIC SUSCEPTIBILITY OF LIQUIDS AND CASES.

The following table gives a comparison by Du Bois * of his own and some other determinations of the magnetic susceptibility of a few standard substances. Verdet's and Kundt's constants are in radians for the sodium line D.

Substance.	Verdet's constant.		Faraday's value &× 10 ⁶		Becquerel's value & X 10 ⁶		Wähner's value &×10 ⁶	
Water	3.77 × 10 ⁻⁶		—o.(59 —		-0.63		0.536
Alcohol, C_2H_6O	3.30 "		o.g	57	-	-0.49		—o.388
Ether, $C_4 H_{10} O$	3.15 "		0.	54		-		-0.360
Carbon disulphide	12.22 "		0.7	72	-	-0.84		—0. 465
Oxygen at 1 atmosphere .	0.00179 "		0.1	13		0.12		-
Air at 1 atmosphere	0.00194 ''		0.0	024	0.025			-
	Quincke at 20 ⁰		⊳° C.	Du Bois at 15 ⁰ C.				
Substance.	Density.	,	£×10€	E× 10 ⁶ Density.		$_{\gamma \times 10_{0}}$		Kundt's constant.
Water	0.9983		-0.815	0.99	92	0.83	7	-4.50
Alcohol, C_2H_6O	0.7929	_	- 0. 660	0.79	63	—о. б9	4	-4.75
Ether, $\dot{C}_4 H_{10} O$	0.7152	_	-0.607	0.72	50	—0 .64	2	-4.91
Carbon disulphide	1.2644	_	-0.724	1.26	i92	0 .81	6	-14.97
Oxygen at 1 atmosphere .	_		-	0.00	135	0.11	7	0.016
Air at 1 atmosphere	_		-	0.00	0123	0.02	4	0.081

TABLE 311.

VALUES OF KERR'S CONSTANT.

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant, K, Kerr's constant for the magnetized substance forming the magnet.

*	Spectrum	Wave- length	Kerr's constant in minutes per c. g. s. unit of magnetization.				
Color of light.	line.	in cnis. $\times 10^6$	Cobalt.	Nickel.	Iron.	Magnetite.	
Red	Li a	67.7	0.0208	0.0173	0.01 54	+0.0096	
Red	-	62.0	-0.0198	—0.016 0	0.0138	+0.0120	
Yellow	D	58.9	0.0193	0.01 54	0.0130	+0.0133	
Green	в	51.7	0.0179	-0.0159	0.0111	+0.0072	
Blue	F	48.6	0.0180	0.0163	0.0101	+0.0026	
Violet	G	43.1	0.0182	0.0175	0.0089	-	

* "Wied. Ann." vol. 35, p. 163.

† H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

EFFECT OF MAGNETIC FIELD ON THE ELECTRIC RE-SISTANCE OF BISMUTH.'

TABLE 312. - Resistance One Ohm for Zero Field and Various Temperatures.

This table gives the resistance to the flow of a steady electric current when conveyed across a magnetic field of the strength in c. g. s. units given in the first column if the wire has a resistance of one ohm at the temperature given at the top of the column when the field is of zero strength.

Temp. C.=	0 °	10 °	182	30 °	50°	80°			
Field.	Resistance.								
000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 25000 25000 25000 35000 35000	1.000 1.018 1.045 1.088 1.135 1.185 1.240 1.304 1.365 1.423 1.480 1.743 - - -	1.000 1.019 1.050 1.094 1.153 1.214 1.273 1.340 1.406 1.467 1.535 1.875 2.507 2.846 - -	1.000 1.018 1.045 1.084 1.131 1.183 1.242 1.295 1.358 1.417 1.480 1.785 2.087 2.393 2.704 3.031 3.369	1.000 1.017 1.041 1.074 1.118 1.156 1.202 1.258 1.308 1.355 1.409 1.665 1.927 2.193 -	1.000 1.014 1.034 1.055 1.085 1.113 1.148 1.190 1.223 1.266 1.303 1.505 1.713 1.931 -	1.000 1.017 1.015 1.032 1.050 1.074 1.100 1.127 1.154 1.182 1.203 1.343 1.490 1.804 -			

TABLE 313. — Resistance One Ohm for Zero Field and Temperature Zero Centigrade.

This table gives the resistance in different magnetic fields and at different temperatures of a wire, the resistance of which is one ohm at o° C., when the magnetic field is zero. The current is supposed to be steady and to flow across the field.

Temp. C.=	د 0	10 °	18 °	30 °	50°	80°				
Field.	Resistance.									
0000 1000 2000 3000 4000 5000 5000 7000 8000 9000 10000 15000 20000 25000	1.000 1.018 1.045 1.088 1.135 1.185 1.240 1.304 1.365 1.423 1.480 1.743	1.037 1.057 1.089 1.134 1.198 1.260 1.323 1.392 1.458 1.523 1.592 1.946 2.295 2.645	1.072 1.091 1.118 1.162 1.210 1.265 1.327 1.385 1.453 1.515 1.583 1.907 2.243 2.560	I.II5 I.I29 I.I56 I.198 I.246 I.290 I.341 I.404 I.460 I.509 I.573 I.860 2.I48 2.445	1.200 1.217 1.241 1.266 1.302 1.335 1.379 1.428 1.465 1.520 1.562 1.562 1.805 2.055 2.320	1.332 1.341 1.352 1.375 1.397 1.428 1.464 1.500 1.536 1.573 1.610 1.784 1.980 2.157				

Calculated from the results of J. B. Henderson's experiments, "Phil. Mag." vol. 38, p. 488.

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.*

Solids.									
Substance.	Temperature in degrees C.	Specific heat.	Authority.						
Alloys : Bell metal Brass, red "yellow So Cu + 20 Sn So Cu + 20 Sn So Cu + 11.3 Al German silver Lipowitz alloy : 24.97 Pb + 10.13 Cd + 50.66 Bi + 14.24 Sn ditto Rose's alloy : 27.5 Pb + 48.9 Bi + 23.6 Sn ditto Wood's alloy : 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn Wood's alloy : 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn Wiscellaneous alloys : 17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn 37.1 Sb + 62.9 Pb 39.9 Pb + 60.1 Bi ditto (fluid) ditto (fluid) 63.7 Pb + 36.3 Sn 46.7 Pb + 53.3 Sn 63.8 Bi + 36.2 Sn 46.9 Bi + 53.1 Sn CdSn2 Basalt Calespar Diamond " " " " " Gas coal Glass, crown " " Gas coal Gas coal	$\begin{array}{c} 15-98 \\ 0 \\ 0 \\ 14-98 \\ 20-100 \\ 0-100 \\ 5-50 \\ 100-150 \\ -77-20 \\ 20-89 \\ 5-50 \\ 100-150 \\ 20-99 \\ 10-98 \\ 16-99 \\ 144-358 \\ 12-99 \\ 10-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 20-99 \\ 10-99 \\ 20-99 \\ 20-99 \\ 10-99 \\ 20-99 \\ 10-98 \\ 16-98 \\ 10-98 \\ 1$	0.0858 .08991 .08831 .0862 .10432 .09464 .0345 .0426 .0356 .0552 .0426 .0557 .0352 .0426 .05657 .03880 .03165 .03500 .04073 .04507 .04001 .04504 .05537 .2024 .206 .0635 .1128 .2218 .2733 .4408 .4589 .3145 .161 .17 .186 .1726 .2143 .1920 .1138 .1604 .2542	R L " R Ln T M " S " M " R " R " R " R " R " " R " " R " " R " " R " " R " " " " "						
	201.6 641.9 977.0	.2966 .4450 .4670	 D						
References. $A M = A. M. Mayer. B = Batelli. D = Batelli. Batelli.$	"								

Condensed from more extensive tables given in Landolt and Börnstein's "Phys. Chem. Tab." SMITHSONIAN TABLES.

	Substance.			Temperature in degrees C.	Specifi c heat.	Authority.
Gypsum lce "India rubber (Para) Marble, white . "gray Paraffin . " fluid . Quartz . " Sulphur, cryst. Vulcanite .		· · · · · · · · · · · · · · · · · · ·		16-46 - 78-0 - 30-0 - 21-1 - 100 - 16-98 - 23-98 - 20-3 - 19-20 - 20 - 35-40 - 60-63 - 0 - 350 - 400-1200 - 17-45 - 20-100 - 17-45 - 20-100 - 100 -	0.259 .4627 .505 .5017 .481 .2158 .2099 .3768 .5251 .6939 .622 .712 .1735 .2786 .305 .163 .3312	K R P G & T R " R W " B " B " Pn " " K A M
		Liq	UID S.			
	1.0043 . 1.0235 (about :			$\begin{array}{c}20 \\ 0 \\ 40 \\ 5-10 \\ 15-10 \\ 10 \\ 40 \\ 0 \\ 15-50 \\ - \\ 5.4 \\ 6.6 \\ - \\ 0 \\ 21-58 \\ 12-15 \\ 12-14 \\ 13-17 \\ 20-52 \\ 20-52 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$	0.5053 .5475 .6479 .5901 .6009 .3402 .4233 .5290 .576 .434 .438 .471 .387 .4106 .511 .848 .951 .975 .842 .975 .842 .952 .876 .975 .942 .952 .975 .942 .983 .791 .978 .980 .938 .903	R " " H & D " H & D " R E W HI W " W R Pa " " " " " " " " " " " " " " " " "
A M = A. M. Maye G & T = Gee & Ter H W = H. F. Webe L = Lorenz. P = Person, R W = R. Weber.	$\begin{array}{ccc} \text{rry.} & \text{H & \&}\\ \text{er.} & J & \&\\ & \text{Ln} = \text{Lug}\\ & \text{Pa} = \text{Pag} \end{array}$	= Batelli. z D == De B == Joly g ginin. liani.	Heen & l & Bartoli M = Pn =	= Mazotto. = Pionchon.	E = EmeH M = IK = KopMa = MaR = RegW = Wa	I. Meyer. pp. urignac. nault.

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.

SMITHSONIAN TABLES.

•

SPECIFIC HEAT OF METALS."

[T				
Metal.	Temperature in degrees C.	Specific heat.	Authority.	Metal.	Temperature in degrees C.	Specific heat.	Authority.
Aluminium	$\begin{array}{c} 20\\ 100\\ 200\\ 300\\ 15\\ 100\\ 200\\ 300\\ 0\\ 20-84\\ 280-380\\ 21\\ 100\\ 200\\ 300\\ 0-100\\ 22-51\\ 9-97\\ 500\\ 1000\\ 0-100\\ 22-51\\ 9-97\\ 500\\ 1000\\ 0-100\\ 0\\ 50\\ 100\\ 0\\ -100\\ 0\\ 15\\ 100\\ 200\\ 300\\ 0-10\\ 0-10\\ 0$	0.2135 .2211 .2306 .2401 .04890 .05031 .05198 .05366 .03013 .0305 .0363 .0551 .0570 .0594 .0617 .1804 .09975 .10674 .14516 .204 .09975 .10674 .14516 .09244 .09422 .09634 .09846 .0316 .0323 .0401 .1151 .1249 .1376 .17645 .32431 .218 .19887 .03065 .02993 .03108 .03244 .03556 .04096	N"""" LKPN""" BKRP"" L"N"" V"" N""" P""" RN" S"	Manganese Mercury : solid . "" · · · · " " · · · " · · · · " · · · · " · · · " · · · · · · " · · · · · · " · · · · · · · " · · · · · · · " · · · · · · · · " · · · · · · · · · " · · · · · · · · · " · · · · · · · · · · · " · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 1.4-97\\ -78 \text{ to } -40\\ 20-50\\ 0\\ 100\\ 200\\ 250\\ 14-97\\ 100\\ 300\\ 500\\ 800\\ 1000\\ 0-1265\\ -78-20\\ 0-100\\ 0-1265\\ -78-20\\ 0-100\\ 0-784\\ 0-1000\\ 0-784\\ 0-1000\\ 0-784\\ 0-100\\ 0-785\\ -78.5-23\\ 0-100\\ 23\\ 100\\ 200\\ 300\\ 800\\ 907-1100\\ -79.5-17\\ -28-6\\ -78-20\\ 0\\ 50\\ 75\\ 250-350\\ 250\\ 1100\\ 0-100\\ 18\\ 100\end{array}$	0.1217 .03192 .03312 .03337 .03284 .03235 .03212 .10916 .11283 .14029 .12988 .1484 .16075 .0592 .0714 .03037 .0323 .0365 .0377 .0388 .03854 .03860 .03980 .1662 .0559 .05498 .056633 .05877 .06091 .076 .0748 .2830 .2934 .053416 .05534 .05534 .05534 .05799 .05534 .05534 .05799 .0758 .0935 .0915 .0951	V R R " WN " " " " " " " Ph " " " Ph " " " Ph " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
Lithium Magnesium	27-99 0	.9408 .2456	R L "	66 • • • • • • • • • • • • • • • • • •	200	.0996 .1040	- - T 37
".75.2509"" $300-400$.122LVREFERENCES.B = Bunsen.K = Kopp.L = Lorenz.LV = Le Verrier.N = Naccari.P = Person.Pn = Pionchon.Pt = Pouillet.R = Regnault.S = Schüz.Sp = Spring.V = Violle.W = Winkelmann.							

* Condensed from Landolt and Börnstein's "Phys. Chem. Tab."

INDEX.

Absorption of gases by liquids125
of solar energy by the atmosphere177
Acceleration, angular and linear, conversion
factors for
Activity conversion factors for
Activity, conversion factors for19, 21
Aerodynamics; data for the soaring of
planes
data for wind pressure108
Agonic lines
Air, specific heat of223
thermometer
Alcohol, density of
vapor pressure of
Alloys, electric conductivity of251–253
electric resistance of251–253, 256, 257
donaity of
density of
specific heat of294
strength of
thermal conductivity of
thermoelectric power of
Alternating currents, resistance of wires for. 258
Alums, indices of refraction for
Angles, conversion factors for14
Aqueous solutions, boiling-points of196
vapor, density of
pressure of151–154
Arc spectrum, wave-lengths in
Are spectrum, wave-rengths in
Areas, conversion factors for
Atmosphere, pressure of vapor in157
Atomic weights
Atomic weights
Barometer, correction for capillarity
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field293
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field293 Boiling-point, of chemical elements207
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field293 Boiling-point, of chemical elements207 of various inorganic compounds210
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and clectromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and clectromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity124 determination of heights by169 reduction to latitude 45°122, 123 reduction to sea level121 reduction to standard temperature120 Battery cells, composition and electromotive force of246, 247 Bismuth, electric resistance of, in magnetic field
Barometer, correction for capillarity 124 determination of heights by 169 reduction to latitude 45° 122, 123 reduction to sea level 121 reduction to standard temperature 120 Battery cells, composition and clectromotive force of force of 246, 247 Bismuth, electric resistance of, in magnetic field field 293 Boiling-point, of chemical elements 207 of various inorganic compounds 212 of water, barometric height corresponding to 171 of water, effect of dissolved salts on 196 Brick, strength of 70 British weights and measures, equivalents in 70
Barometer, correction for capillarity 124 determination of heights by 169 reduction to latitude 45°
Barometer, correction for capillarity 124 determination of heights by 169 reduction to latitude 45°
 Barometer, correction for capillarity
Barometer, correction for capillarity 124 determination of heights by 169 reduction to latitude 45° 122, 123 reduction to sea level 121 reduction to standard temperature 120 Battery cells, composition and clectromotive force of force of 246, 247 Bismuth, electric resistance of, in magnetic field field 293 Boiling-point, of chemical elements 207 of various inorganic compounds 212 of water, barometric height corresponding to 171 of water, effect of dissolved salts on 196 Brick, strength of 70 British weights and measures, equivalents in 70

PAGE	PAGE
orption of gases by liquids	Capillarity (continued).
of solar energy by the atmosphere177	surface-tension of water and alcohol 128
eleration, angular and linear, conversion	various liquids127
actors for	Carat, definition of18
ivity, conversion factors for 19, 21	Cells, battery246, 247
odynamics; data for the soaring of	secondary
lanes	standard247
	Chamical elements boiling and molting
data for wind pressure108	Chemical elements, boiling and melting
onic lines	points of
specific heat of	Cobalt, Kerr's constants of291
thermometer	magnetic properties of
ohol, density of	Coefficients, isotonic150
vapor pressure of	of diffusion
oys, electric conductivity of251–253	of friction135
electric resistance of251-253, 256, 257	of thermal expansion214-218
density of	of viscosity 137, 146
specific heat of	Color scale, Newton and Reinold and
strength of	Rucker 130
thermal conductivity of	Combination, heat of
thermoelectric power of	Combustion, heat of201
ernating currents, resistance of wires for. 258	Compressibility, of gases
ms, indices of refraction for	of liquids
gles, conversion factors for14	of solids
leous solutions, boiling-points of196	Conducting power of alloys251–253
vapor, density of155	Conductivities, molecular
	of electrolytes
pressure of15I-I 54 spectrum, wave-lengths in172	
	thermal
as, conversion factors for	Contact, difference of potential
osphere, pressure of vapor in157	Conversion factor, definition ofxviii
mic weights	Conversion factors for acceleration, angular 18
	acceleration, linear17
	activity 19, 21
ometer, correction for capillarity124	angles 14
determination of heights by169	areas
reduction to latitude 45° 122, 123	capacities12
reduction to sea levelI2I	densities23
reduction to standard temperature120	electric deposition24
tery cells, composition and clectromotive	electric displacement25
orce of	electric potential27
nuth, electric resistance of, in magnetic	electric resistance23
eld293	energy
ing-point, of chemical elements207	film tension
of various inorganic compounds210	force
of various organic compounds212	heat, quantities of24
of water, barometric height correspond-	intensity of magnetization
ing to	length
of water, effect of dissolved salts on 196	masses
k, strength of70	moment of inertia
ish weights and measures, equivalents in	moment of momentumid
etric	momentum16
	magnetic moment27
	magnetization, intensity of
acities, conversion factors for	magnetization, surface density of
acity, specific inductive	power
illarity, of aqueous solutions	resistance, electric
correction of barometer for	stress
of liquids as solidifying-point129	temperatures
of soap films 129	tension, film or surface20

INDEX.

Conversion (<i>continued</i>).	
time, intervals of I	
	4
velocities	1
volumes	7
1	1
work	1
Critical temperature of gases	oc
Crystals, cubic expansion of	6
ulastio constante of	C
elastic constants of	2
formulæ for elasticity of	7
refractive indices of	/
Culture indices of	7
Cubic expansion, gases	S
liquids21	
eolide	1
solids	6
Cyclic magnetization, dissipation of energy	
iu	3
	-
The state of the s	
Declination, magnetic	3
Densities of air values of k/260	_
alashal	2
	К.
alloys and other solids	
anoyo and other solids	5
aqueous solutions)
gases	
liquide	Į
liquids88	5
mercury	
metals	2
metals)
organic compounds212	
water	
<i>nator</i>	
W00(15	
Density, conversion factors for23	
Downointe tell (
Dew-points, table for calculating	
Diamonds, unit of weight for	
Dielectric strength	
Dielectric strength	
Diffusion of gases and vapors	
liquids and colutions	
liquids and solutions	1
	1
- i muton of solution, contraction due to - 121	
- i muton of solution, contraction due to - 121	
Dimension formulæ (see also Units).	
Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)	
Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)	
Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)134 Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)134 Dip, magnetic	
Dimension formulæ (see also <i>Units</i>)134 Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)t34 Dimension formulæ (see also <i>Units</i>)tvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also Units)xvii Dip, magnetic	
Dimension for solution, contraction due to:134 Dimension formulæ (see also Units)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)134 Dimension formulæ (see also <i>Units</i>)xvii Dip, magnetic	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also <i>Units</i>)	
 Dimension formulæ (see also Units)	
 Dimension formulæ (see also Units)	
 Dimension formulæ (see also Units)	
 Dimension formulæ (see also Units)	
 Dimension formulæ (see also Units)	
 Dimension formulæ (see also Units)	

Factors, conversion	7
1 IOTINUAL TOL COnversion.	ς.
Finn-tension, conversion factors for	5
Constants for)
Formulæ for conversion factors, dynamic	5
units	,
electric and magnetic units.	
1 undamental units	
geometric units	
near units.	
Formulæ, dimension (see also Units)xvii-xxix	
Force, conversion factors for	
Fraunhofer lines, wave-lengths of	
rieczing mixtures	
1 ricezing-point, lowering of, hy salts .	
r netion, coemcients of	
Punctions, hyperbolic	
gamma	
Fundamental units	
- defent, latent heat of	
Gamma functions	
density and specific gravity of	
density and specific gravity of	
magnetic susceptibility of	
magneto-optic rotation in	
refractive indices of	
LITELINAL CONDUCTIVITY OF	
volume of perfect (values of $1 + .00367 t$)	
161-168	
Gauges, wire	
Geometric units, conversion formulæ for a	
Glass, electric resistance of	
Gravity, force of	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Harmonics zonal	

Harmonics, zonal
figure 1 and the second factors for quantities of the second seco
latent heat of fusion
latent heat of vaporization
mechanical equivalent of
units, conversion factors for
dimension formulæ for
formulæ for conversion factors of
Heats of combustion and combination201, 202
Heights determination by barameters
Heights, determination by barometer
Humidity, relative
Hydrogen thermometer
Hyperbolic cosines
rivperbone functions
riyperbolic sines
Ilysteresis, magnetic

Iceland spar, refractive index of
Indices of refraction for alums
crystals
fluor spar
gases and vapors190
glass
Iceland spar185
liquids, various
metals and metallic oxides
monorcfringent solids

IN	D	EX.
----	---	-----

Indices of refraction for alums (continued).	Melting-points (continued).
quartz	of mixtures and alloys
rock salt	of organic compounds
solutions of salts	Mercury, density of
svlvine	electric resistance of
Inductance, mutual	specific heat of
Integrals elliptic	specific field of
Intensity, horizontal, of earth's magnetic field	Metals, density of
11.0	electric resistance of
total, of earth's magnetic field	specific heat of
Iron, clasticity and strength of	thermal conductivity of
hysteresis in	Metals and metallic oxides, indices of refrac-
magnetic properties of	tion for
Isotonic coefficients 150	Metre, definition of
	Metric weights and measures —
Jewels, unit of weight for	equivalents in British
Joule's equivalent	equivalents in United States
Joule's equivalent	Mixtures, freezing
	Moduli of elasticity
Kerr's constant, definition and table of 292	Molecular conductivities
Kilogramme, definition of	Moments of inertia, conversion factors for13
Kundt's constants	Moment of momentum, conversion factor
definition of	for
	Momentum, conversion factors for
· · · · · · · · · · · · · · · · · · ·	Mutual inductance, table for calculating42
Latent heat	
I east squares, various tables for	Neutral-points, thermoelectric249
Legalization of practical electric units	Newton's rings and scale of colors
Length conversion factors for	Nickel, Kerr's constants for
Tight velocity of	magnetic properties of
rotation of plane of polarized	micono proporta
Linear expansion of chemical elements214	
of various substances	Ohm, various determinations of
Liquids, absorption of gases by	Osmose and osmotic pressure150
density of	
magneto-optic rotation in	
magnetic susceptibility	
refractive indices of	
specific heat of	
thermal conductivity of 197, 190	1 ermeanney, magnetic terter 176
thermal expansion of	1 hotometric standards 1 to sever soming 106
Lowering of freezing-point by salts192	I TAIlets, infocunation of the second s
	Poisson's ratio
	Potential, contact difference of
Magnetic field, effect of, in resistance of bis-	
muth	tions
moment, conversion factors for27	electric, conversion factors for
permeability	Pound definition of
properties of cobalt, manganese steel,	Power conversion factors for
magnetite and nickel	S Practical electrical units
saturation values for steel	Pressure, barometric, for different boning-
susceptibility of liquids and gases29	points of water
units, conversion formulæ for	critical of gases
dimension formulæ forxx	
Magnetism, conversion factors for surface	of addeous vapor
density	6 at low temperatures
terrestrial	in the atmosphere
Magnetization, conversion factors for inten-	of mercury commerce 150
sity of	120. 225-227
Magnetite, Kerr's constant for	108
magnetic properties of	9 Probability, table for calculating
Magneto-optic rotation, general reference to	Flobability, table for calculations
tables of	3 Quartz, fibres, strength of
Masses, conversion factors for	186
Materials, strength of	
Measurement, units of	
Mechanical equivalent of heat22 Melting-points of chemical elements20	Radiation, effect of pressure on236
of inorganic compounds	57 Relative humidity161
Of morganic componies for the	

INDEX.

Resistance (see also <i>Conductivity</i>), electric.	Terrestrial magnetism (continued).
of alloys	horizontal intensity and its secular varia-
of electrolytes	
	tion for different latitudes and longi-
of glass and porcelain	tudes
of metals and metallic wires254–257	secular variation of declination 113-116
of wires, effect of elongation on258	Thermal conductivities197, 198
Rigidity, modulus defined74	relation to electrical271
of metals	expansion, coefficients of214-218
variation of, with temperature	units, dynamic equivalent of
Rotation, magneto-optic	Thermoelectricity
	Thermometer
	air
Saturation values, magnetic, for steel279	correction of, for mercury in stem232
Seconds pendulum, length of104, 105	hydrogen
Secondary batteries247	mercury in glass
Sections of wires	zero change due to heating
Sheet metal, weight of	zero change of with time
	zero, change of, with time230
Soaring of planes, data for	Timber, strength of
Solar constant	Time, unit of, definedxvii
Solar spectrum, wave-length in172	Times, conversion factors for14
Solids, compressibility and bulk moduli of 83	Transformers, permeability of
density of	iron in
magneto-optic rotation in	
Solution, contraction produced by131-134	Units of measurementxv
Solutions, aqueous, boiling-points of 196	dimension formulæ for dynamicxviii
density of	electric and magneticxxv
magneto-optic rotation in	electromagneticxxix
refractive indices for	electrostaticxvi
specific heat of	fundamental2
Sound, velocity of, in air	heatxxiii
in gases and liquids	
	practical, legalization of electricxxxiii
in solids	ratio of electrostatic to electromagnetic
Specific electrical resistance, conversion fac-	United States multiples and see 243
tors for	United States weights and measures in
Specific gravity (see also <i>Density</i>).	metric
of aqueous ethyl alcohol	
methyl alcohol	
of gases	Vapor, density of aqueous155
Specific heat of air	diffusion of149
of gases and vapors224	pressure of
of metals	pressure of aqueous151-154
of solids and liquids294, 295	values of 0.378 <i>e</i> 160
of water223	pressure of, for aqueous solutions194
of water, formulæ for	refractive indices for
Specific inductive capacity	specific heats of
viscosity, aqueous solutions	Vaporization, latent heat of
oils	
	Velocity, angular and linear, conversion fac-
water136	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for
water	Velocity, angular and linear, conversion fac- tors for

	Water, boiling-point for various barometric
various stations	
dip and its secular variation for differ-	density of92–94
ent latitudes and longitudes	specific heat of

300

thermal conductivity of	Wind, pressure of
Wave-lengths of Fraunhofer lines	Work, conversion factors for
Weights and measures —	Yard, definition ofxvi
Metric to British Imperial	Voung's moduli
United States to Metric	
Weights of wires	Zonal harmonics40

\$

1.

.