Smitlywonian atiscelancous collections

1038

SMITHSONIAN

PHYSICAL TABLES

PREPARED BY

THOMAS GRAY

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION r896

The Riverside Press, Cambridge, Mass., U. S. A.
Electrotyped and Printed by H. O. Houghton $\&$ Co.

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850 , a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852. A second edition was issued in 1857 , and a third edition, with further amendments, in 1859 . Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that, after twenty-five years of valuable service, the work was again revised and a fourth edition was published in 1884. In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish a new work in three parts - Meteorological Tables, Geographical Tables, and Physical Tables - each representative of the latest knowledge in its field, and independent of the others, but the three forming a homogeneous series. Although thus historically related to Dr. Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893 , and so great has been the demand for it that a second edition has already become necessary. The second volume of the series (the Geographical Tables), prepared by Prof. R. S. Woodward, was published in 189.4. The present volume (the Physical Tables), forming the third of the series, has been prepared by Prof. Thomas Gray, of the Rose Polytechnic Institute, Terre Haute, Indiana, who has given to the work the results of a wide experience.

S. P. Langley, Secretary.

PREFACE.

In the space assigned to this book it was impossible to include, even approximately, all the physical data available. The object has been to make the tables easy of reference and to contain the data most frequently required. In the subjects included it has been necessary in many cases to make brief selections from a large number of more or less discordant results obtained by different experimenters. I have endeavored, as far as possible, to compile the tables from papers which are vouched for by well-known authorities, or which, from the method of experiment and the apparent care taken in the investigation, seem likely to give reliable results.

Such matter as is commonly found in books of mathematical tables has not been included, as it seemed better to utilize the space for physical data. Some tables of a mathematical character which are useful to the physicist, and which are less easily found, have been given. Many of these have been calculated for this book, and where they have not been so calculated their source is given.

The authorities from which the physical data have been derived are quoted on the same page with the table, and this is the case also with regard to explanations of the meaning or use of the tabular numbers. In many cases the actual numbers given in the tables are not to be found in the memoirs quoted. In such cases the tabular numbers have been obtained by interpolation or calculation from the published results. The reason for this is the desirability of uniform change of argument in the tables, in order to save space and to facilitate comparison of results. Where it seemed desirable the tables contain values both in metric and in British units, but as a rule the centimetre, gramme, and second have been used as fundamental units. In the comparison of British and metric units, and quantities expressed in them, the metre has been taken as equal to 39.37 inches, which is the legal ratio in the United States. It is hardly possible that a series
of tables, such as those here given, involving so much transcribing, interpolation, and calculation, can be free from errors, but it is hoped that these are not so numerous as to seriously detract from the use of the book.

I wish to acknowledge much active assistance and many valuable suggestions during the preparation of the book from Professors S. P. Langley, Carl Barus, F. W. Clarke, C. L. Mees, W. A. Noyes, and Mr. R. E. Huthsteiner. I am also under obligations to Professors Landolt and Börnstein, who kindly placed an early copy of their "Physikalisch-Chemische Tabellen" at my disposal.

Thomas Gray.

[^0]
TABLE OF CONTENTS.

pace
Introduction on units of measurement and conversion factors XV
Units of measurement, general discussion XV
Dimension formulæ for dynamic units xvii
" " " heat units xxiii
" of electric and magnetic units, general discussion - xxy
" formulæ in electrostatic system xxvi
" " " electromagnetic system xxix
Practical units of electricity, legalization of xxxiii
TAble
I. Formulæ for conversion factors:
(a) Fundamental units 2
(b) Derived units 2
I. Geometric and dynamic units 2
II. Heat units 3
III. Magnetic and electric units 3
2. Equivalents of metric and British imperial weights and measures :
(I) Metric to imperial 5
(2) Multiples, metric to imperial 6
(3) Imperial to metric 7
(4) Multiples, imperial to metric 8
3. Tables for converting U. S. weights and measures :
(I) Customary to metric 9
(2) Metric to customary 10
4. Factors for the conversion of lengths I I
5. " " " " " areas II
6. " " " " " volumes 12
7. " " " " " capacities 12
8. " " " " " masses ${ }^{1} 3$
9. " " " " " moments of inertia 13
IO. " " " " " " angles 14
II. " " " " " times 14
12. " linear velocities 15
13. " " " " " angular velocities I5
14. " " " " " " momentums 16
15. " moments of momentum 16
16. Factors for the conversion of forces 17
17 " linear accelerations 17
r8. " angular accelerations 18
19 " linear and angular accelerations I8 I8
20. " stress or force per unit of area, gravitation units 19
21. " power, rate of working, or activity, gravi- tation units 19
" work or energy, gravitation units 20
22.
" film or surface tension 20
" power, rate of working or activity, absolute units 21
25 " work or energy, absolute units 21
26. " stress or force per unit of area, absolute units 22
27. " film or surface tension, absolute units 22
28. " densities 23
29 " specific electrical resistance 23
" electrolytic deposition 24
30.
" heat units 24
" thermometer scales 25
" electric displacement and other quantities of dimensions $M^{\frac{1}{2}} L^{-\frac{3}{2}}$ 25
" surface density of magnetization and other quantitics of dimensions $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}}$ 26
" intensity of magnetization and other quan- titics of dimensions $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}}$ 26
" electric potential and other quantities of dimensions $\mathrm{N}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{3}}$ 27
" magnetic moment and other quantities of dimensions $\mathrm{MI}^{\frac{1}{2}} \mathrm{~L}^{\frac{5}{2}}$ 27
38. Values of $\frac{e^{x}-c^{-x}}{2}$ (hyperbolic sincs) for valucs of x from 0 to 5 28
39 " " $\frac{e^{x}+e^{-x}}{2}$ (hyperbolic cosines) for 29
4041. " of $\frac{e^{x}+e^{-x}}{2}$ " " "31
42. Valucs of e^{x} and e^{-x} and their logarithms 32
43 " $e^{x^{2}}$ and $e^{-x^{2}}$ 33
44. " $e^{\pi_{1}^{x}}$ and $e^{-\frac{\pi_{x}^{x}}{4}}$ d 34
45 " $e^{\frac{\sqrt{\pi}}{4} x}$ and $e^{\frac{\sqrt{\pi}}{4}} x$ " 34
46. " " e^{x} and e^{-x} fractional values of x 35
47. Probability of crrors of observation 35
48. 36
49. Values of $0.6745 \sqrt{\frac{\mathrm{I}}{n-1}}$ 36
50. " " $0.67+5 \sqrt{\frac{1}{n(n-1)}}$ 37
51. " " $0.8+53 \sqrt{\frac{1}{n(n-1)}}$ 3752. " "0.8+53 $\frac{1}{n \sqrt{n-1}}$37
53. " " the logarithm of the gamma function $\Gamma(n)$ for values of n between 1 and 2 3^{8}
54. " " the first seven zonal harmonics from $\theta=0^{\circ}$ to $\theta=90^{\circ}$ 40
55. " " $\log M / 4 \pi \sqrt{a a^{1}}$ for facilitating the calculation of the mutual inductance between two coaxial circles 4^{2}
56. " " $\int_{0}^{\frac{\pi}{2}}\left(\mathrm{r}-\sin ^{2} \theta \sin ^{2} \phi\right)^{ \pm \frac{1}{2}} d \phi$ for different values of θ with the loga-
rithms of these integrals43
57. Cross section and weight of copper, iron, and brass wire of different diameters, British units 44
58. Cross section and weight of copper, iron, and brass wire of different diameters, metric units 46
59. Cross section and weight in various units of aluminium wires of differ- ent diameters 48
60. Cross section and weight in various units of platinum wires of different diameters 50
61. Cross section and weight in various units of gold wires of different diameters 5^{2}
62. Cross section and weight in various units of silver wires of different diameters 54
63. Weight, in grammes per square metre, of sheet metal 56
64. " " various British units, of sheet metal 57
65. Size, weight, and electrical constants of copper wire according to Brown and Sharp's gauge and British measure 5^{8}
66. Same data as 65 , but in metric measure 60
67. " " " " but British standard wire gauge 62
68. " " " 67 , but in metric measure 64
69. " " " 65 , but Birmingham wire gauge 66
70. " " " 69 , but in metric measure 68
71 . Strength of materials:
(a) Metals and alloys 70
(b) Stones and bricks 70
(c) Timber 70
72. Composition and physical properties of steel 71
73. Effect of the reduction of section produced by rolling on the strength of bar iron 72
74. Effect of diameter on the strength of bar iron 72
75. Strength of copper-tin alloys (bronzes) 73
76. " " copper-zinc alloys (brasses) 73
77. " " copper-zinc-tin alloys 73
78. Moduli of rigidity 74
79. Young's modulus of elasticity 75
80. Effect of temperature on rigidity 76
81. Values of Poisson's ratio 76
82. Elastic moduli of crystals, formulæ 77
83. " " " " numerical results 78
84. Compressibility of nitrogen at different pressures and temperatures 79

85.	"		hydrogen "	"	"	"	/		
86.	"		methane "	"	"	"	"		
87.	"		ethylene "	6	"	"			
88.	"		carbon dio		"				
89.	"		،	"	"				

90. " "air, oxygen, and carbon monoxide at different pressures and ordinary temperature 80
91. " " sulphur dioxide at different pressures and tempera- tures 81
92. " " ammonia at different pressures and temperatures 81
93. " and bulk moduli of liquids 82
94. " " " " " solids 83
95. Density of various solids 84
96. " " " alloys 85
97. " " " metals 86
98. " " " woods 87
99. " " " liquids 88
100. " " " gases 89
ror. " " " aqueous solutions of salts 90
101. " " " water between 0° and $32^{\circ} \mathrm{C}$. 92
102. Volume of water at different temperatures in terms of its volume at temperature of maximum density 93
103. Density and volume of water in terms of the density and volume at $4^{\circ} \mathrm{C}$. 94
104. " " " mercury at different temperatures 95
105. Specific gravity of aqueous ethyl alcohol 96
106. Density of aqueous methyl alcohol 97
107. Variation of density of alcohol with temperature 9^{8}
108. Velocity of sound in air, principal determinations of 99
ı10. " " " " solids 100
iII. " " " " liquids and gases ioI
II2. Force of gravity at sea level and different latitudes 102
II3. Results of some of the more recent determinations of gravity 103
II4. Value of gravity at stations occupied by U. S. C. \& G. Survey in 1894 104
109. Length of seconds pendulum for sea level and different latitudes 104
II6. Determinations of the length of the seconds pendulum 105

II7. Miscellaneous data as to the earth and planets Iob
118. Aerodynamics: Data for wind pressure and values of F in $P_{a}=F_{\alpha} P_{90} 108$
119. " Data for the soaring of planes 109
120. Terrestrial magnetism, total intensity IIo
121. " " secular variation of total intensity IIo
122. " " " 123 secular variation of dip III
123. " " secular variation of dip III
124. " " horizontal intensity 112
125. " " secular variation of horizontal intensity . . . II2

126. " \quad| formule for value and secular variation of dec- |
| :---: |
| lination II3 |

131. " " date of maximum east declination at various stations I 18
132. Tables for computing pressure of mercury and of water, British and metric measures ri9
133. Reduction of barometric height to standard temperature 120
134. Correction of barometer to standard gravity, British and metric mea- sures I2I
135. Reduction of barometer to latitude 45°, British scale 122
136. " " " " " metric scale 123
137. Correction of barometer for capillarity, metric and British measures 124
138. Absorption of gases by liquids 125
139. Vapor pressures 126
140. Capillarity and surface tension, water and alcohol in air I28
14I. " " " miscellaneous liquids in air 128
142. " " " " aqueous solutions of salts 128
143. " liquids in contact with air, water, or mercury 129
144. " liquids at solidifying point 129
145. thickness of soap films 129
146. Colors of thin plates, Newton's Rings 130
147. Contraction produced by solution of salts I3I
148. " " dilution of solutions I34
149. Coefficients of friction I35
150. Specific viscosity of water at different temperatures I36
151 . Coefficients of viscosity for solutions of alcohol in water I37
152. Specific viscosity of mineral oils I37
153. " " " various " ${ }^{1} 37$
154. " " " various liquids 138
155. " " " " temperature variation I39
156. " " " solutions, variation with density and temperature 140
I 57. atomic concentrations 144
158. Specific viscosity of gases and vapors 145
159. " " " " formula for temperature variation 146
160. Diffusion of liquids and solutions of salts into water 147
16r. " " vapors 148
162. " " gases and vapors. 149
163. Isotonic coefficients and lowering of the freezing-point 150
164. Osmotic pressure 150
165. P'ressure of aqueous vapor (Regnault) 151
166. " " " " (Regnault and Broch) I 54
167. Weight in grains of aqueous vapor in a cubic foot of saturated air I55
168. " " grammes of " 155
r 6 g . Pressure of aqueous vapor at low temperatures 156
170. Hygrometry, vapor pressure in the atmosphere 157
171. " dew-points 15^{8}
172. Values of $0.378 e$ in atmospheric pressure equation $h=B-0.378 c$ 160
173. Relative humidity I60
174. Table for facilitating the calculation of $h / 760$ 162
175. Logarithms of $h / 760$ for values of h between So and 800 162
176. Values of $1+.00367 t$:
(a) For values of t between 0° and $10^{\circ} \mathrm{C}$. by tenths 164
(b) " " " t " -90° and $+1990^{\circ} \mathrm{C}$. by tens 165
(c) Logarithms for t " -49° and $+399^{\circ} \mathrm{C}$. by units 166
(d) " " "t " 400° and $1990^{\circ} \mathrm{C}$. by tens 168
177. Determination of heights by barometer 169
178. Barometric pressures corresponding to different temperatures of the boiling-point of water :
(a) British measure 170
(b) Metric measure 171
179. Rowland's standard wave-lengths in arc and sun spectra 172
180. Wave-lengths of the Fraunhofer lines 175
181. Various determinations of the velocity of light 176
182. Photometric standards 176
183. Solar energy and its absorption by the terrestrial atmosphere 177
184. The solar constant 177
185. Index of refraction of glass :
(a) Traunhofer's determinations ${ }_{17} 8$
(b) Baille’s 178
(c) Hopkinson's ${ }_{17} 8$
(d) Mascart's 179
(c) Langley's 179
(f) Vogel on effect of temperature 179
$\left({ }_{\Omega}\right)$ Mitller " 179
186. Indices of refraction for various alums 180
187. " " " " metals and metallic oxides:
(a) Kundt's experiments 181
(b) Du Bois and Kuben's experiments 181
(c) Drude's experiments 18 I 18 I
188. Index of refraction of rock salt, various authorities 182
190. " " " "fluor-spar 182
1gI. " " " " various monorefringents 184
192. " " " 185
193. " " "
193. " " " 186 186
194. " " " " various uniaxial crystals 187
195. " " biaxial crystals 187
" solutions of salts and acids :
(a) Solutions in water r88
(b) Solutions in alcohol r88
(c) " " potassium permanganate I88
197. Index of refraction of various liquids 189
198. " " " " gases and vapors 19°
199. Rotation of plane of polarized light by solutions 191
200. " " " " " " sodium chlorate and by quartz 191
201. Lowering of freezing-points by salts in solution 192
202. Vapor-pressures of solutions of salts in water 194
203. Raising of boiling-points by salts in solution 196
204. Thermal conductivity of metals and alloys 197
205. " " " various substances 198
206. " " " water and solutions of salts 198
207. " " " organic liquids 198
208. " gases 198
209. Freezing mixtures 199
210. Critical temperatures, pressures, volumes, and densities of gases. 200
211. Heat of combustion 201
212. " " combination 202
213. Latent heat of vaporization 204
214. " " " fusion 206
215. Melting-points of chemical elements 207
216. Boiling-points of 207
217. Melting-points of various inorganic compounds 208
218. Boiling-points of 210
219. Melting-points of mixtures. 211
220. Densities, melting-points, and boiling-points of some organic com-pounds:
(a) Paraffin scries 212
(b) Olefine series 212
(c) Acetylene series 212
(a) Monatomic alcohols 213
(e) Alcoholic ethers 213
(f) Ethyl ethers 213
221. Coefficients of linear expansion of chemical elements 214
222. " " " " " miscellaneous substances 215
223. " " cubical expansion of crystalline and other solids 216
224. " " " " " liquids 217
225. Coefficients of cubical expansion of gases 218
226. Dynamical equivalent of the thermal unit 219
227. historical table 220
228. Specific heat of water, descriptive introduction 222
228. Specific heat of water 222
229. Ratio of specific heats of air, various determinations 223
230. Specific heats of gases and vapors 224
231. Vapor pressure of ethyl alcohol 225
232. " " " methyl " 225
233. Vapor pressures and temperatures of various liquids:
(a) Carbon disulphide 226
(b) Chlorobenzene 226
(c) Bromobenzene 226
(d) Aniline 226
(c) Methyl salicylate 227
(f) Bromonaphthaline 227
(g) Mercury 227
234. Thermometers, comparisons of mercury in glass and air thermometers 228
235. " comparison of various kinds with hydrogen thermometer 229
236. " " " " " " air thermometer 229
237. " change of zero due to heating (Jena glass) 230
238. " " " " " " (various kinds of glass). 230
" " " " " " effect of composition ofglass231
240. " slow change of zero with time 231
241. " correction for mercury in stem 232
242. Emissivity of polished and blackened surfaces in air at ordinary pres- sures 234
243. Emissivity of polished and blackened surfaces in air at different pres- sures 234
244. Constants of emissivity from various substances to vacuum 235
245. Effect of absolute temperature of surface on the emissivity, constants of bright and blackened platinum wire 235
246. Radiation of bright platinum wire to copper envelope across air of dif- ferent pressures 236
247. Effect of pressure on radiation at different temperatures 236
248. Properties and constants of saturated steam, metric measure 237
249. " " " " " British measure 238
250. Ratio of the electrostatic to the electromagnetic unit of electricity, dif- ferent determinations of 243
251. Dielectric strength
(a) Medium air and terminals flat plates 244
(b) " " " " balls of different diameter 244
(c) " " " " balls comparison of the results of dif-
ferent observers 244
252. Dielectric strength of gases, effect of pressure on 245
253. " " " various substances 245
254. Data as to electric battery cells :
(a) Double fluid batteries 246
(b) Single fluid batteries 247
(c) Standard cells 247
(d) Secondary cells 247
255. Thermoelectric power of various metals and alloys 248
256. alloys 249
257. Thermoelectric neutral point of various metals relative to lead 249
258. Specific heat of electricity for metals 249
259. Thermoelectric power of metals and solutions 250
260. Peltier effect, Jahn's experiments 250
261. " " Le Roux's " 250
262. Conductivity of three-metal and miscellaneous alloys 251
263. " " alloys 252
264. Specific resistance of metallic wires, various dimension units 254
265. " " " metals, various authorities 255
266. " " " " and alloys at low temperatures 256
267. Effect of elastic and permanent elongation on resistance of metallic wires 258
268. Resistance of wires of different diameter to alternating currents 258
269. Conductivity of dilute solutions proportional to amount of dissolved salt 259
270. Electrochemical equivalent numbers and densities of approximately nor- mal solutions 259
271. Specific molecular conductivities of solutions 260
272. Limiting values of specific molecular conductivities 261
273. Temperature coefficients of dilute solutions 261
274. Various determinations of the ohm, the electrochemical equivalent of silver and the electromotive force of the Clark cell 262
275. Specific inductive capacity of gases 263
276. " " " " solids 264
277. " " " " liquids 265
278. Contact difference of potential, solids with liquids and liquids with liquids in air 266
279. Contact difference of potential, solids with solids in air 268
280. Potential difference between metals in various solutions 269
281. Resistance of glass and porcelain at different temperatures 270
282. Relation between thermal and electrical conductivities:
(a) Arbitrary units 271
(b) Values in c. g. s. units 271
(c) Berget's experiments 271
(d) Kohlrausch's results 271
283. Electrochemical equivalents and atomic weights of the chemical ele- ments 272
284. Permeability of iron for various inductions 274
285. Permeability of transformer iron :
(a) Specimen of Westinghouse No. 8 transformer 274
(b) 275
(c) Specimen of Westinghouse No. 4 transformer 275
(d) " " Thomson-Houston $\mathrm{I}_{5} 00$-watt transformer 275
286. Composition and magnetic properties of iron and steel 276
287. Permeability of some specimens in 'lable 286 278
288. Magnetic properties of soft iron at 0° and $100^{\circ} \mathrm{C}$. 278
289. " "s steel at 0° and $100^{\circ} \mathrm{C}$. 278
290. " " " cobalt at $100^{\circ} \mathrm{C}$. 279
291 " nickel at $100^{\circ} \mathrm{C}$. 279
292 " " " magnetite 279
293. " " " Lowmoor wrought iron in intense fields 279
294 "
" Vicker's tool steel in intense fields 279
295 " " "Hadfield's manganese steel in intense fields 279
296. Saturation values for different steels 279
297. Magnetic properties of very weak fields 280
298. Dissipation of energy in the cyclic magnetization of magnetic substances 280
299.
300.

"	"	"	"	"	"	"
"	"	"	"	"	"	"
	"	"	"	"	"	"

" cable transformers 280
" various substances 281
" iransformer cores 282
" various specimens of soft iron 283
Magneto-optic rotation, Verdet's constant 284
303. " " in solicls 285
304. " " " liquids 286
305. " " " solutions of acids and salts in water 288
306. " " " " salts in alcohol 290
307. " " " in hydrochloric acid 29°
308. " "gases 291
309. Miscellaneous values of Verdet's and Kundt's constants 291
310. " susceptibility for liquids and gases 292
3II. Kerr's constants for iron, nickel, cobalt, and magnetite 292
312. Effect of magnetic field on the electric resistance of bismuth (initial resistance of one ohm for zero field and various temperatures) 293
313. Effect of magnetic field on the electric resistance of bismuth (initial resistance one ohm for zero field and temperature zero Centigrade) 293
3I4. Specific heat of various solids and liquids 294
315. Specific heat of metals 296

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. - The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are cither familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, - and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is I , when a yard is taken as the unit the magnitude-number is 1760 , and when a foot is taken it is 5280 . Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. - It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the British and the French, or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the British system the standard unit of length is the yard, and it is defined as follows: "The straight line or distance between the transverse lines in the two gold plugs in the bronze bar deposited in the Office of the Exchequer shall be the genuine Standard of Length at $62^{\circ} \mathrm{F}$., and if lost it shall be replaced by means of its copies." [The authorized copies here referred to are preserved at the Royal Mint, the Royal Society of London, the Royal Observatory at Greenwich, and the New Palace at Westminster.]

The British standard unit of mass is the pound avoirdupois, and is the mass of a piece of platinum marked "P. S. I844, I lb.," which is preserved in the Exchequer Office. Authorized copies of this standard are kept at the same places as those of the standard of length.

In the metric system the standard of length is defined as the distance between the ends of a certain platinum bar (the mètre des Archizes) when the whole bar is at the temperature 0° Centigrade. The bar was made by Borda, and is preserved in the national archives of France. A line-standard metre has been constructed by the International Bureau of Weights and Measures, and is known as the International Prototype Metre. This standard is of the same length as the Borda standard. A number of standard-metre bars which have been carefully compared with the International Prototype have lately been made by the International Bureau of Weights and Measures and furnished to the various governments who have contributed to the support of that bureau. These copies are called National Prototypes.

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In I795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Parcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the metre bar was made by Borda. The metre is not now defined as stated above, but as the length of lorda's rod, and hence subsequent measurements of the length of the meridian have not affected the length of the metre.

The French, or metric, standard of mass, the kilogramme, is the mass of a piece of platinum also made by Borda in accordance with the same decree of the Republic. It was connected with the standard of length by being made as nearly as possible of the same mass as that of a cubic decimetre of distilled water at the temperature of $4^{\circ} \mathrm{C}$., or nearly the temperature of maximum density.

As in the case of the metre, the International Bureau of Weights and Measures
has made copies of the lilogramme. One of these is taken as standard, and is called the International I'rototype Kilogramme. The others were distributed in the same mamer as the metre standards, and are called National Prototypes.

Comparisons of the French and lititish standards are given in tabular form in Table 2 ; and similarly Table 3, differing slightly from the British, gives the legal ratios in the United States. In the metric system the decimal subdivision is used, and thus we have the decimetre, the centimetre, and the millimetre as subdivisions, and the dekametre, hektometre, and kilometre as multiples. The centimetre is most commonly used in scientific work.

Time. - The unit of time in both the systems here referred to is the mean solar second, or the 86,400 th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. - Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "clerived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a yard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by $\mathrm{I} / 9$, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if l be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^{2}. Similarly the ratio of two units of volume will be l^{3}, and so on for other quantities.

Dimensional Formulæ. - It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, m, t are known, and the powers of l, m, and t involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was $I / 3$ and the power of l involved in the expression for area is l^{2}; hence, the factor for transforming from square fect to square yards is $1 / 9$. These factors
have been called by l'rof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. - In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L / T, an acceleration by a velocity-number divided by an interval of time-number, or $\mathrm{L} / \mathrm{T}^{2}$, and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l / t and l / t^{2}. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$
\mathrm{E}=\mathrm{ML}^{2} \mathrm{~T}^{-2}
$$

is the dimensional equation for energy, and $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$
\mathrm{Q}=\mathrm{CL}^{a} \mathrm{M}^{b} \mathrm{~T}^{c}
$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_{1} M_{l} T_{l}$, we have to find the value of $\frac{L_{1}}{L_{1}}{ }^{\prime} \mathrm{M}_{1}, \frac{T_{l}}{T}$, which in accordance with the convention adopted above will be $l_{i} m_{i} t_{l}$, or the ratios of the magnitudes of the old to those of the new units.

Thus $\mathrm{L}_{l}=\mathrm{L} l, \mathrm{M}_{l}=\mathrm{M} m, \mathrm{~T}_{1}=\mathrm{T} t$, and if Q_{1} be the new quantity-number

$$
\begin{aligned}
\mathrm{Q}_{1} & =\mathrm{CL}_{1}{ }^{"} \mathrm{M}_{1}{ }^{b} \mathrm{~T}_{1}{ }^{c} \\
& =\mathrm{CL}^{c} l^{a} \mathrm{M}^{b} m^{b} \mathrm{~T}^{c} t^{c}=\mathrm{Q}^{l^{a}} m^{b} t^{c},
\end{aligned}
$$

or the conversion factor is $l^{a} m^{b} t^{f}$, a quantity of precisely the same form as the dimension formula $\mathrm{L}^{a} \mathrm{M}^{b} \mathrm{~T}^{c}$.

We now proceed to form the dimensional and conversion factor formulx for the more commonly occurring derived units.
r. Area. - The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$
\mathrm{S}=\mathrm{CL}^{2}
$$

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $\mathrm{C}=\pi / 4$, and so on. The dimensional formula is thus L^{2}, and the conversion factor l^{2}.
2. Volume. - The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$
\mathrm{V}=\mathrm{Cl}^{3},
$$

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^{3} and the conversion factor l^{3}.
3. Density. - The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M / V or ML^{-3}, and conversion factor ml^{-3}.

Example. - The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound $=7000$, and l is the number of inches in a foot $=12 ; \therefore m l^{-3}=7000 / 12^{3}=4.051$. Hence the density is $150 \times$ $+05 \mathrm{I}=607.6$ in grains per cubic inch.

Note. - The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.
4. Velocity. - The velocity of a body at any instant is given by the equation $i^{\prime}=\frac{d \mathrm{~L}}{d^{\prime} \mathrm{T}}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT^{-1}, and the conversion factor ℓ^{-1}.

Example. - A train has a velocity of 60 miles an hour: what is its velocity in feet per second ?

Here $l=52$ So and $t=3600 ; \therefore I t^{-1}=\frac{5280}{3600}=\frac{44}{30}=1.467$. Hence the velocity $=60 \times \mathrm{I} .467=88.0$ in feet per second.
5. Angle. - An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
6. Angular Velocity. - Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1}, and the conversion factor is t^{-1}.
7. Linear Acceleration. - Acceleration is the rate of change of velocity or $a=\frac{d \tau^{\prime}}{d t}$. The dimension formula is therefore VT^{-1} or LT^{-2}, and the conversion factor is $1 t^{-2}$.

Example:- A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometres per hour: what is the acceleration in centimetres per second per second?

Since the velocity gained was 20 kilometres per hour in one minute, the acceleration was 1200 kilometres per hour per hour.

Here $l=100000$ and $t=3600 ; \therefore I t^{-2}=100000 / 3600^{2}=.00771$, and therefore acceleration $=.00771 \times 1200=9.26$ centimetres per second.
S. Angular Acceleration. - Angular acceleration is rate of change of angu-
lar velocity. The dimensional formula is thus $\frac{\text { angular velocity }}{\mathrm{T}}$ or T^{-2}, and the conversion factor t^{-2}.
9. Solid Angle. - A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text { area }}{L^{2}}$ or 1 , and hence the conversion factor is also $\mathbf{1}$.
10. Curvature. - Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text { angle }}{\text { length }}$ or L^{-1}, and the conversion factor is l^{-1}.
II. Tortuosity. - Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text { angle }}{\text { length }}$ or L^{-1}, and the conversion factor is l^{-1}.
12. Specific Curvature of a Surface. - This was defined by Gauss to be, at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text { solid angle }}{\text { surface }}$ or L^{-2}, and the conversion factor is thus l^{-2}.
13. Momentum. - This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocitynumber for the body.

Thus the dimension formula is MV or MLTT ${ }^{-1}$, and the conversion factor $m l t^{-1}$.
Example. - A mass of 10 pounds is moving with a velocity of 30 feet per second : what is its momentum when the centimetre, the gramme, and the second are fundamental units?

Here $m=453.59, l=30.48$, and $t=1 ; \therefore m t^{-1}=453.59 \times 30.48=13825$. The momentum is thus $13825 \times 10 \times 30=4147500$.
14. Moment of Momentum. - The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus $M \mathrm{~L}^{2} \mathrm{~T}^{-1}$, and hence the conversion factor is $m l^{2} t^{-1}$.
15. Moment of Inertia. - The moment of inertia of a body round any axis is expressed by the formula $\Sigma m r^{2}$, where m is the mass of any particle of the body
and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^{2}. The conversion factor is therefore $m l^{2}$.
16. Angular Momentum. - The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
17. Force. - A force is measured by the rate of change of momentum it is capable of producing. The dimension formulx for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2}. The conversion factor is thus $m l t^{-2}$.

Note. - When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grammes, centimetres, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.
Here $m=453.59, l=30.48$, and $t=1 ; \therefore m t^{-2}=453.59 \times 30.48=13825$ nearly. The number of dynes is thus $13825 \times 25=345625$ approximately.
18. Moment of a Couple, Torque, or Twisting Motive. - These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or $\mathrm{ML}^{2} \mathrm{~T}^{-2}$, and the conversion factor is $m l^{2} t^{-2}$.
19. Intensity of a Stress. - The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor is $m l^{-1} t^{-2}$.
20. Intensity of Attraction, or "Force at a Point." - This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2}, the same as acceleration. The conversion factors for acceleration therefore apply.

2I. Absolute Force of a Centre of Attraction, or "Strength of a Centre." - This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes $\mathrm{FL}^{2} \mathrm{M}^{-1}$ or $\mathrm{L}^{8} \mathrm{~T}^{-2}$. The conversion factor is therefore $l^{3} t^{-2}$.
22. Modulus of Elasticity. - A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor is thus also $m l^{-1} t^{-2}$.
23. Work and Energy. - When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or $\mathrm{ML}^{2} \mathrm{~T}^{-2}$.

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is $m l^{2} t^{-2}$.
24. Resilience. - This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $\mathrm{ML}^{-2} \mathrm{~T}^{-2} \mathrm{~L}^{-3}$ ol $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor $m t^{-2} t^{-2}$.
25. Power, or Activity. - Power - or, as it is now very commonly called, activity - is defined as the time rate of doing work, or if W represent work and P power $\mathrm{P}=\frac{d w}{d t}$. The dimensional formula is therefore $W \mathrm{~T}^{-1}$ or $\mathrm{ML}^{2} \mathrm{~T}^{-3}$, and the conversion factor $m l^{2} t^{-3}$, or for problems in gravitation units more conveniently $f\left(t^{-1}\right.$, where f stands for the force factor.

Examples. (a) Find the number of gramme centimetres in one foot pound.
Here the units of force are the attraction of the earth on the pound* and the gramme of matter, and the conversion factor is $f l$, where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48=13825$.
(b) Find the number of foot poundals in 1000000 centimetre dynes.

Here $m=1 / 453.59, l=1 / 30.48$, and $t=1 ; \therefore m t^{2} t^{-2}=1 / 453.59 \times 30.48^{2}$, and $10^{6} m l^{2} t^{-2}=10^{6} / 453.59 \times 30.48^{2}=2.373$.
(c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power ?

One horse-power is 550 foot pounds per second, or $550 \times 32.2=17710$ foot poundals per second. One watt is 10^{7} ergs per second, that is, 10^{7} dyne centimetres per second. The conversion factor is $m l^{2} t^{-3}$, where $m=453.59, l=30.48$, and $t=\mathrm{I}$, and the result has to be divided by 10^{7}, the number of dyne centimetres per second in the watt.

Hence, $17710 \mathrm{ml}^{2} t^{-8} / \mathrm{IO}^{7}=17710 \times 453.59 \times 30.48^{2} / \mathrm{n}^{7}=746.3$.
(d) How many gramme centimetres per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is $f\left(t^{-1}\right.$, where f is $453.59, l$ is 30.48 , and t is 60 .

Hence, $33000 \mathrm{It}^{-1}=33000 \times 453.59 \times 30.48 / 60=7604000$ nearly.

[^1]
HEAT UNITS.

I. If heat be measured in dynamical units its dimensions are the same as those of energy, namely $\mathrm{ML}^{2} \mathrm{P}^{-2}$. The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature, and hence if we denote temperature-numbers by Θ and their conversion factors by θ the dimensional formula and conversion factor for quantity of heat will be $N \Theta$ and $m \theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{3} \Theta$, and hence the conversion factor is to be calculated from the formula $l^{3} \theta$.

For other physical quantities involving heat we have : -
2. Coefficient of Expansion. - The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulx are Θ^{-1} and θ^{-1}.
3. Conductivity, or Specific Conductance. - This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$
\mathrm{K}=\frac{\mathrm{H}}{\frac{\Theta}{\mathrm{~L}} \mathrm{~L}^{2} \mathrm{~T}}
$$

and the dimensional formula $\frac{\mathrm{H}}{\Theta \mathrm{LT}}=\frac{\mathrm{M}}{\mathrm{LT}}$, which gives $m l^{-1} t^{-1}$ for conversion factor.
In thermometric units the formula becomes $\mathrm{L}^{2} \mathrm{~T}^{-1}$, which properly represents diffusivity. In dynamical units H becomes $\mathrm{ML}^{2} \mathrm{~T}^{-2}$, and the formula changes to MLT ${ }^{-3} \Theta^{-1}$. The conversion factors obtained from these are $l^{2} t^{-1}$ and $m l t^{-8} \theta^{-1}$ respectively.

Similarly for emission and absorption we have -
4. Emissivity and Immissivity. - These are the quantities of heat given off by or taken in by the body per unit of time per unit of surface per unit difference of temperature between the surface and the surrounding medium. We thus get the equation

$$
\mathrm{EL}^{2} \Theta \mathrm{~T}=\mathrm{H}=\mathrm{M} \Theta
$$

The dimensional formula for E is therefore $\mathrm{ML}^{-2} \mathrm{~T}^{-1}$, and the conversion factor
$m l^{-2} t^{-1}$. In thermometric units by substituting l^{3} for m the factor becomes $l t^{-1}$, and in dynamical units $m t^{-8} \theta^{-!}$.
5. Thermal Capacity. - This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
6. Latent Heat. - Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M \Theta / M$ or Θ, and hence the conversion factor is simply the ratio of the temperature units or θ. In dynamical units the factor is $l^{2} t^{-2}$. ${ }^{*}$
7. Joule's Equivalent. - Joule's dynamical equivalent is connected with quantity of heat by the equation

$$
\mathrm{ML}^{2} \mathrm{~T}^{-2}=\mathrm{JH} \text { or } \mathrm{JM} \mathrm{\Theta .}
$$

This gives for the dimensional formula of J the expression $\mathrm{L}^{2} \mathrm{~T}^{-2} \Theta$. The conversion factor is thus represented by $l^{2} t^{-2} \theta$. When heat is measured in dynamical units J is a simple number.
8. Entropy. - The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $\mathrm{M} \Theta / \Theta$ or M , and the conversion factor is m. When heat is measured in dynamical units the factor is $m l^{2} t^{-2} \theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The British thermal unit is the quantity of heat required to raise the temperature of one pound of water $1^{\circ} \mathrm{F}$. The caloric is the quantity of heat required to raise the temperature of one kilogramme of water $\underline{r}^{\circ} \mathrm{C}$. The therm is the quantity of heat required to raise the temperature of one gramme of water $\mathrm{I}^{\circ} \mathrm{C}$. Hence:-
(I) To find the number of calorics in one British thermal unit, we have $m=.45399$ and $\theta=\frac{5}{4} ; \therefore m \theta=.45399 \times 5 / 9=.25199$.
(2) To find the number of therms in one calorie, $m=1000$ and $\theta=1$; $\therefore m \theta=1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199=251.99$.
(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

[^2]mula $m t^{-1} t^{-1} \theta^{\circ}$, where $m=.064799, l=30.48$, and $t=\mathrm{r}$, and is therefore $=$ $.064799 / 30.48=2.126 \times 10^{-3}$.
(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $m l^{-2} t^{-1}$, where $m l$ and t have the same value as before. Hence the number of the latter units in the former is $0.064799 / 30.48^{2}=6.975 \times 10^{-5}$.
(d) Find the number of centimetre gramme second units in the inch grain hour unit of emissivity.

Here the formula is $m l^{-2} t^{-1}$, where $m=0.064799, l=2.54$, and $t=3600$. Therefore the required number is $0.06+799 / 2.54^{2} \times 3600=2.790 \times 10^{-6}$.
(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^{2} t^{-2} \theta}{l t^{-2}}$ or $l \theta$, where $l=.3048$ and $\theta=1.8$; $\therefore 776 \times .3048 \times 1.8=425.7$.
(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogramme metre second and degree-Centigrade units are used?

The conversion factor is $l^{2} t^{-2} \theta$, where $l=.3048, t=1$, and $\theta=1.8 ; \therefore 24832$ $\times l^{2} t^{-2} \theta=24832 \times .3048^{2} \times 1.8=4152.5$.

In gravitation units this would give $4152.5 / 9.8 \mathrm{I}=423.3$.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f=a \frac{q q_{l}}{l^{2}}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_{l} quantities of electricity, and l the distance between q and q_{1}. The magnitude of the force f for any particular values of q, q_{l} and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q=q_{l}$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or
quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$
f=a \frac{m m_{1}}{l^{2}}
$$

where m and m, are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. 'These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (Vide Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m=m_{l}$, and f, a, and l each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the cne system to those in the other. 'The character of this relation can be directly inferred from the dimensional formule of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formula k and \nRightarrow are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P cqual to unity.

ELECTROSTATIC UNITS.

I. Quantity of Electricity. - The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimetre gramme second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is there-
 and the conversion factor is $m^{2} z^{3} t^{-1} k^{3}$.
2. Electric Surface Density and Electric Displacement. - The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantitics have therefore the same dimensional formula, namely, the ratio of the formula for quantity of electricity and for area or $M^{8} L^{-1} \mathrm{~T}^{-1} \mathrm{~K}^{1}$, and the conversion factor $m^{3} l^{-3} t^{-1} k^{3}$.
3. Electric Force at a Point, or Intensity of Electric Field. - This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formula for force and electric quantity, or
which gives the conversion factor $m^{8} l^{-\frac{1}{2}} t^{-1} k^{-\frac{1}{2}}$.
4. Electric Potential and Electromotive Force. - Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$
\frac{M L^{2} T^{-2}}{\mathrm{M}^{\frac{1}{3} \mathrm{~L}^{\frac{3}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{\frac{1}{2}}}=\mathrm{M}^{\frac{1}{1}} \mathrm{~L}^{\frac{1}{-1}} \mathrm{~K}^{-\frac{1}{2}}, ~, ~}
$$

which gives the conversion factor $m^{4} l^{2} t^{-1} k^{-\frac{1}{2}}$.
5. Capacity of a Conductor. - The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$
\frac{\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{\frac{1}{2}}}{\mathrm{~L}^{\frac{1}{2} \mathrm{~L}^{-1} \mathrm{~K}^{-\frac{1}{2}}}=\mathrm{LK}, \text {, }}
$$

which gives $l k$ for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.
6. Specific Inductive Capacity. - This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K / K or I .*
7. Electric Current. - Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulx for electric quantity and for time, or

$$
\frac{M^{\frac{1}{3}} \mathrm{~L}^{-1} \mathrm{~K}^{\frac{1}{2}}}{\mathrm{I}^{\prime}}=\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{3 \mathrm{~T}^{-2}} \mathrm{~K}^{\frac{1}{2}}
$$

and the conversion factor $m^{2} l^{3} t^{-2} k^{4}$.

[^3]8. Conductivity, or Specific* Conductance. - This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

The conversion factor is $t^{-1} k$.
9. Specific* Resistance. - This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and $t k^{-1}$.
10. Conductance. - The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$
\frac{M^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{\frac{1}{2}}}{\mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{-1}}=\mathrm{LT}^{-1} \mathrm{~K}^{-1}
$$

from which we get the conversion factor $7 t^{-1} k^{-1}$.
in. Resistance. - This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $\mathrm{L}^{-1} \mathrm{TK}$ and $t^{-1} t k$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

(a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.

By (1) the formula is $m^{1} l^{\frac{2}{2} t^{-1}} k^{\frac{1}{2}}$, in which in this case $m=0.0648, l=30.48, t=$ 1 , and $k=1 ; \therefore$ the factor is $0.0648^{3} \times 30.48^{3}=4.2836$.
(b) Find the factor required to convert electric potential from millimetre milligramme second units to c. g. s. units.

By (4) the formula is $m^{2} l^{1} t^{-1} k^{-\frac{1}{2}}$, and in this case $m=0.001, l=0.1, t=1$, and $r=1 ; \therefore$ the factor $=0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}=0.01$.
(c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.

By (5) the formula is $l k$, and in this case $l=30.48$ and $k=6 ; \therefore$ the factor $=30.48 \times 6=182.88$.

[^4]
ELECTROMAGNETIC UNITS.

As stated above, thesc units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the clectrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for elcetric quantity may have their dimensional formulx derived from those of the corresponding quantity by substituting P for K .

1. Magnetic Pole, or Quantity of Magnetism. - Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length ${ }^{2} \times$ inductive capacity] or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{3}{T}} \mathrm{~T}^{-1} \mathrm{P}^{3}$, and the conversion factor is $m^{2} l^{1} t^{-1} f^{\frac{1}{2}}$.
2. Density of Surface Distribution of Magnetism. - This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}-^{-\frac{1}{2}} t^{-1} p^{3}$.
3. Magnetic Force at a Point, or Intensity of Magnetic Field. - The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

$$
\frac{M L T^{-2}}{M^{1} L^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}}=\mathrm{N}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{2}}
$$

4. Magnetic Potential. - The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$
\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{P}^{3}}=\mathrm{ML}^{\frac{1}{2} \mathrm{~T}^{-1} \mathrm{P}^{-1},}
$$

which gives the conversion factor $m l^{3} t^{-1} p^{-\frac{1}{3}}$.
5. Magnetic Moment. - This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $\mathrm{M}^{1} \mathrm{~L}^{4} \mathrm{~T}^{-1} \mathrm{P}^{3}$, and the conversion factor $m^{3} l^{\frac{5}{s}} t^{-1} p^{2}$.
6. Intensity of Magnetization. - The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-
tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formule for magnetic moment and volume, or

$$
\frac{\mathrm{M}^{8} \mathrm{~L}^{\frac{3}{T}} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{3}}}{\mathrm{~L}^{8}}=\mathrm{M}^{8} \mathrm{~L}^{-1} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}
$$

The conversion factor is therefore $m^{\frac{1}{2}} l^{\frac{b}{2}} t^{-1} p^{\frac{3}{2}}$.
7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity. - 'This is the analoguc in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
S. Magnetic Susceptibility. - This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formule for intensity of magnetization and magnetic field or

$$
\frac{M^{\frac{1}{2}} L^{-\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}}{\mathrm{~L}^{-1} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{2}}} \text { or } \mathrm{P}
$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.
9. Current Strength. - A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2 \pi c / r$. The dimensional formula is therefore the product of the formulx for magnetic field intensity and length, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{2}}$, which gives the conversion factor $m^{1} b^{-1} t^{-\frac{1}{2}}$.
10. Currert Density, or Strength of Current at a Point. - This is the ratio of the numbers for current strength and area. The dimensional formula

1r. Quantity of Electricity. - This is the product of the numbers for current and time. The dimensional formula is therefore $\mathrm{M}^{1} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{2}} \times \mathrm{T}=\mathrm{M}^{1} \mathrm{~L}^{\frac{1}{2}} \mathrm{P}^{-\frac{1}{2}}$,

12. Electric Potential, or Electromotive Force. - As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$
\frac{M L^{2} T^{-2}}{M^{1} L^{\frac{1}{2}} P^{-3}}=M^{\frac{1}{2}} L^{\frac{1}{2}} \Gamma^{-2} P^{\frac{1}{2}},
$$

and the conversion factor $m^{2} 7^{2} t^{-2} p^{3}$.

[^5]13. Electrostatic Capacity. - This is the ratio of the numbers for quantity of electricity and difference of potential. 'The dimensional formula is therefore
$$
\frac{\mathrm{M}^{3} \mathrm{~L}^{\frac{1}{2}} \mathrm{P}^{-1}}{\mathrm{M}^{1} \mathrm{~L}^{8} \mathrm{~T}^{-2} \mathrm{P}^{3}}=\mathrm{L}^{-1} \mathrm{~T}^{2} \mathrm{P}^{-1}
$$
and the conversion factor $t^{-1} t^{2} p^{-1}$.
14. Resistance of a Conductor. - The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or
$$
\frac{\mathrm{M}^{\frac{1}{4}} \mathrm{~L}^{\frac{1}{2}} \mathrm{P}^{\frac{1}{2}}}{\mathrm{I}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{P}^{-1}}=\mathrm{LT}^{-1} \mathrm{P}
$$

The conversion factor thus becomes $l t^{-1} p$, and in the ordinary system resistance has the same conversion factor as velocity.
15. Conductance. - This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $\mathrm{L}^{-1} \mathrm{TP}^{-1}$ and $l^{-1} t p^{-1}$.
16. Conductivity, or Specific Conductance. - This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows : -

The conversion factor is therefore $l^{-2} t p^{-1}$.
17. Specific Resistance. - This is the reciprocal of conductivity as defined in I_{5}, and hence the dimensional formula and conversion factor are respectively $\mathrm{L}^{2} \mathrm{~T}^{-1} \mathrm{P}$ and $l^{2} t^{-1} p$.
i8. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. - These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$
\frac{I^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-2} \mathrm{P}^{\frac{1}{1}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{2}}}{\mathrm{~L}}=\mathrm{L}
$$

The conversion factor is therefore $\lceil p$, and in the ordinary system is the same as that for length.
19. Coefficient of Mutual Induction. - The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.
20. Electro-kinetic Momentum. - The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-1} \mathrm{P}^{-\frac{1}{2}} \times \mathrm{LP}$

2r. Electromotive Force at a Point. - The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12 , and for length. The dimensional formula is therefore $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{-2}} \mathrm{P}^{\frac{1}{2}}$, and the conversion factor $m^{3} l^{2} t^{-2} p^{3}$.
22. Vector Potential. - This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T , or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}} L^{1} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}$, and the conversion factor $m^{2} l^{1} t^{-1} p^{\frac{1}{2}}$.
23. Thermoelectric Height. - This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulx for these two quantities, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{3} \mathrm{~T}^{-2} \mathrm{P}^{\frac{1}{2}} \mathrm{O}^{-1}$, and the conversion factor $m^{3} l^{3} t^{-2} p^{3} \theta^{-1}$.
24. Specific Heat of Electricity. - This quantity is measured in the same way as 23 , and hence has the same formule.
25. Coefficient of Peltier Effect. - This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$
\frac{M \Theta}{\mathrm{M}^{8} \mathrm{~L}^{\frac{1}{2} \mathrm{P}^{-1}}}=\mathrm{M}^{\frac{3}{2}} \mathrm{~L}^{-3} \mathrm{P}^{\frac{1}{2}} \Theta
$$

and the conversion factor $m^{\frac{1}{k}} l^{-\frac{1}{3}} p^{\frac{1}{3}} 0$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.
(a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.
 60 , and $p=1 ; \therefore$ the factors $=0.064^{8^{\frac{1}{2}}} \times 30.4^{8^{-1}} \times 60^{-1}=0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{3} \times 30.48^{-\frac{1}{2}}=0.046108$.
(b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?

By (5) the formula is $m^{3} l^{3} t^{-1} p^{2}$, and the values for this problem are $m=0.0648$, $l=30.48, t=1$, and $p=1 ; \therefore$ the number $=0.0648^{\frac{1}{2}} \times 30.48^{8}=1305.6$.
(c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimetre milligramme second units?
 $力=1 ; \therefore$ the intensity $=700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}=70000$.
(d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gramme and second units.

By (9) the formula is $m^{\frac{1}{2}} l^{1} t^{-1} p^{-\frac{1}{3}}$, and the values of these quantities are here $m=$ $\mathrm{Io}^{11}, l=1 \mathrm{o}^{-9}, t=1$, and $p=1 ; \therefore$ the factor $=10^{\frac{1}{2}} \times \mathrm{IO}^{-\frac{1}{2}}=10$.
(e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10^{-11} grammes and second units.

By (I4) the formula is $l t^{-1} p$, and for this case $l=10^{-9}, t=\mathrm{I}$, and $p=\mathrm{I}$; \therefore the factor $=10^{-9}$.
(f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gramme and second units to $\mathrm{c} . \mathrm{g}$. s. units.

By (12) the formula is $m^{3} l^{3} t^{-2} p^{\frac{3}{2}}$, and for this case $m=10^{-11}, l=10^{9}, t=1$, and $p=1 ; \therefore$ the factor $=10^{8}$.

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimetre, the gramme, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:-
"Resolied, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international olm, which is based upon the ohm equal to 10^{9} units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.452 I grammes in mass, of a constant crosssectional area and of the length of 106.3 centimetres.
"As a unit of current, the international ampere, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of 0.00 II IS of a gramme per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has boen kept constant, the current itself can be deduced.
"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted : -
"As a unit of electromotive force, the international volt, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\begin{aligned} & \text { 旺 } 00\end{aligned} 4$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of $15^{\circ} \mathrm{C}$., and prepared in the manner described in the accompanying specification.*
"As a unit of quantity, the international conlomb, which is the quantity of electricity transferred by a current of one international ampère in one second.
"As a unit of capacity, the international farad, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity. \dagger
"As a unit of work, the joule, which is equal to 10^{7} units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.
"As a unit of power, the watt, which is equal to 10 " units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.
"As the unit of induction, the kenry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.
"'The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July i2th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894 , the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

[^6]PHYSICAL TABLES

11. Heat Linits.

Name of Unit.
Conversion Factor.

Quantity of heat (thermal units).
" " (thermometric units).
" " (dynamical units).
Coefficient of thermal expansion.
Conductivity (thermal units).
". (thermometric units), or diffusivity.
" (dymamical units).
Emissivity and imissivity (thermal units).

$$
\text { " " } \quad \text { (thermometric units). }
$$

Thermal capacity.
Latent heat (thermal units).
" " (dynamical units).
Joule's equivalent.
Entropy (heat measured in thermal units).
dynamical units).

$$
\begin{aligned}
& m \theta \\
& l^{8} \theta \\
& m l^{2} t^{-2} \\
& \theta^{-1} \\
& m l^{-1} t^{-1} \\
& l^{2} t^{-1} \\
& m l^{-3} \theta^{-1} \\
& m l^{-2} t^{-1} \\
& l t^{-1} \\
& m t^{-3} t^{-1} \\
& m l \\
& 0 \\
& l^{2} t^{-2} \\
& l^{2} t^{-2} \theta \\
& m \\
& m l^{2} t^{-2} \theta
\end{aligned}
$$

III. Magnctic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromagnetic system.
Magnetic pole, or quantity of mag- \} netism.	$m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{3}}$	$m^{\frac{2}{4}} l^{\frac{1}{1}} t^{-1} p^{3}$
Density of surface distribution of $\}$	$m^{\frac{1}{2}}-^{-\frac{1}{3}} k^{-\frac{3}{2}}$	$m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{\frac{1}{3}}$
Intensity of magnetic field.	$m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-2} k^{\frac{1}{4}}$	$m^{\frac{2}{2}} l^{-\frac{1}{2}} t^{-1} 力^{-\frac{3}{2}}$
Magnetic potential.	$m^{\frac{1}{4}} l^{\frac{1}{3}} t^{-2} k^{3}$	$m l^{\frac{1}{2}} t^{-1} p^{-\frac{1}{3}}$
Magnetic moment.	$m^{\frac{1}{4}} l^{3} k^{-\frac{1}{3}}$	$m^{2} l^{\frac{1}{2}} t^{-1} p^{2}$
Intensity of magnetisation.	$m^{\frac{1}{4}} l^{-\frac{1}{2}} k^{-\frac{1}{3}}$	$m^{\frac{1}{4}} 7^{1} t^{-1} p^{2}$
Magnetic permeability.	1	1
$\left.\begin{array}{l}\text { Magnetic susceptibility and mag- } \\ \text { netic inductive capacity. }\end{array}\right\}$	$l^{-2} t^{2} k^{-1}$	
Quantity of electricity.	$m^{\frac{3}{2}} l^{\frac{1}{4} t^{-1} k^{3}}$	$m^{\frac{1}{2}} l^{3} p^{3}$
$\left.\begin{array}{l}\text { Electric surface density and electric } \\ \text { displacement. }\end{array}\right\}$	$m^{\frac{1}{4}} t^{-1} t^{-1} k^{3}$	$m^{\frac{3}{3}} l^{-3} p^{-\frac{3}{3}}$
Intensity of electric ficld.	$m^{\frac{1}{2}} \mathrm{l}^{-\frac{1}{2}} t^{-1} k^{-\frac{1}{3}}$	$m^{3} l^{3} t^{-2} p^{3}$
Electric potential and e. m. f.	$m^{\frac{1}{3}} t^{\frac{1}{2}} k^{-\frac{1}{3}}$	$m^{\frac{2}{2}} l^{9} t^{-2} p^{3}$
Capacity of a condenser.	1 k	$L^{-1} t^{2} p^{-1}$
Inductive capacity.		$l^{-2} t^{2} p^{-1}$
Specific inductive capacity.	-	${ }^{1}$

1II. Mragnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromagnetic system.
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and) coefficient of mutual induction. $\}$ Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific $\}$ heat of electricity. Coefficient of Peltier effect.	$\begin{aligned} & t^{-1} \\ & t k^{-1} \\ & l t^{-1} k^{-1} \\ & l^{-1} t k \\ & l^{-1} t^{2} k^{-1} \\ & m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}} \\ & m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} k^{-\frac{1}{2}} \\ & m^{\frac{1}{2}} l^{-\frac{1}{2}} k^{-\frac{1}{2}} \\ & m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} k^{-\frac{1}{2}} \theta^{-1} \\ & m^{\frac{1}{2}} l^{-\frac{1}{2}} t k^{-\frac{1}{3}} \theta \end{aligned}$	

Smithsonian Tables. AND MEASURES.*
(1) METRIC TO IMPERIAL.

LINEAR MEASURE.

$\left.\begin{array}{c}\text { I millimetre }(\mathrm{mm} .) \\ (.001 \mathrm{m.})\end{array}\right\}=0.03937 \mathrm{in}$.
i centimetre (. 01 m .) $=0.3937$ " "
1 decimetre (. 1 m .) $=3.93708$ "
I Metre (m.) $\cdot=\left\{\begin{array}{c}39.37079 " 6 ~ \\ 3.28059917 \mathrm{ft} . \\ 1.09363306 \mathrm{yds}\end{array}\right.$
$\left.\begin{array}{c}\text { I dekametre } \\ (\text { Io } \mathrm{m} .)\end{array}\right\} . \quad .=10.93633$
i hectometre $\} . \quad=109.36331$ " (100 ml .)
$\left.\begin{array}{r}\text { I kilometre } \\ (1,000 \mathrm{ml})\end{array}\right\} \cdot .=0.6213 \mathrm{~S}$ mile.
$\left.\begin{array}{r}\mathrm{I} \text { myriametre } \\ (\mathrm{I} 0,000 \mathrm{nn} .)\end{array}\right\} .=6.213 \mathrm{~S} 2$ miles.
I micron $=0.001 \mathrm{~mm}$.

SQUARE MEASURE.

I sq. centimetre . $\quad=0.15501 \mathrm{sq}$. in.
$\left.\begin{array}{c}\text { I sq. decimetre } \\ (100 \mathrm{sq} . \text { centm.) }\end{array}\right\}=15.50059 \mathrm{sq}$. in.
I sq. metre or centi- $\}=\{10.76430$ sq. ft. are ($100 \mathrm{sq} . \mathrm{dcm}).\}=\{1.19603 \mathrm{sq} . \mathrm{yd}$.
$\therefore \operatorname{ARE}(100 \mathrm{sq} . \mathrm{m})=.119.60333 \mathrm{sq} . \mathrm{yds}$.
$\left.\begin{array}{c}\text { I hectare (100 ares } \\ \text { or } 10,000 \mathrm{sq} . \mathrm{m} .)\end{array}\right\}=2.47115$ acres.

CUBIC MEASURE.

I cub. centimetre
(c.c.) $(1,000$ cubic $\}=0.06103 \mathrm{cub}$. in. millimetres)
I cub. decimetre
$\left.\begin{array}{l}\text { (c.d.) (1,000 cubic } \\ \text { centimetres) }\end{array}\right\}=61.02705$ " "
$\left.\begin{array}{c}\text { I CUB. METRE } \\ \text { or stere }\end{array}\right\}=\left\{35.3^{165 S_{0}} 74 \mathrm{cub} . \mathrm{ft}\right.$.

MEASURE OF CAPACITY.

$$
\left.\begin{array}{l}
\text { I millilitre (ml.) }(.001 \\
\text { litre })
\end{array}\right\}=0.06103 \text { cub. in. }
$$

$$
\text { I centilitre (.or litre) }= \begin{cases}0.61027 & \text { " } \\ 0.07043 & \text { gill. }\end{cases}
$$

$$
\text { I decilitre (. litre) . }=0.17608 \text { pint. }
$$

I LITRF, (1,000 cub.) centimetres or 1$\}=1.76077$ pints. cub. decimetre) $=2.20007$ gallons. 1 dekalitre (10 litres) $=2.20097$ gallons.
i hectolitre (100 ") $=2.75121$ bushels. I kilolitre (1,000 ") . = 3.43901 quarters.

I microlitre $=0.001 \mathrm{ml}$.

APOTHECARIES' MEASURE.

I cubic centi- $\quad\{0.03527$ fluid ounce. metre (I $\}=\left\{\begin{array}{r}0.23219 \text { fluid drachm. } \\ 0.2 \text { maind }^{\prime} .\end{array}\right.$ gramme w't) I $_{5} .43235$ grains weight. i cub. millimetre $=0.01693 \mathrm{minm}$.

AVOIRDUPOIS WEIGIIT.

I milligramme (mgr.) $=0.015+3$ grain.
I centigramme (.oI gram.) $=0.15432$
I decigramme (.I ") $=1.54324$ grains.
I GRAMME $=15.43235$
I dekagramme (ro gram. $)=5.64383$ drams.
i hectogramme $(100 ")=3.52739 \mathrm{oz}$
I KiLOGRAMME $(1,000 ")=\left\{\begin{array}{c}2.20462125 \mathrm{lb} \\ 15432.34874 \\ \text { grains. }\end{array}\right.$
I myriagramme (10 kilog.) $=22.04621 \mathrm{lb}$.
I quintal $\quad\left(100{ }^{6}\right)=1.96841 \mathrm{cwt}$.
$\underset{(\mathrm{I}, 000 \text { kilog. })}{\mathrm{I} \text { millier or tonne }}\} . .=0.98420591$ ton.

TROY WEIGHT.
I GRAMME.$=\left\{\begin{array}{l}0.03215073 \text { oz. Troy. } \\ 0.64301 \text { pemyweight. } \\ 15.43235 \text { grains. }\end{array}\right.$

APOTHECARIES' WEIGHT.
I GRAMME $\cdots \cdot=\left\{\begin{array}{c}0.25721 \text { drachm. } \\ 0.77162 \text { scruple. } \\ 15.43235 \text { grains. }\end{array}\right.$

Note. - The Metre is the length, at the temperature of $\circ^{\circ} \mathrm{C}$., of the platinum-iridium bar deposited with the Board of Trade.

The present legal equivalent of the metre is 39.37079 inches, as above stated. If a brass metre is, however, compared, not at its legal temperature ($0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.), but at the temperature of $62^{\circ} \mathrm{F}$., with a brass yard at the temperature also of $62^{\circ} \mathrm{F}$., then the apparent equivalent of the metre would be nearly $39^{\circ} 3^{82}$ inches.

The Kilogramme is the weight in vacuo at $0^{\circ} \mathrm{C}$. of the plarinum-iridium weight deposited with the Board of Trade.

The Litre contains one kilogramme weight of distilled water at its maximum density ($4^{\circ} \mathrm{C}$), the barometer being at 760 millimetres.

* Quoted from sheets issued in 1890 by the Standard Office of the British Board of Trade.

Table 2.
EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEICHTS
AND MEASURES.
(2) METRIC TO IMPERIAL.

LINEAR MEASURE.					MEASURE OF CAPACITY.				
	Millimetres to inches.	$\begin{gathered} \text { Metres } \\ \text { to } \\ \text { fect. } \end{gathered}$	$\begin{gathered} \text { Metres } \\ \text { to } \\ \text { yards. } \end{gathered}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres to } \\ & \text { miles. } \end{aligned}$		$\begin{gathered} \text { Litres } \\ \text { to } \\ \text { pints. } \end{gathered}$	Dekalitres gallons.	$\begin{aligned} & \text { Hectolitres } \\ & \text { to } \\ & \text { bushels. } \end{aligned}$	Kilolitres to quarters.
1	0.03937079	3.2Sogo	1.09363	0.62138	1	1.76077	2.20097	2.75121	3.43901
2	0.07874158	6.56180	2.15727	1.24276	2	3.52154	4.40193	5.50242	6.87802
3	0.11811237	$9.54=70$	3.28090	I. 86415	3	5.28231	6.60290	8. 25362	10.31703
4	$0.157+8316$	13.12360	$4 \cdot 37453$	2.48553	4	7.04308	8.80386	11.00483	13.75604
5	0.19685395	16.40450	5.46817	3.10691	5	8.80385	11.00483	13.75604	17.19505
6	0.23622474	19.68540	6.56180	3.72829	6	10.56462	13.20580	16.50725	20.63406
7	0.27559553	22.96629	7.65543	4.34968	7	12.32539	15.40676	19.25846	24.07307
8	0.31496632	26.24719	S.74906	4.97106	S	14.08616	17.60773	22.00966	27.51208
9	0.354337 II	29.52809	9.84270	$5 \cdot 5924$	9	1 5.8 .4693	19.805_{7}	24.76087	30.95110
SQUARE MEASURE.					WEIGHT (AvOIRDUPOIS).				
	$\begin{array}{\|c\|} \text { Square } \\ \text { centumetres } \\ \text { to square } \\ \text { incles. } \end{array}$	Square metres to square feet.	Square metres to yards.	Hectares to acres.			Kilogrammes to grains.		Quintals hundredweights.
1	0.15501	10.76430	I. 19603	2.47114	1	0.01543	15432.34874	2.20462	1.96841
2	0.31001	21.52860	2.39207	$4.94=29$		0.03086	30864.697.48	4.40924	3.93682
3	0.46502	32.29290	$3 \cdot 58810$	$7 \cdot 41343$	3	0.04630	46297.04622	6.61386	5.90523
4	0.62002	43.05720	4.78 .113	9.88457	4	0.06173	61729.39496	S.SiS49	7.87364
5	0.77503	53.82150	5.98017	12.35572	5	0.07716	77161.74370	11.02311	9.84206
6	0.93004	64.58580	7.17620	1.4.82686	6	0.09259	92594.09244	13.22773	II. SI047
	1.0850.4	75.35010	8.37223	17.29800	7	$0.100^{0} 31$	10S026.44118	15.43235	13.77888
	1.24005	86.11439	9.56827	19.76914	8	0.12346 I	123458.75992	17.63697	15.74729
9	I. 39505	96.87869	10.76430	22.2.4029	9	0.13889 I	138891.13866	19.84159	17.71570
CUBIC MEASURE.				ApotienCARIRS' Measure.	Avoirdupors (cont.)		Trov Weigit.		ApotheCaries' Weight.
	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Cub. centimetres to thuid drachins	Milliers or tomnes to tons.		Grammes o onnces 'Troy.	Grammes to pennyweights.	Grammes scruples.
1	61.02705	35.31658	1.30SO2	0.28219	1	$0.9 S_{4}=1$	0.03215	0.64301	0.77162
-	122.05 .110	70.63316	2.61604	0.56438	2	1.96841	0.06430	1.28603	1.54323
3	183.08115	105.94974	3.92.406	0.84657	3	2.95262	0.09645	1.9290 .4	2.31485
4	244.10821	1.41 .26632	5.23209	1.12877	4	3.93682	0.12860	2.57206	3.0S647
5	305.13526	176.58290	6.54011	1.41096	5	4.92103	0.16075	3.21507	3.55 SO 9
6	366.16231	211.899 .48	7.84813	1.69315	6	5.90524	0.19290	3.55809	4.62970
	427.18936	2.47 .21607	9.15615	1.97534	7	6.5894	0.22506	4.50110	5.40131
S	488.216 .41	282.53265	10.46417	2.25753	S	7.87365	0.25721	5.14412	6.17294
9	519.24346	317.84923	11.77219	2.53972	9	S. $S_{57} \mathrm{~S}_{5}$	0.28936	5.78713	6.94455

Smithsonian Tables.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

LINEAR MEASURE.

I inch $\left\{\begin{array}{c}25.39954113 \text { milli- } \\ \text { metres. }\end{array}\right.$
r foot (12 in.$) \cdot .=0.30479449$ metrc.
$\operatorname{IVARD}(3 \mathrm{ft}.) \cdot=0.9143^{8} 3+5$
1 pole ($\left.5 \frac{1}{2} \mathrm{yd}.\right) ~ . ~=5.02911$ metres.
I chain ($22 y \mathrm{~d}$. or $\}$
100 links) $\}=20.11644$
I furlong (220 yd .) $=201.16437 \quad "$
I mile ($1,760 \mathrm{yd}.)=\left\{\begin{array}{c}1.60931493 \text { kilo- } \\ \text { metres. }\end{array}\right.$

SQUARE MEASURE.

I square inch $\quad .=\left\{\begin{array}{l}6.45137 \mathrm{sq} . \text { cen } .\end{array}\right.$ I sq.ft. (i44 sq. in.) $=\left\{\begin{array}{c}9.28997 \text { sq. deci- } \\ \text { metres. }\end{array}\right.$ I SQ. $\operatorname{YARD}(9 \mathrm{sq} \cdot \mathrm{ft})=.\left\{\begin{array}{c}0 . \mathrm{S}_{\mathrm{j}} 6097 \mathrm{I} 5 \mathrm{sq} . \\ \text { metres. }\end{array}\right.$ $\operatorname{I} \operatorname{perch}\left(30 \frac{1}{4}\right.$ sq. yd. $)=\left\{\begin{array}{c}25.2919+\mathrm{sq} . \text { me- } \\ \text { tres. }\end{array}\right.$
1 rood (40 perches) $=10.11678$ ares.
$I \operatorname{ACRE}(4840$ sq. yd. $)=0.40+67$ hectare.
I sq. mile $(6.40$ acres $)=\left\{\begin{array}{c}258.989+5312 \text { hec- } \\ \text { tares. }\end{array}\right.$

CUBIC MEASURE.

1 cub. inch $=16.386175 \mathrm{~S} 9 \mathrm{cub}$. centimetres. $\left.\begin{array}{l}\text { I cub. foot }(1728 \\ \text { cub. in. })\end{array}\right\}=\left\{\begin{array}{c}0.02832 \text { cub. metre, } \\ \text { or } 28.3153 \text { r cub. } \\ \text { decimetres. }\end{array}\right.$
$\begin{aligned} & \text { I CUB. YARD } \\ & \quad \text { cub. } f t .)\end{aligned}(27\}=0.76+5$ I $3+2$ cub. metre.

APOTHECARIES' MEASURE.

$\left.\begin{array}{l}\text { I gallon }(S \text { pints or } \\ \text { I } 60 \text { fluid ounces })\end{array}\right\}=4.54346$ litres.
$\left.\begin{array}{c}\text { I fluid ounce, } f \\ (8 \text { drachms })\end{array}\right\}=\left\{\begin{array}{c}28.39661 \text { cubic } \\ \text { centimetres. }\end{array}\right.$
$\left.\begin{array}{c}\text { Ifluid drachm, f } 3 \\ \text { (} 60 \text { minims) }\end{array}\right\}=\left\{\begin{array}{c}3.5195 \mathrm{~S} \mathrm{cubic} \\ \text { centimetres. }\end{array}\right.$

Note. - The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

gill	$=1.419 S_{3}$ decilitres.
1 pint (4 gills)	$=0.56793$ litre.
1 quart (2 pints)	$=1.13586$ litres.
I (:allon (t quarts)	$=4 \cdot 5+3+5797$
I peck (2 galls.)	$=9.08692$
I bushel (\oint galls.)	$=3.63477$ dekalitres.
I quarter (S bushels)	$=2.907$ Si liectolitres

AVOIRDUPOIS WEEGITT.

I grain
64.79895036 milli-

I dram . . . $={ }_{1.77185 \text { grammes. }}$
I ounce (16 dr.) $\quad=28.34954$ "
I MOUND (i 6 oz. or $\}=0.45359265$ kilogr.
$\left.\begin{array}{ll}7,000 \text { grains) }\end{array}\right\}=6.35030 \quad$ "

I liundredweight $\}=\{50.80238$ "
(II2 lb.) $\}=\left\{\begin{array}{l}0.50802 \text { quintal. } \\ 0.50\end{array}\right.$ I ton (20 cwt.) . $=\left\{\begin{array}{c}\text { I.OI } 604754 \text { millier } \\ \text { or tonne. }\end{array}\right.$

TROY WEIGHT.

$\left.\begin{array}{c}\text { I Troy ounce (4So } \\ \text { grains avoir.) }\end{array}\right\}=3$ I.10350 grammes.
$\left.\begin{array}{l}\text { I pennyweight } \\ \text { grains) }\end{array} 24\right\}=1.55517$ "
Note. - The Troy grain is of the same weight as the Avoirdupois grain.

APOTIECARIES' WEIGHT.

I ounce (S drachms) $=31.10350$ grammes.
$\left.\begin{array}{c}\text { I drachm, } \\ \text { ples }\end{array}\right) \mathrm{i}$ (3 scru- $\}=3.88794$

Note. - The Apothecaries' ounce is of the same weight as the Troy ounce. The Apolhecaries' grain is also of the same weight as the Avoirdupois grain.

Note. - The Vard is the length at $6_{2}{ }^{\circ}$ Fahr., marked on a bronze bar deposited with the Board of Trade.
The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of $0^{\circ} \mathrm{C}$., and which is also deposited with the Board of Trade.

The Gatcon contains 10 lb . weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches. The weight of a cubic inch of water is $\mathbf{2 5 2 . 2 8 6}$ grains.
Gmithsonian Tables.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.
(4) IMPERIAL TO METRIC.

Linear measure.					MEASURE OF CAPACITY.							
	$\begin{aligned} & \text { Inches } \\ & \text { to } \\ & \text { millimetres. } \end{aligned}$	$\begin{gathered} \text { Feet } \\ \text { to } \\ \text { metres. } \end{gathered}$	$\begin{gathered} \text { Yards } \\ \text { to } \\ \text { metres. } \end{gathered}$	Miles to kilometres.		Quarts litres.		$\begin{aligned} & \text { allons } \\ & \text { to } \\ & \text { itres. } \end{aligned}$		ushcls to alitres.	$\begin{aligned} & \text { Quarters } \\ & \text { to } \end{aligned}$ hectolitres.	
1	25.39954113	3 0.30479 0.60959	0.91438	1.60931	1	1. 13586		$5+3+6$		63477	2.907 SI	
z	50.7990 S226		1. 82877	3.21863		2.27173		08692		26953	5.81563	
3	76.19562340	0.91438	2.74315	4.82794	3	3.40759		63037	10.9	90430	$8.723+4$	
	101.59S16.453	1.21918	3.65753	6.43726	4	4.54346		17383	I 4.5	53907	11.63125	
5	126.99770566	1.52397	4.57192	8.0.4657	5	5.67932		71729	18.1	17383	14.53907	
6	152.39724679	1.82876	5.48630	9.65589	6	6.81519		26075	21.8	. 80860	17.44688	
	177.79678792203.10632906	2.13356	6.40068	11.26520	7	7.95105		Solz 1	25.4	44336	20.35469	
8		$2.43 S^{2} 5$	$7 \cdot 31507$	12.87452	S	9.05692		34766	29.0	07813	23.26250	
9	228.59587019	2.743^{15}	8.22945	14.48383	9	10.2227 S		S91I2	32.7	71290	26.17032	
SQUARE MEASURE.					WEIGHT (Avoirdupors).							
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres	Acres to hectares.	Grains to milligrammes.			Ounces to grammes.		$\begin{aligned} & \text { Pounds } \\ & \text { to kilo- } \\ & \text { grammes. } \end{aligned}$	Hundredweights to quintals.	
1	6.4513712.9027319.3541025.8054732.25683	9.28997	0.83610	0.40 .467	1	64.79895036		2S. 34954		0. 45359	0.50802 I. 01605	
2		18.5799427.86990	1. 67219	0. 50934	2	129.59790072		56.6990885.04862		0.90719		
3			2.50829	1.21401	3	194.39685109				1.36078	$\begin{aligned} & 1.01605 \\ & 1.52 .407 \end{aligned}$	
4		$\begin{array}{r} 27.86990 \\ 37.15957 \end{array}$	$\begin{aligned} & 3 \cdot 34439 \\ & 4 \cdot 180.49 \end{aligned}$	$\begin{aligned} & 1.61868 \\ & 2.02336 \end{aligned}$	4 259.195 SOL 45 5 $323.09+751$			${ }_{5} \begin{array}{r}\text { S5.04862 } \\ 113.39816\end{array}$		$1 \begin{aligned} & 1.361437 \\ & 2.26796\end{aligned}$	$\begin{aligned} & 1.52 .407 \\ & 2.03209 \end{aligned}$	
5		$\begin{aligned} & 37.159 \$ 7 \\ & 46.44984 \end{aligned}$						141.74770			2.54012	
6	$38.70 S 20$+15.15057	55.739^{81}	5.01658	2.42803	6	388.79370218		170.09724		2.72156	$\begin{aligned} & 3.04814 \\ & 3.55617 \\ & 4.06419 \end{aligned}$	
		65.02978	5.85268	2.83270		+53.59265?		198.4 .46		3.17515		
8	51.61094	74.31974	6.68878	3.23737	8	5IS.3916020		226.796		3.62874		
9	58.06230	83.60971	7.52.487	3.64204	9	583.19055		255.145		4.08233	$4 \cdot 57221$	
CUbic measure.				ApotheCarles' Measure.	Avoirnupois (cont.).		Troy Weight.				ApotheCaries' Weight	
	Cubic inches to cubic centimetres.	Cubic feet 10. cubic metres.	Cubic yards to cubic metres. meir	Fluid drachms to cubic centimetres.	Tons 10 milliers or tomes.		Ounces to grammes.		Pennyweights to grammes.		Scruples to grammes.	
I	16.38618	0.02832	0.76451	3.54958	I	1.01605	31.10350		1.55517		I. 29598	
2	32.77235	0.05663	1.52903	7.09915	2	2.03210	62.20699		3.11035		2.59196	
3	49.1585365.54770	0.08495	2.29354	10.64873	3	3.04814	93.31049		4.66552		$\begin{aligned} & 3.88794 \\ & 5.18391 \end{aligned}$	
4		0.113260.14158	$\begin{aligned} & 3.05805 \\ & 3.82257 \end{aligned}$	$\begin{aligned} & 1.4 .19931 \\ & 17.74788 \end{aligned}$	45	$\begin{aligned} & 4.06+19 \\ & 5.0802 . \end{aligned}$	124.41398		6.22070			
5	65.54470 81.93088							$5 \cdot 517.48$		7.7758	6.47989	
6	98.31706	0.16989	4.58708	21.29746	6	6.09629	186.62098		$\begin{array}{r} 9.33105 \\ 10.88622 \\ 12.44140 \\ 13.99657 \end{array}$		$\begin{array}{r} 7.77587 \\ 9.07185 \\ 10.36783 \\ 11.66381 \end{array}$	
	114.70323	0.19821	5-35159	24.8470 .4		7.11233		7.72447				
8	$131.089+1$	0.22652	6.11611	28.39661	S	S.12S3		8.82797				
9	$147 \cdot 77558$	0.25484	6.88062	31.94619	9	9.14443		9.93147				

Smithsonian Tables.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*
(1) CUSTOMARY TO METRIC.

J.INEAR.					CAPACITY.								
	Inclies to millimetres.	Feet to metres.	Yards to matres.	Miles to kilometres.		Fluid drams to millimetres or cubic centimetres.	Fluid ounces to millilitres.	Quarls to litres.	Gallons to litres.				
1.	25.4001	0.304801	0.914 .402	1.60935	1	$3 \cdot 70$	29.57	0.94636	3.78543				
2	50.8001	0.609601	1.82880.4	3.21809	2	7.39	59.15	1. 89272	7.57087				
3	76.2002	0.914402	2.743205	4.82804	3	11.09	S8.72	2.83008	I 1.35630				
4	101.6002	1.219202	3.657607	6.43739	4	14.79	118.29	$3 \cdot 75543$	15.14174				
5	127.0003	1.524003	4.572009	S.0.4674	5	15.48	147.87	4.73179	18.92717				
6	152.1003	1.S28S0.4	5.486411	9.65608	6	22.18	177.44	5.67815	22.71261				
7	177.3004	2.133604	6.100813	11.26543	7	25.88	207.02	6.62451	26.49804				
8	203.200.4	2.438405	$7 \cdot 315215$	12.87478	S	29.57	236.59	7.57087	30.28348				
9	228.6005	2.743^{205}	S.229616	14.48412	9	33.27	266.16	8.51723	34.06891				
SQUARE.					WEIGHT.								
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milligrammes.	Avoirdupois ounces to grammes.	A voirdupois pounds to kilogrammes.	Troy ounces to grammes.				
I	6.452	9.290	0.836	0.4047	1	64.7989	28.3495	0.45359	31.10348				
2	12.903	18.581	1.672	0.5094	2	129.5978	56.6991	0.90719	62.20696				
3	19.355	27.871	2.508	1.2141	3	194.3968	S5.04S6	1.36075	93.31044				
4	25.807	37.161	$3 \cdot 344$	1.6187	4	259.1957	113.3981	1.81437	124.41392				
5	32.258	46.45^{2}	4.IS I	2.0234	5	323.9946	$141.7+76$	2.26796	I 55.51740				
6	$3 \mathrm{S.710}$	55.742	5.017	2.42 SI	6	388.7935	170.0972	2.72156	186.62088				
7	45.161	65.032	5.853	$2.53=S$	7	453.5924	198.4467	3.17515	217.72437				
S	51.613	$74 \cdot 323$	6.659	3.2375	8	518.3914	226.7962	3.62874	$248.8=755$				
9	58.065	83.613	$7 \cdot 525$	3.6422	9	$55_{3} .1903$	255.1457	4.08233	279.93133				
CUBIC.													
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.		I Gunter's I sq. statut	chain $=$ e mile $=$	$\begin{aligned} & 20.1168 \\ & 259.000 \end{aligned}$	metres. hectares.				
I	1 6.387	0.02832	0.765	0.35239	I fathom			1.	metres.				
2	32.774	0.05663	1.529	0.70479	1 nautical mile $=$			1853.25	metres.				
3	49.16I	0.08495	2.294	1.05718	1 foot			0.30450	metre.				
4	65.549	0.11327	3.058	1.40957		I avoir. pound $=$		453.5924	gramme.				
5	81.936	0.14158	3.823	1.76196		$15432.35639 \text { grains }=$		1 .000 kilogranme.					
6	98.323	0.16990	$4 \cdot 587$	2.11436									
7	114.710	0.19822	$5 \cdot 352$	2.46675									
8	131.097	0.22654	6.116	2.81914									
9	1.47 .484	0.25485	6.SSI	3.17154									

The only authorized material standard of customary length is the Troughton scale belonging to the United States Office of Standard Weights and Measures, whose lencth at $59^{\circ} .62$ Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the l'ritish yard.

The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of $175: 3$ by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy.

The grain 'Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The Pritish gallon = 4.54346 litres.
The British bushel $=36.3477$ litres.
The length of the nautical mile given above and adopted by the U.S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

* Quoted from sheets issued by the United States Office of Standard Weights and Measures.

Smithsonian Tables.

TABLES FOR CONVERTING U. S. WEICHTS AND MEASWRES.
(2) METRIC TO CUSTOMARY.

	L1NEAR.				CAPACITY.					
	Metres to inches	Metres to feet.	Metres to yards.	Kilometres to miles.		Millilitres or cubic centimetres to thid drams.	Centilitres to fluid ounces.	Litres to quarts.	Decalitres to gailons.	Hectolitres to bushels.
I	39.3700	3.2SoS 3	1.093611	0.62137	1	0.27	$0.33{ }^{\text {S }}$	1.0567	2.6417	2.8377
2	78.7400	6.56167	2.1S7222	1.24274	2	0.54	0.676	2.1134	5.2834	5.6755
3	115.1100	9.84250	3.280S33	1.86411	3	0.81	1.014	3.1700	7.9251	S.5132
4	157.4800	13.12333	4.374444	2.48548	4	1. 08	1. 353	4.2267	10.5668	11.8510
5	196.8500	16.40 .417	$5 \cdot 465056$	3.10685	5	1.35	1.691	5.2834	13.2085	14.1887
6	236.2200	19.68500	6.561667	$3 \cdot 72$ S22	6	1.62	2.029	6.3401	15.8502	17.0265
	275.5900	22.96583	$7.65527 S$	4.34959	7	1.59	2.367	7.3968	IS.4919	19.8642
8	31.4 .9600	26.2.4667	S.748889	4.97096	8	2.16	2.705	8.4535	21.1336	22.7019
9	354.3300	29.52750	9.842500	$5 \cdot 59 \geq 33$	9	2.43	3.043	9.5101	23.7753	25.5397
SQUARE.					WEIGHT.					
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milligrammes to grains.	$\begin{gathered} \text { Kilo } \\ \text { gramm } \\ \text { to } \\ \text { grains } \end{gathered}$	H gra to avoir	ecto- munces dupois.	Kilogrammes to pounds avoirdupois.
	0.1550	10.764	1.196	2.47 I	1	0.01543	15.4	36	5274	2.20462
2	0.3100	$21.52 S$	2.392	4.942	2	0.03086	30864	71	0548	$4 \cdot 40924$
3	0.4650	32.292	$3 \cdot 588$	7.413	3	0.04630	46297	.0710	5822	6.613^{87}
4	0.6200	43.055	4.784	9.884	4	0.06173	61729	$43 \quad 14$	1096	8.8ı8.49
5	0.7750	53.819	5.980	I 2.355	5	0.07716	77161	.78 17	6370	11.02311
6	0.9300	$6.4 .5 \mathrm{~S}_{3}$	7.176	14.526	6	0.09259	9259	1421	1644	13.22773
7	1.0850	$75 \cdot 347$	S.372	17.297	7	0.10803	10 OO2	4924	6918	15.43236
8	1.2400	86.111	9.568	19.768	S	0.12346	12345	S 2 S	2192	17.63698
9	1.3950	96.575	10.764	22.239	9	0.13889	13859	213	7466	19.84160
CUBIC.					WEIGHT.					
	Cubic centimetres to cubic inches.	Cubic derimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Quintals to pounds av.			Milliers or tonnes to pounds av.		ilogrammes to ounces Troy.
I	0.0610	61.023	$35 \cdot 314$	1.308	1	220.46		220.4 .6		32.1507
2	0.1220	122.047	70.629	2.616	2	440.92		4.109 .2		6.4 .3015
3	0.1831	1 S3.070	105.943	3.92 .4	3	661.39		6613.9		96.4522
4	0.2 .441	2.44 .094	141.258	$5 \cdot 232$	4	$88 \pm .85$		SSiS.5 I		28.6030
5	0.3051	305.117	176.572	6.5 .40	5	1102.31		11023.1		60.7537
6	0.3661	366.140	211.857	7.S.4 5	6	1322.77		13227.7		92.9044
7	0.01272	427.164	247.201	9.156	7	1543.24		15.432 .4		25.0552
8	0.1982	485.187	282.516	10.464	8	1763.70		17637.0		57.2059
9	0. 5492	549.210	317.830	11.771	9	1984.16		$19^{8} 41.6$		89.3507

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near P'aris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to t of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by 10 , in September, 1889 , to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 8890 , and are kept in the Office of Standard Weights and Measures in Washington, D. C.

The inetric system was legalized in the United States in 1866.
"Ihe International Standard Metre is derived from the Metre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogranme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.
Smithsonian Tables.

CONVERSION FACTORS．
TABLE 4．－Conversion Factors for Expression of Lengths．

	¢	응N․ ○スこの inini－
	$\stackrel{8}{8}$	
$\stackrel{\dot{\Xi}}{\Xi}$	－io	
	$\stackrel{8}{8}$	
$\begin{aligned} & \dot{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { a } \end{aligned}$	－in	
	$\stackrel{\circ}{8}$	
تِّ	－ion	
	\％	
$\begin{aligned} & \text { 邑 } \\ & \text { 㳦 } \\ & \text { 品 } \end{aligned}$	¢	
	8	
	io	
	\％	

TABLE 5．－Conversion Factors for Expression of Areas．										Dimensions $=\mathrm{L}^{2}$ ．	
Square mile．		Square yard．		Square foot．		Square inch．		Square centimetre．		Circular mil．	
No．	Log．										
1 3.22831×10^{-7} 3.58701×10^{-8} 2.49098×10^{-10} 3.86101×10^{-13} 1.95641×10^{-16}	0 $\overline{7} .508975$ 8.554732 $\frac{10}{10} 396370$ $\frac{13.56700}{16.291460 ~}$	3.09760×10^{6} 1 1.11111×10^{-1} 7.71605×10^{-4} 1.1959×10^{-6} 6.06017×10^{-10}	6.491025 0 $\mathbf{1} 0.45757$ 4.857395 6.077726 10.782485	$\left\lvert\, \begin{gathered} 2.79784 \times 10^{7} \\ 9.00000 \\ 1 \\ 6.9444 \times 10^{-3} \\ 1.07639 \times 10^{-6} \\ 5.46673 \times 10^{-9} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 7.445268 \\ 0.95 .42 .42 \\ 0 \\ \overline{3} .841637 \\ \overline{5} .031968 \\ 9.737727 \end{gathered}\right.$	$\begin{gathered} 4.01 .449 \times 10^{9} \\ 1.29600 \times 10^{3} \\ 1.44000 \times 10^{2} \\ 1 \times 10^{-1} \\ 1.55000 \times 10^{-7} \\ 7.5339 \times 10^{-7} \end{gathered}$	$\left\|\begin{array}{c} 9.603630 \\ 3.112605 \\ 2.158362 \\ 0 \\ \overline{1} \cdot 190331 \\ \overline{7} .895090 \end{array}\right\|$	$\begin{aligned} & 2.59000 \times 10^{10} \\ & 5.36127 \times 10^{3} \\ & 9.29030 \times 10^{2} \\ & 6.451631 \\ & 5.06709 \times 10^{-6} \end{aligned}$	$\begin{gathered} 10.413299 \\ 3.922274 \\ 2.968032 \\ 0.809669 \\ 0 \\ 6.70 .4759 \end{gathered}$	$\begin{gathered} 5.11141 \times 10^{15} \\ 1.65012 \times 10^{9} \\ 1.82925 \times 10^{8} \\ 1.27324 \times 10^{61} \\ 1.97352 \times 10^{5} \\ 1 \end{gathered}$	$\begin{gathered} 15.708540 \\ 9.217515 \\ 8.262272 \\ 6.104910 \\ 5.295241 \\ 0 \end{gathered}$

Smithsonian Tables．

Tables 6,7.
CONVERSION FACTORS.

Cubic mile.		Cubic yard.		Cubic foot.		Cubic inch.		Cubic centimetre.	
No.	Log.	No.	Log.	No.	I.og.	No.	Log.	No.	Log.
$1{ }^{1}$	- 0	5.45178×10^{9}	9.736538	1.47199×10^{11}	11.167902	2.54358×10^{14}	14.405445	4.16825×10^{15}	$15.6199+8$
1. S $_{3.426 \times 10^{-10}}$	IIT.263462		- 0	2.70000×10	1.431364	4.66560×10^{4}	4.668907	7.64555×10^{5}	$5.883+10$
6.79357×10^{-12}	12.832098	3.70370×10^{-2}	$\overline{2} \cdot 568636$	1	0	1.72800×10^{3}	3.237547	2.83168×10^{4}	$4.4520 .46$
3.94071×10^{-15}	I5.594555	$2.1433+\times 10^{-5}$	$\overline{5} \cdot 331092$	$5.7870 .4 \times 10^{-4}$	- ${ }^{4} 762.456$	1	${ }^{3}$	1.63871×10	1.214502
2.40796×10^{-16}	16.380052	1.30795×10^{-6}	6.116590	$3 \cdot 53147 \times 10^{-5}$	5.547954	6.10236×10^{-2}	$\overline{2} .78549$ S	1	0

TABLE 6. - Conversion Factors for Expression of Volumes.
TABLE 7. - Conversion Factors for Expression of Capacittes.

Cubic foot.		Cubic inch.		United States gallon.		British gallom.		Litres.	
No.	Log.								
1	- 0	1.72800×10^{3}			0.S73932	$6.227 \mathrm{~S}_{5}$		2.83168×10	5. 4520.6
$5.7870 .4 \times 10^{-4}$	4.762.456	1	0	4.32900×10^{-3}	3.636388	$3.60 .408 \times 10^{-3}$	了 3.556795	1.63872×10^{-2}	$\overline{2} .214502$
1.33681×10^{-1}	I. 126068	2.31000 $\times 10^{2}$	2.363612	1	0	8.32544×10^{-1}	1.920.407	$3.785 .2$	0.575114
1.60569×10^{-1}	I. 205661	*2.77163 $\times 10^{2}$	$2.4+3205$	I. 20114	0.079593		0	4.54682.	0.657707
3.53147×10^{-2}	$\overline{2} .547954$	6.10236×10	1. 785.198	2.64171×10^{-1}	1. 121886	2.19934×10^{-1}	T. 342292	1	0

* Founded on weight of one cubic inch of water at $62^{\circ} \mathrm{F} .=252.286$ grains, and one British gallon $=10$ pounds A voirdupois.

CONVERSION FACTORS.
TABLE 8. - Conversion Factors for Expression of Masses.*

British or Lony ${ }^{\circ}$ Ton. (2240 lbs.)		U. S. or Short 'Ton. (2000 lbs.)		Pound.		Grain.		Gramme.	
No.	Log.								
8.92857×10^{-1} $4.46 .429 \times 10^{-4}$ 6.37755×10^{-8} $9.8 .4205 \times 10^{-7}$	0 -1.950782 4.6 .19752 8.80 .465 .1 7.993086	$\begin{gathered} 1.12000 \\ 1 \\ 5.00000 \times 10^{-1} \\ 7.1 .4286 \times 10^{-8} \\ 1.10231 \times 10^{-6} \end{gathered}$	$\begin{aligned} & 0.0+9218 \\ & 0 \\ & 5.698970 \\ & 5.853872 \\ & 6.042304 \end{aligned}$	$\begin{aligned} & 2.24000 \times 10^{3} \\ & 2.00000 \times 10^{3} \\ & 1 \\ & 1.42857 \times 10^{-4} \\ & 2.20 .462 \times 10^{-3} \end{aligned}$	$\begin{gathered} 3 \cdot 350248 \\ 3 \cdot 301030 \\ 0 \\ \overline{4} \cdot t 54902 \\ 3 \cdot 3+3334 \end{gathered}$	$\begin{gathered} 1.56800 \times 10^{7} \\ 1.40000 \times 10^{7} \\ 7.00000 \times 10^{3} \\ 1.5432 .4 \times 10 \end{gathered}$	$\begin{gathered} 7 \cdot 195346 \\ 7 \cdot 146128 \\ 3 \cdot 845098 \\ 0 \\ 1.188432 \end{gathered}$	$\begin{aligned} & 1.01605 \times 10^{63} \\ & 9.07186 \times 10^{5} \\ & 4.53593 \times 10^{2} \\ & 6.47989 \times 10^{22} 1 \end{aligned}$	$\begin{gathered} 6.006914 \\ 5.057696 \\ 2.656666 \\ 2.811568 \\ 0 \end{gathered}$

*The French tonne $=$ roon kilogrammes $=x 0^{6}$ grammes. The troy pound $=57$ grains. The troy ounce $=48 \mathrm{~g}$ grains. The avoirdupois ounce $=437.5$ grains. Troy weight
is used for gold, silver, and jewels, except diamonds and pearls, for which the grain is 0.8 troy grain. One carat $=3.2$ troy grains. TABLE 9. - Conversion Factors for Expression of Moments of Inertia.
Smithsonian Tables.

	Dimensions $=$ ML? ${ }^{\text {a }}$	
Units.	Centimetre Gr	ne Units.
Log.	No.	Log.
$\begin{gathered} 3.8 .45098 \\ 1.686735 \\ 0 \\ 2.220 .400 \end{gathered}$	$\begin{gathered} 4.21402 \times 10^{5} \\ 2.920 .40 \times 10^{3} \\ 6.02005 \times 10 \\ 1 \end{gathered}$	$\begin{gathered} 5 \cdot 624609 \\ 3 \cdot 466336 \\ 1.779600 \\ 0 \end{gathered}$

Tables 10, 11.
CONVERSION FACTORS.
TABLE 10. - Conversion Factors for Expression of Angles. \quad Dimension $=1$.

Radian.		Degree.		Hundredth of Circumference.	
No.	Log.	No.	Log.	No.	Log.
$\begin{gathered} 1 \\ 1.74533 \times 10^{-2} \\ 6.28321 \times 10^{-2} \end{gathered}$		$\begin{aligned} & 5.72956 \times 10 \\ & 3.60000 \end{aligned}$	$\begin{gathered} 1.758121 \\ 0 \\ 0.556302 \end{gathered}$	$\begin{aligned} & 1.59155 \times 10 \\ & 2.77778 \times 10^{-1} \\ & 1 \end{aligned}$	$\begin{gathered} 1.201819 \\ 1.443697 \\ 0 \end{gathered}$

* The sidereal year $=365.2563578$ mean solar days.

Tables 12， 13.
CONVERSION FACTORS．
TABLE 12．－Conversion Factors for Expression of Velocities．

	$\stackrel{\text { en }}{\substack{\text { en }}}$	
	$\dot{8}$	
	－80	
	$\dot{8}$	
	－80	
	安	
	$\stackrel{\text { ¢ }}{\substack{\circ \\ \hline \\ \hline}}$	
	$\dot{8}$	
	$\stackrel{\text { 8io }}{\substack{\text { ¢ }}}$	
	\％	

Smithsonian Tables．

Tables 14, 15.
CONVERSION FACTORS.

Mile Ton Hour Units. (One ton = 2000 lbs .)		Foot Pound Second		Foot Grain Second Units.		Metre Kilogramme Second Units.		Centimetre Gramme Second Units.	
No.	Log.								
1 3.40909×10^{-4} 4.87013×10^{-8} 2.4650×10^{-3} 2.46580×10^{-8}	0 4.532639 8.657541 3.391956 8.391956	$\begin{aligned} & 2.93333 \times 10^{3} \\ & 1 \\ & 1.42857 \times 10^{-4} \\ & 7.23300 \\ & 7.23300 \times 10^{-5} \end{aligned}$	$\begin{gathered} 3 \cdot 467361 \\ 0 \\ \overline{4} \cdot 15 \cdot 1902 \\ \frac{0.859318}{5.859318} \end{gathered}$	$\begin{gathered} 2.05333 \times 10^{7} \\ 7.00000 \times 10^{3} \\ 1 \\ 5.06309 \times 10^{4} \\ 5.06309 \times 10^{-1} \end{gathered}$	$\begin{gathered} 7 \cdot 312459 \\ 3.845098 \\ 0 \\ 4.704416 \\ 1.704+16 \end{gathered}$	$\begin{gathered} 4.05549 \times 10^{-2} \\ 1.38255 \times 10^{-1} \\ 1.97508 \times 10^{-5} \\ 1.00000 \times 10^{-5} \end{gathered}$	$\begin{gathered} \frac{2.60 S 044}{} \\ \frac{1}{5} \cdot 1.40682 \\ 5.295584 \\ 0 \\ 5.000000 \end{gathered}$	$\begin{aligned} & 4.05519 \times 10^{7} \\ & 1.38255 \times 10^{4} \\ & 1.97508 \\ & 1.00000 \times 10^{5} \\ & 1 \end{aligned}$	$\begin{gathered} 7.60804 .4 \\ 4.1 .40682 \\ 0.29558 .4 \\ 5.000000 \\ 0 \end{gathered}$

Smithsonian Tables.
Table 16. - Conversion Factors for Expression of Force or Time Rate of Change of Momentam.

Dynes. (Cm. Gr. Scc. Units.)		Millimetre Milligramme Second Units.		Poundals. (Foot Pound Second Units.)		Foot Grain Second Units.	
No.	Log.	No.	Log.	No.	Log.	No.	Log.
$\begin{aligned} & 1 \\ & 1.00000 \times 10^{-4} \\ & 1.38255 \times 10^{4} \\ & 1.97507 \end{aligned}$	$\begin{gathered} 0 \\ 4.000000 \\ 4.1 .40682 \\ 0.295584 \end{gathered}$	1.00000×10^{4} 1	$\begin{aligned} & 4.000000 \\ & 0 \\ & \text { S.140682 } \\ & 4.295584 \end{aligned}$	$\begin{gathered} 7.23300 \times 10^{-5} \\ 7.23300 \times 10^{-9} 1 \\ 1.4285 .4 \times 10^{-4} \end{gathered}$	$\begin{gathered} \overline{5} \cdot 859318 \\ 9 \cdot 859318 \\ 0 \\ \overline{4} \cdot 154902 \end{gathered}$	$\begin{gathered} 5.063 \mathrm{IO} \times 10^{-1} \\ 5.063 \mathrm{IO} \times \mathrm{IO}^{-5} \\ 7.00000 \times \mathrm{IO}^{3} \\ 1 \end{gathered}$	$\begin{gathered} \overline{1} \cdot 70.4416 \\ 5 \cdot 70.4416 \\ 3 \cdot S .45098 \\ 0 \end{gathered}$

Table 17. - Conversion Factors for Expression of Linear Accelerations.

Miles $\left\{\begin{array}{l}\text { per hour, per sec. } \\ \text { per sec., } \\ \text { per hour. }\end{array}\right.$		Miles $\left\{\begin{array}{l}\text { per hour, per min. } \\ \text { per min., per hour. }\end{array}\right.$		Feet per sec., per sec.		Kilom. $\left\{\begin{array}{l}\text { per hour, per sec. } \\ \text { per sec., per hour. }\end{array}\right.$		Kilom. $\left\{\begin{array}{l}\text { per hour, per min. } \\ \text { per min., per hour. }\end{array}\right.$		Centimetres per sec., per sec.	
No.	l.og.	No.	Log.								
$\begin{gathered} 1 \\ 1.66667 \times 10^{-2} \\ 6.81818 \times 10^{-1} \\ 6.21371 \times 10^{-1} \\ 1.03562 \times 10^{-2} \\ 2.23694 \times 10^{-2} \end{gathered}$	$\begin{gathered} 0 \\ \overline{2} \cdot 221849 \\ \overline{1} \cdot 833669 \\ \frac{1}{2} \cdot 793350 \\ \frac{2}{2} .345199 \\ \hline \end{gathered}$	$\begin{gathered} 6.00000 \times 10 \\ 1 \\ 4.09091 \times 10 \\ 3.7282 .4 \times 10 \\ 6.21371 \times 10^{-1} \\ 1.3 .4216 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{I} .77815 \mathrm{I} \\ 0 \\ \mathrm{I} .61 \mathrm{IS} 20 \\ \mathrm{I} .571502 \\ \frac{1}{1.793350} \\ 0.12780 .4 \end{gathered}\right.$	$\begin{gathered} 1.46667 \\ 2.44 .444 \times 10^{-2} \\ 1 \times \\ 9.113 .14 \times 10^{-1} \\ 1.51891 \times 10^{-2} \\ 3.28084 \times 10^{-2} \end{gathered}$	$\left\|\begin{array}{c} \frac{0}{2} 16633 \mathrm{I} \\ \frac{2}{2} .385 \mathrm{r} 30 \\ 0 \\ \overline{1} \cdot 95968 \mathrm{I} \\ \frac{2}{2} \cdot 181530 \\ 2.515984 \end{array}\right\|$	$\begin{aligned} & 1.60934 \\ & 2.65233 \times 10^{-2} \\ & \mathrm{I} .09728 \\ & 1 \\ & 1.66667 \times 10^{-2} \\ & 3.60000 \times 10^{-2} \end{aligned}$	$\left\|\begin{array}{c} \frac{0.206650}{2} \cdot 428.498 \\ 0.0 .40318 \\ 0 \\ \bar{z} \cdot 221849 \\ \frac{2}{2} .556302 \end{array}\right\|$	$\begin{aligned} & 9.65606 \times 10 \\ & 1.6093 .4 \\ & 6.58368 \times 10 \\ & 6.00000 \times 10 \\ & 1 \\ & 2.16000 \end{aligned}$	1.954Sor 0.206650 I.SIS.470 1.778151 0 $0.334+54$	$\begin{aligned} & 4.47040 \times 10 \\ & 7.45067 \times 10^{-1} \\ & 3.04801 \times 10^{2} \\ & 2.77778 \times 10^{1} \\ & 4.62963 \times 10^{-1} \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{I} .650347 \\ \mathrm{I} .872196 \\ \mathrm{I} .484016 \\ \mathrm{I} \cdot 443697 \\ \mathrm{I} .665546 \\ 0 \end{gathered}$

Tables 18， 19.
CONVERSION FACTORS．
TABLE 18．－Conversion Factors for Expression of Angular Accelerations．

	$\stackrel{8}{8}$	
	\％	
	\％	
	¢	
	$\dot{8}$	
	$\stackrel{8}{\text { ¢ }}$	
	8	
	$\stackrel{\text { in }}{\substack{\text { en }}}$	
	$\%$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & x \end{aligned}$
	$\stackrel{\text { ¢ }}{\substack{\circ\\}}$	
	$\%$	

TABLE 19．－Conversion Factors for Expression of Linear and Angular Accelerations，when the Time Unit only changes．

	$\begin{gathered} \text { éc } \\ \stackrel{-}{\circ} \end{gathered}$	
	8	
	宅	
	8	
	$\stackrel{\dot{\varepsilon}}{\stackrel{\text { ®n }}{-1}}$	
	8	
兰	$\begin{gathered} \dot{8} 0 \\ \stackrel{y}{9} \end{gathered}$	
	8	
$\dot{\vdots}$	$\stackrel{\text { cich }}{\substack{\text { cicher } \\ \hline}}$	
	$\%$	
	88 -8 88 $\%$	

Smithsonian Tables．
TABLE 20．－Conversion Factors for Expression of Stress or Force per Unit Area．（Gravitation Measure．）Dimensions $=\mathbf{M} / \mathrm{LT}^{2}$ ．

	¢	
	$\stackrel{8}{8}$	
$\begin{aligned} & \text { Luches of mercury } \\ & \text { at o }{ }^{\circ} \text { Cent. } \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	
	$\dot{8}$	
	－	
	8	
	$\stackrel{80}{9}$	
	z	
	$\stackrel{8}{9}$	
	安	
	$\stackrel{\text { er }}{\substack{\text { er }}}$	
	$\stackrel{\circ}{8}$	

TABLE 21．－Conversion Factors for Expression of Power，Rate of Working，or Activity．（Gravitation Measare．）

＊One furce de cheval $=75$ kilogramme metres per second．

Smithsonian Tables．

Tables 22， 23.
CONVERSION FACTORS．
TABLE 22．－Conversion Factors for Expression of Work or Energy．（Gravitation Measure．）

$\begin{gathered} \text { Foot Tous. } \\ (\text { One ton }=2240 \mathrm{lbs} .) \end{gathered}$		$\begin{gathered} \text { Foot 'Tons. } \\ (\text { One ton }=2000 \mathrm{lbs} .) \end{gathered}$		Foot Pounds．		Foot Grains．		Kilogramme Metres．		Gramme Centimetres．	
No．	Log．										
1 $S .92857 \times 10^{-1}$ 4.46429×10^{-4} 6.37755×10^{-8} 3.22902×10^{-3} 3.22902×10^{-8}	$\left.\begin{gathered} 0 \\ \bar{I} \cdot 950782 \\ \frac{4}{3} \cdot 6.49752 \\ \frac{3}{3} 50.4654 \\ 3.509070 \\ 5.509070 \end{gathered} \right\rvert\,$	$\begin{gathered} 1.12000 \\ 1 \\ 5.00000 \times 10^{-4} \\ 7.14285 \times 10^{-8} \\ 3.6650 \times 10^{-3} \\ 3.61650 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.049218 \\ 0 \\ -4.695970 \\ 8.853872 \\ 3.558288 \\ 8.558288 \end{gathered}$	$\begin{gathered} 2.2 .4000 \times 10^{3} \\ 2.00000 \times 10^{3} \\ 1 \\ 1.42854 \times 10^{-4} \\ 7.23300 \\ 7.23300 \times 10^{-5} \end{gathered}$	$\begin{gathered} 3 \cdot 350248 \\ 3.301030 \\ 0 \\ 4.15 .4902 \\ 0.859318 \\ 5.859318 \end{gathered}$	$\begin{gathered} 1.56800 \times 10^{7} \\ 1.40000 \times 10^{7} \\ 7.00000 \times 10^{3} \\ 1 \\ 5.06310 \times 10^{4} \\ 5.06310 \times 10^{-1} \end{gathered}$	$\left\|\begin{array}{c} 7.195346 \\ 7.1 .46128 \\ 3.845098 \\ 0 \\ 4 \cdot 704416 \\ 1.70 .44 \mathrm{I} 6 \end{array}\right\|$	$\begin{gathered} 3.09691 \times 10^{2} \\ 2.76510 \times 10^{2} \\ \mathrm{I} .38255 \times 10^{-1} \\ 1.97507 \times 10^{-5} \\ 1 \times 10^{-5} \\ 1.00000 \times 10^{-5} \end{gathered}$	$\left\|\begin{array}{c} 2.490930 \\ 2.441712 \\ \overline{1} .140682 \\ \overline{5} \cdot 295584 \\ 0 \\ \overline{5} \cdot 000000 \end{array}\right\|$	$\begin{aligned} & 3.09691 \times 10^{7} \\ & 2.76510 \times 10^{7} \\ & 1.35255 \times 10^{4} \\ & 1.97507 \\ & 1.00000 \times 10^{5} \\ & 1 \end{aligned}$	$\begin{gathered} 7.490930 \\ 7.441712 \\ 4.1 .40682 \\ 0.29558 .4 \\ 5.000000 \\ 0 \end{gathered}$

TABLE 23．－Conversion Factors for Expression of Film or Surface Tension．（Gravitation Measure．）

	－	으우 \mathfrak{y} へ～ \therefore cici
	－10	$\begin{aligned} & \text { no } \\ & \text { hon } \\ & \text { hino } \\ & \text { on } \\ & \text { in } \\ & \text { in } \end{aligned}$
	$\dot{8}$	
	¢	
	$\stackrel{8}{4}$	
	¢	
	$\dot{\square}$	

Smithsonian Tables．

CONVERSION FACTORS．

$\begin{aligned} & \text { I} \\ & \text { on } \\ & \text { II } \\ & \text { co } \end{aligned}$	－	
	$\dot{8}$	
	－i¢	
	8	
害	¢ ¢ ¢	
	8	
	安	
	8	
	－	
	8	

\footnotetext{

Gramme Centimetres．	\％	
	8	
	－	
	3	
$\stackrel{\text { é }}{\stackrel{0}{\Xi}}$	－	
	$\stackrel{\circ}{8}$	
Ergs or Centimetre Dynes.	¢	
	8	
	－\％	
	\％	

Smithsonian Tables．

CONVERSION FACTORS．

	200	
	$\dot{8}$	
	－80	
	8	
$\stackrel{\dot{E}}{.}$	¢	$\begin{aligned} & \text { mo } \\ & \text { mion } \\ & \text { no } \\ & \text { no } \\ & \text { n } \\ & \text { mis in } \end{aligned}$
	\％	
荷	－io	
	$\stackrel{\circ}{8}$	

TABLE 28. - Conversion Factors for Expression of Densities.

								Dimensions	$=\mathrm{M} / \mathrm{L}^{3}$.
'Tons per cubic mile. 2000 pounds $=1$ ton.		Pounds per cubic foot.		Pounds per cubic inch.		Grains per cubic inch.		Grammes per cubic centim.	
No.	Log.								
$\begin{gathered} 1 \\ 7.35990 \times 10^{7} \\ 1.27179 \times 10^{11} \\ 1.51685 \times 10^{7} \\ 4.59 .666 \times 10^{9} \end{gathered}$	$\begin{gathered} 0 \\ 7.666872 \\ 11.10 .1415 \\ 7.259317 \\ 9.662252 \end{gathered}$	$\left\{\begin{array}{l} 1.35^{8} 72 \times 10^{-8} \\ 1 \\ 1.72800 \times 10^{3} \\ 2.46857 \times 10^{-1} \\ 6.24281 \times 10^{1} \end{array}\right.$	$\left\|\begin{array}{c} \overline{8} .133128 \\ 0 \\ 3.237544 \\ 1.392446 \\ 1.795380 \end{array}\right\|$	$\left\|\begin{array}{c} 7.86293 \times 10^{-12} \\ 5.7870 .4 \times 10^{-4} \\ 1 \\ 1.42857 \times 10^{-4} \\ 3.61274 \times 10^{-2} \end{array}\right\|$		$\begin{aligned} & 5.50 .405 \times 10^{-8} \\ & 4.05093 \\ & 7.00000 \times 10^{3} \\ & 1 \\ & 2.52891 \times 10^{2} \end{aligned}$	$\left\|\begin{array}{c} \overline{3} .7 .40683 \\ 0.607554 \\ 3.845098 \\ 0 \\ 2.402934 \end{array}\right\|$	$\begin{aligned} & 2.17644 \times 10^{-11} \\ & 1.60184 \times 10^{-2} \\ & 2.76799 \times 10^{1} \\ & 3.95428 \times 10^{-3} \end{aligned}$	$\begin{gathered} \overline{\mathrm{IO}} \cdot 337748 \\ 2.204620 \\ \mathrm{I} \cdot 472164 \\ 3.597066 \\ 0 \end{gathered}$

[^7]Smithsonian Tables.

CONVERSION FACTORS．

Smithsonian Tables．

TABLE 31．－Conversion Factors for Expression of Quantities of Heat

$\widehat{3}$	\％	
	$\stackrel{\circ}{8}$	
	$\stackrel{80}{\text {－}}$	
	$\stackrel{8}{8}$	
	$\stackrel{\text { 8．0 }}{\substack{\text { ¢ }}}$	
	8	
	亿	

CONVERSION FACTORS.

TABLE 32. - Conversion Factors for Expression of Temperatures
Dimension $=0$

Centigrade.		Fahrenheit.		Réaumur.	
No.	Log.	No.	Log.	No.	Log.
$\underset{\substack{5.55556}}{1} \times 10^{-1}$	$\begin{gathered} 0 \\ \mathrm{I} .744727 \\ 0.096910 \end{gathered}$	$\begin{gathered} \text { I.So000 } \\ 1 \\ 2.25000 \end{gathered}$	$\begin{gathered} 0.255272 \\ 0 \\ 0.352182 \end{gathered}$	$\begin{gathered} 8.00000 \times 10^{-1} \\ 4.44444 \times 10^{-1} \\ 1 \end{gathered}$	$\begin{gathered} 1.903090 \\ \frac{1}{1.647517} \\ 0 \end{gathered}$

In many of the derived units for the measurement of physical quantities, the unit of time may be taken as constant, because it is seldom that any other unit than the second is used. This is the case, in particular, for the electric and magnetic units. Tables 33-37 below, giving the factors for the conversion of units depending on different dimensional equations in M and L from one set of fundamental units to another, will be found sufficient for almost all cases.

TABLE 33. - Electric Displacement, etc.
Dimensions $=M \mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{3}{2}} \mathrm{~T}^{n}$.

Foot Grain Second Units.		Metre Cramme Second Units.		Centimetre Gramme or) Second Millimetre Milligramme (Units.	
No.	Log.	No.	Log.	No.	Log.
$\begin{gathered} 1 \\ 0.6105 \mathrm{~S} \times 10^{-1} \\ 6.6105 \mathrm{~S} \times 10^{2} \end{gathered}$	$\begin{gathered} 0 \\ \overline{1} .820240 \\ 2.820240 \end{gathered}$	$\begin{gathered} 1.51273 \\ 1 \\ 1.00000 \times 10^{3} \end{gathered}$	$\begin{gathered} 0.179760 \\ 0 \\ 3.000000 \end{gathered}$	$\begin{gathered} 1.51273 \times 10^{-3} \\ 1.00000 \times 10^{-3} \\ 1 \end{gathered}$	$\begin{gathered} \overline{3} \cdot 1.179760 \\ 3.000000 \\ 0 \end{gathered}$

Smithsonian Tables.

CONVERSION FACTORS.

Tables 36, 37.

CONVERSION FACTORS.
TABLE 36. - Electric Potential, etc.

						Dimension	$=\mathrm{M}^{\frac{1}{2}} \mathrm{~S}^{3} \mathrm{~T}^{n}$.
Foot Gmin Second Units.		Metre Gramme Second Units.		Centimetre Gramme Second Units.		Millimetre Milligramme Second Units.	
No.	Log.	No.	Log.	No.	Log.	No.	Log.
$\begin{aligned} & 1 \\ & 2.334 .49 \times 10 \\ & 2.331 .49 \\ & 2.33+49 \times 10^{-5} \end{aligned}$	$\begin{gathered} 0 \\ 1.368192 \\ 0.368192 \\ 5.368192 \end{gathered}$	$\begin{aligned} & 4.28359 \times 10^{-2} \\ & 1 \times 0^{-3} \\ & 1.00000 \times \mathrm{IO}^{-6} \end{aligned}$	$\begin{gathered} \overline{2} .631808 \\ 0 \\ \overline{3} .000000 \\ \mathbf{6} .000000 \end{gathered}$	$\begin{gathered} 4.28359 \times 10 \\ 1.00000 \times 10^{3} \\ 1 \\ 1.00000 \times 10^{-3} \end{gathered}$	$\begin{gathered} \text { 1. } 63 \text { IS08 } \\ 3.000000 \\ 0 \\ \overline{3} .000000 \end{gathered}$	$\begin{aligned} & 4.28359 \times 10^{4} \\ & 1.00000 \times 10^{5} \\ & 1.00000 \times 10^{8} \\ & 1 \end{aligned}$	$\begin{gathered} 4.631808 \\ 6.000000 \\ 3.000000 \\ 0 \end{gathered}$

Smithsonian Tables.

Values of $\frac{c^{x}-p^{-x}}{2}$.

x	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0 O 1	0.0901
0.1	. 1002	2	. 1203	. 1304	. 1405	. 1506	. 6007	1708	. 1810	. 1911
0.2	. 2013	. 2115	. 2215	. 2320	.2423	.2526	. 2629	. 2733	.2837	. 2941
0.3	$.30+5$. 3150	-3255	. 3360	-3466	-3572	. 3678	. 3785	-3892	. 4000
0.4	. 4108	. 4216	. 4325	. $4+3.4$. 4543	. 4653	.4764	. 4875	. 4986	. 5098
0.5	0.5211	0.532 .1	0.5438	0.5552	0.5666	0.5782	0.5897	0.6014	0.6131	0.62 .48
0.6	. 6367	. 6.485	. 6605	. 6725	.6846	. 6967	. 7090	.7213	.7336	.7461
0.7	. 7586	. 7712	. 7835	.7966	. 8094	. 8223	. S 35	. 8484	. 8615	. 87.48
0.3	. 5851	.9015	. 9150	.9286	. 2423	.9561	.9700	.9840	. 9981	. 0122
0.9	1.0265	1.0409	1.0554	1.0700	1.0847	I. 0995	1.1144	1.1294	1.1446	1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1. 3025	1.3190
I.I	. 3356	. 3524	. 3693	. 3863	. 4035	. 4208	. 4382	. 4558	. 4735	. 4914
1.2	. 5095	. 5276	. 5460	. 5645	.5831	. 6019	. 6202	. 6400	. 6593	. 6788
1.3	. 6954	. 7182	. 53 SI	.7583	. 7786	.7991	. 8198	..$_{406}$. 5617	.8829
1.4	. 9043	. 9259	. 9477	. 9697	. 9919	2.0143	2.0369	2.0597	2.0527	2.1059
1.5	2.1293	2.1529	2.1765	2.2008	2.2251	2.2496	2.2743	2.2993	2.3245	2.3499
1.6	. 3756	. 4015	. 4276	. 4540	.4So6	. 5075	. 5346	. 5620	. 5806	. 6175
1.7	. 6456	. 67.40	.7027	.7317	.7609	. 7904	. 202	. 8503	.SSOG	.9112
1.8	.9422	. 9734	3.0049	3.0367	3.0689	3.1013	$3 \cdot 1340$	3.1671	3.2005	3.2341
1.9	3.2682	$3 \cdot 3025$	-3372	-3722	.4075	-4432	. 4792	. 5156	-5523	-5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.5503	3.5993	3.9395	3.9S06
2.1	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	$4 \cdot 3221$	$4 \cdot 3666$	4.4117
2.2	4.4571	4.5030	$4 \cdot 5+94$	4.5962	$4.6+34$	4.6912	4.7394	4.7580	4.8372	4.8868
2.3	4.9370	4.9576	5.0387	5.0903	5.1425	5.1951	5:2483	$5 \cdot 3020$	$5 \cdot 3562$	$5 \cdot 4109$
2.4	$5 \cdot 4662$	$5 \cdot 522 \mathrm{I}$	$5 \cdot 575$	5.6354	5.6929	5.7510	5.SO97	5.8689	$5 \cdot 9288$	5.9892
2.5	6.0502	6.1118	6.17.11	6.2369	6.3004	6.3645	6.4293	6.49 .46	6.5607	6.6274
2.6	6.6947	6.7628	6.8315	6.9009	6.9709	7.0.417	7.1132	7.1854	7.2583	7.3319
2.7	7.1063	7.4814	7.5572	7.6335	7.7112	7.7804	7.5683	$7.945^{\circ} \mathrm{O}$	8.0285	8.1095
2.8	S.1919	8.2749	8.3556	S. $4+332$	S.5287	S.61 50	8.7021	S.7902	S. 5791	8.9689
2.9	9.0596	9.1512	9.2.437	9.3371	$9 \cdot 4315$	9.5268	9.6231	9.7203	9.8185	9.9177
3.0	10.018	10.119	10.221	10.324	11.429	11.534	11.640	11.748	$11 . S_{56}$	11.966
3.1	11.076	11.188	11.301	11.415	11.530	12.647	12.764	12.853	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.576	13.006	13.137	13.269	13.403
3.3	$13.53{ }^{3}$	13.674	13.812	13.951	14.092	1.4 .234	14.377	14.522	14.668	14.816
3.4	14.965	15.116	15.268	15.422	15.577	15.734	15.893	16.053	16.214	16.378
3.5	16.513	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.6	18.285	18.470	18.655	18.843	19.033	19.224	19.418	19.613	19.811	20.010
3.7	20.211	20.415	20.620	20.828	21.037	21.249	21.463	21.679	21.897	22.117
3.5	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
3.9	2.4 .691	24.939	25.190	25.444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	2S.122	28.404	28.690	28.979	29.270	29.564	29.862
4.1	30.162	30.465	30.772	3 I .08 I	31.393	31.709	32.028	32.350	32.675	33.004
4.2	33.336	33.671	34.009	34.351	34.697	35.046	35.398	35.754	36.113	30.476
$4 \cdot 3$	36.843	37.214	37.588	37.966	38.3.17	35.733	39.122	39.515	39.913	40.314
4.4	40.719	41.129	41.542	41.960	42.382	42.505	43.238	43.673	44.112	4.555
4.5	45.003	45-455	45.912	46.37 .4	46.840	$47 \cdot 311$	47.787	48.267	48.752	49.242
4.6	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53.344	53.880	54.422
4.7	54.969	55.522	56.080	56.643	57.213	57.788	58.369	5S.955	59.548	60.147
4.8	60.751	61.362	61.979	62.601	63.231	63.866	64.508	65.157	65.812	66.473
4.9	67.141	67.816	68.498	69.186	69.852	70.584	71.293	72.010	72.734	73.465

* Tables 38-41 are quoted from "Des Ingenieurs Taschenbuch," herausgegeben vom Akademischen Verein (Hütte). Smithsonian Tables.

x	0	1	2	3	4	5	6	7	8	9
0.0	1.0000	1.0001	1.0002	1.0005	1.0008	1.0013	1.0018	1.0025	1.0032	1.0041
0.1	. 0050	. 0061	.0072	. 0085	.0098	. 0113	. 0128	.0145	. 0102	. 0181
0.2	. 0201	.0こ21	.0243	. 0260	.0289	.0314	. 0340	. 0367	. 0395	.0423
0.3	.0453	.0484	. 0510	. 05.49	. 058.4	. 0619	. 0655	. 0602	. 0731	. 0770
0.4	.0811	.0852	.0895	.0939	.0, 5.1	.1030	. 107%	. 1125	.1174	. 1225
0.5	1.1276	1.1329	1.1383	1.143 4	I. 149.1	1.1551	1.1609	1.1669	1.1730	1.1792
0.6	. 1855	. 1919	. 19 Cr	. 2051	. 2119	. 2188	.225	.2330	. 2402	. 2.476
0.7	.2552	. 2625	. 2706	.2785	. 2865	. 29.17	. 3030	$\cdot 3114$. 3199	. 3286
0.5	. 3374	. 3464	. 3555	$.36+7$.3740	. 3835	. 39.32	.4029	.4128	. 4229
0.9	. 4331	4434	. 4539	. 4645	. 4753	. 4862	- 4973	. 5085	-5199	. 5314
1.0	1. 5431	1.5549	1. 5669	1.5790	1.5013	I. 603 S	. 6164	1.6292	1.6421	1.6552
1.1	. 6655	. 6520	. 6956	. 7093	. 7233	. 7374	. 7517	.7662	. 7 S0S	. 7956
1.2	.S107	. $\mathrm{S}_{25} 8$. S_{412}	. 565	. 8725	. 8584	. 9045	. 9208	. 9373	. 9540
1.3	.9709	.9850	2.0053	$2.022 S$	2.0404	2.0583	2.0764	2.0947	2.1132	2.1320
1.4	2.1509	.1700	. 1594	. 2090	.22SS	. 2488	. 2601	. 2896	-3103	. 3312
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.48 .45	2.5073	2.5305	$2.553 S$
1. 6	. 5775	. 6013	. 6255	. 6499	. 6746	. 6995	. 7247	. 7502	. 7760	. 8020
1.7	. 8283	. 8549	. 8818	. 9090	.9364	.9642	. 9922	3.0206	3.0402	3.0782
1.8	3.1075	3.1371	3.1669	3.1972	3.2277	3.2585	3.2897	.3212	. 3530	.3852
1.9	. 4177	. 4506	.4838	. 5173	. 5512	. 5 S 55	. 6201	.6551	. 6904	. 7261
2.0	3.7622	3.7987	3. S_{355}	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.	4.1443	4.1847	4.2256	4.2668	4.3085	4.3507	4.3932	$4 \cdot 4362$	4.4797	4.5236
2.2	4.5679	4.6127	4.6580	4.7037	4.7499	4.7966	4.84 .37	4.5914	4.9395	4.9881
2.3	5.0372	5.0868	5.1370	5.1876	5.2358	5.2905	$5 \cdot 3427$	$5 \cdot 3954$	$5 \cdot 4487$	$5 \cdot 5026$
2.4	$5 \cdot 5569$	5.6119	5.6674	5.7235	5.7801	5.8373	5.8951	5.9535	6.0125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.5363	6.9043	6.9729	7.0423	7.1123	7.1831	7.2546	$7 \cdot 3268$	7.3998
2.7	$7 \cdot 4735$	7.5479	7.6231	7.6990	7.7758	7.5533	7.9136	7.0106	8.0905	8.1712
2.8	8.2527	S.3351	8.4182	S.5022	8.5871	8.6723	8.7594	8.8469	S. 9352	0.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.48 .44	9.5791	9.6749	9.7716	9.8693	9.9680
3.0	10.068	10.168	10.270	10.373	10.476	10.5 SI	10.687	10.794	10.902	11.011
3.1	11.121	12.233	11.345	11.459	11.574	11.689	11.506	11.925	12.044	12.165
3.2	12.287	13.410	12.534	12.660	12.786	12.915	13.044	13.175	13.307	13.440
$3 \cdot 3$	13.575	14.711	13.548	13.957	14.127	14.269	14.412	14.556	14.702	14.550
$3 \cdot 4$	1.4 .999	15.149	15.301	15.455	15.610	15.766	15.924	$16.0{ }^{4} 4$	16.245	16.408
3.5	16.573	16.739	16.007	17.077	17.248	$17 \cdot 421$	17.596	17.772	17.951	1S.131
3.6	18.313	18.497	18.6S2	15.570	19.059	19.250	19.444	19.639	19.436	20.035
$3 \cdot \%$	20.236	20.439	20.6 .44	20.852	21.061	21.272	21.486	21.702	21.919	22.139
3.5	22.362	22.556	22.813	23.042	23.273	23.507	23.743	23.982	24.222	24.466
3.9	24.711	24.959	25.210	25.463	25.719	25.977	26.238	26.502	26.768	27.037
4.0	27.308	27.582	27.860	2.139	2S.422	28.707	28.996	29.287	29.5 SI	29.578
4.1	30.178	30.482	30.7S8	31.097	31.409	31.725	32.044	32.365	32.691	33.019
4.2	33.351	33.686	34.024	34.366	34.711	35.060	35.412	35.765	36.127	36.490
$4 \cdot 3$	30.557	37.227	37.601	37.979	38.360	35.746	39.135	39.528	39.925	40.326
4.4	40.732	41.141	41.554	$41.9 \% 2$	42.393	42.819	43.250	43.084	44.123	44.566
4.5	45.014	45.466	45.923	46.3 S 5	46.551	47.321	47.797	48.277	48.762	49.252
4.6	49.747	50.247	50.752	51.262	51.777	52.297	52.823	53.354	53.590	54.43 I
4.7	$5 \cdot 1.978$	55.531	56.089	56.652	57.221	57.796	58.377	58.964	59.556	
4.8	60.759	61.370	61.987	62.609	63.239	63.574	64.516	65.164	65.519	66.45
4.9	67.I 49	67.823	68.505	69.193	69.859	70.591	71.300	72.017	72.741	$73 \cdot 472$

Smithsonian Tables.

Common logarithms +10 of the hyperboilc sines.

x	0	1	2	3	4	5	6	7	8	9
0.0	S.-	0000	3011	4772	6022	6992	77S4	S 455	9036	9548
0.1	0007	0.423	0802	1152	1475	1777	2060	2325	2576	2814
0.2	3039	3254	3459	3656	38.4	4025	$+199$	4366	4528	4655
0.3	$44^{3} 36$	493	5125	5264	5395	5529	5656	5781	5902	6020
0.4	9.6136	6249	6353	6.468	6574	6675	6,50	6850	6978	7074
0.5	9.-169	7262	7354	7444	7533	7620	7707	7791	${ }^{-1} 875$	7958
0.6	S039	Sil9	S199	S277	S354	8431	8506	S581	8655	8728
0.7	SSoo	8872	S042	9012	9082	9150	9218	9こ86	9353	2419
0.8	9.45	9550	9614	9678	9742	${ }_{9} \mathrm{SO}_{5}$	9568	9930	9992	0053
0.9	10.0114	0174	0234	0294	0353	0 O 12	0.470	0529	0586	0644
1.0	10.0701	0758	oS15	OS7 1	0927	-9S2	1038	1093	11.48	1203
I.I	1257	1315	1365	1419	1472	1525	1578	$163{ }^{1}$	168.4	1736
1.2	1758	18.40	1892	194t	1995	20.46	2098	2148	2199	2250
1.3	2300	2351	2401	2451	2501	2551	2600	2650	2699	2748
1.4	2797	2846	2895	2944	2993	3041	3090	3138	3186	3234
1.5	$10.32 S_{2}$	3330	3378	$3+26$	3474	3521	3569	3616	3663	3711
1. 6	3758	3505	3552	3899	3946	3992	4039	4086	4132	4179
1.7	4225	4272	4318	4364	$4+11$	4457	4503	4549	4595	4641
1.5	4687	4733	4778	$482+$	4870	4915	4961	5007	5052	5098
1.9	5143	5185	5234	5279	5324	5370	5415	5460	5505	5550
2.0	10.5595	5640	$56 S 5$	5730	5775	5 520	5.865	5910	5955	5999
2.1	60.44	6089	6134	6178	6223	6263	6312	6357	6401	64.46
2.2	6.91	6535	6580	6621	6665	6713	6757	6502	$6 S_{4} 6$	6590
2.3	6935	6979	7023	7067	7112	7156	7200	72.4	7289	7333
2.4	7377	7421	7465	7509	7553	7597	-642	7686	7730	7774
2.5	10.7818	7 -662	7906	7950	7994	So3s	SOS_{2}	8126	S169	S213
2.6	8257	8301	\$3+5	8389	S. 433	S 477	§521	8564	S608	S652
2.7	8696	S740	S7S4	8527	887 I	S915	8959	9003	90.46	9090
2.8	9134	9178	9221	9265	9309	9353	2396	94.40	$94{ }^{\text {S }} 4$	9527
2.9	9511	9615	$965 S$	9702	$97+6$	9789	9S33	9577	9920	9964
3.0	11.0008	0051	0095	-r39	O1S2	0226	0270	0313	0357	0.400
3.1	0444	0.458	05.31	0575	06 IS	0662	0,06	0749	0793	0836
3.2	0850	0023	0967	1011	1054	IOgS	11.11	1185	1228	1272
$3 \cdot 3$	1316	1359	1.403	! 4.46	1490	15.33	1577	1620	1664	1707
3.4	1751	1794	1835	ISSI	$19=5$	1968	2012	2056	2099	2143
3.5	11.2186	2230	2273	2317	2360	240.4	24.47	2491	2534	2578
3.6	2621	2665	2708	2752	2795	2839	2852	2925	2969	3012
3.7	3056	3099	3! 43	3186	3230	3273	3317	3360	3.104	34.17
3.8	3491	3534	3575	3621	3605	3708	3352	3795	${ }^{5} 35$	3582
3.9	3925	3969	4012	4056	4099	4143	4186	4230	4273	4317
4.0	11.4360	4103	4447	4490	4534	4577	4621	4664	4ios	4751
4.1	4795	453	4881	4925	4968	5012	5055	5099	5142	5186
4.2	5229	5273	5316	5359	5103	54.46	5490	5533	5577	
$4 \cdot 3$	566.	5707	5750	5794	537	5 SSI	5924	5905 6.402	6011	
$4 \cdot 4$	6095	6141	6185	6228	6272	6315	0359	6.402	0.440	6409
4.5	11.6532	6576	6619	6613	6706	6750	6793	6836	6SSo	6923
4.6	6967	7010	7054	7097	-1.41	7184	7227	7271	7314	7358
4.7	7401	7445 $-8-0$	7888	7531	7575 8000	7618 -8053 8	7662 So96	7705 8140 8	7749 8183 8617	7792 8226
4.5 4.9	7836 8270	7879 8313	7922 8357	7900 8800	S009	S053 8487	8530	8574	8617	8661

Smithsonian Tables.

Common logarithms of the hyperbolic cosines．

x	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0000	0001	0002	0003	0005	0008	001 t	0014	0018
0.1	0022	00：6	0031	0037	00.12	0044	0055	00612	0070	0078
0.2	0086	0095	0104	011.4	0124	0134	0145	0156	0108	0180
0.3	0103	0205	021）	0232	02.46	0201	0276	0：91	0306	－322
0.4	0339	0355	037－	0390	0.407	0.126	0.44	0.463	0.482	0502
0.5	$0.052=2$	05\％	0562	0583	0605	व626	06.15	0670	0603	0716
0.6	0739	0702	0 0， 0	Oîıo	0835	－859	OSS．	cy 10	0935	0961
0.7	035	1013	10.40	1067	1094	1122	1149	1177	1206	1234
0.3	1263	1292	13.1	1350	13 SO	1.110	14.40	1.470	1501	1532
0.9	1563	1594	$16=5$	1657	1689	1721	1753	1785	ISIS	1551
1.0	0．18S 4	1917	1950	1984	2018	2051	2086	2120	2154	2189
1.1	2：23	225	2293	2328	2364	2399	2.435	2.170	2506	$25+2$
1.2	2573	2615	2651	2658	2724	2761	$270 ゙ 5$	2335	2872	2909
1.3	29－15	2934	30こ2	3059	3097	$3{ }^{1} 35$	3173	3211	32.49	3288
1.4	3326	3365	3403	3442	3.481	3520	3559	3598	3637	3676
1.5	0．3715	3754	3：94	$3 S_{33}$	3873	3913	3952	3992	4032	4072
I． 6	＋112	＋152	4192	4232	4273	4313	4353	4394	1434	4475
1.7	＋515	4556	4597	4637	4675	4719	4760	4 COI	$4{ }^{4}+2$	4883
I． $\mathrm{S}^{\text {d }}$	4924	4965	5006	50．4	5059	5130	5172	5213	5254	5296
1.9	5337	5379	5421	5462	5504	5545	5587	5629	5671	5713
2.0	0.5754	5796	$5_{5} S_{3} S$	5SSo	5922	5964	6006	60.48	6090	6132
2.1	0175	6217	6259	6301	6343	6386	6428	64：0	6512	6555
2.2	6597	66.10	6682	6724	6767	6 609	$\mathrm{CS}_{5} 2$	6894	69.37	6979
$2 \cdot 3$	7022	7064	7107	7150	7192	7235	フマ－S	7320	7363	7406
2.4	7448	7491	7534	7577	7619	7662	7705	7748	プリ1	－S33
2.5	0．78，-6	7919	796	SOO5	So． 48	Son 1	813.4	S176	S219	S 262
2.6	8305	$53+8$	8391	S434	8.177	8520	$85 i 3$	8606	86	S692
2.7	S735	$8_{77}{ }^{\text {S }}$	S821	S864	S90\％	Su51	SyOH	9037	90So	9123
2.5	9166	9209	9252	9295	$933{ }^{\circ}$	9382	$9+25$	9463	9511	9554
2.9	9597	9641	969.	$97=7$	9770	9 SI 3	9856	9900	$99+3$	9986
3.0	1．00こ9	0073	O116	O159	0202	0245	0289	0332	03.5	0.418
3.1	0.62	0505	0548	0591	0635	cG, S	$0 \rightarrow 21$	0，64	0，os	0851
3.2	0504	$093{ }^{\circ}$	OgSi	1024	1067	1111	1154	1197	1241	1284
$3 \cdot 3$	1327	1371	1414	1457	1501	1544	150	1631	16.4	1717
$3 \cdot 4$	1% ¢	1804	18.47	i Sol	1931	1977	2021	2064	2107	2151
3.5	1．2104	2237	2281	2324	2367	2411	24.4	2497	25．4	${ }_{2} 58.4$
3.6	2623	2671	2714	$275{ }^{5}$	2SOI	28.4	2888	2931	2974	3015
$3 \cdot 7$	3061	3105	31.45	3191	3235	3278	3322	3365	3408	$345=$
3.5	$3+95$	3535	$35 \mathrm{S2}$	3625	3669	3712	3755	3799	3842	3586
3.9	$39=9$	$397=$	4016	4059	4103	41.16	4159	4233	4278	1320
4.0	1.4363		4150	4493	4537		4623	4667	4710	4754
4.1	4.97	$4{ }^{4} 40$	458.	$49=7$	4971	5014	5057	5101	5144	5188
4.2	52.31	5274	5318	5361	$5 \cdot 105$	51.48	5192	55.35	550 －	5622
$4 \cdot 3$	5065	5709	5752	5795	${ }_{5} 539$	$5 \mathrm{SSO}_{2}$	5026	5069	6012	Co56
4.4	6099	$61+3$	6186	6230	6273	6316	6360	6.403	6.477	6490
4.5	1.65 .33	6577	$66=0$	6661	6，07	6751	6794	6837	6881	6924
4.6	6965	7011	7055	709．5	$71+1$	7155	7こ2	フマフマ	7315	$735{ }^{\text {c }}$
4.7	7402	7445	7.45	75.32	7576	7619	${ }_{7} 662$	7706	7， 49	7193
＋． 8	${ }^{-1} 36$	7830	7923	7966	Solo	So53	Son7	8140	8154	8227
$+.9$	S270	S314	S357	Stoi	S4t4	S457	S531	S574	S6IS	S661

EXPONENTIAL FUNCTIONS.

Values of e^{x} and of e^{-x} and their logarithms.
Values of e^{z} and ε^{-z} for values of x intermediate to those here given may be found by adding or subtracting the values of the hyperbolic cosine and sine given in Tables 38-39.

x	c^{x}	$\log c^{x}$	x	$c x$	$\log e^{x}$	\boldsymbol{x}	$i-x$	$\log e^{-x}$
0.1	1.1052	$0.043+3$	5.1	164.03	2.21490	0.1	0.90 .484	1. 95657
2	1.2214	08686	2	181.27	25833	2	81873	91314
3	1.3499	13029	3	200.34	30176	3	74082	86971
4	1.4918	17372	4	221.41	34519	4	67032	S262S
5	1.6487	21715	5	$2+4.69$	38562	5	60653	78285
0.6	1.8221	0.26058	5.6	270.43	2.43205	0.6	0.54881	1.73942
7	2.0138	30401	7	298.57	47545	7	49659	69599
8	2.2255	34744	8	330.30	51501	S	44933	$65 \sim 56$
9	2.4596	39087	9	365.04	56234	9	40657	60913
1.0	2.7153	43429	6.0	$403 \cdot 43$	60577	1.0	36788	56570
1.1	3.0042	0.47772	6.1	445.86	2.64920	1.1	0.33287	-1.52228
2	$3 \cdot 3201$	52115	2	492.75	69263	2	30119	$478 S_{5}$
3	3.6693	$56+5{ }^{\circ}$	3	$5+5 \cdot 57$	73606	3	27 ± 53	43542
4	4.0552	60501	4	601.55	77948	4	2.4660	3)199
5	$4.4 \mathrm{SI}_{7}$	6514	5	665.14	S2291	5	22313	$3+856$
1.6	4.9530	0.69487	6.6	735.10	2.86634	1.6	0.20190	1.30513
7	$5 \cdot 4739$	73530	7	S12.41	90977	7	18265	26170
8	6.0496	$7 \mathrm{~S}_{173}$	8	897.55	95320	S	16530	21827
9	6.6559	82516	9	992.27	99663	9	14957	17484
2.0	7.3891	S6S59	7.0	1096.63	3.04006	2.0	13534	13141
2.1	S.1662	0.91202	7.1	1212.0	3.08349	2.1	0.12246	1.08798
2	9.0250	95545	2	1339.4	12692	2	11080	04455
3	9.9742	99585	3	1450.3	17035	3	10026	-00112
4	11.0232	1.04231	4	1636.0	21375	4	09073	- 2.95769
5	12.1825	05574	5	1808.0	25721	5	0S20S	9126
2.6	13.463	1.12917	7.6	1998.2	$3 \cdot 30064$	2.6	0.074274	$\overline{2} .87083$
7	14.580	17260	7	2208.3	34.407	7	067205	82740
8	16.445	21602	8	2.440 .6	35750	8	060810	78398
9	18.174	25945	9	2697.3	43093	9	055023	74055
3.0	20.056	30288	8.0	2981.0	$47+36$	3.0	049757	69712
3.1	22.198	1.34631	8.1	3294.5	3.51779	3.1	0.045049	2.65369
2	24.533	38974	=	3641.0	56121	2	040762	61026
3	27.113	43317	3	4023.9	60464	3	036883	5_{5683}
4	29.964	47660	4	4447.1	6.4807	4	033373	52310
5	33.115	52003	5	4914.8	69150	5	030197	47997
3.6	36.598	$1.563+6$	8.6	5431.7		3.6		
	40.447	60689	7	6002.9	77836	7	024724	393 II
8	4.7 .701	65032	S	6634.2	S2179	S	022371	34968
9	49.402	69375	9	7332.0	S6522	9	020242	30625
4.0	54. 59S	73718	9.0	Sioj.1	90565	4.0	018316	26252
4.1	60.340	1.78061	9.1	S955.	3.9520 S	4.1	0.016573	$\overline{2} .21939$
2	66.686	82.104	2	9597.	99551	2	014996	17596
3		86747	3	10936.	4.03594	3	-13569	13253
4	81.451	91090		12058.	08237	4	012277	-5910
5	90.017	95433	5	13360.	12550	5	011109	04567
4.6	99.48	1.99775	9.6	14765.	4.16923	4.6	0.01005^{2}	2 2.00225
	109.95	2.04118	7	16315.	21266	7	009095	$\overline{3} .95882$
8	12 I .51	08461	8	18034.	25609	8	008230	${ }^{1} 1539$
9	134.29	12804	9	19930.	29952	9	007447	S7196
5.0	148.41	17147	10.0	22026.	34295	5.0	006738	S2S53

Value of $c^{x^{2}}$ and $e^{-x^{2}}$ and thelr logarthms.
The equation to the probability curve is $y=e^{-x^{2}}$, where x may have any value, positive or negative, between zero and infinity.

x	c. x^{3}	$\log e x^{3}$	$e^{-, x^{2}}$	$\log e^{-x^{2}}$
0.1	I.OIOI	0.00434	0.99005	-1. 99566
2	1.0408	01737	96079	98263
3	1.0904	03909	91393	96091
4	1.1735	06949	S5214	93051
5	1.2840	10557	77850	S9143
0.6	1.4333	0.15635	0.69768	І. 84365
7	I. 6323	21280	61263	78720
8	1.8965	27795	52729	72205
9	2.2479	35178	44486	6.4822
1.0	2.7153	43429	36788	56571
1.1	3.3535	0.52550	0.29820	- 1.47450
2	4.2207	62538	23693	37462
3	$5 \cdot 4195$	73396	18452	2660.4
4	7.0993	85122	14086	14878
5	9.4877	97716	10540	02284
1.6	1.2936×10	1.1II79	0.77306×10^{-1}	$\overline{2} .85821$
7	1.7993 "	25511	55576 "	74489
8	2.5534	40711	39164 "	59289
9	3.6996 "	56780	27052 "	43220
2.0	$5 \cdot 4598$	73718	IS316	26282
2.1	8.2269 "	1.91524	0.12155 "	ב-. 08476
2	1. 2647×10^{2}	2.10199	79070×10^{-2}	$\overline{3}$. 89801
3	I.9834	29742	50.418 "	70258
4	3.1735	50154	$3 \mathrm{5II}$ "	49846
5	5.1502	71434	19304	28566
2.6	$8.6264 \times{ }^{3}$	2.93583	$0.11592{ }^{\text {" }}$	3.06.417
7	1. 4656×10^{3}	3.16601	68233×10^{-8}	4.83400
8	2.5402 "	40487	39367 "	59513
9	$4 \cdot 4918$ "	65242	22263 "	34758
3.0	S.103I "	90865	12341 "	09135
3.1	1. 4913×10^{4}		0.67055×10^{-4}	$\overline{5} .82643$
2	2.8001 "	44718	35713	55283
3	5.2960 "	72947	18644 "	27053
4	1.0482×10^{5}	5.02044	95402×10^{-5}	6.97956
5	2.0898 "	32011	47S51 "	67989
3.6	4.2507	5.62846	0.23526 "	6.37154
	$8.8205 \times{ }^{\prime \prime}$	64549	${ }^{11} 337 \times{ }^{\text {" }}$	- $05+51$
S	$1.8673 \times 10_{6}{ }^{6}$	6.27121	53554×10^{10}	$\overline{7} \cdot 72879$
9 +0	4.0329 " 8.8861	60562	24796 "	39438
4.0	S.8561 *	94571	11254	05129
4.1	$\begin{aligned} & 1.9976 \times 10^{7} \\ & 4.5809 \end{aligned}$	$\begin{array}{r} 7 \cdot 30049 \\ 66005 \end{array}$	$\begin{aligned} & 0.50062 \times 10^{-7} \\ & 21820 \end{aligned}$	8.69951
3	1.0718×10^{8}	8.03011	93303×10^{-8}	-9.969S9
4	2.5583	40796	39088	59204
5	6.2297	79447	16052	20553
4.6	1.5476×10^{9}	9.18967	0.64614×10^{-9}	$\overline{10 . S 1033}$
${ }_{8}$	$3.9228 \times$	59357	$=5494 \times{ }^{\prime \prime}$	-40643
8	1.0143×10^{10}	10.00615	98595×10^{-10}	II. 99385
9	2.6755 "	42741	37376	57259
5.0	7.2005	S5736	I3888 "	I 4264

Values of $e^{\pi x}$ and $e^{-\frac{\pi}{s} x}$ and their logarithms.

x	$e^{\pi x^{x}}$	$\log e^{\frac{\pi}{4} x}$	$e^{-\frac{\pi}{x} x}$	$\log e^{-\frac{\pi}{4} x}$
1	21933	$0.3+109$	0.45594	1. 6.5801
2	4.8105	. 68219	.20,-5S	-31781
3	1.0551×10	1.02328	.94750 $\times 10^{-1}$	2. $0 \cdot 672$
4	2.3141 "	. 36438	$43=14 \times$. 63562
5	5.0754	.70547	.19703 "	.20453
6	1.1132 $\times 10^{2}$	2.04656	0.59833×10^{-2}	3. 25344
8	2.4 .45 "	-3 ${ }^{\text {S-66 }}$. $4095{ }^{\circ}$ "	. 61234
8	$5.35+9 \times{ }^{6}$. 728 -5	$.1507+"$	-.2\%125
9	1.1745×10^{3}	3.06955	. 51.44×10^{-3}	4.93015
10	2.5760 "	.41094	. 3 S 50	-55906
11	5.6498 "	3.75204	$0.15700 \times$	+. 2.4796
12	1.2392×10^{4}	4.09313	$.806099 \times 10^{-4}$	5.) 6057
13	2.7168 "	-43122	$.36794 \quad$ "	- 5058
14	5.9610 "	. 77532	.167-6 "	-22468
15	1.3074×10^{5}	5.11041	$.764 .7 \times 10^{-5}$	6.SS359
16	2.8675	5.45\%31	0.34573	6. 54249
17	$6.2593 \times$. 79.800	.15900 "	- 201.40
15	1.3794×10^{61}	6.13069	$.72+95 \times 10^{-6}$	$\overline{7} .86031$
19	3.0254 "	-15079	-33053 "	-51921
20	6.6356	. 2200	.15070 "	.17512

Table 45.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{V_{\pi}}{} \pi_{x}}$ and $e^{-\frac{\sqrt{2} \pi}{4} x}$ and their logarithms.

\boldsymbol{x}	$e^{\frac{\sqrt{-} \pi}{4} x}$	$\log e^{\frac{\sqrt{ } \pi}{4} x}$	$e^{-{ }^{\sqrt{4} x}}$	
1	1.4229	0.19244	0.64203	T. So $^{5} 56$
2	2.4260	. 38488	- 41221	. 61512
3	3.7786	. 57733	.26465	.42267
4	5.5853	.76977	.16992	. 23023
5	9.1666	.9622	.10909	.03779
6	14.277	1.15 5165	0.0,0041	ב. $S_{4}+535$
7	22.238	-34709	.0.44968	. 65291
8	34.636	. 53953	. 028851	. 46047
9	$53 \cdot 9.4{ }^{\prime}$.73108	.018536	. 20802
10	8.4 .027	. 92412	. 0111901	. 0755^{8}
11	${ }^{1} 30.87$	2.11686	0.00-6408	$\overline{3} . S S_{31}{ }^{4}$
12	203.45	- 30030	.0049057	.6)070
1.3	317.50	. 50174	. 0031.496	- $49^{5} 26$
1.4	19.4.52	. $(x)+15$.0020222	-305.2
15	770.2.1	. 58663	. 00120 S 3	.11337
16	1509.7	3.07007	0.00083355	$\overline{4} .92093$
17	1863.5	. 27151	. 00053517	- ¢ - 110
18	2910.4	.46305	. 00034360	. 53005
19	45.33 .1	.65639	.000220r6	- 313617
20	7060.5	. 8.888	.00014163	.15117

Smithsonian Tables.

EXPONENTIAL FUNCTIONS.
Valuo of c^{x} and e^{-x} and their logarithms.

x	e^{x}	$\log 4^{x}$	e^{-x}	$\log { }^{-x}$
1/64	1.0157	0.00679	0.9 ${ }^{\text {S }}+5$	-.993:
1/32	. 0317	. 01357	.96923	.) 1643
1/16	. 0645	.02714	. 93941	. 97286
1/10	. 1052	. 043.43	.90.484	.95657
1/9	.1175	.0.4825	. 59.48 .4	.95175
$1 / 8$	1.1331	0.05429	0.85250	7.9457
$1 / 7$.1536	. $06=04$. 86685	. 93796
$1 / 6$. 1814	.0723	. 84648	-92-62
1/5	. 2214	.08656	.81873	.91314
1/4	.28.40	.10857	.77880	. 8914
$1 / 3$	1.3956	0.14 476	0.71653	T. S 5524^{4}
$1 / 2$. 6.487	.21715	. 60653	-78235
$3 / 4$	2.1170	. 32572	-47こ37	.6742S
1	.7183	- $43+29$	-36-5S	. 56571
5/4	3.4903	. 54287	.2S650	. 45713
	4.4817	0.6514	0.22313	-.34 56
7/4	5.7546	. 76002	. 17377	. 23948
2	$7.3<91$. 86559	- 3535	.13141
9/4	9.4577	. 97716	.10540	.02284
5/2	12.1S25	1.05574	. 0 S208	2.91426

Table 47.
LEAST SQUARES.*
Values of $P=\frac{2}{\sqrt{\pi}} \int_{0}^{h x} e^{-(h x)^{2} d(h x)}$
This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $\mathrm{P}=\sqrt{\pi} \pi_{2}^{\int_{0}^{h x}} e^{-(h x)^{2}} d(h x)$

$h x$	0	1	2	3	4	5	6	7	8	9
0.0	. $11 \mathrm{I}=$ S	. 02256	. 03384	. 04511	. 05637	.06762	.0-SS6	. 09008	. $1012 S$. 112.46
0.	.12362	. 3476	. +1587	.1-694	.16799	.17901	.18909	. 20024	.21184	.22270
0.2	.22352	. 22430	. 25502	. 26570	.27633	. 28690	. 297.12	-30788	3^{1828}	- 32863
0.3	-33001	- $3+9$ 13	-35923	- 36936	- 37939	-3503,	-33021	- 40001	- 41874	42839
0.4	- +3797	- 74747	- 15689	. 88623	- 47548	. 48466	49375	. 50275	. 51167	. 52050
0.5	.5202.4	. 53790	. 5.1646	55494	. 56.332	. 57162	.579 2	.58792	. 59594	. 60386
0.6	. $6116{ }^{5}$. 61941	. $62-05$. $63+59$. 6.203	. 64935	. 65663	. 66375	. 67084	. 67750
0.7	. 68.467	. $691+3$. 6 و\$10	. 20.64	-7116	-71754	-7ニ3 2	.73001	.73610	- 7210
0.5	. 74.400	. 75331	. 75952	. 76514	. 77067	. 77610	- - 4	- -8669	79184	-79691
0.9	. Sor88	. 50677	.Sir ${ }^{\text {6 }}$. 51627	. 22089	. 25542	. 22957	. 33423	.83851	. 84270
1.0	. S_{4} ¢8I	. 508.4	S547S	. $S_{5} 565$. 562.44	. 86614	. 86977	. 57333	. $5-680$. 8 S020
1.1	. S $^{3} 533$. 88679	.SSOOT	. 89308	. 80612	. 99910	. 00200	.004t	.00-61	.91031
1.2	. 91296	. 91553	.91805	.92051	. $92=90$	-92524	. 92751	. $9=973$. 03190	.93401
1.3	.93606	. 03507	. 9.4001	. 94191	. $9+3.376$. 94556	. 21731	-94002	.95067	. 95229
1.4	. 95385	.95538	. 95686	.95830	. 95970	. 96105	.96237	. 96365	. 90490	. 26610
1.5	. 960728	. 968.41	. 96952	. 97059	.97162	.97263	.97310	. $9^{-} .155$. 97.5 .16	. 97635
1.6	.9-721	.9-804	.97584	.97962	. 08038	. 98110	. 90181	-9 ${ }^{-1}+9$. $) 8315$.98379
1.7	- 0 Stir	. 9.5500	. 0855	. $2 \mathrm{S613}$	- - $_{665}$. 9.9719	. 085	. 98817	.95864	.98909
1.S	- OS 5 5	. 98094	. 99035	. 99074	. 99111	. 99147	.99152	. 99216	-992-4	.09279
1.9	. 99309	. $9933{ }^{8}$. 99366	. 99392	. $99+118$. $994+4$. 99466	. 99489	. 99511	. 99532

* Tables $47-52$ are for the most part quoted from Howe's "Formulx and Methods used in the application of Least Squares. ${ }^{\text {" }}$
Smithsonian Tables.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x / r where r is the "probable error." 'Ihe probable error r is equal to $0.47694 / h$.

$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0	. 00000	. 00538	. 01076	. 01614	. 02512	. 02690	.03228	. 03766	. 04303	. 0.4840
0.1	. 05378	. 0591.4	.06451	.06987	. 07523	. 0 So 59	. 08594	.09129	.09663	. 10197
0.2	. 10731	. 11264	. 11796	. 12328	. 12860	13391	. 13921	. 14451	. 14950	. 15508
0.3	. 16035	. 16562	. 17088	. 17614	.18i3S	. 15662	.19185	. 19707	. 20229	. 20749
0.4	. 21265	. 21787	. 22304	. 22821	. 23336	.23851	. 24364	. 24876	.253SS	. 25898
0.5	. 26407	. 26915	. 27421	. 27927	.28431	.28934	.29436	. 29936	- 30435	- 30933
0.6	- 31430	. 31925	. 32419	. 32911	-33402	. 33892	-34380	. 34866	- 35352	. 35835
0.7	- 36317	- 36798	- 37277	- 37755	-38231	- 38705	-39178	- 39649	. 40118	. 40586
0.8	.41052	.41517	. 41979	- 424.40	. 42899	. 43357	- 43813	$\cdot 44=67$	-44719	. 45169
0.9	- +5618	. 46064	. 46509	- 46952	. 47393	. $4783{ }^{2}$. 48270	48605	. 49139	. 49570
1.0	. 50000	- 50.428	. 50 S 53	-51277	. 51699	.52119	. 52537	-52952	. 53366	. 53778
1.1	. 54188	. 54595	. 55001	. 55404	. 55806	. 56205	. 56602	. 56998	. 57391	. 57782
1.2	. 58171	. 58555	. 58942	. 59325	. 59705	. 60083	. 60460	. 60833	. 61205	. 61575
1.3	. 61942	. 62308	. 62671	. 63032	. 63391	. 63747	.64102	. 64554	. 64804	. 65152
1.4	. 65498	. 65841	. 66182	. 66521	. 6655	. 67193	. 67526	. 67556	.68ist	. 68510
1.5	.68833	. 69155	. 69474	. 69791	. 70106	. 70419	. 70729	. 71038	. 71344	. 71648
1.6	. 71949	-72249	. 72546	. 728.41	. 73134	. 73425	. 73714	. 74000	. 74285	.74567
1.7	. 74847	. 75124	. 75400	. 75674	. 75945	.76214	. 76481	. 76746	. 77009	- 77270
1. 8	. 7752 S	. 77785	.7S039	. 7 S 291	. 78542	. 78790	. 79036	. 79280	. 79522	. 79761
1.9	. 79999	. 80235	. 50.469	. 80700	. 80930	. $\mathrm{SII}_{5} 8$. 51353	. 81607	. SiszS	. 82048
2.0	. 82266	. 82481	. 82695	. 82907	. 83117	. 83324	. 83530	. 83734	. 83936	
2.1	. 84335	. S_{4531}	. 84726	. 84919	. 55109	. 53298	. 55486	. 55671	. 8585	. 86036
2.2	. 86216	. 86394	. 86570	. 86745	. 56917	. 57085	. 57255	. 57425	. 87591	. 87755
2.3	. 87918	. 88078	. 88237	. SS 395	.SS 550	. 85705	. 8585	. 59008	. 89157	. 89304
2.4	. $89+50$. 89595	. 89738	. 89589	. 90019	. 90157	. 90293	. 90428	. 90562	. 90694
2.5	.90825	. 90954	.91082	. 91208	.91332	.91456	. 91578	. 91698	.91817	-91935
2.6	. 92051	. 22166	.92280	. 92392	.92503	.92613	.92721	.92828	. 92934	.93038
2.7	.93141	. 93243	-933+4	. 93443	. 93541	. 93638	. 93734	. 93828	. 93922	-9.4014
2.8	.94105	. 94195	. 94284	. 94371	. 94458	. 94543	. 94627	. 94711	-94793	. 94874
2.9	-94954	.95033	.95111	.95187	.95263	. 95333°	.95412	. 954 S 4	. 95557	.95628
	0	1	2	3	4	5	6	7	8	9
3	. 95698	. 96346	. 96910	. 97397	.97817	.9Si76	. 98.482	.98743	.99962	-991 47
4	. 99302	. 99431	. 99539	99627	. 99700	. 99760	.99SoS	.99548	.99579	. 99905
5	. 99926	-99943	. 99956	-99966	. 99974	-99980	. 99985	.9993S	. 99991	. 99993

Table 49.

LEAST SQUARES.

Values of the factor $0.6745 \sqrt{\frac{1}{n-1}}$.
This factor occurs in the equation $e_{3}=0.6745 \sqrt{\frac{\overline{y y}}{2-1}}$ for the probable error of a single observation, and other similar equations.

n	$=$	1	2	3	4	5	6	7	8	9
00			0.6745	0.4769	0.3894	0.3372	0.3016	0.2754	0.2549	0.2385
10	0.22 .48	0.2133	. 2029	. 1947	. 1871	.1S03	.1742	. 1686	.1636	. 1590
20	. 1547	. 1503	.1472	. 1438	. 1406	. 1377	. 1349	. 1323	. 1298	. 1275
30	.1252	.1231	.1211	. 1192	.1174	. 1157	. 1140	. 1124	. 1109	. 109.4
40	. 10 So	. 1066	. 1053	.10.41	. 1029	. 1017	. 1005	.0994	. 0984	. 0974
50	0.0964	0.0954	0.0944	0.0035	0.0926	0.0918	0.0909	0.0901	0.0593	0.0856
60	. 0.878	. 0871	. 0864	. 0857	. 0550	.0843	. 0837	.0830	.OS24	.0Sis
70	.OSI2	.0So6	.OSoo	. 0795	.0789	. 0784	. 0778	. 0773	. 0768	. 0763
80	. 0759	. 075.4	. 0749	. 0745	. 0940	. 0736	.0731	. 0727	. 0723	. 0719
90	. 0715	. 07 II	. 0707	. 0703	. 0699	. 0696	. 0692	. 0688	. 068_{5}	.068I

LEAST SQUARES.

Values of the factor $0.6745 \sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_{n}=0.67 \cdot 45 \sqrt{\frac{\Sigma y^{2}}{n(n-1)}}$ for the probable crror of the arithmetic mean.

n	$=$	1	2	3	4	5	6	7	8	9
00			0.4769	0.2754	0.1947	$0.150 S$	0.1231	0.1041	0.0901	0.0795
10	0.0711	0.0643	. 0557	. 0540	. 0500	. 0465	. 0435	. 0.409	. 0386	. 0365
20	. 0346	.0329	. 0354	. 0300	. 0237	. 0275	. 0265	. 0255	. 0245	. 0237
30	0.0229	0.0221	0.0214	0.0208	0.0201	0.0196	0.0190	0.0185	0.0180	0.0175
40	. 0171	. 0167	. 0163	. 0159	. 0155	.0152	. 0148	.0145	. 0142	. 0139
50	.0136	. 0134	. 013 3	. 012 S	. 0126	. 0124	. 0122	. 0119	. 0117	. 0115

LEAST SQUARES.

Table 51.

Values of the factor $0.8453 \sqrt{\frac{1}{n(n-1)}}$.
This factor occurs in the equation $e_{8}=0.8_{453} \frac{\Sigma y}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00			0.5978	0.3451	0.2440	0.1890	0.1543	0.1304	0.1130	0.0996
10	0.089I	0.0806	. 0736	. 0677	. 0627	.0583	.0546	.0513	. 0.483	. 0.457
20	. 0.434	.0412	. 0393	. 0376	. 0360	. 0345	.0332	. 0319	. 0307	. 0297
30	0.0287	0.0277	0.0268	0.0260	0.0252	0.0245	0.0238	0.0232	0.0225	0.0220
40	.0214	. 0209	. 0204	.or99	. 0194	. 0180	.oı86	. 0182	.0175	. 0174
50	. 0171	.0167	. 0164	.0161	. 0158	. 0155	.OI 5^{2}	. 0150	.0147	.or 45

LEAST SQUARES.

Table 52.

Values of $0.8453 \frac{1}{{ }^{1} \sqrt{n-1}}$.
This table gives the average error of the arithmetic mean when the probable error is one.

n	$=$	1	2	3	4	5	6	7	8	9
00			0.1227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332
10	0.0282	0.0243	.0212	.0188	.0167	.0151	.0136	.0124	.0144	.0105
20	.0097	.0090	.0084	.0078	.0073	.0069	.0065	.0061	.0058	.0055
30	0.0052	0.0050	0.0047	0.0045	0.0043	0.0041	0.0040	0.0038	0.0037	0.0035
40	.0034	.0033	.0031	.0030	.0029	.0028	.0027	.0027	.0026	.0025
50	.0024	.0023	.0023	.0022	.0022	.0021	.0020	.0020	.0019	.0019

[^8]Values of the logarithms +10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x} x^{n-1} d x$ or $\log \Gamma(n)+10$ for walues of n between x and z. When n has values not lying between I and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1)=n^{1}(n)=n(n-1) \ldots(n-r) \Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99	97497	95001	92512	90030	S7555	S5087	Sこ627	SO173	77727
I. O	75287	72555	70430	6Soil	65600	63196	60799	58.08	56025	536.8
1.02	51279	48916	46561	4212	+1S70	395.35	37207	34886	32572	30265
1.03	27964	25671	23354	21104	ISS_{31}	16564	$1+305$	12052	09806	07567
1.0.4	05334	ojios	ooS89	98677	96471	$\overline{94273}$	92050	59895	57716	S5544
1.05	9.9583379	S1220	79068	76922	74783	72651	70525	68.406	66294	6.158
1.06	62089	59906	57910	55830	53757	51690	49630	47577	45530	43489
I. 07	41469	39428	37407	35392	333 S 4	31388	29357	27398	25415	$23+49$
1.08	21469	19506	17549	15599	13655	11717	0975	07860	05941	$\frac{0.4029}{8525}$
1.09	02123	00223	98329	96442	94561	92686	905i8	59856	57100	85250
1.10	9.9783407	SI 570	79738	77914	76005	$742 S_{3}$	72476	70676	6SSS2	67095
I.II	65.13	63538	61768	60005	58248	56.497	54753	53014	51281	49555
1.12	47834	46120	14411	42709	+1013	39323	37653	35960	34258	32622
I. I 3	30962	29308	27659	26017	$2+381$	22751	21126	$1950{ }^{\prime}$	${ }_{17} 7506$	16289
1.14	14689	13094	11505	09922	$083+5$	06,74	05209	03650	02096	00549
1.15	9.9699007	97.171	95941	9+417	92S98	91356	S9S79	$\mathrm{SS}_{37} \mathrm{~S}$	$\mathrm{S6SS}_{3}$	S5393
I. 16	83010	S:+32	Sog6o	79493	78033	76575	75129	736,16	72245	70516
1.17	69390	67969	66554	65145	63712	$623+4$	60952	59566	58185	56810
I.IS	$55+40$	54076	52718	51366	50019	48677	47341	46011	+4867	13368
1.19	1205t	40746	$39+44$	$3^{81} 47$	36856	35570	34290	33016	31747	30453
1.20	9.9629225	27973	26725	25484	2.12 .48	23017	21792	20573	19358	18150
1.21	$169+6$	15745	14556	13369	12188	Itoil	0084	08675	07515	06351
1.22	05212	004068	02930	01796	00669	99546	95430	97318	96212	95111
1.23	591015	92925	91840	90-60	89685	88616	S7553	S6.494	554.1	84393
1.24	83350	S2313	SizSo	So253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	712.46	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60506	59388	58975	$5^{\text {SiO67 }}$	57.65	56267	55374
1.27	$5+187$	53604	52727	51855	509S8	50126	49208	$48+16$	47570	46728
1.23	45.91	45059	+4232	$43+10$	42593	41782	40975	40173	39376	3555
1. 29	$3779{ }^{\text {S }}$	37016	36239	$35+67$	$3 \cdot 1700$	$3393{ }^{\text {S }}$	33151	$32+39$	31052	30940
1.30	9.9530203	29170	$2 S_{7+3}$	2S021	27303	26590	2588_{3}	25180	$2{ }_{24}{ }^{\text {S }}$ S	23,89
1.31	23100	22.117	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11540	10944
1.33	10353	09766	$091 S_{4}$	05606	05034	$07+66$	06903	$063+4$	05791	05212
I.34	0.4698	0.4158	03624	03094	$0 \geq 505$	02048	O1 532	01021	00514	00012
1.35	9.9199515	99023	$9^{9} 535$	95052	97573	97100	96630	96166	95706	95251
1.36	24800	94355	93913	93477	$930+4$	92617	92191	91776	91362	90953
I. 37	90549	901.49	89754	80363	SS977	SS595	88218	S7846	57478	87115
1.35	86756	86.102	86052	85707	S5366	S5030	8.4695	8.371	S 8149	83731
1.39	$83+17$	S310S	S 2 SO 3	S2503	S2203	Sig16	Si630	SI34S	S1070	So797
1.40	9.948052S	So263	So00?	7974 S	79.497	79250	79008	$7 \mathrm{~S}_{770}$	78537	78308
I...1	$7 \mathrm{FSOS}_{4}$	7786.4	77645	$77+37$	77230	77027	76829	76636	764.46	76261
I. 1.12	76081	75005	75733	75505	75402	75243	750.89	74939	74793	74552
1.43	74515	74382	74254	74130	74010	73594	73783	73676	93574	73746
1. 4.4	73382	73292	73207	73125	73049	729,6	72908	72844	72784	72728

"Quoted from Carr"s "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

CAMMA FUNCTION．

n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	7こ630	7こ597	72549	72514	72．4． 1	72.459	72.437	72.119	72.106
1.46	72397	72393	72392	72396	72.40 .4	72.416	72．432	72.152	72477	72506
1.47	72539	725，6	72617	72662	72712	72766	7282.4	72886	72952	73022
1.45	73097	73175	7325S	73345	73436	73531	73630	7373.4	$73^{8.11}$	73953
I．49	74065	74185	74312	744，	7－1572	7－4708	74845	74992	75141	75293
1.50	9．9475449	75610	75771	759.43	76116	76202	76473	76658	76847	770.10
1.51	77－37	77438	77642	77851	78064	$7 \mathrm{~S}_{2} \mathrm{~S}_{1}$	78502	78727	78956	79189
1.52	$794=6$	79667	79912	80161	50414	S067 1	So932	81196	81465	81735
1.53	82015	S2205	S2580	82868	83161	83457	83755°	S_{4062}	84370	$846 S_{2}$
1.54	S4998	S5318	850.42	85970	S6302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	S9096	89463	SoS_{34}	90208	90587	90969	91355	91745
1．56	92139	$9 \geq 537$	9293S	9334	93753	94166	$9+583$	95004	95429	25857
1.57	96289	96725	97165	97609	98056	98508	98963	994：2	99885	00351
1．58	500Sここ	01 296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	062－45	06760	072SO	07503	08330	08860	09395	09933	10475
1.60	9．9511020	11569	12122	12679	132.40	${ }_{13}{ }^{\text {SO}} 4$	14372	14943	15519	16098
1.61	16680	17267	17S57	18.451	1904S	19650	20254	20862	21475	22091
1．62	22710	23333	23960	24591	25225	25863	26504	27149	27795	28451
1.63	29107	29767	30430	31097	31767	32．42	33^{120}	33 Sol	$34+86$	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	4593 S	46684	47434	$44^{4} 5_{7}$	45944	49704
I． 66	50468	51236	52007	577S2	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	$607=3$	61536	62353	63174	63998	64826	65656
1.68	66491	67329	68170	69015	69564	70716	71571	72430	73293	74159
1． 69	75028	75901	76777	77657	78540	79427	S0317	Sizil	SzioS	S300S
1.70	9.9583912	S48こ0	S5731	S6645	S7536	SS．4 ${ }_{4}{ }_{4}$	89409	90337	21268	22203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1．72	602712	03688	04667	05650	06636	07625	－86is	09614	10613	11616
1.73	12622	13632	14645	15661	16681	1770.4	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28 miS	29178	30241	31308	32377
1.75	$2.9633+51$	3457	35607	36690	37776	$3 \$ 866$	39959	41055	42155	43－58
1.76	44354	45473	46586	47702	$48 S 21$	49944	51070	52200	53331	$5+467$
1.77	55606	56749	57594	59043	60195	61350	62509	63671	64835	66004
1.78	67176	$6 S_{351}$	69529	70710	71595	73082	74274	75468	76665	77－866
1．79	79070	So277	SI488	S2701	S319S	S513S	S6361	S7588	SSSIS	90051
1.80	9.9691287	92526	9376S	95014	96263	97515	98770	$\overline{00029}$	$\overline{01291}$	$\overline{02555}$
1.81	$703 \mathrm{~S}=3$	05095	06369	07646	08927	10211	11498	127SS	14082	15375
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33560	3520．4	36551	37900	39－54	40610	41969
1.54	43331	44697	46065	47437	48812	50190	51571	52955	$543+2$	55733
1.85	9．9757r26	58522	59922	61325	62730	64140	65551	66066	$66_{38} 4$	69805
1.86	71230	72657	$7.10 \mathrm{~S}_{7}$	75521	76957	78397	79539	SI285	S27．34	S41S6
I． 87	85640	S7098	SS559	90023	91490	92960	94433	95910	97380	98571
I．SS	Soo356	O184．4	03335	04830	06327	0フ827	09331	10837	12346	13859
r． S_{9}	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830603	322.12	33793	35.348	36905	$38_{1} 65$	40028	41595	43164	44736
1.91	46311	47890	$49+7{ }^{1}$	51055	52642	5＋232	55825	5i421	59020	60622
1.92	62226	63834	65445	6705	68675	70294	71917	73542	75170	76802
1.93	$7{ }^{5} 436$	Soot3	S1713	83356	85002	86651	85302	－${ }^{2} 957$	21614	2325
1.94	94938	96605	$9^{\text {S274 }}$	99946	01621	03299	0.4950	06603	05350	1003）
1.95	9.9911732	13427	15125	16S26	15530	20237	21947	23659	25375	27093
1.96	$2 S^{\text {2 }} 5$	30539	32266	33995	35728	37464	39202	$409+3$	42688	444.35
1.97	46185	47937	49693	51451	53213	54077	56741	58513	60286	62062
1．98	63840	65621	67405	69192	70982	72774	7450	76365	－8169	79972
1.99	Si779	$\mathrm{S}_{35} \mathrm{SS}$	S5401	87216	S9034	90854	92678	94504	96333	25165

The values of the first seven zonal harmonics are here given for every degree between $\theta=0^{\circ}$ and $\theta=90^{\circ}$.

θ	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}
0°	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$1{ }^{\circ}$	0.9998	0.9995	0.9991	0.9955	0.9977	0.9967	0.9955
2	. 9994	. 9982	. 9963	. 9939	. 9909	. 985	. 9829
3	. 9986	. 9959	. 9918	.9563	. 9795	. 9713	. 9617
4	.9976	. 9927	.9854	. 975	.9638	. 9495	. 9329
5	. 9962	.9886	.9773	.9623	.9437	.9216	. 8961
6°	. 9945	.9836	. 9674	. 9459	.9194	.SSSI	. 5522
7	. 9925	. 9777	. 9557	. 9267	. S $^{\text {II }}$..476	. 7986
8	. 9903	. 9709	. 9423	. 90.48	. 5589	. 0553	. 7448
9	. 9877	.9633	. 9273	. 8803	. 8232	. 7571	. 6831
10	. 98.48	. 9548	.9106	. 8532	.78.40	.7045	. 6164
11°	.98i6	. 9454	. 8923	. 8238	. 7417	.6483	. 5461
12	. 9781	. 9352	. S724	. 7920	.6966	. 5892	- 4732
13	. 9744	. 9241	. 8511	. 7582	. 6.489	. 5273	- 3940
14	.9703	. 9122	. S 2 S 3	. 7224	- 5990	.4635	-3219
15	.9659	.8995	.S042	. 6847	.547I	-3982	. $2+54$
16°	. 9613	. 8860	.7787	. 6454	- 4937	. 3322	. 1699
17	.9563	. 8718	.7519	. 6046	. 4391	. 2660	.0961
18	.951 1	.8568	. 72.40	. 5624	. 3836	. 2002	. 0289
19	. 9455	. 8410	. 6950	. 5192	- 3276	.1347	-.0443
20	. 9397	. 8245	. 66.49	. 4750	.2715	. 0719	-.1072
21°	. 9336	. 8074	.633 S	. 4300	.2156	.0107	-. 1662
22	.9272	. 7895	. 6019	-3S45	. 1602	-.0.481	-.2201
23	. 9205	. 7710	. 5692	. 3386	.1057	-.1038	-. 2681
2.4	. 9135	. 7518	. 5357	. 2926	. 0525	-. 1559	-. 3095
25	.9063	.7321	.5016	.2465	. 0009	-. 2053	-.3463
26°	. 8988	. 7117	.4670	. 2007	-.0489	-. 2478	-.3717
27	. 8910	. 6908	.4319	. 1553	-.0964	-. 2869	-.3921
28	. 8829	. 6694	. 3964	. 1105	-.1415	-.3211	-.4052
29	. 8746	. 6474	-3607	. 0665	-.1839	-. 3503	-.4114
30	. 8660	. 6250	-32.48	.0234	-.2233	-. 3740	-.4101
31°	. 8572	. 6021	.2887	-.oIS 5	-. 2595	-392-4	-. 4022
32	. 8.480	. 5788	. 2527	-.0591	-. 2923	-. 4052	-. 3576
33	. 8387	. 5551	. 2167	-. 0982	-. 3216	-. 4126	-. 3670
34	. 8290	. 5310	. 1809	-. 1357	-. 3473	$-.41 .48$	-. 3409
35	. 8192	. 5065	. 1454	-.1714	-.3691	-.4115	$-.3096$
36°	.Sogo	. 4818	. 1102	-. 2052	-.3871	-.4031	-. 2738
37	.7986	. 4567	. 0755	-. 2370	-. 4011	-. 3898	-. 2343
38	.7880	. 4314	. 0413	-. 2666	-.4112	-. 3719	-.1918
39	.7771	. 4059	. 0077	-.2940	-. 4174	-. 3497	-.1.169
40	.7660	.3S02	$-.0252$	-.3190	-.4197	-.3234	-. 1003
41°	. 7547	-3544	-. 057.4	-.3416	-.4181	-. 2938	$-.0534$
42	.7.131	. 3284	-.0887	-.3616	-.4128	-. 2611	-.0065
43	. 7314		-.119!	-.3791	-.4038	-. 2255	. 0395
4.4	.7193	.2762	-.1485	-. 3940	-.3914	-.1878	. 0846
45	. 7071	.2500	$-.1765$	-.4062	-. 3757	-.1485	. 1270

* Calculated by Prof. Perry (Phil. Mag. Dec. 1891). See also A. Gray, "Absolute Measurements in Electricity and Magnetism," vol. ii., part 2.

Smithsonian Tables.

ZONAL HARMONICS.

θ	z_{1}	z:	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}
46^{3}	0.6947	0.22 .35	-. 20.40	-.415S	-.356S	-. 1079	0.1666
47	. $68=0$. $10 \frac{77}{7}$	-.: 300	-. 4252	-. 3350	-.06.15	. 205.4
45	. 6691	.1716	-. 2517	-. 4270	-. 3105	-.025	.2349
49	. 6561	.1456	-.27S1	-. 4286	-. 2836	. 0161	. 2627
50	. 6428	. 1198	-.3002	-. 4275	-. 2545	.0563	.2854
51°	. 6293	.09.41	-.3209	-.4239	-. 2235	. 0954	-3031
52	. 6157	.0086	-.3401	-.4178	-.1910	.1326	. 3153
53	. 6018	. 0433	-.357 '	-. 4093	-. 1571	.1677	-3221
54	. 5878	.OIS2	-.3740	-.3984	-.1223	. 2002	-3234
55	.5736	$-.0065$	-.3056	-.3852	-.056S	. 2297	-3191
56°	-5592	-.0310	-. 4016	$-.3698$	-. 0510	. 2559	. 3005
57	. $5+46$	-. 0551	-. 4131	-.3524	-. 0150	. 2787	. 2949
55	. 5299	-.07-8	-.4229	-. 3331	. 0206	. 2976	. 2752
59	. 5150	-.1021	-. 4310	-.3119	.0557	-3125	.2511
60	. 5000	-.1250	-. 4375	-.2891	.0898	-3232	.2231
61°	-4848	一.1.474	-.4423	-. 2647	.1229	. 3298	.1916
62	.4695	-.1694	-. 4455	-. 2390	. 1545	-3321	. 1571
63	.4540	-. 1908	-. 4471	-. 2121	.184	-3302	.1203
64	$43^{8.4}$	-.2117	-. 4.470	-.1841	. 2123	-3240	. 0818
65	-4226	-.2321	-.4452	-. 155	.23 SI	.3138	. 0422
66°	. 4067	-. 2518	-.4419	-. 1256	. 2615	. 2996	. 0021
67	- 3907	-.2710	-.4370	-. 0955	. 2824	. 2819	-.0375
68	. 3746	-. 2896	-. 4305	-.0650	.3005	.2605	-. 0763
69	. 358.4	-. 3074	-.4225	-.0344	-3158	.2361	-. 1135
70	-3420	-.3425	-.4130	.0038	-32SI	. 2089	-.1485
71°	-3256	-. 3410	-. 4021	. 0267	-3373	.1786	-.1811
72	. 3090	-. 3568	-.3898	. 0568	. 3434	.1.472	-. 2099
73	. 2924	-. 3718	-.3761	.0864	-3463	.114t	-. 2347
74	. 2756	-.3860	-.3611	. 1153	. 3461	. 0795	-. 2559
75	.25 SS	-. 3995	-.3449	. 1434	-3427	.0431	-.2730
$76{ }^{\circ}$. 2419	-4112	-.3275	. 1705	.3362	. 0076	-. 28.48
77	. 2250	-.4241	-. 3090	.1964	-3267	-.02S4	-.2919
78	. 2079	-.435 2	-.2894	.2211	-3143	-.0644	-. 2943
79	.190S	-. 4454	-. 2688	. 2443	. 2990	-.0989	-.2913
So	.1736	$-.4548$	-. 2477	. 2659	.2810	-.1321	-. 2835
81°	. 1564	-. 4633	-.2251	. 2859			
S2	. 392	$-.4709$	-.2020	- 3040	$\therefore 378$	-.1926	-. 2536
83	.1219	-. 4777	-. $17 \mathrm{~S}_{3}$. 3203	. 2129	-. 2193	-.2321
8.	. 1045	-. 4836	-. 539	. 3345	.IS6ı	-.243I	-. 2067
S5	.0872	-. 4886	-.1291	. 3468	. 1577	-. 2638	-.1779
86°	.069S	-. 4927	-.1038	.3569	.127S	-. 2 S11	-.1460
87	. 0523	-. 4959	-.07Si	.3643	. 0969	-. 2947	-.1117
SS	. 0349	-. 4952	-.05こ2	. 3704	. 0651	-.30.15	-.0735
S9	. 0175	-. 4995	-. 0262	. 3739	.0327	-.3105	-.03SI
90	. 0000	-. 5000	-. 0000	. 3750	. 0000	-.3125	-. 0000

Smithsonian Tables.

MUTUAL INDUCTANCE.*

Values of $\log \frac{M}{4 \pi \mathbf{V}^{\prime u^{\prime}}}$.

Table of values of $\log \frac{M}{4 \pi \mathbf{V}^{\left(z a a^{\prime}\right.}}$ for facilitating the calculation of the mutual inductance M of two coaxial circles of radii a, a^{\prime}, at distance apart b. The table is calculated for intervals of 6^{\prime} in the value of $\cos ^{-1}\left\{\begin{array}{l}\left(a-a^{\prime}\right)^{2}+b^{2} \\ \left.a-a^{\prime}\right)^{2}+b^{2}\end{array}\right\}$ from 60° to 90^{3}.

	0^{\prime}	6^{\prime}	12^{\prime}	18^{\prime}	24^{\prime}	30^{\prime}	36^{\prime}	42^{\prime}	48^{\prime}	54^{\prime}
60°	1.4994783	3022651	5050505	10783+5	5106173	5133989	5161791	51895 S2	5-17361	5245128
61	5272883	530062S	5328361	5356084	5383796	5411498	5439190	5466872	$5+945+5$	5522209
62	$55+9864$	5577510	5605147	5632776	5660398	568Sol1	5715618	$57+3217$	5770Son	5798394
63	5S25973	5853546	5SS113	5908675	5936231	5963782	5991322	6015871	$60+640 S$	$60739+2$
64	6101472	6128998	6156522	6184042	6211560	6239076	6266589	6294101	6321612	$63+9121$
65°	-1.63-6629	640.4137	6431645	6459153	6486660	6514169	$65+1678$	6569189	6596701	6624215
66	6651732	6679250	6706772	$673+2966$	6761824	67 S9356	68ı6S91	68_{44+31}	6871976	6S99526
67	6927081	$695+6+2$	69S2209	7009752	7037362	$706+949$	7092544	7120146	7147756	7175375
68	7203003	72306.40	7258286	72 5942 7	7313609	$73+12877$	7368975	7396675	7424357	7452111
69	7479548	7507597	7535361	7563138	7590929	76187357	76.46556	-67+392	7702245	7730114
70°	1.775So00	7735903	$7 \mathrm{SI}_{3} \mathrm{Sa}_{3}$	78.17	7869720	7897	79256927		$79 \mathrm{SI7} 75$	SoogSo 3
71	So37S82		$809+107$		23	S17S617	S206836		S263349	S291645
72	S319957	+5316		S.4050	8433534	S.46199S	S 4904	S51901S	S $5+7575$	S576164
33	S604755	633440	SG62129	S690S52S	S719612	S748406	S777237	SS06106	8835013	8863958
74	S8929+3	8921969	S951036	S9SO14+9	9009295	9038.459	9067728	9097012	9126341	9155717
75°	- 2185141	9214613			30	93				94522.46
76	9.4 $4=196$	9512205	95+2272	9572.4009	9602590	$96328+1$	9663157	93537	$97=395_{3}$	$975+497$
77	9785079	S15731	$9^{8}+6+5+$	957724	9908ıiS	9939062	9970082	0001181	0032359	0063615
75	$0.009+959$	0126355	,0157S96	or\$9.19.4	221181	0252959	0284830	0316794	03.8855	0381014
79	0413273	044533	0.775098	0510668	05+3347	0576136	0609037	$06+2054$	067515_{7}	0708+41
80°	0.0741816	0775316	OSos94to	OS 427020	0876592	0910619	$09.147 \mathrm{~S}_{4}$	0979091	1013542	10.48142
SI	1082893	1117799	1152863	118800_{9}	$1223+8 \mathrm{I}$	$12590+3$	1294778	1330691	1366786	1.403067
82	1439539	1476207	1513075	1550149	1587434	1624935	1662658	1700609	1735794	1777219
S_{3}	1815 SO	$1 S_{5+} S_{15}$	159.4001	$1933+55$	197318_{4}	2013197	2053502	2094108	2135026	2176259
84	2217823	2259728	2301983	2344600	23S7591	$2+30970$	2.474748	2518940	2563561	2608626
85°	$0.265+152$	2700156	2746655	2793670	$2 S_{41221}$	2 SS 9329	293 SOLS	2987312	3037238	3087823
86	3139097	3191092	$32+3{ }^{8}+3$	329733^{8}	335^{1762}	$3+07012$	$3+63184$	3520327	3578495	3637749
S_{7}	3605153	3759777	3822700	3857006	3952792	4020162	40S9234	416013^{8}	4233022	4308053
SS	4385.420	+465.341	+5+8064	${ }_{4633} 880$	4723127	48.6206	4913595	5015870	512373S	523S079
S_{9}	5360007	5490969	$5^{6} 32886$	578S 406	5961320	6157370	$63 S_{5907}$	6663883	7027765	7586941

- Quoted from Gray's "Absolute Measurements in Electricity and Magnetism," vol. ii., p. 852.

ELLIPTIC INTEGRALS．

This table gives the values of the integrals between oand $\pi / 2$ of Ine function $\left.\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{1!} a a^{\prime \prime}\right\}$ for diff rent val－ ues of the modulus corresponding to each detree of θ between 0 and \boldsymbol{m}^{\prime} ．

θ	$\int_{0}^{0} \frac{\pi}{2} \frac{d \phi}{\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{3}}$		$\int_{0}^{0} \pi{ }^{2}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{1} \cdot d \phi$		θ	$\int_{0}^{0} \frac{\pi}{2} \frac{d \phi}{\left(1-\sin ^{2} \theta \sin ^{-} \psi\right)^{3}}$		$\int_{0}^{0} \frac{\pi}{2}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{3}{2}} d \psi$	
	Number．	Lug．	Number．	I．og．		Siumber．	Los．	Number．	Lng．
0°	1.5708	0.196121	1．5708	$0.10)(1121$	45°	I． 8541	0.268133	1.3506	0.130527
I	5709	106148	5：07	196013	6	Sigr	2716132	3415	
2	5713	196259	5703	1950.3	7	S848	275265	3320	124798
3	5719	$196+25$	$5(x) 7$	195817	8	2011	2－9005	3235	121522
4	5727	190046	5089	195595	9	giSo	282849	3147	$1188=7$
$5{ }^{\circ}$	1.5738	0.196949	1.5678	0.1059291	50°	1． 9356	$0.2 S 6 S_{16} 6$	1.3055	0.11577
6	5751	197305	5665	194930	1	9539	290902	2003	112705
7	5767	197719	56.49	19.448	2	9－29	205105	2S－0	109575
8	575	197245	5632	19.1014	3	9927	2994.4	2776	106395
9	5805	198794	5611	$193+31$	4	2.0133	303908	2081	103153
10^{3}	1．5S＝S	0.198934	1.5589	0.192818	55°	2.0347	$0.308=00$	1.2587	0.099922
1	5854	200139	5567	192121	6	0571	313255	2492	0,0632
2	5852	200905	5537	191367	7	0804	318147	2397	093317
3	5913	201752	5507	1100528	S	1047	323190	2301	－Sy9to
4	5946	202652	5476	189659	9	1300	32S380	2206	086573
15^{3}	1.5981	0.203604	1．5442	$0.188 ; 03$	60°	2.1565	0.333749	I． 2111	0.083180
6	0020	20.662	5405	187062	I	1542	339292	2015	079724
7	6061	20573	5367	186589	2	2132	$3+5021$	$10=0$	0，62－6
8	6105	206961	5326	185429	3	2435	350026	IS26	0,2838
9	6151	205199	5283	184209	4	2754	35705S	1532	069372
20°	1.6200	0.209515	1．5238	0.182928	65°	2.3088	0.363386	1.1638	$0.065 S-8$
1	6252	210907	5191	181586	6	$3+39$	369939	$15+5$	OUこ394
2	6307	212374	$51+1$	180155	7	$3 \mathrm{SO9}$	$3767+1$	1453	05 Syl 9
3	6365	213916	5090	178689	S	＋195	38379	1302	055455
4	6426	215532	5037	177161	9	4610	391112	12アコ	052001
25°	1.6490	0．217221	1.4981	0.175541	70°	2.50 .46	$0.395 ; 35$	1．1IS4	0.048597
6	（1557	2189ら2	4924	173585	I	5507	406659	1096	045166
7	6627	220788	4864	172136	2	509 S	414040	1011	$0+1827$
S	6701	222742	4503	170350	3	6521	423590	－ッフ7	035501
9	6777	22474	4740	168497	4	7081	432005	08.44	035189
30°	1． 6858	0.226906	I． 4675	0.166578	75°	2.7681	0.442182	1．0－6．4	0.031974
1	6941	228939	4608	164591	6	S327	452201	0686	02 SS 5
2	7028	231164	45.39	162534	7	9026	$462-87$	0611	025－56
3	7119	233475	44^{69}	$160+33^{3}$	S	9－56	474056	05.3	022758
4	7214	235852	4397	158272	9	3.0617	455903	0408	019564
35°	1.9312	0.239347	1.4323	0.15603 .4	80°	3．153．1	－ 0.198579	1.0401	0.017075
6	745	240923	4245	153754	1	2553	512591	0.335	$01+436$
7	7522	$2+3554$	4171	151400	2	3569	527617	$02-8$	011909
S	7633	246326	409）	148973	3	5004	$54+115$	－223	00957 S
9	7748	24919	4013	146531	4	6519	562519	01ヶ2	007406
40^{3}	1.7868	0.252076	I． 3931	0.143282	85°	3.8317	0． 583391	1.0127	0.005451
1	7992	255079	3 49	141418	6	4.0528	607755	0056	003719
z	8122	258206	3765	135776	7	3387	637360	0053	002296
3	8256	261406	3680	136086	8	7.427	677026	0026	OOII2S
4	8396	264723	3594	133347	9	$5 \cdot 33+9$	735192	0008	$0003+7$
45°	$1.85 \%^{1}$	0.268133	I． 3506	0.130527	90°	∞	∞	1.0000	

Smithsonian Tables．

BRITISH UNITS.

Cross sections and weights of wires.

This table gives the cross section and weights in British units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide section and weights by 100 . For ten times the diameter multiply by 100 , and so ons.

	Area of cross scction Sq. Mils.	Copper - Density 8.90.			Iron - Density 7.80.			Drass - Density S.56.		
		Pounds per l'oot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Ficet per Pound.	Pounds per Foot.	Log.	Feet der Pound.
10	7S.54	. 000303	$\overline{4} \cdot 48150$	3300.	.0002656	$4 \cdot 424=0$	3765.	.0002915	$\overline{4} \cdot 46.45 S$	343 I.
1 I	95.03	0367	. 56.429	2727.	0321.4	. 50697	3112.	03527	54735	2836.
12	113.10	0436	. 63986	2291.	03 S 25	. 5 S 257	2615.	0.4197	62295	2383.
13	132.73	0512	.70939	1953.	04485	. 65208	2223.	04926	69246	2030.
1.4	153.94	0594	. 77376	1683.	05206	.71646	1921.	05713	75684	1750.
15	176.71	.000682	$\overline{4} .83368$	1467.	. 0005976	¢.77637	1674.	. 000655 S	4.S1675	1525.
16	201.06	0776	. 58597	1289.	06799	. 83244	1471.	07461	. 87282	1340.
17	226.98	-5\%6	. 24240	1142.	07675	.SS510	1303.	08.423	.92548	1187.
IS	254.47	0,S2	. 09205	IOIS.	08605	. 93475	1162.	09443	. 97513	1059.
19	253.53	1094	$\overline{3} .03902$	914.	09588	.95171	1043.	.0010522	$\overline{3} .02209$	950.
20	314.16	. 001212	$\overline{3} .0$ O357	S25.I	.001062	3.02626	941.4	.001166	$\overline{3} .06664$	S57.7
21	3.46 .36	1336	. 12594	745.3	1171	. 06864	853.8	12 S 5	.10902	778.0
22	380.13	1.467	. 16634	68.5	1286	.10904	777.8	1411	.14942	708.9
23	415.48	1603	. 20496	623.8	1405	.14766	711.7	1542	.15SO.4	6.48 .6
24	452.39	1776	. 24192	572.9	1530	.18463	653.7	1679	.22500	595.7
25	490.S7	.001894	$\overline{3} \cdot 2773$ S	52S.0	. 001660	$\overline{3} .22008$	602.4	. 001 S22	$\overline{3} \cdot 260.46$	549.0
26	530.93	2046	-31146	$4 S S .1$	1795	.25415	557.0	1970	. 29453	507.5
27	572.56	2209	-3.4423	452.6	1936	. 28693	516.5	2125	- 32731	470.6
28	615.75	2376	. 37583	$+20.9$	20 S 2	-31852	480.3	2285	-35S90	437.6 408.0
29	660.52	2549	. 40630	392.4	2234	-34900	447.7	2.451	-35935	408.0
30	706.52	. 002727	$\overline{3} \cdot 43575$	366.7	.002390	$\overline{3} \cdot 37$ S. 45	415.4	. 002623	$\overline{3} \cdot 415 S 2$	3 S1.2
31	754.77	2912	. 46424	343.4	2552	. 40693	391.8	2 SO	-4.4731	357.0
32	SO.4.25	3103	. 49 ISI	322.2	2720	- 43450	307.7	2985	- 47485	335.I
33	S55.30	3300	.51854	303.0	2892	-46123	3.55 .3	3174	. 50161	315.1
34	907.92	3503	. 54446	255.4	3070	-48716	325.7	3369	-52754	290.8
35	962.11	. 003712	$\overline{3} \cdot 56964$	269.4	.003253	$\overline{3} \cdot 51233$	307.4	. 00357°	$\overline{3} 55271$	$2 S 0.1$
36	1017.SS	4927	. 59412	254.6	$3+42$. 53681	290.5	3777	- 57719	26.4 .7
37	1075.21	4549	. 61791	241.0	3636	- 56061	275.0	3990	. 60098	250.6
35	1134.11	4376	.64108	228.5	3 S+4	. 58476	260.2	4218	. 62514	237.1
39	1194.59	4609	. 66364	216.9	40.40	. 60633	247.6	4433	. 64671	225.6
40	1256.64	.004S49	$\overline{3} \cdot 65_{5} 63$	206.2	.004249	$\overline{3} \cdot 62833$	235.3	. 004664	$\overline{3} .665_{71}$	214.4
41	1320.25	5094	. 70708	196.3	4465	. 6.4977	224.0	4900	. 69015	204.1
12	1385.44	5346	72801	187.1	4685	. 67070	213.5	5141	. 71108	194.5
43	1452.20	5603	.71845	178.5	4911	.69114	203.6	5389	.73152	185.6
4.4	1520.53	5867	.76842	170.4	5142	.71111	194.5	5643	.75149	177.2
45	1590.43	.006137	$\overline{3} \cdot 7$ S793	162.9	.005378	$\overline{3} .73063$	IS5.9	. 005902	$\overline{3} .77101$	169.4
46	1661.90	6412	. 80703	${ }^{1} 55.9$	5620	-74972	177.9	6167	. 79010	162.1
47	1734.94	6694	. S 2569	149.4	5867	.768.40	170.5	6438	. $\mathrm{SoS7} 5$	155.3
45	1809.56	6982	. 84399	143.2	6119	.75669	163.4	6715	. 22706	1.45 .9
49	1855.74	7276	. 86289	137.4	6377	. 50459	156.8	6998	. 54497	142.9
50	1963.50	. 007576	3. 57945	132.0	.0066.40	$\overline{3} \cdot \mathrm{~S} 2214$	150.6	.0072S7	$\overline{3} .56252$	137.2
51	2042.82	7582	. 59664	126.9	6908	. 83934	144.8	7581	. 87972	131.9
52	2123.72	S194	.91352	122.0	7181	. 55621	139.2	7581	. 59659	126.9
53	2206.18	8512	.93005	117.5	7460	. 57275	${ }^{1} 34.0$	S187	. 91313	122.1
54	2290.22	S537	. 94630	113.2	7744	. 88899	129.1	S499	.92937	117.7
55	$2375 . S_{3}$.009167	$\overline{3} \cdot 96223$	109.1	.008034	$\overline{3} .90493$	12.45	.00SSI7	$\overline{3}-94531$	113.4

Smithsonian Tables.

Cross sections and weights of wires.

	Area of cross section Sq. Mils.	Copper - Density 8.90.			Iron - Densily 7.80.			Brass- Density 8.56.		
		$\begin{array}{r} \text { Pounds } \\ \text { per Foot. } \end{array}$	Log.	Feet per Pound.	$\begin{aligned} & \text { Pounds } \\ & \text { per l'out. } \end{aligned}$	Log.	Feet per Pound.	$\begin{aligned} & \text { Pounds } \\ & \text { per l'oot. } \end{aligned}$	Log.	Feet per Pound.
55	2375.83	. 009167	3.96223	109. 1	.008034	$\overline{3} .90493$	124.5	.008817	3.94531	113.4
56	2.463 .01	09504	. 97789	105.2	08329	. 92058	120.1	09140	. 960,6	109.4
57	2551.76	09546	-.993こ5	101.6	-8029	. 93595	I 15.9	09470	.97633	105.6
5 S	2642.08	10195	2.00S 37	98.1	08934	.95106	I 11.9	09805	. 9914	102.0
59	2733.97	10549	.02320	94.8	09245	.96591	108.2	10146	2.00629	9S.6
60	2S27.43	. 01091	2.037S2	91.66	. 00956	3.9S050	104.59	. 01049	$\overline{2} .02083$	95.30
61	2922.47	1128	. 05216	88.68	0988	-.99486	101.19	1085	. 03524	92.21
62	3019.07	1165	.0662S	S5.54	1021	$\bar{z} .00898$	97.95	1120	. 04936	S9.25
63	3117.25	1203	.08019	83.14	1054	. 02288	94.87	1157	. $063=6$	S6.45
6.4	3216.99	12.41	.093 66	So. 56	10 SS	.03656	91.83	1194	.07694	S3.77
65	3318.31	. 01280	.10732	78.11	. 011122	$\overline{2} .05003$	89.12	. 01231	$\overline{2} .090 .41$	81.21
66	$34=1.19$	$13 \geqslant 0$.12061	75.76	1157	.06329	S6. 44	1270	. 10367	78.76
67	35-5.65	1360	.13367	73.51	1192	. 07635	S3.SS	1308	. 11673	76.43
68	3631.68	1401	. 14655	71.36	1228	.0892?	S1.42	1348	. 12960	74.20
69	$3739.2 S$	I 4.43	-15924	69.30	1264	.10190	79.09	13 SS	. 14228	72.06
70	38.48 .45	. 1485	$\overline{2} .17174$	67.34	. 01302	2.11451	76.82	. 01429	$\overline{\mathrm{I}} .154 \mathrm{~S}_{9}$	70.00
71	3959.19	1528	. 18404	65.46	1339	.12672	74.69	1469	. 16710	68.06
72	4071.50	1571	. 19618	63.65	1377	.13887	72.63	1511	. 17925	66.19
73	4155.39	1615	. 20SI7	61.92	1.415	. 15085	70.66	1553	. 19123	6.738
74	4300.34	1660	. 22000	60.26	1454	.16267	68.76	1596	. 20304	62.66
75	4417.86	. 01705	玉. 23165	5 S .66	. 01494	Г.17432	66.95	. 01639	2.21.460	61.01
76	4536.46	1751	. 24317	57.13	1534	. 18583	65.19	1684	. 22621	59.40
77.	4656.63	1797	. 25453	55.65	1575	. 19718	63.50	1728	.23756	57.87
78	477836	15.4	. 26574	54.23	1616	. 20839	6 6 .59	1773	.24577	56.39
79	4901.67	1892	.27051	52.57	$165 S$. 21946	60.33	1819	. 25974	54.99
80	5026.55	. 01939	2. 25.769	51.56	. 01700	$\overline{2} .2303 \mathrm{~S}$	58.83	. 01565	2.27076	53.61
S1	5153.00	1958	.298.48	50.29	1743	.24117	57.39	1912	.28155	52.29
82	52S1.02	203S	. 30914	49.07	1786	. 25183	56.00	1960	.29221	51.03
83	5410.61	2088	- 31966	47.90	1830	.26236	54.66	2005	-3027.	49.80
S 4	55+1.77	2138	- 33006	46.77	1874	.27276	53.36	2057	-31314	48.63
85	567. 50	.021S9	2.34034	45.67	. 01919	2.28304	52.11	. 02106	2. 32342	47.49
S6	5 50S.So	22.41	. 35050	44.62	1964	. 29320	50.91	2156	-3335	46.39
87	5944.65	2294	. 36054	43.60	2010	-30324	49.75	2206	-34302	45.33
SS	$60 S 2.12$	2347	- 37047	42.61	2057	-31317	48.62	2257	-35355	44.30
S9	6221.14	2.400	- 3 S02S	41.66	2104	$\cdot 32298$	$47 \cdot 54$	2309	. 36336	$43 \cdot 31$
90	6361.73	. 02455	- 3.3999	40.74	. 02151	$\overline{\text { ² }} 33269$	46.49	. 02360	$\overline{2} .37297$	42.37
9 I	6503.5 S	2509	-39958	39.85	2199	. 34228	45.47	2414	-35=66	41.43
92	6647.61	2565	. 40908	35.99	22.48	-35178	44.49	2467	-39216	40.54
93	6792.91	2621	- 41847	38.15	2297	-36116	43.54	2521	.40154	39.67
94	6939.75	2678	-42775	37.35	2347	. 37046	42.61	2575	.41084	3 3.83
95	70SS.22	. 02735	$\overline{2} .4369+$	36.56	. 02397	Г. 37965	41.72	.02630	$\overline{2} .42003$	3 3.02
96	7235.23	2793	- 44604	35.81	2.48	. 3 SS74	40.86	2686	42912	37.37
	7389.51	$2 S_{51}$. 45404	35.07	2499	- 39775	40.02	2742	43812	36.45
98	7542.96	2910	. 46395	$3 \cdot 4 \cdot 36$	2551	. 40665	39.20	2799	$\cdot 47703$	35.72
99	7697.69	2970	-47277	33.67	2603	. 41547	3S.42	2857	.45505	35.01
100	$7 S 53.98$. 03030	$\overline{2.4 S I 50}$	33.00	.02656	$\overline{2} .42 .420$	37.65	. 02915	$\overline{2} .46 .45$ S	34.31

Smithsonian Tables.

Cross sections and weights of wires.

This table gives the cross section and the weight in metric units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide sections and weights by roo. For ten times the diameter multiply by 100 , and so on.

		Copper - Density 8.90.			Iron - Density 7.80.			Brass - Density 8.56.		
		碳	Log.			Log.			Log.	
10	78.54	0.06990	2. $\mathrm{S}_{444 \mathrm{~S}}$	14.306	0.06126	$\overline{2} .78718$	16.324	0.06723	2. 52756	14.574
11	95.03	. 08758	- 92725	II. 823	.07412	. 86996	13.492	. 08135	. 91034	12.293
12	113.10	. 10065	İ.002 5	9.935	.08822	- 94556	I I. 335	. 09681	. 98594	10.330
13	132.73	. 11513	.07236	S. 465	. 10353	İ.01506	9.659	. 11362	1.05544	S.SOI
14	153.94	. 13701	. 13674	7.299	. 12005	. 07945	8.328	.13177	- i 1983	7.589
15	176.71	0.1573	İ. 19665	6.35 S	0.1378	I. 13936	7.255	0.1513	I.I7974	6.611
16	201.06	.1789	. 25272	5.5SS	. 1568	. 19542	6.376	.1721	.23580	5.810
17	226.98	. 2020	. 30538	4.951	. 1770	. 24808	5.648	. 1943	. 28846	5.147
15	254.47	. 2265	- 35503	4.415	. 1985	. 29773	5.038	. 2178	-33811	4.591
19	283.53	. 2523	. 40199	3.963	. 2212	-34469	$4 \cdot 522$. 2427	-35507	4.120
20	314.16	0.2796	- I .44654	3.577	0.2450	$\overline{\mathrm{I}} .3 \mathrm{S9} 25$	4.08I	0.2689	1. 42963	3.719
21	346.36	. 3083	.48992	. 2.4	. 2702	. 43162	3.701	. 2965	- 47200	. 373
22	380.13	.3383	-52932	2.956	. 2965	- 47203	. 373	-3254	. 51241	. 073
23	415.48	. 3698	. 56794	. 704	. 3241	.51064	. 086	- 3557	. 55103	2.812
2.4	452.39	. 4026	. 60490	.484	. 3529	. 54761	2.934	-3872	.58799	. 582
25	490.87	0.4369	1. 6.4036	2.289	0.3829	-1.58306	2.612	0.4202	- 6.6344	2.380
26	530.93	. 4725	. 67443	.116	. 4141	. 61713	. 415	- $45+5$. 65751	. 200
27	572.56	. 5096	. 70721	1.962	. 4.466	. 64992	.239	. 4901	. 69030	.040
2 S	615.75	. 5450	. 73 SSo	. 225	.4803	.68ı50	. 082	. 5271	.72183	I. 897
29	660.52	. 5879	.76928	$\cdot 701$	$\cdot 5^{152}$.71198	1.941	. 5654	.75236	.769
30	706.86	0.6291	I. 79972	I. 590	0.5514	1.74143	I. 814	0.6051	I. 7818 I	1. 653
31	754.77	. 6717		. 489	. 5887	. 76991	. 699	.6461	. 81029	. 548
32	Sol. 25	$.715^{8}$. $85+78$. 397	. 6273	.79749	. 594	.6884	. 83787	. 453
33	855.30	.7612	.83151	. 314	. 667 I	. 82421	. 499	.7321	. 86.459	-366
34	907.92	. 80 SI	. 907.44	.238	.7082	. 55014	.412	.7772	. 89052	.287
35	962.11	0.856	T.93261	1.168	0.7504	- i .87531	I. 333	0.8236	I. 91570	1.214
36	1017.88	. 906	. 95709	. 104	. 7939	. 89979	. 260	. 8713	. 94017	. 148
37	1075.21	. 957	. 95088	. 045	. 8387	.92359	.192	.9204	. 96397	. 087
. 38	1134.11	1.012	0.00504	0.985	. 8566	. $9+1775$. 128	. 9730	. 98813	. 028
39	1194.59	.063	. 02661	. 941	.93IS	. 96935	. 073	1.0230	0.00969	0.978
40	1256.64	I. 118	0.04861	0.8941	0.980	1.99131	1.0200	1.076	0.03169	0.9296
41	1320.25	. 175	. 07005	. 8511	1.030	0.01275	0.97 II	. 130	. 05313	.S849
42	1385.44	. 233	.09098	. 8110	. 081	.03365	. 9254	.186	. 07.406	. S_{432}
43	1452.20	. 292	. 11142	.7738	. 33	. 05412	.SS2S	. 243	. 09450	. So 44
4.4	1520.53	-353	.13139	.7389	.186	. 07409	. 8432	. 302	. $114+7$.7683
45	1590.43	1.415	0.15091	0.7065	1.241	0.09361	0.8061	1.361	0.13399	0.7345
46	1661.90	. 479	. 17000	. 6761	. 296	. 11270	. 7714	. 423	. 5308	. 7029
47	173.4.94	. 544	. 18868	. 6476	. 353	.13138	.73S9	. 485	. 17176	.6734
45	1809.56	. 611	. 20696	. 6209	. 411	. 14967	.7085	- 549	. 19005	.6456
49)	1885.74	. 678	.22487	. 5958	-471	. 16758	. 6799	. 614	.20796	. 6195
50	1963.50	1.748	0.24242	0.5722	I. 532	0.18513	0.6530	1.681	0.22551	0.5950
51	20.42 .52	. 18	. 25962	. 5500	. 593	.20232	. 6276	. 753	. 24371	. 5705
52	2123.72	.S90	. 27649	. 5291	. 657	. 21919	. 6037	. 8 IS	. 25957	. 5501
53	2206.18	. 964	. 29303	. 5093	. 721	. 23574	. 5811	. 888	. 27612	. 5295
5.4	2290.22	2.038	-30927	. 4906	. 786	. 25197	. 5598	.960	. 29235	.5101
55	2375.83	2.114	0.32521	0.4729	1.853	0.26791	0.5396	2.034	0.30829	0.4917

Smithsonian Tables.

Cross sections and weights of wires.

		Copper - Density 8.90.			Iron - Density 7.So.			Brass - Density 8.56.		
			Log.		选	Log.			Log.	
55	$2375 . S_{3}$	2.114	0.32521	. 4729	1.853	0.26791	. 5396	2.034	0.30829	. 4917
56	2.463 .01	.192	- 34056	. 4562	. 921	.28356	. 5205	. 108	. 32394	. 4743
57	2551.76	. 271	. 35623	. 4.403	. 990	. 29593	. 502.4	. 18.4	. 33931	. 4578
58	26.42 .08	. 351	. 37134	. 4253	2.061	-3140.4	. 4852	. 262	. 35442	. 4422
59	2733.97	. 433	-38618	.4112	.132	-32889	. 4689	. 340	-36927	. 4273
60	2827.43	2.516	0.40078	-3974	2.205	0.34349	.4534	2.420	0.38337	. 4132
61	2922.47	. 601	. 4154	. 38.45	.280	. 35784	. 4387	. 502	-39823	- 3997
62	3019.07	. 687	. 12926	. 3722	-355	-37196	-4246	. 584	. 41235	. 3069
63	3117.25	. 774	. 44316	. 360.4	431	. 38587	. 4113	. 663	. 42625	- 37.48
64	3216.99	. 863	. 45684	- 3493	. 509	- 39954	-3985	.760	. 44092	. 3623
65	33 IS .3 I	2.953	0.4703 I	. 3386	2.588	0.41301	. 3664	2.8 .40	0.45339	-352I
66	3421.19	3.045	. 48357	. 3284	. 669	.42627	- 37.47	. 929	-46665	-3.415
67	3525.65	. 138	. 49663	. 3187	. 750	-43933	.3636	3.018	. 4797 I	-3313
63	3631.68	. 232	. 50950	. 3094	. 833	-45220	-3530	.109	-49 58	-3217
69	3739.28	. 328	. 5221 S	. 3005	.917	-46488	. 3429	. 201	. 50526	. 3124
70	38.48 .45	$3 \cdot 4 \geq 6$	0.53479	. 2919	3.003	0.47749	. 3330	3.295	0.51787	- 3035
71	3959.19	. 524	. 54700	. 2833	.088	. 4 S970	.323 S	. 3 S9	. 53008	. 2951
72	4071.50	. 624	. 55915	. 2759	.176	. 50155	. 3149	. 485	. 54223	. 2869
73	4185.39	.725	. 57113	. 2685	.265	. 51383	. 3063	:553	-55421	.2791
74	4300.8 .4	. 828	.5S294	. 2612	. 355	. 52565	.2981	. 682	. 56603	.2716
75	4417.56	3.932	0.59460	. 2543	3.446	0.53731	. 2902	3.782	0.57769	. 2644
76	4536.46	4.037	. 60611	. 2.477	. 538	- 54 SSI	. 2826	. 883	. 5 S919	. 2575
77	4656.63	. 144	. 61746	.2.413	. 632	- 56017	. 2753	.956	. 60056	. 2509
78	4778.36	. 253	. 62867	. 2351	. 727	- 57137	. 2683	4.090	. 61175	. 2.445
79	4901.67	. 362	. 63974	. 2292	. 823	-582.44	. 2615	. 177	. 62283	. 2394
80	5026.55	4.474	0.65066	. 2235	3.921	0.59336	. 2550	4.303	0.63375	. 2324
81	5153.00	. 586	. 66145	. 2150	4.019	. 60415	.2.488	. 411	. 64454	. 2267
82	5281.02	. 700	. 67211	.212S	.119	. 61481	. 2428	.521	. 65519	. 2212
83	5410.61	.SI 5	. 68264	. 2077	. 220	. 62534	. 2369	. 631	. 66572	. 2159
8.	5541.77	. 932	.69304	. 2027	-323	.63574	. 2313	-7.4	. 67612	. 108
85	5674.50	5.050	0.70332	.1980	4.426	0.64602	. 2259	4.857	0.68640	. 2059
S6	5 SoS.So	.170	. 71.348	. 1934	. 531	. 65618	. 2207	. 972	. 69556	. 2011
S7	594. 68	. 291	. 72352	. 1590	.637	. 66622	. 2157	5.089	. 70660	.1965
SS	6082.12	. 413	. 73345	. 1847	. 744	.67615	. 2108	. 206	. 71653	.1921
89	6221.14	. 537	. 74326	. 1506	. 5_{52}	. 68596	.2061	. 325	.72634	.1578
90	6361.73	5.662	0.75297	. 1766	-4.962	0.69567	. 2015	5.4.46	0.73605	.1836
91	6503.58	.78S	. 76256	.1728	5.073	.70527	.1971	.567	.74565	. 1796
92	66.47.6ı	. 916	. 77206	. 1690	. 185	. 71476	. 1929	. 690	.75514	.1757
93	6792.91	6.046	.78144	. 1654	. 295	.72414	.1887	. I_{5}	. 6.452	.17こ0
94	6939.78	.176	. 79074	.1619	.413	. 73344	.15.47	. 940	.77382	.1683
95	7088.22	6.309	0.79993	.1585	5.529	$0.74 \geq 63$. 1509	6.068	0.78301	.1648
96	723 S.23	-. 442	. Sogoz	.1552	. 646	. 75173	.1771	.196	. 79211	.16I4
97	73×9.81	- 577	. 11802	.1520	. 764	.76073	. 1735	-326	. 80111	.1581
95	75.2 .96	.713	. 82693	.1490	. 88.4	.76964	. 1670	- 457	8	. 1549
99	7697.69	. 851	. 83575	. 1460	6.00 .4	.77846	.1665	. 509	.Sis84	. 518
100	7_{7} S33.9S	6.990	0.84448	. 431	6.126	0.78718	. 1632	6.723	0.82756	. 1487

Smithsonian Tables.

The cross section and the weight, in different units, of Aluminium wire of the diameters given in the first column. For one tenth the diameter divide sectious and weights by 100 . For len times the diameter muliply by 100 , and so on.

	Area of cross section S^{111} Sq. Mils.	Aluminium - Densily 2.67.								
		$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & \text { Foot. } \end{aligned}$	Log.	Feet per Pound.	Ounces per Foot.	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Ounce. } \end{gathered}$	$\begin{array}{\|c} \text { Grammes } \\ \text { per } \\ \text { petre.* } \end{array}$	Log.	$\begin{gathered} \text { Metres } \\ \text { per } \\ \text { Gramine. } \end{gathered}$
10	78.54	. 0000909	$\overline{5} .95$ S62	11000.	. 001455	$\overline{3} \cdot 16274$	697.5	. 02097	$\overline{2} .32160$	47.69
11	95.03	01100	4.04139	9091.	01760	. 24551	602.4	. 02537	.40437	39.41
12	113.10	01309	. 11699	7638.	02095	- 32111	$477 \cdot 4$. 03020	. 47997	33.11
13	132.73	01536	. 18650	6509.	02458	-39062	406.8	. 03544	- 54948	28.22
14	153.94	01782	. 250 S	5612.	02851	$\cdot 45500$	350.8	. 04110	. 61386	24.33
15	176.71	. 0002045	4.31079	4889.	. 003273	3.51491	305.6	. 0.4718	$\overline{2} .67377$	21.19
16	201.05	02327	. 36695	4297.	03724	. 57097	268.5	. 05368	.72984	18.63
17	226.95	02627	$4{ }^{4195}$	3576.	04204	.62364.	237.9	. 06060	.78250	16.50
18	234.47	02916	.46717	3395.	04713	. 67329	212.2	. 06794	. 33215	14.72
19	283.53	03282	. 51613	3047.	05251	. 72025	190.4	. 07570	. 87911	13.21
20	314.16	. 0003636	4. 56068	2750.	.0058iS	$\overline{3} \cdot 76480$	171.9	.083SS	2.92366	11.922
21	3.46 .36	0.4009	. 60306	2.49.	06415	. 50718	155.9	.092.45	-. 96604	10.813
22	$3^{50.13}$	0.4400	. 64346	2273.	070.40	. 8.4758	1.42 .0	. 10149	1. 00644	9.553
23	415.45	0.4809	. 68205	2079.	07697	.SS630	129.9	.11093	. 04506	9.014
2.4	452.39	05237	.71904	1910.	08378	.92316	119.4	. 12079	.0S202	8.279
25	490.87	. 0005692	4.75450	1760.	. 00909	$\overline{3} .95862$	110.00	. 1311	I.11748	7.630
26	530.93	06147	. 78867	1627.	093	-99こ69	101.70	.14tS	. 15155	7.054
27	572.56	06628	. 82135	1509.	1060	$\overline{2} .02547$	94.30	. 1529	.18433	6.54 I
2 S	615.75	07127	. 85293	1403.	11.40	. 05705	87.69	. 16.4	.21592	6.083
29	660.52	07646	. 83341	1303.	1223	.08753	81.75	. 1764	. 24640	5.670
30	706.86	.0008182	4.91286	1222.	. 01309	2. 11698	76.39	. 1887	T. 27584	5.299
3 I	754.77	09737	. 91134	11.45.	1398	. 14546	71.54	. 2015	- 30433	4.962
32	So.4.25	09309	.96992	1074.	1.489	.1730 .4	66.59	. 2147	. 33190	. 657
33	855.30	09900	-.99565	1010.	1584	. 19977	63.13	. 2284	. 35863	- 379
34	907.92	10509	3.02158	952.	1681	. 22570	59.47	. 2424	-38456	. 125
35	962. 11	. 001114	$\overline{3} .04675$	897.9	. 01782	$\overline{2} .25087$	56.12	. 2569	İ. 40973	3.893
36	1017.58	1178	. 07123	545.5	1855	. 27535	53.05	. 2718	4 $434 \geq 1$. 6 So
37	1075.21	1245	.09502	So3. 5	1991	. 29914	50.22	. 2871	- 45800	.483
3	1134.11	1316	.11918	760.0	2105	-32329	47.50	- 3035	-48216	.295
39	1194.59	1333	. 14075	723.2	2212	-34487	45.20	. 3190	. 50373	. 35
40	1256.64	. 001455	$\overline{3} \cdot 16275$	697.5	. 02327	2.36697	42.97	- 3355	- 1.52573	2.9 So
41	1320.25	1523	.18419	654.4	2.445	. 38831	40.90	. 3525	. 54717	. 837
42	$1395 \cdots 4$	1604	. 20512	623.6	2566	-40924	38.97	- 3699	-568io	.704
43	1.452 .20	1681	.22556	59.4.9	2690	-42968	37.18	.3877	. 58554	. 579
41	1520.53	1760	.2.4552	568.2	28.6	. 44964	$35 \cdot 51$. 4060	. 60851	. 463
45	1590.43	. 0018.41	$\overline{3} .26504$	5.43.2	. 02946	-	33.95	. 42.46	1. 62803	2.355
46	1661.90	1924	.2S.413	519.8	3078	.48825	32.49	.4437	. 64712	. 254
47	173.4 .94	2008	-30281	498.0	3213	- 50693	31.12	. 4632	. 66550	.159
45	1809.56	2095	-32110	477.4	3351	. 52522	29.84	. 4832	. 68.408	. 070
49	1885.7 .4	2183	-33901	458.1	3492	-54313	28.63	. 5035	.70199	1.986
50	1963.50	. 002273	$\overline{3} 35656$	440.0		$\overline{2} .56068$	27.50	-5243	1.71954	1.907
51	20.42 .82	2365	. 37376	422.9	3783	. 57788	26.43	. 5454	. 73674	.833
52	2123.72	2.458	-39063	406.8	3933	- 59475	25.42	- 5670	. 75361	. 764
53	2206.18	2554	. 40717	394.2	4086	. 61129	24.47	. 5891	.77015	. 695
5.4	2290.22	2651	. 42341	377.2	4242	. 62753	23.57	. 6115	. 78639	. 635
55	$2375 . S_{3}$. 002750	$\overline{3}+3934$	363.6	. 04400	$\overline{2} .64346$	22.73	. 6343	İ.80233	1.576

[^9]Cross sections and weights of wires.

	Area of cross section Sq. ${ }^{\text {Mills. }}$	Aluminium - Density 2.67.								
		$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & \text { loot. } \end{aligned}$	Log.	$\begin{aligned} & \text { Feet } \\ & \text { per } \\ & \text { Pound. } \end{aligned}$	$\begin{gathered} \text { Ounces } \\ \text { per } \\ \text { Foot. } \end{gathered}$	Log.	$\begin{gathered} \text { Fect } \\ \text { per } \\ \text { Ounce. } \end{gathered}$	Grammes per Metre.*	Log.	$\begin{gathered} \text { Metres } \\ \text { per } \\ \text { Gramme. } \end{gathered}$
55	2375.83	. 002750	$\overline{3}+43934$	363.6	. 04400	2. 6.4346	22.73	0.6343	İ.S0233	1. 576
56	2463.01	$2{ }^{5} 51$. 45500	350.8	. 04562	. 65912	21.92	. 6576	. 81798	. 521
57	2551.76	2954	- 47037	338.6	$.047=6$. 67449	21.16	. 6813	. 33335	. 468
$5{ }^{8}$	26.42 .08	3050	. 48547	327.0	. 04893	. 68959	20.44	. 7054	. 54846	. 418
59	2733.97	3165	. 50032	316.0	.05063	.70444	19.75	.7300	. 6633 I	-370
60	2827.43	. 003273	$\overline{3} \cdot 51492$	305.5	.05236	$\overline{2} .71904$	19.10	0.7549	I. 87790	1.325
61	2922.47	3353	. 5292 S	295.6	. 05413	.73340	18.48	.7503	. 89226	. 282
62	3019.07	3495	. 54340	286.2	.05591	. 74752	17.58	. 8061	. 90638	. 2.41
63	3117.25	3608	. 55730	277.1	. 05773	. 76142	17.32	. 8323	.9202S	. 201
64	3216.99	3724	. 57095	268.5	. 05955^{8}	.77510	16.78	S5S9	.93396	. 164
65	$33^{18} .31$. 003841	$\overline{3} \cdot 58445$	260.3	. 06146	$\overline{2} .78 S_{57}$	16.27	0.8560	I. 94743	1.129
66	3.421.19	3960	. 59771	252.5	.06336	. 80183	15.78	. 9135	.96069	. 095
67	$35=5.65$	4081	. 61077	245.0	. 06530	. Si489	15.31	.9413	. 97375	. 062
65	3631.68	4204	. 62364	237.9	. 06726	. 82777	14.87	. 9697	.98662	. 031
69	3739.28	432 S	.63632	231.0	. 06925	. 8.4044	14.44	. 9954	. 99930	. 002
70	$33_{4} 8^{4} 45$. 004456	$\overline{3} .64593$	22.4 .4	. 07129	$\overline{2} .85305$	14.03	1.028	0.01191	0.9730
71	3959.19	4583	. 66114	218.2	. 07333	. 56526	13.64	. 057	. 02412	. 9.460
72	4071.50	4713	. 67328	212.2	. 07541	. 87740	13.26	. 087	. 03627	.9199
73	4185.39	4845	. 65526	206.4	. 07751	.SS93S	I2.90	.117	.0.4825	. 8949
74	4300.84	4975	. 69708	200.9	. 07965	. 90120	12.55	. 148	. 06006	. $870 S$
75	4417.86	.005114	$\overline{3} \cdot 70874$	195.5	. $0 \mathrm{SIS}_{2}$	2.91286	12.22	I.1So	0.07172	0.8477
76	4536.46	5251	. 72025	190.4	.08402	.92437	11.90	. 211	.08323	. 8256
77	4656.63	5390	.73160	185.5	.08624	. 93572	11.60	. 243	. 09455	. 8043
78	4778.36	5531	.74281	180.8	.0SS 50	. 94693	11.30	.276	.10579	${ }^{7} \mathrm{~S} 38$
79	4901.67	5674	.75387	176.2	. 09078	. 95799	11.02	. 309	.11656	. 7641
80	5026.55	. 005 SIS	$\overline{3} \cdot 76.450$	171.9	. 09309	$\overline{2} .96892$	10.742	1.342	0.12778	0.7451
SI	5153.00	5965	. 77559	167.6	. 09544	. 9797 I	10.479	. 376	.13S57	. 7268
Sz	52S1.02	6113	.78625	163.6	.09781	-. 99037	10.224	.410	.14923	.7092
S3	5410.61	6263	. 79678	159.7	. 10021	1.00090	9.979	. 445	. 15976	. 6922
84	5541.77	6415	. 507 IS	I 55.9	. 10264	. 011130	9.743	.480	.17016	. 6757
85	567.4.50	.00656S	$\overline{3} .81746$	152.2	. 1051	1.0215S	9.515	1.515	0.15044	0.6600
S6	5 So8.So	6724	. 82762	148.7	. 1076	. 03174	9.295	. 551	. 19060	. 6448
87	$59+4.68$	6881	. 83766	145.3	. 1101	. 04178	9.082	. 587	. 2006.4	.6300
85	6082.12	70.40	. $\mathrm{S}_{475}{ }^{\text {S }}$	142.0	.1126	. 05170	8.878	. 624	. 21057	. 6158
S9	6221.14	7201	. 55740	138.9	.1152	.06152	8.679	.66I	. 22038	. 6020
90	6361.73	. 007364	$\overline{3} .86710$	135.8	. 1178	1. 07122	S. 4 SS	I. 699	0.23009	0.5887
91	6503.88	752 S	. 87670	132.8	. 1205	.0SoS2	8.302	. 737	. 23908	. 5759
92	66.77 .61	7695	. 88619	130.0	. 1231	.09031	8.122	.775	. 24918	- 5634
93	6792.91	7863	. 99558	127.2	. 1258	. 09970	7.949	. $\mathrm{S}_{1} 4$.25856	- 5514
94	6939.7S	So33	. 90487	124.5	. 1285	. 10899	7.750	. 553	. 26786	- 5397
95	70SS. 22	. 008205	$\overline{3} .91407$	121.9	. 1313	I. IISI9	7.617	1. 893	0.27705	0. $52 \mathrm{~S}_{4}$
96	7238.23	S378	. 92316	119.4	- 341	.1272S	7.459	. 933	.28614	. 5174
97	7389.81	8554	.93216	116.9	- 1369	. 13628	$7 \cdot 307$. 973	. 29514	. 5065
98	$75+2.96$	S731	. 94107	114.5	- I 397	.14519	7.158	2.014	- 30.405	- 4965
99	7697.69	8910	- 94989	112.2	.1426	. 15401	7.015	. 055	-31287	. 4865
100	7853.98	. 009091	$\overline{3} \cdot 95862$	110.0	. 1455	I.16274	6.875	2.097	0.32160	0.4769

[^10]Smithsonian Tables.

BRITISH AND METRIC UNITS.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Platinum wire of the diameters given in the first column. For one tenth the diameters divide sections and weights by 100 . For ten times the diameter multiply by 100 , and so on.

	Area of cross section Sq. Mils.	Platinum - Density 2 1.50.								
		Pounds per Foot.	Log.	$\begin{aligned} & \text { Feet } \\ & \text { per } \\ & \text { Pound. } \end{aligned}$	Ounces per Foot.	Log.	Feet per Ounce	Grammes Metre.*	Log.	Metres per Granime.
10	78.54	. 0007321	4. 86455	1366.0	. 01171	$\overline{2} .06867$	85.38	0. 1689	İ. 22753	5.922
1	95.03	00SS 58	-.94732	1129.0	.01417	. 5144	70.56	. 2043	- 31030	4.894
12	113.10	01054	$\overline{3} .02292$	948.6	. 01687	. 22704	59.29	.2432	. 38590	4.113
13	132.73	01237	. 09243	808.3	. 01979	.29655	50.52	.2854	-45541	3.504
14	153.94	01435	. 5681	696.9	. 02296	-36093	43.56	.3310	. 51979	3.021
15	176.71	. 001647	$\overline{3} .21672$	607.1	. 02635	$\overline{2.42084}$	37.95	0.3799	I. 57970	2.632
16	201.06	01874	. 27278	533.6	. 03005	. 47790	33.27	. 4323	. 63576	2.311
17	226.98	02116	. 32544	472.7	. 03335	. 52956	29. 54	. 4880	.68843	2.049
18	254.47	02372	. 37509	421.6	. 03795	. 57921	26.35	. 547 I	. 73808	1.828
19	283.53	02643	. 42206	378.4	.04228	. 62618	23.65	. 6096	.78504	1. 640
20	314.16	. 00292 S	$\overline{3} \cdot 4666 \mathrm{I}$	341.5	. 04685	2.67073	21.34	0.6754	$\overline{1} .82959$	1.481
21	346.36	03228	. 50898	309.7	. 05165	. 71310	19.36	. 7447	. 87197	- 343
22	380.13	03543	. 54939	282.2	. 05669	.75351	17.64	. 8173	.91237	. 224
23	415.48	03573	. 58801	258.2	.06196	.79213	16.14	. 8933	. 95099	-119
24	452.39	04217	. 62497	237.2	. 06747	. 82909	14.82	. 9726	.98795	. 028
25	490.87	. 004575	$\overline{3} .66042$	218.6	. 0732 I	$\overline{2} .86454$	13.66	1. 055	0.02341	0.9475
26	530.93	04949	. 69449	202.1	. 07918	. 89861	12.63	.142	. 05748	. 8760
27	572.56	05324	. 72628	187.8	. 05539	. 93140	11.71	. 231	.09026	. 8124
23	615.75	05739	. 75886	174.2	. 09183	. 96298	10.89	-324	.12184	.7553
29	660.52	06157	.78934	162.4	.0985	. 99346	10.15	. 420	. 15232	.7042
30	706.86	.006589	$\overline{3} .81879$	151.8	. 1054	İ.02291	9.486	1. 520	0.18177	0.6580
31	754.77	07035	. 84727	142.1	. 1126	.05139	8.884	. 623	. 21025	. 6162
32	80.4 .25	07496	. 87485	I 33.4	. 1199	. 07897	8.338	. 729	.23783	.5783
33	855.30	07972	. 90157	125.4	. 1276	. 10569	7.840	. 839	. 26456	. 5438
34	907.92	08463	. 92750	118.2	. 1354	.13162	7.385	.952	. 29049	-5123
35	962.11	.008968	$\overline{3} .95268$	111.52	.1435	İ. 15680	6.970	2.069	. 031566	0.4834
36	1017.88	09488	. 97715	105.41	. 1518	.15127	6.588	. 188	-34014	.4569
37	1075.21	10022	$\overline{2} .00095$	99.78	. 1604	. 20507	6.236	-312	- 36393	.4326
38	1134.11	10595	. 0251 I	94.38	. 1695	. 22923	5.899	. 444	- 38809	. 4092
39	1194.59	11134	. 04668	89.81	.1782	. 25080	5.613	. 568	. 40966	-3893
40	1256.64	. 01171	2. 2.06867	85.38	. 1874	I. 27279	$5 \cdot 336$	2.702	0.43166	0.3701
41	1320.25	1231	.09011	81.26	.1969	. 29423	5.079	. 839	. 45309	. 3523
42	1385.44	1291	. 11104	77.44	. 2066	-31516	4.840	. 979	. 47403	. 3346
43	1452.20	1354	.13148	73.88	. 2166	. 33560	4.617	3.122	. 49446	-3203
44	1520.53	1417	. 5145	70.56	. 2268	-35557	4.410	. 269	- 51443	- 3059
45	1590.43	. 014^{82}	$\overline{2} .17097$	67.46	. 2372	1. 37509	4.216	3.419	0.53395	0.2924
46	1661.90	1549	. 19006	64.56	. 2478	. 39418	4.035	. 573	- 55304	. 2799
47	1734.9 .4	1617	. 20874	61.84	. 2587	-41286	3.865	. 730	- 57172	. 2681
48	1809.56	1687	.22703	59.29	. 2699	. 43115	3.705	.891	. 59001	.2570 .2467
49	1885.74	1758	. 24494	56.89	. 2812	-44906	3.556	4.054	. 60792	. 2467
50	1963.50	. 01830	$\overline{2} 26249$	54.64	. 2928	$\overline{\mathrm{I}} .46661$		4.222	0.62547	0.2369
51	2042.82	1904	. 27969	52.52	- 3047	. 48381	3.282	. 392	. 64267	. 2277
52	2123.72	1979	.29655	50.52	. 3167	. 50067	3.157	. 566	.65954 .67608	. 2190
53	2206.18	2056	-31310	48.63	- 3290	. 51722	3.039	.743 .024	. 67608	. 2108
54	2290.22	2135	. 32933	46.84	. 3415	. 53345	2.92 S	. 924	. 69232	. 2031
55	2375.83	. 02214	2. 34527	45.16	- 3543	I. 54939	2.822	5.108	0.70825	0.1958

[^11]
Smithsonian Tables.

Cross sections and welghts of wiros.

	Area of cross section in Sq. Mils.	Platinum - Density 21.50.								
		Pounds per Foot.	Log.	$\begin{gathered} \text { Fect } \\ \text { per } \\ \text { Pound. } \end{gathered}$	$\begin{gathered} \text { Ounces } \\ \text { per } \\ \text { Foot. } \end{gathered}$	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Ounce. } \end{gathered}$	Grammes per Metre.	Log.	$\begin{aligned} & \text { Metres } \\ & \text { per } \\ & \text { Gramme. } \end{aligned}$
55	2375.83	. 02214	$\overline{2} .34527$	45.16	0.3543	I. 54939	2.822	5.108	$0.708=5$. 1958
56	2463.01	2296	. 36092	43.56	. 3673	. 56504	.722	. 295	. 72300	. 1888
57	2551.76	2378	. 37630	42.04	. 3806	. 5 S042	. 628	. 486	.73928	. 1823
58	26.42 .08	2463	- 39140	40.61	. 3940	. 59552	.538	. 680	.75438	. 1760
59	2733.97	2548	. 40625	39.24	. 4077	. 61037	. 453	. 578	.76923	. 1701
60	2827.43	. 02635	2.42085	37.94	0.4217	I. 62497	2.372	6.079	0.78383	. 1645
61	2922.47	2724	.4352I	36.71	. 4358	. 63933	. 294	.283	.79819	. 1592
62	3019.07	2814	. 44933	35.54	. 4502	. 65345	. 221	. 491	. 81231	. 1541
63	3117.25	2906	. 46323	34.42	. 4649	. 66735	.151	.702	. 82621	. 1492
64	3216.99	2999	. 47691	33.35	.4798	. 68103	. 084	. 917	. 83989	. 1446
65	$33^{18} .31$. 03093	2.49037	32.33	0.4949	$\overline{1} .69449$	2.021	7.134	0.85336	. 1402
66	3421.19	3189	. 50363	31.36	. 5102	. 70775	1.960	. 356	. 86662	. 1360
67	3525.65	3286	. 51670	30.43	. 5258	. 72082	. 902	. 580	. 87968	. 1319
65	3631.68	3385	- 52956	29.54	. 5416	. 73368	. 846	. 808	. 89255	. 1281
69	3739.28	3485	. 54224	28.69	. 5577	.74636	. 793	8.039	.90523	. 1244
70	3848.45	. 03588	$\overline{2} .55485$	27.87	0.5741	-1.75897	1.742	8.276	0.9178 .4	. 1208
71	3959.19	3690	. 56706	27.10	. 5904	.77118	. 694	. 512	. 93004	. 1175
72	4071.50	3795	-57921	26.35	. 6072	.78333	. 647	.754	. 94219	. 1142
73	4185.39	3901	-59119	25.63	. 6242	.79531	. 602	. 999	.95417	.1111
74	4300.84	4009	.60301	24.95	. 6414	. 80713	. 559	9.247	. 96599	. 1081
75	4417.86	. 04118	2.61467	24.28	0.6589	I. 81879	1.518	9.498	0.97765	.10528
76	4536.46	4228	. 62617	23.65	. 6765	. 83029	. 478	9.753	. 98916	. 10253
77	4656.63	4340	. 63753	23.04	. 6945	. 84165	-440	10.012	1.00051	. 09988
78	4778.3^{6}	4454	. 64574	22.45	. 7126	. 85286	. 403	10.273	. 01172	. 09734
79	4901.67	4569	. 65980	21.89	.7310	. 86392	-368	10.539	.02278	. 09489
80	5026.55	.04685	2.67073	21.34 20.82	0.7496 .7635	$\begin{array}{r}1.87485 \\ \hline .88564\end{array}$	1.334 .301	10.81 11.08	1.03371 .04450	$\begin{aligned} & .09253 \\ & .09026 \end{aligned}$
81	5153.00	4803	. 68152	20.82	.7685 .7876	.88564 .89629	.301 .270	I1.08	.04450 .05516	$\begin{aligned} & .09026 \\ & .08807 \end{aligned}$
82 83	5281.02 5410.61	4922 5043	.69217 .70270	20.32 19.83	.7876 .8069	.89629 .90682	.270 .239	11.35 11.63	. 05516	. 085075
84	5410.61 5541.77	5043 5165	.70270 .71310	19.83 19.36	. 8265	. 91722	. 210	11.91	.07609	.08393
85	5674.50	. 05289	2.7233^{8}	18.91	0.8463	$\overline{\mathrm{I}} .92750$	1. 182	12.20	1.08637	.08197
S6	5808.80	5414	. 73354	18.47	. 8663	. 93766	. 154	12.49	.09652	. 08007
87	5944.68	5541	. 74358	18.05	. 8866	-94770	. 128	12.78	. 10657	. 07807
88	6082.12	5669	. 75351	17.64	. 9070	.95763	.102	13.08	. 11649	. 07647
89	6221.14	5799	. 76333	17.25	. 9278	. 96745	. 078	13.37	.12631	. 07477
90	6361.73	. 05930	$\overline{2} .77303$	16.86	0.9487	İ.97715	1.0541	13.68	I. 13601	. 07311
91	6503.58	6062	. 78263	16.50	. 9699	. 98675	. 0310	13.98	. 14561	. 07152
92	6647.61	6196	. 79212	16.14	.9914 1.0130	. 99662.4	.0087	14.29 14.60	.15510 .16449	$.06997$
93	6792.91	6332	. 80151	15.79	1.0130	0.00563 .01492	0.9871 .9661	14.60	.16449 .17378	. 006847
94	6939.78	6469	.810So	15.46	. 0350	. 0149^{2}	. 9601	14.92	. 17370	. 06702
95	7088.22	. 06607	². 11999	I 5.I 4	I. 057	0.02411	0.9460	15.24	1.18298	. 06562
96	7238.23	6747	. 82909	1.4 .82	. 079	. 03321	. 9264	15.56	-19207	. 06426
97	7389.81	6888	.83509	14.52	.102	. 04221	. 9074	15.89	. 20107	. 06294
98	7542.96	7031	. 84700	14.22	. 125	.05112 .05094	. 8890	16.22 16.55	. 20998	. 06106
99	7697.69	7175	. 85582	13.94	. 148	. 05994	. 8711	16.55	.21050	. 66042
100	7853.98	. 07321	$\overline{2} .86455$	13.66	1.171	0.06867	0.853^{8}	16.89	1.22753	. 05922

[^12]
Smithsonian Tables.

BRITISH AND METRIC UNITS.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Gold wire of the diameters given in the first column. For one tenth the dianeters divide sections and weights by 100 . For ten times the diameter multiply by 100 , and so on.

	Area of cross section Sq. $\stackrel{10}{10}$	Gold - Densily 19.30.								
		$\begin{aligned} & \text { Troy } \\ & \text { Ounces } \\ & \text { per Foot. } \end{aligned}$	Log.	$\begin{aligned} & \text { Feet } \\ & \text { per Troy } \\ & \text { Ounce. } \end{aligned}$	$\begin{gathered} \text { Grains } \\ \text { per } \\ \text { Foot. } \end{gathered}$	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Grain. } \end{gathered}$	Grammes Mere* Metre.*	Log.	$\begin{array}{\|c} \text { Metres } \\ \text { per } \\ \text { Gramme. } \end{array}$
10	7S.54	. 00958	3.98152	$10.4 \cdot 35$	4.600	0.66276	. 2174	0.1516	I.18065	6.597
11	95.03	.01160	2.06429	86.24	5.566	. 74553	. 1797	. 1534	. 26342	5.452
12	113.10	. 113 3 So	. 13989	72.46	6.624	. S2114	. 1510	. 2183	-33902	4.58I
13	${ }_{1} 32.73$. 01657	. 21940	60.34	7.774	. 89064	. 1286	. 2562	-40553	3.904
14	153.94	. 11878	. 27378	53.24	9.016	. 95503	. 1109	. 2971	-47291	$3 \cdot 366$
15	176.71	. 02156	इ. 33369	46.38	10.35	1.01493	.09662	0.3411	1. 532 S2	2.932
16	201.06	. 02453	. 35976	40.76	11.78	. 07100	. 08492	- 3 SSo	. 5 SSSS	- 577
17	226.98	. 02770	-44242	36.1 I	13.29	. 12366	. 07522	. 4381	. 6454	. 283
18	25.4 .47	. 03105	-49207	32.21	14.90	.17331	. 06710	.491 1	. 69119	. 036
19	283.53	. 03460	- 53903	28.90	16.61	. 22027	. 06022	-547 $=$.73816	I. 827
20	314.16	.03S33	- 2.5835 S	26.09	IS. 40	I. 26482	. 05435	0.6063	1.78271	1. 649
21	346.36	. 04226	. 62596	23.66	20.29	- 30720	. 04939	. 6685	. 82509	. 496
22	380.13	.04638	. 66636	21.56	22.26	-34761	. 04492	. 7337	. 86549	-363
23	415.48	. 04954	. 69498	20.18	24.33	-38622	. 04109	. Sor 9	. 90411	. 248
24	452.39	. 05520	. 74194	18.12	26.50	.42319	. 03774	. 8731	-94107	. 145
25	493.87	. 55990	$\overline{2} .77740$	16.70	2 2. 75	I. 45865	. 03478	0.9474	1. 2.97652	1.0555
26	530.93	.06478	. Sil 47	15.44	31.10	. 4927 I	. 03216	1.0247	0.01059	0.9759
27	572.56	.06956	. 84425	14.31	33.53	. 52549	.02982	.1050	.04338	9050
23	615.75	. 07513	. 57584	13.31	36.06	- 55708	. 02773	.1854	. 07496	. 8415
29	660.52	.08060	. 90632	12.41	38.69	. 57756	. 02585	. 2748	. 10544	. 7844
30	706.86	.0862 5	².93577	11.594	41.40	1.61701	. 02415	I. 364	0.13489	0.7330
31	754.77	.09210	. 96.425	10.558	44.21	. 64549	. 02262	. 457	.16337	. 6912
32	So4.25	.09813	. 99182	10.190	47.10	. 67306	. 02123	. 552	. 19095	. 6442
33	855.30	. 10436	1.01855	9.582	50.09	. 69979	. 01996	. 651	. 21768	. 6058
34	907.92	. 11078	. 04448	9.027	53.18	$\cdot 72572$.oISSI	. 752	. 24360	. 5707
35	962.11	. 1174	- 1.06365	8.518	56.35	1.75089	. 01775	I. 5^{57}	0.26878	0.5385
36	1017.88	. 12.42	.09+13	8.051	59.62	. 77537	. 01677	. 965	. 29325	. 5090
37	1075.21	.1312	.11792	7.622	62.97	. 79917	. 01588	2.070	- 31605	. 4830
38	1134.11	.1387	. 14208	7.210	66.58	. 82332	. 01502	. 194	-34121	. 4558
39	I 194.59	. 145^{3}	.16365	6.861	69.97	. 84489	. 01429	. 306	- 36278	. 4337
40	1256.64	. 1533	$\overline{\mathrm{I}} .18565$	6.521	73.60	1. 86689	. 01359	2.425	0.38478	0.4123
41	$13=0.25$. 1611	. 20709	6.207	77.33	. 88833	. 01293	. 548	-40621	- 3924
42	1355.44	.1691	.22802	5.915	SI.14	. 90926	. 01232	. 674	.42715	- 3740
43	I 452.20	.1772	.24846	5.643	${ }_{5} 5.05$. 92970	. 01176	. 803	. 44755	. 3568
44	$15=0.53$. 1855	. 26843	$5 \cdot 390$	S9.06	. 94967	. 011123	. 935	.46755	-3408
45	1500.43	. 1941	І. 28795	5.153	93.15	1.96919	. 010735	3.070	0.48707	0.3258
46	1661.90	. 2028	. 30704	4.931	97.34	. 98828	. 010273	. 207	- 50616	. 3118
47	1734.91	. 2117	. 32572	4.724	101.61	2.00696	.009S42	-348	- 52484	. 2986
48	1809. 56	. 2208	- 34400	4.529	105.99	. 02525	.009435	. 492	. 54313	.2863
49	1885.74	. 2301	-36191	$4 \cdot 346$	110.45	.04315	.009054	. 639	. 56104	. 2748
50	1963.50	. 2396	İ. 37946	4.174	115.0	2.06070	. 008696	3.790	0. 57859	0.2639
51	20.12 .52	. 2493	. 39666	4.012	I 19.6	. 07790	.00835S	. 9.43	- 59579	.2537
52	2123.72	. 2591	.41353	3.859	124.4	. 09477	.008039	4.099	. 61265	. 2440
53	2206.18	. 2692	.43007	3.715	129.2	.1131	. 007739	. 258	. 62920	. 2349
51	2290.22	. 2795	-44631	3.578	1 34.1	. 12755	. 007455	. 420	. 64543	. 2262
55	2375.83	. 2899	I. 46225	3.449	139.2	2.14349	. 007186	$4.5^{8} 5$	0.66137	0.2181

[^13]Smithsonian Tables.

Cross sections and welghts of wires.

	Area of cross section in Sq. Mils.	Gold - Density 19.30.								
		Troy Ounces per Fool	Log.	$\begin{gathered} \text { Feet } \\ \text { per Troy } \\ \text { Ounce. } \end{gathered}$	$\begin{gathered} \text { Grains } \\ \text { Pur } \\ \text { Fuot. } \end{gathered}$	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Grain. } \end{gathered}$	Grammes Mener *	Log.	$\begin{aligned} & \text { Metres } \\ & \text { per } \\ & \text { Gramme. } \end{aligned}$
55	2375.53	.2899	T. 46225	$3 \cdot 449$	139.2	2.14349	. 007186	4.585	0.66137	. 2181
56	2463 .01	. 3005	.47790	- 327	14.43	.15914	6932	$4 \cdot 754$. 67702	. 2104
5	2551.76	.3114	-493-7	. 212	149.5	. 17451	6091	4.925	. 69240	.2031
5	2042.08	-3224	. 50533	. 102	154.7	.18962	6462	5.099	. 70750	. 1961
59	2733.97	$\cdot 3336$.52323	2.998	160.1	. 20447	6245	$5 \cdot 277$. 72235	. 895
60	2827.43	$\cdot 3450$	1.53782	2.899	165.6	2.21906	. 006039	5.457	0.73695	.1833
61	2922.47	. 3566	. $55=18$. 504	171.2	. 3342	58.42	5.6 .40	.75131	. 1773
62	3019.07	. 3684	- 56630	. 715	176.8	. 24754	5655	5.827	. 76543	. 1716
63	3117.25	. 3 SO.4	-5020	. 629	IS 2.6	.26144	5477	6.016	. 77933	. 1662
6.	3216.99	-39-5	- 59388	.548	ISS.4	.27512	5307	6.209	.79301	.16ıI
65	$33^{18} .31$. 4049	- 60735	2.470	194.4	2.28559	. 005145	6.404	$0 . S 0647$. 1561
66	3421.19	. 4175	. 62065	. 395	200.4	. 30155	4991	6.603	. 81973	.1514
67	3525.65	4302	.63367	. 324	206.5	. 31.491	4543	6.505	. 8_{3280}	. 1470
68	3631.68	. 44.31	. 64654	. 257	212.7	-32778	4701	7.010	. S $_{4} 566$. 1427
69	3739.28	$\cdot 4563$. 65922	. 192	219.0	-340.46	4566	7.217	. 85535	. 3 S6
70	$33_{4} 8.45$. 4697	$\overline{1} .67 \mathrm{I} 8_{3}$	2.129	225.5	2.35307	. 004435	7.429	0. $5-5 \operatorname{cog}$. 346
71	3959.19	. 4831	. 68404	. 070	231.9	. 36528	4312	7.641	.88316	. 309
72	4071.50	. 4968	. 69619	. 013	238.4	- 37743	4195	7.858	. 59531	. 1273
73	4155.39	. 5107	.70817	1.958	2.45 .1	-38941	4079	S.078	. 90729	.1238
74	4300.54	. 5248	. 71998	. 905	251.9	. 40123	3970	S.301	.91911	. 1204
75	4417.86	. 5391	1. 73164	1. 555	258.8	2.41288	. 003865	S. 526	0.93077	. 1173
76	4536.46	. 5535	. $7+315$. 807	265.7	. 42439	3764	8.755	. 94227	. 1142
77	4656.63	- 5682	. 75450	.760	272.7	. 43574	3666	8.987	.95363	.1113
78	477 S. 36	. 5831	. 76571	.715	279.9	. 44695	3573	9.222	. 96484	. 1084
79	4901.67	. 5981	.77678	.672	287.1	-45Sor	3483	9.460	. 97590	. 1057
80	5026.55	.6133	- .78770	1.630	294.4	2.46594	. 003401	9.701	0.98683	. 10308
8 I	5153.00	. 6288	. 79849	. 590	301.8	. 47973	3313	9.945	. 99762	. 10055
82	52 Si .02	. 6444	. 80915	-552	309.3	. 49039	3233	10.192	1.00828	.09812
83	5410.61	. 6602	. 8 I 968	. 515	316.9	. 50092	3156	10.442	. 01880	. 09577
84	5541.77	.6762	. 83008	-479	324.6	. 51132	3081	10.696	.02921	. 09349
85	5674.50	. 6924	1. 8.4036	I. 444	332.4	2.52160	. 003009	10.95	1.03948	.09131
S6	¢SoS.so	. 7085	. 5_{505}	. 411	$3+0.2$. 53176	2939	II. 21	. 04964	. 08919
87	$59+4.68$.7254	. 56056	- 379	348.2	. 54180	2872	II 1.47	. 05969	.08716
SS	Cos2.12	.7421	. 87049	- 347	356.2	. 55173	2807	11.74	. 06961	.08519
S9	6221.14	.7591	.SSO30	-317	364.4	. 56154	2744	12.01	.07943	.08328
90	6361.73		$\overline{1} .89001$	1.2SS	372.6		. 002684	12.28	1.0Sg1 3	.0SI45
91	6503.88	. 7936	. 89960	. 260	3 30.9	. 5 So85	2625	12.55	. 09873	. 07967
92	6647.61	. SIII	. 90910	.233	389.3	-59034	2568	12.83	.10822	.07794
93	6792.91	. 8291	. 91858	. 206	397.9	. 59972	2513	13.11	.11761	.0,62S
94	6939.78	. 8468	. 92778	.ISI	406.5	. 00902	2460	13.39	. 12690	. 07466
95	7OSS.22	. 8649	I. 93607	1.156	415.2	2.618こ1	. 002409	13.68	1.13609	
96	723 S. 23	. 8532	. 94606	.132	423.9	. 62731	2359	13.97	. 14519	. 07158
97	7389.81	. 9017	. 95507	. 109	432.8	.63631	2310	14.26	.15419	$.07011$
OS	7542.96	. 9204	. 96397	. 086	44.8	. 64521	2263	14.56	.16310	. 06869
99	7697.69	. 9393	-97279	. 065	450.9	.65403	2215	I 4.86	.17192	. 06731
100	7853.98	.9583	1.98152	1.043	460.0	2.66276	. 002174	15.16	I. 18065	. 06597

[^14]
BRITISH AND METRIC UNITS.

Cross sections and welghts of pires.
The cross section and the weight, in different units, of Silver wire of the diameters given in the first column. For one tenth the diameters divide the section and weights by 100 . For len times the diameter muliply by 100, and so on.

	Area of cross section Sq. Mils.	Silver-Density 10.50.								
		Troy Ounces per Fool.	Log.	$\begin{gathered} \text { Feet } \\ \text { per Troy } \\ \text { Ounce. } \end{gathered}$	Grains per Foot.	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Grain. } \end{gathered}$	Grammes per Metre.*	Log.	$\begin{gathered} \text { Metres } \\ \text { per } \\ \text { Gramme. } \end{gathered}$
10	78.54	. 005214	3.71715	191.79	2.503	0.39839	. 3996	0.08247	$\overline{2.91628 ~}$	12.126
11	95.03	. 006308	. 79992	158.52	3.02 S	. 48117	. 3302	. 09978	. 999905	10.022
12	113.10	. 007508	. 87553	133.19	3.604	. 55677	. 2775	. 11876	1.07465	8.420
13	132.73	.008SII	. 94503	113.49	4.229	. 62627	. 2364	. 13937	. 14416	7.175
14	153.94	.010219	$\overline{2} .00942$	97.86	4.905	. 69066	. 2039	.16164	. 20854	6.186
15	176.71	. 01173	$\overline{2} .06932$	85.24	5.631	0.75057	. 1776	0.1855	1. 26845	$5 \cdot 389$
16	201.06	. 01335	. 12539	74.92	6.407	. 80663	.1561	. 2111	. 32452	4.737
17	226.98	. 01507	. 17805	66.37	7.233	. 85929	.1383	.2383	. 37718	4.196
18	254.47	. 01689	. 22770	59.20	8.109	. 90894	.1233	. 2672	.42683	3.743
19	253.53	.01882	.27466	53.13	9.034	. 95590	. 1107	. 2977	. 47379	$3 \cdot 359$
20	314.16	. 02086	2.31921	47.95	10.01	I.00046	. 09990	0.3299	$\overline{\mathrm{I}} .51834$	3.031
21	346.36	. 02299	. 36159	43.49	11.04	. 04283	. 09060	. 3637	. 56072	2.750
22	380.13	. 02523	. 40200	39.63	12.11	.08324	. 08256	-3991	. 60112	. 505
23	415.48	. 02758	. 44061	36.26	13.24	. 12186	. 07553	.4363	. 63974	.292
24	$45^{2} \cdot 39$. 03003	. 4775^{8}	32.99	14.42	. 15882	. 06937	. 4750	. 67670	. 105
25	490.87	. 03259	$\overline{2.51303 ~}$	30.69	15.64	1.19427	. 06425	0.5154	T. 71216	1.940
26	530.93	. 03525	. 54710	28.37	16.92	. 22834	. 05911	. 5575	.74623	. 794
27	572.56	.03801	. 57988	26.31	18.24	. 26113	.0548I	. 6012	-77901	. 663
28	615.75	.04088	.61147	24.46	19.62	. 29271	. 05097	. 6.465	. 81059	- 547
29	660.52	. 04385	. 64195	22.81	21.05	-32319	. 04751	. 6935	. 84108	. 442
30	706.86	. 04692	2.67140	21.31	22.52	1.35264	. 04440	0.7422	I. 87052	1. 347
31	754.77	.05010	. 69988	19.96	24.05	. 38112	0.4158	. 7925	. 89900	. 262
32	804.25	. 05339	. 72745	18.73	25.63	. 40870	0.3902	. 8445	. 92658	. 184
33	855.30	. 05678	. 75418	17.61	27.25	. 43542	0.3669	. 8981	.95331	. 113
34	907.92	.06027	.78011	16.59	28.93	. 46135	0.3457	. 9533	. 97924	. 049
35	962.11	.06387	$\overline{2} .80528$	15.66	30.66	1.48653	.03262	1.010	0.0044 I	0.9899
36	1017.88	. 06757	. 82976	14.80	32.43	. 51100	.03083	. 069	. 02889	. 9356
37	1075.21	. 07138	. 85356	14.01	34.26 36.22	. 53480	. 02919	. 129	.05268 .07684	. 8857
38	II34. I I	. 07546	. 87772	13.25	36.22	-55896	. 02761	. 194	.07684	. 8378
39	1194.59	. 07930	. 89928	12.61	38.06	. 58052	. 02627	. 254	.0984I	. 7973
40	1256.64	. 08342	2.92128	11.99	40.04	1.60252	. 02497	1. 319	0.12041	0.7579
41	1320.25	.08764	. 94272	11.41	42.07	.62396	. 02377	. 386	. 14185	.7213
42	1385.44	. 09197	-96365	10.87	44.15	. 64489	. 02265	- 455	. 16278	.6574 .6558
43	1452.20	.09640	-.98.409	10.37	46.27 48.45	. 66533	.02161	. 525	.18322 .20318	
44	1520.53	. 10094	İ.00406	9.91	48.45	. 68530	. 02064	- 597	.20318	. 6263
45	1590.43	. 1056	İ.02358	9.471	50.68	1.70482	. 01973	1. 670	0.22270	0.5988
46	1661.90	. 1103	. 04267	9.065	52.96	. 72391	.01888	. 745	. 24179	. 5731
47	1734.94	. 1152	. 06135	8.683	55.28	. 74259	. 01809	. 822	. 26047	. 5489
48	1809.56	.1201	. 07964	8.325	57.66	. 76088	. 01734	. 900	. 27876	.5263 .5050
49	1885.74	. 1252	. 09755	7.988	60.09	. 77879	. 01664	. 980	. 29667	. 5050
50	1963.50	. 1303	İ.11 509	7.672	62.57	1.79634	. 01598	2.062	0.31422	
51	2042.82	. 1356	. 13229	7.374	65.09	. 81354	. 01536	. 145	- 33142	. 4662
52	2123.72	. 1410	-14916	7.093	67.67	. 830.40	. 01478	. 230	- 34829	-4484
53	2206.18 2290.22	.1465 .1520	.16570 .18194	6.828 6.578	70.30 72.99	.84695 .86328	. 01422	.316 .405	.36483 .38107	. 43178
54	2290.22	. 1520	.18194	6.578	72.99	. 86328	. 01370	. 405	-30107	-415
55	2375.83	. 577	İ. 19788	6.340	75.70	1.87912	. 01321	2.495	0.39700	0.4009

[^15]$\delta_{\text {mithsonian Tableg. }}$

Cross soctions and wolghts of wires.

	Area of cross section Sq. Mils.	Silver - Density ro. 5 .								
		$\begin{aligned} & \text { Troy } \\ & \text { Ounces } \\ & \text { per Foot. } \end{aligned}$	Log.	$\begin{aligned} & \text { Feet } \\ & \text { ner Troy } \\ & \text { Ounce. } \end{aligned}$	$\begin{gathered} \text { Gmins } \\ \text { per } \\ \text { Fool. } \end{gathered}$	Log.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { Grain. } \end{gathered}$	Grammes per Metre.	Log.	$\begin{gathered} \text { Melres } \\ \text { per } \\ \text { (ramme. } \end{gathered}$
55	2375.83	0.1577	- 1.19788	6.340	75.70	1.57912	. 01321	2.495	0.39700	0.4009
56	2463.01	. 1635	. 21353	.116	78.48	. 89477	1274	86	. 41266	.3867
57	2551.76	. 1694	.22890	5.903	S1.31	. 91014	1230	. 679	. 42803	. 3732
55	26.42 .08	. 1754	. 24401	. 701	8.4.19	.92525	1188	. 774	. 44314	. 3605
59	2733.97	.1815	. 25886	. 510	87.12	. 94010	1148	.871	$\cdot 45798$	- 3484
60	2827.43	0.1877	I. 27346	5.328	90.09	1.95470	. 11110	2.969	0.4725^{8}	0.3368
61	2922.47	. 1940	.28781	. 155	93.12	. 96906	1074	3.069	. 48694	. 3259
62	3019.07	. 2004	. 30193	4.990	96.20	.983I8	1040	. 170	. 50106	-3155
63	3117.25	. 2069	-31584	. 832	99.33	. 99708	1007	. 273	. 51496	. 3055
64	3216.99	.2136	. 32951	.683	102.51	2.01075	0975	. 378	. 52864	. 2961
65	$33^{18.31}$	0.2203	I. 34298	$4 \cdot 540$	105.7	2.02422	. 009457	3.484	0.54211	0.2870
65	3421.19	. 2271	. 35624	. 403	109.0	. 03748	09173	. 592	. 55537	.2784
67	3525.65	. 2340	- 36930	. 273	112.3	. 05054	08903	. 702	- 56843	. 2701
68	3631.68	.2411	-3S217	. 148	115	.06341	08642	. 813	. 58130	. 2622
69	3739.28	.2482	- 39485	. 029	119.1	.07609	08393	. 926	. 59398	. 2547
70	3S4S.45	0.2555	I. 40746	3.913	122.7	2.08870	. 008153	4.042	0.60659	0.2474
71	3959.19	. 2628	.41967	. 805	126.2	.10091	07926	. 157	.61850	. 2406
72	4071.50	. 2703	-43182	. 700	129.7	. 11306	07708	. 275	.63094	. 2339
73	4185.39	. 2778	. 44380	. 599	I 33.4	. 12504	07498	. 395	. 64293	. 2275
74	4300.84	. 2855	. 45560	. 502	137.0	. 13686	07297	. 516	. 65474	. 2214
75	4417.86	0.2933	I. 46728	$3 \cdot 410$	140.8	2.14852	. 007104	4.639	0.666 .40	0.2156
76	4536.46	. 3011	. 47878	. 321	144.6	.16002	06918	. 763	. 67791	. 2099
77	4656.63	. 3091	. 49014	. 235	148.4	.17133	06739	. 889	. 68926	. 20.45
78	4778.36	$\cdot 3172$	-50134	. 152	152.3	. 18258	06568	5.017	. 70047	. 1993
79	4901.67	. 3254	-51241	. 073	156.2	. 19365	06402	. 147	.71153	. 1943
80	5026.55	0.3337	1.52333	2.997	160.2	2.2045^{8}	. 006243	5.278	0.72246	0.1895
8 I	5153.00	. 3421	. 53412	. 923	164.2	. 21537	06090	411	.73325	.1848
82	5281.02	. 3506	. 54478	. 852	168.3	. 22602	- 5942	. 545	77391	.1803
83	5410.61	- 3592	-55531	.784	172.4	. 23655	05800	.681	.75444 .76484	.1760 .1719
84	5541.77	. 3679	. 5657 I	.718	176.6	. 24695	05663	.SI9	. 76.484	.1719
85	5674.50	0.3767	I. 57599	2.655	I 80.8	2.25723	. 005531	5.958	0.77512	0.1678
86	5808.80	. 3856	. 58615	. 593	185.1	. 26739	05403	6.099	.78528	. 1640
87	5944.68	. 3946	. 59619	. 534	189.4	. 27743	05279	.242	.79532	. 1602
88	6082.12	. 4038	. 60612	. 477	193.8	.28736	05160	$\cdot 386$. 80524	. 1566
S9	6221.14	. 4130	.61593	. 421	198.2	. 29717	05045	. 532	. 81506	. 1531
90	6361.73	0.4223	1. 62564	2.368	202.7	2.30688	. 004933	6.630	0.82476	0.1497
91	6503.88	. 4318	. 63524	. 316	207.2	. 31648	04825	. 829	. 83436	.1464
92	66.47 .61	. 4413	. 6.4473	. 266	211.8	. 32597	04721	. 980	. 84385	.1433
93	6792.91	.4509	. 65411	. 218	216.4	- 33535	04620	7.132 .287	.85324 .86254	.1402 .1372
94	6939.78	. 4607	. 66341	. 171	221.1	- 34465	04522	. 287	. 56254	. 1372
95	7089.22	0.4705	- $1.67=60$	2.125	225.9	2.35394	. 004428	$7 \cdot 443$	0.87173	0.1344
96	7238.23	. 4805	.68170	. 08 I	230.6	. 36294	04336	. 600	. 88082	. 316
97	7389.81	. 4906	. 69070	. 038	$235 \cdot 5$	- 37194	04247	. 759	. 88982	. 1289
93	7542.96	. 5007	.69961	1.997	240.4	- 38085	04161	-920	. 89873	. 1263
99	7697.69	. 5110	.708.42	. 957	$245 \cdot 3$	- 35967	04077	8.083	. 90755	. 1237
100	7853.98	0.5214	1.71715	1.918	250.3	2.39839	. 003996	8.247	0.91628	0.1213

[^16]
Smithsonian Tables.

Table 63.

WEIGHT OF SHEET METAL.

TABLE 63. - Weight of Sheet Metal. (Metric Measure.)
This table gives the weight in grammes of a plate one metre square and of the thickness stated in the

$\stackrel{\dot{y}}{\stackrel{y}{シ}}$	
$\begin{aligned} & \text { 00 } \\ & 0 \end{aligned}$	
药	
$\begin{aligned} & \dot{E} \\ & \frac{E}{E} \\ & \frac{E}{E} \end{aligned}$	
$\begin{aligned} & \text { 4. } \\ & 0.0 \\ & 0.0 \\ & 0.8 \end{aligned}$	
¢	

Smithsonian Tables.
56

WEICHT OF SHEET METAL.
TABLE 84. - Weight of Sheet Metal. (British Measure.)

$\begin{gathered} \text { Thickness } \\ \text { in } \\ \text { Mils. } \end{gathered}$	Iton.	Copper.	Brass.	Aluminium.		Platinum.		Gold.*		Silver.*	
	Pounds per Sq. Koot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.	Ounces per Sq. Foot.	Grains per Sq. Foot.	Ounces per Sq. Foot.	Grains per Sq. Foot.
123	$\begin{aligned} & .04058 \\ & .08 i{ }^{2} 6 \end{aligned}$. 04630	. $0+454$. 01389	. 2222	. 1119	1.790	1. 4642	702.8	0.7967	$\begin{aligned} & 382.4 \\ & 765.8 \end{aligned}$
		. 09260	.08908	. 02778	.4445.6667	. 2237	3.579	2.9285	1405.7	1.5933	
	. 081216	. 13890	.13363	. 04167		.3356	5.369	4.3927	2108.5	2.3900	1147.2
	.16231	.18520.23150	.17817.22271	.05556.06945	I.1112	. 5593	7.158	5.8570	2811.3	3.9833	1529.6
	. 20289						8.948	7.3212	3514.2		1912.0
6	. 24347	.27780	. 26725	. 08334	1.3335	. 6711	10.738	$\begin{array}{r} 8.7854 \\ 10.2497 \end{array}$	$\begin{aligned} & 4217.0 \\ & 4919.8 \end{aligned}$	4.78005.5767	2294.4$26-6.5$
7	. 28405	. 32411	. 31179	.09723 .11112	1.5557 I. 77 So	.7830 .8948	12.527	10.2497 11.7139	4922.8 562.7	6.3734	3059.2
8	-32463	-37041	. 35634	.12501.13890	$\begin{aligned} & 2.0002 \\ & 2.2224 \end{aligned}$	$\begin{aligned} & 1.0067 \\ & 1.1185 \end{aligned}$	$\begin{aligned} & 16.106 \\ & 17.896 \end{aligned}$	$\begin{aligned} & 13.1752 \\ & 14.6424 \end{aligned}$	$\begin{aligned} & 6325.5 \\ & 7028.3 \end{aligned}$	$\begin{aligned} & 7.1700 \\ & 7.9667 \end{aligned}$	3 3424.0
	-36520	. 41671	. 400848								
10	. 40575	. 46301	-44542	. 30							

* Gold and silver are given in Troy ounces.
Smithsonian Tables.

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers
Slze and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter Inches). Incl	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet pound.
0000	0.4600	0.2116	0.1662	0.6412	I.Sojor	1.560
000	.4096	. 1678	. 1318	. 5085	. 70631	1.967
00	. 36.48	.1331	. 1045	. 4033	. 60560	2.480
\bigcirc	-3249	. 1055	.0829	-3198	. 50.489	3.127
1	0.2893	0.08369	0.06573	0.2536	1.40419	3.943
2	. 2576	. 06637	.05213	. 2011	-303.48	4.972
3	. 2294	.05263	. 0.4134	. 1595	. 20277	6.270
4	. 20.43	. 0.1174	. 03278	. 1265	. 10206	7.905
5	. 1819	.03310	. 02600	. 1003	$.0013^{6}$	9.969
6	0.1620	0.02625	0.02062	0.07955	2.90065	12.57
7	. 1.443	. 02082	. 01635	. 06309	. 79994	15.55
8	. 1285	. 01651	. 01297	. 05003	. 69924	19.99
9	.1144	. 01309	. 101028	.03963	- 59553	25.20
10	. 1019	. 101038	. 00815	.03146	. 49782	31.78
11	0.09074	0.008234	0.006467	0.02495	2.39711	40.08
12	.oSoSi	. 006530	. 005129	. 01979	. 29641	50.54
13	. 07196	. 005178	. 004067	. 01569	. 19570	63.72
14	. 06408	. 00.4107	. 003225	. 012.44	-. 09499	So. 35
15	. 05707	. 003257	. 002558	. 00987	$\overline{3} \cdot 99.429$	101.32
16	0.05032	$0.0025 S^{3}$	0.002028	0.007827	$\overline{3} .89358$	127.8
17	. 0.4526	.0020,4	. 001609	. 006207	. 79287	161.1
18	. 0.4030	. 001624	. 001276	. 004922	. 69217	203.2
19	.03589	. 001288	. 001012	. 003904	-59146	256.2
20	.03196	.001021	.000S02	. 003096	. 49075	323.1
21	0.023.46	0.0008101	0.0006363	0.002455	$\overline{3} \cdot 39004$	408.2
22	. 02535	.0006.424	. 00050.46	. 0019.47	. 28934	513.6
23	. 02257	. 0005095	.000.4001	. 001544	.18863	647.7
24	. 02010	. 0004040	. 0003173	. 001224	.08792	Si6.7
25	. 01790	. 0003204	. 0002517	. 000971	4.98722	1029.9
26	0.01594	0.0002541	0.0001996	0.0007700	$\overline{4} .88651$	1298.
27	. 01.419	. 0002015	. 0001583	. 0006107	. 78550	1638.
28	. 01264	. 0001598	. 0001255	.000.4843	. 68510	2065.
29	. 01126	.0001267	. 0000995	.0003841	-58439	2604.
30	.01003	. 0001005	. 0000789	.0003046	. 48368	3283.
31	0.008928	0.00007970	0.00006260	0.0002415	$\overline{4} \cdot 38297$	4140.
32		. 00006321	. 00004964	.0001915	. 28227	5221.
33	.007080	. 00005013	. 00003937	.0001519	. 18156	6583.
34	.006304	. 00003975	. 00003122	. 0001205	-OSOS 5	8301.
35	. 005614	. $00003^{1} 5^{2}$.00002.476	. 0000955	5.9 Sol 5	10.468.
36	0.005000	0.00002500	0.00001963	0.00007576	$\overline{5} .87944$	${ }_{1} 3200$.
	. 004453	. 00001983	. 00001557	. 00006008	. 77873	$16644 .$
3^{8}	. 003965	.00001 372	.00001235	.00004765	. 67802	20988.
39	. 003531	. 00001247	. 00000979	. 00003778	- 57732	26465
40	. 003145	.00000989	.00000777	.00002996	.47661	33372 .

Smithsonian Tableg.
according to the American Brown and Sharp Gauge. British Measure. Temperature $0^{\circ} \mathrm{C}$. Densily 8.90.
Electrical Constants.

Resistance and Conduclivity.					Gauge Number.
Ohms per Foot.	Log.	$\begin{aligned} & \text { Feet } \\ & \text { per } \\ & \text { Ohm. } \end{aligned}$	Ohms per Pound.	Pounds per Ohns.	
$\begin{array}{r} 0.00004629 \\ .00005837 \\ .00007361 \\ .00009282 \end{array}$	$\begin{array}{r} 5.66551 \\ .76622 \\ .86693 \\ .96764 \end{array}$	$\begin{aligned} & 21601 . \\ & 17131 . \\ & 13556 . \\ & 10774 . \end{aligned}$	$\begin{array}{r} 0.00007219 \\ .000 \text { I I } 479 \\ .000 \text { I } 253 \\ .00029023 \end{array}$	$\begin{array}{r} 13852 . \\ 8712 . \\ 5479 . \\ 3445 . \end{array}$	$\begin{gathered} 0000 \\ 000 \\ 00 \\ 0 \end{gathered}$
$\begin{array}{r} 0.0001170 \\ .0001476 \\ .0001861 \\ .0002347 \\ .0002959 \end{array}$	$\begin{array}{r} \overline{4} .06834 \\ .16905 \\ .26976 \\ .370 .46 \\ .47117 \end{array}$	$\begin{aligned} & 8544 . \\ & 6775 . \\ & 5373 . \\ & 4261 . \\ & 3379 . \end{aligned}$	0.0004615 .0007338 .0011668 .0018552 .0029499	$\begin{array}{r} 2166.8 \\ 1362.8 \\ 857.0 \\ 539.0 \\ 339.0 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{array}{r} 0.0003731 \\ .000+705 \\ .0005933 \\ .0007482 \\ .0009434 \end{array}$	$\begin{array}{r} \overline{4} \cdot 57188 \\ .67259 \\ .77329 \\ .87400 \\ .97471 \end{array}$	$\begin{aligned} & 2680 . \\ & 2125 . \\ & 1685 . \\ & 1337 . \\ & 1060 . \end{aligned}$	$\begin{array}{r} 0.004690 \\ .007458 \\ .011859 \\ .018857 \\ .029984 \end{array}$	$\begin{array}{r} 213.22 \\ 134.08 \\ 84.32 \\ 53.03 \\ 33.35 \end{array}$	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$
$\begin{array}{r} 0.001190 \\ .001500 \\ .001592 \\ .00235 \\ .003005 \end{array}$	3.07541 .17612 .27683 .37753 .47824	840.6 666.6 528.7 419.2 332.5	$\begin{array}{r} 0.04768 \\ .0758 \mathbf{I} \\ .12054 \\ .19166 \\ .30476 \end{array}$	20.973 13.191 8.296 5.218 3.281	$\begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$
$\begin{array}{r} 0.003793 \\ .004753 \\ .006031 \\ .007604 \\ .009559 \end{array}$	$\overline{3} .57895$.67966 .78036 .88107 .98178	263.7 209.1 165.8 131.5 104.3	$\begin{array}{r} 0.4846 \\ .7705 \\ 1.2252 \\ 1.9481 \\ 3.0976 \end{array}$	2.0636 1.2979 0.8162 .5133 .3228	$\begin{gathered} 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{gathered}$
$\begin{array}{r} 0.01209 \\ .01525 \\ .01923 \\ .02424 \\ .03057 \end{array}$	$\begin{array}{r} \overline{2} .08248 \\ .18319 \\ .28390 \\ .38461 \\ .48531 \end{array}$	$\begin{aligned} & 82.70 \\ & 65.59 \\ & 52.01 \\ & 41.25 \\ & 32.71 \end{aligned}$	$\begin{array}{r} 4.025 \\ 7.832 \\ 12.453 \\ 19.801 \\ 31.484 \end{array}$	0.20305 .12768 .08030 .05051 .03176	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$
$\begin{array}{r} 0.03855 \\ .04861 \\ .06130 \\ .07729 \\ .09746 \end{array}$	$\begin{array}{r} \overline{2} .58602 \\ .68673 \\ .78743 \\ .88814 \\ .98885 \end{array}$	25.94 20.57 16.31 12.94 10.26	$\begin{array}{r} 50.06 \\ 79.60 \\ 126.57 \\ 201.26 \\ 320.01 \end{array}$	$\begin{array}{r} 0.019976 \\ .01563 \\ .007901 \\ .004969 \\ .003125 \end{array}$	$\begin{aligned} & 26 \\ & 27 \\ & 25 \\ & 29 \\ & 30 \end{aligned}$
$\begin{array}{r} 0.1229 \\ .1550 \\ .1954 \\ .2464 \\ .3107 \end{array}$	$\begin{array}{r} \overline{1} .08955 \\ .19026 \\ .29097 \\ .39168 \\ .49238 \end{array}$	8.137 6.452 5.117 4.058 3.218	$\begin{array}{r} 508.8 \\ 809.1 \\ 1286.5 \\ 20.45 .6 \\ 3252.6 \end{array}$	$\begin{array}{r} 0.0019654 \\ .0012359 \\ .0007773 \\ .0004589 \\ .0003074 \end{array}$	$\begin{gathered} 31 \\ 32 \\ 33 \\ 34 \\ 35 \end{gathered}$
$\begin{array}{r} 0.3918 \\ .4941 \\ .6230 \\ .7856 \\ .9906 \end{array}$	$\begin{array}{r} \overline{\mathrm{I}} .59309 \\ .69380 \\ .79450 \\ .89521 \\ .99592 \end{array}$	$\begin{aligned} & 2.552 \\ & 2.024 \\ & 1.605 \\ & \mathrm{~J} .273 \\ & 1.009 \end{aligned}$	$\begin{array}{r} 5172 . \\ 8224 . \\ 13076 . \\ 20792 . \\ 33060 . \end{array}$	$\begin{array}{r} 0.0001934 \\ .0001216 \\ .0000765 \\ .0000481 \\ .0000303 \end{array}$	$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$

Smithsonian Tables.

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers
Stze and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1684	I. 3652	1.0722	954.3	2.97966	0.0010 .48
0co	. 0405	. 0826	0.8503	756.5	. 87896	. 001322
00	0.9266	0.9586	. 6743	600.1	. 77825	. 001666
\bigcirc	. 8251	. 6509	. 534 S	475.9	. 67754	.002IOI
1	0.734^{8}	0.5400	0.42 .41	$377 \cdot 4$	2.57684	0.002649
2	. 6544	. 4282	.3363	299.3	. 47613	. 0033.41
3	.5827	.3396	. 2667	237.4	- 37542	.004213
4	. 5189	. 2693	.2115	188.2	. 27472	. 005312
5	. 4621	.2136	. 1677	149.3	. 17401	. 006699
6	0.4115	0.16936	0.13302	118.39	2.07330	0.00S.45
7	.3665	. 13431	. 10549	93.58	1.97259	. 01065
8	. 3264	. 10651	.08366	74.45	. 87189	. $013+3$
9	. 2906	.08447	. 06634	59.04	.77118	. 01694
10	. 2588	. 06699	.05261	46.82	. 670.47	.02136
11	0.2305	0.05312	0.04172	37.13	1.56977	0.02693
12	. 2053	.04213	. 03309	29.45	.46)06	. 03396
13	. 1828	. 03341	.02624	23.35	. 36835	.042S2
14	. 1628	.02649	. 02081	18.52	. 26764	. 05400
15	. 145°	. 02101	. 01650	14.69	. 16694	. 06809
16	0. 12908	0.016663	0.013087	11.648	1.06623	0.0859
17	. 11495	. 013214	. 1010378	9.237	0.96552	.1083
18	. 10237	. 010479	.008231	7.325	. 86482	. 1365
19	. 09116	.008330	. 006527	5.809	. 76411	.1721
20	.08118	.006591	. 005176	4.607	. 66340	.2171
21	0.07229	0.005227	0.004105	3.653	0.56270	0.2737
22	. 06438	. 00.4145	. 003255	2.898	- 46199	-3+50
23	. 05733	. 003287	.002552	2.298	-36128	. 4352
24	. 05106	. 002607	. 002047	1.822	.26057	. 5488
25	.04545	.002067	.001624	1.445	. 15987	. 6920
26	0.04049	0.0016394	0.0012876	1.1459	0.05916	0.873
27	. 03606	. 0013001	. 0010211	.9088	1.958 .45	
28	. 03211	.0010310	. 000 SogS	. 7207	. 85775	I. 388
29	.02859	.0008 76	.0006422	.5715	. 75704	1.750 2.206
30	. 02546	.0006484	. 0005093	-4532	.65633	2.206
31	0.02268	0.0005142	0.0004039	0.3594	- 1.55562	2.782
32	. 02019	. 0004078	. 0003203	. 2850	. 45492	3.508
33	.01799	. 0003234	. 0002540	. 2261	-35421	4.424
34	.01601	. 0002565	. 0002014	.1793	. 25350	5.578
35	.01426	. 0002034	.0001597	.1422	.152S0	7.034
36	0.01270	0.0001613	0.0001267	0.1127	T. 05209	S. 57
37	. 01131	. 0001279	.0001005	.0894	2.9513S	11.18
38	.01007	.0001014	.0000797	.0709	. 55068	14.10
39	.00897	. $00000 \mathrm{SO}_{4}$. 0000632	. 0562	. 74997	17.75 22.43
40	. 00799	.0000638	.0000501	. 0446	. 64920	22.43

Smithsonian Tables.
according to the American Brown and Sharp Gauge. Metric Measure. Temperature 0° C. Density 8.go.
Electrical Constants.

Resistance and Conductivity.					Gauge Number.
$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { Metre. } \end{aligned}$	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	
0.0001519 .0001915 .000245 .0003045	$\begin{gathered} \overline{4} \cdot 18150 \\ .2 S 221 \\ .3 \mathrm{SI} 91 \\ .48362 \end{gathered}$	$\begin{aligned} & 6584 . \\ & 5221 . \\ & 4141 . \\ & 3284 . \end{aligned}$	$\begin{array}{r} 0.0000001592 \\ .0000002531 \\ .0000004024 \\ .0000006398 \end{array}$	6283000. 3951000. 2455000. 1563000.	$\begin{gathered} 0000 \\ 000 \\ 00 \\ 0 \end{gathered}$
$\begin{array}{r} 0.0003840 \\ .0004842 \\ .0006106 \\ .0007699 \\ .0009709 \end{array}$	$\begin{array}{r} \overline{4} .58433 \\ .68503 \\ .78574 \\ .88645 \\ .98715 \end{array}$	2604. 2065. 163 S. 1299. 1030.	0.000001017 .000001618 .000002572 .000004090 .000006504	9S2900. 618200. 388800 . 244500. I 53800.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{array}{r} 0.001224 \\ .001544 \\ .001947 \\ .002455 \\ .003095 \end{array}$	$\begin{gathered} \overline{3} .08786 \\ .18557 \\ .28928 \\ .38998 \\ .49069 \end{gathered}$	$\begin{aligned} & 816.9 \\ & 647.8 \\ & 513.7 \\ & 407.4 \\ & 323.1 \end{aligned}$	$\begin{array}{r} 0.00001034 \\ .00001644 \\ .00002615 \\ .00004157 \\ .00006610 \end{array}$	96700. 60820. 38250 . 24050. 15130.	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$
0.003903 .004922 .006206 .007826 .009868	$\begin{array}{r} \overline{3} .59140 \\ .69210 \\ .79281 \\ .89352 \\ .99423 \end{array}$	$\begin{aligned} & 256.2 \\ & 203.2 \\ & 161.1 \\ & 127.8 \\ & 101.3 \end{aligned}$	$\begin{array}{r} 0.00010511 \\ .00016712 \\ .00026574 \\ .00042254 \\ .00067187 \end{array}$	9514. 5984. 3763. 2367. 1488.	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 13 \end{aligned}$
0.01244 .01569 .01979 .02495 .03146	2.09493 .19564 .29635 .39705 .49776	S0. 37 63.73 50.54 40.08 31.79	$\begin{array}{r} 0.0010683 \\ .0016987 \\ .0027010 \\ .0042948 \\ .0065290 \end{array}$	936.1 588.7 370.2 232.8 146.4	$\begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array}$
0.03967 .05002 .06308 .07954 .10030	$\begin{array}{r} \overline{2} .59847 \\ .69917 \\ .79988 \\ . .90059 \\ \overline{1.001} 30 \end{array}$	25.21 19.99 15.85 12.57 9.97	$\begin{array}{r} 0.010859 \\ .017266 \\ .027454 \\ .043653 \\ .06941 \text { I } \end{array}$	92.09 57.92 36.42 22.91 11.85	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$
$\begin{array}{r} 0.12647 \\ .15948 \\ .20110 \\ .25358 \\ .31976 \end{array}$	$\begin{array}{r} \overline{1} .10200 \\ .20271 \\ .30342 \\ .40412 \\ .50483 \end{array}$	7.907 6.270 4.973 3.943 3.127	$\begin{array}{r} 0.11037 \\ .17549 \\ .27904 \\ .44369 \\ .70550 \end{array}$	9.060 5.69 S 3.584 2.254 1.417	$\begin{array}{r} 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$
$\begin{array}{r} 0.4032 \\ .5084 \\ .6411 \\ .8085 \\ 1.0194 \end{array}$	I. 60554 .70624 .So695 .90766 0.00837	2.480 1.967 I. 560 1.237 0.981	$\begin{aligned} & 1.1218 \\ & 1.7837 \\ & 2.8362 \\ & 4.5097 \\ & 7.1708 \end{aligned}$	$\begin{array}{r} 0.8914 \\ .5606 \\ .3526 \\ .2217 \\ .1394 \end{array}$	$\begin{gathered} 31 \\ 32 \\ 33 \\ 34 \\ 35 \end{gathered}$
$\begin{aligned} & 1.2855 \\ & 1.6210 \\ & 2.0440 \\ & 2.5775 \\ & 3.2501 \end{aligned}$	$\begin{array}{r} 0.10907 \\ .20978 \\ .31049 \\ .41119 \\ .51190 \end{array}$	$\begin{array}{r} 0.7779 \\ .6169 \\ .4892 \\ .3880 \\ .3076 \end{array}$	$\begin{aligned} & 1 \mathrm{I} .376 \\ & 18.3130 \\ & 28.828 \\ & 45.838 \\ & 72.885 \end{aligned}$	$\begin{array}{r} 0.08790 \\ .05516 \\ .03469 \\ .02182 \\ .01372 \end{array}$	$\begin{gathered} 36 \\ 37 \\ 38 \\ 39 \\ 40 \end{gathered}$

8mithsonian Tables.

Size and Welght.

Gauge Number.	Diameter in Inches.	Square of Diameter Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Yound.
7-0 $6-0$	0.500 .464	0.2500 .2153	0.1963 .1691	0.75760 .65243	$\overline{1} .87944$.81453	1. 320 1. 583
5-0	0.432	0.1866	0.1466	0.56554	T. 75247	1.768
4-0	. 400	. 1600	.1257	. 48486	. 68562	2.062
3-0	-372	.1384	. 1087	.41936	. 62258	2.385
2-0	. 348	.1211	.0951	-36699	-56466	2.725
0	. 324	. 1050	. 0825	-31812	. 50259	3.143
1	0.300	0.09000	0.07069	0.27274	- 1.43574	3.667
2	. 276	. 07618	. 05983	.23084	. 36332	4.332
3	. 252	. 06350	. 04938	. 19244	. 28430	5.196
4	.232	. 05382	. 04227	.16310	. 21246	6.131
5	. 212	. 04494	. 03530	.13620	.13417	7.342
6	0.192	0.03686	0.02895	0.11171	-1.04810	8.95
7	.176	.03098	. 02433	. 09387	2.97252	10.65
8	.160	. 02560	. 02010	. 07758	. 88974	12.89
9	. 144	. 02074	. 01629	.06284	.79822	15.91
10	. 128	. 01638	. 01287	.04965	. 69592	20.14
11	0.116	0.013456	0.010568	0.04078	$\overline{2} .61041$	24.52
12	.104	. 010816	.008495	. 03278	. 51557	30.51
13	. 092	.008464	. 006648	. 02565	. 40907	38.99
14	. 080	. 006400	. 005027	. 01939	. 28768	51.56
15	. 072	. 005184	. 004071	.01571	. 19616	63.66
16	0.064	0.004096	0.003217	0.012412	2. 2.09386	80.6
17	. 056	. 003136	. 002463	.009503	3.97787	105.2
18	. 0.48	.002304	. 001810	.0069S2	. $\mathrm{S}_{4} 398$	143.2
19	. 040	. 001600	. 001257	. 004849	. 65562	206.2
20	. 036	. 001296	. 001018	. 003927	-59410	254.6
21	0.032	0.00102 .40	0.0008042	0.003103	$\overline{3} \cdot 49180$	322.3
22	. 028	. 0007840	. 0006157	.002376	-37581	420.9
23	. 024	.0005760	. 00004524	. 001746	. 24192	572.9
24	. 022	. 0004840	.0003801	. 001467	. 16634	651.8
25	. 020	. 0004000	.0003141	. 001212	. 08356	824.9
26	0.0150	0.0003240	0.0002545	0.0009818	- 4.99209	1018.
27	. 0164	. 0002690	. 0002112	. 0008151	.9119	1227.
28	. 0148	. 0002190	. 0001728	. 0006638	. 82202	1506.
29	.0136	. 0001850	. 0001453	. 0005605	. 74858	1784.
30	. 012.4	. 0001538	. 0001208	. 0004660	.66S34	2146.
31	0.0116	0.00013456	0.00010568	0.0004078	$\overline{4} .61041$	2452.
32	. 0108	. 00011664	.00009161	. 0003535	-54S35	2829.
33	. 0100	. 00010000	. 00007854	. 0003030	-4850	3300.
34	.0092	.00008464	. 00006648	. 0002565	. 40907	3899.
35	. 0084	. 00007056	. 00005542	. 0002138	. 33006	4677.
36	0.0076	0.00005776	0.00004536	0.0001750	4.24313	5713.
37	. 0068	. 00004624	. 00003632	. 0001404	. 14752	7120.
38	. 0060	. 00003600	. 00002827	.0001091	. 03780	9167.
39	. 0052	. 00002704	. 00002124	. 0000819	5.91351	12200.
40	. 0048	. 00002304	.00001810	. 0000682	. 84398	14660.
41	0.0044	0.00001936	0.00001521	0.00005867	$\overline{5} .76840$	17050.
42	. 0010	. 00001600	. 00001257	.00004849	. 68562	20620.
43	. 0036	.00001296	. 00001018	. 00003927	- 59410	25460.
44	.0032	. 00001024	. 00000804	. 00003103	. 49180	32230.
45	.0028	. 00000784	. 00000616	.000023SI	. 37681	41990.
46	0.0024	0.00000576	0.00000452	0.00001746	5.24192	57290.
47	.0020	. 00000400	. 00000314	.00001212	. 083356	82490.
48	. 0016	. 00000256	. 00000201	. 000000776	6.88974	128900.
49	. 0012	. 00000144	. 00000113	. 00000436	. 63986	229200.
50	. 0010	.00000100	. 00000079	. 00000303	.48150	330000.

according to the British Standard Wire Gauge. British Measure. Temperature $0^{\circ} \mathrm{C}$. Density 8.go.
Electrical Constants.

Resistance and Conductivity.					Gauge Number.
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	
0.00003918	$\overline{5} .59310$	255こ0.	0.000051719	19335.	7-0
. 00004550	. 65799	21950.	.000069736	14339.	6-0
0.00005249	$\overline{5} 72006$	19050.	0.00009281	10775.	5-0
. 00006122	. 78691	16330.	.00012627	7920.	4-0
. 00007078	. 84994	14130.	.00016880	5924.	3-0
. 0000 SoS9	. 90787	12360.	. 00022040	4537.	2-0
. 00009331	. 96994	10720.	.00029333	3409.	\bigcirc
0.0001088	- 4.03679	9188.	0.0003991	2505.8	1
.0001286	.10921	7777.	. 0005570	1795.2	2
. 0001543	.18823	6483.	. 0008015	1247.7	3
. 0001820	. 26005	5495.	. 0011158	896.2	4
.00021 80	. 33836	4588.	.0016002	624.2	5
0.0002657	- 4.42443	3763.	0.0023786	420.4	6
. 0003162	. 50000	3162.	. 0033688	296.9	7
.0003826	. 58279	2613.	. 0049323	202.7	8
.0004724	. 67430	2117.	. 0075176	133.0	9
. 0005979	.77661	1673.	.0084978	117.7	10
0.0007280	$\overline{4} .86211$	1373.6	0.017853	56.013	11
. 0009056	. 95696	1104.2	. 027631	36.191	12
.0011573	$\overline{3} .06345$	864.1	. 045121	22.163	13
. 0015305	.18485	653.4	. 078927	12.669	14
.0018896	.27636	529.2	. 120282	8.314	15
0.002391	$\overline{3} \cdot 37867$	418.1	0.19267	5.1902	16
.003124	. 49465	320.2	. 32563	3.0423	17
.004252	. 62855	235.2	. 60893	1.6423	18
. 006122	.78691	163.3	1. 26268	0.7919	19
.007558	. 87842	132.3	1.92451	.5196	20
0.00957	- $\mathbf{3} .98073$	104.54	3.0827	$0.3=439$	21
. 01249	2.09671	80.04	5.2599	.19011	22
. 01701	.23061	58.80	9.7429	. 10264	23
. 02024	-30618	49.41	13.7988	. 07246	24
. 02506	-38897	39.91	20.2028	. 04951	25
0.03023	$\overline{2} .480 .48$	33.08	30.792	0.032478	26
. 03642	. 56134	27.46	56.254	. 017778	27
. 04472	. 6505 I	22.36	67.373	. 014843	28
. 05296	. 72395	18.88	94.488	. 01058	29
. 06371	. 80419	15.70	136.724	. 007314	30
0.07449	$\overline{2} .87211$	13.42	182.68	0.005474	31
.08398	.92418	11.91	237.59	. 004209	32
. 09796	-. 99103	10.21	323.25	. 003094	33
.11573	1.06345	8.64	451.21	.002216	34
. 3883	. 14247	7.20	649.25	. 001540	35
0.16959	1.22940	5.897	968.9	0.0010321	36
. 21184	. 32601	4.720	I 508.3	. 0006630	37
. 27210	- 43473	3.675	2494.2	. 0004009	38
. 36226	. 55902	2.760	4421.0	. 0002262	39
. 42515	. 62855	2.352	6089.3	.0001642	40
0.5060	İ.70412	1.976	S624.	0.00011596	41
. 6122	.78691	. 633	12627.	.00007919	42
. 7558	. 87842	. 323	19245.	. 00005196	43
. 9566	. 98073	. 045	30827.	. 00003244	44
1.2494	0.09671	0.800	52468.	. 00001906	45
1.7006	0.23061	0.5880	97429.	0.000010264	46
2.5059	-38897	. 3991	202028.	. 000004950	47
3.8264	-58279	.2613	493232.	.000002027	48
6.8025	. 83267	.1470	1558851.	.000000642	49
9.7956	.99103	. 1021	323245 .	.000000196	50

Smithsonian Tables.

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers
Slze and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
7-0	1.2700	1.6129	1. 267	I 127.4	3.05209	0.000887
6-0	. 1756	. 3890	.091	970.9	2.95719	.001032
5-0	1.0973	I. 20.40	0.9456	84 1. 6	2.92512	0.001188
4-0	.0160	.0323	. 8107	721.6	. 55527	.001386
3-0	0.9449	0.8928	.7012	624.1	.79524	.001602
2-0	. 8839	. 7815	.6136	546.3	. 73741	.00183I
\bigcirc	. 8230	. 6773	. 5319	48.7 .4	.68524	.002004
1	0.7620	0.58065	0.4560	405.9	2.60839	0.002464
2	. 7010	.49157	. 3858	343.6	.53607	.002910
3	. 6401	. 40970	. 3218	286.4	. 45695	.003492
4	. 5893	. 34725	. 2727	242.7	-3S512	.004120
5	. 5385	. 28996	. 2277	202.7	. 30682	. 004934
6	0.4877	0.23783	0.18679	166.25	2.22075	0.006015
7	. 4470	.19984	. 15696	139.69	.14517	. 007159
8	. 4064	.16516	. 12973	I I 5.45	. 06239	.008662
9	.3658	. 13378	. 10507	93.51	1.97087	.010694
10	-3251	. 10570	. 08302	73.59	.86857	. 013533
11	0.29 .46	0.08681	0.06818	60.68	1.78307	0.016 .48
12	. 2642	. 06978	.0548o	48.78	. 68822	.02051
13	. 2337	.05461	.04289	35.17	. 58172	. 02620
14	.2032	.04129	.03243	28.86	.46033	. 03465
15	. 1829	. 03344	. 02627	23.38	. 3688 I	.04278
16	0.16256	0.026426	0.020755	IS.514	1.26751	0.05401
17	.1.4224	. 020233	.015890	14.142	. 15053	. 07071
18	.12192	. 114865	. 011675	10.390	. 01663	. 09625
19	.10160	. 010323	.008107	7.216	0.85827	. 13858
20	.09144	. 008361	.006567	5.845	.76675	.17109
21	0.08128	0.006606	$0.00518 S$	4.6 I S	0.66 .445	0.2165
22	.07112	. 005058	. 003972	3.536	. 548.47	.2S28
23	.06096	. 003716	. 002922	2.598	.41457	. 3850
24	. 05588	. 003123	.002452	2.183	. 33899	.45 SI
25	.050So	.002581	.002027	I. SO_{4}	. 25621	. 5544
26	0.04572	0.0020903	0.0016417	1.4625	0.16509	0.6838
27	. 04166	.0017352	.001362S	. 2129	.08384	.8245
28	.03759	.0014132	.0011099	0.9578	Ј. 99467	1.0123
29	. $03+54$.0011922	. 0009363	. 8333	.92083	. 2000
30	.03150	.0009920	.0007791	.6934	. 84099	. 4422
31	0.02946	0.000868 I	0.00068 I S	0.6068	1.78307	נ. 6.48
32	. 02743	.0007525	.0005910	. 5260	.72100	1.901
33	. 02540	.0006452	.0005067	. 4510	.65415	2.217
34	. 02337	. 0005461	.0004289	.3817	-58172	2.620
35	. 02134	. 0004552	. 0003575	-3182	. 50271	3.143
36	0.01930	0.0003726	0.0002927	0.2605	$\overline{\mathrm{I}} .41578$	3. S_{39}
37	.01727	.0002983	. 0002343	. 2090	. 31917	4.784
38	. 01524	.0002323	. 0001824	.1623	.21045	6.160
39	. 01321	.0001746	.0001370	.1219	.08616	S.201
40	.01219	.0001486	.0001167	.1039	.01663	9.625
41	0.01118	0.0001249	0.0000982	0.0873	2.94105	I 1.45
42	. 01016	.000103?	.0000813	. 0722	. 55827	13.86
43	.00914	.0000836	.0000656	. 0584	.76675	17.11
44	.00813	. 0000661	.0000519	. 0462	.66445	21.65
45	.00711	.0000506	.0000397	.0354	. 54947	28.28
46	0.00610	0.00003716	0.0000292	0.0260	$\overline{2} .41 .457$	$3^{8.5}$
	. 00508	. 0000258 I	.0000203	.0180	. 25621	55.4
4 S	. 00406	.00001652	.0000129	. 1115	.06239	86.6
49	.00305	.00000929	.0000073	.0065	$\overline{3}$ S 1251	I 54.0
50	. 00254	.00000645	.0000051	.0045	. 65415	221.8

according to the British Sandard Wire Gauge. Metric Measure. Temperature o ${ }^{\circ} \mathrm{C}$. Density 8.po.
Electrical Constants.

Resistance and Conductivity.					Gauge Number.
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	
0.0001286 .0001493	7.10907 .17398	$\begin{aligned} & 7779 . \\ & 6699 . \end{aligned}$	0.0000001140 .0000001537	§770000. 6504000.	7-0
0.0001722	7. 23605	5814.	0.00000020 .46	4887000.	5-0
.0002009	-30259	49.9.	. 000000278.4	3592000.	4-0
.00023こ2	. 36593	4306.	. 0000003721	2657000.	3-0
.000こ653	-42376	3769.	. 000000.4857	2059000.	2-0
.0003061	.48592	3266.	. 0000006319	1583000.	0
0.0003571	- 4.55277	$2 \mathrm{So1}$.	0.0000008798	1137000.	1
.0004218	. 62510	2371.	. 0000012275	S14700.	2
. 0005061	.704=1	1976.	. 0000017671	565900.	3
. 0005971	.77604	1675.	. 0000024600	406500.	4
. 0007151	. 5434	1395.	. 0000035279	283500.	5
$0.0003^{7} 18$	4.9.4041	1147.1	0.0000052 .44	190700.	6
.0010375	3.01599	963.9	.000009350	107000.	7
. 0012554	. 09877	796.6	. 000010574	91960.	S
. 0015499	.19029	6.45 .2	. 000016573	60340.	9
. 0019015	. 29259	509.8	. 000026547	37670.	10
0.0023 SS	$\overline{3} \cdot 37810$	418.7	0.00003936	25410.	11
.002978	. 47295	335.8	. 00006092	16.420.	12
. 003796	. 57934	263.4	. 00009945	10060.	13
. 005022	.70053	199.1	. 00017398	5748.	1.4
. 006199	.79235	161.3	. 00026518	3771.	15
0.0078 .46	- ${ }^{3} .59 .465$	127.45	0.0004238	2359.6	16
.0102.48	$\frac{3}{2.01064}$	97.58	. 00072.46	1380.1	17
. 013949	. 14453	71.69	. 0013425	744.9	18
. 020086	-30289	49.79	.0027837	359.2	19
.02479	. 39441	40.32	.0042428	235.7	20
0.0313^{8}	$\overline{2} .49671$	31.86	0.005398	185.25	21
. 0.4099	. 61270	24.39	. 1151594	86.25	22
. 05579	$\cdot 74659$	17.92	. 021479	46.56	23
. 066.40	. 82217	15.06	.030421	32.57	24
. 08034	.90495	12.45	. 044539	22.45	25
0.09919	$\underline{2} .99647$	10.082	0.06782	14.745	26
.11949	1.07733	8.369	. 09851	10.151	27
.14672	. 16649	6.516	. 14853	6.732	28
.17391	. 24034	5.750	. 20869	4.792	29
. 20901	. 32017	4.784	.30142	3.318	30
0.2388	$\overline{\mathrm{I}} .37810$	4.187	0.3936	2.5407	31
. 2755	. 44017	3.629	.523S	1.9091	32
. 3214	. 50701	3.112	. 7126	1.4033	33
. 3797	-57944	2.634	. 9947	1.0053	34
. 4555	. 658.46	2.196	1.4313	0.6957	35
0.5564	1.74539	1.7973	2.136	0.46816	36
. 6950	. 84200	. 4385	3.333	- 30003	37
. 8927	. 95070	.1202	7.019	. 14247	38
1.1885	0.07501	0.8414	9.747	.10260	39
. 3949	. 14453	.7169	13.42 .4	. 07449	40
1.660	0.22011	0.602 .4	19.01	$0.05=60$	41
2.009	- 30289	. 4979	27.84	. 03592	42
2.480	. 39441	.4033	42.43	. 02357	43
3.13 S	. 49671	. 3186	67.96	. 01471	44
4.099	. 61270	. 2440	115.94	.00863	45
5. 579	0.74659	-. 1792	210.4	0.004753	46
8.034	. 90.495	. 1245	4.5 .4	. 002245	47
12.554	1.09877	. 0797	1087.4	. 000020	45
22.318 32.138	- 34865	.0448 .0311	3436.7	.000291	49
32.138	. 50701	.0311	7126.3	. 000140	50

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers
Size and Weight.

$\begin{aligned} & \text { Gauge } \\ & \text { Number. } \end{aligned}$	Diameter in Inches.	Square of Diameter (Circular lnches).	Sections in Sq. Inches.	$\begin{gathered} \text { Pounds } \\ \text { per } \\ \text { Foot. } \end{gathered}$	Log.	Feet per Pound.
0000	0.454	0.2061	0.16188	0.62 .46	I.79561	I. 60 r
000	. +25	. 1806	. 14186	. 5474	. 738828	1.827
00	. 3 S0	. 1440	. 11341	. 4376	. 64107	2.285
\bigcirc	. 340	. 1156	. 09079	. 3503	-54446	2.855
1	0.300	0.09000	0.07069	0.2727	I. 43574	3.666
2	. 28.4	.08065	. 06335	. 2444	-38814	4.091
3	. 259	. 06703	. 05269	. 2033	. 30810	4.919
4	. 238	. 05664	. 04.449	.1717	. 23465	5.826
5	. 220	.04S40	.03801	.1467	. 16634	6.518
6	0.203	0.04121	0.03237	0.12488	1.109649	8.008
7	. 180	.032.40	. 02545	.098ı8	2.99204	10.185
8	. 165	. 02723	. 021138	. 08250	. 91647	12.121
9	.148	. 02190	.01720	. 06638	. 82202	15.065
10	. 134	. 01796	.01410	. 05441	. 7357 I	15.379
11	0.120	0.014400	0.011310	0.04364	2.63986	22.91
12	. 109	. 011881	. 009331	. 03600	. 55635	27.77
13	. 095	.009025	.007088	. 02735	. 43695	36.56
14	. 083	.006889	. 005411	. 02088	-31965	47.90
15	. 072	. 005184	. 00.4072	.01571	. 19616	63.65
16	0.065	0.004225	0.0033183	0.012803	$\overline{2.10733}$	78.10
17	. 058	. 003364	.002642I	.010194	_.00835	98.10
18	. 049	.002.401	.0018857	. 007276	$\overline{3} .86189$	137.44
19	. 042	. 00176.4	.0013854	. 005346	. 72800	187.06
20	.035	. 001225	.0009621	. 003712	. 56963	269.40
21	0.032	0.001024	0.00080 .42	0.003103	$\overline{3} \cdot 49 \mathrm{ISO}$	322.3
22	. 028	.0007S4	.0006158	. 002376	. 37581	420.9
23	. 025	. 000625	. 0004909	.001894	.27738	528.0
24	.022	. 00048	.0003SOI	.001467	.16634	681.8
25	.020	.000400	. 0003142	. 001212	.08356	824.9
26	0.018	0.000324	0.0002545	0.0009818	- 4.9920 .4	Iors.
27	. 016	.0002 56	.00020 I	. 000775^{8}	. 88974	1289.
28	. 014	.000196	.0001 539	. 0005940	. 77375	168.
29	. 013	.000169	.0001327	. 00005121	. 70939	1953.
30	. 012	. 000144	. 0001131	. 0004364	.63986	2292.
31	0.010	0.000100	0.00007854	0.00030304	$\overline{4} \cdot 48150$	3300.
32	. 009	. 00008_{1}	.00006362	. 00024546	- 38998	4074.
33	. 008	. 0000064	. 00005027	. 00019395	. 28768	5156.
3.1	. 007	. 000049	. $000033_{4} 4$. 00014849	-.17169	6734.
35	. 005	. 000025	. 00001963	. 00007576	5.879 .4	13200.
36	0.004	0.000016	0.00001257	0.00004849	$\overline{5} .68562$	20620.

Gmithsonian Tables.

CONSTANTS OF COPPER WIRE.
according to the Birmingham Wire Gauge. British Measure. Temperature $0^{\circ} \mathrm{C}$. Density 8.90.
Electrical Constants.

Resistance and Conductivity.					Gatuce Number.
$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { Foot. } \end{aligned}$	Los.	$\begin{aligned} & \text { Feet } \\ & \text { per } \\ & \text { Ohrm. } \end{aligned}$	Ohms per Pound.	$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & \text { Ohm. } \end{aligned}$	
0.00004752	$\overline{5} .67692$	21040.	0.0000761	13140.	0000
. 00005423	. $33+25$	$18.4{ }^{\circ}$.0000991	10090.	000
. 00006784	. 83146	14740.	. 0001550	6451.	00
. 00008_{474}	.92S07	11500.	.0002419	4134.	-
0.00010 SS	7.03679	9188.	0.0003991	2505.8	1
.0001214	. 08439	8234.	.0004969	2012.5	2
.0001460	.16443	$65_{4} 8$.	. 0007183	1392.2	3
. 0001729	. 23758	5783.	.0010074	992.6	4
.0002024	. 30618	49.4.	.0013799	72.7	5
0.0002377	$\overline{4} .3760 .4$	4207.	0.001903	525.26	6
. 0003023	. 480.48	3308.	. 003079	324.76	7
. 0003598	. 55606	2779.	. 00.4361	229.30	8
. 0004472	. 65051	2236.	. 006737	148.43	9
. 0005455	.73682	1833.	.010025	99.75	10
0.0006502	4.83267	1470.2	0.01559	64.148	11
.000S245	. .91618	1212.9	. 02290	43.670	12
.0010854	$\overline{3} .0355 \mathrm{~S}$	92 I 3	.03969	25.195	13
.0014219	. $152 \mathrm{~S}_{7}$	703.3	. 0681 I	14.682	14
. 0018896	.27636	529.2	.1202S	8.314	15
0.002318	$\overline{3} \cdot 36520$	43 I 3	0.1811	$5 \cdot 5225$	16
.002980	. 47417	335.6	.2923	3. 42111	17
. 00.4080	. 61064	245.1	. 5607	1.7S35	18
. 005553	.74453	180.1	I. 0388	0.9627	19
. 007996	.90289	125.1	2.1541	. 4643	20
0.009566	- 3.95073	10.4.54		0.32439	21
. 012494	2.09671	So. 04	5. 259	.19015	22
. 015709	. 19515	63.66	8.275	.12085	23
. 020239	. 30618	49.41	13.799	. 07246	24
. 024489	-3SS97	40.83	20.203	. 04950	25
0.02887	2. $460+3$	34.64	29.41	0.034006	26
. 03826	. 58279	26.13	49.32	. 020275	27
. 04998	. 69577	20.01	84.14	.OIIS85	28
. 05796	.76314	17.25	113.18	.008835	29
.06S02	.83266	14.70	I 55.88	.006415	30
0.09796	2.99103	10.209	323.2	0.0030936	31
. 12095	İ.OS= 54	S. 269	492.7	.0020290	32
. 15306	. 18485	6.533	789.2	. 0012671	33
.19991	-30083	5.002	1346.3	. 0007420	34
-39182	. 59309	2.552	5171.9	.0001933	35
0.61222	$\overline{\mathrm{I}} .78691$	1.663	12627.	0.00007920	36

Smithsonian Tables.

Table 70.
SIZE, WEIGHT, AND ELECTRICAL
Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauce Number.	Diameter in Centimetres.	Square of 1) iameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1532	1. 3298	1.0444	929.5	2.96826	0.001076
000	. 0795	. 1653	. 9152	814.6	. 91093	. 001228
00	0.9652	0.9316	. 7317	651.2	.SI 372	.001536
-	. 8636	.745	. 5858	521.3	. 71711	.001918
1	0.7620	0.5806	0.4560	405.9	2.60839	0.002464
2	.7214	. 5216	. 4087	363.7	. 56079	. 002749
3	. 6579	. 4328	. 3399	302.5	. 48075	. 003306
4	. 6045	. 3655	. 2870	255.4	. 40730	. 003915
5	.5585	. 3123	. 2.452	218.3	. 33899	$.004581$
6	0.5156	0.2659	0.20881	${ }_{185.84}$	2.26914	0.00538 I
7	. 4572	. 2090	.16417	146.11	.16469	.006544
8	. 4191	.1756	. 13795	122.78	.08912	.008145
9	. 3759	.1413	. 11099	98.78	1.99467	.010124
10	.3404	. 1158	.09098	80.95	.90836	$.012349$
11	0.30 .48	0.09290	0.07297	64.94	I. SI_{1251}	0.01540
12	. 2769	. 07665	. 06160	54.83	. 73900	.01824
13	.2413	.05823	. 04573	40.70	. 60960	. 02457
14	. 2108	. 04445	. 03491	31.07	.49231	.03219
15	. 1829	. 03345	. 02627	23.43	-3698゙1	. 04268
16	0.16510	0.027258	0.021409	19.054	1.27998	0.05248
17	.14732	. 021703	.017046	15.171	.18101	. 06592
18	. 124.46	. 015490	. 012106	10.828	. 03454	. 09235
19	. 10658	. 011385	.008938	7.955	0.90065	. 1257 I
20	.03890	.007903	. 006207	5.524	.74229	.18103
21	0.08128	0.006606	0.005189	4.618	$0.664+5$	
22	.07112	. 005058	. 003973	3.536	. 54847	. 2828
23	.06350	. 004032	. 003167	$2.8=0$. 45003	. 3547
24	. 05598	.003123	.002452	2.183	. 33899	. 4581
25	. 05080	. 0025 SI	. 002027	1.804	.25621	- 5544
26	0.04572	0.0020903	0.0016418	1.4611		
	. 04064	. 0016516	.0012972	. 1545	-.06239	. 8662
28	. 03556	. 0012645	. 0009932	0.8839	T. 9.4641	1.1313
29	. 03302	.0010903	. 0008563	. 7621	. 88204	.3122
30	.03048	.0009290	. 0007297	. 6494	.81251	. 5399
31	0.02540	0.0006452				
32	. 02286	. 0005226	.000.4104	. 3653	. 56263	$2.7 .3{ }^{3}$
33	.02032	. 0004129	. 0003243	. 2886	. 46033	3.465
34	. 01778	.0003161	.0002483	. 2210	. 34435	4.525
35	. 01270	.0001613	. 0001267	. 1127	.05200	8.870
36	0.01016	0.0001032	0.00008 I I	0.0722	$\overline{2} .85827$	${ }_{1} 3.861$

Smithsonian Tables.
according to the Birmingham Wire Gauge. Merric Measure. Temperature $\circ^{\circ} \mathrm{C}$. Densily 8.go.
Electrical Constants.

Kesistance and Conduclivity.					Gauge Number.
$\begin{aligned} & \text { Ohms } \\ & \text { per } \\ & \text { letre. } \end{aligned}$	Log.	Metres per Ohm.	Ohms per Gramme.	Crammes per Ohrn	
$\begin{array}{r} 0.0001559 \\ .0001779 \\ .00022=6 \\ .0002780 \end{array}$	$\begin{array}{r} \overline{4} .19290 \\ .25024 \\ .34745 \\ .44 .406 \end{array}$	$\begin{aligned} & 6+14 . \\ & 56 \approx 0 . \\ & 4493 . \\ & 3597 . \end{aligned}$	0.0000001677 .0000002184 .0000003418 .0000005333	$\begin{aligned} & 5962000 . \\ & 4578000 . \\ & 2926000 . \\ & 1575000 . \end{aligned}$	$\begin{gathered} 0000 \\ 000 \\ 00 \\ 0 \end{gathered}$
$\begin{array}{r} 0.0003571 \\ .0003955 \\ .0004791 \\ .0005674 \\ .0006040 \end{array}$	$\begin{array}{r} \overline{4} .55277 \\ .60038 \\ .680+1 \\ .75386 \\ .52217 \end{array}$	2800. 2510. 2087. 1763. 1506.	0.0000008798 .0000010055 .0000015837 .0000022210 .0000030420	$\begin{array}{r} 1137000 . \\ 912800 . \\ 631400 . \\ 450200 . \\ 328700 . \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$
$\begin{array}{r} 0.0007799 \\ .0009257 \\ .0011804 \\ .001+672 \\ .0017598 \end{array}$	$\begin{array}{r} \overline{4} .89202 \\ -.99647 \\ \overline{3} .07205 \\ .16649 \\ .25250 \end{array}$	$\begin{array}{r} 1282.2 \\ 10 S 0.3 \\ \text { S47.2 } \\ 68 \mathrm{I} .6 \\ 558.7 \end{array}$	$\begin{array}{r} 0.000004196 \\ .000006789 \\ .000009615 \\ .000014853 \\ .000022103 \end{array}$	238300. 147300. 104000. 67330. 45240.	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$
$\begin{array}{r} 0.002232 \\ .002643 \\ .003561 \\ .00465 \\ .006185 \end{array}$	$\begin{array}{r} \overline{3} .34865 \\ .42216 \\ .55157 \\ .66886 \\ .79135 \end{array}$	$\begin{aligned} & 44 \mathrm{S.1} \\ & 37.3 \\ & 280.3 \\ & 21.4 .4 \\ & 161.7 \end{aligned}$	$\begin{array}{r} 0.00003437 \\ .00004822 \\ .00001749 \\ .0001516 \\ .00026396 \end{array}$	$\begin{array}{r} 29100 . \\ 20740 . \\ 11430 . \\ 6660 . \\ 3789 . \end{array}$	$\begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$
$\begin{array}{r} 0.007607 \\ .009553 \\ .01335 \\ .015219 \\ .026235 \end{array}$	$\begin{array}{r} \overline{3} .98119 \\ -.98016 \\ 2.12662 \\ .26052 \\ .41838 \end{array}$	$\begin{array}{r} 131.46 \\ 10.4 .68 \\ 74.71 \\ 54.89 \\ 3 \mathrm{S.12} \end{array}$	$\begin{array}{r} 0.0003992 \\ .0006297 \\ .0012362 \\ .0022902 \\ .0047489 \end{array}$	$\begin{array}{r} 250.4 .9 \\ 15 S S .0 \\ 808.9 \\ 436.6 \\ 210.6 \end{array}$	$\begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array}$
0.03138 .04099 .05142 .06640 .08034	2.49671 .61270 .71113 .82217 .90495	31.86 24.39 19.45 15.06 12.45	$\begin{array}{r} 0.006796 \\ .011594 \\ .018243 \\ .030421 \\ .044539 \end{array}$	$\begin{array}{r} 147.14 \\ 86.25 \\ 54.82 \\ 32.87 \\ 22.45 \end{array}$	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$
$\begin{array}{r} 0.09919 \\ .1258 \\ .16397 \\ .19016 \\ .22138 \end{array}$	$\begin{array}{r} \overline{2} .99647 \\ \overline{1} .09877 \\ .21476 \\ .27913 \\ .34865 \end{array}$	10.08 7.947 6.099 5.259 4.517	$\begin{array}{r} 0.067 S 9 \\ .10 S 74 \\ .18550 \\ .24951 \\ .3+367 \end{array}$	$\begin{array}{r} 14.731 \\ 9.196 \\ 5.391 \\ 4.008 \\ 2.910 \end{array}$	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$
$\begin{array}{r} 0.3214 \\ .3968 \\ .5022 \\ .6559 \\ 1.2855 \end{array}$	$\begin{array}{r} \overline{1} .50701 \\ .59853 \\ .70083 \\ .81682 \\ 0.10907 \end{array}$	3.112 2.520 1.991 1.525 0.778	$\begin{array}{r} 0.7126 \\ 1.0862 \\ 1.7398 \\ 2.9861 \\ 11.4020 \end{array}$	$\begin{array}{r} 1.4032 \\ 0.9206 \\ .5748 \\ .3349 \\ .0877 \end{array}$	$\begin{array}{r} 31 \\ 32 \\ 33 \\ 34 \\ 35 \end{array}$
2.0086	0.30289	0.49^{8}	27.8370	0.0359	36

Smithsonian Tables.

Table 71.

[^17]
Emithsomian Tables.

Steel containing Chromium.

Stefl contaning Manganese.

. 06	.os	. 37	. 72	9.8	$\left\{\begin{array}{l}\text { onc test } \\ \text { another test . . . }\end{array}\right.$	-	1065 1190	-	-	-	22.0 28.9

* The samples here given are arranged in the order of ultimate strength. The table illustrates the great complexity of the problem of determining the effect of any given substance on the phssical propertues. It will be noticed that the specimens containing moderately large amounts of copper are low in ductility, - that high carbon or high sum of carbon and manganese generally gives high strength. The first specimen seems to indicate a weakening effect of silicon when a moderate amount of carbon is present. It has to be rensembered that no table of this kind proves much unless nearly the same amount of work has been spent on the different specimens in the process of manufacture. Most of the lines give averazes of a number of tests of similar steels. The table has becn largely compiled from the Report of the Board on Testing Iron and Steel, Washington, 1885, and from results quoted in Howe's "Metallurgy of Stcel.,"
\dagger The strengths and elasticity data here given refer to bar or plate of moderate thicknese, and are in pounds per square inch. Nild stecl wire generally ranges in strength between 100000 and 200000 pounds per square inch, with an elongation of from 8 to 4 per cent. Thoroughly annealed wire does not differ greatly in strength from the data given in the table unless it has been subjected to special treatment for the purpose of producing high density and fine-grained structure. Drawing or stretching and subsequent rest tend to increase the Young's Modulus.

Area of cross section of the bar in percentage of the area of the cross section of the pile.	Relative values of ultinate strength.	Relative values of the stress at the yield point.	
1	125	194	
2	112	170	
3	106	144	The variation of the yield point is not
4	10.4	140	$\}$ regular, and seems to have been much
5	103	130	affected by the temperature of rolling.
7	101	114	
10	100	100	
15	9^{9}	92)

Table 74.
APPROXIMATE VARIATION OF THE STRENGTH OF BAR IRON, WITH VARIATION OF SECTION. \dagger

Diameter in inches.	Sirength per sq. iin. in pounds.	Total strength of bar.	Niameter ill inches.	Strength per sq. in. in pounds.	Total strength of bar.
2.2	59000	22.4000	1.1	54300	52000
2.1	58500	203000	1.0	5.1000	42000
2.0	5 5 000	1 S2000	0.9	53700	34000
1.9	57600	163000	0.5	53300	27000
$1 . S$	57100	145000	0.7	53000	20000
1.7	56700	129000	0.6	52700	14900
1.6	56300	113000	0.5	52.400	10300
1. 5	55900	99000	0.4	52100	6600
1.4	55500	S5000	0.3	51000	3700
1.3	55100	73000	0.2	51000	1600
1.2	54700	62000	O.I	51300	400

- This table was computed from the results published in the Report of the U. S. Board on Testing Iron and Steel, Washingion, $\mathrm{r} 8 \mathrm{~s}_{\mathrm{r}}$, and shows approximately by the relative effect of different amounts of reduction of section from the pile to the rolled bar. A reduction of the pile to to per cent of its original volume is taken as giving a strength of 100, and the others are expressed in the same units.
\dagger The strength of bar iron may be taken as ranging from 15 per cent above to 15 per cent below the numbers here given, which represent the average of a large number of tests taken from various sources.

Notes. - The stress at the yield point averages about 6 per cent of the ultimate strength, and generally lies between 50 and 70 per cent. The variation depends largely on the temperature of rolling if the iron be otherwise fairly pure.

According to the experiments of the U. S. lhoard for 'Testing Iron and Steel, above referred to, a bar of iron which Aras been suhject to tensile stress up to its limit of strength gains from to to 20 per cent in strength if allowed to rest $f_{\text {ree }}$ from stress for eiglat days or more before breaking. The effect of stretching and subsequent rest in raising the dlastic limit and tensile strength was discovered by Whhler, and has been investigated by Bauschinger, who shows that the modulus of clasticity is also raised after rest. The strengthening effect of stretching with rest, or continuuus Yery slowly increased loading, has been rediscovered by a number of experimenters.
"'Smithsonian Tables.

EFFECT OF RELATIVE COMPOSITION ON THE STRENGTH OF ALLOYS OF COPPER, TIN, AND ZINC.*

TABLE 75. - Copper-Tln Alloys. (Bronzes.)

TABLE 76. - Copper-Zinc Alloys. (Brasses.

TABLE 77. - Copper-Zinc-Tin Alloys.§

Percentage of			Tensile strength in pounds per sq. in.	Percentage of			Tensile strength in pounds per sq. in.
Copper.	Zinc.	Tin.		Copper.	Zinc.	'lin.	
45	50	5	15000		(25	5	45000
50	45	5	50000		20	10	44000
50	40	10	15000	70	$\{15$	15	37000
55	[43	2	65000		10	20	30000
	$\{40$	5	62000		(5	25	2.4000
	\{ 35	10	32500		[20	5	45000
	30	15	15000	75	I 5	10	45000
60	37	3	60000	75	10	15	43000
	$\{35$	5	52500		(5	20	41000
	$\{30$	10	40000		(15	5	45000
	20	20	10000	80	\{10	10	45000
65	[30	5	50000		\} 5	15	47500
	25	10	42000		$\{10$	5	43500
	$\{20$	15	30000		\{ 5	10	46500
	I 5	20	ISO00	90	5	5	42000
	10	25	12000				

[^18]
ELASTIC MODULI.

Rigidity Modulus.*

* The modulus of rigidity as used in this table may be shortly defined by the following equation : -

Modulus of rigidity $=$ Intensity of langential stress.
Distortion in radians.
To interpret the equation imagine a cube of the material, to four consceutive faces of which a tangential stress of uniform intensity is applied, the direction of the stress being opposite on adjacent faces. The modulus of rigidity is the number obtained by dividing the numerical value of the tangential stress per unit of area by the number representing the change of the angles on the nonstressed faces of the cube measured in radians.
\dagger Lord Kelvin.
Smithsonian Tables.

ELASTIC MODULI.

Young's Modulus.*

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Substance.}} \& \multicolumn{2}{|l|}{Young's Modulus.} \& \multirow[b]{2}{*}{Authority.} \\
\hline \& \& Pounds per square inch \(\div 10^{\circ}\). \& Grammes per square centiinctre \(\div 10^{6}\). \& \\
\hline \multicolumn{4}{|l|}{Metals : -} \& \multirow{4}{*}{Various.} \\
\hline Brass and bronze, cast . \& - - \& 8.6-10 \& \multirow[t]{2}{*}{\[
\begin{gathered}
600-700 \\
1000-1200
\end{gathered}
\]} \& \\
\hline lirass, drawn \& - - \& \(14^{-17}\) \& \& \\
\hline \& \(\stackrel{\square}{\circ}\) \& 16-18 \& \[
\text { I } 50-1250
\]
\[
1052
\] \& \\
\hline German silver, drawn \& . \& 15
\(17-20\) \& \[
\begin{gathered}
1052 \\
1200-1.400
\end{gathered}
\] \& \multirow[t]{2}{*}{} \\
\hline Gold, drawn . \& . . . \& 12-r4 \& \[
\begin{aligned}
\& 1209-1400 \\
\& 813-950
\end{aligned}
\] \& \\
\hline " amnealed \& . . . \& 15 \& \(55^{8}\) \& Wertheim. \\
\hline Iron, cast . \& - . . \& S-17t \& \multirow[t]{2}{*}{\[
\begin{gathered}
550-1200 \\
1700-2100 \\
646
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Wertheim. \\
Various. \\
"
\end{tabular}} \\
\hline " wrought \& - . . \& 24-30 \& \& \\
\hline Iron wire cead, cast or drawn \& - . . \& \& 156-200 \& " \\
\hline Palladium, soft . \& - \& \(2.2-2.9\)
14 \& \multirow[t]{2}{*}{\[
\begin{gathered}
979 \\
1176
\end{gathered}
\]} \& \multirow[t]{2}{*}{Wertheim.} \\
\hline " hard \& \& 17 \& \& \\
\hline Platinum, drawn \& \& 23-26 \& \multirow[t]{2}{*}{\[
\begin{gathered}
1600-1700 \\
155^{2}
\end{gathered}
\]} \& \multirow[t]{2}{*}{Various. Wertheim.} \\
\hline " soft \& \& 22 \& \& \\
\hline Silver, drawn \& - . . \& 10-10.7 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 700-750 \\
\& 1600-2100
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Wertheim. \\
Various.
\end{tabular}} \\
\hline Steel . \& . . . \& 23-301 \& \& \\
\hline ". hard drawn. \& - . . \& 27-30 \& 1900-2100 \& \multirow[t]{2}{*}{\begin{tabular}{l}
Various. \\
Wertheim.
\end{tabular}} \\
\hline 'Tin \& - - . \& 16 \& 417 \& \\
\hline Zinc \& - . \& 12-14 \& \multirow[t]{2}{*}{\[
\begin{gathered}
870-960 \\
160
\end{gathered}
\]} \& Wertheim. Various. \\
\hline Bone. \& . abt. \& 2.3 \& \& - \\
\hline Carbon \& - . . \& 2.2-3.6 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 151-255 \\
\& 600-800
\end{aligned}
\]} \& \multirow[t]{3}{*}{Beetz. Various.} \\
\hline Glass . \& - . . \& 8.6-11.4 \& \& \\
\hline Ice . \& - . . \& 7-10 \& \multirow[t]{2}{*}{500-700} \& \\
\hline Stone: - \& \& \& \& \multirow{6}{*}{Gray
\&
Milne.

_}

\hline Clay rock \& - • - \& 4.7 \& \&

\hline Granite
Marble \& - . \& 5.9
5.7 \& 416 \&

\hline Slate . \& - \& 9.8 \& 686 \&

\hline Tuff \& - . . \& 2.7 \& 189 \&

\hline Whalcbone \& - abt. \& 0.85 \& 60 \&

\hline Wood \& . . . \& 1.0-2.2 \& 70-154 \& Various.

\hline
\end{tabular}

* The Voung's Modulus of elasticity is used in connection with elongated bars or wires of elastic material. It is the ratio of the number representing the longitudinal stress per unit of area of transverse section to the number representing the elongation per unit of length produced by the stress, or: -

Young's Modulus $=\frac{\text { Intensity of longitudinal stress. }}{\text { Elongation per unit length. }}$
In the case of an isotropic substance the Young's Modulus is related to the elasticity of form (or rigidity modulus) and the elasticity of volume (or bulk modulus) in the manner indicated in the following equation : -

$$
E=\frac{9 n k}{3 k+n}
$$

where E is Young's Modulus, n the rigidity modulus and k the bulk modulus.
The bulk modulus is the ratio of the number expressing the intensity of a uniform normal stress applied all over the bounding surface of a body (solid, liquid or gas) to the number expressing the change of volume, per unit volume, produced by the stress.
t The modulus for cast iron varies greatly, not only for different specimens, but in the same specimen for different intensities of stress. It is diminished for tension stress by permanent elongation.
\ddagger See also Table 72.
Gmithsonian Tables.

ELASTIC MODULI.

TABLE 80. - Variation of the Rigidity of Metals with Temperature.*
The modulus of rigidity at temperature t is given by the equation $n_{t}=n_{0}\left(1+a t+\beta t^{2}+\gamma t^{3}\right)$.

TABLE 81. - Ratio ρ of Transverse Contraction to Longltudinal Extension under Tensile Stress (Polsson's Ratio).

Katzenelsohn gives the following values, together with the percentage variation between \circ° and $100^{\circ} \mathrm{C}$.

* According to the experiments of Kohlrausch and Loomis (Pogg. Ann. vol. 141), and of Pisati (N. Cim. (3) vols, 4, 5).

Smithsonian Tables.

ELASTICITY OF CRYSTALS.*

The formulx were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $a^{2} \beta \gamma_{1} a_{1} \beta_{1} \gamma_{1}$ and $a_{2} \beta_{22} \gamma_{2}$ represene the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principat axis of the crystat. F is the modulus for extension or compression, and T is the modulus for terminal rigidnty. Tlee moduli are in grammes per square centimetre.

Barite.

$$
\begin{aligned}
& \frac{10^{10}}{1^{1}}=16.13 \alpha^{4}+18.51 \beta^{1}+10.42 \gamma^{1}+2\left(3 S .79 \beta^{2} \gamma^{2}+15.21 \gamma^{2} \alpha^{2}+S . S S \alpha^{2} \beta^{2}\right) \\
& \frac{10^{10}}{1}=69.52 \alpha^{4}+117.66 \beta^{1}+116.46 \gamma^{11}+2\left(20.16 \beta^{2}-\gamma^{2}+85.29 \gamma^{2} \alpha^{2}+127.35 \alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Beryl (Emerald).

$$
\begin{aligned}
& \frac{10^{10}}{E}=4.325 \sin ^{4} \phi+4.619 \cos ^{4} \phi+13.328 \sin ^{2} \phi \cos ^{2} \phi
\end{aligned}\left\{\begin{array} { l }
{ \text { where } \phi \phi _ { 1 } \phi _ { 2 } \text { are the angles which } } \\
{ \text { the length, breadth, and thickness } } \\
{ \text { of the specimen make with the } } \\
{ \frac { 1 0 ^ { 1 0 } } { 1 } = 1 5 . 0 0 - 3 . 6 7 5 \operatorname { c o s } ^ { 4 } \phi _ { 2 } - 1 7 . 5 3 6 \operatorname { c o s } ^ { 2 } \phi \operatorname { c o s } ^ { 2 } \phi _ { 1 } }
\end{array} \left\{\begin{array}{l}
\text { principal axis of the crystal. }
\end{array}\right.\right.
$$

Fluor spar.

$$
\begin{aligned}
& \frac{1 O^{10}}{E}=13.05-6.26\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \\
& \frac{10^{13}}{T^{2}}=58.04-50.08\left(\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Pyrites.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{~L}^{2}}=5.0 S-2.24\left(\alpha^{4}+\beta^{t}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=18.60-17.95\left(\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Rock salt.

$$
\begin{aligned}
& \frac{10^{10}}{1^{1}}=33.4 S-9.66\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=154.5^{S}-77.2 S\left(\beta^{23} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Sylvine.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=75.1-4 \mathrm{S.2}\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=306.0-192.8\left(\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+a^{2} \beta^{2}\right)
\end{aligned}
$$

Topaz.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}^{2}}=4.341 \alpha^{4}+3.460 \beta^{1}+3.771 \gamma^{4}+2\left(3.879 \beta^{2} \gamma^{2}+28.56 \gamma^{2} \alpha^{2}+2.39 \alpha^{2} \beta^{2}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=1.4 .8 S \alpha^{4}+16.54 \beta^{1}+16.45 \gamma^{4}+30.89 \beta^{2} \gamma^{2}+40.89 \gamma^{2} \alpha^{2}+43.51 \alpha^{2} \beta^{2}
\end{aligned}
$$

Quartz.

$$
\begin{aligned}
& \frac{10^{11}}{1!}=12.734\left(1-\gamma^{2}\right)^{2}+16.693\left(1-\gamma^{2}\right) \gamma^{2}+9.705 \gamma^{4}-8.460 \beta \gamma\left(3 \alpha^{2}-\beta^{2}\right) \\
& \left.\frac{10^{10}}{\mathrm{~T}}=19.665+9.060 \gamma_{2}^{2}+22.984 \gamma^{2} \gamma_{1}^{2}-16.920\left[\left(\gamma \beta+\beta \gamma_{1}\right)\left(3 \alpha \alpha_{1}-\beta \beta_{1}\right)-\beta_{2} \gamma_{2}\right)\right]
\end{aligned}
$$

* These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

Smithsonian Tables.

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under 1 l the moduli for torsional rigidities round the axes similarly indicated.
(a) Reqular System.*

(b) R hombic System.ll

Substance.	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}			Authority.
Barite Topaz	$\begin{array}{r} 620 \times 10^{6} \\ 230.4 \times 10^{6} \end{array}$	$\begin{array}{r} 540 \times 10^{66} \\ 2890 \times 10^{6} \end{array}$	$\begin{array}{r} 959 \times 10^{6} \\ 2652 \times 10^{6} \end{array}$	$\begin{array}{r} 376 \times 10^{6} \\ 2670 \times 10^{6} \end{array}$	$\begin{array}{r} 702 \times 10^{6} \\ 2 S^{\prime} 93 \times 10^{6} \end{array}$	$\begin{array}{r} 740 \times 10^{6} \\ 3^{180} \times 10^{6} \end{array}$		Voigt.
Substance.			$\mathrm{T}_{12}=\mathrm{T}_{21}$	$\mathrm{T}_{13}=\mathrm{T}_{31}$	$\mathrm{T}_{23}=\mathrm{T}_{32}$		Authority.	
Barite Topaz	- . . .	$\cdots{ }^{\circ} \cdot$.	$\begin{array}{r} 283 \times 10^{6} \\ 1336 \times 10^{6} \end{array}$	$\begin{array}{r} 293 \times 10^{6} \\ 1353 \times 10^{6} \end{array}$	$\begin{array}{r} 121 \times 10^{65} \\ 1104 \times 10^{6} \end{array}$		Toigt.	

In the Monoclinic System, Coromilas (Zeit. fuir Kryst. vol. i) gives

$$
\text { Gypsum }\left\{\begin{array}{l}
\mathrm{E}_{\max }=S S_{7} \times 10^{6} \text { at } 21.9^{\circ} \text { to the principal axis. } \\
\mathrm{E}_{\min }=313 \times 10^{6} \text { at } 75.4^{\circ}
\end{array}\right.
$$

Mica $\left\{\begin{array}{l}\mathrm{E}_{\text {max }}=2213 \times 10^{6} \text { in the principal axis. } \\ \mathrm{E}\end{array}\right.$
$\left\{\mathbf{E}_{\text {min }}=155+\times 10^{6}\right.$ at 45° to the principal axis.
In the Hexagonal. System, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.
$\mathrm{E}_{0}=2165 \times 10^{6}, \quad \mathrm{E}_{45}=1796 \times 10^{5}, \quad \mathrm{E}_{90}=2312 \times 10^{6}$,
$\mathrm{T}_{0}=667 \times{ }^{10}{ }^{6}, \quad \mathrm{P}_{90}=S S_{3} \times 10^{6}$. The smallest cross dimension of the prism experimented on (see Table S_{2}), was in the principal axis for this last case.

In the Rhumbonfenre Systma, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$
\begin{array}{ll}
\mathrm{F}_{0}=1030 \times 10^{6}, & \mathrm{E}_{-45}=1305 \times 10^{6}, \quad \mathrm{E}_{+45}=850 \times 10^{6}, \quad \mathrm{E}_{90}=785 \times 10^{6}, \\
\mathrm{~T}_{0}=508 \times 10^{6}, \quad \mathrm{~T}_{90}=3.48 \times 10^{6} .
\end{array}
$$

Baumgarten gives for calcspar

$$
\mathrm{E}_{0}=501 \times 10^{6}, \quad \mathrm{E}_{-4}=441 \times 10^{6}, \quad \mathrm{E}_{+45}=772 \times 10^{6}, \quad \mathrm{E}_{30}=790 \times 10^{B} .
$$

[^19]
Smithsonian Tables.

COMPRESSIBILITY OF GASES."

These tables give the relative values of the product so for different pressures and temperatures, and hence show the departure from Buyde's The pressures are in metres of mercury, or atmospheres, the volume being arbitrary. The temperatures are in centigrade degrees.

TAELE 84. -Nitrogen.

Pressure in metres of mercury.	Kelative values of porat -				
	$17^{\circ} \cdot 7$	$30^{\prime} .1$	$50^{\circ} \cdot 4$	$75^{\prime 2} \cdot 5$	100\%. 1
30	2745	2 2875	30So	3330	3575
60	27.40	2875	3100	3360	3610
100	2790	2930	3170	34-5	3695
1.10	2890	30.40	3275	3550	3820
150	3015	3150	3390	3675	3950
220	3140	3285	3530	3 S20	4090
260	3290	34.40	3685	3975	42.40
300	3450	3600	3840	4130	4400
320	3525	3675	3915	4210	$4+75$

TABLE 85. - Hydrogen.

TABLE 86. Methane.

Pressure in metres of mercury.	Relative values of p at -					
	$14^{\circ} \cdot 7$	$29^{\circ} \cdot 5$	40. 6	$60^{\circ} \cdot 1$	$79^{\circ} .8$	100\%. 1
30	25So	2745	2SSo	3100	-	-
60	2400	2590	2735	2995	3230	3460
100	2275	2.480	2640	2935	3180	$3+35$
1.10	2260	2.480	2655	2940	3190	3460
1 So	2360	2560	2730	3015	3260	3525
220	2510	2690	28.40	3125	3360	3625

TABLE 87. - Ethylene.

Pressure in metres of mercury.	Relative values of for at -									
	${ }^{16} \cdot 3$	$20^{\circ} \cdot 3$	$30^{\circ} \cdot 1$	$40^{\circ} .0$	$50^{\circ} .0$	$60^{\circ} .0$	70.0	$79^{\circ} \cdot 9$	$89^{\circ} .9$	$100{ }^{\circ} \mathrm{O}$
30	1950	2055	2220	2410	25 So	2715	$2 S 65$	2970	3090	3225
60	810	900	1190	${ }^{1} 535$	1575	2100	2310	2500	2650	2860
90	1065	1115	1195	1325	1510	1710	1930	2160	2375	2565
120	1325	1370	1.440	I 540	1660	17 So	1950	2115	2305	2470
150	1590	1625	1690	1785	ISSo	1990	2125	2250	2390	2540
ISO	1855	IS90	1945	2035	2130	2225	2450	2.450	2565	2700
210	2110	21.45	2200	2255	2375	2470	2680	2680	2790	2910
240	2360	2395	2450	2540	2625	2720	2910	2910	3015	3125
270	2610	2640	2710	2790	2875	2065	3150	3150	3240	3345
300	2860	2890	2960	30.40	3125	3215	3380	33 SO	3470	3560
320	3035	3065	3125	3200	$3=S 5$	3375	$35+5$	$35+5$	3625	3710

* Tables $84-8_{9}$ are from the experiments of Amagat; "Ann. de chim. et de phys.," r 88 r , or "Wied. Bieb.," 188_{r}, p. 4 I8.

Smithsonian Tables.

Tables 88-90.

COMPRESSIBILITY OF GASES.

TABLE 88. - Carbon Dloxide.

Pressure in metres of mercury.	Relative values of がat -								
	$18^{\circ} \cdot 2$	$35^{\circ} \cdot 1$	$40^{\prime} \cdot 2$	$50^{\circ} .0$	$60^{\circ} .0$	$70^{\circ} .0$	So ${ }^{\circ} .0$	$90^{\circ} .0$	$100^{\circ} .0$
30	liquid	2360	2.460	2590	2730	2870	2995	3120	3225
50	-	1725	1900	$2 \mathrm{I}+5$	2330	2525	2685	2845	2980
So	625	750	825	1200	1650	1975	2225	24.40	2635
110	S 25	930	9 90	1090	1275	1550	1845	2105	2325
1.10	1020	1120	1175	1250	${ }_{1} 360$	1525	1715	1950	2160
170	1210	1310	1360	I. 430	1520	1645	1780	1975	2135
200	1.405	1500	1550	1615	1705	1810	1930	2075	2215
230	1590	1690	1730	1800	1890	1990	2090	2210	2340
260	1770	1870	1920	1985	2070	2166	2265	2375	2490
290	1950	2060	2100	2170	2260	23.40	2.440	2550	2655
320	2135	22.40	2280	2360	2.40	2525	2620	2725	2830

TABLE 89. - Carbon Dloxide.*

Pressure in atmospheres.	Walue of the ratio $p^{2} / h_{1} z_{1}$ at -			
	50°	100°	200°	250°
0.725	1.0037	1.002 I	1.0009	1.0003
1.440	1.0075	1.0048	1.0025	1.0015
2.850	1.1045	1.0087	1.0040	1.0020

TABLE 90.- Alr, Oxygen, and Carbon Monoxide at Temperature between 18° and $22^{\circ} . \dagger$
The pressure p_{1} is in metres of mercury ; the product p_{z} is simply relative.

Air.		Oxygen.		Carbon monoxide.	
p	so	t	so	p	$p v$
2.4 .07	26,68	2.4 .07	268.43	2.4 .06	27147
3.9 .90	26908	34.89	26614	3.4 .91	27102
45.2 .4	26791	-	-	45.25	27007
55.30	26789	55.50	26155	55.52	27025
64.00	26778	64.07	26050	64.00	27060
72.16	26792	72.15	$25 S 58$	72.17	27071
S4.22	268.10	8.4.19	25745	St.2I	27158
101.47	270.41	IOI. 46	25639	101.48	2.4420
133.59	27608	133.88	25671	133.90	$2 S 092$
177.60	28540	177.5^{8}	25891	177.61	29217
214.54	29585	214.52	26536	214.54	30467
250.18	30572	-		250.18	31722
30.4 .04	32488	303.03	28756	30.4 .05	33919

* Similar experiments made on air showed the ratio $p v / \rho_{1} v_{1}$ to be practically constanf.
\dagger Amagat, "Compte Rendu," 1879.

Smithsonian Tables.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 91.-Sulphur Dioxlde.
Original volume $\mathbf{5 0 0 0 0}$ under one atmosplhere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmospheres for Experiments at Temperature -		
	$5^{80} .0$	$99^{\circ} .6$	$\mathrm{IS}_{3}{ }^{\circ} .2$		580.0	$99^{\circ} .6$	$183^{\circ} .2$
10	8560	9440	-				
12	6360	7800	-	10000	-	9.60	-
14	40	6420	-	9000	9.60	10.35	-
10	-	5310	-	S000		115	
15	-	4405	-	8000	10.40	11.85	-
20	-	4030	-	7000	11.55	13.05	-
2.1	-	$33+5$ 2780	- ${ }^{-180}$	6000	12.30	14.70	-
32	-	2305	2640	5000	13.15	16.70	-
36	-	1935	2260	4000	14.00	20.15	-
10 50	-	1450	20.10	3500	14.40	23.00	-
60	-	-	10.40	3000	-	26.40	29.10
70	-	-	1130	2500	-	30.15	33.25
So	-	-	930	2000	-	35.20	40.95
100	-	-	790 680	1500	-	39.60	55.20
120	-	-	545	1000	-	-	76.00
140 160	-	-	130 325	500	-	_	117.20

TABLE 92.-Ammonia.
Original volume $\mathbf{5 0 0 0 0 0}$ under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmosplieres for Experiments at Temperature -			
	46.6	99?.6	183.6		$30^{\circ} \cdot 2$	$4{ }^{6} \mathbf{6}$	$99^{`} \cdot 6$	183 \% 0
10	9500	-	-	10000	8.85	9.50		-
12.5	7245	7635	-	9000	9.60	10.45		
15 20	5S80	6305 464	${ }_{4}{ }^{-}$	S000	10.10	11.50	12.00	-
25	-	3560	3835	7000	11.05	13.00	13.60	-
30	-	2 S 75	3.85	6000	I 1.80	14.75	I 5.55	-
35	-	2.440	2680	5000	12.00	I 6.60	18.60	19.50
40	-	2080	2345	4000	-	18.35	22.70	24.00
45 30	-	1795 1400	2035	3500	-	18.30	25.40	27.20
55	-	1490 1250	1775 1590	3000	-	10.30	25.40 29.20	27.20 31.50
60	-	975	1450	2500	-	-		31.50
70	-	-	12.45	2000			34.-5	
So	-	-	1125	$\underline{2000}$	-	-	41.45	+5.50
90	-	-	1035	1500	-	-	49.70	58.00
100	-	-	950	1000	-	-	59.65	93.60

[^20]Smithsonian Tables.

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

Liquid.	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$			Authority.	Calculated values of bulk modulus in -	
					Grammes per sq. cm.	Pounds per sq. in.
Acetone	14	110	S.7-35.4	Amagat .	94×10^{5}	1.34×10^{5}
lienzenc	16	90	S.1 $2-37.2$	-• .	$115 \text { "، }$	$1.64 \quad \text { " }$
-	15.4	S7.1	1-4	Pagliani ${ }_{\text {© }}$ P'alazzo	$\begin{array}{ll} 119 & 6 \\ 0 \end{array}$	$1.69 \text { " }$
Cabon bisulphide	50.1	111	1-4		$93 \text { " }$	$\begin{array}{ll} 1.32 & 6 \\ \end{array}$
Carbon Lisulphide	-	78	-	Colladon \& Sturm	133 "	
	15	62.6	-35	Quincke.	165 "	2.35
" ${ }^{\text {" }}$	${ }_{100}^{15.6}$	17.2 174	S-35 S-35	Amagat . . .	119 59	1.09 1.84
Chloroform .	8.5	62.5	1.267	Grassi. .	165 "	2.35 "
,	9. 2	62.6	4.2 .47	"	165 "	2.35 "
" . .	12	64.5	1. 309	. ${ }^{\circ}$	159 "	2.26 "
Ether .	13	168	8-30	Amagat . .	61 "	0.87 "
،	99	555	8.6-13.5	"	18.6"	0.26 "
"	99	523	S.6-36.5	" • .	19.S "	
"	63	300	S.57-22.29	"	34.4"	0.49
"	63	293	S. $57-34.33$	" $0 \cdot$	$35 \cdot 3 "$	
"	25.4	190	S.46-34.22	" ${ }^{\text {c }}$ -	54.4"	0.77 "
Ethyl alcohol	10	94.5	I-2	Colladon \& Sturm	109 "	1.55 "
"،	12	73.3	1-456	Tait	140	2.00
" " .	14	101	S.5-37.12	Amagat . .	102	1.45
" ، .	28	S6	$150-200$	Barus	120	1.71
" " .	28	Si	$150-400$.	127	1.81 "
" " .	65	110	$150-200$	" ${ }^{\text {c }}$.	94	1.3 .1
" " ${ }^{\text {" }}$	65	100	$150-400$	" . . .	103	1.47
" " .	100	168	150-200	" . . .	61	0.57 "
"	100	132	$150-400$	" . . .	78	1.11
" " .	185	320	150-200	" . . .	32 "	0.46 "
" "	185	274	150-300	"	3 3 "	0.54 "
" " .	185	245	$150-400$	" . . .	42 "	0.60 "
" " .	310	4200	$150-200$	" . . .	2.5 "	0.036 "
" " .	310	2200	$150-300$	" . .	4.7 "	0.067 "
" " .	310	1530	$150-400$	-	6.7 "	0.095 "
Ethyl chloride	12.8	156	S.53-13.9	Amagat .	$66.3{ }^{\prime \prime}$	0.94 "
" ${ }^{\text {" }}$	12.8	151	S.53-36.45	"	68.5 "،	0.97 "
" " .	6 I .5	256	12.65-34.36	" $"$.	40.3 "	0.57
" " .	99	510	12.79-19.63	" . . .	20.3 "	0.29
"	99	495	12.79-34.47	Quincle	20.9 "	0.30 6
Glycerine	20.53	25.1	-	Quincke . Sturm	411.2"	5.55 "
Mercury .	\bigcirc	$3 \cdot 3$	1-30	Colladon \& Sturm Amagat	$\begin{aligned} & 3058.0 " \\ & 2629.0 \end{aligned}$	
Methyl alcohol.	13.5	90.4	1.012	Grassi . .	114.5"	1.63 "
." ${ }^{\text {c }}$	13.5	91.1	7.513	"	113.1 "	1.61 "
" ${ }^{\text {a }}$	100	221	S.65-37.32	Amagat -	046.3 "	0.66 "
Nitric acid	20.3	338.5	1-32	Colladon \& Sturm	030.2 "	0.43 "
Oils: Almond.	17	55.19	-	Quincke .	187.7 "	2.67 "
Olive.	20.5	63.32	-	1) " Vetz •	163.0 "	$\begin{array}{ll} 2.32 & \\ 2 \end{array}$
Paraffine	14.84	62.69	-	1)e Metz . . Nartini	$\begin{aligned} & 164.5 " \\ & 148.3 " \end{aligned}$	$\begin{array}{ll} 2.34 & \text { " } \\ 2.11 & \end{array}$
l'etroleum	10.5	69.58 -4.58	-	Nartini Quincke.	14.3 188.4 	$\text { I. } 97 \text { " }$
Rape seed .	20.3	59.61	-	- "	17.4.3"	2.48 "
Turpentine.	19.7	29.14	-	C" ${ }^{\text {c }}$.	130.7 "	1.56 "
Sulphur dioxide .	-	302.5	1-16	Colladon \& Sturm	034.4 "	0.49 "
Toluene	10	79	-	De Itcen.	130.7 "	1. 56 "
Xylene	10	73.5	-	" . .	I 40.0 "	I. 99

Smithsonian Tables.

TAble 93.
COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

Liquid.	Temp.			Authority.	Calculated values of bulk modulus in -	
					(inammes per sq. cm.	Pounds per sq. in.
Water, sca	12	44^{*}	I	Tait	234.8×10^{5}	3.34×10^{5}
." pure	12	$4)^{*}$	1	,	220.0	3.13 "
" ${ }^{\text {c }}$	\bigcirc	49.65	1-2.4	Colladon \& Sturm	208.0 "	2.96
" ${ }^{\prime \prime}$	17.6	42.9	$1-262$	Amagat	241.1 "	3.43 "
" "	\bigcirc	50.3	I-5	Pagliani \& V'incentini	206.0 "	2.93 "
"، "،	10	47.0	I-5		220.0 "	3.13 "
"" "	20	44.5	I-5	"	232.0 "	$3 \cdot 30$ "
	30	42.5	I-5	"	243.2 "	3.46 "
	40	40.9	1-5	"	253.1	3.60 "
$\begin{array}{ll} " ، & ، \\ " \end{array}$	50	39.7	I-5	"	260.1 "	3.70 "
"، "	60	38.9	I-5	"	265.0 "	3.77 "
" "	70 80	39.0	I-5	"	264.3 "	3.76 "
" "		39.6 40.2	I-5	"	$260 .{ }^{\text {2 }}$ "	3.71 "
" ${ }^{\text {a }}$	90 100	40.2 41.0	I-5	/	257.3 252.4	$\begin{array}{ll} 3.66 & " \\ 3.59 & " \end{array}$

Table 94.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

Solid.		Authority.	Calculated values of bulk modulus in -	
			Grammes per sq. cm.	Pounds per sq. in.
Crystals: Barite	1.93	Voigt.	535×10^{6}	7.61×10^{6}
Beryl. . . .	0.747	Oigt.	1354	19.68 "
Fluorspar . .	1.20	" .	860	12.24 "
Pyrites.	1.14	"	906 "	12.89 "
Quartz .	2.67	" . .	387 "	$5 \cdot 50$
Rock salt .	$4.2 \dagger$	"	$246 \quad \text { " }$	$3.50 \quad \text { " }$
Sylvine .	$7.45{ }^{\dagger}$	،	138 "	1.97
Topaz ${ }^{\text {P }}$	0.61	" • -	1694	24.11 "
Brass Tourmaline	0.113	- ${ }^{\circ}$	9140 "	130.10 "
Brass	0.95	Amagat .	1090 "	I5.48 "
Copper	0.56	Buchanan	$1202 "$	$17.10 \text { " }$
Ielta metal	1.02	Amagat .	$1012 \text { " }$	$14.41 \text { " }$
Lead Steel	2.76 0.68	""	$\begin{array}{rl} 374 & " \\ 1515 & " \end{array}$	5.32 ${ }^{\text {2 }}$ \%
Glass	2.2-2.9		+ 405	21.01 5.76

[^21]
Smithsonian Tables.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.		Grammes per cubic centimetre.	Pounds per cubic frot.
Agate	$2.5-2.7$	156-168	Gas carbon .		I. 58	119
Alabaster:			Glass :			
Carbonate	2.69-2.78	168-173	Common		2.4-2.8	$150-175$
Sulphate	$2.20-2.32$	1.41 -1. 45	Flint		$2.9-4.5$	1 So-280
Alum, potash	1.7	106	Glauber's salt		1.4-1.5	S7-93
Amber .	1.06-1.11	66-69	Glue		1.27	So
Anthracite	1.4-1.8	87-112	Gneiss		2.4-2.7	I 50-168
Apatite	3.16-3.22	197-201	Granite		2.5-3.0	$156-187$
Aragonite	3.0	187	Graphite	-	1.9-2.3	120-I. 40
Arsenic	5.7-5.72	356-358	Gravel		1.2-I. ${ }^{\text {S }}$	94-112
Asbestos	2.0-2.8	125-175	Gray copper ore		4.4-5.4	275-335
Asphaltum .	1.1-1.2	69-75	Green stone		2.9-3.0	180-185
Barite .	4.5	281	Gum arabic		1.3-1.4	80-85
Basalt	2.7-3.1	168-193	Gunpowder:			
Beeswax	0.96-0.97	60-61	Loose .	.	0.9	56
Bole	2.2-2.5	137-1 56	Tamped		I. 75	109
lione	1.7-2.0	106-125	Gypsum, burnt		1.51	113
Boracite	2.9-3.0	181-187	Hornblende		3.0	187
liorax	1.7-1.8	106-112	Ice		0.88-0.91	55-57
liorax glass	2.6	162	Iodine		4.95	309
Boron	2.65-2.69	167-16S	Ivory .		1. $8_{3-1.92}$	$11.4-120$
Brick	2.0-2.2	125-137	Kaolin		2.2	137
Butter.	$0.86-0.87$	53-54	Lava:			
Calamine	4.1-4. 5	255-2S0	Basaltic		2.8-3.0	175-185
Calcspar	2.6-2.8	162-175	Trachytic		2.0-2.7	125-168
Carbon.			Lead acetate		2.4	150
See Ciraphite, etc.			Leather:			
Caoutchouc	0.92-0.99	57-62	Dry		0.86	5.4
Celestine	3.9	243	Greased		1.02	6.4
Cement :			Lime:			
I'ulverized loose	1.15-1.7	72-105	Mortar		1.65-1.78	103-11 I
Pressed	1.85	115	Slaked		1.3-1.4	SI-S7
Set	2.7-3.0	168-187	Lime		$2.3-3.2$	1.44-200
Cetin	0.58-0.94	55-59	Limestone		$2.46-2.86$	154-178
Clatk .	$1.9-2.8$	118-175	Litharge:			
Charcoal:			Artificial .	.	9.3-9.4	$5 \mathrm{So}-585$
Oak	0.57	35	Natural		7.5-S.0	489-492
Pine	0.28-0.44	17.5-27.5	Magnesia		3.2	200
Chrome yellow	6.00	374	Magnesite		3.0	187
Cimabar	8.12	507	Magnetite		4.9-5.2	306-324
Clay	I. S-2.6	122-162	Malachite		3.7-4.1	231-256
Clayslate	2.S-2.9	175-180	Manganese:			
Coal, soft	1.2-1.5	75-94	Red ore		$3 \cdot 46$	216
Cobaltite	$6.4-7 \cdot 3$	400-455	Black ore		3.9-4.1	243-256
Cocoa butter	0.89-0.91	56-57	Marble		2.5-2.8	157-177
Coke	1.0-1.7	63-105	Marl		1.6-2.5	100-156
Copal.	1.0.4-1.14	65-71	Masonry		$1.85-2.3$	116-144
Corundum	3.9-4.0	245-250	Meerschaum		.99-1.28	61.8-79.9
Diamond	3.5-3.6	220-225	Melaphyre		2.6	162
Anthracitic	1.66	104	Mica		2.6-3.2	$165-200$
Carbonado	3.01-3.25	1SS-203	Mortar		1.75	109
I iorite	2.S-3.1	175-193	Mud		I. 6	102
Iolomite	3.8-2.9	175-181	Nitroglycerine		I. 6	99
Larth, clry	1.6-1.9	100-120	Ochre.		3.5	218
Eloonite	1.15	72	Opal .		2.2	137
Simery	4.0	250	Orpiment	.	3.4-3.5	212-21S
Jepsom salts:			Paper.		0.7-1.15	44-72
Crystalline	1.7-1.8	106-112	Paraffin		0.87-0.91	54-57
Anliydrous	2.6	162	Peat.		0.8 .4	52
Feldspar	2.53-2.58	$158-161$	Phosphorus, white		1.82	11.4
Flint	2.63	164	l'itch .		1.07	67
Fluor spar	3.1.1-3.15	196-198	Porcelain		2.3 -2.5	$1.43-156$
Cabronite	2.9-3.0	181-187	Porphyry		2.6-2.9	162-ISI
Camboge	I. 2	75	Potash		2.26	1.41
Galena	7.3-7.6	$460-470$	Pyrites		4.9-5.2	306-324
Garnet	3.6-3.8	230-335	P'yrolusite		3.7-4.6	$231-287$

DENSITY OF VARIOUS SOLIDS.
Table 95.

Substance.		(irammes per cubic centimetre	P'ounds per cubic foot.	Substance.	Grammes per cubic centimetre.	$\begin{aligned} & \text { 1'ounds } \\ & \text { per cubic } \\ & \text { foot. } \end{aligned}$
lumice stone		0.37-0.9	23-56	Soapstone, Stcatite	2.6-2.8	162-175
Quartz .		2.65	165	Soda :		
Resin.		1.07	67	Roasted .	2.5	156
Rock crystal		2.6	162	Crystalline	1.45	90
Rock salt .		2.28-2.41	142-150	Spathic iron ore	3.7-3.9	$231-243$
Sal ammoniac		1.5-16	94-100	Starch	1. 53	95
Saltpetre		1.95-2.03	122-130	Stibnite	4.6-4.7	287-293
Sand:		- ${ }^{\text {d }}$	-	Strontianite		231
Dry.		1.40-1.65	S7-103	Syenite	$2.6-2.8$	162
Damp .		1.90-2.05	119-128	Sugar.	1.61	100
Sandstone .		2.2-2.5	137-156	Talc.	2.7	168
Selenium		4.2-4.8	262-300	Tallow	. 9 1-. 97	570-605
Serpentine .		2.43-2.66	152-166	Tellurium	$6.38-6.42$	398-401
Shale.	.	2.6	162	Tile .	1.4-2.3	S7-143
Silicon -		$2.0-2.5$	125-156	'Tinstone	$6.4-7.0$	399-437
Siliceous earth		2.66	${ }_{1}^{166}$	Topaz	3.5-3.6	210-223
Slag, furnace		$2.5-3.0$	$156-187$	Tourmaline	2.9.4-3.24	153-202
Slate		$2.6-2.7$	162-168	Trachyte	2.7-2.8	168-175
Snow, loose	.	0.125	7.8	Trap	2.6-2.7	162-170

Table 96.
DENSITY OR MASS IN GRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

Tajle 97.
DENSITY OR MASS IN GRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS:*

When the value is taken from a particular authority that authority is given, but in most cases the extremes or average
from a number of authorities are given.

* This table has been to a large extent compiled from Clark's "Constants of Nature," and Laudolt \& Börustein's
"Phys. Chem. Tab."
\dagger When the temperature is not given, ordinary atmospheric temperature is to be understood.

Smithsonian Tables.

Table 97.

DENSITY OR MASS IN GRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.

Table 98.
MASS IN GRAMMES PER CUBIC CENTIMETRE AND IN POUNDS PER CUBIC FOOT OF DIFFERENT KINDS OF WOOD.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.	Wood.	Grammes per cubic centimetre.	Pounds percubic foot.
Alder	0.12-0.68	26-42	Greenheart	3-1.04	58-65
Apple	$0.66-0 . S_{4}$	41-52	Hazel .	$0.60-0.80$	37-49
Ash ${ }^{\text {Basswood. See Linden. }}$	0.65-0.85	40-53	Ilickory ${ }^{\text {. }}$	0.60-0.93	37-5S
Basswood. See Linden. Beech . .			Iron-bark	1.03	64
Beech Plue gum	0.70-0.90	43-56	Laburnum	0.92	57
Blue gum	0.S. 4	52	Lancewood .	0.65-1.00	42-62
Birch	$0.51-0.77$	$32-48$	Lignum vitx . . .	1.17-1.33	73-S3
Box	0.95-1.16	59-72	Linden or Lime-tree.	0.32-0.59	20-37
Bullet tree	1.05	65	Locust .	0.67-0.71	42-44
Butternut	0.35	24	Mahogany, IIonduras	0.56	35
Cedar	0.49-0.57	30-35	" Spanish	0.85	53
Cherry	0.70-0.90	43-56	Maple.	$0.62-0.75$	39-47
Cork .	0.22-0.26	1.4-16	Oak	0.60-0.90	37-56
Ebony -	1.11-1.33	$69-83$	Pear-tree .	$0.61-0.73$	$38-45$
Elm . . .	0.5.4-0.60	34-37	Plum-tree	0.66-0.78	41-49
Fir or Pinc, American			P'oplar	$0.35-0.5$	22-31
White	0.35-0.50	22-3I	Satinwood	0.95	59
Larch .	$0.50-0.56$	31-35	Sycamore	0. $40-0.60$	$2.4-37$
Pitch	$0.83-0.85$	52-53	Teak, Indian	0.66-0.88	41-55
Red	$0.48-0.70$	$30-44$	" African	0.98	61
Scotch	$0.43-0.53$	27-33	Walnut.	$0.6 .4-0.70$	$40-+3$
Spruce	$0.48-0.70$	30-44	Water gum	1.00	62
Yellow	0.37-0.60	23-37	Willow	$0.40-0.60$	2.4-37

[^22]Table 99.

DENSITY OF LIQUIDS.

Density or mass in grammes per cubic centimetres and in pounds per cubic foot of various liquids.

DENSITY OF GASES.

The following table gives the specific gravity of gases at $0^{\circ} \mathrm{C}$. and 76 centimetres pressure relative to air at 0° and 76 centimetres pressure, logether with their mass in grammes per cubic centimetre and in pounds per cubic foot.

Smithsonian Tables.

The following table gives the density of solutions of various salrs in water. The numbers give the weight in grammes per cubic centmetre, For brevity the substance is indicated by formula only.

Substance.	Weight of the dissolved substance in roo parts by weight of the solution.										Authority:
	5	го	15	20	25	30	40	50	60		
$\mathrm{K}_{2} \mathrm{O}$	1.047	1.098	1.153	1.214	1.284	1.35.1	1.503	I. 659	I.Sog	15.	Schiff.
K(1)	1.040	1.082	1.027	1.076	1.229	1.286	1.110	1.538	1.666	15.	
Naz ${ }^{\text {a }}$	1.073	1.144	1.218	1.2S4	1.354	I. 421	J. 557	1.689	1.829	15.	"
NaOH	1.058	1.114	1.169	1.224	I. 279	1. 331	1.436	1.539	I. 642	15.	c".
NH_{3}.	0.978	0.949	0.940	0.924	0.909	0.896				16.	Carius.
$\mathrm{NH}_{4} \mathrm{Cl}$	1.015	1.030	1.044	1.058	1.072	-	-	-	-	15.	Gerlach.
KCl .	1.03 I	1.065	1. 099	1.135	-	-	-	-	-	15.	
NaCl.	1.035	1.072	I.110	I.I 50	I.191	-	-	-	-	15.	"
Licl .	I.029	1.057	I.OS 5	I.I. 6	1.147	I.181	1.255	-	-	15.	"
CaCl_{2}	I.0.41	1.086	1.132	1.18:	1. 232	1.286	1.402	-	-	15.	
$\mathrm{CaCl}_{2}+6 \mathrm{II}_{2} \mathrm{O}$	1.019	1.0.40	1.06I	1.083	I.IO5	1.12S	1.176	1.225	1.276	18.	Schiff.
AlCl_{3} -	1.035	1.072	1.111	1.153	1. 196	1.241	I. 340	-	-	15.	Gerlach.
$\mathrm{MgCl}_{2} \cdot$	1.041	1.085	I.130	1.177	1.226	1.278	-		-	15.	
$\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.014	1.032	1.049	1.067	I. $0 \mathrm{~S}_{5}$	1.103	I.I. 41	1.183	1.222	24.	Schiff.
ZnCl_{2}	1.043	I. 089	1.135	1.184	1.236	1.289	1.417	1.563	1.737	19.5	Kremers.
CdCl_{2}	1.043	r. 087	1.138	1.193	1.254	I. 319	1.469	1.653	I.S87	19.5	"
$\mathrm{SrCl}_{2} \cdot{ }^{\text {S }}$	1.044	1.092	I.I 43	$1.19{ }^{5}$	1.257	1.321	-		-	15.	Gerlach.
$\mathrm{SrCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.027	1.053	I. 082	1.111	1.042	I. 174	1.242	1.317	-	15.	
$\mathrm{BaCl}_{2}{ }^{\text {a }}$	1.045	1.094	I. 147	1.205	I. 269	-	-		-	15.	""
$\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.035	1.075	1.119	1.166	1.217	1. 273	-	-	-	21.	Schiff.
CuCl_{2}	1.044	1.091	1.155	I.22I	1.291	1.360	I. 527	-	-	17.5	Franz.
NCl_{2}	1.048	1.098	I.157	1.223	1.299			-	-	17.5	
IfgCl_{2}	1.041	1.092	-	-		-	-	-	-	20.	Mendelcjeff.
$\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	I.0.4 I	1.086	I. 30	1.179	1.232	1. 290	1.413	1.5.15	1. 668	17.5	Ilager.
PtCl_{1}.	1.046	1.097	1. 153	1.214	1.285	1.362	1.546	1.755	-		P'recht.
$\mathrm{SnCl}_{2}+2 \mathrm{IH}_{2} \mathrm{O}$	1.032	1.067	1.104	I.I 43	1.185	1.229	1. 329	I. 444	1.580	15.	Gerlach.
$\mathrm{SnCl}_{4}+5 \mathrm{ll}_{2} \mathrm{O}$	1.029	1.058	I.089	I.122	1.157	I. 193	1.274	1.365	1.467	15.	
Lilor	1.033	1.070	I.III	1.154	1. 202	1.252	1.366	1.49^{5}	-	19.5	Kremers.
K lir	1.035	1.073	1.114	I. 57	1.205	I. 254	1.364	-	-	19.5	
Nalir	1.038	1.075	1.123	1.172	1.224	I. 279	1.40S	I. 563	-	19.5	"
$\mathrm{Mg} \mathrm{Pr}_{2}$	1.041	I. 085	I.135	1.189	1.245	I. 308	I. 449	1.623	-	19.5	"
ZnBra	1.043	1.091	I.194	1.202	I. 263	1. 32 S	1.473	1.645	1.873	19.5	'
CdBr	1.041	1.088	1.1 39	1.197	$1.25{ }^{\text {S }}$	1.324	1.479	1 678	-	19.5	"
Calsr	1.042	1.057	1.I 37	1.192	2.250	1.313	1.+59	1.639	-	19.5	"
labirg	I. 043	1.090	1.142	I.199	1.260	1.327	1.483	1.653	-	19.5	"
SrBr_{2}	1.0.43	1.089	I.I40	1.19S	1.260	I. 32 S	1.489	1.693	1.953	19.5	"
KI	I. 036	1.076	I.IIS	1.164	1.216	1.269	1.394	1.544	1.732	19.5	"
1 II	1.036	1.077	I.İ2	1.170	1.222	I. 278	1.412	I. 573	1.775	19.5	"
Nal	1.038	I.080	I.J26	1.177	1.232	1. 292	1.430	I. $59{ }^{\text {¢ }}$	1. ${ }^{\text {dos }}$	19.5	"
ZnIz	1.043	1.089	1.138	1.194	1.253	I. 366	1.418	1.6 .48	1.873	19.5	"
Cll_{2}.	1.0.12	I. 086	1.136	1.192	1.251	I. 317	1.474	1.678	-	19.5	"
MgI_{2}.	I.O.11	1.086	I.1.37	1.192	1.25 ?	1.318	1.472	1.666	1.913	19.5	"
CaI_{2}	1.042	1.085	1.138	1.196	1.25 ¢	1.319	I. 475	I. 663	1.908	19.5	"
Sr_{2}	1.043	1.089	I.140	$1.19{ }^{1}$	I. 260	1.328	I. 489	1.693	I. 953	I9. 5	"
$\mathrm{l}^{1} \mathrm{l}_{2}$	1.043	1.089	1.141	1.199	1. 263	1.331	I. 493	1.702	1.968	19.5	"
NaClO 3.	1.035	1.068	1.106	I.I45	1.183	1.23 .3	1.329	-	-	19.5	"
Najrros.	1.039	1.081	1.127	1.170	1.229	1.2 S 7	-	-	-	19.5	Cerlach
K゙NO3	1.031	1.064	1.099	I.I35		-	-	-	-	15.	
NaNO_{3}	1.031	I. 065	I. 101	1.140	1.ISo	1.222	1.313	1.416		20.2	Schiff. Kohlrausch
AgNO_{3}.	1.044	I. 090	1.140	I. 195	1.255	1.322	1.479	1.675	I.918	15.	Kohlrausch.

* Compiled from two papers on the subject by Gerlach in the "Zeit. fuir Anal. Chim.," vols. 8 and 27.

Smithsonian Tables.

Substance.	Weight of the dissolved substance in soo parts by weight of whe solution.										Authority.
	5	10	15	20	25	30	40	50	60		
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1.020	1.041	1.063	1.0S5	1.107	1.131	1.178	1.229	1.28z	17.5	Gerlach.
$\mathrm{ZnNO} \mathrm{N}_{3}$.	1.048	1.095	1.146	1.201	1.263	1.325	1.456	1.597	-	17.5	Fran\%.
$\mathrm{ZnNO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$		1.054	-	1.113		1.175	1.250	1.329	-	1.1.	Ouclemans.
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	1.037	1.075	1.118	1.162	1.211	1.260	1. 367	1..182	1. 604	17.5	(ierlach.
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)^{2}$	1.044	1.093	1.1.13	1.203	1.263	1.328	1.471	-	-	17.5	Fran
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	1.039	1.083	1.129	1.179	-	-	-	-	-	19.5	Krmmers.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	1.043	1.091	1.143	1.199	1.262	1.332	-	-	-	17.5	Gerlach
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$	1.052	1.097	1.150	1.212	1. $2 \mathrm{~S}_{3}$	1.355	1.536	1.759	-	17.5	Franz.
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	1.137	1.192	1.252	1.315	1.465		-	17.5	
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	1.137	1.192	1.252	1.31S	1. 465	-	-	17.5	,
$\mathrm{Fe} \mathrm{S}^{\left(\mathrm{NO}_{3}\right)_{6}}$	I. 039	1.076	1.117	1.160	1.210	1.261	1.373	1.496	1.657	17.5	"
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.015	1.035	1.060	1.0.82	1.105	1.129	1.179	1.232	-	21	Schiff.
$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.025	1.052	1.079	1. 108	$1.13{ }^{5}$	1.169	1.235	1.307	1.386	S	Oudemans.
$\mathrm{K}_{2} \mathrm{CO}_{3}$	I. 044	1.092	1.1 .41	1.192	1. 245	1.300	1.417	I. $5+3$		15	Gerlach.
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	1.037	1.072	1.110	1.150	1.191	1.233	1.320	1.415	1.511	15.	
$\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{roll}{ }_{2}$	I. 019	1.03 S	1.057	1.077	1.098	I.IIS	-	-	-	15.	"
$\left(\mathrm{NIH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.027	1.055	I. 08.	1.113	1.1.42	1.170	1.226	1.287	-	19.	Schiff.
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	1.045	1.096	1.150	I. 207	1.270	1.336	I. 489		-	18.	IIager.
$\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	I. 025	1.053	1.051	I.III	1.141	1.173	1.238	-	-	17.2	Schiff.
MgSO_{4}.	1.051	1.104	I.IGI	1.221	1.2S. 4			-	-	15	Gerlach.
$\mathrm{MgSO}+7 \mathrm{H}_{2} \mathrm{O}$	I. 025	1.050	1.075	I.IOI	1.129	I. 155	1.215	1.278	-	15.	،
$\mathrm{Na}_{2} \mathrm{So}_{4}+10 \mathrm{H}_{2} \mathrm{O}$	1.019	1.039	1.059	I.OSI	1.102	1.124	-	-	-	15.	"
$\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$.	I.03r	1.064	I.0ys	1.134	1.173	1.213	-		-	IS'.	Schiff.
$\mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$	1.031	1.064	1.099	I. 135	1.174	1.214	1.303	1.39 ${ }^{\text {S }}$	-	15.	.
$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	1.027	1.057	1.089	1.122	1.156	1.191	1. 269	I. 351	1.443	20.5	Schiff.
$\begin{gathered} \mathrm{Fe}_{2}(\mathrm{SO})_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H} 2 \mathrm{O} \end{gathered}$	1.026	1.045	1.066	1.0SS	1.112	1.141	-	-	-	17.5	ranz.
$\begin{gathered} \mathrm{Cr}_{2}(\mathrm{SO})_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.016	1.033	I. 051	1.073	1.099	1.126	I. 18 S	1.287	1.454	17.5	"
$\begin{gathered} \mathrm{IgSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +6 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.032	1.066	I.IoI	1.13 1.	I.09)	-	-	-	-	15.	Schiff.
$\begin{aligned} & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+ \\ & \mathrm{FeSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1.028			1.122						15.	،
$\mathrm{K}_{2} \mathrm{CrO}_{4}$. .	1.039	1.	1.127	1.174	1.225	1.279	1.397	-	-	$\begin{aligned} & 19 . \\ & 19.5 \end{aligned}$	،
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1.035	1.071	I.IOS	-	-	-	-	-	-	19.5	Kren
$\mathrm{Fe}(\mathrm{Cy})_{6} \mathrm{~K}_{4}$	1.025	1.059	1.092	1.126	-	-	-		-	15.	chi
$\mathrm{Fe}(\mathrm{Cy})_{6} \mathrm{~K}_{3}$.	1.025	1.053	1.145	1.179	-	-	-	-	-	13	
$\mathrm{Pb}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3}\left(\mathrm{O}_{2}\right)_{2}\right.$	1.031	1.064	I. 100	1.137	I. 177	1.220	1.31	1.42	-	15.	crlach
$+24 \mathrm{H}_{2} \mathrm{O}$.	1.020	1.042	1.066	1.089	I.1I4	1.140	1.10	-	-	14.	Schiff.
	5	เо	15	20	30	40	60	So	ico		
SO_{3}	1.0 .40	1.084	1.132	1.179	I. 277	$1.3 \mathrm{S9}$	I. 564	1.S40	-	15.	.
SO_{2}	1.013	1.028	1.0.45	1.063	-	-	-	-	-	+.	Schif
$\mathrm{N}_{2} \mathrm{O}_{5}$.	1.033	1.069	2.104	I. 1.41	1.217	1.294	1.422	1. 506	-	15.	Kolb
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$.	1.021	$1.0+7$	1.070	I. 096	I. 150	1.207	-	-	-	15.	Gerlach.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$.	1.018	I. 038	1.058	1.079	1.123	1.170	1.273	-	-	15.	
Cane sugar	1.019	1.0 .39	1.060	1.082	1.129	1.178	1.2S9	-	-	17.5	
FICl	1.025	1.050	1.075	1.101	I.15 ${ }^{\text {I }}$	1.200	-	-	-	15.	Ǩolb.
HBr	10.35	1.073	1.154	1.15 5^{8}	1. 257	1.376	-	-	-	1.4	'l'opsöc
HI	1.037	1.07	1.118	1.165	1.271	1. 400	-	-		1.3	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.032	1.069	1. 106	I. 145	1.223	1.307	1.501	1.732	1. S_{3} S	15.	Koll).
$\mathrm{H}_{2} \mathrm{SiFl}_{6}$	1.040	1.082	1.127	I. 174	1.273	-	-	-	-	17.5	Stolba.
$\mathrm{P}_{2} \mathrm{O}_{5}$	1.035	1.077	1.119	1.167	1.271	1.385	1.676		-	17.5	Hager.
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O}$.	1.027	1.057	1.085	I.II9	I. 188	I. 264	1. 438	-	-	15.	Schiff.
HNO.	1.028	1.056	I. 088	I.II?	I. 184	I. 250	1. 373	I. 459	1.52S	15	Koll.
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	I. 007	I.OI 4	1.021	1.02S	1.041	1.052	1.068	1.075	1.055	15.	Oudemans

Table 102.

DENSITY OF WATER AT DIFFERENT TEMPERATURES BETWEEN 0° AND $32^{\circ} \mathrm{C}$.*

The following table gives the relative density of water containing air in solution, - the maximum density of water free from air being taken as unity. The correction required to reduce to densities of water free from air are given at the foot of the tabie. For all ordinary purposes the correction may be neglected. The temperatures are for the hydrogen thermometer.

Temp. C.	. 0	1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
-0	0.999 S742	S678	8613	S_{547}	$\mathrm{S}_{47} 8$	8408	8336	8263	8188	Sili
$+0$	0.9998742	S804	SS64	S922	S979	0035	9088	9140	9191	9240
1	92S7	9332	9376	9419	9460	9499	9536	9572	9607	9640
2	9671	9701	$97=9$	9755	97 So	9803	9825	9546	9864	9881
3	9897	9911	9923	9934	9944	9952	9958	9963	9966	9968
4	9968	9966	9964	9959	9953	9946	9933	9927	9915	9901
5	0.9999886	9870	9852	9833	9812	9790	9766	9740	9714	9685
6	9656	9625	9592	9558	9522	9485	9446	9407	9365	9322
7	9278	9232	9155	9137	9087	9035	S9S2	8928	8873	S815
8	S758	8697	8636	§573	8509	8443	S376	S30S	823S	S167
9	So95	So21	79.46	7869	7791	7712	7631	7549	7466	7381
10	0.9997295	7208	7119	7029	6937	68.44	6750	6654	6558	6459
II	6360	6259	6157	6053	5949	5842	5735	5626	5516	5405
12	5292	5178	5063	4947	4829	4710	4590	4468	4345	4221
13	4096	3969	3841	3712	3581	3450	3317	3182	30.47	2910
14	2772	2633	2493	2351	2208	2064	1919	1772	1624	1475
15	0.9991325	1174	1021	0867	0712	0556	0399	0240	ooSo	$\overline{9919}$
16	89757	7594	9429	9264	9097	8929	S760	S5S9	8418	S245
17	So7 1	7896	7720	7543	7365	7185	7004	$65=3$	66.40	6456
15	6270	608.	5897	5708	5518	5328	$5^{1} 36$	4943	4749	4553
19	4357	4160	3961	3762	3561	3359	3157	2953	2748	2542
20	0.9982335	4126	1917	1707	1496	1283	1070	0855	0640	0423
21	0205	$\overline{9987}$	9767	9546	9325	9102	8878	8653	5427	8200
22	77972	7744	7514	7283	7051	6 SiS	6584	6340	6114	5877
23	5639	5400	5160	4920	4678	4435	4191	3947	3701	3455
24	3207	2959	2709	2.459	2208	1956	1702	1448	1193	0937
25	0.997068 I	0423	0164	9904	$\overline{9644}$	$\overline{9382}$	9120	5857	8592	5327
26	68061	7794	7527	7258	6988	6718	6447	6175	5901	562S
27	5353	5077	4801	4523	4245	3966	3686	3405	3124	$2 S_{4} \frac{1}{1}$
28	2555	2274	1989	1703	1416	1129	0840	-551	0261	9971
29	59679	9387	9094	SSOO	S505	S209	S913	7616	7318	7019
30	0.9956720	6.19	6118	5816	5514	5210	4906	4601	4296	3989
31	3682	3374	3066	2756	2446	2135	IS23	1511	1198	0884

If we put D^{\prime} for the density of water containing air and $\mathrm{D}_{\mathbf{t}}$ for the density of water free from air, we get the following corrections on the above table to reduce to pure water : -

$t=$	0	1	2	3	4	5	6	7	8	9	10
$\left.1 O^{\top}\left(\mathrm{D}_{\mathrm{t}}-\mathrm{D}\right)^{\prime}\right)=25$	27	29	31	32	33	33	34	34	33	32	
$\mathrm{t}=$	11	12	13	14	15	16	17	18	19	20	32
$1 \mathrm{O}^{\prime}\left(\mathrm{D}_{\mathrm{t}}-\mathrm{D}^{\prime}{ }_{\mathrm{t}}\right)$	$=31$	29	27	25	22	19	16	12	8	4	negligible.

[^23]
Smithsonian Tables.

VOLUME IN CUBIC CENTIMETRES AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETRE OF WATER AT THE TEMPERATURE OF MAXIMUM DENSITY.*

The water in this case is supposed to be free from air. The temperatures are by the hydrogen thermometer.

Temp. C.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0°	1.000127	120	114	108	102	096	091	086	080	075
I	0,0	066	061	057	052	0.88	0.4	0.40	037	033
2	030	027	02.4	O2I	019	017	014	012	010	009
3	007	006	00.4	003	002	002	001	01	000	000
4	000	000	001	OOI	∞ I	002	003	004	005	007
5	1.00000 S	010	012	014	016	018	020	023	026	029
	032	035	038	041	0.45	049	053	057	061	065
7	069	074	079	08.4	089	09.4	099	105	110	116
8	122	128	134	If I	1.47	154	160	167	174	181
9	IS9	196	204	211	219	227	235	244	252	260
10	1.000269	278	287	296	305	314	324	334	$3+3$	353
11	363	373	383	394	405	415	426	437	445	+59
12	471	482	494	505	517	529	541	553	566	578
13	591	603	616	629	6.42	655	668	681	695	709
1.4	722	736	750	765	779	794	Son	S23	S3S	853
15	1.000868	SSt	899	24	930	945	961	977	993	009
16	1025	042	058	075	091	103	125	$1+2$	159	177
17	19.4	211	229	2.47	265	283	301	319	338	356
IS	374	393	412	43 I	450	469	4 SS	507	527	546
19	566	55	605	625	645	666	686	707	727	748
20	1.001768	789	810	831	S52	871		216	23^{8}	960
21	981	003	$\overline{025}$	$\underline{047}$	$\stackrel{069}{ }$	09^{2}	114	137	159	152
22	2205	228	251	274	297	$3=0$	343	367	391	414
23	438	462	486	510	534	559	$5_{5}{ }^{3}$	607	632	657
2.4	682	707	732	757	782	S07	833	S5S	S8.4	910
25	1.002935		987	$\overline{\mathrm{OT}}$	$\overline{040}$	$\overline{066}$	$\overline{092}$	119	$\overline{1.46}$	172
26	3199	226	253	280	307	335	362	389	417	445
27	472	500	528	556	$5{ }^{3} 4$	612	641	669	697	726
28	754	783	812		570	899	928	957	987	016
29	4045	075	105	134	164	194	224	254	28.	315
30	$1.0043+5$		406	436	467	498	529	560	591	622
31	653	65_{4}	716	748	780	SII	S 43	875	207	239
32	971	$\overline{003}$	036	068	101	133	166	199	231	264
33	5297	33°	363	396	430	+63	497		56.4	597
3.4	631	665	699	733	767	SoI	835	570	904	939
35	1.005973	$\overline{008}$	042	077	III	146	ISI	217	252	257

[^24]DENSITY AND VOLUME OF WATER.*

The mass of one cubic centimetre at $4^{\circ} \mathrm{C}$. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10^{2}	0.99 SI 45	1.001858	25°	0.99712	1.00289
-9	8427	1575	26	657	314
-8	8685	1317	27	660	341
-7	S9II	1089	28	633	368
-6	9 II	OS83	29	605	396
-5	0.999298	1.000702	30	0.99577	1.00425
-4	9455	0545	31	547	455
-3	9590	0410	32	517	486
-2	9703	0297	33	485	5 IS
- I	9797	0203	34	452	551
0	0.999871	1.000129	35	0.99418	1.00586
1	9928	0072	36	$3{ }^{\text {S }} 3$	621
2	9969	0031	37	347	657
3	9991	0009	3 S	310	694
4	1.000000	0000	39	273	732
5	0.999990	1.000010	40	0.99235	1.00770
6	9970	0030	41	197	809
7	9933	0067	42	158	849
8	9856	OIIt	43	1 I	889
9	9824	0176	44	078	929
10	0.999747	1.000253	45	0.99037	1.00971
11	9655	0345	46	S996	014
12	9549	0.451	47	954	057
13	9430	0570	48	910	101
14	9299	0701	49	865	148
15	0.999160	$1.0008_{4} 1$	50	0.98820	1.00195
16	9002	0999	55	$5 \mathrm{S2}$	439
17	8841	1160	60	338	691
15	S65.4	1348	65	074	964
19	8460	1542	70	7794	256
20	0.99 S259	1.001744	75	0.97498	1.00566
21	80.47	1957	So	194	SS7
22	7826	2177	85	6879	221
23	7601	2405	90	556	567
24	7367	2641	95	219	931
25	0.997120	1.002888	100	0.95865	1.00312

* Rossetti, "Berl. Ber." 1867.

Smithsonian Tables.

DENSITY OF MERCURY.

Density or mass in grammes per cubic centimetre, and the volume in cubic centimetres of one gramme of mercury. The density at $o^{\prime \prime}$ is taken as 13.5956 , and the volume at temperature t is $V_{\ell}=$ $\mathrm{V}_{0}\left(1+.000151792 t+175 \times 10^{-12} t^{2}+35116 \times 10^{-15} t^{1}\right)+$

Temp. C.	$\begin{aligned} & \text { Dass in } \\ & \text { grammes per } \\ & \text { cub. cm. } \end{aligned}$	Volume of 1 gramme in cub. cms.	Temp. C .	$\begin{aligned} & \text { Mass in } \\ & \text { granmues per } \\ & \text { cub. cm. } \end{aligned}$	Volume of 1 gramme in cub. cms.
-10°	13.6203	0.0734195	30^{3}	13.5218	0.0739544
-9	6175	4329	31	5194	9678
-S	6153	4.46	32	5169	${ }_{9} \mathrm{SI}_{2}$
-7	6129	4596	33	5145	$99+5$
-6	6104	4730	34	5120	40079
-5	13.6079	0.0734864	35	13.5096	0.0740213
-4	6055	4997	36	507 I	0346
-3	6030	5131	37	5047	$0{ }^{0} 50$
-2	6005	5265	3 S	5022	0614
- I	598i				0748
0	1 3.5956	0.0735532	40	13.4974	0.0740852
1	5931	5666	50	4731	2221
2	5907	5800	60	4488	3561
3	$5 \mathrm{SS2}$	5933	70	4246	4901
4	5557	6067	So	4005	6243
5	13.5S33	0.0736201	90	13.3764	$0.07+7586$
6	5 SOS	6334	100	3524	S931
7	57 S 3	6468	110	3284	50276
S	5759	6602	120	3045	1624
9	5734	6736	130	2 SO 7	2974
10	13.5709	0.0736869	140	13.2569	0.0754325
1 I	5685	7003	150	2331	5679
12	5660	7137	160	2094	7035
13	5635	7270	170	1858	S394
14	5611	7404	150	1621	9755
15	13.5586	0.0737538	190	13.13S5	0.0761120
16	5562	7672	200	1150	2.456
17	5537	7 SO 5	210	0915	3554
IS	5513	7939	220	0650	5230
19	5485	So73	230	0.445	6607
20	13.5463	0.073 S 207	240	13.0210	0.076798S
21	$5+39$	S340	250	$12.99 \% 6$	9372
22	5414	S 474	260	9742	70760
23	5390	S608	270	950S	1252
24	5365	S742	2 SO	9274	3549
25	13.5341	0.0738575	290	12.9041	0.0774950
26	5316	9009	300	$8{ }^{8} \mathrm{SO}$	6355
27	5292	9143	310	S 573	7765
2 S	5267	9277	320	8310	9150
29	5243	9415	330	S107	SoG00
30	13.5218	$0.07395+4$	340	12.7873	0.0782025
			350 360	$\begin{aligned} & 7640 \\ & 7406 \end{aligned}$	$\begin{aligned} & 3+55 \\ & 4 S 91 \end{aligned}$

* Marek, "Trav. et Mém. du Lur. Int. des Poids et Més." 2, 1883.
\dagger Broch, l.c.
Smithsonian Tables.

SPECIFIC GRAVITY OF AQUEOUS ETHYL ALCOHOL．

（a）The numbers here tabulated are the speciic gravities at $60^{\circ} \mathrm{F}$ ．，in terms of water at the same tempera－ ture，of water containing the percentages by weight of alcohol of specific gravity .793 ，with reference to the same temperatures．＊										
范	0	1	2	3	4	5	6	7	8	9
こここ	Specific gravity at $15^{\circ} .56 \mathrm{C}$ ．in terms of water at the same temperature．									
0	1.0000	． 9981	． 9965	． 9947	． 9930	.9914	．9S98	－9SS 4	．9869	．9S55
10	．9S41	． 9828	． 9815	． 9802	． 9759	．977 ${ }^{\text {S }}$	． 9766	． 9753	．9741	． 9725
20	．9716	． 9703	． 9691	． 9678	． 9665	． 9652	.9638	． 9623	.9609	． 9593
30	． 9578	． 9560	． 9544	． 952 S	． 9511	． 9490	． 9470	．9452	． 9434	． 9416
40	.9396	． 9336	． 9356	． 9335	.9314	．9292	．9270	．92－49	．9223	． 9206
50	0.9184	．9160	． 2135							． 8979
60	． 8956	． 8932	． Sos $^{\text {g }}$	． 5856	． 8563	．SS ${ }^{\text {do }}$	． 8 Si6	． 8793	． 8769	． S 745
70	． 8721	． 8696	． 5672	． 8649	．$S 6=5$	． 8603	． $\mathrm{S}_{5} \mathrm{SI}$	． S_{557}	． 8533	． 8508
So	． $8_{4} 8_{3}$	． $8+59$	． 5434	． 8.408	． $\mathrm{SH}_{3} \mathrm{~S}_{2}$	． 8357	． 331	． 5305	．S_{279}	． 8254
90	． S 22 S	． S199 $^{\text {d }}$	． 8172	． $51+5$	．SinS	． 8059	． 8061	．S031	．Soor	．7969

（b）The following are the valnes adopted by the＂Kaiserlichen Normal－Aichungs Kommission．＂They are based on Mendelejeff＇s formula，\dagger and are for alcohol of specific gravity .79425 ，at 15 C．，in terms of water at $15^{\circ} \mathrm{C}$ ．；temperatures measured by the hydrogen thermometer．

$\begin{aligned} & \text { ded } \\ & 0=0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	1	2	3	4	5	6	7	8	9
	Specific gravity at $15^{\circ} \mathrm{C}$ ．in terms of water at the same temperature．									
0	1.00000	．90812	． 99630	． 99454	． 99284	． 99120	．95963	．98812	．98667	．98528
10	． 98303	．98262	． 98135	． 95010	． 97888	． 97768	． 976.45	． 97528	． 97.408	． 97287
20	． 97164	． 97040	． 96913	． 96783	． 96650	． 96513	． 96373	． 96228	． 96080	． 95927
30	.95770	． 95608	－ $95+43$	． 95273	． 95099	－ 9.4920	．9473	－ 94552	$.9+363$	． 9.4169
40	.93973	． 93773	． 93570	.93365	.93157	． 92947	．92734	． 92519	． 92303	．92088
	$0.91 \mathrm{SG}_{5}$	． 9164	－91－121		． 90972	． 90746	． 90519	． 90292	． 90063	． 89834
60	S960．4	． 89373	． 591.11	．SS909	． 85676	． $58+43$	．SS20S	． 57974	． 57733°	． 87502
70	87265	． 87025	． 56789	． 56550	． 86310	． 86070	． 85828	． 85586	． 85342	． 55008
So	8.4852	．$S_{4} 606$	． $8.435{ }^{\circ}$	． S $_{1} 108$	． 33857	． 83604		． 83091	．S2832	． 82569
90	S2304	． 22036	． 81763	．S14SS	．S1207	． So 223	． 80634	．So339	． 800.40	． 79735

（c）The following values have the same authority as the last；the percentage of alcohol being given by volume instead of by weight，and the temperature $15^{\circ} .5^{\circ} \mathrm{C}$ ．on the mercury in Thuringian glass thermometer；the specific gravity of the absolute alcohol being ． 79391 ．

	0	1	2	3	4	5	6	7	8	9
	Specific gravity at $15^{\circ} \cdot 5^{6} \mathrm{C}$ ．in terms of water at same temperature．									
0	1．00000	.99947	． 99699	． 99555	． $99+15$	． 99279	． 9914	． 90019	． 9885	． 95774
10	． 98657	.98543	．95432	． 9832.1	．98218	．9814	．9Sori	． 97909	．97S08	． 97708
20	．9，608	.97507	． 97.40%	． 97304	． 97201	． 97097	． 26991	． 96883	． 96772	． 96658
30	． 96541	．96．12 1	． 96298	． 96172	． 96043	.95910	． 95773	.95632	． 95487	． 95338
40	.95183	.95029	.94868	． $9+470.4$	． 9.4536	． 9436.7	－94！SS	． 94008	． 93 S 24	． 93636
50	$0.93+45$	． 93250	． 93052	． 92850	．92646	．92439	． 92229	．92015	． 91799	.91580
60	． $21.35{ }^{\text {c }}$	． 91134	． 20907	． 90678	．90447		． 89978	． 9740	． 89499	． 89256
70	． 8010	． 88762	． 88511	．8S257	． 88000	． 87740	． 87477	． 87211	． $660+3$	． 86670
80	． 56395	．S6116	． 85333	． 85547	． 85256	． 84961	．S_{4660}	． 8.4355	． 8.40 .4	． $837=6$
90	． 33400	． 83065	．82721	． 82365	． S 1997	． 81616	． SI 217	．SoSoo	． $\mathrm{So3} 59$	．79891

[^25]
Smithsonian Tables．

$\begin{aligned} & \text { Percent- } \\ & \text { are of } \\ & \mathrm{CH}_{4} \mathrm{O} \text {. } \end{aligned}$	$\begin{gathered} \text { Density } \\ o^{\text {at }} \mathrm{C} \text {. } \end{gathered}$	$\begin{aligned} & \text { 1)ensity } \\ & 15.16 \mathrm{C} \text {. } \end{aligned}$	a	b	Percentage of $\mathrm{CH}_{4} \mathrm{O}$.	$\begin{gathered} \text { Density } \\ \text { at } \end{gathered}$	$\begin{aligned} & \text { I)ensity } \\ & \text { at } \end{aligned}$ $15^{7} .56 \mathrm{C} .$	π
0	99987	99907	-6.0	0.705	50	92873	91855	65.41
1	99 *-66	99729	-5.4	. 69.4	51	92691	9106	66.19
2	99631	99554	- 4.5	. 681	52	92507	91405	66.95
3	99462	99352	-3.9	. 670	53	92320	91267	67.68
4	99299	99214	-3.0	. 659	57	92130	91066	68.39
5	99142	990.4 5	-2.2	0.648	55	91938	90S63	69.07
6	95990	95893	- 1.2	. 63.4	56	91742	90657	69.72
7	9 SSH	$95^{5}=6$	-0.2	. 621	57	91544	90450	70.35
8	95701	98569	+0.9	. 609	5 S	91343	90こ39	70.96
9	95563	98414	2.1	. 596	59	91139	90026	71.54
10	98+29	98262	$3 \cdot 3$	0.58I	60	90917	89798	71.96
11	98299	98111	4.3	. 569	61	90706	89580	72.37
12	95171	97962	6.2	. 552	62	90492	89358	72.91
13	98048	97814	7.8	. 536	63	90276	89133	73.45
14	97926	97668	$9 \cdot 5$. 519	64	90056	88905	73.98
15	97806	97523	11.0	0.500	65	S9835	88676	
16	97689	97379	12.5	. 480	66	89611	88.43	75.05
17	97573	97235	14.5	. 461	67	8938.4	SS208	75.57
18	$97+59$	97093	16.2	. 440	65	89154	S7970	76.10
19	97346	96950	18.3	. 420	69	88922	S7714	76.62
20	97233	96808	20.0	0.398	70	8865_{7}	S7487	77.14
21	97120	96666	22.2	. 373	71	88470	$S_{7}=62$	77.66
22	97007	96524	24.3	. 350	72	8S237	S-021	78.18
23	96894	96381	26.4	. 321	73	S8003	S6779	78.69
24	96780	96238	29.0	. 291	74	87767	S6535	79.20
25	96665	96093	31.3	0.261	75	S7530	S6290	79.71
26	96549	95949	33.3	. 230	76	S7290	S60.42	So.22
27	$96+30$	95802	36.0	.191	77	S7049	$\mathrm{S}_{5} 5793$	S0. 72
28	96310	95655	38.8	.151	78	S6806	S5542	SI. 23
29	96187	95506	41.1	. 106	79	S6561	85290	81.73
Equation $\rho_{t}=\rho_{0}-a t$					80	S63I4	S5035	82. 22
30	96057	95367	44.36		SI	S5816	84779	82.72 8.21
31	95921	95211	45.66		S2 83	${ }^{5} 5564$	S. 2262	83.70
32	95783	95053	46.93		84	S5310	S.4001	S4.19
33	95643	9.894	48.17					
34	95500	94732	49.39		8586	S5055 84795	$8_{373}{ }^{\text {S }}$	$8_{4.67}$
							83473	S5.16
35	95354	$9+567$	50.58		S78	84539	8_{3207}	S5.64
36	9520.4	94399	51.75	\pm		S4278	S293 $8=668$	$\begin{aligned} & 86.12 \\ & 86.59 \end{aligned}$
37	95051	94228	52.59		S8	S4015		
38	9.4895	94055	54.01	\%00	90		82668	86. 59
39	94734	93877	55.10			83751	82396	87.07
				-	91	83485	82123	S7.54
40	94571	93097	56.16	过	92	S3218	SIS 89	SS.01
4 I	94400	93510	57.20	Ξ		S2948S2677	81572	SS. 48
42	94239 0.076	93335	5S.22	E	93 94		81293	S8.94
44	93911	92975	59.2060.17	$\stackrel{\sim}{6}$	95	$\begin{aligned} & 82.404 \\ & 82129 \end{aligned}$	SIOI3	S9.40
							So73I	S9. 56
45	93744	92793	61.10		96	$\begin{aligned} & 82129 \\ & 8 I S 53 \end{aligned}$	S0,48	$\begin{aligned} & 90.32 \\ & 90.78 \\ & 91.23 \end{aligned}$
46	93575	92610	62.01		$\begin{aligned} & 98 \\ & 99 \end{aligned}$	S1576Si 295	$\begin{aligned} & \text { SoIG4 } \\ & 79872 \end{aligned}$	
47	93103	92424	62.90					
48	93229	92237	$\begin{aligned} & 63.76 \\ & 64.60 \end{aligned}$		100	SIOI 5	79589	$91.6 S$
49	93052	92047						

* Quoted from the results of Dittmar \& Fawsitt, "Trans. Roy. Soc. Edin." vol. 33.

VARIATION OF THE DENSITY OF ALCOHOL WITH TEMPERATURE.

(a) The density of alcohol at t° in terms of water at 4° is given * by the following equation: $d_{t}=0.80025-0.0008_{340 t-00000029 t^{2}} .$ From this formula the following table has been calculated.										
-	Density or Mass in grammes per cubic centimetre.									
-	0	1	2	3	4	5	6	7	8	9
0	. $806=5$. 30541	. 00457	. 80374	. 80290	.Sozo7	. SO 123	. 80039	. 79956	. 79872
10	. 79788	. 79704	. 79620	. 79535	. 79451	. 79367	-79253	. 79195	.79114	. 79029
20	- - 9045	- 5860	. 78775	.78691	.78606	.78522	${ }^{7} 8437$.78352	.78267	-78182
30	.78097	.78012	. 77927	.778.41	. 77756	. 77671	.7755	. 77500	. $77+14$.77329

(b) Variations with temperature of the density of water containing different percentages of alcohol. Water

	Density at temp. C.				Percentage of alcohol by weight.	Density at temp. C.			
	0^{2}	10^{3}	20°	30°		0°	10°	20°	30°
0	0.99988	0.99975	0.99831	0.99579	50	0.929 .40	0.92182	0.91400	0.90577
5	. 99135	.99113	. 98045	.98650	55	.91848	. 91074	.90275	. 89456
10	.93493	.98409	-9195	.97892	60	. 90742	.S9944	. 89129	. 88304
15	.97995	.97-816	.9557	. 97112	65	. 89595	. 88790	.97961	. 87125
20	. 97566	. 97263	. 96877	. 96713	70	.88.420	. 57613	. 66781	. 85925
25	0.97115	0.96672	0.96185	$0.956=8$	75	0.87245	0. 86427	0.85580	0.84719
30	. 96540	.95998	. 95403	. 94751	So	. 86035	. 85215	. 84366	. 83483
35	. 95734	. 95174	. 94514	.93813	S5	. 84759	. 83967	. 33115	.82232
40	. 94939	. 94255	. 93511	. 92787	90	. 83482	. 82665	. SiSoi	.So9IS
45	. 93977	.93254	.92493	.91710	95	. S2119	. Siz9I	. 80433	. 79553
50	0.92940	0.92182	0.91 .400	0.90577	100	0.80625	0.797 SS	$0.789+5$	0.75096

[^26]
Smithsonian Tables.

VELOCITY OF SOUND IN AIR.

Rowland has discussed (Proc. Am. Acad. vol. 15, p. 14t) the principal determination of the velocity of sound in atmospheric air. The following table, together with the footnotes and references, are quoted from his paper. Some later determinations witl be fourd in Table ist, on the velocity of sound in gises.

	$\stackrel{\ddot{\Xi}}{\stackrel{\Xi}{\circ}}$			है总登					
1	1738	France	-	$5^{\circ}-7^{\circ} \cdot 5 \mathrm{C}$.	172.56 T .	332.9 m .	-		
2	ISII	Diisseldorf	40		17.51	$333.7{ }^{\circ}$,	332.7	z
	IS21	India. \{	120	$83^{\circ} .95 \mathrm{~F}$.	11.49 .2 ft .	333.0°	- 1		,
3	IS21	India. - \{	70	$79^{\circ} .9 \mathrm{~F}$.	1131.5 ft .	$329.6{ }^{\text {c }}$	- $\}$	330.9	2
4	1822	France .	30	$15^{\circ} .9 \mathrm{C}$.	340.59 m .	331.36	-	330.5	4
5	1822	Austria .	SS	$9^{\circ}+\mathrm{C}$	310.	332.96	S	332.5	3
6	1823	Ilolland	22 shots	$1 \mathrm{II}^{\circ} .6 \mathrm{C}$	340.37	333.62		- $\}$	7
7	1824-5	Iort Bowen	$14{ }^{51}$	-3 ${ }^{11^{\circ} \mathrm{F} .0 \mathrm{to} \mathrm{C.}{ }^{\text {e }}+33^{\circ} \mathrm{F} .}$	339.27	332.62	$33^{1.91^{d}}$	-	7
S	$15=4-5$ 1839	Port bowen		$5^{\circ} .5$ to $9^{\circ} \mathrm{C}$.	336.50	332.208	-	331.8	1
9	IS 44			$8^{\circ} .17 \mathrm{C}^{\text {c }}$	338.01	332.11			4
10	IS6S*	France .	149	2° to $20^{\circ} \mathrm{C}$.	-	-	330.71	-	10

General mean deduced by Rowland, 331.75 .
Correcting for the normal carbonic acid in the atmosphere, this becomes 331.78 metres per second in pure dry air at $0^{\circ} \mathrm{C}$.

References.

I French Academy: "Mém. de l'Acad. des Sci." 1738, p. 128.
2 Benzenburg: Gibberts's "Annalen," vol. 42, p. I.
3 Goldingham : "Phil. Trans." 1 S23, p. 96.
4 Bureau of Longitude: "Ann. de Chim." IS22, vol. 20, p. 210; also, "Cuvres d'Arago," "Mem. Sci." ii. r.
5 Stampfer und Von Myrbach: "Pogg. Ann." vol. 5, p. 496.
6 Moll and Van Beek: "Phil. Trans." 1S24, p. 424.
7 Parry and Foster: "Journal of the Third Voyage," I824-5, App. p. 86; "Phil. Trans." IS2S, p. 97.
S Savant: "Ann. de Chim." sér. 2, vol. 7I, p. 20. Recalculated.
9 Bravais and Martins: "Ann. de Chim." sér. 3, vol. 13, p. 5.
10 Regnault: " Rel. des Exp." iii. p. 533.
a I believe that I calculated these reduced numbers on the supposition that the air was rather more than half saturated with moisture.
b Reduced to o: C. by empirical formula.
c Wind calm.
d Moll and Van Beek found 332.049 at $0^{\circ} \mathrm{C}$. for dry air. They used the coefficient .00375 to reduce. I take the numbers as recalculated by Schröder van der Kolk.
e An error of $0.21^{\circ} \mathrm{C}$. was made in the original. See Schröder van der Kolk, "Phil. Mag." iS65.
f Corrected for wind by Galbraith.
g Recalculated from Savart's results.

* This is given as 1864 in Rowland's table. The original paper is in "Mém. de l'Institut," vol. $37,1868$.

Table 110.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the loung's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary throuch a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

8mitheonian Tables.

VELOCITY OF SOUND IN LIQUIDS AND GASES.

Smithsonian Tables.

FORCE OF GRAVITY FOR SEA LEVEL AND DIFFERENT LATITUDES.
This table has been calculated from the formula $g_{\phi}=g_{45}[1-.002662 \cos 2 \phi]$,* where ϕ is the latitude.

Latitude ϕ.	$\begin{aligned} & \text { ! } \\ & \text { in cms. per } \\ & \text { sec, per sec. } \end{aligned}$	Log.	! in inches per sec. per sec.	Log.	! in feet per sec. per sec.	Log.
0°	977.9S9	2.990334	385.034	2.585498	32.0862	1.506318
5	S.029	0352	. 050	5517	. 0875	6336
10	. 147	0.404	.096	5570	.0916	6355
15	. 339	0490	. 173	5655	. 0977	6474
20	. 600	0605	. 275	5771	.1062	6590
25	97S.922	2.990748	355.102	2.585914	32.1168	1.506732
30	9.295	0913	- 548	6079	. 1290	6898
3 I	. 374	0949	. 580	6114	.1316	6933
32	.456	0985	. 612	6150	. 1343	6969
33	$.53{ }^{\text {S }}$	1021	.644	6187	. $1370{ }^{\circ}$	7005
34	979.622	2.991059	385.677	2.586224	32.139S	1.507043
35	. 707	1096	. 711	6262	.1425	70 O
36	.793	1135	.745	6300	. 1454	7119
37	. 880	1173	.779	6339	.1490	7167
38	. 968	1212	. 813	6377	.1511	7196
39	980.057	2.991251	3 S .8 .49	2.556417	32.1540	1.507236
40	. 147	1291	. 83.4	6457	. 1570	7275
41	.237	1331	.919	6496	. 1607	7325
42	-327	1372	. 955	6537	. 1630	7356
43	.418	1411	.990	6577	.1659	7395
44	980.509	2.991452	336.026	2.586617	32.1688	1.507436
45	. 600	1492	.062	6657	.1719	7476
46	.691	I 532	.095	6698	. 1748	7516
47	.782	1573	. 134	6738	.1778	7557
48	. 873	1613	. 170	6778	. 1808	7597
49	980.963	2.991653	386.205	2.586818	32. 1838	I. 507637
50	1.053	1693	. 241	6858	. 1867	7677
51	. 143	1732	.276	6898	.1896	7716
52	.23I	1772	. 311	6937	.1924	7756
53	. 318	1810	. 345	6975	. 1954	7794
54	9S1.407	2.991849	386.380	2.587014	32.1983	1.507833
55	. 493	1887	. 414	7053	. 2011	7871
56	.578	1925	.4 .47	7090	. 2039	7909
57	. 662	1962	.480	7127	. 2067	7946
58	. 744	1998	. 513	7164	. 2094	7983
59	9S1.825	2.992034	386.545	2.587200	32.2121	1. 50SoIS
60	. 905	2070	. 576	7235	. 2147	So54
65	2.278	2234	.723	7400	. 2276	8229
70	. 600	2377	. 849	75.42	. 2375	8361
75	. 861	2.492	.952	7657	. 2.460	8.476
80	983.053	2.992577	387.028	2.587742	32.2523	1.508561
85	.171	2629	. 074	7794	. 2562	8613
90	. 210	26.46	. 090	7812	. 2575	8631

* The constant . 002662 is based on data given by Harkness (Solar Parallax and Related Constants, Washington, 1891).

The force of gravity for any latitude ϕ and elevation above sea level h is very nearly expressed by the equation

$$
g_{\phi}=g_{45}(1-.002662 \cos 2 \phi)\left[1-\frac{2 h}{R}\left(1-\frac{3 \delta}{4 \Delta}\right)\right],
$$

where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta=0$ we get the formula for elevation in air. For ordinary elevations on land $\frac{\delta}{\Delta}$ is nearly $\frac{1}{2}$, which gives for the correction at latitude 45° for elevated portions of the earth's surface

$$
\begin{aligned}
g_{45} \cdot \frac{5 h}{4 R} & =930.6 \times \frac{5 h}{4 R}=1225.75 \frac{h}{R} \text { in dynes. } \\
& =386.062 \times \frac{5 h}{4 R}=432.562 \frac{R}{R} \text { in inch pound units. } \\
& =32.1719 \times \frac{5 h}{4 R}=40.2149 \frac{h}{R} \text { in poundals. }
\end{aligned}
$$

This gives per noo feet elevation a correction of

In this table the results of a number of the more recent gravity determinations are brought tngether. They serve to show the degree of accuracy whin may be assumed for the numbers in Table 12 . In ge
lower than the calculated vilue for stations far inland and slighty higher mo the coast line.

Place.	Latitude.$N .+, s .-$	Elevation in metres.	Gravity in dynes.		Reference.
			Obscrved.	Reduced to seatevel.	
Singapore	$\mathrm{I}^{\circ} 17^{\prime}$	14	978.07	978.07	1
Georgetown, Ascension .	-7 56	5	978.2 .4	978.24	2
Green Mountain, Asconsion . .	$7 \quad 57$	686	978.08	978.21	2
Loanda, Angola	-8 49	46	978.14	978.15	2
Caroline Islands.	- 1000	2	978.36	978.36	3
Bridgetown, Barloadoes	1304	18	97 S. 16	978.16	2
Jamestown, St. Helena	-15 55	10	978.66	978.66	2
Longwood, " ${ }^{\text {L }}$	-15 57	533	97 S .52	97S.58	2
Pakaoao, Sandwich Islands.	2043	3001	978.27	97.8 .8	3
I ahaina, "	$20 \quad 52$	3	978.85	978.85	3
Ilaiki,	$20 \quad 56$	117	978.90	978.92	3
Honolulu, " "	$21 \quad 18$	3	978.96	978.96	3
St. Georges, Bermuda	$32 \quad 23$	2	979.75	979.75	2
Sidney, Australia .	-33 52	43	979.6	979.68	1
Cape Town .	-33 56	11	979.61	979.61	2
Tokio, Japan .	3541	6	979.94	979.94	1
Auckland, New Zealand : © .	-36 52	43	979.67	979.68	4
Mount Hamilton, Cal. (Lick Obs.)	37 37 37 20	1282 1282	979.64 979.68	979.89 979.92	4
San Francisco, Cal.	3747	1 I 4	979.95	979.97	4
" ${ }^{\text {" }}$	3747	114	950.02	950.04	5
Washington, D. C.*	$33^{8} 53$	10	980.10	980.10	4
Denver, Colo. . .	3954	1645	979.68	979.98	5
lork, Pa. .	3958	122 651	980.12	980.14	$\begin{aligned} & 6 \\ & 6 \end{aligned}$
Ebensburgh, Pa.	$40 \quad 27$	651	${ }_{9} 980.08$	${ }^{9} 880.20$	6
Allegheny, Pa.	40 2S	348	980.09	${ }_{9} 980.15$	4
Hoboken, N. J. . .	$40 \quad 44$	11	980.26	980.26	5
Salt Lake City, Utah . .	$40 \quad 46$	12 SS	979.82	980.05	5
Chicago, Ill.	41 42	165 450	980.34 980.34	980.42	7
Pampaluna, Spain	$\begin{array}{ll}42 & 49 \\ 45 & 31\end{array}$	100	${ }_{9}{ }^{\text {So. } 73}$	980.75	5
Geneva, Switzerland	46	405	980.50	980.64	8
"، "	$46 \quad 12$	405	980.60	980.66	9
Berne,	$46 \quad 57$	572	980.61	980.69	9
Zurich, "	$47 \quad 23$	466	980.67	980.74	9
Paris, France	4850	67	$9^{80.96}$	980.97	8
Kew, England	5128	7	981.20	98 T .20	8
Berlin, Ciermany.	5230	49	$9^{81.26}$	981.27	8
I'ort Simpson, B. C.	5434	6	$9^{81.45}$	981.45	4
Burroughs Bay, Alaska	5559	\bigcirc	981.49	98 I .49	4
Wrangell, ""	56 28	7	981.59	98.59	4
Sitka, "	57	8	${ }^{9 S 1.68}$	${ }_{9} 981.68$	4
St. I'aul's Island, "	57	12	${ }_{9}^{981.66}$	981.60	4
Juneau, ${ }^{\text {" }}$	58 50 50 I	5	98.81	98 i 91	4
Pyramid Marbor, "	59 59	4	981.82	98 I .82	4

I Smith: "United States Coast and Geodetic Survey Report for ISS4." App. i 4.
2 Preston: "United States Coast and Geodetic Survey Report for IS60," App. Iz.
3 Preston: Ibid. I888, App. I4.
4 Mendenhall: Ibid. IS91, App. 15
5 Defforges: "Comptes Rendus," vol. IIS, p. 23 I.
6 I'ierce: "U. S. C. and G. S. Rep. ISS 3 "" App. I9.
7 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," IS93.
S Pierce: "U.S.C. and (r. S. Report iS76, App. I 5, and ISSi, App. 17."
9 Messerschmidt: Same refcrence as 7 .

* In all the values given under references $1-4$ gravity at Washington has been taken at 9So.100, and the others derived from that by comparative experiments with invariable pendulums.
Smithsonian Tables.

Table 114.
SUMMARY OF RESULTS OF THE VALUE OF GRAVITY (g) AT STATIONS IN THE UNITED STATES, OCCUPIED BY THE U. S. COAST AND GEODETIC SURVEY DURING THE YEAR 1894.*

Station.		Latitude.	Longitude.	Elevation.	$\stackrel{!}{\text { observed. }}$
Atlantic Coast. Boston. Mass. Cambridge, Mass. Princeton, N. J. l'hiladelphia, J'a. Washington, C. \& G.S. Washington, Smithsonian		- , "1	- , "	Metres.	Dyues.
	. .	422133	710350	22	9So.382
	. .	422248	710745	1.4	${ }^{950.384}$
		402057	743928	64	${ }^{980.164}$
		395706	751140	16	9So.ISz
	.	385313	77 00 32	14	9So.098
	-	385320	77 or 3^{2}	10	$980.100 \dagger$
Appalachian Elevation.					
Ithaca, N. Y. . .		422704	762900	247	9So.2S6
Charlottesville, Va.		3 SOz OI	783016	166	979.924
Deer Park, Md.		392502	791950	770	979.921
Central Plains.					
Cleveland, Ohio		413022	813638	210	${ }^{\text {9So. } 227}$
Cincinnati, Ohio		39 of 20	842520	245	979.990
Terre Haute, Ind.		392842	872349	151	980.05 S
Chicago, 111.		414725	873603	182	9So. 264
St. Louis, Mo. .	-	3 S 3 S 03	901213	154	979.987
Kansas City, Mo.		390550	$9435=1$	278	979.976
Ellsworth, Kan. .		384343	981332	469	979.912
Wallace, Kan. . .		355444	101 $35=5$	1005	979.741
Colorado Springs, Col.	-	385044	1044902	18_{41}	979.476
Denver, Col.	394036	1045655	1638	979.595
Rocky Mountains.					
Pike's Peak, Col.	-	$3{ }^{5} 5020$	1050202	4293	
Gunnison, Col. .		$3{ }^{3} 53233$	1065602	2340	979.32S
Grand Junction, Col.		390409	1083356	1398	979.619
Green River, Utah	. .	$3^{8} 5923$	1100956	1243	979.622
Grand Canyon, Wyo.		444316		2386	979.885
Norris Geyser l3asin, Wyo.	-	444409	1104202	2276	979.936
Lower Geyser liasin, W yo.		443321	110 +S of	2200	979.918
l'leasant Valley, Jct., Utah	- .	395047	III OO 46	2191	979.498
Salt Lake City, Utah .	- .	404604	III 5346	1322	979.789

Table 115.
LENGTH OF SECONDS PENDULUM AT SEA LEVEL FOR DIFFERENT LATITUDES. ${ }^{*}$

烒		\%		$\stackrel{80}{9}$	䔍		$\xrightarrow{\text { H0¢ }}$		-10
0	99.0910	1.996034	30.0121	1.591200	50	99.4014	I. 997393	39.1344	I. 592558
5	. 0950	6052	.0137	1217	55	. 4459	7597	. 1520	2753
10	. 1079	6104	. 0184	1270	60	. 4876	7770	.1683	2935
15	. 1265	6 rgo	. 0261	1356	65	. 5255	7935	.1832	3100
20	. 1529	6306	. 0365	147 I	70	. 55 SI	8077	. 1960	32.42
25	99.1855	$1.9964!8$	30.0493	I. 591614	75	99.5 5^{45}	I. 995192	39.2065	I. 593358
30	. 2234	6614	. 0642	1779	80	. 6040	8277	. 2141	. 3442
35	. 2651	6796	. 0806	1962	85	. 6160	8329	. 2188	. 3494
40	. 3096	6991	.ogS2	2157	90	. 6200	8347	.2204	.3512
45	-3555	7192	.1163	2357					

[^27]Smithsonian Tables.

LENGTH OF THE SECONDS PENDULUM.*

Date of determination		Kange of latitude included by the stations.	Length of penculum in metres for latitude ϕ.	Correspond- ing length of pendulum for lat. $45^{\prime \prime}$	Reference.
1799	15	From $+67^{\circ} 05^{\prime}$ to - $33^{\circ} 56^{\prime}$	$0.990631+.005637 \sin ^{2} \phi$	0.993450	1
1516	31	$\cdots+74^{\circ} 53^{\prime} "-51^{\circ} 21^{\prime}$	$0.990743+.005466 \sin ^{2} \phi$	0.993976	2
1821	S	$"+35^{\circ}{ }^{\circ} 0^{\prime} \times 2-60^{\circ} 45^{\prime}$	$0.990850+.0053 .40 \sin ^{2} \phi$	0.993550	3
$18=5$	25	$"+79^{\circ} 50^{\prime} "$ " $12^{\circ} 59^{\prime}$	$0.990977+.005142 \sin ^{2} \phi$	0.9935 .48	4
1827	41	$"+79^{\circ} 50^{\prime}$ " $"-51^{\circ} 35^{\prime}$	$0.991026+.005072 \sin ^{2} \phi$	0.993562	5
1829	5	" $0^{\circ} 0^{\prime} "+67^{\circ} 04^{\prime}$	$0.990555+.005679 \sin ^{2} \phi$	0.993395	6
1830	49	$" \quad 479^{\circ} 5 \mathrm{I}^{\prime} " \%-5 \mathrm{I}^{\circ} 35^{\prime}$	$0.091017+.005057 \sin ^{2} \phi$	0.993560	7
1833			$0.990941+.0051{ }^{1} 2 \sin ^{2} \phi$	0.993512	8
1569	51	$+79^{\circ} 50^{\prime}$ " ${ }^{\prime \prime}$ - $51^{\circ} 35^{\prime}$,	$0.990970+.005155 \sin ^{2} \phi$	0.993554^{\dagger}	9
1576	73	$"+79^{\circ} 50^{\prime}$ " $"$ - $62^{\circ} 55^{\prime}$	$0.991011+.005105 \sin ^{2} \phi$	0.993563	10
1584	123	$"+79^{\circ} 50^{\prime \prime} "-62^{\circ} 5^{\prime}$	$0.99091 S+.005262 \sin ^{2} \phi$	0.993549	II
Combining the above results			$0.990910+.005290 \sin ^{2} \phi$	0.993555	12

In ISS 4 , from the series of observations used by Dr. Fischer, Dr. G. W. Hill ${ }^{13}$ found $l=0.9927148$ metre

$$
\begin{aligned}
& +0.0050890 \rho^{-4}\left(\sin ^{2} \phi-\frac{1}{3}\right) \\
& +0.0000979 \rho^{-4} \cos ^{2} \phi \cos \left(2 \omega^{\prime}+29^{\circ} 04^{\prime}\right) \\
& +0.0001355 \rho^{-5}\left(\sin ^{3} \phi-\frac{8}{5} \sin \right) \phi \\
& +0.0005421 \rho^{-5}\left(\sin ^{2} \phi-\frac{1}{5}\right) \cos \phi \cos \left(\omega^{\prime}+217^{\circ} 5 I^{\prime}\right) \\
& +0.0002640 \rho^{-5} \sin ^{2} \phi \cos ^{2} \phi \cos \left(2 \omega^{\prime}++^{\circ} 49^{\prime}\right) \\
& +0.000124 S \rho^{-5} \cos ^{3} \phi \cos \left(3 \omega^{\prime}+110^{\circ} 24^{\prime}\right) \\
& +0.00014 S 9 \rho^{-6}\left(\sin ^{4} \phi-\frac{6}{3} \sin ^{2} \phi+\frac{3}{35}\right) \\
& +0.0007386 \rho^{-6}\left(\sin ^{3} \phi-\frac{3}{4} \sin \phi\right) \cos \phi \cos \left(\omega^{\prime}+3^{\circ} 02^{\prime}\right) \\
& +0.0002175 \rho^{-6}\left(\sin ^{2} \phi-\frac{1}{4}\right) \cos \cos ^{2} \phi \cos \left(2 \omega^{\prime}+262^{\circ} 1^{\prime}\right) \\
& +0.0003126 \rho^{-6} \sin ^{-6} \phi \cos ^{3} \phi \cos \left(3 \omega^{\prime}+148^{\circ} 20^{\prime}\right) \\
& +0.0000584 \rho^{-6} \cos ^{4} \phi \cos \left(4 \omega^{\prime}+2.4 S^{\circ} 19^{\prime}\right)
\end{aligned}
$$

where ϕ is the geocentric latitude, ω^{\prime} the geographical longitude, and ρ a factor, varying with the latitude, such that the radius of the earth at latitude ϕ is $a \rho$ where a is the equatorial radius of the earth.

I Laplace: "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42.
2 Mathieu: "Sur les expériences du pendule;" in "Connaissance des Temps iSi6," Additions, pp. $314-34 \mathrm{I}, \mathrm{p} .332$.

3 Liot et Arago: "Recuei] d'Observations géodésiques, etc.". I'aris, IS21, p. 575.
4 Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.

5 Saigey: "Comparaison des Observations du pendule à diverses latitudes ; faites par MM. Biot, Kater, Sabine, de Freycinct, et Duperry; "in "Bulletin des Sciences Mathématiques, ctc.," T'. 1, pp. 31-43, and 171-184. Paris, 1827.

6 Pontécoulant: "Théoric analytique du Système du monde," Paris, iS29, T. 2, p. 466.
7 Siry: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3. p. 230.
S l'oisson: "Traité de Mécanique," T". r, p. 377 ; "Connaissance des Temps," IS34, pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

9 Unferdinger: "Das Pendel als geodätisches Instrument;" in Grunert's "Archiv," IS69, p. $3^{16 .}$

10 Fischer: "Dic Gestalt der Erde und die Pendelmessungen ; " in " Ast. Nach." IS76, col. S_{7}.

II Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. IIelmert," II. Theil. Leipzig, ISS.4, p. 241.

12 Harkness.
13 IIill, Astronomical paper prepared for the use of the "American Ephemeris and Nautical Almanac," vol. 3, p. 339.

[^28]
Smithsonian Tables.

Table 117.
MISCELLANEOUS DATA WITH REGARD TO THE EARTH AND PLANETS．＊

$$
\begin{aligned}
& \text { Length of the seconds pendulum at sea } \\
& =l=39.012540+0.208268 \sin ^{2} \phi \text { inches. } \\
& =3.251045+0.017356 \sin ^{2} \phi \text { feet. } \\
& =0.9909910+0.005290 \sin ^{2} \text { \& metres. } \\
& \text { ond per second mean solar time } \\
& =s=32.08652 S+0.171293 \sin ^{2} \phi \text { feet. } \\
& =977.9 S 56+5.2210 \sin ^{2} \phi \text { centimetres. } \\
& \text { Equatorial semidiameter } \\
& =a=20925293+409.4 \text { fect. } \\
& =3963.124 \pm 0.078 \text { miles. } \\
& =6377972 \text { 士 } 12.4 .8 \text { metres. } \\
& \text { Polar semidiameter }=b=20 S_{55590 \pm 325.1 \text { feet. }}^{\text {f }} \\
& =3949.922 \pm 0.062 \text { miles. } \\
& =6356727 \pm 99.09 \text { metres. } \\
& \text { One earth quadrant }=393775819 \pm 4927 \text { inches. } \\
& =32 \$ 14652 \pm 410.6 \text { feet. } \\
& =6214 . \mathrm{Sg} \text { 士 } 0.07 \mathrm{~S} \text { miles. } \\
& =10001816 \pm 125.1 \text { metres. } \\
& \text { Flattening }=\frac{a-b}{a}=\frac{1}{300.205 \pm 2.964} . \\
& \text { Eccentricity }=\frac{a^{2}-b^{2}}{a^{2}}=0.006651018 .
\end{aligned}
$$

Difference between geographical and geocentric latitude $=\phi-\phi^{\prime}$

$$
=65 S^{2} .2242^{\prime \prime} \sin 2 \phi-1.14 S 2^{\prime \prime} \sin 4 \phi+0.0026^{\prime \prime} \sin 6 \phi .
$$

Mean density of the Earth $=5.576 \pm 0.016$ ．
Surface density of the Earth $=2.56 \pm 0.16$ ．
Moments of inertia of the Earth ；the principal moments being taken as A, B ，and C ， and C the greater：

$$
\begin{aligned}
\frac{C-A}{C} & =0.00326521=\frac{1}{306.259} \\
C-A & =0.001064767 E a^{2} ; \\
A=B & =0.325029 E a^{2} ; \\
C & =0.32609+E a^{2} ;
\end{aligned}
$$

where E is the mass of the Earth and a its equatorial semidiameter．
Length of sidereal year $=365.2563578$ mean solar days $;$

$$
=365 \text { days } 6 \text { hours } 9 \text { minutes } 9 \cdot 314 \text { seconds. }
$$

L．ength of tropical year

$$
\begin{aligned}
& =365.242199870-0.0000062124 \frac{t-1850}{100} \text { mean solar days } \\
& =365 \text { days } 5 \text { hours } 48 \text { minutes }\left(46.069-0.53675 \frac{t-1850}{100}\right) \text { seconds. }
\end{aligned}
$$

Length of sidereal month

$$
\begin{aligned}
& =27.321661162-0.000000262 .40 \frac{t-1800}{100} \text { days; } \\
& =27 \text { days } 7 \text { hours } 43 \text { minutes }\left(11.524-0.022671 \frac{t-1800}{100}\right) \text { seconds. }
\end{aligned}
$$

Length of synodical month

$$
\begin{aligned}
& =29.530588435-0.00000030696 \frac{t-1 \text { Soo }}{100} \text { days; } \\
& =29 \text { days } 12 \text { hours } 44 \text { minutes }\left(2 . S_{41}-0.026522 \frac{t-1800}{100}\right) \text { seconds. }
\end{aligned}
$$

Length of sidereal day $=\$ 6164.09965$ mean solar seconds．
N．B．－The factor containing t in the above equations（the epoch at which the values of the quantities are required）may in all ordinary cases be neglected．

[^29]
Masses of the Planets.

Reciprocals of the masses of the planets relative to the Sun and of the mass of the Moon relative to the Earth:

$$
\begin{aligned}
& \text { Mercury }=8374672 \pm 1765762 . \\
& \text { Venus }=408968 \pm 1574 . \\
& \text { Earth }
\end{aligned}=327214 \pm 624 .
$$

Mean distance from Earth to Sun $=92796950 \pm 59715$ miles ;

$$
=149340570 \pm 96101 \text { kilometres. }
$$

Eccentricity of Earth's orbit $=\varepsilon_{1}$

$$
=0.016771049-0.000004245(t-1850)-0.000000001367\left(\frac{t-180}{100}\right)^{2} .
$$

Solar parallax $=8.80905^{\prime \prime} \pm 0.005^{6} 7^{\prime \prime}$.
Lunar parallax $=3422.54216^{\prime \prime} \pm 0.12533^{\prime \prime}$.
Mean distance from Earth to Moon $=60.269315 \pm 0.002502$ terrestrial radii;

$$
=238854.75 \pm 9.916 \text { miles; }
$$

$$
=3^{8}+396.01 \pm 15.95^{8} \text { kilometres. }
$$

Lunar inequality of the Earth $=L=6.52294^{\prime \prime} \pm 0.01854^{\prime \prime}$.
Parallactic incquality of the Moon $=Q=124.95^{126^{\prime \prime}} \pm 0.08197^{\prime \prime}$.
Mean motion of Moon's node in 365.25 days $=\mu=-19^{\circ} 21^{\prime} 19.619 I^{\prime \prime}+0.14136^{\prime \prime} \frac{t-1800}{100}$.
Eccentricity and inclination of the Moon's orbit $=\varepsilon_{2}=0.054899720$.
Delaunay's $\gamma=\sin \frac{1}{2} I=0.044886793$.
$I=5^{\circ} 08^{\prime}+3 \cdot 35+6^{\prime \prime}$.
Constant of nutation $=9.22054^{\prime \prime} \pm 0.00 \$_{59^{\prime \prime}}+0.00000904^{\prime \prime}(t-1850)$.
Constant of aberration $=20.4545^{\prime \prime} \pm 0.01258^{\prime \prime}$.
Time taken by light to traverse the mean radius of the Earth's orbit

Velocity of light $=186337.00 \pm 49.722$ miles per second.
$=299877.64 \pm 80.019$ kilometres per second.

Smithsonian Tables.

* Earth + Moon.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by

$$
P=k w^{\prime} a z^{2}
$$

where k is a constant depending on the units employed, w the mass of unit volume of the air, A the area of the surface and v the velocity of the wind.* Enginecrs generally use the table of values of P given by Smeaton in 1759 . This table was calculated from the formula

$$
P=.00492 v^{2}
$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$
P=.00228 v^{2} .
$$

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's \dagger experiments give $k w=.00166$ at ordinary barometric pressure and $10^{\circ} \mathrm{C}$. temperature.
For planes inclined at an angle a less than 90° to the direction of the wind the pressure may be expressed as

$$
P_{\alpha}=F_{\alpha} P_{90}
$$

Table irS, founded on the experiments of Langley, gives the value of F_{a} for different values of a. The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

TABLE 118. - Values of F_{a} in Equation $P_{a}=F_{a} P_{30}$.

Plane $30 \mathrm{in} . \times_{4} .8 \mathrm{in}$. Aspect 6 (nearly).		Plane is in. $X_{\text {i2 }} \mathrm{in}$. Aspect I .		Plane 6 in. $X_{24} \mathrm{in}$. Aspect $\frac{1}{6}$.	
a	F_{α}	a	F_{α}	a	F_{α}
0°	0.00	0°	0.00	0°	0.00
5	0.28	5	0.15	5	0.07
10	0.44	10	0.30	10	0.17
15	0.55	15	0.44	15	0.29
20	0.62	20	0. 57	20	0.43
25	0.66	25	0.69	25	0.58
30	0.69	30	0.78	30	0.71
35	0.72	35	0.84	-	-
40	0.74	40	0.88	-	-
45	0.76	45	0.91	-	-
50	0.78	50	-	-	-

[^30]
AERODYNAMICS.

On the basis of the results given in Table 1 i $\$$ Langley states the following condition for the soaring of an aeroplane 76.2 centimetres long and 12.2 centimetres broad, weighing 500 grammes, - that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6 .

TABLE 119. - Data for the Soaring of Planes $76.2 \times 12.2 \mathrm{cms}$. welghing 600 Grammes, Aspect 6.

Inclination io the horizontal a.	Soaring speed v.		Work expended per minute (aclivity).		Weighs of planes of like form, capable of soaring at speed v with the expenditure of ont liorse power.	
	Melres per sec.	Feet per sec.	Kilogramme metres.	Foot pounds.	Kilogrammes.	Pounds.
20	20.0	66	24	174	95.0	209
5	15.2	50	41	297	55.5	122
10	12.4	41	65	474	34.8	77
15	11.2	37	86	623	26.5	58
30	10.6	35	175	1268	13.0	29
45	11.2	37	336	2434	6.8	15

$$
\begin{aligned}
\text { In general, if } \rho & =\frac{\text { weight }}{\text { area }} \\
\text { Soaring speed } v & =\sqrt{\frac{\rho}{k} \cdot \frac{1}{F_{\alpha} \cos a}} \\
\text { Activity per unit of weight } & =v \tan a
\end{aligned}
$$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about I^{12} the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be a, and the angle between the clirection of resultant air pressure and the normal to the direction of motion be β. Then $\beta<a$, and the soaring speed is $v=\sqrt{\frac{\rho_{k} \cdot \frac{1}{F_{\alpha} \cos \beta}}{}}$, while the activity per unit of weight $=v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination a	$=-3^{\circ}$	0°	$+3^{\circ}$	6°	9°	12^{0}
Inclination factor F_{a}	$=0.20$	0.50	0.75	0.90	1.00	1.05
$\tan \beta$	$=0.01$	0.02	0.03	0.04	0.10	0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination a is zero or even slightly negative. Above $\alpha=12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TABLE 120. - Total Intensity of the Terrestrial Magnetic Field.

This table gives in the top line the total intensity of the terrestrial magnetic field for the longitudes given in the firs column and the latitudes given in the body of the table. Under the headings $13,13.5$ and 13.75 there are sometimes several entries for one longitude. This indicates that these bines of total force cut the same longitude finc more than once. The isodynamic lines are peculiaty curved and looped north of Lake Ontario. The values are for the epoch January $1,1 \$ 5$, and the intensities are in Lritish and C. G. S. units.

Longitude.	$\begin{gathered} 10.5 \\ \text { or } \\ .48 .41 \end{gathered}$	$\begin{gathered} 11.0 \\ \text { or } \\ .5072 \end{gathered}$	$\begin{gathered} 11.5 \\ \text { or } \\ 5302 \end{gathered}$	$\begin{gathered} 12.0 \\ \text { or } \\ .5533 \end{gathered}$	$\begin{gathered} 12.5 \\ \text { or } \\ .57^{64} \end{gathered}$	13.0 or	5994	13.5 or 6225				13.75 or .6340	
\bigcirc	\bigcirc	\bigcirc	o	0	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-
67	-	-	-	-	-	$44 \cdot 5$	$45 \cdot 5$	-	-	-	-	-	-
68	-	-	-	-	-	43.1	48.2	-	-	-	-	-	
70	-	-	-	-	-	41.9	-	-	-	-	-	-	-
72	-	-	-	-	-	40.6	-	-	-	-	-	-	-
75	-	-	-	-	-	36.7	-	-	-	-	-	-	-
76	-	-	-	-	-	36.4	-	44.7	-	-	-	-	-
77	-	-	-	-	-	36.0	-	43.6	$45 \cdot 4$	-	-	-	-
78	-	22.6	24.5	-	-	34.1	-	$43 \cdot 3$	45.2	-	-	-	-
So	-	22.8	24.5	27.9	31.2	35.1	-	43.9	44.6	-	-	-	-
SI	-	22.8	24.5	27.1	31.2	$35 \cdot 5$	-	41.4	41.9	$44 \cdot 3$	$45 . S$	-	-
82	-	22.8	2.4 .6	26.4	31.3	$35 \cdot 5$	-	41.2	42.1	43.6	$45 . S$	-	-
83	-	22.7	24.8	26.6	31.2	35.2	-	41.0	46.2	-	-	-	-
85	19.6	22.2	25.0	27.9	30.8	3.4	-	40.8	47.6	-	-	$45 \cdot 5$	46.1
86	19.5	22.3	-	28.3	30.6	$35 \cdot 3$	-	41.1	48.0	-	-	45.2	47.4
S7	20.0	22.5	-	28.6	30.4	35.5	-	41.9	48.4	-	-	43.2	47.7
90	20.1	22.5	-	29.9	31.9	36.6	-	41.6	49.1	-	-	43.2	4S.2
92	20.1	22.3	_	29.3	33.3	$37 \cdot 4$	-	41.7	50.2	-	-	44.7	4S.2
95	20.0	22.3	-	28.3	33.1	37.2	-	41.2	-	-	-	43.7	-
100	20.0	22.8	-	30.0	34.1	39.0	-	41.4	-	-	-	42.7	-
105	21.7	24.4	-	33. 1	36.1	39.8	-	43.6	-	-	-	44.5	-
110	23.2	26.9	31.2	34.4	37.7	41.6	-	45.2	-	-	-	47.0	-
115	-	29.1	31.8	36.2	40.1	44.5	-	-	-	-	-	-	-
120	-	30.7	34.7	37.8	42.3	46.4	-	-	-	-	-	-	-
12.4	-	-	-	39.6	44.2		-	-	-	-	-	-	-

TABLE 121. - Secular Variation of the Total Intensity.
Values in British units of total intensity of terrestrial magnetic force at stations given in the first column and epochs January x of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge.	13.48	13.33	13.21	13.22	I 3.37	13.45	13.49	13.39	13.14	12.79
New llaven	13.47	13.40	13.25	13.11	13.20	13.33	13.41	13.41	13.29	13.05
New York	13.56	13.51	13.39	13.27	13.32	13.36	13.36	13.31	13.19	12.99
Sandy llook.	13.70	13.59	13.36	13.17	13.23	13.35	13.40	13.39	13.30	13.13
Albany	13.68	13.65	13.72	13.50	${ }_{13}{ }^{1} \cdot 57$	13.93	13.92	13.52	13.61	13.27
Philadelphia.	13.52	13.44	13.45	13.47	13.51	I 3.55	13.58	13.57	13.49	13.25
Paltimore.	13.56	I 3.45	13.38	13.37	13.44	13.46	13.48	13.48	13.38	13.22
Washington	1.343	13.36	13.31	13.34	I 3.39	13.42	13.42	13.38	13.29	13.20
Toronto.	1.1 .03	13.93	13.95	13.91	13.82	${ }_{13} 3.82$	13.77	13.78	13.78	13.76
Cleveland	13.85	13.75	13.76	12.75	13.78	13.83	13.84	13.81	I 3.74	13.61
1)etroit.	13.85	13.50	13.71	${ }^{1} 3.65$	13.72	13.75	13.76	13.78	13.73	13.62

[^31]Smithsonian Tables.

TERRESTRIAL MAGNETISM.
Tables 122, 123.
TABLE 122. - Values of the Magnetic Dip.
This table gives for the epoch January 1,1855 , the values of the magnelic dip, stated in first column, corresponding to the longitudes given in the top line and the latitudes given in the body of the table. "Thus, for longitude $95^{\text {2 }}$ and latitude 30^{\prime} the dip was $5 y^{\circ}$ on Jomuary $1,18 \5. 'The longitudes are west of Greenwich. for positions above the division line in the table the dip was increasing, and for positions below that line decreasing, in 1885.

Dip.	Longitudes west of Greenwich.												
	66°	70°	75°	80°	85°	90°	95°	$10{ }^{\circ}$	105°	110°	$115{ }^{\circ}$	120^{3}	124°
-	-	0	。	-	-	-		-	\bigcirc	-	-	-	-
44	-	-	-	-	-	17.9	1 S. 4	19.1	19.6	-	-	-	-
45	-	-	-	-	-	18.7	19.2	19.8	20.3	-	-	-	-
6	-	-	-	-	-	19.2	19.8	20.6	21.1	-	-	-	-
	-	-	-	-	-	20.0	20.5	21.2	21.8	-	-	-	-
8	-	-	17.9	-	-	20.5	21.2	21.9	22.5	23.3	_	_	-
9	-	-	IS. 7	-	-	21.2	21.9	22.6	23.2	24.0	-	-	-
50	-	-	-	-	21.4	22.1	22.7	23.5	24.1	24.7	-	-	-
1	-	-	-	-	22.2	22.8	23.6	$24 \cdot 3$	24.8	25.5	-	_	-
2	-	-	-	22.4	23.0	23.7	24.4	25.1	25.6	26.3	27.4	-	-
3	-	-	-	$23 \cdot 3$	23.9	2.4 .5	25.2	25.9	26.5	27.1	28.2	-	-
4	-	-	-	24.0	24.7	25.3	20.0	26.7	27.2	28.1	29.0	-	-
55	-	-	-	24.8	25.5	26.1	26.8	27.5	28.1	28.9	29.9	-	-
6	-	-	24.7	25.6	26.3	26.9	27.5	28.1	28.9	29.7	30.6	-	-
7	-	-	-	26.4	27.1	27.7	28.3	28.9	29.7	30.6	3 I .4	-	-
8	-	-	-	27.3	27.9	$2 S .5$	29.1	29.3	30.5	31.4	32.3	-	-
9	-	-	-	28.0	28.7	29.4	30.0	30.6	31.5	32.4	$33 \cdot 3$	34.4	-
60	-	-	-	28.6	29.6	30.2	30.8	31.5	32.4	33.4	$34 \cdot 3$	$35 \cdot 3$	-
1	-	-	-	29.9	30.3	30.9	31.7	32.4	$33 \cdot 3$	34.2	$35 \cdot 3$.36.2	-
2	-	-	-	30.6	3 L .3	31.9	32.5	33.3	34.3	35.2	36.3	37.1	-
3	-	-	-	31.6	32.0	32.7	33.6	34.2	35.2	36.2	37.1	$3 \mathrm{S}$.	39.0
4	-	-	-	32.7	33.2	33.6	34.5	35.2	36.1	37.2	38.1	39.0	40.3
65	-	-	-	33.5	34.0	34.6	35.5	36.2	37.1	38.2	39.2	40.3	41.5
6	-	-	-	34.3	35.0	35.8	36.5	37.2	38.1	39.2	40.3	41.5	42.5
7	-	-	35.1	35.3	35.9	36.6	37.2	38.2	39.1	40.2	41.4	42.5	43.6
S	-	-	35.8	36.0	36.6	37.5	38.2	39.2	40.0	41.2	42.4	43.6	44.7
9	-	-	37.0	37.5	37.6	38.5	39.2	40.0	41.2	42.2	43.5	44.6	45.7
70	-	-	38.0	38.5	39.0	39.6	40.4	41.0	42.1	$43 \cdot 3$	$44 \cdot 5$	45.6	46.9
1	-	-	39.1	39.5	39.8	40.7	41.1	$41 . S$	43.2	$44 \cdot 3$	45.7	47.2	47.9
2	-	-	40.4	40.3	40.9	41.6	42.1	43.1	$44 \cdot 3$	45.5	47.1	48.6	49.2
3	-	41.7	41.2	41.9	42.2	42.7	43.4	4.4 .4	$45 \cdot 5$	46.9	48.6	50.0	-
4	43.5	43.1	42.9	43.1	$43 \cdot 4$	43.9	44.5	45.6	46.7	48.3	49.7	-	-
75	44.9	44.5	44.3	44.0	44.5	45.0	45.7	46.7	4 S. 0	49.5	51.0	-	-
6	45.7	45.9	45.5	45.4	45.5	46.1	47.1	48.2	49.5	50.7	-	-	-
7	$47 \cdot 3$	47.6	46.7	46.9	47.0	47.4	43.3	$49 \cdot 4$	50.6	-	-	-	-
8		-	-	48.2	48.0	48.8	49.7	50.7	51.8	-	-	-	-
9	-	-	-	$49 \cdot 3$	$49 \cdot 3$	-	51.0	51.9	-	-	-	-	-
80	-	-	-	50.4	50.4	-	-	-	-	-	-	-	-

TABLE 123. - Secular Variation of the Magnetic Dlp.
Values of magnetic dip at stations given in the first column, and epochs, January $\mathbf{1}$, of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge .	74.25	74.29	74.35	74.40	74.42	74.38	74.26	74.02	73.65	73.12
New Haven	73.47	73.51	73.56	73.61	73.64	73.62	73.5.4	73.38	73.11	72.72
New York	72.75	72.73	72.75	72.78	72.80	72.78	72.71	72.56	72.31	71.93
Sandy Ilook	72.63	72.61	72.63	72.66	72.68	72.66	72.59	72.44	72.19	$7 \mathrm{I} . \mathrm{SI}_{1}$
Albany	74.75	74.80	74.88	74.96	75.02	75.02	74.95	74.77	74.46	73.99
Philadelphia	71.99	72.02	72.08	72.15	72.20	72.21	72.16	72.02	71.77	71.38
Baltimore	71.74	71.66	71.66	71.69	71.74	71.77	71.76	71.67	71.48	71.16
Washington	71.39	71.39	71.38	71.36	71.32	71.25	71.15	71.00	70.80	70.55
Toronto	75.28	75.25	75.32	75.39	7541	75.35	75.27	75.20	75.03	74.88
Cleveland	73.22	73.19	73.21	73.24	73.2 S	73.29	73.27	73.18	73.03	72.78
Detroit	73.61	73.61	73.63	73.66	73.65	73.69	73.67	73.60	73.47	73.28

Smithsonian Tables.

Tables 124, 125.
TERRESTRIAL MACNETISM.
TABLE 124. - Horizontal Intensity.
This table gives, for the epoch January $1,{ }^{8} S_{5}$, the horizontal intensity, H, corresponding to the longitudes in the top line and the latitudes in the body of the table. At epoch is85 the force was increasing for positions above the division line, and was decheasing for positions below the division line.

$\begin{aligned} & H \\ & \text { in Hritish } \\ & \text { units. } \end{aligned}$	Longitudes west of Greenwich.													$\underset{\text { in C.G.S. }}{\substack{H \\ \text { mints. }}}$
	65^{3}	70°	75°	80^{3}	85	90°	95°	100°	105°	110°	$115{ }^{\circ}$	120°	124°	
	\bigcirc	。	-	。	-	-	-	-	-	-	-	-	-	
2.50	-	-	-	-	498	-	-	-	-	-	-	-	-	. 1153
2.75	-	-	-	48.5	43.8	49.8	-	-	-	-	-	-	-	. 1268
3.00	483	47.3	46.6	47.2	47.6	48.5	49.1	50.1	-	-	-	-	-	.1383
325	45.5	45.6	45.5	45.8	46.1	46.7	47.6	48.5	-	-	-	-	-	. 1495
$3 \cdot 50$	43.2	43.8	43.6	44.0	44.6	45.1	45.'	47.2	-	-	-	-	-	. 1614
3.75	-	42.2	42.5	42.6	43.2	43.6	44.6	45.8	$47 \cdot 3$	48.4	49.4	-	-	. 1729
4.00	-	40.7	41.2	41.5	42.1	42.4	43.4	44.6	$45 \cdot 7$	46.8	47.7	48.7	49.6	. 18.44
4.25	-	-	39.6	40.2	40.4	41.0	41.8	43.0	44.2	45.4	46.3	47.0	47.6	. 1959
4.50	-	-	38.1	38.7	39.2	39.7	40.4	41.6	42.8	43.5	44.6	45.2	45.7	. 2075
4.75	-	-	36.6	37.4	37.6	38.4	39. I	39.9	41.0	42.0	42.8	43.6	44.2	.2190
5.00	-	-	35.1	35.8	36.2	36.9	37.8	38.5	39.3	40.3	41.1	41.9	42.6	. 2305
5.25	-	-		34.6	35.2	35.4	35.9	37.0	38.0	37.7	39.2	39.6	39.8	. 2422
5.50	-	-	-	33.0	33.8	33.8	34.5	35.3	36.3	36.7	37.2	37.7	37.4	. 2536
5.75	-	-	-	31.0	32.2	32.1	32.7	33.6	34.7	34.8	35.2	35.6	-	. 2651
6.00	-	-	-	28.8	30.6	30.3	31.0	31.6	31.9	32.3	33.1	33.6	-	.2766
6.25	-	-	-	27.4	29.2	28.1	29.8	29.9	-	-	31.1	-	-	. 2881
6.50	-	-	24.1	25.8	27.3	27.3	27.7	28.0	28.2	28.4	28.6	-	-	. 2997
6.75	-	-	-	23.6	-	-	-	-	-	26.1	-	-	-	. 3112
7.00	-	-	18.2	20.8	22.1	22.5	22.8	23.0	23.2	2.4 .0	-	-	-	. 3228
7.25	-	-	-	-	-	19.5	19.9	20.3	20.5	21.2	-	-	-	. 3343

TABLE 125. - Secalar Variation of the Horlzontal Intensity.

Values of the horizontal intensity, H, in British units, for stations given in first column and epochs given in top line. The yalues for 1890 and 1895 have been extrapolated from the values up to 1885 . The epochs are for January i of the different years given.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885	1890	1895
Cambridge	3.66	3.61	3.56	3.55	3.59	3.62	3.66	3.68	3.70	3.71	3.73	3.74
New llaven	3.83	3.80	3.75	3.70	3.72	3.76	3.80	3.83	3.86	3.87	3.87	3.86
New York.	4.02	4.01	3.97	3.93	3.94	3.95	3.97	3.99	4.01	4.03	4.05	4.07
Sandy Ilook	4.09	4.06	3.99	3.92	3.94	3.95	4.01	4.04	4.07	4.10	4.13	4.16
Albany	3.60	3.58	3.55	3.58	3.58	3.60	3.61	3.63	3.64	3.66	3.67	3.69
1'hiladelphia	4.18	4.15	4.14	4.13	4.13	4.14	4.16	4.19	4.22	4.23	4.24	4.24
13attimore	4.25	4.23	4.21	4.20	4.21	4.21	4.22	4.24	4.25	4.27	4.28	4.30
Washington	4.25	4.26	4.25	4.26	4.29	4.31	4.33	4.35	4.37	4.39	4.41	4.42
Toronto	3.56	$3 \cdot 54$	3.53	3.51	3.48	3.49	3.50	4.52	3.56	$3 \cdot 58$	4.60	4.61
Cleveland	4.00	3.98	3.97	3.96	3.96	3.97	3.98	3.99	4.01	4.03	4.05	4.07
Detroit	3.91	3.89	3.86	3.85	3.85	3.86	3.87	3.89	3.90	3.92	3.93	3.94
San liego .	6.12	6.19	6.22	6.25	6.26	6.24	6.20	6.15	6.10	6.07	6.04	6.03
Santa larbara	5.87	5.93	5.94	5.95	5.96	5.95	5.94	5.92	5.88	5.84	5.80	5.77
Monterey .	5.63	$5 \cdot 71$	5.75	5.77	5.76	5.75	5.72	5.69	5.66	5.65	5.64	5.63
San Francisco	$5 \cdot 49$	$5 \cdot 54$	$5 \cdot 56$	5.57	5.59	5.59	5.58	5.54	$5 \cdot 51$	$5 \cdot 49$	$5 \cdot 47$	$5 \cdot 45$
Fort Vancouver	4.44	4.51	$4 \cdot 55$	4.56	4.58	4.58	$4 \cdot 57$	4.56	$4 \cdot 54$	4.53	4.52	4.52

Smithsonian Tables.

TERRESTRIAL MAGNETISM.

Secular Vartation of Declination in the Form of a Function of the rime for a Number of Stations.
More extended tables will be found in App. 7 of the United States Coast and Geoderic Survey Keport for 1888 , from which this able has been comphed. Lhe variable m is reckoned from the epuch i 50 and thus $=t-1850$.

[^32]| Station. | 1800 | 1810 | 1820 | 1830 | 1840 | 1850 | 1860 | 1870 | 1880 | 1890 | 1900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | - | - | | | - | - | - | - | - | - | \bigcirc |
| St. Johns, N. F | 23.5 | 25.0 | 26.5 | 28.0 | 29.0 | 29.9 | 35.0 | 30.8 | 30.8 | 30.5 | 29.9 |
| Quebec, Canada . | 12.1 | 12.1 | 12.3 | 12.9 | 13.5 | 14.9 | 16.0 | 16.9 | 17.4 | 17.5 | 17.5 |
| Charlottetown, I. Li. I. | - | - | - | 19.3 | 20.7 | 21.9 | 22.8 | 23.4 | 23.7 | 23.7 | 23.3 |
| Montreal, Canada | S.0 | 7.8 | 7.9 | 8.4 | 9.4 | 10.7 | 12.0 | 13.0 | 13.8 | 14.4 | 15.0 |
| Eastport, Me. . | 13.2 | 14.0 | 14.8 | 15.6 | 16.4 | 17.1 | 17.8 | 18.3 | 18.7 | 18.9 | 19.0 |
| Bangor, Me. | 10.9 | 11.4 | 12.1 | 12.8 | I 3.6 | 14.4 | 15.2 | 15.9 | 16.5 | 16.9 | 17.3 |
| Halifax, N. S. . | 15.9 | 16.7 | 17.4 | 18.2 | 18.9 | 19.4 | 19.9 | 20.3 | 20.6 | 20.7 | 20.7 |
| Burlington, Vt. | $7 \cdot 3$ | 7.2 | 7.5 | S.I | 8.9 | 9.7 | 10.3 | 11.0 | 11.9 | 12.5 | 13.5 |
| Hanover, N. H. | 5.8 | 6.0 | 6.5 | 7.2 | 7.9 | 8.8 | 9.8 | 10.8 | 11.7 | 12.5 | 13.1 |
| Portland, Me. . | 8.5 | 8.9 | $9 \cdot 5$ | 10.1 | 10.8 | 11.6 | 12.3 | 13.0 | 13.6 | 14.1 | 14.4 |
| Rutland, Vt. : | 6.3 | 6.2 | 6.5 | 6.9 | 7.6 | 8.5 | 9.4 | 10.4 | 11.3 | 12.3 | 13.0 |
| Portsmouth, N. H. | $7 \cdot 4$ | 7.7 | 8.1 | 8.7 | 9.5 | 10.3 | II.I | 11.9 | I 2.7 | 13.3 | 13.7 |
| Chesterfield, N. H. . | - | 6.0 | 6.4 | 7.0 | 7.7 | S. 5 | 9.4 | 10.3 | 11.2 | 12.0 | 12.6 |
| Newluryport, Mass. | $7 \cdot 3$ | 7.6 | S.I | 8.6 | 9.3 | 10.0 | 10.7 | 11.4 | 12.0 | 12.5 | 12.8 |
| Williamstown, Mass. | 5.7 | 5.9 | 6.3 | 6.8 | $7 \cdot 4$ | 8.1 | S. 6 | 9.6 | 10.3 | 10.9 | 11.4 |
| Allany, N. Y. | $\overline{6}$ | 5.4 | 5.8 | 6.3 | 7.0 | 7.7 | S. 5 | 9.2 | 9.9 | 10.5 | 10.9 |
| Salem, Mass. . | 6.3 | 6.6 | $7 \cdot 2$ | 7.9 | 8.7 | 9.6 | 10.6 | I 1.5 | 12.3 | 13.0 | 13.5 |
| Oxford, N. Y.. | 3.0 | 3.1 | $3 \cdot 4$ | 3.9 | 4.5 | 5.1 | 5.9 | 6.6 | 7.4 | 8.0 | 8.6 |
| Cambridge, Mass. | 7.1 | $7 \cdot 5$ | 8.0 | 3.6 | $9 \cdot 3$ | 10.0 | 10.6 | 11.2 | 11.6 | 11.9 | 12.0 |
| l3oston, Mass. . | 6.9 | $7 \cdot 3$ | 7.8 | S. 4 | 9.0 | 9.7 | 10.3 | 10.9 | 11.5 | 11.9 | 12.2 |
| Provincetown, Mas | 7.2 | 7.7 | 8.2 | S. 9 | 9.6 | 10.2 | 10.9 | 11.5 | 12.0 | 12.4 | 12.6 |
| I'rovidence, R. I. . | 6.5 | 6.5 | 6.7 | $7 \cdot 3$ | 8.2 | 9.2 | 9.8 | 10.2 | 10.8 | 11.6 | 12.1 |
| Hartford, Conn. . | 5.2 | 5.2 | 5.5 | 5.3 | 6.2 | 6.8 | $7 \cdot 4$ | S.0 | S. 6 | 9.2 | 9.8 |
| New Haven, Conn. . | 4.7 | 4.7 | 5.0 | 5.4 | 5.9 | 6.6 | $7 \cdot 3$ | 8.1 | S.8 | 9.5 | 10.1 |
| Nantucket, Mass. . | 6.5 | 7.2 | 7.7 | 5.7 | 9.0 | 9.6 | 10.1 | 10.6 | 11.0 | 11.3 | 11.5 |
| Cold Spring Harbor, N. Y. | 4.7 | 4.9 | 5.2 | 5.6 | 6.1 | 6.7 | $7 \cdot 3$ | 7.9 | 8.4 | 8.9 | $9 \cdot 3$ |
| New York, N. Y. | 4.3 | 4.5 | 4.6 | 5.0 | 5.6 | 6.3 | 6.9 | $7 \cdot 4$ | 7.9 | S. 5 | 9.1 |
| Bethlehem, Pa. . | 2.6 | 2.3 | 2.3 | 2.5 | 2.9 | $3 \cdot 5$ | 4.2 | 5.0 | 5.8 | 6.7 | 7.4 |
| Huntingdon, Pa. . | 1.0 | 0.8 | 0.9 | I.I | 1.5 | 2.1 | 2.7 | 3.5 | 4.2 | 4.9 | 5.6 |
| New Brunswick, N. J. | 2.5 | 2.9 | $3 \cdot 4$ | 4.0 | 4.7 | $5 \cdot 3$ | 6.0 | 6.6 | $7 \cdot 1$ | $7 \cdot 5$ | 7.9 |
| Jamesburg, N. J | 3.1 | 3.1 | 3.4 | 3.8 | $4 \cdot 3$ | 4.9 | 5.6 | 6.3 | 7.0 | 7.6 | 8.2 |
| Ilarrisburg, l'a. . | 0.0 | 0.3 | 0.8 | 1.4 | 2.2 | 2.9 | 3.7 | 4.4 | 5.0 | 5.5 | 5.8 |
| IIatboro, Pa. | $1 . S$ | 2.0 | 2.5 | 3.0 | 3.7 | 4.3 | 5.0 | $5 \cdot 7$ | 6.7 | 7.6 | 8.0 |
| Philadelphia, Pa. | 2.1 | 2.2 | 2.4 | 2.9 | $3 \cdot 4$ | 4.1 | 4.7 | $5 \cdot 4$ | 6.2 | 7.0 | 7.7 |
| Chambersburg, Pa | -0.3 | -0.5 | -0.3 | 0.2 | 0.7 | 1.4 | 2.0 | 2.7 | $3 \cdot 4$ | 4.2 | 5.0 |
| Baltimore, Mcl. | 0.6 | 0.7 | 0.9 | 1.2 | 1.7 | 2.3 | 2.9 | $3 \cdot 5$ | 4.2 | 4.7 | 5.2 |
| Washington, D. C. . | 0.2 | 0.2 | 0.4 | 0.7 | 1.I | 1.5 | 2.5 | 2.9 | 3.7 | $4 \cdot 3$ | 4.6 |
| Cape IIenlopen, Del. | 0.8 | 0.9 | I. 1 | 1.5 | 2.0 | 2.6 | 2.4 | 4.1 | 4.9 | 5.6 | 6.2 |
| Williamsburg, Va. | -0.2 | -0.3 | -0.2 | 0.0 | 0.4 | 0.9 | 1.5 | 2.1 | 2.7 | $3 \cdot 3$ | 3.9 |
| Cape IIenry, Va. . | 0.2 | 0.2 | 0.2 | 0.5 | 0.8 | 1.3 | 1.8 | 2.4 | 2.9 | 3.5 | 3.9 |
| New Berne, N. C. | -1.9 | -1.9 | -1.6 | -1.2 | -0.7 | -0.2 | 0.5 | 1.1 | 1.7 | 2.3 | 2.7 |
| Milledgeville, Ga. | -5.0 | -5.3 | -5.6 | -5.6 | -5.5 | $-5 \cdot 3$ | -5.0 | -4.5 | -4.0 | -3.4 | -2.7 |
| Charleston, S. C. | -4.5 | -4.4 | -4.0 | -3.6 | -3.0 | -2.4 | -1.7 | -1.1 | -0.4 | 0.1 | 0.5 |
| Savannah, Ga. | | -4.7 | -4.7 | -4.5 | -4.2 | -3.8 | -3.3 | -2.7 | -2.1 | -1.4 | -0.9 |
| Paris, France . | 22.6 | 22.3 | 21.9 | 21.8 | 21.8 | 20.9 | I9.I | 17.5 | 16.6 | I 5. 1 | |
| St. Gcorge's Town, 13. I.
 Rio de Janeiro, Bra- | - | - | - | 6.9 | 6.9 | 6.9 | 7.1 | $7 \cdot 5$ | 7.9 | 8.4 | |
| zil | -5.4 | -4.5 | -3.4 | -2.2 | -0.9 | 0.4 | I. 8 | 3. 1 | 4.5 | 5.8 | |

[^33]Smithsonian Tables.

TERRESTRIAL MACNETISM.

Secular Vartation of the Doclination. - Central Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
York Factory, Brit. N. A.	0.1	-2.5	-4.7	-6.5	-7.8	-8.5	-8.6	-8.2	-7.2	-5.6	-3.6
Fort Albany, Brit. N. A.	13.4	12.1	10.9		$9 \cdot 3$		8.8	9.1	9.6	10.3	11.4
Duluth, Minn. ${ }^{\text {d }}$						-9.8	-		-10.1	-9.9	-9.5
Superior City, Wis.			-							-9.9	
Mich.	-0.5	-0.9	-1.I	-1.6	. 0	0.8	0.3	. 2	. 8	1.5	2.2
Pierrepont Manor, N. Y.	-	-	. 6	3.0	$3 \cdot 7$	$4 \cdot 5$	$5 \cdot 4$	6.3	$7 \cdot 2$	8.0	8.8
Toronto, Canada	-	-	-	0.8	1.3	1.6	2.2	2.7	3.6	4.1	4.8
Grand Haven, Mich.	-	-	-5.0	-5.2	-5.2	-4.9	-4.4	-3.7	-2.7	-1.5	-
Milwaukee, Wis. .	-	-	-	-	-	-7.4	-6.9	-6.2	-5.4	-4.5	-3.6
Buffalo, N. Y. .	. 2	0.2	0.4	0.8	1.3	2.0	2.8	$3 \cdot 7$	$4 \cdot 5$	$5 \cdot 3$	6.0
Detroit, Mich.	-3.2	-3.1	-2.9	-2.5	-2.1	-1.6	-1.0	-0.4	0.1	0.6	0.9
Ypsilanti, Mich.	-	-4.1	-3.6	-3.0	-2.2	-1.4	-0.6	0.2	0.9	1.5	1.9
Erie, Pa. . . .	-0.5	-0.5	-0.4	-0.1	0.4	0.9	1.6	2.3	3.0	3.6	$4 \cdot 2$
Chicago, Ill. .	-	-	-6.2	-6.3	-6.2	-6.0	-5.6	-5.1	-4.6	-4.0	-3.3
Michigan City, Ind.	-	-	-	-5.6	-5.4	-5.0	-4.6	-4.0	-3.5	-2.9	-2.3
Cleveland, Ohio	9	-1.7	-1.5	-1.1	-0.6	-0.1	0.4	0.9	1.4	1.9	2.3
Omaha, Neb. .	-	-12.5		-12.6			-11.5	$[-10.9$	-10.2	-9.5	-8.7
Beaver, Penn.	-I. 1	-1.3	-1.3	-I.I	-0.8	-0.3	0.2	0.9	1.5	2.2	2.8
Pittsburg, Pa.	-	-	-	-	0.2	0.7	1.3	1.9	2.5	$3 \cdot 1$	$3 \cdot 5$
Denver, Colo.	-	-	-	-	-		3.1	14.9	-14.5	-14.1	
Marietta, Ohio	-	-2.9	-2.8	-2.7	-2.3	-1.9	-1.3	-0.6	0.1	0.8	. 4
Athens, Ohio	-4.1	-4.1	-3.9	-3.6	-3.1	-2.6	-2.0	-1.4	-0.7	-0.1	0.4
Cincinnati, Ohio	-4.9	-5.0	-5.0	-4.8	-4.5	-4.1	-3.6	-3.0	-2.4	-1.8	-1.3
St. Louis, Mo.	-	-	-	-8.9	-8.6	-8.2	-7.7	-7.1	-6.4	-5.6	-4.9
Nashville, Tenn.	-	-	-6.7	-6.9	-6.9	-6.7	$7-6.3$	-5.8	-5.1	-4.4	-3.6
Florence, Ala.	-	-6.5	-5.6	-6.5	-6.4	-6.1			-4.8	-4.3	-3.8
Mobile, Ala. .	-5.8	-6.3	-6.7	-7.0	-7.1	-7.0	-6.7	-6.4	-5.8	-5.2	-4.6
Pensacola, Fla. .	-6.8	-7.2	-7.5	-7.6	-7.4	-7.1	-6.6	-6.0		-4.6	-3.8
New Orleans, La. .	-7.1	-7.6	-S.0	-8.1	-8.2	$\begin{aligned} & -8.0 \\ & -10.2 \end{aligned}$	$0\|-7.7\|$	-7.2	$\begin{array}{ll} 2 & -6.6 \\ \hline-0.3 \end{array}$	$\text { — } 5.9$	-5.2
San Antonio, Texas	-	-	-9.8	-10.1	-10.3	-10.2	$2 \mid-10.1$	-9.7	7-9.3	-8.7	-S.1
Key West, Fla.	-	-	-6.9	-6.5	-6.0	-5.5	-4.8	-4.2		-3.0	-2.4
Havana, Cuba . Kingston, Port	-7.0	-6.9	-6.6	-6.3	-5.8	$-5 \cdot 3$	-4.8	-4.2	-3.6	-3.0	-2.5
Kingston, Port Royal, Jamaica	-6.0	-5.8	-5	-5.1	-4.7	-4.3	-3.8	-3.3	-2.9	-2.5	-2.1
Barbadoes, Car. Isi.	-3.4	-3.0	-2.5	-2.0	-1.5	-0.9	-0.4	0.1	0.5	0.9	1.2
Panama, New Gra- nada	-7.9	-7.8	-7.6	-7.3	-7.0	-6.7	-6.3	-5.9	-5.5	-5.0	-4.6

* This table gives the secular variation of the declination since the year 1800 for a series of stations in the Central States and adjacent countries. The minus sign indicates eastern declination. Reference same as Table 127°
Smithsonian Tables.

TERRESTRIAL MAGNETISM.
Secular Variation of the Declination. - Western Stations.*

Starion.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
										-	-
Acapulco, Mex.	7.6	8.I	S. 5	8.7	8.9	8.9	S. 7	S. 5	S.I	7.6	7.1
Vera Cruz, Mex.	8.6	9.0	$9 \cdot 3$	$9 \cdot 3$	9.2	S. 9	S. 4	7.8	7.0	6.2	5.3
City of Mexico, Mex.	$7 \cdot 5$	7.9	8.2	S. 5	8.6	S. 6	S. 5	8.4	8. 1	7.8	$7 \cdot 4$
San Blas, Mex.	7.1	7.8	8.4	8. 9	9.3	$9 \cdot 4$	9.4	9.3	9.0	8.5	7.9
Cape San Lucas, Mex.	6.2	6.9	7.6	S. 3	8.8	9.2	9.5	9.6	9.6	9.4	9.0
Magdalena Bay, L. Cal.	6.6	7.4	S. 2	8.9	9.5	10.0	10.3	10.5	10.5	10.3	10.0
Ceros Island, Mex.	9.0	9.8	10.5	11.0	11.5	11.8	12.0	12.0	11.9	11.6	11.2
El Paso, Mex. .			-	-		12.3	12.5	12.4	12.3	11.9	11.4
San Diego, Cal.	10.3	10.8	I 1.4	11.9	12.3	12.7	13.0	13.2	13.3	13.3	13.2
Santa Barbara, Cal.	11.6	12.3	12.9	13.4	13.9	14.3	14.6	14.8	14.8	14.8	14.6
Monterey, Cal.	12.3	12.9	13.4	13.9	14.4	14.9	$15 \cdot 3$	16.6	15.9	16.0	16.1
San Francisco, Cal.	13.6	14.1	14.5	I 5.0	15.4	15.8	16.1	16.3	16.5	16.6	16.6
Cape Mendocino .	15.1	15.6	16.0	16.5	16.9	17.2	$17 \cdot 4$	17.6	17.7	17.7	17.6
Salt Lake City, Utah			-	5	-	16.0	16.4	16.6	16.6	16.3	15.7
Vancouver, Wash.	16.8	17.5	18.2	18.9	19.6	20.2	20.6	20.9	21.0	21.0	20.8
Walla Walla, Wash.	-	-	-	-	-	20.4	20.8	21.0	21.1	21.0	20.8
Cape Disappointment, Wash.	17.7	18.2	IS.7	19.2	19.8	20.3	20.8	21.2	21.6	21.8	21.9
Seattle, Duwanish Bay, Wash.	-		-	-	-	21.3	21.8	22.1	22.3	22.2	22.1
Port 'lownsend, Wash.	IS.I	IS.S	19.6	20.3	20.9	21.4	21.7	21.8	21.8	21.5	21.1
Nee-ah Bay, Wash.	IS. 3	IS. 9	19.6	20.3	21.0	21.6	22.1	22.5	22.7	22.7	22.6
Nootka, Vancouver Island Captain's and Iliuliuk Itar-	19.6	20.1	20.7	21.3	22.0	22.5	23.0	23.5	23.8	23.9	24.0
bors, Unilaska Island	19.3	19.6	19.7	19.8	19.7	19.7	19.5	19.3	I8.9	18.6	18.2
Sitka, Alaska .	26.4	27.1	27.8	28.3	28.7	29.0	29.1	29.0	28.8	28.4	27.9
St. Paul, Kadiak Island	25.5	26.4	27.0	27.3	27.4	27.1	26.6	25.9	25.0	23.9	22.7
Port Mulgrave, Yakutat Bay, Alaska.	27.8	29.2	30.4	31.2	31.7	31.8	31.4	30.7	29.7	28.4	26.8
Port Etches, Alaska.	27.8	29.3	30.4	31.2	31.6	31.5	31.0	30.1	28.8	27.3	
Port Clarence, Alaska .	-		26.6	27.0	26.9	26.4	25.6	24.4	22.9	21.2	19.5
bue Sound	-	-	31.1	31.3	31.1	30.5	29.6	$2 S .3$	26.8	25.2	23.5
Siberia	$5 \cdot 7$	5.2	4.7	4.1	$3 \cdot 4$	2.7	2.1	I. 5	1.0	0.7	0.5

[^34]Smithsonian Tables.

TERRESTRIAL MACNETISM.

Agonic Lines.*

The line of no declination is moving westward in the United States, and east declination is decreasing west of, while west declination is increasing east of the agonic line.

Lat. N.	Longitudes of the agonic line for the years -			
	1800	1850	1875	1890
-	-	-	-	-
25	-	-	-	75.5
30	-	-	-	78.6
35	-	76.7	79.0	79.9
6	75.2	77.3	79.7	So. 5
7	76.3	77.7	So. 6	82.2
8	76.7	78.3	SI. 3	S2. 6
9	76.9	78.7	8ı. 6	82.2
40	77.0	$79 \cdot 3$	SI. 6	82.7
1	77.9	So. 4	SI. 8	S2.8
2	79.1	SI.O	82.6	S3.7
3	79.4	81.2	S3.1	S4.3
4	79.8	-	S3.3	84.9
45	-	-	83.6	85.2
6	-	-	S4.2	S4.8
7	-	-	85.I	S5.4
8	-	-	S6.0	S5.9
9	-	-	86.5	86.3

* Reference same as Table 127.

Smithsonian Tables.

I I 7

TERRESTRIAL MACNETISM.

Date of Maximum East Declination.*

This table gives the date of maximum east declination for a number of stations, begimning at the northeast of the Utited States and extending down the Atlantic coast to New York and west to the Pacific.

* Reference same as Table 127.
\dagger The opposite phase of maximum west declination is now located at Malifax.
Smithsonian Tables.

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at $o^{\circ} \mathrm{C}$. for mercury and at $\psi^{\circ} \mathrm{C}$. for water.

Metric Measure.			limitish Measurl:。		
$\begin{gathered} \text { Cms, of } \\ \mathrm{Hg} \text {. } \end{gathered}$	Pressure in grammes per $\mathrm{sq} . \mathrm{cm}$.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure ill grammes per sq. cm .	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	$34 \cdot 533$	0.491174
2	27.1912	0.356752	2	69.066	0.982345
3	40.7868	0.580ı 28	3	103.598	1.473522
4	54.3 S24	0.773504	4	138.131	1.964696
5	67.97 So	0.966880	5	172.664	2.455 S 70
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.43 S 218
8	10S.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	$4 \cdot 420566$
10	135.9560	1.933760	10	$345 \cdot 328$	4.911740
Cms. of $\mathrm{H}_{2} \mathrm{O}$.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	$\begin{gathered} \text { Inches of } \\ \mathrm{H}_{2} \mathrm{O} . \end{gathered}$	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	1	0.0142234	1	2.54	0.036227
2	2	0.0284 .468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.150637
6	6	0.0553404	6	I 5.24	0.216764
7	7	0.0995658	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.280019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

Smithsonian Tables.

Table 133.
REDUCTION OF BAROMETRIC HEICHT TO STANDARD TEMPERATURE.*

Corrections for brass scale and English measure.		Corrections for brass scale and metric measure.		Corrections for glass scale and metric measure.	
Ileight of barometer in inches.	α in inclues for temp. F'.	Height of barometer in mm.	$\begin{gathered} \alpha \\ \text { in mm. for } \\ \text { temp. C. } \end{gathered}$	Height of barometer in n m.	a in mm. for temp. C.
150	0.00135	400	0.0651	50	0.0086
16.0	. 00145	410	. 6605	100	. 0172
17.0	. 00154	420	$.065_{4}$	150	. 0258
17.5	. 00158	430	.0700	200	. 0345
18.0	.00163	440	. 0716	250	. 0431
18.5	.00167	450	.0732	300	.0517
19.0	.00172	460	. 0749	350	.0603
19.5	.00176	470	.0765		
		480	.0781	400	0.0689
20.0	0.00181	490	.0797	450	. 0775
20.5	. 00185			500	. 0861
21.0	. 00190	500	0.0813	520	.cSg8
21.5	.00194	510	. 0830	540	. 0934
22.0	.00199	520	. 0846	560	. 0971
22.5	.00203	5.30	.0862	580	.1007
23.0	.00208	540	.0S7S		
23.5	. 00212	550	.0894	600	0. 1034
		560	.0911	610	.1051
24.0	0.00217	570	. 0927	620	. 1068
24.5	. 00221	580	.0943	630	.1085
25.0	.00226	590	. 0959	6.40	.1103
25.5	.0023I			650	. 1120
26.0	.00236	600	0.0975	660	.1137
26.5	. 00240	610	.0992		
27.0	. 00245	620	.100S	670	0.1154
27.5	. 00249	630	.1024	650	.1172
28.0	0.00254	650	.1056	700	.1206
2 2. 5	. 00258	660	.1073	710	.1223
29.0	.00263	670	.1089	720	. 1240
29.2	.00265	650	.1105	730	$.125 S$
29.4	. 00267	690	.1121		
29.6	. 00268			740	0.1275
29.8	.00270	700	0.1137	750	. 1292
30.0	.00272	710	. 1154	700	.1309
		720	.1150	770	.1327
30.2	0.00274	730	. 1186	750	. 1344
30.4	. 00276	740	.1202	790	.1361
30.6	.00277	750	. 1218	800	. 1375
30.8	. 00279	700	.1235		
31.0	.002SI	770	. 1251	850	0.1464
31.2	.00283	750	.1207	900	. 1551
31.4	.00285	790 800	.1253	950	.1639
31.6	.00257	800	.1299	1000	.1723

[^35]
Smithsonian Tables.

CORRECTION OF BAROMETER TO STANDARD GRAVITY.

Smithsonian Tables.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*
Reduction to Latitude 45°. - English Scale.
N. B. From latitude 0° to 44° the correction is to be subtracted.

From latitude 90° to 46° the correction is to be added.

Latitude.		Height of the barometer in inclies.											
		19	20	21	22	23	24	25	26	27	28	29	30
0°	90°	$\begin{aligned} & \text { Incli. } \\ & 0.051 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.053 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.056 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.059 \end{aligned}$	Inch.	$\begin{aligned} & \text { Inch. } \\ & 0.064 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.067 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.069 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.072 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.074 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.077 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.080 \end{aligned}$
5	85	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.065	0.071	0.073	0.076	0.079
6	8.4	. 0.49	.052	. 055	. 057	. 060	. 062	. 065	. 068	. 070	. 073	. 076	.078
7	83	. 049	. 052	. 054	. 057	. 059	. 062	. 065	. 067	. 070	. 072	. 075	. 077
8	S2	.049	. 051	. 054	. 056	. 059	. 061	. 064	. 067	. 069	. 072	. 074	. 077
9	SI	.0.4S	.051	. 053	. 056	. 058	.061	. 063	. 066	. 068	. 071	. 073	. 076
10	80	0.048	0.050	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.073	0.075
11	79	. 047	. 049	.052	. 054	. 057	. 059	. 062	. 064	. 067	. 069	. 072	. 074
12	78	.046	. 0.49	.051	. 054	.056	.058	. 061	. 063	.066	. 068	. 071	. 073
13	77	.045	.0.4S	.050	. 053	. 055	.057	. 060	. 062	.065	. 067	. 069	. 072
14	76	. 0.45	.047	. 0.49	.052	. 054	.056	. 059	.06!	. 063	. 066	. 068	. 071
15	75	0.044	0.046	0.0 .48	0.051	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069
16	74	. 043	. 045	. 047	. 050	. 052	. 054	. 056	. 059	.061	. 063	. 065	. 068
17	73	. 0.42	. 044	. 0.46	. 049	. 051	. 053	. 055	. 057	.060	. 062	. 064	. 066
18	72	. 0.41	.043	. 045	.047	. 050	.052	. 054	. 056	.05S	. 060	.062	. 065
19	71	.0 .40	. 04.42	.044	.046	.0 .48	. 050	.052	. 055	. 057	. 059	. 061	.063
20	70	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.061
21	69	.038	. 0.40	. 0.42	. 0.44	. 0.45	. 047	. 0.49	. 051	. 053	. 055	. 057	. 059
22	68	.036	.038	. 0.40	. 0.42	. 044	. 0.46	.0.48	. 050	.052	. 054	.056	. 057
23	67	. 035	. 037	.039	. 0.41	. 0.43	. 0.44	.0 .46	. 0.48	. 050	.052	. 054	. 055
24	66	. 03.4	. 036	.037	.039	. 041	. 043	.0 .45	.0 .46	.0.48	. 050	. 052	. 053
25	65	0.033	0.034	0.036	0.038	0.039	0.041	0.043	0.044	0.0 .46	0.0 .48	0.050	0.051
26	67	03 I	. 033	. 034	. 036	. 038	. 039	. 041	. 043	. 044	. 046	. 048	. 049
27	63	. 030	.031	. 033	. 03.4	.036	. 038	. 039	.0.41	.042	. 044	. 045	. 047
28	62	.028	.030	.031	. 033	. 034	. 036	. 037	. 039	.040	. 042	. 043	.045
29	61	. 027	.02S	. 030	.03I	.032	. 034	. 035	. 037	.038	. 039	.04I	. 0.42
30	60	0.025	0.027	0.028	0.029	0.031	0.032	0.033	0.035	0.036	0.037	0.039	0.040
31	59	. 024	. 025	. 026	. 027	. 029	. 030	. 03 I	. 032	. 034	. 035	.036	. 037
32	58	. 022	. 023	. 025	. 026	. 027	.028	. 029	.030	.032	. 033	. 034	.035
33	57	. 021	. 022	.023	. 024	. 025	. 026	. 027	. 028	.029	.030	. 031	.032
34	56	. 019	. 020	. 021	. 022	. 023	. 02.4	. 025	. 026	. 027	. 028	. 029	. 030
35	55	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.025	0.026	0.027
36	54	. 016	. 016	.017	. 018	. 019	. 020	. 021	.021	. 022	. 023	. 024	. 025
37	53	. 01.4	. 015	.015	.016	.017	. 018	.018	. 019	. 020	. 021	. 021	. 022
3^{8}	52	. 012	.013	.014	.014	. 015	. 015	.016	. 017	. 017	. 018	. 019	. 019
39	51	. 011	. 011	. 012	. 012	. 013	.013	.014	. 014	. 015	. 015	.016	. 017
40	50	0.009	0.009	0.010	0.010	0.011	O.OI 1	0.012	0.012	0.012	0.013	0.013	0.014
41	49	. 007	. 007	. 008	. 008	. 009	. 009	. 009	. 010	. 010	. 010	. OI 1	. 011
42	48	. 005	.006	.006	. 006	. 006	. 007	. 007	. 007	. 008	. 008	. 008	. 008
43	47	.00.4	. 004	. 004	. 004	. 004	. 00.4	. 005	. 005	. 005	. 005	. 005	. 006
44	46	. 002	.002	. 002	. 002	. 002	. 002	.002	. 002	. 003	. 003	. 003	. 003

[^36]8 mithsonian Tables.

Reduction to Latitudo 45°. Metric Scale.
N. B. - From latitude 0° to 44° the correction is to be subtracted.

From latitude 90° to 4° the correction is to be added.

Latitude.		Ifeight of the barometer in millimetres.											
		520	560	600	620	640	660	680	700	720	740	760	780
		mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.
0°	90°	1.38	1.49	1.60	1.65	1.70	1.76	1. SI_{1}	1.86	1.92	1.97	2.02	2.08
5	85	1.36	1.47	1.57	1.63	1.65	1.73	1.81	I. 84	I. 89	1.94	I. 99	2.04
6	84	1.35	1.46	1.56	1.61	1.67	1.72	1.78	1.82	1.87	1.93	1.98	2.03
7	83	1.34	1.45	I. 55	I. 60	1.65	1.70	1.77	1.81	I. 86	1.91	I. 96	2.01
S	Sz	1.33	1.43	1.54	1.59	1.64	I. 69	1.76	1. 79	$1 . S_{4}$	1.89	1.94	2.00
9	SI	1.32	1.42	1.52	I. 57	1.62	1.67	1.74	I. 77	1. 82	I. 87	1.92	1. 97
10	80	I. 30	1.40	I. 50	I. 55	1.60	1.65	1.70	1.75	1.80	I. 85	1.90	1.95
11	79	1.2S	1.38	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.83	I. 88	1.93
12	78	1.26	I. 36	1.46	I. 51	I. 56	1.60	1.65	1.70	1.75	1.80	1.85	1.90
13	77	1.24	1.34	1.44	1.48	1.53	1. 58	1.63	1. 67	1.72	1.77	1.82	I. 87
14	76	1.22	1.32	I. 41	1.46	1. 50	1. 55	1.60	1.65	1.69	1.74	1.79	I. 83
15	75	1.20	1.29	1. 3 S	1.43	1.48	1.52	1.57	1.61	ェ. 66	1.71	1.75	I. 80
16	74	1.17	1.26	I. 35	1.40	I. 44	I. 49	1.54	I. 5 S	1.63	I. 67	1.72	I. 76
17	73	1.15	1.24	1.32	1.37	1.41	1.45	1.50	1.54	1.59	1.63	1.68	1.72
IS	72	1.12	1.21	I. 29	I. 34	1.38	1.42	1.46	1.51	I. 55	1.59	1.64	I. 65
19	71	1.09	1.17	1. 26	1.30	1.34	1.38	1.43	1.47	1.51	I. 55	1.59	I. 64
20	70	1.06	1.14	1.22	1. 26	1.31	I. 35	1.39	1.43	I. 47	1.51	1. 55	1.59
21	69	1.03	I.11	1.19	1.23	1.27	1.31	1.35	1.38	I. 42	I. 46	1.50	I. 54
22	68	1.00	1.07	1.15	1.19	1.23	1.26	1.30	1.34	1.35	1.42	I. 46	1.49
23	67	0.96	1.04	I. 11	1.15	I.15	1.22	1. 26	1.29	1.33	1.37	1.41	1.44
24	66	. 93	1.00	1.07	1.10	1.14	1.18	1.21	1.25	1.23	1.32	1.35	1.39
25	65	0.89	0.96	1.03	1.06	1.10	I. 13	1.16	1.20	1.23	1.27	1. 30	1.33
26	6.4	. 5	. 92	0.95	1.02	1.05	1.08	I.II	I.I 5	1.15	1.21	I. 25	1.25
27	63	. Si_{1}	. $\mathrm{S}^{\text {S }}$. 94	0.97	1.00	1.03	1.06	1.10	1.13	1.16	1.19	1.22
28	62	. 77	. 83	. 89	. 92	0.95	0.95	1.01	1. 04	1.07	I. 10	1.13	1.16
29	61	. 73	. 79	. 85	. 87	. 90	. 93	0.96	0.99	1.02	1.04	1.07	1.10
30	60	0.69	0.75	0.80	0.83	0.85	0.88	0.91	0.94	0.96	0.05	1.01	1.04
31	59	. 65	. 70	. 75	. 77	. 80	. 82	. 85	. 87	. 90	. 92	0.95	0.97
32	58	. 61	.65	. 70	. 72	. 75	. 77	-79	. S 2	. ${ }^{-4}$. 86	. 89	. 91
33	57	. 56	. 61	. 63	. 67	. 69	. 71	. 74	. 76	.78	. So	. 82	. 8.4
34	56	. 52	. 56	. 60	. 62	. 64	. 66	. 68	. 70	.72	. 74	. 76	. 78
35	55	0.47	0.51	0.55	0.56	0.58	0.60	0.62	0.64	0.66	0.67	0.69	0.71
36	54	43	. 46	. 49	. 51	. 53	. 54	.56	. 58	. 59	. 61	. 63	. 64
37	53	. 35	. 41	. 44	. 45	. 47	48	. 50	. 51	. 53	-5.4	. 56	. 57
3^{S}	52	. 33	- 36	. 39	. 40	-41	. 43	. 44	.45	-46	. 4^{8}	.49	. 50
39	51	.29	. 31	$\cdot 33$. 34	$\cdot 35$	$\cdot 37$	$\cdot 3^{8}$. 39	. 40	.41	. 42	.43
40	50	0.24	0.26	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.35	0.36
41	49	. 19	. 21	. 22	. 23	. 24	. 24	. 25	. 26	. 27	. 27	. 28	. 29
42	48	14	. 16	.17	.17	. 18	. I8	. 19	.19	. 20	. 21	. 21	. 22
43	47	. 10	. 10	. 11	. 12	. 12	. 12	. 13	. 3	.13	. 14	.14	. 14
44	46	. 05	. 05	. 06	. 06	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 07

* "Smithsonian Metcorological Tables," p. 59.

[^37]Table 137.

1. Metric Measure.								
Diameter of tube in mm .	Height of Meniscus in Millimetres.							
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
	Correction to be added in millimetres.							
4	0.83	1.22	1.54	1.98	2.37	-	-	-
5	.47	0.65	0.56	1.19	1.45	1.50	-	-
6	. 27	. 41	.56	0.78	0.98	1.21	1.43	-
7	. 18	. 28	. 40	. 53	. 67	0.82	0.97	1.13
8	-	. 20	. 29	. 3 S	. 46	. 56	. 65	0.77
9	-	. 15	. 21	. 28	. 33	.40	. 46	. 52
10	-	-	. 15	. 20	. 25	. 29	. 33	. 37
11	-	-	. 10	. 14	. 18	. 21	. 24	.27
12	-	-	. 07	. 10	. 13	. 15	. IS	. 19
13	-	-	.04	.07	.10	12	. 13	. 14
2. British Measure.								
Diameter of tube in inches.	Height of Meniscus in Inches.							
	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08
	Correction to be added in hundredths of an inch.							
. 15	2.36	4.70	6.86	9.23	11.56	-	-	-
. 20	1.10	2.20	3.28	4.54	5.94	7.85	--	-
.25	0.55	1.20	1.92	2.76	3.68	4.72	5.88	-
- 30	$.36$	0.79	1.26	1.77	2.30	2.58	$3 \cdot 18$	4.20
.35	-	. 51	0.82	1.15	1.49	1.85	2.24	2.65
. 40	-	. 40	.6I	0.81	1.02	1.22	1.42	1.62
.45	-		$\cdot 32$. 51	0.68	0.83	0.96	1.15
$.50$	-	-	. 20	-35	.47	. 56	. 64	0.71
. 55	-	-	. 08	. 20	. 31	. 40	. 47	$\cdot 5^{2}$

* The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1867). 'The second table has been calculated from the same data by conversion into inches and graphic interpolation.

A number of tables, mostly based on theoretical formulx and the capillary constants of mercury in glass tubes in air and vacuum, were given in the fourth edition of Guyot's Tables, and may be there referred to. 'They are not repeated liere, as the above is probably more accurate, and historical matter is cxcluded for convenicuce in the use of the book.
Smithsonian Tableg.

*This table contains the volumes of different gases, supposed measured at $0^{\circ} \mathrm{C}$. and 76 centimetres' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption cocfficients for the gases in water, or in alcolsol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr \& Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano \& Emo, Raoult, Schönfeld, Sctschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. - The effect of increase of pressure is gencrally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of $23^{\circ} \mathrm{C}$. :

$$
\left\{\begin{array}{lllll}
P=45 \mathrm{cms} . & 50 \mathrm{cms} . & 55 \mathrm{cms} . & 60 \mathrm{cms} & 65 \mathrm{cms} \\
\mathrm{a}_{23}=69 & 74 & 79 & 84 & 88
\end{array}\right.
$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimetres in the case of carbonic acid in water is very small.
Gmithsonian Tables.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority.

$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \\ & \text { Cent. } \end{aligned}$	Acetone. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	Benzol. $\mathrm{C}_{6} \mathrm{H}_{8}$	Carbon bisul${ }^{\text {phide. }}$	Carbon tetrachloride. CCl_{4}	Chloroform. CHCl_{3}	$\begin{gathered} \text { Ethyl } \\ \text { alcohol. } \\ \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \end{gathered}$	$\begin{gathered} \text { Ethyl } \\ \text { ether. } \\ \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \end{gathered}$	$\begin{aligned} & \text { Ethyl } \\ & \text { bromide. } \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \end{aligned}$	Methyl alcohol. $\mathrm{CH}_{4} \mathrm{O}$	Turpen tine. $\mathrm{C}_{10} \mathrm{H}_{6}$
-25°	-	-	-	-	-	-	-	4.41	41	-
-20	-	. 58	4.73	. 98	-	. 33	6.89	5.92	. 63	
- 5	-	. 88	6.16	I. 35	-	. 51	S.93	7.81	.93	-
-10	-	1.29	7.94	1.85	-	. 65	11.47	10.15	1.35	
-5	-	1.83	10.13	2.48	-	. 91	14.61	13.06	1.92	-
0	-	2.53	12.79	3.29	-	1.27	18.44	16.56	2.68	. 21
5	-	3.42	16.00	$4 \cdot 32$	-	1.76	23.09	20.72	3.69	-
10	-	4.52	19.85	5.60	-	2.42	28.68	25.74	5.01	. 29
15	-	5.89	24.41	7.17	-	$3 \cdot 30$	35.36	31.69	6.71	-
20	17.96	$7 \cdot 56$	29.80	9.10	16.05	4.45	43.28	38.70	S.87	. 44
25	22.63	$9 \cdot 59$	36.11	11.43	20.02	5.94	52.59	46.91	11.60	
30	2 S. 10	12.02	43.46	14.23	24.75	7.85	${ }_{63}{ }^{-6.12}$	56.45	15.00 19.20	. 69
35	$34 \cdot 52$	14.93	51.97	17.55	30.35	10.29	76.12	67.49 80.19	19.20	- 1.08
40	42.01	18.36	61.75	21.48	36.93	13.37	90.70 107.42	80.19 94.73	24.35 30.61	1.08
45	50.75	22.41	72.95	26.08	44.60	17.22	107.42	94.73	30.61	
50	62.29	27.14	85.71	31.44	53.50	21.99	126.48	111.28	38.17	1.70
55	72.59	32.64	100.16	37.63	63.77	27.86	148.11	130.03	47.22	
60	86.05	39.01	116.45	44.74	75.54	35.02	172.50	151.19	57.99	2.65
65	101.43	46.34	134.75	52.87	88.97	43.69	199.59	174.95	70.73 85.71	
70	11 I .94	54.74	155.21	62.11	10.4 .21	54.11	230.49	201.51	85.71	4.06
75	138.76	64.32	177.99	72.57	121.42	66.55	264.54	231.07	103.21	I
So	161.10	75.19	203.25	8.4 .33	140.76	81.29	302.28	263.56	123.85	6.13
S 5	186.18	87.46	231.17	97.51	162.41	98.64	343.95	300.06	147.09	
90	214.17	101.27	261.91	112.23	186.52	I 18.93	389.83	339.59 3	174.17 205.17	9.06
95	245.28	116.75	296.63	128.69	213.28	142.51	440.18	353.55	205.17	
100	279.73	134.01	332.51	146.71	242.85	169.75	495.33	431.23	240.51	13.11
105	317.70	153.18	372.72	166.72	275.40	201.04	555.62	483.12	280.63	18.60
110	359.40	174.14	416.41	188.74	311.10	236.76	62 I .46	539.40	325.96 376.95	18.60
115	405.00	197.82	463.74	212.91	350.10	277.34	693.33	600.24	376.95 434.18	25.70
120	454.69	223.54	514.58	239.37	392.57	323.17	771.92	665.80	434.18	25.70
125	508.62	251.71	569.97	268.24	438.66	374.69	-	736.22		-
130	566.97	282.43	629.16	299.69	488.51	432.30	-	81 r .65	569.13	34.90
I 35	629.87	315.85	692.59	333.86	542.25	496.42	-	892.19	647.93	${ }_{46.40}$
140	697.44	352.07 391.21	760.40 832.69	370.90 411.00	600.02 661.92	567.46 645.80	-	977.90	733.71 830.89	46.40
145	-	391.21	832.69							
150	-	$433 \cdot 37$	909. 59	454.31	728.06	731.84	-	-	936.13	60.50
155	-	478.65	-	501.02	798.53	825.92	-	-	-	68.60
110	-	527.14	-	551.31	873.42	-	-	-	-	77.50
165	-	568.30	-	$605 \cdot 3^{8}$	952.78	-	-	-	-	-
170	-	634.07	-	663.44	-	-	-	-	-	-

Bmithsonian Tables.

VAPOR PRESSURES.

Tem-perature: grade.	$\underset{\mathrm{NH}_{3}}{\mathrm{Ammonia}}$	Carbon dioxide. CO_{3}	$\begin{aligned} & \text { Euhyl } \\ & \text { clloride. } \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \end{aligned}$	$\begin{aligned} & \text { Eithyl } \\ & \text { iodide. } \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{I} \end{aligned}$	Methyl chloride. $\mathrm{CH}_{3} \mathrm{Cl}$	Methylic ether. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Nitrous oxide. $\mathrm{N}_{2} \mathrm{O}$	$\begin{aligned} & \text { Pictet's } \\ & \text { fluid. } \\ & 6+\mathrm{CS}_{2}+ \\ & 46 \mathrm{Ci} \mathrm{O}_{2} \\ & \text { Weight } \\ & \text { per cent. } \end{aligned}$	Sulphur dioxide. SO_{2}	Hydrogen sulphice. $\mathrm{H}_{2} \mathrm{~S}$
-30°	S6.61	-	11.02	-	57.90	57.65	-	5 S. 52	$2 S .75$	-
-25	110.43	1300.70	14.50	-	71.78	71.61	1569.49	67.64	37.38	374.93
- 20	139.21	1514.24	18.75	-	88.32	SS. 20	1755.66	74.48	47.95	443.55
-15	173.65	1758.25	23.96	-	107.92	107.77	1905.43	89.65	60.79	519.65
-10	214.46	2034.02	30.21	-	130.96	130.66	2200.30	101.84	76.25	608.46
-5	264.42	2344.13	37.67	-	157.87	I 57.25	2457.92	121.60	94.69	706.60
0	318.33	2690.66	46.52	4.19	IS9.10	187.90	2742.10	139.08	116.51	820.63
5	383.03	3075.3S	56.93	5.41	225.11	222.90	3055.86	167.20	142.11	949.08
10	457.40	3499.86	61.11	6.92	266.38	262.90	3401.91	193.50	171.95	1089.63
15	$543 \cdot 34$	3964.69	83.26	S.76	313.41	307.98	3783.17	226.48	206.49	1244.79
20	63 S .78	4471.66	99.62	I 1.00	366.69	358.60	4202.79	258.40	246.20	1415.15
25	747.70	5020.73	118.42	13.69	426.74	415.10	4664.14	297.92	291.60	1601.24
30	870.10	5611.90	139.90	16.91	494.05	477.So	5170.85	338.20	343.18	ISO3.53
35	1007.02	6244.73	164.32	20.71	569.11	-	6335.98	353.50	401.48	2002.43
40	1159.53	6918.44	191.96	25.17	-	-	-	434.72	467.02	2258.25
45	1328.73	7631.46	223.07	30.38	-	-	-	478.50	540.35	2495.43
50	1515.83	-	257.94	36.40	-	-	-	521.36	622.00	2781.48
55	1721.98	-	266.84	43.32	-	-	-	-	712.50	3069.07
60	1948.21	-	340.05	51.22	-	-	-	-	SI2.3S	3374.02
65	2196.51	-	3 S7.S5	-	-	-	-	-	922.14	3696.15
70	2467.55	-	440.50	-	-	-	-	-	-	4035.32
75	2763.00	-	498.27	-	-	-	-	-	-	-
So	30S4.31	-	561.41	-	-	-	-	-	-	-
S 5	3433.09	-	630.16	-	-	-	-	-	-	-
90	3810.92	-	704.75	-	-	-	-	-	-	-
95	4219.57	-	755.39	-	-	-	-	-	-	-
100	4660.82	-	S72.2S	-	-	-	-	-	-	-

Smithsonian Tables.

Tables 140-142.

CAPILLARITY.-SURFACE TENSION OF LIQUIDS.*

TABLE 140. - Water and Alcohol in Contact with Air.
TABLE 142. - Soluifons of Salts in Water. \uparrow

'I'emp. L.	Surface tension in dynes per centimetre.		Temp.	Surface tension in dynes per centimetre.		Temp.C.	Surface tension indyues per centimetre.
	W'ater.	Ethy? alcuhol.		Water.	Ethyl alcohol.		Water.
0°	75.6	$23 \cdot 5$	40°	70.0	20.0	So ${ }^{\circ}$	64.3
5	74.9	23.1	45	69.3	19.5	85	63.6
10	74.2	22.6	50	68.6	19.1	90	62.9
15	$73 \cdot 5$	22.2	55	67.8	18.6	95	62.2
20	72.8	21.7	60	67.1	IS. 2	100	6I. 5
25	72.1	21.3	65	66.4	17.5	-	-
30	71.4	20.8	70	65.7	17.3	-	-
35	70.7	20.4	75	65.0	16.9	-	-

TABLE 141. - Miscellaneous Liquids in Contact with Air.

				SrCl_{2}			
Liquid.	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Surface tension in dynes per centimetre	Authority.		1.1204	$15-16$	79.4
				"	1.0567	15-16	77.5
				$\mathrm{K}_{2} \mathrm{CO}_{3}$	1.3575	15-16	90.9
					1.1576	15-16	81.8
				" ${ }^{\text {c }}$	1.0400	$15-16$	77.5
				$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1.1329	$14^{-1} 5$	79.3
Aceton :	14.0	25.6	Average of various.		1.0605	$14^{-1} 5$	77.8
Acetic acid . .	17.0	30.2	"،	KNO_{3}	1.0283	$14^{-1} 5$	77.2
Amyl alcohol .	15.0	24.8			1.1263	14	78.9
lienzene. .	15.0	28.5	- "		1.0466	14	77.6
Butyric acid \therefore.	15.0	28.7		NaNO_{3}	1.3022	12	\$3.5
Carbon disulphide	20.0	30.5	Quincle. Average of various.		1.1311	12 15	So. 0
Chloroform. .	20.0	${ }_{2 S .3}$		CuSO_{4}	1.1775 I. $02-6$	$15-16$ $15-16$	78.6
Gltyer ${ }^{\text {Gla }}$ -	20.0 17.0	15.4	Hall.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.0276 1.8278	15-10	77.0 63.0 ?
Hexane.	0.0	21.2	Schiff.	${ }_{6}$	1.4453	15	79.7
-	68.0	14.2			1.2636	15	79.7
Mercury	20.0	470.0	Average of various.	$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.0744	15-16	78.0
Methyl alcohol	15.0	24.7		MgSO_{4}	1.0360	15-16	77.4
Olive oil . .	20.0	34.7			1.2744	15-16	S3.2
Petroleum	20.0	25.9	Magie.	" ${ }^{\text {c }}$	1.0680	15-16	77.5
Iropyl alcohol.	5.8	25.9	Schiff.	$\mathrm{Mn}_{2} \mathrm{SO}_{4}$	1.1119	15-16	79.1
\bigcirc	97.1	18.0			1.0329	15-16	77.3
Toluol	15.0 10.8	29.1	A verage of various.	ZnSO_{4}	1.3981 1.2830	$15-16$ $15-16$	833 So.
Turpentine	109.0 21.0	18.9 28.5		-	1.2030 1.1039	15-16	77.8

[^38]
Smithsonian Tables.

TABLE 143. - Surface Tension of Liquids.*

Liquid.				Specific gravity.	Surface tension in dynes per centimetre of liquid in contact with -		
					Air.	Water.	Acrcury.
Water				1.0	75.0	0.0	(392)
Mercury				13.543	513.0	392.0	
lisulphide of carbon				1.20,87	30.5	41.7	(3)7)
Chloroform . .				1.4878	(31.8)	26.8	(415)
Ethyl alcohol	.			0.7906	(24.1)	-	364
Olive oil				0.9136	34.6	18.6	357
Turpentine				0.8367	28.8	11.5	2.11
Petroletm . .				9.7977	29.7	(2S.9)	271
Itydruchloric acid . .				1.10	(729)	-	(302)
Hyposulphite of soda solution	-			1.1248	69.9	-	429

TABLE 144. - Surface Tension of Liquids at Solddifying Polnt. \dagger

Substance.		Tempera ture of solidification. Cent. ${ }^{\circ}$	Surface tension in dynes per centimetre.	Substance.	Temperature of solidification. Cent.	Surface tension in dynes per centimetre.
Piatinum	.	2000	1691	Antimony	432	2.19
Grold	. .	1200	1003	Borax .	1000	216
Zinc	. .	360	877	Carbonate of soda	1000	210
Tin	. .	230	599	Chioride of sodium	-	116
Mercury	. .	-40	538	Water .	\bigcirc	S7.9ł
Lead .	. .	330	457	Selenium	217	7 B .
Silver	. .	1000	427	Sulphar .	111	42.1
Bismulh	. .	265	1390	Phosphorus.	43	42.0
Putasium	. .	58	371	Wax . .	68	34.1
Sodiuns	. .	90	258			

TABLE 145. - Tension of Soap Films.
Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of $\mathrm{KNO} \mathrm{O}_{3}$ added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimetres, the average being 12.1 micromillimetres. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 146).

When the percentage of KNO_{3} is diminished, the thickness of the black patch increases. For example, $\quad \mathrm{KNO}_{3} \quad=3 \quad 1 \quad 0.5 \quad 0.0$

Thickness $=12.413 .51 .4 .5$ 22.1 micro-mm.
A similar variation was found in the other soaps.
It was also found that diminishing the proportion of soap in the solution, there being no KNO_{3} dissolved, increased the thichness of the film.

I part soap to 30 of water gave thickness 21.6 micro-mm.
I part soap to 40 of water gave thickness 22.5 micro mm .
I part soap to 60 of water gave thickness 27.7 micro-mm.
I part soap to So of water gave thickness 29.3 micro-mm.

* This table of tensions at the surface separating the liquid named in the firct coum and air, water or mercury as stated at the head of the last three colums, is from Quincke's exneriments (Pogg. Anrovol. shn. and Phil. Mag. 1875). The numbers given are the equivalent in degrees per centimetre of those obtained by Worthingion from Quincke's results (Phil. Mar. vol. 20,1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too ligh, for the reason stated by Worthington. The temperature was about $=0^{3} \mathrm{C}$.
\dagger Quincke, "Poza. Ann." vol. 135, p. 66ı.
\ddagger it will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quotel above, give.
\#l "Proc. Koy. Soc." 18_{77}, and "Phil. Trans. Koy. Soc." 1881 , $8^{9} 9_{3}$, and 1897 .
Note. - Q fincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this mot for mercury be taken as unit, the ratin for the bromides and iodides is about a half: that of the nitrates, chlorides, suears, and fats, as well as the metals, lead, bicmuth, and antimony, ahout 1 ; that of water, the carbonates, sulphates, and probably plinsplates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2 ; that of z inc, iron, and palladium, 3 ; and that of sodium, 6 .
Smithsonian Tables.

NEWTON＇S RINCS．

Newton＇s Table of Colors．

The following table gives the thickness in millionths of an inch，according to Newton，of a plate of air，water，and glass corresponding to the different colors in successive rings commonly called colors of the first，second，third， elc．，orders．

㯡	Color for re－ flected light．	Color for transmitted light．	Thickness in millionths of an inch for－			$\begin{aligned} & \stackrel{4}{0} \\ & \stackrel{0}{0} \end{aligned}$	Color for re－ flected light．	Color for trans－ nitted light．	Thickness in millionths of an incl for－		
			安	$\begin{aligned} & \stackrel{\Delta}{\ddot{\sim}} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \dot{6} \\ & \dot{0} \\ & 0 . \end{aligned}$				－	－	－
I．	Very black	－	0.5	0.4	0.2		Yellow ．．	Bluish			
	13lack ：	White ．	1.0	0.75	0.9			green	27.1	20.3	17.5
	leginning						Red．	－	29.0	21.7	18.7
	of black．		2.0	I． 5	I． 3		Bluish red	－	32.0	24.0	20.7
	Blue ．	Yellowish red	2.4	I． 8	1.5	IV．	Bluish				
	White	13lack ．．	5.2	3.9	3.4		green	－	24.0	25.5	22.0
	Yellow．	Violet	7.1	$5 \cdot 3$	4.6		Green ．．	Red	35.3	26.5	22.7
	Orange	－	S．O	6.0	4.2		Ycllowish				
	Ked．．	Blue ．	9.0	6.7	5.8		green Red．	Bluish	36.0	27.0	23.2
II．	Violet ．	White	11.2	3.4	7.2			green	40.3	30.2	26.0
	Indigo ．	－	12.8	9.6	8.4						
	Blue ．	Yellow	14.0	10.5	9.0	V．	Greenish				
	Green ．	Red ．	15.1	11.3	9.7		blue ．	Red ．	46.0	34.5	39.7
	Yellow	Violet	16.3	12.2 13.0	10.4 11.3		Red．．	－	52.5	39.4	34.0
	Bright red	Blue	18.2	13.0 13.7	11.8	VI．	Grecnish				
	Scarlet ．	－	19.7	14.7	12.7		blue．	－	58.7	46	38.0
III．							Red．	－	65.0	48.7	42.0
	Purple ． Indigo ．	Green	21.0	$\begin{aligned} & 15.7 \\ & 15.6 \end{aligned}$	13.5 14.2	VII．	Greenish				
	Blue.	Yellow	23.2	17.5	15.1		blue ．	－	72.0	53.2	45.8
		Red ．	25.2	18.6	16.2		Reddish white ．	－	71.0	57.7	49.4

The above table has been several times revised both as to the colors and the numerical values．Professors Reinold and Rucker，in their investigations on the measurement of the thickness of soap films，found it necessary to make new determinations．They give a shorter series of colors，as they found difficulty in distinguishing slight differences of shade，but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band．The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts．For example： R_{15} indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum．The thicknesses are in millionths of a centimetre．

$\begin{aligned} & \dot{4} \text { 灾 } \end{aligned}$	Color．	Posi－ tion．	Thick－ ness．	范	Color．	Posi－ lion．	Thick－ ness．	－	Color．	Posi－ tion．	Thick－ ness．
I．	Red＊	R_{15}	28.4		Red＊	$\mathrm{R}_{3} 5$	76.5	VI．	Green	$\mathrm{G}_{6} 0$	141.0
					Bluish				Grcen＊	$\mathrm{G}_{6} 5$	147.9
II．	Violet	V_{25}^{5}	30.5		red＊．	$\mathrm{BR}_{3} 5$	8 I .5		Red．	$\mathrm{R}_{6} 0$	154.8
	Mlue．	$\mathrm{B}_{2} 5$	35.3						Red＊	$\mathrm{R}_{6} 5$	162.7
	Green ：	$\mathrm{Cr}_{2} 5$	40.9	IV．	Green	$\mathrm{G}_{4} 0$	84.1				
	Yellow＊	$\mathrm{Y}_{2} 5$	45.4		＂${ }^{\text {V }}$	$\mathrm{G}_{4} 5$	89.3	VII．	Green ${ }^{\text {Gren }}$	$\mathrm{G}_{7} 0$	170.5
	Orange＊	$\mathrm{O}_{2} 5$	49.1		Yellow				Grcen＊	$\mathrm{G}_{7} 5$	178.7
	Red ．．	$R_{2} 5$	52.2		green＊	YG_{45}	96.4		Red＊	$\mathrm{R}_{7} 0$	I86．9
III．	Purple				Red＊${ }^{*}$	$\mathrm{R}_{4} 5$	105.2		Red＊	R_{75}	193.6
	13lue．	$\mathrm{P}_{3} 5$ $\mathrm{~B}_{3}$ 1	55.9 57.7	V．	Green	G50	111.9	VIII．	Green	$\mathrm{G}_{8} 0$	200.4
	Plue＊	$\mathrm{I}_{3} 5$	60.3		Green＊	$\mathrm{G}_{5} 5$	118.8		Red ．	$\mathrm{R}_{8} 0$	211.5
	Creen ：	$\mathrm{rin}_{3}{ }^{\text {r }}$	65.6		Red．	$\mathrm{R}_{5} 0$	126.0				
	＇cllow＊	$\mathrm{Y}_{3} 5$	71.0		Red＊	$\mathrm{R}_{5} 5$	133.5				

＊The colors marked are the same as the corresponding colors in Newton＇s table．

Across the top of the heading are given the formulas of the salt dissolved, its molecular weight (M. W.), and the density of the salt, with the authority tor that density.

* The table was compiled from a paper by Gerlach (Zeits. für Anal. Chem. vol. 27).

Smithsonian Tables.

Table 147.
CONTRACTION PRODUCED BY SOLUTION.

Smithsonian Tables.

CONTRACTION PRODUCED BY SOLUTION.

Smithsonian Tables.

Table 147.
CONTRACTION PRODUCED BY SOLUTION.

Table 148.

CONTRACTION DUE TO DILUTION OF A SOLUTION. \dagger

The first column gives the name of the salt dissolved, the second the amount of the salt required to produce saturation and the third the contraction produced by mixing with an equal volume of water.

[^39][^40]
FRICTION.

The following table of coefficients of friction f and its reciprocal $1 / f$, together with the angle of friction or angle of repose ϕ, is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of Gencral Morin and other authoritics, and is sufficient for all ordinary purposes.

Material.	f	1/f	ϕ
Wood on wood, dry	.25-.50	4.00-2.00	$14.0-26.5$
" " " soapy		5.00	11.5
Metals on oak, dry	.50-.60	2.00-1.67	26.5-31.0
"، "، wet	.24-. 26	4.17-3.85	$13.5-14.5$
" " " soapy	. 20	5.00	I I. 5
" " elm, dry	.20-.25	5.00-4.09	$11.5-14.0$
Hemp on oak, dry	. 53	1.89	28.0
" " " wet	. 33	3.00	18.5
Leather on oak .	.27-. 38	$3.70-2.86$	15.0-19.5
" " metals, dry.	. 56	1.79	29.5
" " " wet.	. 36	2.78	20.0
" " " greasy	. 23	4.35	13.0
" " " oily	. 15	6.67	S. 5
Metals on metals, dry	. $15-.20$	6.67-5.00	8.5-11.5
" " " wet		3.33	16.5
Smooth surfaces, occasionally greased.	.07-.08	14.3 -12.50	4.0-4.5
" " continually greased.	. 05	20.00	3.0
" " best results	.03-.036	$33 \cdot 3-27.6$	$1.75-2.0$
Steel on agate, dry *	. 20	5.00	11.5
" " " oiled*	. 107	9.35	6.1
Iron on stone .	.30-.70	$3.33^{-1.43}$	16.7-35.0
Wood on stone.	About . 40	2.50	22.0
Masonry and brick work, dry	.60-. 70	1.67-1.43	33.0-35.0
" ". " ${ }^{\text {c }}$ damp mortar	. 74	1.35	36.5
" on dry clay .	. 51	I. 96	27.0
" "6 moist clay.	.33	3.00	18.25
Earth on earth . .	.25-1.00	4.00-1.00	14.0-45.0
" " " dry sand, clay, and mixed earth	.38-. 75	$2.63-1.33$	$21.0-37.0$
" " " damp clay.	I. 00	1.00	45.0
" " " wet clay	$.3 \mathrm{I}$	3.23	17.0
" " " shingle and gravel	. $8 \mathrm{I}-\mathrm{I} .11 \mathrm{I}$	1.23-0.9	39.0-48.0

* Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in ases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.
Smithsonian Tables.

VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is hy the observation of the rate of flow of the fluid through a capillary tube, the length of whi h is great in comparjson with its diameter. Poiscnille * gave the following formula for calculating the viscosity coefficient in this case: $\mu=\frac{\pi / 2 r^{+} s}{\delta r^{\prime} l}$, where h is the pressure height, r the radius of the tube, S the density of the fluid, z, the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube. hence h and l are different. The product hs is the pressure under which the flow takes place. Hagenbach \dagger pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{z^{2}}{\sqrt{2}=\frac{\sigma}{2}}$, where g is the acceleration due to gravity. Gartemmeister \ddagger points ont an error in this to which his attention had been called by Finkener. and states that the quantity to be subtracted from h should be simply $\frac{v^{2}}{g}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formula take into account irregularities in the distortion of the fluid near the cuds of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the "viscosimeter" commonly used for testing oils useless for our purpose.

The term" specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a speciffed temperature.

TABLE 150. - Speciflc Viscosity of Water at different Temperatures relative to Water at $0^{\circ} \mathbf{C}$.

Temp. in C	Authorities.							Mean value.	Absolute value in C. G. S units.
	Poiseuille.	Gralıam.		Rellstab.	Sprung.	Wagner.	Slotte.		
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.017-S§
5	85.2	8.4 .4	84.8	$85 \cdot 3$	84.9	-	-	S4.9	0.0151
10	$73 \cdot 5$	73.6	72.9	73.5	73.2	6	-	$73 \cdot 3$	0.0131
15	64.3	6.35	63.7	63.0	63.9	63.9	-	63.7	0.0113
20	56.7	56.0	56.0	55.5	56.2	50.2	56.4	56.2	0.0100
25	-	49.5	50.5	$4^{8.7}$	50.5	50.3	-	49.9	$0.00 \mathrm{~S}_{9}$
30	45.2	44.7	45.0	45.0	45.2	4.6	45.2	45.0	0.00So
. 35	-	40.2	41.1	40.0	40.5	40.3	-	40.5	0.0072
40	-	36.8	37.0	37.2	37.0	36.7	36.9	36.9	0.0066
45	-	33.9	33.9	$3+5$	34.0	$3+5$	-	34.2	0.0061
50	30.8	31.1	31.1	31.2	31.3	31.7	-	31.2	0.0056

[^41]Tables 151-153.

VISCOSITY.

TABLE 151. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. (;.S. units, for solutiun of alcohol in water.

Temp. C.	Percentage by weight of alcolnol in the mixture.								
	-	S. 21	16.60	34.59	43.99	53.36	75.75	87.45	93).72
0°	0.018I	0.0287	0.0453	0.073^{2}	0.0707	0.0632	0.0407	0.029 .4	0.0180
5	.0152	.0234	. 0351	.055	. 0552	. 0502	. 0344	. 0256	.0163
10	. 131	.0195	.02SI	. 0.435	.0438	.0405	.0292	.0223	.0145
15	.OII4	. 0165	.0230	.03+7	. 0353	.0332	.0250	. 0195	.0134
20	. 0101	.OI42	.0193	.02S3	. 0256	. 0276	.0215	. 0172	. 0122
25	0.0090	0.0123	0.0163	0.0234	0.0241	0.0232	0.0187	0.0152	0.0110
30	.0081	. 0108	.0141	. 0196	. 0204	. 0198	.0163	.0135	. 0100
35	. 0073	.0096	. 1122	.0167	. 0174	. 0171	. 0144	.0120	.0092
40	.0067	. 0086	. 108	. 0143	. 0150	. 0149	. 0127	.0107	. 0084
45	.006I	. 0077	.0095	. 0125	.0131	. 0130	.0113	. 0097	. 0077
50	0.0056	0.0070	0.0085	0.0109	0.0115	0.0115	0.0102	0.0085	0.0070
55	.0052	. 0063	.0076	.0096	. 0102	. 0102	.0091	. 0086	. 0065
00	.00.4S	. 005^{5}	.0069	. 0036	.009I	.0092	.0053	. 0073	. 0060

The following tables ($152-153$) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes. \dagger

TABLE 152. - Mineral Oils. \ddagger

			Sp. viscosity. Water at $20^{\circ} \mathrm{C}=\mathrm{r}$.		
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$100^{\circ} \mathrm{C}$.
. 931	243	274	-	11.30	2.9
.921	216	246	-	$7 \cdot 31$	2.5
.906	IS9	20 S	-	$3 \cdot 45$	1.5
.921	163	190	-	27.50	2.8
.917	132	168	-	-	2.6
. 904	170	207	S.65	2.65	1.7
. 891	151	182	4.77	1.86	1.3
. 875	108	148	2.9 .4	I. 4 S	-
.$^{.} 55$	42	45	1.65	-	-
.905	165	202	-	3.10	1.5
. 894	139	270	7.60	3.60	I. 3
. 566	90	22.4	2.50	1.50	-

TABLE 153. - Mineral Oils.

Oil.	$$			
Cylinder oil . .	. 917	227	274	191
Machine oil . .	.914	213	260	102
Wagon oil .	.914	148	IS 2	So
" "	.91I	I 57	187	70
Naphtha residue	.910	134	162	55
Oleo-naphtha .	. 910	219	257	121
6 6	.904	201	2.42	66
$6{ }^{6}$.S94	$1 S_{4}$	222	26
Oleonid	.884	IS5	217	$2 S$
quality	. SSI	ISS	224	20
Olive oil .	.916	-	-	22
Whale oil .	$.879$	-	-	9
" " .	. 875	-	-	S

* This table was calculated from the table of fluidities given by Noack (Wied. Ann, vol. 27, p. 217), and shows a maxinum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic acid.
\dagger Table 152 is from a paper by Engler in Dingler"s "Polv. Jour." vol. 268, p. 76, and Table 153 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flaching point being a good guide to viscosity.
\ddagger The different groups in this table are from different residues.
Smithsonian Tables.

VISCOSITY.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

[^42]Smithsonian Tables.

Table 155.

VISCOSITY.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

Liquid.	Temperatures Centigrade.					Authority.
	10°	20°	30°	40°	50°	
Acetone	. 0043	. 0039	.0036	.0032	. 002 S	Pribram \& Handl.
Acetates: Allyl	. 0065	. 0061	. 0054	. 0049	. 0044	
Amyl 0106	.0089	. 0077	. 0065	. 0058	" ${ }^{6}$
Ethyl . .	. 0051	. 0044	. 0040	. 0035	.0032	
Methyl.	. 00.46	. 0041	.0036	.0032	. 0030	
Propyl.	. 0066	. 0059	. 0052	.0044	. 0039	
Acids : \dagger Acetic	. 0150	. 0126	. 0109	. 0094	. 0082	
Butyric	. 0196	. 0163	. 0136	. 0118	. 0102	Gartenmeister.
Formic	. 0231	. 0184	. 0149	. 0125	. 0104	
Propionic .	.0125 .0139	.0107 .0118	.0092	.0081	.0073 .0080	Rellstab. Pribram \& Handl.
Salicylic	. 0320	. 0271	.0222	. 0181	. 0150	Rellstab.
Valeric	.0271	.0220	. OLS_{3}	. 0155	. 0127	
Alcohols: Allyl.	. 0206	. 0163	. 128	. 0103	. 0083	$\underset{\text { Pribram \& Handl. }}{ }$
Amyl	.0651	. 0470	. 0344	. 0255	. 0196	" "
Butyl	.0424	.0324	. 0247	. 0190	. 0150	
Ethyl	. 0150	. 0122	. 0102	. 0085	. 0072	Gartenmeister.
Isobutyl	.0580	. 0.411	.0301	. 0223	. 0170	
Isopropyl .	.0338	. 0248	. 0185	. 0140	. 0108	"
Methyl.	. 0073	. 0062	. 0054	. 00.47	. 0041	"
Propyl	. 0293	. 0227	. 0179	. 0142	. 0115	
Aldehyde . .	. 0037	. 0037	-	- 24	-180	Rellstal).
Aniline.	-	. 0440	. 0319	. 0241	. 0189	Wijkander.
Benzene ${ }^{\text {Benzoates : Ethyl }}$.	. 0073	.0064	.0055	.0048	. 0124	Rellstab.
俍 Methyl	.023I	. 0196	. 0160	. 0134	. 1215	" ${ }^{\text {a }}$
Bromides : Allyl	. 0061	. 0053	.0048	. 00.45	. 0041	$\underset{\text { Pribram }}{\text { ¢ Handl }}$.
Ethyl .	. 0043	. 0037	. 0035	-	-	
Ethylene Carbon disulphide	-	. 0169	.0149 .0035	. 0034	-	Wijkander.
Carbon dioxide (liquid) .	. 000 S	. 0007	. 0005	. 0034	-	Warburg \& Babo.
Chlorides: Allyl. .	. 0039	.0036	. 0033	-		$\underset{\text { Pribram }}{\text { \& }}$ Handl.
Ethylene.	0064	. 0083	. 0072	. 0063	. 0056	
Chloroform .	. 0064	. 0057	. 00052	. 00.46	. 0043	
Ether . -	. 0026	.0023	. 0021	-	-	
Ethyl sulphide .	. 0048	. 0043	. 0039	. 0035	. 0032	"
Iodides: Allyl .	.00So	.0072	. 0065	. 0059	. 0053	" "
Ethyl.	. 0064	. 0057	. 00052	. 0048	. 0044	"
Metaxylol . .	. 0075	. 0066	. 0058	. 0052	. 00.47	
Nitro benzene .	-	. 0203	. 0170	. 0144	. 0124	
" butane 0119	. 0103	. 0089	. 0078	. 0069	
" ethane.0080	. 0071	. 0064	. 0057	. 0052	"، "
"، propane 0099	.0087	. 0077	. 0068	.0061 .0136	
" toluene .	-	. 0233	. 0190	. 0159	.0136	" "
Propyl aldehyde	. 0047	. 0041	. 0036	.0033 .0047	.0042	" "

[^43]
VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature ou the viscosity of solutions of satts in water. The sjectite tiscusity $X 100$ is given for two or more delosites and for several temperatures in the case of each solution. μ stands for specific conductivity, and t for temperature Centigrade.

Salt.	Percentage by weishit of sate in so.ution.	Density	μ	t	μ	t	μ	t	μ	t	Authority:
$\begin{gathered} \mathrm{BaCl}_{2} \\ \text { ". } \end{gathered}$	7.60	-	77.9	10	44.0	30	35.2	50	-	-	Sprung.
	15.40	-	S6. 4	"	56.0		39.6		-	-	'.
	24.34	-	100.7	${ }^{\prime}$	66.2	"	47.7	*	-	-	"
$\mathrm{Ba}\left(\mathrm{NO}_{3} \mathrm{O}_{3}\right.$	2.98	1.027	62.0	15	51.1	25	42.4	35	34.8	45	W'agner.
	5.24	1.051	68.1		54.2		4.4.1		36.9		
$\begin{gathered} \mathrm{CaCl}_{2} \\ " \\ " \end{gathered}$	15.17	-	110.9	10	71.3	30	50.3	50	-	-	Sprung.
	31.60	-	272.5	"	177.0		124.0		-	-	
	39.75	-	670.0	"	379.0	"	24.5	"	-	-	"
	44.09	-	-	-	593.1	"	363.2	"	-	-	"
$\begin{gathered} \mathrm{Ca}(\underset{\mathrm{NO}}{3} \mathrm{O})_{2} \\ \hline . \end{gathered}$	17.55	1.171	93.5	15	74.6	25	60.0	35	49.9	45	Wagner.
	30.10	1.274	144.1		112.7		90.7		75.1		
	40.13	1.386	242.6	،	217.1	"	I 56.5	"	128.1	"	"
CdCl_{2}	11.09	1.109	77.5	15	60.5	25	49.1	35	40.7	45	"
	16.30	1.181	85.9		70.5		57.5		47.2		"
	24.79	1.320	104.0	،	So. 4	"	64.6	"	53.6	"	"
$\begin{gathered} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \\ " \\ " \end{gathered}$	7.81	1.074	61.9	15	50.1	25	41.1	35	34.0	45	"
	15.71	1.159	71.8	"	58.7		48.8	3	41.3	"	"
	22.36	1.2 .41	85.1	"	69.0	"	57.3	،	47.5	"	"
$\underset{" 6}{\mathrm{CdSO}_{4}}$	7.14	1.068	7 7. 9	15	61.8	25	49.9	35	41.3	45	"
	14.66	1.159	96.2		72.4		58.1		48.8		"
	22.01	1.268	120.8	،	91.5	"	73.5	"	60.1	"	"
$\begin{gathered} \mathrm{CoCl}_{2} \\ " \\ " \end{gathered}$	7.97	1.08 I	S3.0	15		25		35		45	"
	14.86	1.161	111.6		S5.1	"	73.7	"	58.5	"	"
	22.27	1.264	161.6	"	126.6			،	S5.6	"	"
$\underset{\text { "، }}{\mathrm{Co}\left(\mathrm{~N}_{3}\right)_{2}}$	S. 28	1.073	74.7	15	57.9	25	48.7	35		45	"
	15.96	I. 144	87.0	${ }^{6}$	69.2		55.4	${ }_{6}$	44.9		"
	24.53	1.229	110.4	"	S8.0	"	71.5	"	59.I	"	"
$\underset{"}{\mathrm{CoSO}_{4}}$	7.24	1.086	S6.7	15	68.7	25	55.0	35	45.1	45	"
	14.16	I. 159	117.8	"	95.5		76.0		61.7		"
	21.17	1.240	193.6	"	140.2	"	113.0	"	S9.9	"	"
CuCl_{2}	12.01	1.10.4	87.2	${ }^{1} 5$	67.8	25	55.1	35		45	"
	21.35	1. 215	121.5	"	, 95.8		77.0 1076		6.62 87.1		"
	33.03	1.331	178.4	"	137.2	"		"	S7.1	،	"
$\underset{\text { " }}{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}$	18.99	1.177	97.3	I 5	76.0	25	61.5	35	51.3	45	"
	26.68	1.26 .1	126.2	"	99.8	"	So. 9	3	68.6	"	"
	46.71	1.536	$3^{82.9}$	"	283.8	"	215.3	"	172.2	"	"
$\underset{\text { "" }}{\mathrm{CuSO}_{4}}$	6.79	1.055	79.6	${ }^{1} 5$	61.8	25	49.8	35	41.4	45	" ${ }^{6}$
	12.57 17.49	1.115 1.163	98.2 124.5	"	74.0 96.5	"	59.7 75.9	"	52.0 61.8	"	"
$\begin{gathered} \mathrm{HCl} \\ " ، \end{gathered}$	S. 14			15						45	
	16.12	1.084	80.0	،	66.5	"	56.4	"	48.1	"	"
	23.04	1.114	91.8	"	79.9	"	65.9	"	56.4	"	"
IgCl_{2}	0.23	1.023	-	-	58.5	20	45.8	30	38.3	40	"
	3.55	1.033	76.75	10	59.2	"	46.6	"	38.3	"	‘

Smithsonian Tables.

Saht.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
HNO_{3}	8.37	1.067	66.4	15	5.4.8	25	$45 \cdot 4$	35	37.6	45	Wragner.
	12.20	1.116	69.5	،	57.3		47.9		40.7		
	2 S .31	1.178	SO. 3	"	05.5	،	54.9		46.2	"	"
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$7 . S_{7}$	1.065	77.8	15	61.0	25	50.0	35	41.7	45	"
	15.50	1.130	95.1	"	75.0		60.5		49.5		"
	23.43	1. 200	122.7	"	95.5	"	77.5	،	64.3	،	"
$\mathrm{KCl}^{\mathrm{K}}$	10.23	-	70.0	10	46.1	30	33.1	50	-	-	Sprung.
	22.21	-	70.0	،	48.6		36.4		-	-	
$\begin{gathered} \text { Klir } \\ " ، \end{gathered}$	14.02	-	67.6	10	44.8	30	32.1	50	-	-	"
	23.16	-	66.2	,	4.4.7	?	33.2	"	-	-	"
	34.64	-	66.6	"		"			-	-	"
KI	S. 12	-	69.5	10	+4.0	30	31.3	50	-	-	"
"	17.01	-	65.3	,	42.9		31.4		-	-	"
	33.03	-	61.3	"	42.9	"	32.4	"	-	-	"
"	45.95	-	63.0	"	45.2	"	$35 \cdot 3$	"	-	-	"
	54.00	-	65.5	"	48.5	"	37.6	"	-	-	"
KClO_{3}	3.51	-	71.7	10	44.7	30	31.5	50	-	-	"
	5.69	-	7	"	45.0		31.4		-	-	"
KNO_{3}	6.32	-	70.8	10	$4+6$	30	31.8	50	-	-	"
	12.19	-	68.7	*	4.8		$32 \cdot 3$		-	-	"
	17.60	-	65.5	"	46.0	،	33.4	"	-	-	"
$\mathrm{K}_{2} \mathrm{SO}_{4}$	5.17	-	77.4	10	48.6	30	$34 \cdot 3$	50	-	-	"
	9.77	-	Si.O	،	52.0		36.9		-	-	'6
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	11.93	-	75.5	10	62.5	30	41.0	40	-	-	"
	19.61	-	S5.3	.	68.7	,	47.9	"	-	-	Slote
	24.26	1.233	97.5	"	74.5 58.9	".	5.5 6.5	"	-	-	Slotte. Sprung.
"	32.78	-	109.5	"	SS. 9	،	62.6	"	-	-	Sprung.
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	4.71	1.032	72.6	10	55.9	20	$45 \cdot 3$	30	37.5	40	Slotte.
	6.97	1.0.49	73.1	"	56.4	"	45.5	.	37.7		
$\begin{gathered} \mathrm{LiCl} \\ \text { "، } \end{gathered}$	7.76	-	96.1	10	59.7	30	41.2	50	-	-	Sprung.
	13.91	-	121.3	-	75.9		52.6		-	-	
	20.93	-	229.4	"	142.1	"	95.0	-	-	-	"
$\begin{gathered} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \\ .0 \end{gathered}$	15.62	1.102	99.8	15	SI. 3	25	66.5	35		45	W'agner.
	$3+19$	1.200	213.3	.	16.4 .4		132.4	"	109.9		"
	39.77	1.430	317.0	،	250.0	.	191.4	-	15 S .1	"	
MgSO_{4}	4.95	-	96.2	10	59.0	30	40.9	50	-	-	Sprung.
	9.50	-	${ }^{1} 30.9$	-	77.7	،	53.0	\cdots	-	-	"
	19.32	-	302.2	،	166.4	"	106.0	"	-	-	"
$\underset{\text { "، }}{\mathrm{MgCrO}_{4}}$	12.31	1.089	111.3	10	S.4.S	20	67.4	30	55.0	40	Slotte.
	21.86	1.164	167.1	"	125.3	\cdots	99.0	..	79.4	..	"،
	27.71	1.217	232.2	"	172.6	"	133.9	"	106.6	"	
MnCl_{2}	S.OI	1.096	92.8	15	71.1	25	57.5	35	4 4. I	45	Wagner.
	15.65	1.196	I 30.9	\cdots	10.4 .2	.	84.0	"	68.7	\because	"،
	30.33	1.337	256.3	"	193.2	"	155.0 300.4	"	$\begin{aligned} & 123.7 \\ & 246.5 \end{aligned}$	"	"
	40.13	1.453	$537 \cdot 3$	"	393.4	"	300.4	"	240.5	${ }^{\prime}$	

VISCOSITY OF SOLUTIONS.

Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$	10.52	1.063	79.3	10	62.4	20	-	-	42.4	40	Slotte.
	19.75	1.120	88.2	"	70.0	"	57.8	30	48.4	-	
	28.0 .4	1.173	101.1	"	S0.7	"	60.5	"	56.4	-	
$\underset{4}{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}$	6.85	1.039	72.5	10	56.3	20	45.8	30	38.0	40	"
	13.00	1.078	72.6	"	57.2	"	46.8		39.1	"	"
	19.93	1. $1 \geq 6$	77.6	"	58.8	"	48.7	"	40.9	"	"
NiCl_{4}	11.45	1.109	90.4	${ }_{6} 15$	70.0	25		35	48.2	45	Wagner.
"	22.69 30.40	1.226 1.337	1.40 .2 229.5		109.7 171.8	"	57.8 139.2	"	72.7 111.9	"	"
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	16.49	1.136	90.7	I 5	70.1	25	57.4	35	4 4.9	45	"
	30.01	1.278	I 35.6	"	105.9	6	85.5	\%	70.7	"	"
	40.95	1.3SS	222.6	"	169.7	"	128.2	"	152.4	"	*
$\underset{"}{\mathrm{NiSO}_{4}}$	10.62	1.092	94.6	15		25	60.1	35	49.8	45	"
	IS.19	1.198	I 54.9		119.9		99.5	6	75.7	"	"
	25.35	1.314	298.5	"	22.4 .9	"	173.0	"	152.4	"	"
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	17.93	1.179	74.0	15	59.1	25	4 S. 5	35	40.3	45	"
	32.22	1. 362	91.5	"	72.5	،	59.6	${ }_{6}$	50.6	"	"
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	10.29	1.OSS	69.3	15	56.0	25	45.9	35	39.1	45	"
	21.19	1.124	S7.3		69.2		57.8	"	48.1		"
	32.61	1.307	116.9	"	$93 \cdot 3$	${ }^{\prime}$	76.7	"	62.3	"	/
$\underset{\text { " }}{\substack{ \\\mathrm{ZnCl}_{2} \\ "}}$	I 5.33	1.1.46	93.6	15	72.7	25	57.8	35	48.2	45	"
	23.49	1.229	111.5	"	86.6		69.5		57.5		"
	33.78	1.343	151.7	"	117.9	"	90.0	"	72.6	"	*
$\underset{\sim}{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}$	15.95	1.115	S0.7					35	43.5		
	30.23	1.229	10.4 .7	"	S 5.7	"	69.5	"	57.7	"	"
	+4.50	1.437	167.9	"	130.6	"	105.4	"	87.9	"	"
ZnSO_{4}				15							
	16.64 23.00	I. 1965 I. 2 SI	156.0 232.8	"'	118.6	$\begin{aligned} & 4 \\ & 4 \\ & 6 \end{aligned}$	94.2 $\times 35.2$	"	73.5 108.1	"	"
	23.09		232.8	,	$177 \cdot 4$		135.2		108.1		

Smithsonian Tables.

Table 157.
SPECIFIC VISCOSITY.*

Dissolved salt.	Normal selusion.		\% normal.		\ddagger normal.		$\frac{1}{8}$ normal.		Authority.
	$\begin{gathered} \stackrel{y}{\hbar} \\ \stackrel{y y y y}{\leftrightarrows} \end{gathered}$		$\frac{\stackrel{2}{n}}{\frac{n}{3}}$		$\frac{\stackrel{y y}{n}}{\stackrel{3}{3}}$				
Acids: 	. 0362	1.012	I.ozS 3	1.003	1.0143	1.000	1.0074	0.999	,
	1.0177	1.067	1.0092	1.034	I. 0045	1.017	1.0025	1.009	
	1.0 .185	1.052	1.0244	1.025	1.0126	1.014	1.0064	1.006	
	1.033^{2}	1.027	1.0168	1.011	1.0086	1.005	1.0044	1.003	'6
	1.0303	1.090	1.0154	1.043	1.0074	1.022	1.0035	$1.00{ }^{\text {d }}$	Wragner.
Aluminium sulphate Ibarium chloricle . .. nitrate Calcium chloride .- nitrate	1.0530	1.406	1.0278	1.17S	1.0138	1.082	1.0068	1.03 S	${ }^{6}$
	1.0584	1.123	1.0441	1.057	1.0226	1.026	1.0114	1.013	*
			1.05IS	1.044	1.0259	1.021	1.0130	1.00 S	"
	1.04.16	1.156	1.021S	1.076	1.0105	1.036	1.0050	1.017	" 6
	1.0596	1.11%	1.0300	1.053	1.0151	1.022	1.0076	1.008	6
Cadmium chloricle .. nitrate " sulphate	1.07-7	1.134	1.0394	1.063	1.0197	1.031	1.0098	1.020	${ }^{6}$
	1.0954	1.165	1.0479	1.074	1.0249	1.03 S	1.0119	1.015	6
	1.0973	1.345	1.0487	1.157	1.0244	1.078	1.0120	1.033	"
Cobalt charicle . . " nitrate " sulphate	1.0571	1.204	1.0286	1.097	1.0144	1.048	1.0058	1.023	"
	1.0728	1.166	1.0369	1.075	1.01	1.032	1.0094	1.015	"
	1.075	2.35 .1	1.03 ¢ 3	1.160	1.0193	1.077	1.0110	1.040	"
Copper chloride ". nitrate " sulphate	1.062 .1	1.205	1.0313	1.09S	1.0158	1.047	1.0077	1.027	،
	1.0755	1.179	1.0372	1.080	$1.01 S^{5}$	1.040	1.0092	1.015	-
	1.0-90	1.35	1.0 .102	1.160	1.0205	1.030	1.0103	$1.03{ }^{3}$	\%
Lead nitrate Lithium chloride ". sulphate	1.13 ぶo	1.101	0.0699	1.042	1.0351	1.017	1.0175	1.007	'
	1.02.13	1.142	1.0129	1.066	1.0062	1.031	1.0030	1.012	"
	1.0453	1.290	1.0234	1.137	1.0115	1.065	1.0057	1.032	"
Magnesium chloride""nitrate.Manganese chloride"" nitrate.	I. 1375	1.201	1.018S	1.094	I.0091	1.044	1.0043	1.021	"
	1.0512	1.171	1.0259	1.082	1.0130	1.040	1.0066	1.020	"
	1.058 .1	1.367	1.0297	1.164	1.0152	1.078	1.0076	1.032	"
	I. 0513	1.209	1.0259	1.098	I.OI25	1.048	1.0063	1.023	"
	1.0090	1.183	1.03 .19	1.057	1.0174	1.043	1.0093	1.023	"
	1.072 8	1.364	1.0365	I. 169	1.0179	1.076	1.0087	1.037	"
Nickel chloride ." nitrate. ." sulphate .Potassimm chloride." chromate"nitrate ".	1.0591	1.205	1.0308	1.097	1.0144	1.044	1.0067	1.021	"
	1.0755	1.180	1.0381	1.084	1.01()2	1.0 .42	$1.000{ }^{10}$	1.019	،
	1.0773	1.361	1.0391	1.161	1.0108	1.075	1.0017	$1.03=$	"
	I. 0.460	$0.0 \mathrm{Cl}_{7}$	1.0235	0.987	1.0117	0.990	$1.005^{(1)}$	0.093	
	1.0935	1.113	1.0.175	1.053	1.0241	1.022	1.0121	1.012	*
	1.0105	0.975	1.0305	0.082	1.0101	0.057	$1.00-5$	0.092	
	1.0661	I.105	1.0335	I. 049	1.0170	1.021	1.0084	I.cos	
$\begin{array}{ccc} \text { Sidium chloride. } & . \\ \text { " } & \text { bromide. } & \cdot \\ " & \text { chlorate } & \cdot \\ " & \text { nitrate } . & . \end{array}$ Silver nitrate	1.0.101	1.097	1.0208	1. 0.47	1.0107	1.024	1.0056	1.013	keyher.
	1.0786	1.001	1.0306	1.030	1.0190	1.015	1.0100	$1.00{ }^{1}$	
	1.0710	1.090	1.0359	1.012	1.0180	1.022	1.0092	1.012	
	1.058 .1	1.065	1.0281	1.026	1.0141	1.012	1.0071	1.007	
	1.1336	$1.05{ }^{5}$	1.0602	1.020	1.03 .18	1.006	1.0173	1.000	IVagner.
Strontium chloride. " nitrate .	1.0676	1.1.11	1.0336	1.067	1.0171	1.034	1.003.4	1.014	"
	1.0i)22	1.115	I. 0.119	1.049	1.0208	1.024	1.010 .1	1.011	
Zinc chloride . .	1.0509	1.189	1.0302	1.006	1.0152	1.053	1.0077	1.024	"
" nitrote .	$1.075 i$	1.16.	1.0404	1.086	1.0191	1.039	1.0096	1.019	
"6 sulphate.	1.0792	1.367	1.0402	1.173	1.019^{5}	1.082	1.0094	1.036	"

* In the case of solustions of satts it has been founcl (aide Arrhennius, Zeits. für Plys. Chem. vol. 1, p. 285) that the specific viscosity can, in man y ases, be nearly expressed by the equation $\mu=\mu_{1}{ }^{n}$, where μ_{1} is the specific viscosity for a normat sulution refured to the solsent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. 'The talble here civen has been compiled from the results of Reyher (Zeits. für Phys. Chem, vol. 2 , p. 74) and of Wagne: (Zeits. fur Phys. Chem. vol. $5, \mathrm{p} .3$ r) and illustrates this rule. The numbers are all for $25^{\circ} \mathrm{C}$.

Smithsonian Tables.

VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10^{6} times the coefficients of viscosity in C. G. S. units.

Substance.	$\begin{gathered} \text { Temp. } \\ \stackrel{\text { Cen }}{ } . \end{gathered}$	μ	Authority:	Substance.	Temp.	${ }^{\mu}$	Authority.
Acetone .	I 8.0	75	Puluj.	Carbon dioxidc	12.8 100.0	$\begin{aligned} & 1.47 \\ & 208 \end{aligned}$	Schumann.
Air	0.0	172	Thomlinson.				
"	0.0 16.7	168	Obermeyer. Puluj.	Carbon monoxide	0.0	163	Obermeyer.
				Chlorine	0.0	129	Graham.
Alcohol: Methyl .	66.8	135	Stendel.	" . . .	20.0	147	
Ethyl Normal	78.4	14^{2}		Chloroform	17.4	103	Puluj.
propyl	97.4	1.42	"	Ether . .	I 6.0	73	
Isopropyl	S2.8	162	"	Ethyl iodide			
Normal	116.9	143	"	Methyl ".	44.3	232	Ster
Isobutyl	10S. 4	14.4	'				
Tertiary				Mercury	270.0	489	Koch.*
butyl	S2.9	160	"	"	300.0	536	"
Ammonia	0.0	96	Graham.	"	330.0 360.0	582 627	"
A."	20.0	ios		" . .	390.0	671	"
Benzenc	19.0 100.0	$\begin{array}{r} 79 \\ 115 \end{array}$	Schumann.	$\underset{\text { Water }}{\text { W }}$	0.0 16.7	90	Puluj.
Carbon disulphide	16.9	99	Puluj.	"	100.0	132	L. Meyer \& Schumann.

* The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu=489[1+746(t-270)]$.

Smithsonian Tables.

Table 159.

COEFFICIENT OF VISCOSITY OF GASES.

The following are a few of the formula that have been given for the calculation of the coefficient of viscosity of gases for different lemperatures.

Gas.	Value of μ.	Authority.
$\begin{array}{cccccc}\text { Air } \\ \cdots & \cdot & \cdot & \cdot & \cdot \\ " & \cdot & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot & \end{array}$	$\begin{aligned} & \mu_{0}\left(\mathrm{I}+.00275 \mathrm{I} t-.00000034 t^{2}\right) \\ & .000172(\mathrm{I}+00273 t) \\ & .0001683(\mathrm{I}+.00274 t) \end{aligned}$	I Iolman. O. E. Meyer. Obermeyer.
Carbon dioxide	$\begin{aligned} & \mu_{0}\left(1+.003725 t-.00000264 t^{2}+.00000000417 t^{3}\right) \\ & .0001414(1+.00348 t) \end{aligned}$	I Iolman. Obermeyer.
Carbon monoxide .	$.0001630(1+.00269 t)$	"
Ethylene .	$.0000966(1+.00350 t)$	"
Ethylene chloride	. $0000935(1+.003$ SIt $)$	"
Hydrogen . . .	$.0000822(1+.00249 t)$	"
Nitrogen	$.0001635(1+.00269 t)$	"
Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$)	$.0001408(\mathrm{I}+.00345$)	"
Oxygen . . .	$.0001873(1+.00283 t)$	"

Table 160. DIFFUSION OF LIQUIDS AND SOLUTIONS OF SALTS INTO WATER.
The coefficient of diffusion as tabulated below is the constant which multiplied by the rate of change of concentration in any direction gives the rate of thow in that direction in (.. G. S. units. Suppose two liquids diffusing into each other, ant let ρ be the quantity of one of them per unit volume at a point A, and ρ^{\prime} the quantity per unit volume: at an adjucent prome F, and r the distance from -1 to f. 'then if r is small the rate of plow from A lowards f is equal io k ($\left.\rho-\rho^{\prime}\right) / x$, where k is the coctacient of diffusion. Similarly for solutions of salts diffusing into the solvent medimm, ρ and ρ^{\prime} being laken as the quantities of the salt per unit volume. The results indicate that f depends on the absolute density of the solution. Ender i will be fonnd the coneentration in percentage of "normat sulution: of the salt; under n the number of grammes of water per gramme of salt or of acid or other liquid.

Table 161.

DIFFUSION OF GASES AND VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 7^{6} centmetres of mercury.*

*Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The cocfficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According Lo the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at of C . and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_{0}=k_{T}\left(\frac{T_{n}}{\Gamma}\right)^{n} \frac{75}{p}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-\mathrm{CO}_{2}, n=1.958 ; \mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}, n=2.05 ; \mathrm{CO}_{2}-\mathrm{H}, n=1.742 ; \mathrm{CO}-\mathrm{O}, n=1.785: \mathrm{H}-\mathrm{O}$, $n=1.755:()-N, n=1.792$. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, lyydrogen or carbon dioxide.

Smithsonian Tableg.

* Compiled for the most part from a similar table in Landolt \& Boernstein's " Phys. Chem. Tab."

Smithsonian Tables.

The following table given by H. de Vries* illustrates an apparent relation between the isotonic coefficient \dagger of solu. tions and the correspond mg lowering of the freezing-point and the vapor pressure. The freezing-points are taken on the authority of Naouht, and the vapor pressures on the authority of 'ammann. \ddagger

Table 164.

OSMOTIC PRESSURE.

The following numbers give the result of Pfeffer's § measurement of the magnitude of the osmotic pressure for a one per cent sugar solution. 'The result was found to agree with that of an equal molecular solution of hydrogen. The value for the hydrogen solution is given in the third column of the table.

Temperature C..	Osmotic pressure in atmosjheres.	$0.649(1+.00367 t)$
6.8	0.664	0.665
13.7	0.691	0.681
14.2	0.671	0.682
15.5	0.684	0.686
22.0	0.721	0.701
32.0	0.716	0.725
36.0	0.746	0.735

* "Zeits. für Plyys. Chem." vol. 2, p. 427.
t The isotonic coefficient is the relative value of the molecular attraction of the different salts for water or the relative value of the osmotic pressures for normal solutions. In the above table the coufficient for KNO_{3} was taken as 3 arbitrarily and the others compared with it. The concentrations of different salts which give equal osmotic pressures are called by lammann and others isosmotic concentrations; they are sometimes called isotonic concentrations. The reciprocals of the numbers of molecules in the isotonic concentrations are called by De Vrics the isotonic coefficients.
\ddagger Sce also Tammann, "Wied. Ann." vol. 34, p. 315.
§ Winkclmann's " 11 andbuch der Physik," vol. 1, p. 632.

Smithsonian Tables.

The last four columns were calculated from the data given in the second column and the densify of mercury

							$\begin{aligned} & \dot{\tilde{y}} \\ & \dot{ভ} \\ & \dot{E} \\ & \dot{H} \end{aligned}$						
0	4.	6.254	0.0890	0.181	0.0061	32.0	40	54.91	74.653	1.061	2.162	0.072	4.0
1	4.	6.716	. 09	.194	. 0065	33	41	57.91	78.675	1.121	2.250	.0-6	105.8
2	$5 \cdot 30$	7.206	. 1025	. 209	. 0070	35	$+2$	61.01	S2.9.17	1.216	2.404	. 080	107.6
3	5.09	$7 \cdot 736$.1100	. 224	. 0075	$37 \cdot 4$	43	64.35	S7.4SS	1.244	2.533	. 085	109.4
4	6.10	S.291	. 1 ISo	. 2.40	.00So	39.2	4	67.79	92.165	1.312	2.669	. 050	111.2
5	6.53	S.S-S	0.1263	0.257	0.0056	41.0	45	71.39	97.059	1.381	2.811	0.094	II 3.0
6	7.00	9.517	. 1354	. 276	.0092	42.8	46	75.16	102.154	1.454	2.959	. 099	114.8
7	7.49	10.183	. 1452	. 295	. 0099	44.6	47	79.09	107.52S	1.530	3.114	.104	I 16.6
S	S.02	10.904	. 1551	. 316	. 0107	46.4	48	83.20	113.115	1.609	3.276	. 109	I I S. 4
9	S. 57	11.651	.1657	$\cdot 338$. 0114	48.2	49	87.50	118.962	1.692	3.444	.115	120.2
10	9.17	12.467	0.1773	0.361	0.01	0	50	91.98	125.05	1.78	3.62	0.121	122.0
1 I	9.79	13.310	. 1593	. 386	. 013	51.8	$5{ }^{1}$	96.66	131.42	1.87	3.81	. 127	123.5
12	10.46	14.207	. 2023	. 412	. 01.4	53.6	52	101.54	138.04	1.96	4.00	.134	125.6
13	11.	I5.173	. 215 S	$\cdot 439$. 015	55.4	53	106.64	144.98	2.06	4.20	.140	127.4
14	11.91	16.192	.2303	. 469	.016	57.2	5.	111.95	152.20	2.17	4.41	.147	129.2
15	12	17.260	0.2456	0.500	0.017	59.0	55	117.48	159.72	2.27	4.63	0.155	131.0
16	13.5	IS. 708	. 2615	. 533	. 018	60.5	56	123.24	167.55	2.39	4.85	. 163	132.8
17	14.42	19.605	.2789	. 568	. 019	62.6	57	129.25	175.72	2.50	5.09	. 170	1346
IS	15.36	20.853	. 2970	. 605	. 020	64.4	58	135.51	154.23	2.62	5.33	.178	136.4
19	16.35	22.229	. 3162	. 644	. 022	66.2	59	142.02	193.08	2.75	5. 59	.187	${ }_{13} \mathrm{~S} .2$
20			0.33	0.655	0.023	68.0	60	14.79	202.29	2.88	5.56	0.196	140.0
21	IS. 50	25.152	. 3577	.728	. 024	69.8	61	155.84	211.57	3.15	6.14	. 205	141.8
22	19.66	26.729	- 3502	. 774	. 026	71.6	62	163.17	$221 . S_{4}$	3.16	6.42	.215	143.6
23	20.89	2 2.401	. 40.40	. 222	. 028	73.4	63	170.79	232.20	$3 \cdot 30$	6.72	. 225	1.45 .4
24	22.18	30.155	. 42 S 9	. 873	. 029	75.2	64	178.71	242.97	$3 \cdot 46$	7.04	.235	147.2
25	23.55	32.018	0.4554	0.927	0.031	77.0	65	IS6.95	254.17		7.36	0.246	
26	24.99	33.975	. 4833	. 98.4	. 033	78.8	66	195.50	265.79	3.78	7.70	. 257	150.8
27	26.51	36.042	. 5126	1.044	. 034	So. 6	67	204.38	277.57	3.95	8.05	.267	152.6
28	28.10	38.204	. 5434	. 106	. 037	S2.4	65	213.60	290.40	4.13	S. ${ }_{1} \mathrm{I}$.2SI	$154 \cdot 4$
29	29.78	40.488	. 5759	.172	.039	S4.2	69	223.17	303.41	$4 \cdot 32$	8.79	. 494	156.2
30	31.55	42.594	0.6101	1.242	0.042	86.0	70	233.09	316.90	+.51	9.18	0.306	
31	33.41	$45 \cdot 423$. 6461	. 315	. 044	S7.8	71	$243 \cdot 39$	330.90	$+7.71$	9.58	. 320	$159 . S$
32	35.36	45.074	$.65_{3} \mathrm{~S}$. 392	. 047	89.6	72	25.4 .07	34.42	4.91	10.00	-334	161.6
33	37.41	50.561	.7234	. 473	. 049	91.4	73	265.15	360.49	5.12	10.44	-349	163.4
34	39.57	53.79 S .	.7655	. 550	. 052	93.2	74	276.62	376.05	$5 \cdot 35$	10.85	364	165.2
35	$41 . S_{3}$	56.870	0. SIo	1.647	0.055	0	75	28S.52	392.26	5.50	11.36	0.350	167.0
36	+4.20	60.003	. 5_{55}	. 740	. 055	96.5	76	300.8.4	409.01	5.52	11.54	. 396	165.8
5	+6.69	63.475	. 003	. 3 S	.	98.6	77	313.60	426.36	6.06	12.35	.414	170.6
38	49.30	67.026	. 954	. 9.41	. 065	100.4	75	326.81	4.4 .32	6.32	12.57	+ 430	172.4
39	52.04	70.752	1.007	2.049	. 065	102.2	79	340.49	462.92	6.58	13.40	-4, ${ }^{\text {S }}$	174.2

Smithsonian Tables.

Table 165.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

$\begin{aligned} & \dot{\overline{\tilde{y}}} \\ & \dot{\tilde{y}} \dot{\text { E }} \end{aligned}$													
80	35	$4{ }^{8} 2.15$				170.0	120		2027.4S	$22^{2} .5$	-.7	62	
S1	369.29	502.07	7.14	14.54	.480	177.8	121	1539.25	2092.70	29.78	60.61	2.025	249.5
82	3 34.4.	522.67	$7 \cdot 14$	15.14	. 506	179.6	122	1583.47	2159.62	30.73	62.54	.091	251.6
S3	400.10	543.96	--1	15.75	. 526	IS1.4	123	1638.96	2228.26	31.70	64.53	. 157	253.4
S 4	416.30	565.99	8.05	16.39	.548	183.2	12.4	1690.76	2298.69	32.70	66.56	. 225	255.2
85	433.04	355.74	8.37	17.05	0.570	185.0	125	1743.88	2370.91	33.72	65.66	2.295	257.0
S6	+50.3.1	612.26	8.71	17.73	. 593	180.8	126	179 S 35	2444.96	34.78	70.80	. 366	-5 5.3
87	408.22	636.57	9.05	18.43	. 616	188.6	127	1854.20	2520.89	35.S6	73.00	. 430	260.6
S8	486.69	66.65	9.41	19.16	. 6.10	ISO. 4	128	1911.47	2598.76	36.97	75.25	. 515	262.4
89	505.76	687.61	9.78	19.91	. 665	192.2	129	1970.15	2675.54	3 S .11	77.57	. 592	264.2
90		714.35	10.1	20.69	0.691	194.0	130	2030.28	2-60.29	39.26	79.93	2.671	256.0
91	$515-5$	740.31	10.56	21.49	.719	105.8	1.31	2091.94		40.47	82.30	.753	267.8
92	566.76	770.54	10.95	22.31	.746	197.6	132	2155.03	2929.89	41.68	S4.S4	. 330	269.6
23	5SS. 11	799.95		23.17	- 74	1994	133	2219.69	3017.50	42.93	S7.39	.921	271.4
94	610.74	S30.34	$11 . S 1$	2.4 .04	. So 4	201.2	134	22S5.92	3107.85	44.2 1	89.99	3.008	273.2
95	$633 .-5$	S61.66	12.26	2.4 .95	0.834	203.0	135	353.73	3200.04	45.52	92.67	3.097	275.0
96	657.54	S93.97	12.71	25.59	. 665	20.4 .8	136	2423.16	3294.43	46.87	95.39	. 185	276.8
97	6\$2.03	92-.26	13.19	26.85	.897	206.6	137	2.19.1.23	3391.06	${ }_{4} \mathrm{~S} .24$	95.19	82	27S.6
9	$707.2 S$	961.59	13.68		.931	208.4	13^{8}	2567.00	3480.99	49.65	101.06	S	2 SO .4
99	$733 \cdot 31$	996.98	14.18	25.87	.965	210.2	139	2641.44	3591.29	51.06		.476	2S2.2
100	760.00	1033	14.70	29.92	1.000	212.0	140	2717.63	3694.78	52.55	106.99		284.0
101	787.59	1070.78		31.01	.036	213.8	141	2795.57	3 300.75	54.05	110.06		$253 . S$
102	SI 6.01	1109.41	15.70		. 074	215.6	142	2875.30	3909.14	55.60	11.3 .20		2S7.6
103	$8 .+5.28$	1149.21		33.28	.112	217.4	1.43	2956.86	4020.03	57.16	116.41	. 890	2 SO .4
104	875.41	1190.17	16.91	37.46	.152	219.2	14.4	30.40 .26	$4133 \cdot 42$	58.79	119.69	4.000	291.2
105	906.41				1.193	221.0	145	3125.55	4249.37	60.44	123.05	4.113	293.0
106	$93^{8.31}$	1275.69	IS. 15	36.94	. 235	22	146	3212.74	4367.91		126.48	. 227	294.8
1	971.14	1320.321	IS.7S	$3 \mathrm{S}$.	. 275	224.6	147	3301.87	4.189 .00		129.99	. 344	296.6
1	1004.91	1360.2 .4	19.41	39.50	. 322	226.4	14	3392.98	4612.96	65.62	133.58	.464	298.4
109	1039.65	1413.47	20.11	40.93	.368	22 S .2	149	3486.09	4739.55	67.41	137.25	. 587	300.2
110	1075.37	1.462 .03	20.8	$42 \cdot 34$	1.415	230.0	150	35 S1.2	4868.9	69.26	141.0		302.0
11 I	I 112.09	1511.97	2 I .5 I	$43 \cdot 75$.463	231.8	151	36-S. 4	5001.1	71.14	14.4 .8		303.5
112	1149.83	1563.26	22.24	45.25	.513	233.6	152	3777.7	5136.1	73.06	143.7	.971	305.6
113	1188.61	1615.99	22.99	46.30	. 564	235.4	153	3879.2	5275.0	75.02	152.7	5.104	307.4
114	122 S. 47	1670.18		48.37	. 616	237.2	154	$3982 . \mathrm{S}$	5.14 .8	77.03	156.5	. 240	309.2
115	1269.41	1725.81	24.55	49.98	1.670	2390	155	40SS.6	555§.6	79.07	161.0	$5 \cdot 3$ So	311.0
116	1311.47	1783.02	≥ 5.37	51.63	. 726	2.40 .8	156	4196.6	5,05.5	81.22	165.2	. 522	312.8
11	1354.66	18.41.74	26.20	53.3!		1212.6	157	4306.9	5 5 55.5	$8_{3} 3.29$	169.6	. 667	31.4 .6
115	I 399.02	1902.05	27.06	55.08	. 841	2.44.4	158	4.419.5	6005.5	85.47	17.4 .0	. 515	316.4
119	1.44.55	1963.95	27.94	56.87	.901	2.46 .2	159	453.4.4	6164.7	S7.69	178.5	.966	318.2

Smithsonian Tables.

$\begin{aligned} & \dot{5} \\ & \dot{U} \\ & \dot{\overleftarrow{E}} \\ & \stackrel{y}{0} \end{aligned}$						$\begin{aligned} & \frac{\dot{L}}{E} \\ & \dot{\sim} \\ & \dot{E} \\ & \dot{E} \\ & \dot{5} \end{aligned}$	$\begin{aligned} & \dot{\overline{5}} \\ & \dot{\tilde{E}} \\ & \dot{E} \end{aligned}$					戌苞	旨
160			S．06		6.		195						
101	＋51． 3	6.80	92．2－	157.9	0.275	321．	100	10746.0	1．f（10）．s				
162	－（59） 3	6052.8	94.03	102.7	6.439	323.6	197	10975.0	1．4921．2	212.2	2．1	4.411	66
103	5017.9	65	97．0．4	197.6	6.003	$3=5 \cdot 4$	108	11200.8	15240.4	216.7	41.3	14.741	S． 4
164	545.0	6994.9	99.50	202.6	6.770	327.2	199	11447.5	155613.5	$\therefore 21.37$	＋50．7	$15.06=$	2
165	5274．5	7171.1	102.01	207	6.940	329.0	200	11689.0	15.591 .9	O4．			
160	5400.7	7350.71	104.56	212.0	7.114	330.5	201	$1193+4$	16225.5	230.71	$4(0)$ S	． 70.3	13%
10	$55+1.1$	7533.9	107．18	218.2	7.291	332.6	02	12153.7	16504.7	235.61	9.7	6．0．31 3	5.6
（s）	5675.8	7720.71	109.8 .4	223.6	7.472	$33+4$	203	12437．0	16908．8	240.54	$45^{\circ} 0$	$16.33^{3}+4$	17．4
169	5 S＇1S．9	7911.1	112.53	229.1	7.656	336.2	20.4	12694.3	17257－3	$245 \cdot 49$	492.8	16.703	99．2
170		S105．2 1	115.29	23．4．1	7.844	338.0	205		1－614．0				1.0
171	0107.2	S303．1	118.11	2.40 .4	8.036	339.8	206	1322.1	17974.9	255.67	0.51	17.3901	2.8
172	6255．5	S504．7	120.98	246.3	8.231	341.6	207	13400.8	$183+1.5$	200.85	531.2	－11	4.6
153	6406.6	S710．2	123.90	252.2	8.430	$3+3 \cdot 4$	208	13764.5	15713.7	266.18	541.0	18.111	C6． 4
174	6560.6	S919．5	126.5	25 S．3	8.632	345.2	209	$14042 \cdot 5$	19091.6	271.55	552.9	18.477	CS． 2
175		9	12		8.839	347.0	210	14324.5	$19475 \cdot 4$	277.01	564.1	1S．S48	0.0
176	6577．2	9350.0	13.3 .00	270．8	9.049	3.15 .8	1	1.4611 .3	19864.9	2S2．58	575.3	19.226	1.8
175	70.40 .0	9571.31	136.15	277.2	9.263	350.6	212	14902.2	20260.5	2SS． 21	586.7	19.608	13.6
178	7205.7	9796.6	${ }^{1} 39 \cdot 35$	283.7	9．48i	352.4	213	15197．5	20661.9	293.92	598.3	19.997	415.4
179	7374．5	10026.1	$1 .+2.62$	$290 \cdot 3$	9.703	354.2	4	15497.2	210693	299．72	610.	20.391	41\％．2
180					9.929	356.0	215						
11_{1}	7721．	10497．7	$1+9.32$	304.0	10.150	357.8	216	16109．9	21902.4	311.57	634． 2		
152	-809	10739.9	152.77	311.0	10.394	359.6	21	16423.2	22328.3	$317.6=$	6.46 .6		
183	SoSo． 8	10985.4		318.1		361.7	I	16740.9	22760.3	323．7S	659.1		2.4 .4
$1 S_{4}$	S265．4	11237.3	159.84	325.4	10．5－6	363.2	219	17063.3	23198.6	330.01	671.8		6.2
185		11490.0				365.0	220	17390.4			，		
6	S644．4	11752.51	167.17	3.40 .3	74	366.8	221	17722.1	24004.3	3.12 .70	97.7	）	2． 8
	SS3S．S	12016.9	170.94	$34^{\text {S．O }}$	11.630	368.6	222	18058.6	2455 I ． S	3.19 .21	11.0	－3．761	31.6
$15 S$	9036.7	12285.9	174.76	$355 . \mathrm{S}$	11.885	370.4	23	IS 399.9	25015.8	． 355.81	4	24.210	33.4
159	9－3 3.0	12559.6	178.65	363.7	12.155	372.2	224	$15_{7}+6.1$	25486.4	362.50			5．2
190	2．7	12837.9	182.61	371.8	．125	374.0	225	19097．0	－5）3．5	30			437.0
	91.50 .9	13121.0	186.63	380.0	12.690	375．S．	26	19.452 .9	264ti．4	376.17	5.	5.510	35．8
192	9Su2． 7	I 3408.9	$190.7=$	$3 S S .3$	2.977	377.6	－	19513.8	26938.0	$3^{8} 3 \cdot 1$	－	．071	40.6
10	100； 5.0	13301.7	194.88	396.5	13.261	379.4	$22 S$	20179．6	27435.4	390.2			＋1．2－4
194	10297.0	13999.4	199.13	405．4	I 3.549	381.2	229	20550.5	27939.6	397.40	9.0	7.040	＋44．2

Table 166.
PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.*

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.3
-28	0.46	0.45	0.44	0.43	0.43	0.42	0.41	0.40	0.10	0.39
- 26	0.55	0.54	0.53	0.52	0.51	0.50	0.50	0.49	0.78	0.47
- 24	0.65	0.65	0.64	0.63	0.62	0.61	0.60	0. 5°	0.57	0.56
-22	0.79	0.78	0.77	0.75	0.74	0.73	0.71	0.70	0.69	0.68
-20	0.94	0.93	0.91	0.90	0.88	0.87	0.85	0.84	0.82	0. SI
-18	1.12	1.10	1.08	1.06	1.05	1.03	1.01	0.99	0.98	0.96
-16	1.32	1.30	1.28	1.26	1.24	1.22	1.20	1.18	1.16	1.14
-14	I. 56	1.54	1.51	I. 49	1.46	1.4 .4	1.42	1.39	1.37	1.35
-12	1.84	1.81	1.78	1.75	1.72	ェ. 69	1.67	1.64	1.61	1.59
-10	2.15	2.12	2.08	2.05	2.02	1.99	1.96	1.93	1.90	1.87
-8	2.51	2.48	2.44	2.40	2.36	2.33	2.29	2.26	2.22	2.19
-6	2.93	2.49	2.8 .4	2.50	2.76	2.72	2.67	2.63	2.59	2.55
4	3.41	$3 \cdot 36$	3.31	3.26	3.21	3.16	3.11	3.07	3.03	2.95
-2	3.95	3.59	3.54	3.78	3.72	3.67	3.62	$3 \cdot 56$	3.51	$3 \cdot 46$
-	$4 \cdot 57$	$4 \cdot 50$	$4 \cdot 44$	4.37	$4 \cdot 31$	4.25	4.19	4.13	4.07	4.01
+0	4.57	4.64	$4 \cdot 70$	4.77	4.8 .4	4.91	4.98	5.05	5.12	5.20
2	5.27	$5 \cdot 35$	5.42	5.50	5.58	5.66	5.74	5.92	5.90	5.99
4	6.07	6.15	6.24	6.33	6.12	6.51	6.60	6.69	6.78	6.85
6	6.97	7.07	7.17	7.26	$7 \cdot 36$	$7 \cdot 47$	7.57	7.67	7.78	7.58
S	7.99	S. 10	S.2I	8.32	8.43	S. 55	8.66	S.78	8.90	9.02
10	9.14	9.26	9.39	9.51	9.64	9.77	9.90	10.03	10.16	10.30
12	10.43	10.57	10.71	20.85	10.99	11.14	11.28	11.43	11.58	11.73
14	11.58	12.04	12.19	12.35	12.51	12.67	12.84	13.00	13.17	13.34
16	13.51	${ }^{1} 3.68$	13.86	1.4 .04	$1 .+21$	14.40	14.58	1.476	14.95	15.14
18	15.33	$15 \cdot 52$	15.72	15.92	16.12	10.32	16.52	16.73	16.94	17.15
20	17.36	17.58	17.80	18.02	18.24	18.47	18.69	18.92	19.16	19.39
22	19.63	19.57	20.11	20.36	20.61	20.56	21.11	21.37	21.63	21.89
24	22.15	22.42	22.69	22.96	23.24	23.52	23.80	24.0 S	24.37	24.66
26	24.96	25.25	25.55	25.86	26.16	26.47	26.78	27.10	27.42	27.74
28	28.07	28.39	2 S .73	29.06	29.40	29.74	30.09	30.44	30.79	31.15
30	31.51	31.87	32.24	32.61	32.99	$33 \cdot 37$	33.75		34.53	
32	35.32	35.72	36.13	36.54	36.95	$37 \cdot 37$	37.79	3 S.22	38.65	39.08
34	39.52	39.97	40.41	40.87	41.32	41.75	42.25	42.72	43.19	43.67
36	4.4.16	44.65	45.14	45.64	46.1. 4	46.65	47.16	47.68	48.20	48.73
3^{8}	49.26	49.80	50.34	50.59	51.44	52.00	52.56	53.13	53.70	54.28
40	5.4. S_{7}	55.46	56.05	56.65	57.26	57.87	58.49	59.11	59.74	$60.3{ }^{\text {S }}$
12	61.02	61.66	62.32	62.95	63.64	6.4 .31	64.99	65.67	66.36	67.05
44	67.76	68.47	69.18	69.90	70.63	71.36	72.10	${ }_{7} 2.85$	73.60	$7+36$
46	75.13	75.91	76.69	77.47	78.27	79.07	79.58	80.70	81.52	S2.35
48	83.19	84.03	84.89	S5.75	86.61	S7.49	88.37	89.26	90.16	91.06
50	91.98	92.90	93.83	94.77	95.71	96.66	97.63	98.60	99.57	100.56
52	101.55	102.56	103.57	104.59	105.62	106.65	107.70	108.76	109.82	110.59
5.	111.97	113.06	11.4 .16	I 15.27	116.39	117.52	118.65	19.80	120.95	122.12
56	123.29	12.4 .48	125.67	126.87	128.09	129.31	130.54	31.79	133.04	${ }^{1} 34.30$
58	${ }^{1} 35.58$	136.86	138.15	139.46	$1 \div 0.77$	1.42 .10	$143 \cdot 43$	1.44 .78	146.14	1.47 .51
60	148.88	150.27	151.68	153.09	154.51	${ }^{1} 55.95$	157.39	158.85	160.32	I61.So
62	163.29	16.4 .79	166.31	167.83	169.37	170.92	172.49	17.06	175.65	177.25
6	178.186	180.48	182.12	183.77	185.43	187.10	185.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75	204.56	206.35	20S. 21	210.06	211.92
65	213.79	215.65	217.58	219.50	221.43	223.37	225.33	227.30	229.29	231.29

- This table is based on Regnanlt's experiments, the numbers being taken from liroch's reduction of the observations (Tras. et Ménr. du liur. Int. eles Poids et Més. 10 m .1). The numbers differ very slightly from those of Remault (see Table afs). The direct measurements of Marvin given in Table 669 show that the numbers in this table are ligh for temperature below zero centigrade.

Smithsonian Tables.

Table 166.
PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
70	233.31	$235 \cdot 34$	$237 \cdot 39$	-39.45	241.52	2.13 .62	2.15 .72	2.47 .85	2.19.0.5	252.1.4
72	251.30	256.41	25i.69	200.191	263.4	205.35	267.65	200.013	-72.23	274.5.7
74	$2-1.57$	279.21	2 S 1.58	283.95	280.35	285.76	291.19	203.4	2065.11	205.59
70	301.09	303.00	306.14	308.49	311.26	31.3 .85	316.15	319.07	3-1.72	$32+3{ }^{\circ}$
\%	3-7.05	329.75	332.47	335: 0	337.95	340.73	343.5	3.16 .33	3.19 .16	352.01
80	354.87	357.76	360.67	363.59	3616.54	360.51	372.49	375.50	$33^{-8.53}$	381.55
S2	384.64	357.73	390.84	393.97	$397.1=$	400.29	403.49	.100. 70	400.94	413.10
84 86	416.47	419.77	+23.019	$4=6.44$	+20.81	4.33 .19	430.60	+40.0.1	$4 \cdot 13.49$	446.97
86	450.47	454.00	457.54	461.11	464.71	468.32	471.06	475.13	179.32	$4 ¢ 3.03$
SS	486.76	490.52	49.4.31	498.12	501.95	505.31	509.69	513.60	517.53	521.48
90	525.47	529.48	533.51				547.90	55\%.07	55§.26	562.47
92	566.71	570.98	575.28	579.61	553.96	$5 \mathrm{SS}$.	592.74	507.17	5101.64	tiof. 13
94	610.64	015.19	619.76	$624 \cdot 37$	629.00	633.66	$6_{3 S .35}$	64.3 .06	6.17 .51	6.52 .59
96	657.40	662.23	667.10	672.00	676.00	681.SS	686.87	6 log . 89	696.93	702.02
95	707.13	712.27	$717 \cdot 44$	722.65	727.89	733.16	738.46	743.So	749.17	751.57
100	-60.00	765.47	770.97	776.50	7 - 2.07	${ }_{7} S_{7} .67$	-	-	-	-

Table 167.
WEICHT IN GRAINS OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC FOOT OF SATURATED AIR.

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	80	9.0
-10	-356	0.340	0.324	0.309	0.294	0.2So	0.267	$0.25+$	0.242	
-0	0.564	0.540	0.516	0.493	0.471	0.450	0.430	0.411	0.391	0.373
+0	0.564	0.590	0.617	0.645	0.674	0.705	0.735	0.767	0.Soı	0.837
10	0.873	c. ${ }^{\text {che }}$	0.950	0.991	1.033	1.077	1.122	1.169	I.217	נ. 26 S
20	1.321	1.374	1.430	1.488	1.549	I.GII	1.675	I.743	1.812	1.SS2
30	1.956	2.034	2.113	2.19 .1	2.279	2.366	2.457	2.550	2.6 .46	2.746
40	2.849	2.955	3.064	$3 \cdot 177$	3.294	3.414	3.539	3.667	3.500	3.936
50	4.0-6	4.222	$4 \cdot 372$	+.526	4.655	4.549	5.016	5.191	$5 \cdot 370$	5.555
60	5.7.15	5.941	$6.1+2$	6. $3+9$	6.563	6.782	7.009	7.2.41	$7 . .40$	7.926
70	7.980	S.240	S.50S	8. 7 S2	9.066	9.356	9.655	9.962	10.277	10.601
So	10.934	11.275	11.626	11.057	12.356	12.736	13.127	13.526	13.037	14.359
90	14.790	15.234	I 5.6So	16.155	16.634	17.124	17.626	18.142	18.671	19) 212
100	19.766	20.335	20.917	21.514	22.125	22.750	23.392	24.045	24,720	25408
110	26.112	26.837	27.570	2S.325	29.096	29.487		-	-	-

Table 168.
WEICHT IN GRAMMES OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC METRE OF SATURATED AIR.

Temp.	00	1.0	2.0	3.0	4.0	5.0	6.0	70	8.0	90
-20	1.078	- 902	0.913	- 839	0.770	0.706	0.647	0.593	0.512	0.496
-10	2.363	2.192	2.032	1.882	1.7.12	1.611	1..159	1.375	1.269	1.170
-0	4.835	4.513	4.211	3.926	3.659	3407	3.171	2.0 .19	2.7.41	2.546
+0	+.S35	5.176	5.53 S	5.922	6.330	6.761	7.219	7.703		
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	IS.I43	19.222	20.355	21.546	22.796	24.109	25.457	26.033	28.450
30	30.039	31.704	33.449	35.275	37.187	39.157	41.279	43.465	+5.751	48.135

[^44]Smithsonian Tables.

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURE.*
Pressures are given in inches and millimeltes of mercury, temperatures in degrees Fahrenheit and degrees Centigrade.

(a) Pressures in inches of mercury; temperatures in degrees Fahrenheit.										
Temp. F.	$0 \cdot 0$	1.0	2.0	3.0	4.0	$5^{3} .0$	6.0	7.0	8.0	$9^{\circ} 0$
-50°	0.0021	0.0019	0.0018	0.0017	0.0016	0.0015	0.0013	0.0013	0.0012	0.0011
-40	.00.39	. 00.37	.0035	. 0033	.003I	.0029	. 0027	. 0026	.0024	. 0022
- 30	.006)	.0065	. 0061	. 0057	.0054	. 0051	.00.4	.00.46	.00.17	. $00+1$
$\because 0$. 1120	.OII9	.O112	.0106	.0100	.0094	.00S 9	.0083	.0075	.0074
-10	.0222	.0210	.0199	. OISS	.0178	.0168	.0159	. 0150	. 0141	. 0133
-0	0.033_{3}	0.0263	$0.02+1$	0.0225	0.0307	0.0291	0.0275	0.0260	0.0247	0.0234
+0	.0393	. 0.103	.0423	. 04 4.4	.0467	.0491	.0515	.0542	.0570	. 0600
10	.063!	. 0665	.0609	.07.35	.0772	.0810	.0850	. OSgI	.0933	. 0979
20	.1026	. 1077	. 1130	. IIS5	. $12+2$. 1302	.1365	. 1430	. 1497	.1563
30	.1641	.1718	. 1798							

(b) Pressures in millimetres of mercury ; temperatures in degrees Fahrenheit.

Temp. F.	0 0	$1{ }^{\circ} 0$	$2^{3} 0$	3.0	$4^{2} .0$	$5^{\circ} 0$	$6^{\circ} .0$	$7{ }^{3} .0$	8.0	$9^{\circ} 0$
50^{\prime}	0.05 .3	0.049	$0.0+6$	0.043	0.0 .40	0.037	0.034	0.032	0.030	0.028
40	. 100	. 024	. 089	.084	. 079	. 074	. 069	. 065	. 061	. 057
- 30	.176	.165	. 155	.146	138	. 130	. 123	. 117	. 111	.105
-20	-319	.301	.2S.4	. 268	25.3	. 239	. 225	. 212	. 199	.187
-10	.564	. 534	- 505	.478	+ 452	427	.403	-384	- 355^{8}	$\cdot 33{ }^{8}$
-0	0.972	0.9こ2	0.873	0.826	0.781	0.738	0.608	0.661	0.627	0. 595
+o	. 972	1.023	I. 075	1.129	1.186	1.246	1.309	1.376	1.447	1.523
10	1.603	1.68S	1.776	1.867	1.961	2.058	2.158	2.262	2.371	2.156
20	2.607	2.735	2.869	3.000	3.155	3.307	3.466	3.631	3. SO_{3}	3.982
30	4.169	4.364	+.568							

(c) Pressures in inches of mercury; temperatures in degrees Centigrade.

Temp. C.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-0	0.179 S	0.1655	0.152 .4	0.1395	0.1290	O.1185	0.1091	0.0905	0.0916	$0.0 S_{42}$
-10	.0772	.0706	.0645	. 0588	. 0537	.0491	.0.149	.0411	.0375	. 0341
- 20	.0307	.0-78	. 0255^{2}	. 0229	. 0208	. 0185	. 0171	.0153	$.013^{3}$. 0124
30	. 1112	.0101	.0091	.0082	.0073	.0065	.0059	.0053	.004'	.0044
-40	.0040	.0036	.0032	.0029	. 0025	.0022	. 0020	.0017	.0015	.0013

(d) Pressures in millimetres of mercury; temperatures in degrees Centigrade.

Temp. C.	03.0	1.0	$2^{\circ} 0$	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-0	4.569	4.208	3.875	3.565	3.277	3.009	2.767	2.534	2.327	2.138
-10	1.951	1.79 t	1.637	1.493	1.363	1.2 .46	1.140	I.0.1.	0.052	0.864
-20	0.751	0.706	0.64 I	0.583	0.52 S	0.178	0.432	0.389	0.350	0.315
-30	0.254	0.256	0.231	0.207	0.185	0.165	0.148	0.133	0.121	0.110
-40	0.100	0.090	0.081	0.072	0.064	0.057	0.050	0.044	0.039	0.034

- Marvin's results (Ann. Rept. U. S. Chief Signal Officer, iS9r, App. ro).

Smithsonian Tables.

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.
This table gives the vapor pressure corresponding to various values of the difference t - $:$ belween the reaclings of dry and wet bulb hermencters and the temperature f_{1} of the wet bulb thermoneler. the differene in $t-f_{1}$ are given by twodegree steps in the top line, and $/ 1$ by degrees in the firse colomm. Temperatur in (entignade degrees and kegnatis's whor pressures in millimetres of mercury are uned thronghoul the table ' The table was calculated for barometric pressure be equal to zo centmmetres, and a corncetion is giventor eate cembimetre at the top of the columus. *

* The table was calculated from the formula $p=\beta_{1}-0.00066 B\left(t-r_{1}\right)\left(s+0.0011_{5} t_{1}\right)$ (Ferrel, Annual Report
U.S. Chief Signal Officer, $1: 86$, App. 24).
\dagger When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

The first column of this table gives the temperatures of the wet bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimetres. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

t_{1}	$t-t_{2}=1$	2	3	4	5	6	7	8
	Dew-points corresponding to the difference of temperature given in the above line and the wet-bulb thermometer reading given in first colum.							
$\delta 7 / 86=$. 04	. II	. 22	49				
-10	- 13.2	- 17.9						
9	12.0	16.0	- 22.0					
-5 -7	10.7	14.3	19.4					
-7 -6	$9 \cdot 5$	12.7	17.1 14.0	-2.4 20.3				
8T/ $\% 1=$. 03	. 06	${ }_{\text {. } 11}$. 18	31	43		
- 5	-7.1	- 9.7	- I2.9	-17.5	-24.5			
-4	6.0	8.3	II.I	14.8	20.1			
3	4.8	6.9	9.4	12.6	I 6.8	- 23.4		
- 2	3.6	5.5	7.8	10.5	13.9	15.9		
$5 T / \bar{\prime}-1$	2.5	4.2 4	6.2	8.5	11.5 .14	15.4 .19	-21.0	
$5 T / \delta B=$	- 1.3	. 04 -2.9	.07 -4.8	. 10 -6.8	1.14 -9.3	- 12.19	-16.5	- 22.98
I	0.3	1.7	3.5	$5 \cdot 3$	7.6	10.2	13.5	18.3
$=$	$+0.6$	0.7	2.2	3.9	6.1	S. 3	11.1	14.7
3	1.7	+0.2	1.0	2.6	4.6	6.4	8.9	11.9
${ }^{4}$	2.8	1.4	0.0	1.3	3.1	4.7	6.9	9.4
$\delta T / \delta B=$. 02	. 03	. 05	. 07	. 09	. 11	. 14	. 18
	3.5	2.6	$+1.2$	-0.1	- 1.6	-3.2	- 5.0	-7.1
	4.9	3.7	2.5	+ 1.1	0.2	1.7	$3 \cdot 3$	5.2
	6.0	4.9	3.7	2.4	+ I.I	0.3	1.8	$3 \cdot 4$
S	7.0	6.0	4.9	3.7	2.5	+ 1.1	0.3	1.5
¢ $T / \delta b=$	S. 1	7.1	6. 1	5.0	3.9	2.6	+ 1.2	0.1
- $8 T / 8 B=$. 01	. 02	. 03	. 05	. 06	. 08	. 10	. 12
	9.1	8.3	$7 \cdot 3$	6.3	5.2	4.1	2.5	+ 1.5
12	10.2	9.3 10.4	8.4 0.6	7.5 8.7	6.5 7.5	6.5	4.3 5.8	3.1
13	12.3	11.5	10.7	9.9	9.1	S.2	7.2	6.2
14	13.3	12.6	11.9	II.I	10.3	9.05	8.6	7.6
\%T/8r	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08
15	14.4	13.7	13.0	12.3	11.5	10.8	9.9	9. 1
16	15.4	1.4 .8	1.1	13.5	12.7	12.0	11.3	10.5
17	16.4	15.5	15.2	1.4 .6	13.9	13.3	12.6	11.8
18	17.5	16.9	16.3	I 5.7	15.1	14.5	13.8	13.1
$57 / 8 B=19$	18.5	18.0	17.4	16.9	16.3	15.7	15.1	14.4
- $5 T / \delta B=$. 005	. 01	. 015	. 02	. 027	. 033	. 04	. 05
20 21	19.5	19.0	18.5	I 8.0	17.4	16.9	16.3	15.7
21	20.5	20.1	19.6	I9. I	18.6	IS. I	17.5	17.0
22	21.6	21.1	20.7	20.2	19.7	19.2	18.7	18.2
23 2.4	22.6	22.2	21.7	21.3	20.5	20.4	19.9	19.4
$\delta T / \delta F^{2.1}=$	23.6	23.2	22.5	22.4	-22.0	21.5	21.1	20.6
8T/ $6 B=$	${ }_{0.6}^{.005}$. 01	. 015	. 02	. 025	. 03	. 035	${ }^{.04}$
26	24.6	2.4 .2	23.9	$23 \cdot 5$	23.1	22.7	22.2	21.5
20	25.6	25.3	24.9	24.5	24.2	23.5	23.4	23.0
28	26.7	20.3	26.0	25.6	25.3	24.9	2.45	24.1
29	2.7 .7 28.7	27.3 28.4	27.0 28.1	26.7 27.8	26.4 27.4	26.0	25.7 26.8	25.3 26.4
8T/8B -	. 003	. 006	. 11	. 013	. 017	. 019	. 022	. 026
30	29.7	29.4	29.1	28.8	28.5	2S.2	27.9	27.6
31	30.7	30.5	30.2	29.9	29.6	29.3	29.0	28.7
32	31.7	31.5	31.2	30.9	30.7	30.4	30.1	29.8
33	32.5	32.5	32.2	32.0	31.7	31.5	31.2	30.9
$8 T / 8 B^{3.4}$	33.5 .003	33.5 .005	33.3 .008	33.0	32.8	32.5	32.3 .019	32.0
35	34.8	$3+5$	$3 \cdot 3 \cdot 3$	34.1	33.8	33.6	33.4	33.1
36	35.8	35.5	35.3	35.1	34.9	34.6	$3+4$	34.2
37	36.8	366	36.4	36.2	36.0	35.7	35.5	$35 \cdot 3$
38	37.8	37.6	37.4	37.2	37.0	36.5	36.6	36.4
39	39.8	38.6	38.4	38.2	38.0	37.9	37.6	$37 \cdot 5$

between the dry and the wet bulb, when the dew-point has the vahes given at corresponding oint in the buly of from 70 centmetres the corresponding numbers in the lines marked $\delta \Gamma / \delta B$ are to be muhiplicel by the difie rine or abuve $\frac{3}{}$. See eamples.

VALUES OF $0.378 e^{*}$

This table gives the humidity term $0.378 e$, which occurs in the equation $\delta=\delta_{0} \frac{h}{760}=\delta_{0} \frac{B-0.378 e}{760}$ for the calculation of the density of the dry air in a sample containing aqueous vapor at pressure e; δ is the density at normal barumetric pressure, B the observed barometric pressure, and k the pressure corrected for humidity. For values of $\frac{h}{760}$ see Table 174. Temperatures are in degrees Centigrade, and pressures in millimetres of mercury.

Dewpoint.	$\begin{aligned} & \text { Vapor } \\ & \text { pressure. } \end{aligned}$	0.3780	Dewpoint.	Vapor pressure. e	0.378 e .	Dewpoint.	Vapor pressure. e	0.378 c .
-30^{2}	0.38	0.14	0	$4 \cdot 57$	1.73	30°	31.51	11.91
- 29	. $+^{2}$. 16	I	4.91	I. 86	31	33.37	12.61
- 28	. 46	.17	2	5.27	1.99	32	35.32	13.35
- 27	. 50	. 19	3	5.66	2.14	33	37.37	14.13
-26	. 55	. 21	4	6.07	2.29	34	39.52	14.94
-25	0.61	0.23	5	6.51	2.46	35	41.78	15.79
- 2.4	. 66	. 25	6	6.97	2.63	36	4.46	16.69
-23	.73	. 28	7	$7 \cdot+7$	2.82	37	46.65	17.63
-22	. 79	. 30	S	7.99	3.02	38	49.26	15.62
- 21	. 87	.33	9	S. 55	$3 \cdot 23$	39	52.00	19.60
-20	0.94	0.36	10	9.14	$3 \cdot 45$	40	54.87	20.74
- 19	1.03	. 39	11	9.77	3.69	41	57.87	21.56
- IS	. 12	. 42	12	10.43	3.94	42	61.02	23.06
-17	. 22	.46	13	II.I. 4	4.21	43	64.31	24.31
-16	. 32	. 50	14	I I. SS	4.49	4.	67.76	25.61
-15		0.54	15	12.67	4.79	45	71.36	26.97
-14	. 56	. 59	16	13.51	5.11	46	75.13	28.10
-13	. 69	. 64	17	14.40	$5 \cdot 4.4$	47	79.07	29.59
-12	. 8.	. 70	18	15.33	5.79	48	S3.19	31.45
- II	. 99	. 75	19	16.32	6.17	49	S7.49	33.07
-10	2. 15	0.8 I	20			50		
-9	. 33	. 88	21	18.47	6.95	51	96.66	36. 54
-S	. 51	. 95	22	19.63	$7 \cdot 42$	52	101.55	3 3. 39
- 7	. 72	I. 03	23	20.86	7.89	53	106.65	40.31
-6	. 93	. 11	24	22.15	8.37	5.4	111.97	42.32
-5	3.16	1.19	25	23.52	8.89	55	117.52	44.42
-4	+1	. 29	26	24.96	$9 \cdot 43$	56	123.29	46.60
- 3	. 67	. 39	27	26.47	10.01	57	129.31	4.5S
-2	. 95	. 49	28	28.07	10.61	58	135.58	51.25
- 1	4.25	.6r	29	29.74	11.24	59	1.42 .10	53.71

* This table is quoted from " Smithsonian Meteorological Tables," p. 225.

Smithsonian Tables.

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-phint d in Centigrade degrees, expressed in percentages of the saturation value for the temperature $\%$.

Depression of the dew-point.$1-1$	Dew-point (d).					Depression of the dew-point. $1-1$	Hew-point (1).				
	- 10	。	+10	+20	+30		- 10	-	+ 10	+ 20	+30
$\begin{gathered} \mathrm{C} \\ \mathrm{O}^{2} .0 \end{gathered}$	100	100	100	100	100	$8^{\text {C. }} 0$	5.	57	6	62	6.1
0.2	98	99	99	99	99	S. 2	5.	56	59	$6{ }^{1}$	63
0.4	97	97	97	98	98	8.4	53	56	58	60	63
0.6	95	96	96	96	97	S. 6	52	55	57	60	62
0.8	94	94	95	95	96	8.8	51	54	57	59	61
1.0	92	93	9.4	94	94	9.0	51	53	56	58	61
1.2	91	92	92	93	93	9.2	50	53	55	58	60
1.4	90	90	91	92	92	9.4	49	52	55	57	59
I. 6	85	S9	90	91	91	9.6	48	51	54	56	59
I. 8	S_{7}	88	89	90	90	9.8	48	51	53	56	58
2.0	86	87	88	SS	S9	10.0	47	50	53	55	57
2.2	8.4	S5	S6	S7	SS	10.5	45	48	51	54	
2.4	S3	8.4	S_{5}	S6	87	11.0	44	47	49	52	
2.6	S2	83	S_{4}	85	86	11.5	42	45	48	51	
2.8	So	82	S_{3}	84	S 5	12.0	41	44	47	49	
3.0	79	81	S2	83	8.	12.0	39	42	45	48	
3.2	75	So	SI	S_{2}	S3	13.0	35	41	44	46	
3.4	77	79	80	81	82	13.5	37	40	43	45	
3.6	76	77	79	So	82	14.0	35	3^{8}	41	44	
3.8	75	76	78	79	SI	14.5	34	37	40	43	
4.0	73	75	77	78	80	15.0	33	36	39	42	
4.2	72	74	76	77	79	15.5	32	35	38	40	
4.4	71	73	75	77	78	16.0	31	34	37	39	
4.6	70	72	74	76	77	16.5	30	33	36	3 3	
4.8	69	71	73	75	76	17.0	29	32	35	37	
5.0	68	70	72	74	75	17.5	28	31	34	36	
5.2	67	69	71	73	75	18.0	27	30	33	35	
$5 \cdot 4$	66	68	70	72	74	IS. 5	26	29	32	34	
5.6	65	67	69	71	73	19.0	25	2 S	31	33	
5.8	6.4	66	69	70	72	19.5	24	27	30	33	
6.0	63	66	68	70	71	20.0	24	26	29	32	
6.2	62	65	67	69	71	21.0	22	25	27		
6.4	61	6.	66	68	70	22.0	21	23	26		
6.6	60	63	65	67	69	23.0 24.0	19	22	24 23 23		
6.8	60	62	64	66	05	24.0		-1	${ }^{-3}$		
7.0	59	61	63	66	68	25.0	17	19	22		
7.2	58	60	63	65	67	26.0	16	18	21		
$7 \cdot 4$	57	60	62	6.4	66	27.0	15	17	20		
7.6	56	59	61	63	65	28.0	14	16	19		
7.8	55	58	60	63	65	29.0	13	15	18		
8.0	54	57	60	62	6.4	30.0	12	14	17		

* Abridged from Table 45 of "Smithsonian Meteorological Tables."

Smithsonian Tables.

Tables 174,175.
DENSITY OF AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.
TABLE 174. - Valucs of $\frac{h}{760}$, from $h=1$ to $h=9$, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of air at pressure h in terms of the density at normal atmosphere pressure. When the air contains moisture, as is usually the case with the atmosphere, we have the following equation for the dry air pressure: $h=B-0.37^{\circ} e$, where e is the vapor pressure, and B the observed barometric pressure corrected for temperature. Wh.n the necessary observations are made the value of e may be taken from Table 170, and then 037 Se from lable $1 \% 2$, or the dew-puint may be found and the value of $0.378{ }^{\circ}$ taken from Table 172 .

	1 h
1	760
2	0.0013158
3	.0026316
4	.0039474
5	0.0052632
6	.0065789
7	0.0098947
8	.0105263
9	.0181210

Examples of Use of the Table.
To find the value of $\frac{h}{760}$ when $h=754.3$

$$
h=\begin{array}{rcc}
700 & \text { gives } & .92105 \\
50 & \text { " } & .065789 \\
4 & \text { " } & .005263 \\
.3 & & .000395 \\
\underline{754.3} & \underline{.992497} \\
\hline
\end{array}
$$

To find the value of $\frac{h}{760}$ when $h=5.73$

$$
h=
$$

TABLE 175. - Values of the logarithms of $\frac{1 /}{760}$ for values of $\%$ between 80 and 340.
Values from \& to so may be got by subtracting I from the characteristic, and from $0 . \mathrm{S} 10 \mathrm{~S}$ by subtracting 2 from the characteristic, and so on.

\%	Values of $\log \frac{h}{760}$									
	0	1	2	3	4	5	6	7	8	9
80	1.0222S	1.02767	1.03300	1.03S26	1. 04347	1.04S61	T. 0536 S	1.05S71	1.06367	1.06S5S
90	. 07343	.07823	.08297	.08;67	.09231	.09691	.10146	.10596	.1104I	.11482
100	I. 11919	T.12351	1.12779	1.13202	1.13622	T. 1.4039	1.14449	1.14857	-1. 5261	1.1566I
110	.16858	. 16451	. 16840	. 17226	.17609	. 17988	.18364	.18737	. 19107	.19473
120	.19537	. 20197	. 20555	.za909	. 21261	.21611	. 21956	. 22299	. 226.40	. $229-3$
130	. 23313	. 236.46	. 23976	.24304	.24629	. 24952	. 25273	. 25591	. 25907	. 26220
1.10	. 26531	. 26841	.27147	.27.452	. 27755	.2SO55	.28354	.28650	.28045	. 29237
150	1.29528	T.29916	1. 30103	-1.303SS	1.30671	1.30952	1.31231	1.31509	I. 31784	-1.32059
160	. 32331	. 32616	. 32870	. 33137	. 33403	-33667	. 33929	- 34190	- $34+50$. 34707
170	-31964	-35218	-35471	. 35723	-35974	-36222	- 36470	. 36716	-36961	-3720.1
190	- 374.16	. 37686	-3792 6	-35164	-35400	-38636	-35870	. 39128	. 39334	-39565
190	-39794	. 40022	- 402.49	-40474	.40699	. 40922	..1144	.41365	.4155	-1804
200	-1.42022	1.42238	1. 12.451	1.42668	- .12882	1. 43004	1.43305	1.43516	1.43725	1.43933
210	4141	. 4.1347	. 44552	-. 17757	- 14960	. 45162	. 4536.4	- 45565	$\cdot+576.1$. 459 ' ${ }^{\text {a }}$
220	-46101	.46358	. 46554	.46749	46013	. 47137	- 47329	- 47521	. 47712	. 47902
230	48091	- 45280	.48467	.48654	-488-10	. 49025	-49210	.49393	. 19536	. 49758
2.40	. 49910	. 50120	. 50300	. 50479	. 50658	. 50835	. 51012	. 51185	. 51364	. 51539
250	I. 51713	- 1.51586	I. 52059	1.52231	1. 52402	1.52573	1.5274 .3	1.52912	1.5.30S I	1.5.3249
210	. 33110	- $5.58{ }^{\circ} 3$. 537.19	. 53914	. 54079	. 54213	. 51407	. 54570	. 517.32	. 5.180 .4
$2-0$	- 50505	. 55216	. 55376	- 55535	. 55604	. 55852	. 56010	. 56167	-56323	- 56.179
	- $56,63.4$. $50-89$	-56944	- 57097	-57250	-57403	. 57555	-57707	- 57858	-58008
290	- 5 S15	- 58308	.5.457	-5S605	. 58753	. 58901	- 59045	-59194	-59340	- 59486
300	1.59631	I. 57775	1.57919	1.60063	$\overline{\text { I. } 60206 ~}$	I. 60349	$\overline{1.60491}$	T.60632	- 1.60774	I. 10014
310	. 61055	. 61105	. 61334	. 61473	.61611	. 61750	. 61887	. 62025	. 62161	.6229
320	. $62+3.1$. 62569	. 62304	.62839	. 62973	. 63107	.63240	. 63373	. 63506	.63638
33°	. 63770	. 63001	. 0.4032	.64163	. 64293	. 64.423	. 64553	. 64682	.64510	. 64939
340	. 65067	.65194	.65321	.65448	. 65574	. 65701	. 65826	. 65952	. 66077	. 66201

[^45]
DENSITY OF AIR．

Values of logarithms of $\frac{h}{760}$ for values of h botween 350 and 800 ．

\％	Values of $\log \frac{h}{7 \times 0}$ ．									
	0	1	2	3	4	5	6	7	8	9
350	－1．66325	1． 66449	1． 66573	1． 66696	－． 66819	－ 1.60041	T． 17.064	T． 67185	1.57307	1． 1.742 S
$3(10$	． 67519	． 67669	． 17790	．07909	． 68029	． 68148	． 18.807	． 68385	． $4 \mathrm{SN}_{5} 3$	ciscz
370	． 68739	.68856	． 68973	． 69090	． 69206	． 603322	． 6 （）． 137	． 60553	－mous	－6， SO_{3}
3 3io	． 69897	．70011	．70125	． 70239	.7035	． 70.4175	． 70577	． 70 （1，90	70S02	.7091 .4
390	.71025	.71136	． 71247	$.7135^{\circ}$	．71．408	． 71575	． 71088	． 71799°	.71907	.72016
400	1．72125	1．72233	T． 72341	1．724．49	－ 7.72557	1．72664	1．727ク！	1．72 ${ }^{-7} 8$	－．72）S5	T．73001
410	－73197	． 73303	． 73108	．73514	． 73619	．73723	．73828	.73932	． 74036	－74140
420	－7524	－74．34	－74450	． $7+553$	． 74655	－7475	－7．4860	． 74901	.75063	.75164
4.30	.75265	.75366	． 75.167	． 75567	． 75668	． 75.68	．75867	.75967	． 76060	．76165
4.40	．7626	.76362	． 76.461	．76559	．76657	． 76755	．70852	． 76949	． 77045	．71143
450	1.77240	1．773．3	1．77＋32	1．7752S	T． 77624	1.77720	1．77S15	1．77910	－－7． T 005	1． 7 S 100
460	．78194	－7S239	．78353	．78477	．78570	－8664	.78757	．78550	．78943	.79036
470	．79128	．79221	.79313	． 79405	． 79496	．79588	．79659	．79770	78961	．79952
480	． 50043	． 80133	． 80223	． 20313	． SO_{403}	． SO 493	． 80582	． $\mathrm{So672}$	． 80761	Sos 50
490	．So93S	． 1027	． 81115	． 81203	． 81291	． 81379	． 81.467	． $\mathrm{SI}_{5} 54$	． 51642	． 81729
500	T．SıS16	－． 81902	T．SrgSo	T．S2075	T．S2162	T．S224S	I． 82334	－ 2.8219	1． S2505	1．$S=590$
510	． 82676	． S 2761	． 828.46	． 82930	． 83015	． 83099	． 83184	． 83265	． 3335	． 3435
520	． 33519	． 33602	． 83086	． 83769	．$S_{3} 5_{52}$	． 83935	． 84017	． 81100	． 81152	． $\mathrm{S}+204$
530	． $8+346$	． $84+28$	． 4510	．.$_{4591}$	． 84673	． 87754	． 84835	． 84916	． 84997	． S 5076
540	． 8515 S	． $5_{5} 238$	． 85319	． 85399	． 85479	． 55558	． 85635	． 85717	． 85797	． 55876
550	I． S $_{5955}$	1．86034	－．86113	T． 86191	T． 56270	I．S63．3S	－ $1.864=6$	T． 86504	T．S65S2	I．S6660
560	． 56737	． 86815	． 86892	． 86969	． 87047	． 87123	． 87200	． $\mathrm{S}_{7} 277$	． 87353	． 87430
5：0	．$S_{7} 506$	． 87282	． $8^{-65 S}$	． 57734	． 88510	． SHCS_{5}	． 87961	． SSO_{3}	．SSII	．SSi＞6
580	．$S^{\text {S }} 261$	． 88336	． $88+11$	． $\mathrm{SS}_{4} 86$	． 58560	． 88634	． 85705	． SS 5 S 2	．	．SCazo
590	． 59004	． 89077	． 89151	． 59224	． 59297	． 59370	． 9.943	． 50516	． 5955	． 9 your
600	İ．S973．1	т． 89806	－． 89878	－． 89950	1．90022	1． 90004	1．90166	－．9023S	－1．90309	I．903So
610	． 90452	． 00523	． 9059.1	． 90665	． 90735	． 20806	． 90877	． 90014	．91017	－9105
620	． 9115	． 91225	．91298	． 91367	． 91437	． 91507	－91576	． 91645	． 91715	．91－84
630	． 91553	． 91922	． 01990	． 92059	． 9212 S	.921196	．92264	－923，33	．92401	．9－469
6.40	－92537	．92604	．92672	．927，40	.92507	．92875	．92942	．93009	．93076	－9343
650	1.93210	1.93277	1．9334．3	1.93410	1．93476	I． 93543	T． 93601	1． 23675	T． 93741	－1．93SO－
60	． 93873	． 93930	．94004	． 94070	． 9.4135	－9t201	－9．1266	－ 94331	－1）+396	－94401
670	－ $2+5=6$	． 94591	－9，656	.94720	． 21785	94－49	． 91913	－2）．475	． 95042	．95106
680	． 95170	． 95233	． 95297	． 95361	． 95.124	． 9545	．95531	－19504	．95177	．95741
690	.95004	.95866	． 95929	.95902	．） 0055	.96117	．）6miso	－）0242	．90304	
700	T．0642S	T． 96490	1．96552	T． 96614	－ $.966-6$	1．96－3	I．9 -1799	1． 96861		1．960． 3
710	．97044	． 97106	．97167	．9722	． 97288	． 97349	． 97.410	－9，－171	． 97551	－9ア502
720	．9－652	． 97712	－9アラフ2	$0-832$	－97592	． 97951	．） 0^{-12}	－9イロ72	OS132	．9．191
730	． 98251	．99310	－9 3 －	－25429	－ロ゙が	－95547	－98606	－asmes	－ $0^{\text {STV4 }}$	－14－53
740	$.088+2$	． 95900	． 08859	．99018	.99076	.99134	．99193	．99251	． 97309	－1930）
750	1．09＋25	1．994§3	1.995 .10	T． 09598	－ 1.99656	1.99713	－ 0 ．907フ	1．0ワ¢2	1.09586	$1.9904=$
760	0.00000	－00057	0.00114	0.00171	$0.002 \leq 5$	$0.002 \bigcirc 5$	0.00312	0.00395	$0.00+55$	0.00511
770	． 00568	．00624	． 00650	． 00737	．00793．	． 00819	． 00905	．00961	． 01017	．01072
750	． 01128	．01184	． 01239	． 01295	． 01350	． 01406	.01461	．01516	.0157	． 0106
790	． 01681	． 01736	． 01791	． 01846	． 01901	． 01955	． 02010	． 02064	．02119	．02133

Smithsonian Tables．

Table 176.

VOLUME OF PERFECT CASES.

Values of $1+.00367 t$.

The quantity $\mathrm{f}+.00367$ gives for a perfect gas the volume at t° when the pressure is kept constant, or the pressure at t^{3} when the volume is kept constant, in terms of the volume or the pressure at 0°.
(a) This part of the table gives the values of $1+.00367 t$ for values of t between 0° and $10^{\circ} \mathrm{C}$. by tenths of a degree.
(b) This part gives the values of $x+.00367 t$ for values of t between -90° and $f 1990^{\circ}$ C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows: - In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (12) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be $682^{\circ} .2$:
We have for 680 in table (b) the number 3.49560
And for 2.2 in table (a) the decimal
Hence the number for 682.2 is
. 3.50367
(c) This part gives the logarithms of $1+.00367$ for values of t between -49° and $+399^{\circ} \mathrm{C}$. by degrees.
(d) This part gives the logarithms of $1+.00367 t$ for values of t between 400° and 1990° C. by 10° steps.
(a) Values of $1+.00367 t$ for Values of t between 0° and 10° C. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0	1.00000	1.00037	1.00073	1.00110	I.OOI 47
1	. 00367	.00.40.4	.004.40	. 00.477	. 00514
2	. 00734	. 00771	.00807	.00844	.00S8I
3	. 01101	. 11738	. 01174	. 01211	. 012.48
4	. 01468	. 01505	. 01541	. 01578	. 01615
5	1.01835	1.01872	r.orgos	1.01945	1.01982
6	. 02202	. 02239	. 02275	. 02312	. 02349
7	. 02569	. 02606	.026.42	. 02679	. 02716
8	. 02936	. 02973	. 03009	. 03046	. 03083
9	. 03303	. 03340	.03376	. 03413	. 03450
t	0.5	0.6	0.7	0.8	0.9
0	1.00184.	1.00220	1.00257	1.00294	1.00330
I	. 00550	. 00537	. 00624	. 00661	. 00697
2	.00918	. 00954	. 00991	.01028	.oIo6.4
3	. 0128.4	. 01321	. 01358	. 01395	.OI431
4	. 01652	. 01688	. 01725	. 01762	. 01798
5	1.02018	1.02055	1.02092	1.02129	1.02165
6	. 02386	. 02422	. 02.459	. 22.496	. 02532
7	. 02752	. 02789	. 02826	. 02863	.02899
8	.03120	. 03156	. 03193	. 03290	. 03266
9	. 03486	. 03523	. 03560	. 03597	. 03633

Bmithsonian Tables.

VOLUME OF PERFECT GASES.

(b) Values of $1+.00367$ i for Values of $\left(\right.$ between -90^{\prime} and $+1990 \quad 0$. by 10 Steps.

t	00	10	20	30	40
-000	1.00000	0.9633°	0.92660	0.88990	$0.553=0$
$+000$	1.00000	1.93670	1.07310	1.11010	1.14690
100	1. 36700	1.40370	1.440 .40	1.44710	1.513%
200	1.73400	1.77070	I. SO7 40	1.SH10	1.550
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50 .470	2.54140	2.57 Sio	2.61480
500	2.83500	2.57170	$2.90 S_{40}$	2.94510	2.9 ¢180
600	3.20200	3.23870	3.27540	$3 \cdot 31210$	$3 \cdot 34580$
700 800	3.56900	3.60570	3.642 .40	3.67910	3.715 So
S00	3.93600	3.97270	4.009 .10	4.04610	4.05280
900	4.30300	4.33970	4.376 .40	4.41310	$4 \cdot 449 \mathrm{So}$
1000	4.67000	4.70670	4.743.40	4.7Sol0	4.8 I 680
1100	5.03700	5.07370	5.110.f0	5.14710	5.18380
1200	5.40 .400	5.44070	5.47740	5.51410	5.55080
1300	5.77100	5.50770	5. 8.4 .40	5.SS110	$5.91-80$
1.400	6.13 SoO	6.17470	6.21140	6.24810	6.28 .480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.57200	6.90870	$6.945+0$	6.98210	7.01580
1;00	7.23900	7.27570	7.31240	7.34910	$7 \cdot 35580$
1800	7.60600	7.64270	7.679 .40	7.71610	$7.75=80$
1900	7.97300	8.00970	8.0.46.40	S.os310	S.II9So
2000	S.34000	8.37670	S. 413.40	8.45010	S.48680
t	50	60	70	80	90
-000	0.81650	0.77980	$0.7+310$	0.70640	$0.669 \% 0$
+000	1.18350	1.22020	r. 25690	1.29360	$1.3,3030$
100	1.55050	1.58720	1.62390	1.66060	1.60730
200	1.91750	1.95t20	1.99090	2.02760	2.06430
300	2.23450	2.32120	2.55790	2.39 .460	2.43130
400	2.65150	2.68820	2.72490	2.76160	2.79530
500	3.01850	3.05520	3.09190	3.12860	3.16530
600	3.38550	$3 \cdot 42220$	3.45890	3.49560	$3.53=30$
700	3.75250	$3.789=0$	3.S2590	3.86260	3.50930
S00	4.11950	+.15620	4.19290	4.22960	4.260330
900	+.4S650	4.523=0	4.55990	4.59660	4.63330
1000	4.85350	4.39020	4.92690	4.96360	5.00030
1100	5.22050	$5 \cdot 25720$	5.29390	5.33060	5.367 .30
1200	$5 \cdot 58750$	$5.62+20$	5.66090	5.69760	5.73430
1300	5.95450	5.99120	6.02790	6.06460	6.10130
1400	6.32150	6.35820	6.39490	6.43160	6.46830
1500	6.65550	6.72520	6.76190	6.70560	6.83530
1600	7.05550	7.09220	7.12890	7.16560	7.20230
1700	$7 \cdot 42250$	7.45920	7.49590	$7.53=60$	7.56930
1500	7.78950	7.52620	7.86290	$7 . ⿱ 59760$	7.93630
1900	S.I 5650	8.19320	8.22990	\$.26660	S. 30330
2000	S.52350	8.56020	8.59690	S.63360	8.67030

Gmithsonian Tables.
(c) Logarithms of $1+.00367 t$ for Values

t	0	1	2	3	4	Mean diff. per degree.
- 40	¢.931051	1.929179	1. 927299	1.925410	1.923513	1884
-30	. 949341	. 947546	. 945744	. 943934	. 9.42117	1805
- 20	.966892	. 965169	$.963+38$.961701	.959957	1733
-10	. 953762	.9S2104	. 980440	.978769	.977092	1007
-	0.000000	. 998403	. 996801	.995192	. 993577	1605
± 0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	. 015653	.017188	. 018717	. 02024 I	. 021760	1526
20	.030762	.032244	.033721	.035193	.036661	1.474
30	. 045362	.046796	. 0.48224	.0.49648	. 051068	1426
40	.059488	. 060875	. 062259	.063637	.065012	1381
50	0.073168	$0.0745^{1} 3$	0.075853	0.077190	$0.07 \mathrm{~S}_{5} 22$	1335
60	.086.43I	. 087735	.0590 36	. 090332	. 091624	1299
70	. 099301	. 100567	.101829	.10308S	. 104344	1259
So	. II ISoo	.113030	.114257	. 1154 SI	. 116701	1226
90	.123950	.125146	.126339	. 127529	.128716	1191
100	0.135768	0.136933	0. 138094	0.139252	0.140408	1158
110	.1.47274	. 248.408	.149539	. 150667	.151793	1129
120	. 158483	. 159588	. 160691	.161790	. 162887	1101
130	. $169+10$. 170.488	.171563	. 172635	.173705	1074
140	. 1 Soo68	.181120	.182169	.153216	.184260	1048
150	0. 190472	0.191498	0.192523	0.193545	0.194564	1023
160	. 200632	. 201635	.202635	. 203634	. 20.4630	1000
170	.210559	. 211540	.212518	. 213.494	. 214465	976
180	. 220265	. 221224	.222180	.223135	. 224087	956
190	. 229959	.230697	.231633	.232567	. 233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	- 245145	. 249044	.2499 .42	.250837	. 251731	
220	.257054	. 257935	.258814	.259692	. 260567	878 861
230	.265754	. 266645	. 267510	. 268370	. 269228	S61
240	. $27+4343$.275189	. 276034	.276877	.277719	S44
250	0.282735	0.283566	0. 2.4395	0.285222	0.2860 .48	828
260	. 290969	. 291784	. 292597	. 293409	. 29.4219	813
270	. 299049	. 299149	- 300048	-301415	-3022.40	798
2 SO	-306952	. 307768	-308552	-30933.4	.310115	754
290	-314773	. 315544	. 316314	$\cdot 317083$.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	. 329947	.330692	- $331+35$	-3,32178	. 332919	743
320	. 337339	.3.3-9072	. 335803	-339533	-340262	730
330	-344608	-345329	- 345048	. 346766	- 347482	719
340	. 351758	.352466	. 353174	. 353880	. 354585	707
350	0.359791	0.359 .488	0.360184	-0.360879	0.361573	
360	. 365713	. 306399	. 367084	. 367768	-36845	684
370	.372525	. 373201	. 373875	.374549 $.3 S 1225$.375221 .381587	674 664
390	- 385439	. 386494	- 387148	- 3 S780I	- 388453	654

Smithsonian Tables.

PERFECT GASES．
of t between -49° and $+399^{\prime} \mathrm{C}$ ．by Degrees．

t	5	6	7	8	9	Mean diff． per degree．
－40	－ 1.921608	7．919605	T．ワ17773	1． $9155^{\text {S }} 43$	－1．913）0．4	1926
－ 30	． 940292	．93゙400	． 930619	．93．1771	．932915	18.15
－ 20	． 958205	． 936.147	．95．468	．052909	．951129	1771
－ 10	． 975.409	． 973719	．97こ022	． 970319	．1）（S゙いO）	$1(x) 9$
－	.291957	．990330	．958697	．95705	．1） 85413	1636
＋ 0	0.007 S97	0.009 .459	0.011016	0.012567	0.01 .1113	1554
10	．023273	． 024785	． 02.6284	．027382	．029＝7．4	1500
20	．035123	．039581	． 041034	．042481	． 0.4392 .4	$1+50$
30	．052482	． 053 ¢93	．055298	． 056699	$.05 \mathrm{Son6}$	1402
40	．0663S2	． 067748	．069109	．070．466	．071819	1359
50	0.079847	0．081174	0.082495	0．0S3SII	0.085123	1315
60	．092914	．094198	． 095516	． $096 \mathrm{C}_{7} 15$	．09\＄031	12 S 1
70	． 105595	． 106843	．1050SS	． 109329	． 110566	1243
So	． 117917	.119130	．120340	－121547	． 122750	1210
90	． 129899	． 31079	．132256	． 33.130	． 134601	1175
100	O．I．41559	0.142708	0.143954	0．IT4997	0.146137	1144
110	． 152915	． 5.54034	． 155151	． 156264	． 157375	1115
120	．163981	． 164072	．166161	． 167246	． 168330	1087
130	．174772	.175836	． 176898	． 177958	．179014	1060
140	．185301	． 156340	．187377	．ISS41I	． 199443	1035
150	0.195581	0． 196596	0.197608	0.198619	0.199626	1011
160	． 205624	.206615	． 207605	． 208592	． 209577	988
170	． 215439	.216409	． 217376	． 218341	． 21990.4	966
ISO	． 225038	． 225986	．226932	．227S76	．22SSI9	946
190	． $23+429$	．235357	.236283	．237207	.235129	925
200	0.243621	0.244529	0.245436	$0.2463+1$	0.24724 .4	
210	．252623	． 253512	． 254.400	． 255287	．256172	$8{ }_{8} 8$
220	． 261441	． 262313	.263184	． 26.4052	． 26.1919	S；0
230	.270085	.270940	． 271793	．272644	． 273494	${ }_{8} 53$
2.40	.278559	． 279398	．2S0234	．2Siozo	． 281903	836
	0.256572	0.287694	$0.2 S S 515$	$0.2893=6$		
260	． 29502 S	$.295 \$ 35$	． 296850	． 297445	．29824	So5
270	． 303034	－ 303 S 27	． 304618	． 305407	． 300196	790
280	－ 310 SO 9	－311673	－312450	． 313226	－314000	776
290	－ 318616	． 3193 SI	． 32014	． 320906	$\cdot 321067$	703
300	0.326203	0． $3=6954$	0.327704	0．328．153		
310	． 333659	． $33+397$	－3．35135	－335971	． 3.36 ， $3+36$	737
320	－340989	－31715	－342441	－343164	－343857	724
330	－34S198	． 345912	－34962．4	－350337	－35104	713
340	－355＝S9	．355991	－356693	－357394	－35S093	701
350	0.362266	0.362957	0.36 .3645	0.364 .337	0．365025	690
360	． 369132	． 369513	． 370493	－371171	－3218．49	678
	． 375892	.376562	－37フマ32	－377900	－37597	668
390	－ 3 S 2548	－3¢3208	－3¢386S	－ 3 S． 1525	－305183	658
390	． 3 S9104	． 3 S9754	． 390.403	． 391052	－391699	6.48

Smithsonian Tables．

Table 176.
VOLUME OF PERFECT GASES.
(d) Logarithms of $1+.00367 t$ for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	. 505421	. 510371	. 515264	. 520103	. 524889
700	. 552547	. 556990	. 561388	. 565742	. 570052
Soo	. 595055	. 599086	. 603079	. 607037	. 610958
900	. 633771	. 637460	. 641117	. 644744	. 648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	. 705325	.708455	.711563	. 7146.48
1200	. 732715	. 735655	.738575	. 741745	. 744356
1300	.761251	. 764004	.766740	.769459	.772160
1400	.78S027	.790616	.793190	.795748	.798292
1500	0.813247	0.SI 5691	0.818120	0.820536	-. 822939
1600	. 8_{37083}	. 839396	. S $_{4} 1697$. 843986	. 846263
1700	. S 59679	. 861875	. 864060	. 866234	. 868398
1800	. 851156	. 883247	. 885327	. 887398	. 889459
1900	.901622	.903616	. 905602	. 907578	. 909545
t	60	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500	0.479791	0.485040	0.490225	0.495350	0.500415
600	. 529623	- 534305	. 538938	. 543522	. 548058
700	. 574321	. 578548	. 582734	. 586880	- 590987
Soo	. 61.4845	. 618696	. 622515	. 626299	. 630051
900	.651908	.655446	. 658955	. 662437	. 665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	.717712	. 720755	. 723776	. 726776	. 729756
1200	.747218	. 750061	.752886	.755692	.758480
1300	. 774845	.777514	.7SOI 66	.782802	. 785422
I 400	. $5008=0$. 503334	. 505 S 34	. OS319	. 810790
1500	0.825329	0.827705		0. 832.420	
1600	. 848828	. 850781	. 553023	. 5_{55253}	. S_{57471}
1700	. 870550	. 572692	. S 74824	. 876945	. 879056
1500	.S91510	. 893551	.S95583	. S 97605	. 899618
1900	.911504	.913454	.915395	.917327	.919251

Smithsonian Tables.

DETERMINATION OF HEICHTS BY THE BAROMETER.

$$
\begin{gathered}
\text { Formula of Babinet : } Z=C=C_{n}-\beta \\
C(\text { in fect })=5249.4\left[1+\frac{t_{0}+t-l_{1}}{900}\right] \text { English measures. } \\
C(\text { in metres })=16000\left[1+\frac{2\left(t_{n}+t\right)}{1000}\right] \text { metric measures. }
\end{gathered}
$$

In which $Z=$ difference of height of two stations in feet or metres.
$B_{0}, B=$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ air temperatures at the lower and upper stations respectively.
Values of C.

Englisif Measures.			Metric Measures.		
$\frac{1}{1}\left(t_{0}+t\right)$.	C	Log C	$\frac{1}{2}\left(t_{0}+t\right)$.	C	Log C
Fahr.	Feet.		Cent.	Metres.	
10°	4992S	4.6983 .4	-10°	15360	4.18639
15	50511	$.70339$	-8	15488	. 19000
			-6	15616	. 19357
20	51094	4.70837	-4	15744	. 19712
25	51677	.71330	-2	15872	.20063
30	52261	4.7ISIS	0	16000	4.20412
35	523.4	. 72300	+2	16128	. 20758
			4	$16=56$.21101
40	53428	4.72777	6	16384	.21442
45	54011	.73248	S	16512	.21780
50	54595	4.73715	10	16640	4.22115
55	55178	.74177	12	16768	. 22448
			14	16896	.2277
60		4.74633	16	1702.4	.23106
65	56344	. 75085	IS	17152	. 23431
70	56927	4.75532	20	17280	4.23754
75	57511	.75975	22	17.408	. 24075
			24	17536	. 24393
			26	17664	.24709
S5	$5 S 677$	$.768+7$	28	17792	. 25022
90	59260	4.77276	30	17920	4.25334
95	598.4	. 77702	32	$1 \mathrm{SO}_{4} \mathrm{~S}$. 25643
			34	18176	.25950
100	60427	4.78123	36	18304	.20255

Smithsonian Tables.

Table 178.
BAROMETRIC

Barometric pressures corresponding to different
This table is useful when a boiling-point apparatus is used
(a) British Measure.

Temp. F .	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$\underset{\text { I } 185^{\circ}}{ }$	17.05	17.08	17.12	17.16	17.20	17.23	17.27	17.31	17.35	17.39
	17.42	17.46	17.50	17.54	17.5 S	17.61	17.65	17.69	17.73	17.77
$\begin{array}{r} 187 \\ 18 S \end{array}$	17.8I	17.84	$17 . S S$	17.92	17.96	18.00	18.04	18.0S	18.12	IS.16
	IS.zo	18.24	18.27	18.31	IS. 35	18.39	18.43	IS.47	1S. 51	18.55
$\begin{array}{r} 189 \\ 190 \end{array}$	1S.59	18.63	1 8.67	IS. 71	IS. 75	IS. 79	18.83	18.S7	18.91	I 8.95
	19.00	19.04	19.08	19.12	19.16	19.20	19.24	19.28	19.32	19.36
$\begin{array}{r} 191 \\ 192 \end{array}$	19.41	19.45	19.49	19.53	19.57	19.61	19.66	19.70	19.74	19.78
	19.82	19.87	19.91	19.95	19.99	20.04	20.08	20.12	20.17	20.21
$\begin{array}{r} 193 \\ 194 \end{array}$	20.25	20.29	20.34	20.3 S	20.42	20.47	20.51	20.55	20.60	20.64
	20.68	20.73	20.77	20.82	20.86	20.90	20.95	20.99	21.04	21.08
$\begin{array}{r} 195 \\ 196 \end{array}$	21.13	21.17	21.22	21.26	21.30	21.35	21.37	2 I .44	2 I .4 S	21.53
	21.58	21.62	21.67	21.71	21.76	21.80	$21 . \mathrm{S} 5$	$2 \mathrm{I} . \mathrm{S}_{9}$	21.94	21.99
$\begin{array}{r} 197 \\ 195 \end{array}$	22.03	22.08	22.12	22.17	22.22	22.26	22.31	22.36	22.40	22.45
	22.50	22.54	22.59	22.64	22.69	22.73	22.78	22.53	22.5 S	22.92
$\begin{array}{r} 199 \\ 200 \end{array}$	22.97	23.02	23.07	23.11	23.16	23.21	23.26	23.31	23.36	23.40
	23.45	23.50	23.55	23.60	23.65	$=3.70$	23.75	23.80	23.55	23.59
$\begin{array}{r} 201 \\ 202 \end{array}$	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24.39
	24.44	24.49	24.54	24.59	2.4 .64	24.69	24.74	2.4 .50	24.85	24.90
$\begin{array}{r} 203 \\ 20.4 \end{array}$	24.95	25.00	25.05	25.10	25.15	25.21	25.26			
	25.46	25.52	25.57	25.62	25.67	25.73	25.78	25.83	25.88	25.94
$\begin{gathered} 205 \\ 206 \end{gathered}$	25.99	26.04	26.10	26.15	26.20	26.25	26.31	26.36	26.42	26.47
	26.52	26.58	26.63	26.68	26.74	26.79	26.55	26.90	26.96	27.01
$\begin{array}{r} 207 \\ 20 \$ \end{array}$	27.07	27.12	27.18	27.23	27.29	27.3.4	27.40	27.45		27.56
	27.62	27.67	27.73	27.79	27.84	27.90	27.95	2 S .01	28.07	2S.12
209210	28.18	28.24	28.29	28.35	2S.4I	28.46	2S.52	2S.5S	28.64	2S.69
	28.75	2S.SI	25.57	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211212	29.33	29.39	29.45	29.51	29.57	29.62	29.68	29.74	29.50	29.56
	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

Smithsonian Tables.

PRESSURES.

temperatures of the boiling-point of water.
in place of the barometer fur the determination of heights.
(b) Metric Measuro.*

Tenp. C.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	8	. 9
80°	354.6	356.1	357.5	359.0	360.4	361.9	363.3	36.4 .8	366.3	367.5
Si	369.3	370.8	372.3	373.8	$375 \cdot 3$	376.8	3-¢.3	379.8	$35 \times .3$	3 3S.9
82	384.4	3 S5.9	387.5	3 S9.0	390.6	392.2	393.7	$395 \cdot 3$	396.9	395.5
S_{3}	400.1	401.7	403.3	404.9	406.5	408. 1	409.7	$4{ }^{1 / 1 .} 3$	413.0	. 14.6
84	416.3	417.9	419.6	421.2	422.9	424.6	426.2	427.9	$t=9.6$	431.3
S5	433.0	434.7	436.4	43 S . 1	439.9	441.6	$443 \cdot 3$	445.1	446.8	+45.6
86	450.3	452.1	+53.S	455.6	457.4	459.2	461.0	462.8	46.6	+66.4
S_{7}	46S.2	470.0	471.8	473.7	475.5	477.3	479.2	481.0	4S2.9	4S4.S
88	4 46.6	$48 S .5$	490.4	492.3	494.2	496.1	495.0	499.9	$501 . S$	503.8
S9	505.7	507.6	509.6	511.5	513.5	515.5	517.4	519.4	521.4	523.4
90	525.4	$527 \cdot 4$	529.4	531.4	533.4	535.5	537.5	539.6	5.1.6	543.7
21	545.7	547.8	549.9	551.9	554.0	556.1	55S.2	560.3	562.4	564.6
92	566.7	568.8	571.0	573.1	575.3	577.4	579.6	5 S. S	5§4.0	5S6.I
93	58S. 3	590.5	592.7	595.0	597.2	$599 \cdot 4$	601.6	603.9	60 б. 1	608.4
94	610.7	612.9	615.2	617.5	619.8	622.1	624.4	626.7	629.0	$6_{31} \cdot 4$
95	633.7	636.0	638.4	640.7	643.1	645.5	647.9	650.2	652.6	655.0
96	$657 \cdot 4$	659.9	662.3	664.7	667.1	669.6	672.0	674.5	677.0	6,9.4
97	681.9	6S.4.4	686.9	689.4	691.9	$69+5$	697.0	699.5	702.1	704.6
98	707.2	709.7	712.3	714.9	717.5	720.1	722.7	725.3	727.9	730.5
99	733.2	735.8	738.5	741.2	743.5	746.5	749.2	751.9	754.6	757.3
100	${ }_{7} 60.0$	762.7	765.5	768.2	7,0.9	773.7	7, 7.5	779.2	-S 2.0	-S.4.S

* Pressures in millinetres of murcury.

Smithsonian Tables.

STANDARD WAVE-LENGTHS.

This table is an abridgment of the table published by Rowland (Phil. Mag. [5] vol. 36, pp. 49-75). The first column gives the number of the line reckoned from the beginning of Rowland's table, and thus indicates the number of lines of the table that have been omitted. The second column gives the chemical symbol of the element represented by the line of the spectrum. The third column indicates approximately the relative intensity of the lines recorded and also their appearance; h stands for reversed, d for double, ? for doubtful or difficult. 'The fourth column gives the relative "weights" to be attached to the values of the wave-lengths as standards. The last column gives the values of the wave-lengths in Angström's units, i.e., in teu millionths of a millimetre in ordinary air at about 20 C. and 760 millimetres pressure. When two or more elements are on the same line of the table it indicates that they have apparently coincident lines in the spectrum for that wave-length. When two or more lines are bracketed it means that the first one has a line coinciding with one side of the corresponding line in the solar spectrum and so on in order. Lines marked $A(0)$ and $A(\pi \%)$ denote lines due to absorption by the oxygen or water vapor in the earth's atmosphere. The letters placed in front of some of the numbers in the first column are the symbols of well-known lines in the spectrum. The footnotes are from Rowland's paper.

No. of line.	Element.	Inten- sity and appearappear ance.	Weight.	Wavelength (arc spectrum).	No. of line.	Element.		Weight.	Wavelength (arc spectrum).
1	Sr	2	1	2152.912	115	Fe	$10 R$	4	2937.020
4	Si	3	2	2210.939	117	Fe	$7 R$	4	2954.058
7	Si	2	2	2218.146	121	Fe	$S R$	12	2967.016
9	Al	4	2	2269.161	124	Fe	$12 R$	15	$2973 \cdot 358$
II	Ca	$20 R$	3	2275.602	126	Fe	Io R	15	2983.689
14	19a	$20 R$	I	2335.267	129	Fe	SR	18	2994.547
16	Fe	-	2	2348.3 S	131	Ca	10 R	3	2997.430
19	Al	7	3	2373.213	135	Fe	$S R$	15	3001.070
22	Fe	5	2	2388.710	136	Ca	$15 R$	3	3006.978
24	Ca	$25 R$	5	239 S.667	141	Fe	$6 K$	15	$300 \$.255$
					151	Fe	$25 K$	18	3020.759
29	Si	S	15	2435.2 .47	163	Fe	$20 R$	13	3047.720
3 I	Si	3	10	2443.460	169	Fe	IO R	15	3059.200
33 *	Si_{C}	3	10	2452.219 248.661					
$37^{*}{ }^{\text {\% }}$	C 130	10	15 20	2478.661					spectrum.)
4					136	?	3	-	3005.160
51	Si			2516.210	144	,	4	-	3012.557
55	Si	9	10	252.206	154	?	5	7	3024.475
$59 \dagger$	1 g	50%	2	25.3 .648	158	?	5	7	3035.850
63	Al	10	5	2568.085	164	?	$3 d$	5	3050.212
68	Mn	-	2	2593.810	171	Co	3	5	3061.930
$i 73$		5	7	2631.392				6	307S.148
77	Fe	5	3	2720.989	187	?	2	9	3094.739
78	Ca	5	1	2721.762	197	Va \ddagger	5	9	3121.275
82	Fe	-	3	2742.485	201	-	3	5	3140.869
85	Fe	-	3	2756.427	203	Mn	1	5	3167.290
99	Mg	20 K	12	2795.632	207	Cr?	4	5	3158.164
102	Mg	20 K	10	$2 \mathrm{Soz.So} 5$	209	$\mathrm{Ti}^{\text {T }}$	4	5	3200.032
106	Fe	4	7	28.32 .545	211	Ti	3	6	3218.390
111	Mg	$100 k$	15	2852.239	215	Ti	4	3	3224.365
112	Si	15	12	285i. 695	222	Cu	9	5	3247.680

[^46]| No. of Line. | Element. | $\begin{array}{\|l\|} \left\lvert\, \begin{array}{l} \text { Inten- } \\ \text { sity and } \\ \text { appear- } \\ \text { ance. } \end{array}\right. \end{array}$ | Weight. | Wavelength (sum spectrum). | No. of Line. | 1:lement. | $\left\|\begin{array}{c} \text { Inten- } \\ \text { sity } \\ \text { apmen- } \end{array}\right\|$ | Weight. | Wivelengil (sutu spectrum). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 224 | Va | t | 10 | 3267.839 | $409 \dagger$ | Fe? | 10 | 3 | 4005.305 |
| 229 | Na | 6 | 6 | 3302.501 | 410 | Fe | 3 | 7 | 4016.57 \% |
| 235 | Ti | 5 | 10 | 3318.163 | 417 | Fe | 20 | 7 | 40.45 .975 |
| 239 | Zr | 1 | S | 3356.2こ2 | 420 | Mn | 5 | 13 | 4055.701 |
| 241 | Fe | 2 | 12 | 3359.857 | 422 | Fe | 15 | 7 | 4063.756 |
| 2.44 | Fe | 4 | 18 | 3+06.955 | 424 | Fe | 4 | 14 | 4073.920 |
| 250 | ${ }^{\mathrm{Co}}$ | 4 | 10 | 3455.354 | 428 | Fe | 2 | S | 40.i..716 |
| 255 | $\mathrm{Co}, \mathrm{Fe}, \mathrm{Ni}$ | 4 | 10 | $3+7 \mathrm{S.001}$ | 431 | Fe | 4 | 14 | 411.4 .000 |
| 261 | Fe | 3 | 4 | 3500.721 | 43.4 | Fe | 3 | 17 | 457.948 |
| 265 | Co | 5 | 10 | 3518.487 | 436 | Fe | 3 | 20 | 4155.063 |
| 269 | Fe | 5 | 10 | 3540.266 | 439 | Fe | 5 | 4 | 4=02.18S |
| 274 | $\{\mathrm{Ti}$ | $4 d$? | 12 | 3564.680 | $g+45$ | Ca | 10 | 10 | 4226.592 |
| - | $\{\mathrm{Fe}\}$ | $7 d$. | 12 | 3504.680 | 448 | Cr | 7 | 15 | 4254.502 |
| 278 | Fe | 40 | 6 | $35^{81} 1.344$ | 45 I | Fe | 8 | 9 | $4271.0)=4$ |
| 279 | Fe? | 4 | 12 | 3583.483 | 456 | ? | 4 | 1.4 | $4=93 \cdot 249$ |
| 28.4 | Fe | 4 | 12 | 3597.192 | | $\int \mathrm{Ca}$ | 2) | 3 | 4307.904 |
| 290 | Fe | 15 | 10 | 3609.015 | $G 462$ | , - | - d | 3 | $4.30 \$.034$ |
| 292 | Fe | | 15 | 3612.217 | | (Fe | 5 | 10 | 4308.071 |
| 294 | Fe | 20 | 10 | 3618.924 | $f 465$ | Fe | 8 | 15 | 4325.940 |
| 298 | Fe | 4 | 14 | $3623 \cdot 332$ | 467 | Fe | 3 | 17 | 4352.903 |
| 301 | Fe | 20 | 10 | 3631.619 | $d^{2} 47 \mathrm{I}$ | Fe | 10 | 11 | $435_{3} 721$ |
| 307 | Fe | 10 | 1 I | 3647.995 | 473 | Fe | 8 | 11 | 4.104.927 |
| 311 | | 3 | 13 | $3667 \cdot 397$ | | Ca | 4 | 7 | $44=5.609$ |
| | $\{\mathrm{Co}$ | | | | $4 \mathrm{So} \mathrm{\ddagger}$ | Fe | 5 | 18 | 4.447 .899 |
| $3{ }^{1} 3$ | $\left\{\begin{array}{l}\mathrm{Fe} \\ \mathrm{Va}\end{array}\right\}$ | 6 | 13 | 3683.202 | 44^{8} | Fe | 5 | 18 | 4494.735 |
| 320 | $\mathrm{Fe}^{\text {F }}$ | 5 | 11 | 3707.186 | 490 | Ti | 4 | 17 | 4508.456 |
| 324 | Fe | 50 | 10 | 3720.086 | 493 | Ba | 7 | S | 4554.213 |
| 327 | Fe | 5 | ${ }^{1} 5$ | 3732.542 | 496 | Ti | 6 | 14 | 4572.157 |
| 338 | Fe | 20 | S | 3789.633 | 500 | Fe | 4 | 20 | 4602.183 |
| 341 | Fe | 15 | 7 | 3758.379 | 505 | $\left\{\begin{array}{l}\mathrm{Ti} \\ \mathrm{Co}\end{array}\right\}$ | 5 | 13 | 4620.515 |
| 348 | Fe | 3 | 15 | 3781.330 | 508 | Fe | 4 | 17 | 46.3 .645 |
| 355 | Fe | 3 | 15 | 3 SO .4 .153 | 512 | Fe | 6 | 12 | 4679.025 |
| 358 | Fe | 30 | 4 | $3^{S 20.567}$ | 515 | Ni | 4 | 12 | 4686.395 |
| 361 | Fe | 20 | 4 | 3826.024 | $51 ¢ \S$ | $\mathrm{Mg}^{\text {N }}$ | 9 | 11 | 4703.150 |
| 369 | Fe | 5 | 8 | 3843.406 | 524 | Mn | 6 | 1 | 4753.601 |
| 371 | Fe | 10 | 3 | 3860.048 | 52 S | Mn | 6 | 12 | 48.3 .697 |
| 375 | C | 7 | 3 | 3883.472 | F 531 | 1 F | 15 | 5 | 4861.406 |
| 379 | Fe | 4 | 12 | 3897.599 | 537 | (Fe | 7 | 4 | 4919.183 |
| $K_{3}^{-} 3^{3 N \%}$ | Ca | 300 | 15 5 | $\begin{aligned} & 3924.669 \\ & 3933.809 \end{aligned}$ | 545 | $\{\mathrm{Fe}\}$ | 3 | 10 | 4973.274 |
| 391 | Al | 10 | 7 | 3944.159 | 549 | Fe | 4 | 8 | $4994 \cdot 3!6$ |
| 393 | Fe | 4 | 15 | 3950.101 | 558 | Ti | 3 | 8 | 5020.210 |
| 397 | Fe | | 11 | 3960.429 | 561 | Fe | 5 | ! | 5050.008 |
| H 399 | Ca | 200 | 5 | 3968.620 | 564 | Fe | 4 | 14 | 5064.946 |
| 404 | Fe, Ti | 4 | 14 | 3981.914 | 567 | Fe | 2 | 9 | 5090.959 |

[^47]| No. of Line. | Element. | $\begin{gathered} \text { Inten- } \\ \text { sity and } \\ \text { appear- } \\ \text { ance. } \end{gathered}$ | Weight. | Wavelength (sun spectrum). | No. of Line. | Element. | Inten- sity and appear ance. | Weight. | Wavelength (sun spectrum). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 570 | Fe | 2 | 11 | 5109.825 | 762 | Fe | 6 | 14 | 5930.410 |
| 575 | Fe | 4 | 9 | 5127.530 | 764 | Si | 6 | 14 | 594 S.761 |
| 58 | Fe | 3 | 5 | 5141.916 | 770 | Fe | 6 | 7 | 5987.286 |
| 589 | Fe | 4 | 13 | 5162.448 | 774 | Mn | 6 | 5 | 6013.717 |
| | Is | S | | | 778 | Fe | 6 | § | 6024.280 |
| $b_{4}\left\{\begin{array}{l}592 \\ 593\end{array}\right.$ | Mg_{-} | -3 | 3 7 | 5167.501 5167.572 | 782 | Fe | 7 | 13 | 6065.708 |
| (594 | Fe | 6) | 3 | 5167.686 | 786 | Ca | 6 | 9 | 6102.941 |
| - 595 | Fe | $4)$ | 3 | 5169.066 | 792 | Ca | 9 | 11 | 6122.428 |
| $b_{3} 3596$ | - | - d | 5 | 5169.161 | 797 | Ca | 10 | 9 | 6162.383 |
| (597 | Fe | $4)$ | 3 | 5169.218 | 804 | Fe | 8 | 10 | 6191.770 |
| $8_{2} 599$ | Mg | 10 | 9 | 5172.87 I | 808 | Fe, Va | 7 | 12 | 6230.946 |
| $b_{1} 601$ | Mg | 20 | 11 | 5183.792 | 811 | Fe | 7 | 9 | 6252.776 |
| 610 | Fe | 4 | 10 | 5215.352 | 815 | Fe | 5 | 11 | 6265.347 |
| 614 | Fe | S | 9 | 5233.124 | 822 | Fe | 7 | 7 | 6301.719 |
| 618 | Fe | 3 | 12 | 5253.649 | 827 | Fe | | 12 | 6335.550 |
| $E_{2} 630^{*}$ | Fe | $S d$? | 16 | 5269.722 | 834 | Fe | 7 | 9 | 6393.8 I 8 |
| (631 | Ca | $4)$ | | 5270.448 | $S_{3} S^{\text {S }}$ | Fe | 7 | 10 | 6411.864 |
| $E_{1}\{632$ | - | $-3 d$ | 12 | 5270.495 | 843 | Ca | 7 | II | 6439.298 |
| (633 | Fe | 4) | | 5270.533 | 846 | Ca | 5 | 7 | 6471.881 |
| 639 | Fe | 6 | 1 I | 5283.803 | 850 | Fe | 7 | 9 | 6495.209 |
| 643 | Fe | | 10 | 5307.546 | 856 | $\left\{\begin{array}{c}\mathrm{Ti} \\ \mathrm{Fe}\end{array}\right\}$ | 6 | 11 | 6546.486 |
| 647 | Fe | 8 | 8 | 5324.373 | C858 | H | 30 | 13 | 6563.054 |
| 655 | Fe | 6 | 8 | 5367.670 | S63 | Fe | 5 | 11 | 6593.161 |
| 659 | Fe | 6 | 11 | 5383.576 | S67 | Ni | 5 | 10 | 6643.482 |
| 662 | Fe | 7 | 14 | 5405.987 | S70 | Fe | 5 | 10 | 6678.232 |
| 668 | Fe | 7 | 9 | 5347.130 | 877 | Fe | 4 | 12 | 6750.412 |
| 67.4 | Fe | 4 | 10 | 5463.493 | 879 | Ni | 4 | 9 | 6768.044 |
| 676 | Ni | 4 | 10 | 5477.128 | 883 | Fe | 3 | 8 | 6810.519 |
| 679 | Fe | 4 | 8 | 5501.685 | 856 | Fe | 3 | 6 | 6441.591 |
| 682 | Mg | 7 | 8 | 5528.636 | B S96 | $A(0)$ | $4 d$ | 12 | 6870.186 |
| 687 | Fe | 5 | 8 | 5569.848 | 911 | $A(0)$ | , | 13 | 6884.083 |
| 690 | Ca | 6 | 9 | 5588.980 | 925 | $A(0)$ | 6 | 9 | 6909.675 |
| 695 | Ca | 4 | 4 | 5601.501 | 931 | $A(o)$ | 4 | 9 | 6919.245 |
| $699 \dagger$ | Fe | 2 | 12 | 5624.253 | 938 | $A(w z)$ | 8 | 10 | 69.47 .781 |
| $700 \dagger$ | Fe, Va | 4 | 14 | 5624.768 | 940 | $A(z u v)$ | S | 12 | 6956.700 |
| 706 | Fe | 5 | 9 | 5662.745 | 957 | ? | 6 | 8 | 7035-159 |
| 710 | Na | 6 | 7 | 5688.434 | 961 | ? | 6 | 5 | 7122.491 |
| 717 | Fe | 5 | 10 | 5731.973 | 969 | $A(z e z)$ | 10 | 5 | 7200.753 |
| 720 | $\mathrm{Fe}^{\mathrm{Fe}}$ | 5 | 10 | 5753.342 | 977 | $A(z v z)$ | 15 | 4 | 7243.904 |
| 725 | Cu? Co? | $7 d$? | 9 | 5782.346 | 984 | $A(w z)$ | 10 | 3 | 7290.714 |
| 732 | Fe | | 7 | 5806.954 | 990 | (e) | 7 | 2 | 7389.696 |
| 737 ! | Ca | 7 | 14 | 5857.672 | 997 \|| | $A(0)$ | - | 4 | 7594.059 |
| $D_{3} 7408$ | Ife | - | | 5 S 75.982 | 998 | $A(0)$ | 10 | 5 | 7621.277 |
| $D_{2} 743$ | Na | 15 | 20 | 5890.182 | 1004 | $A(0)$ | 14 | 3 | 7660.778 |
| D_{1745} | Na | 10 | 20 | 5896.154 | 1010 | ? | 4 | 1 | 7714.686 |

* Component about . 089 apart on the photographic plate. It is an excecdingly difficult double.
\dagger Lines used by Pierce in the determination of absolute wave-lengths.
\ddagger There is a nickel line near to the red.
§ This value of the wave-length is the result of three series of measurements with a grating of 20,000 lines to the inch and is accurate to perhaps .02.
$\|$ Beginning at the head of A, outside edge.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wavelengtlos corresponding to the foranhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten mil-
 from Rowland's table of standard wave-lengths, but when no corresponding wavelength is there given, the number given by Kayser and Runge has been taken. 'These latter are to two places of decimals.

Index letter.	Line due to-	Wave-lengh in centimetres \times so	Index letter.	Line due to-	Wave-lengeh in centimetres $\times 10^{\text {" }}$.	
A	$)^{0}$	7621.277*	G^{\prime} or IH_{γ}	II	43.40 .66 §	
	(0)	7594.059*		fec	4308.07 I	
a13	-	7184.781	G	-	4308.034	
	0	$6870.186 \dagger$		Ca	4307.904	
C or II_{a}	II	6563.054	g	Ca	4226.892	
α	O	627S.2S9 \ddagger	h or H_{δ}	1 H	4101.87	
D_{1}	Na	5396.154	H	Ca	3968.620	
D_{2}	Na	5890.182	K	Ca	3933.809	
D_{3}	He	5S75.9S2	L	Fe	$3^{820.567}$	
E_{1}	$\left\{\begin{array}{c}\mathrm{Fe} \\ - \\ \mathrm{Ca}\end{array}\right.$	5270.533	M	Fe	3727.763	
		5270.495	N	Fe	358 r .344	
		5270.448	0	Fe	3441.135	
E_{2}	Fe	5269.722	P	Fe	3361.30	
b_{1}	Mg	5183.792	Q	Fe	3286.87	
b_{2}	Mg	5172.871	R \\|	$\left\{\begin{array}{l}\mathrm{Ca} \\ \mathrm{Ca}\end{array}\right.$	3181.40	
	$\int \mathrm{Fe}$	5169.218			3179.45	
b_{3}	$\left\{\begin{array}{c}- \\ \mathrm{Fe}\end{array}\right.$	5169.161	v T	Fe	3144.58 (?)	
		5169.066	S_{1}	$(\mathrm{Fe}$	3100.779	
b_{4}	$\left\{\begin{array}{c}\mathrm{Fe} \\ - \\ \mathrm{Mg}\end{array}\right.$	5167.686		$\{\mathrm{Fe}$	3100.415	
		5167.572	S_{2}	Fe	3100.06 .4	
		5167.501	S	Fe	$3047.7=0$	
F or H_{β}	H	4861.496	T	Fe	3020.759	
d	Fe	$43 S_{3.721}$	t	Fe	2904.542	
f	Fe	4325.940	U	Fe	2947.993	

* The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge; " the second, a "single line beginning at the tail of A."
\dagger The principal line in the head of B .
\ddagger Chief line in the a group.
§ Ames, "Phil. Mag." (5) vol. 30.
If Cornu gives 3179.9 , which, allowing for the different value of the standard D line, corresponds to about 3180.3 .
f Comu gives 3144.7, which would correspond to about 3145.2 .

Table 181.
DETERMINATIONS OF THE VELOCITY OF LICHT, BY DIFFERENT OBSERVERS.*

Date of determination	No. of experimade.	Method.	Interval worked across in kilometres.	Velocity in kilometres per second.	Velocity in miles per second.	Reference.	Wt. of obseras estimated by Harkness.
1849	-	Toothed wheel	8.633	315324	195935	I	\bigcirc
1862	So	Revolving mirror	0.02	295574 ± 204	$15_{5527 \pm 127}$	2	1
1872	658	Toothed wheel	10.310	29S500 土 995	$18_{54} \mathrm{SI}^{1}$ 土618	3	1
1874	546	" "	22.91	300400 ± 300	156662 ± 186	4	2
${ }_{15} 97$	100	Revolving mirror	0.6054	299910 ± 51	186357 ± 31.7	5	3
ISSo	12	Toothed wheel	$\left\{\begin{array}{l} 5.1313 \\ 5.5510 \end{array}\right\}$	301384 ± 263	187273 ± 164	6	I
1880	148	Revolving mirror	5.1019	299709	186232	7	-
to	39	" "	7.4 .224	299776	186274	7	-
	65	" "	7.4424	299860	186326	7	6
18S2	23	" "	0.6246	299853 ± 60	186322 ± 37	8	3
Mean from all weighted measurements				299835 ± 154	186310 ± 95.6	9	
Mean from those having weights >1. .				299893 ± 23	186347 ± 14.3	9	

[^48]Table 182.
PHOTOMETRIC STANDARDS. \dagger

Name of standard.		Violle units.	Carcels.	Star candles.	German candles.	English candles.	Il efnerAlteneck lamps.
Violle units \ddagger.	- -	1.000	2.0 S	16.1	16.4	18.5	18.9
Carcels .	. .	0.48 I	1.00	7.75	7.89	8.91	9.08
Star candles .	. .	0.062	0.130	1.00	1.02	1.I 5	1.17
German candles	. .	0.061	0.127	$0.9 S_{4}$	1.00	1.13	1.15
Ėnglish candles	. .	0.054	0.112	0.870	0.886	1.00	1.02
Ilefncr-Alteneck lamps	. .	0.053	0.114	0.853	0.869	0.98	1.00

[^49]
SOLAR ENERGY AND ITS ABSORPTION BY THE EARTH ATMOSPHERE.

This table gives some of the results of Langley's researches on the atmospheric absorption of solar energy. "The first column gives the wave-length λ, in microns, of the speetrum line, while the second and third columas give the correspouding absorption, according to an arbitrary seale, for high and low solar attitudes. The fourth column, E, gives the relative values of the energy for the different wave-lengths which would be observed were there no terrestrial atmosphere.

λ	a_{1}	a_{3}	R
$\alpha^{\mu} .375$	112	27	-
.400	235	63	653
.450	424	140	1031
.500	570	225	1203
.600	621	311	1083
.700	553	324	849
.800	372	246	519
.900	238	167	316
1.000	235	167	309

Table 184.

THE SOLAR CONSTANT.

The " solar constant" is the amount of heat per unit of area of normally exposed surface which, at the earth's mean distance, would be received from the sun's radiation if there were no terrestrial atmosphere. The following table is taken from Langley's researches on the energy of solar radiation. \dagger The first column gives the wave-length in microns. The second and third columns give relatively on an arbitrary scale an upper and a lower limit to the possible value of spectrum energy.

Wavelength.	Spectrum energy (upper limit).	Spectrum energy (lower limit).	Wavelength.	Spectrum energy (upper limit).	Spectrum energy (lower limit).
$0^{\mu} \cdot 53$	203.9	122.5	$\mathrm{I}^{\mu} .000$	105.0	102.3
-. 375	196.6	110.0	1.200	75.2	61.3
. 400	242.2	139. 1	1.400	65.1	52.2
. 45°	783.2	105.5	1.600	48.0	45.0
. 500	852.9	374.1	1.800	39.2	36.4
. 600	514.7	333.0	2.000	29.1	27.1
. 700	317.7	255.4	2.200	19.4	17.5
. 800	173.9	167.3	2.400	7.0	6.5

The areas of the energy curves are respectively . . . 149,060 and 95,933
The solar constants deduced from these arcas are . . . 3.505 and 2.630
Langley concludes that "in view of the large limit of error we can adopt therce calories as the most probable value of the solar constant," or that "at the earth's mean distance, in the absence of its absorbing atmosphere, the solar rays would raise one gramme of water three degrees per minute, for each normally exposed square centinetre of its surface."

* "Am. Jour. of Sci." vols. xxv., xxvii., and xxxii.
t "Professional Papers of U. S. Signal Service," No. 15, iSS4.

Smithsonian Tables.

INDEX OF REFRACTION FOR GLASS.

The table gives the indices of refraction for the Fraunhofer lines indicated in the first column. The kind of glass, the density, and, where known, the corresponding temperature of the glass are iudicated at the top of the different columns. When the temperature is not given, average atmuspheric temperature may be assumed.

(b) Baille's Determinations. (Quoted from the Ann. du Bur. des Long. 193, p. 620.)

Flini glass.									
$\begin{gathered} \text { Tensity. } \\ \text { Temp. } \\ \text { 三 } \end{gathered}$	$\begin{aligned} & 2.0^{8} \\ & 23^{9} .2 \end{aligned}$	${ }_{1}^{3.22}$	3.24 $22^{2} .0$	3.44 19	3.54 23.2	$\begin{aligned} & 3.63 \\ & 13^{\circ} \cdot 7 \end{aligned}$	$\begin{aligned} & 3.68 \\ & 24^{\circ} .0 \end{aligned}$	4.08 120.4 1.6	${ }_{22} 2^{5} .00 .5$
B	I. 5609	1. 5659	1. 5766	1. 5966	1.6045	1.6131	1.6237	1.6771	1.7801
C	. 5624	. 5675	. 5783	. 5982	. 6062	. 6149	. 6255	. 6795	. 7831
D	. 5660	. 5715	. 5822	. 6027	. 6109	.6198	.6304	. 685	. 7920
b_{1}	. 5715	- 5776	. 5887	. 6098	.6183	. 6275	. 6384	. 6959	. S $^{\text {a }} 2$
F	. 5748	. 5813	. 5924	. 6141	. 6225	.6321	. 6429	. 7019	. 8149
G	. 5828	. 5902	. 6018	. 62.46	. 6335	. 6435	. 6549	. 7171	. 8368
H	. 5898	. 5979	. 6098	. 6338	. 6428	. 6534	. 6647	. 7306	. 8567

Crown glass. (Baille, ibid.)

(c) Horkinson's Determinations. (Proc. Roy. Soc. vol. 26.)

	Hard crown.	Soft crown.	Titanisilicic crown.	Flint glass.				
Density $=$	2.486	2.550	2.553	2.866	3.206	3.659	3.889	4.422
A	1.511755	1. 508956	-	1. 53.1067	-	-	1.639143	1. 696531
13	. 513625	. 510916	1.539155	. 536450	I. 568558	1.615701	.642874	. 701060
C	. 514568	. 511904	. 540255	. 537673	. 570011	.617484	. 644866	. 703478
I)	. 517114	. 51.4591	. 543249	. 541011	. 574015	.622414	. 650388	. 710201
I	. 520331	. 518010	. 54.4088	. 545306	. 579223	. 628895	.657653	. 719114
b_{1}	. 520967	. 518686	. 547852	. 546166	. 580271	.630204	. 659122	.720924
F	- 523139	. 520996	. 550471	. 549121	. 583886	.634748	. 664226	.727237
(C)	. 527994	. 526207	. 556386	. 555863	. 592190	.645267	. 676111	.742063
C	- 528353	. 526595	. 556830	. 556372	. 59282.4	. 646068	. 677019	.743204
I	- 530902	. 529359	. 559999	. 560010	. 597332	. 6518.40	.683577	.751464
H_{1}	-532792	. 531416	. 562392	.562760	. 600727	. 656219	.688569	.757785

N. I3. - D is the more refrangible of the pair of sodium lines; (G) is the hydrogen line near G.

(g) Effect of 'Temprrature. (Müller, Publ. d. Astrophys. Obs. zu Potsdam, i\$85.)

Fraunhofer line.	Flint glass.		Crown glass.
	$\begin{aligned} \text { Density } & =3.855 . \\ \text { Temp. C. } & =-14^{\circ} . \end{aligned}$	$\begin{aligned} \text { Density } & =3.218 . \\ \text { Temp. } . & =3^{\circ} \mathrm{10} 21^{\circ} . \end{aligned}$	$\begin{aligned} & \text { Density }=2.522 . \\ & \text { Temp. C. }=-5 \text { to } 23^{\circ} . \end{aligned}$
B			$1.5125 S 8-.00000043 t$
C	$.6457+5+.00000486 t$.575 S2S $+.00000333 t$	$.513558-.00000033 t$
D	$.651193+.00000495 t$	$.579556+.00000323 t$	$.516149+.00000017 t$
b_{1}	$.659632+.00000710 t$	$.5 \$ 6000+.00000443 t$	$.520004+.00000054 t$
F	$.664936+.00000653 t$	$.589828+.00000439 t$	$.522349+.00000045 t$
H_{γ}	$.676720+.00000783 t$		
h	$.684144+.00000861 t$	$.603395+.00000636 t$	$.520376+.00000143 t$

N. B. - The above examples on the effect of temperature give an idea of the order of magnitude of that effect, but are only applicable to the particular specimens experimented on.

Table 186.

INDEX OF REFRACTION.

Indices of Refraction for the various Alums.*

* According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885). $\dagger K$ stands for the different bases given in the first column.

Smithsonian Tables.

INDEX OF REFRACTION.
Inder of Refraction of Metals and Metallec Oxides.

(b) Experiments of Du Bois and Rubens by transmission of light through prisms of small angle.

The experiments were similar to those of Kundt, and were made with the same spectrometer. Somewhat greater accuracy is claimed for these results on account of some improvements introduced, mainly by Prof. Kundt, into the method of experiment. Therc still remains, however, a somewhat large chance of error.

Name of metal.	Index of refraction for light of the following color and wave-length.				
	$\begin{gathered} \operatorname{Red}\left(\mathrm{Li}_{a}\right) . \\ \lambda=67 . \mathrm{I} \end{gathered}$	$\begin{aligned} & " \text { Red." } \\ & \lambda=64.4 \end{aligned}$	$\begin{gathered} \text { Yellow (D). } \\ \lambda=5^{8.9} \end{gathered}$	$\begin{aligned} & \text { Blue (F). } \\ & \lambda=48.6 \end{aligned}$	$\begin{aligned} & \text { Violet (G). } \\ & \lambda=43.1 \ddagger \end{aligned}$
Nickel	2.04	1.93	1.84	1.71	1.54
Iron	3.12	3.06	2.72	2.43	2.05
Cobalt	3.22	3.10	2.76	2.39	2.10

(c) Experiments of Drude.

The following table gives the results of some of Drude's experiments. § The index of refraction is derived in this case from the constants of elliptic polarization by reflection, and are for sodium light.

*"Wied. Ann." vol. 34, and "Phil. Mag." (5) vol. 26.
\ddagger Wave-lengths λ are in millionths of a centimetre.

[^50]TABLE 188. - Index of Refraction of Rock Salt.

Determined by langley.Temp. $24^{\circ} \mathrm{C}$.			Determined by Rubens and Snow.			Determined by other authorities.		
Line of splectrum	Wavelength 111 cmis $\times \quad 10^{\text {fo }}$.	Index of refraction.	Line of spectrum.	Wavelength in cins. $\times 10^{6}$.	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
M	37.27	1.57486	H_{γ}	43.4	1.5607	Ha_{a}	1.54046	
1.	35.20	. 57207	F	$4 \mathrm{~S} \cdot 5$. 5531	${ }^{\mathrm{H}} \mathrm{H}^{2}$. 55319	\} Haagen at $20^{\circ} \mathrm{C}$.
H_{2}	39.33	. 56920	D	5 5.9	. 5441	H_{γ}	. 56056)
I_{\square}	39.65	. 56533	C	65.6	. 5404			
$\stackrel{1}{5}$	43.03 48.61	. 56.33		75.5	. 5370	$\mathrm{Ha}_{\text {a }}$	1.54095	Bedson and
F	48.61	-55323		79.0	. 5358	${ }_{H}$	-55384	Carleton Williams
b_{1}	51.67 51.83	. 54991		${ }_{8}^{83.6}$. 5347	H_{γ}	.52515)at
1) ${ }_{1}$	57.89	-54415		92.3	. 5329	B	$1.53 S_{4}$	
$1)_{2}$	58.95	- 54414		97.8	. 5321	C	. 54016	
C	65.62	. 54051		103.5	. 5313	D	. 54381	Miilheims.
B	65.67	. 53919		110.7	. 5305	E	. 54866	
A	76.01	. 5367		118.6	. 5299	F	. 55280	
$\rho \sigma{ }^{\tau}$. 5328		127.7	. 5293			
$\stackrel{¢}{\psi}$	113.	. 5305		138.4	. 5286		1. 53663	
Ψ Ω	139. 132.	. 5287		151.1	. 5280	B $\{$. 53918	
	132.	-5268		166.0 I 84.5	.5275 .5270 .		.53502 .54050	
Determined by Baden Powell.				207.6	. 5264		. 54032	Stefan at 17° and $22^{\circ} \mathrm{C}$. 'The upper values are at 17° and the lower at 22° for each line.
				237.2	- 5257	D	. 544 I S	
				277.1	. 5247		-54400	
13	-			302.2 332.0	.5239 .5230	E	$\begin{aligned} & .54901 \\ & .54882 \end{aligned}$	
C	-	r .5415		369.0	- 5217	F	. 55324	
I)	-	. 54.48		415.0	. 5208		. 55304	
E	-	. 5498		474.5	. 5197	G	. 56129	
F	-	. 5541		554.0	.5184		. 56108	
G	-	. 5622		644.7	. 5163	H	-56823	
H	-	. 56091		830.7	.5138		-56806	

TABLE 189. - Index of Retraction of Sylvine (Potassium Chiorlde).

Determined by Rubens and Snow.				Determined by other authorities.		
Wave-length in cms. $\times 10^{6}$.	Index of refraction.	$\begin{gathered} \text { Wave- } \\ \text { lellguth in } \\ \mathrm{cms.} \times 10^{6} . \end{gathered}$	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
43.4 (H_{γ})	1. 5048	I 45.8	1.4766	A	1.48377	
48.6 (F)	. 4981	160.3	. 4761	B	. 48597	
58.9 (1)	. 4900	178.1	. 4755	C	. 48713	
65.6 (C)	. 4868	200.5	- 4749	1	-49031	Stefan at 20 C .
				E	- 49455	Stefan at zo C.
80.2	1.4829	229.1	1.4742	F	. 49830	
89.5 89.3	. 4819	207.3	-4732	H	.50542 .51061	
94.4	.4807	356. 1	. 4717	B	. 4754	
				C	. 4767	
100.3	1.4795	400.1	1.4712	D	-4825	Grailich.
107.0	. 4789	457.7	. 4708	E	. 4877	
114.5	. 4781	534.5	. 4701	F	. 4903	
123.4	. 4776	641.2	.4693	G	. 5005	Tschermak.
1337	1.4771	802.2	1.4681	D	. 4930	Groth.

Smithsonian Tables.

INDEX OF REFRACTION.
Inder of Rofraction of Fluor-Spar.

Determined by Rubens and Snow.		Determined bySarasin.			1)etermined loy the anthoritics quoted		
Wave-length in cms. $\times 10^{10}$.	$\begin{aligned} & \text { Index } \\ & \text { of } \\ & \text { refraction. } \end{aligned}$	$\begin{gathered} \text { Line } \\ \text { of } \\ \text { spectrum. } \end{gathered}$	$\begin{aligned} & \text { Ware- } \\ & \text { length in } \\ & \text { cmis. } \times \text { to } \end{aligned}$	$\begin{gathered} \text { Index } \\ \text { of } \\ \text { refraction. } \end{gathered}$	Line of spectrum.	$\begin{aligned} & \text { Index } \\ & \text { of } \\ & \text { refraction. } \end{aligned}$	Authority.
$43 \cdot 4\left(\mathrm{II}_{\gamma}\right)$	1.4393	A	76.040	1.431010	I)	I. 4339	F̈izeau.
48.5(F)	.4372	a	71.836	-431575			
58.9(D)	. 4340	13	65.671	431997	A	$1.43003)$	
$65.6(\mathrm{C})$	4325	c	65.618	-432571	a	43153	
So. 7	$\cdot 4307$	D	58.920	.433937	B	43200	
S5.0	.4303	F	48.607	-437051	c	.43250	Mülheims.
S9. 6	.4299	h	41.012	.441215	1)	. $433 S_{4}$	
95.0	. 4294	H	39.681	. 442137	$1:$	-43551	
100.9	. 4290	Cd	36.090	.445356	F	.43696	
107.6	.4286	"	34.655	.446970			
115.2	.42SI	"	34.015	. 447754	13	I.43200	
124.0	. 4277	"	32.525	.449871	1)	. 43390	
134.5	.4272	"	27.467	. 459576	F	. 43709 \}	Stefan.
146.6	.4267	"	25.713	.464760	G	-43982	
161.3	.4260	"	23.125	.475166	II	.44204	
179.2	.4250	*	22.645	.477622			
201.9	.4240	"	21.935	.4S1515	Red	1.433 \}	DesCloi-
230.3	.4224	"	21.441	.4S463I	Yellow	.435	seaux.
268.9	. 4205	Zn	20.988	.4S7655			
322.5	. 4174	"	20.610	. 490.406	Na	1.4324**	Kohlrausch.
403.5	.4117	"	20.243	. 493256	"	.4342 ${ }^{\text {(}}$	
462.0	. 40 So	A1	19.88 I	.496291			
538.0	.4030	"	19.310	. 502054			
646.0	.3960	"	I $S .560$. $509+04$			
S07.0	$\cdot 37$ So						

- Gray at $23^{\circ} \mathrm{C}$.
\dagger Black at $19^{\circ} \mathrm{C}$.

Varlous Monorefringent or Optically Isotropic Sollds.

The determinations of Carsallo, Mascart, and Sarasin cover a considerable mage of wave-lengil, and are here given. Many other determanations theve been made, but they differ very hule from thone quoted.

Line of spectrum.	Wavelength in cms. $\times 10^{6}$.	Index of refraction for -		line of spectrum.	$\begin{gathered} \text { Warec } \\ \text { lenguth in } \\ \text { cins. } \times 10^{n} . \end{gathered}$	Index of refraction for-		
		Ordinary ray.	Extraordinary ray.			$\begin{aligned} & \text { Ordinary } \\ & \text { ray. } \end{aligned}$	Fxeraordinary roy.	
Authority: Carvallo.				Authority: Sarasin.				
-	215	-	1.4753	Cd_{12}	32.53	1.70740	1. 50857	
-	195	1.6279	-	Cd_{17}	27.46	$.7+351$. 52276	
-	177	-	.4766	Cd_{18}	25.71	.76050	.53019	
-	154	.6350	-	Cd_{23}	23.12	. 50248	. 54.559	
-	145	.6361	.4779	Cd_{24}	22.64	. S_{1300}	-54920	
-	122	. 6.403	-	Cd_{25}	21.93	. 8_{3090}	. 55514	
-	108	.6424	. 44799	Cd_{26}	21.43	.845So	. 55993	
A	76.04	. 65006	.48275					
B	68.67	. 65293	.48406	Authority: Mascart.				
Authority: Sarasin.				A	-	1.65013	1.48285	
				. 65162		-		
A	76.04	1.65000	1.48261		B	-	.65296	.4S409
a	$71 . S_{4}$.65156	.48336	C	-	.65446	.48.474	
B	65.67	$.652 S_{5}$. 48391	D	-	.65846	.48654	
$\mathrm{Cd}_{\text {I }}$	64.37	.65501	$.4 S_{4} 8_{\text {I }}$	E	-	. 66354	.4SSS 5	
D	5S.92	.65839	.48644	b_{4}	-	.66446	-	
Cd_{2}	53.77	. 65234	.4SSI 5	F	-	.66793	. $490 \mathrm{~S}_{4}$	
Cd_{3}	$53 \cdot 36$. 66274	.48S43	G	-	.67620	.49470	
Cd_{4}	$50 . S_{4}$. 66525	. 4 S953	H	-	.68330	. 49777	
F	48.61	$.667 S_{3}$	49079	L	-	. 65706	. 49941	
Cd_{5}	47.99	.66858	49112	M	-	.68966	. 50054	
Cd_{6}	46.76	.67023	-49185	N	-	.69441	. 50256	
Cd_{7}	44.14	. 67417	.49367	O	-	.69955	- 50.486	
h	41.01	$.6 \mathrm{SO}_{3} 6$. 49636	P	-	.70276	. 5062S	
II	39.68	.68319	. 49774	Q	-	.70613	. 50% So	
Cd_{3}	36.09	. 69325	- 50228	R	-	.71155	. 51028	
$\mathrm{Cd}_{\text {I }}$	34.65	. 69842	. 50452	S	-	.715So	-	
Cd_{11}	34.01	.70079	. 50559	T	-	.71939	-	

Index of Refraction of Quartz.

[^51]Bmithsonian Tables.

INDEX OF REFRACTION.
TABLE 194. - Undaxlal Crystals.

TABLE 195. - Blazial Crystals.

Substance.	Line of spec1rum.	Index of refraction.			Authority.
		Minimum.	Intermediate.	Maximum.	
Anglesite	D	1.8771	1.8823	I. 8936	Arzruni.
Anhydrite	D	1. 5693	1.5752	1.6130	Mülheims.
Antipyrin	1	1.5101	1.6512	I. 6858	(Blazeb rook.
Aragonite	1	1.5301	I. 6916	1. 6559	Kudberg.
Axinite	red	1.6720	1. 6779	1.6510	DesCloiseaux.
Barite.	D	1.636	1.637	1.648	Various.
Borax.	I)	1.4467	1.4694	I. 4724	I)ufet.
Copper sulphate .	D	1.5140	1.5368	1.5433	Kohlrausch.
Gypsum .	I)	I. 5208	1.5228	1. 5298	Miilheims.
Mica (muscovite).	1)	I. 5601	1.5936	1. 5977	Pulfrich. WesCloiserux
Olivine .	D	1.661	1.675	1.697 1.5260	DesCloiseaux.
Orthoclase :	1)	1.5190	1.5237	1.5200 I. 5107	
Potassium bichromate. " nitrate	1)	1.7202 13346	1.7380 1.5056	I. ${ }^{\text {S }} 197$ 1.5067	Dufct. Schrauf.
" sulphate	1)	1.4932	1.49 .46	1.4980	Topsöe \& Christiansen.
Sugar (cane)	I)	1.5397	1. 5667	1.5716	Calderon.
Sulphur (rhombic)	D	1.9505	2.0383	2.2 .405	Schrauf.
Topaz (Brazilian)	D	1.6294	1.6308	1.6375	
Topaz (different kinds)	D $\{$	$\begin{aligned} & 1.630 \text { to } \\ & 1.613 \end{aligned}$	$\begin{aligned} & 1.631 \\ & 1.616 \end{aligned}$	$\begin{aligned} & 1.637 \\ & 1.623 \end{aligned}$	\} Various.
Zinc sulphate .	D	1.4568	1.4801	1.4836	Topsöe \& Christiansen.

Table 196.
INDEX OF REFRACTION.
Indices of Refraction relative to Air for Solutions of Salts and Aclds.

Substance.	Density.	Temp. C.	Indices of refraction for spectrum lines.					Authority.
			c	D	F	\mathbf{H}_{γ}	H	
(a) Solutions in Watpr.								
Ammonium chloride	1.067	$27^{\circ} .05$	1.37703	1. 37936	1.38473	-	1. 39336	Willigen.
	. 025	29.75	- 34850	- 35050	-35515	-	-36243	
Calcium chloride	- 398	25.65	- 44000	. 44279	. 44933°	-	- 46001	"
" "	. 215	22.9	-3941 I	-39652	-40206	-	. 4107 S	"
	. 143	25.8	-37152	-37369	. 37876	-	-38666	"
Ifydrochloric acid	I. 166	20.75	$1.40 \mathrm{~S}_{17} 7$	1.41109	1.41774	-	1.42816	"
Nitric acid. .	. 359	18.75	.39893	-40181	. 40857	-	41961	Fraunhofer
Potash (caustic) .	. 416	11.0	-40052	-40281	-4080S	1. 350.19	.41637	Fraunhofer. Bender.
Potassium chloride	normal double	solution	-34087	-34278	. 34719	1.35049		Bender.
	double triple	normal	-34982	-35179	-35645	$\begin{aligned} & .35994 \\ & .36 S 90 \end{aligned}$	-	
Soda (caustic)	1.376	21.6	1.41071	1.41334	1.41936	- 5_{7}	1.42872	
Sodium chloride	. 189	18.07	. 37562	.37789	. 38322	1.38746	-	Schutt.
" 6	.109	18.07	-35751	-35959	-36442	- j6S23	-	
" "	.035	18.07	-34000	. 34191	-34628	- 34969	-	
Sodium nitrate	1.358	22.8	-. 38283	1.38535	I. 39134	-	1.40121	Willigen.
Sulphuric acid	. 811	18.3	. 43444	. 43669	. 44168	-	. 44883	"
" "	. 632	18.3	-42227	- 42466	. 42967	-	.43694	"
-	. 221	18.3	-36793	. 37009	-37468	-	-38158	"
" ${ }^{\text {a }}$.02S	18.3	-33063	$\cdot 33862$	-34285	-	-3493 ${ }^{8}$	"
Zinc chloride	1. 359	26.6	I. 39977	1.40222	1.40797	-	1.41738	"
" "	. 209	26.4	-37292	$\cdot 37515$	$\cdot 3^{8026}$	-	. 38845	"
(b) Solutions in Ethyl Alcohol.								
Ethyl alcohol .	0.789	25.5	1.35791	1.35971	1.36395	-	1.37094	Willigen.
	. 932	27.6	. 35372	- 35556	. 35986	-	. 36662	"
Fuchsin (nearly saturated)	-	16.0	. 3918	. 398	. 361	-	- 3759	Kundt.
Cyanin (saturated) .	-	16.0	$\cdot 3831$	-	.3705	-	$\cdot 3^{821}$	

Note. - Cyanin in chloroform also acts anomalously; for cxample, Sieben gives for a 4.5 per cent. solution $\mu_{A}=\mathrm{I} .4593, \mu_{B}=\mathbf{I} .4695, \mu_{F}$ (green) $=\mathbf{I} .45 \mathrm{I}$,,$\mu_{G}$ (blue) $=\mathbf{1} .4554$. For a 9.9 per cent. solution he gives $\mu_{A}=1.4902, \mu_{F}$ (green $)=1.4497, \mu_{a}$ (blue) $=1.4597$.
(c) Solutions of Potassium Permanganatr in Water.*

Wavelength in cms. $\times 10^{18}$.	Spectrum line.	Index for - \% sol.	$\begin{aligned} & \text { Index } \\ & \text { for } \\ & 2 \% \text { sol. } \end{aligned}$	$\begin{aligned} & \text { Index } \\ & \text { for } \\ & 3 \% \text { sol. } \end{aligned}$	$\begin{gathered} \text { Index } \\ \text { for } \\ 4 \% \text { sol. } \end{gathered}$	Wavelength in cms. $\times 10^{6}$.	Spectrum line.	Index for I \% sol.	$\begin{aligned} & \text { Index } \\ & \text { for } \\ & 2 \% \text { sol. } \end{aligned}$	$\begin{aligned} & \text { Index } \\ & \text { for } \\ & 3 \% \text { sol. } \end{aligned}$	Index for $4 \% \text { sol. }$
68.7	I	1.3328	1.3342	-	1.3382	51.6	-	1. 3368	1.3385	-	-
65.6	C	. 3335	. 3348	1.3365	. 3391	50.0	-	. 3374	$.33^{8} 3$	1.3386	1.3404
61.7	-	. $33+3$. 3365	. 3381	. 3410	48.6	F	. 3377	-		. 3408
59.4	-	. 3354	. 3373	. 3393	. 3426	4 S.0	-	. 3381	. 3395	. 3398	- 3413
58.9	D	. 3353	. 3372	,	. 3426	46.4	-	. 3397	. 3402	. 3414	. 3423
56.8	-	. 3362	.3387	. 3412	. 3445	44.7	-	. 3407	. 342 I	. 3426	- 3439
55.3	-	.3366	. 3395	.3417	. 3438	43.4	-	. 3417	-	-	. 3452
52.7	E	.3363	-		-	42.3	-	. 3431	. 3442	- 3457	. 3468
52.2	-	. 3362	. 3377	.3388	-	-	-	-	-	-	-

* According to Christiansen.

Smithsonian Tables.

INDEX OF REFRACTION.

Indices of Rofraction of Liquids relativo to Alr.

Substance.	Temp.	Index of refraction for spectrum lines.					Authority.
		0	D	F	H_{γ}	H	
Acetone	10°	1.3626	1.3646	1.3694	1.3732	-	Korten.
Almond oil	\bigcirc	. 4755	. 775	. 46.47	-373	_	Olds.
Analin *	20	. 5993	$.5 \mathrm{~S}_{3}$. 6041	.6204	-	Weegmann.
Aniseed oil $_{6}$	21.4	. 5410	. 5475	. 5647	-	c_{6}	Willigen.
	15.1	. 5503	. 5572	. 5743	-	1.6084	Maden l'owell.
Benzene \dagger. . . .	10	1. 4983	1.5029	1.51.48	-	1. 5355	Gladstone.
Bitter almond oil .	21.5 20	. 4934	. 4979	.5095 .5623	5775	4	I andolt.
Bromnaphtalin .	20	. 6495	$.658=$. 6819	.7041	.7289	Walter.
Carbon disulphide \ddagger	\bigcirc	1.6336	1. 6433	1.6688	1.6920	1.7175	Ketteler.
" ${ }^{\text {" }}$	20	.6152 .6250	. 6276	. 6523	.6748	. 6994	Gladstone
" "	10	.6250	. 6344	. 6592	-	. 7070	Dufet.
Cassia oil .	10	. 6007	.6104	. 6359	-	. 7039	Baden Powell.
" "	22.5	. 5930	. 6026	.6314	-	. 695	
Chinolin	20	1.6094	1.6171	1.6361	1. 6497		Gladstone.
Chloroform	10	. 4466	. 4490	. 4555	-	. 4661	Gladstone \& Dale.
	30	-	. 4397		-	.4561	
Cinnamon oil	20	. 4437	. 6462	. 4525	-		Lorenz.
Cinnamon on	23.5	. 6077	. 6158	. 6508	-	-	Willigen.
Ether	15	I. 3554	1.3566	1.3606	-	1.36S3	Gladstone \& Dalc.
" ${ }^{\text {c }}$	15	. 3573	- 3594	. 3641	-	. 3713	Kundt.
Ethyl alcohol	0	. 3677	. 3695	. 3739	. 3773	-	Korten.
" "	10	. 3636	-3654	. 3698	-3732	-	
"	20	-3596	. 3614	-3657	. 3690	-	Gladstone \& Dale
" " . .	15	. 3621	.3638	. 3683	-	. 3751	Gladstone \& Dale.
Glycerine	20	1.4706	-	1.4784	1.48こS	-	Landolt.
Methyl alcohol	15	. 3308	$1.33 \geq 6$. 3362		. 3421	Kaden Powell.
Olive oil	0	. 473 S	. 4763	. 4825	-	-	Olds.
Rock oil	-	. 4345	. 4573	. 4644	-	-	"
Turpentine oil	10.6	1.4715	I. 4744	1.4817	-	1.4939	Fraunhofer.
"، "	20.7	. 4692	. 4721	. 4793	-	. 4913	Willigen.
Toluene	20	. 4911	. 4955	. 5070	. 5170	-	
Water§ ${ }^{\text {. }}$	16	$.3315$. 3336	$\begin{aligned} & .3377 \\ & .3378 \end{aligned}$. 3409	- 3442	Dufet. IV alter.

[^52]
Emithsonian Tables.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_{t}-1=\frac{n_{0}-1}{1+a t} \frac{p}{760}$, where n_{t} is the index of refraction for temperature t, n_{0} for temperature zero, a the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimetres of mercury. Taking the mean valuc, for air and white light, of $n_{0}-1$ as 0.0002936 and α as 0.00367 the formula becomes

$$
n_{t}-1=\frac{.0002936}{1+.00367 t} \cdot \frac{P}{1.0136 \times 10^{8}}=\frac{.0002895}{1+.00367} \frac{P}{10^{6}}
$$

where P is the pressure in dynes per square centimetre, and the temperature in degrees Centigrade.
(a) The following table gives some of the values obtained for the different Fraunhofer lines for air.

Spectrum line.	Index of refraction according to -			Spectrum line.	Index of refraction according to Kayser \mathcal{E} Runge.
	Ketteler.	Lorenz.	Kayser \& Runge.		
A	1.0002929	1.0002893	1.0002905	M	1.0002993
H	2935	2899	2911	N	3003
C	2938	2902	2914	O	3015
1)	2947	2911	2922		
E	2958	2922	2933	$\stackrel{\mathrm{P}}{\mathrm{O}}$	1.0003023 3031 3043
F	1.0002968	1.0002931	1.0002943	Q	3031 3043
G	1.0002968 2987	1.0002949 2949	2962		
11	3003	2963	2978	S	1.0003053
K	-		2980	T	3064
1.	-	-	2987	U	3075

(b) The following data have been compiled from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of cxperiments by Liot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one obscrver the name of that observer is given. The values are for 0° Centigrade and 760 mm . pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone	D	1.001079-1.001100	Hydrogen	white	1.00013 3-1.000143
Ammonia	white	1.000381-1.000385		white	1.000139-1.000143
"	I)	1.000373-1.000379	Hydrogen sul- $\{$	D	1.000644 Dulong.
Argon.	1)	1.0002SI Rayleigh.	phide . . ?	D	1.000623 Mascart.
lisnzene	D	1.001700-1.001823	Methane .	white	I.000443 Dulong.
lromine	D	I.OoIf 52 Mascart.	" • •	D	1.000444 Mascart.
Carbon dioxide	white	1.000449-1.000450	Methyl alcohol.	D	$1.000549-1.000623$
" ${ }^{\text {c }}$])	1.000448-1.000454	Methyl ether	D	1.000891 Mascart.
Carbon disul.	white		Nitric oxide	white D	1.000303 Dulong. 1.000207 Mascart.
phide . .	$1)$	$1.00147^{8-1.001485}$	" "	D	1.000297 Mascart.
Chlorine .	white	1.000335 Masca	Nitrous oxide	white	1.000290-1.000290
Chorine	D)	1.000773 Mascart.	"" "	D	1.000516 Mascart.
Chloroform .	1)	$1.001436-1.001464$	Oxygen . .	white	$1.000272-1.000280$
Cyanogen	white	r.000834 Dulong.	" • •	D	1.000271-1.000272
	D	$1.000784-\mathrm{I} .000825$	Pentane . . .	D	1.001711 Mascart.
Ethyl alcohol	1)	1.000871-1.000885	Sulphur dioxide	white	1.000665 Dulong.
Ethyl ether .	D	1.001521-1.001544	"	D	1.000686 K Ketteler.
1 Ielium .	D	I. 000043 Rayleigh.	Water .	white	1.000261 Jamin.
Hydrochloric \{ acid.	white I)	$\begin{aligned} & \text { I.000449 Mascart. } \\ & \text { I.000.447 } \end{aligned}$	"	D	1.000249-1.000259

A few examples are here given showing the effect of wave-lengelt on the rotation of the plane of polarization. "The rotations are for a thickness of one decimetne of the subuthon. The examples are quoted from landule die burnstein's "Phys. Chem. Tiob." 'lhe following symbuls atre used: -

Righthanded rotation is marked + , left-handed -

line of spectrum.	Wave-length iccording to Angström in $\mathrm{cms}. \times \mathrm{ro}^{\mathrm{B}}$.	Tartaric acid, ${ }^{\left(C u H 1_{0}\right)_{0}}$ disselved in water. $\begin{aligned} & 4=501095 \\ & t \mathrm{mpp} \\ & =24 \end{aligned}$	$\begin{aligned} & \text { Camplor, } \\ & \text { dissolved in } \\ & ?=50 \\ & \text { lemp. } \end{aligned}$		Santonin, 1 dissolved in cl $q=75$ t. tenip. $=$	 						
$\begin{aligned} & \mathrm{I} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{E} \\ & \mathrm{~b}_{1} \\ & \mathrm{~b}_{2} \\ & \mathrm{~F} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & 68.67 \\ & 65.62 \\ & 58.92 \\ & 52.69 \\ & 51.83 \\ & 51.72 \\ & 48.61 \\ & 43.83 \end{aligned}$	$\begin{aligned} & +20.74 S+0.09446 q \\ & +1.950+0.13030 q \\ & +0.153+0.17514 q \\ & -0.532+0.19147 q \\ & -3.598+0.239774 \\ & -9.657+0.34437 \end{aligned}$			$\begin{aligned} & -1.10 .1+0.2085 q \\ & -1.19 .3+0.1555 \% \\ & -202.7+0.30569 \\ & -255.6+0.520 \% \\ & -302.38+0.6557 q \\ & -365.55+0.82544 \\ & -534.95+1.52404 \end{aligned}$							
		Santonin, $\dagger \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$, * dissolved in alcohol.$\begin{gathered} c=1.7^{8} 2 . \\ \text { temp. }=20^{\circ} \mathrm{C} . \end{gathered}$	Santonin, $\mathrm{C}_{15} 511_{18} \mathrm{O}_{3}$,		Santonic acid, $\mathrm{C}_{15}, \mathrm{H}_{24} \mathrm{O}_{4}$ dissolved in chloroform. $c=27.102$. temp. $=20 \mathrm{C}$.	Cane sugar, $\left.C_{12} \mathrm{It}_{22}\right)_{11}$, dissolved in water.$\phi=10 \text { to } 30 .$						
			dissolved in alcohol.$\begin{gathered} c=4.046 \\ \operatorname{temp} .= \\ 20^{2} \mathrm{C} . \end{gathered}$	dissnlued in chloroform$\underset{20}{c=3.1-30.5} \underset{\substack{3 \\ 20.5}}{=}$								
13	68.67	$-110.4{ }^{\circ}$	442°	484°	-49°	$47^{\circ} \cdot 5^{6}$						
C	65.62	- 118.8	504	549	- 57	52.70						
1)	$5^{8.92}$	- 161.0	693	754	- 74	60.41						
E	52.69	- 222.6	991	1085	- 105	8.4.56						
b_{1}	51.83	-237.1	1053	11.4	-112	-						
b_{2}	51.72		-	-		S7.S8						
F	48.61	- 261.7	1323	1444	-137	101.18						
e	43.83	- 380.0	2011	2201	- 197	-						
G	43.07	-	-	-	-	131.96						
g	42.26	-	2381	2610	-230							
* Arndtsen, "Ann. Chim. Phys." (3) 54,1858 . \dagger Narini, "R. Acc. dei Lincei," (3) 13, 1882. \ddagger Stefan, "Sizzb. d. Wien. Akad." 52, 1865 .												

Table 200.
ROTATION OF PLANE OF POLARIZED LIGHT.

Sodium chlorate (Guye, C. R. 108, 1889).				Quartz (Soret \& Sarasin, Arch. de Gen. 1882, or C. R. 95, 8882).*					
Spec. trum fine.	W゙avelength.	Tcmp. C.	Rotation per min.	Spec trim line.	Wavelength.	Rotation per mm.	Spectrum line.	Wavelength.	Rotation per mm.
α	71.769	$15^{\circ} .0$	20.068	A	76.04	$12^{\circ} .668$	Cd_{9}	36.090	633.265
13	67.889	17.4	2.3 IS	a	71.836	14.304		35.615	0.4459
C	65.073	20.6	2.599	13	68.671	15.746	Cd_{10}	$3+655$	69.454
D	59.085	19.3	3.104					34.406	70.587
E	53.233	16.0	3.841	C	65.621	17.318			
F	48.912	11.9	4.587	I_{2}	50.951	21.684	Cd_{11}	34.015	72.44S
G	+5.532	10.1	5.331	D_{1}	58.591	21.727	P	33.600	74.571 $-5.5-9$
G	+2.534	1.4 .5	6.005				$\stackrel{Q}{C} \mathrm{Cd}_{12}$	32. 358	$7 S .579$ So. 459
${ }_{L}^{11}$	40.71 .4 38.412	1.3 .3 1.0	6.754 7.654	$\stackrel{\text { E }}{\text { F }}$	52.691 48.607	27.543 $3=.773$	Ca_{12}	3-470	30.459
M	3.412 37.352	1.4 10.7	S. 100	G	43.072	42.60 .4	R	31.79S	S4.972
N	35.54 .4	12.9	S.861				Cd_{17}	27.467	121.052
P	33.931	12.1	9.801	h	41.012	47.481	Cdiw	25.713	$1+3.266$
Q	32.341	11.9	10.787	II	39.681	51.193	$\mathrm{Cd}_{2} 3$	23.125	$190.4=6$
R	30.645	13.1	11.921	K	$39 \cdot 333$	52.155			
T	29.918	12.8	12.424				$\mathrm{Cd}_{2}{ }^{\text {Cd }}$	22.645	
Cd_{17} Cd I8	$2 S .270$ $=5.03 \mathrm{~S}$	12.2 11.6	13.426 14.965	I	3 3.196 27.262	55.625 58.894	Cd25 Cd 23	21.935 21.431	220.731 -35.972
Cd_{18}	25.03 S	I 1.6	14.965	M	27.202	50.094	Cl_{23}	2.43	-35.9\%

* The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Table 201.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Under P is the number of grammes of the substance dissolved in roo cubic centimetres of water. Under C is the amount of lowering of the freezing-point. The data have been obtained by interpolation from the results published by the authorities quoted.

[^53]

* In "Zeits. für Physik. Chem." vol. 11, p. 529, 1883.
\dagger Ibid. vol. 2, p. 49r, 1898.
\ddagger Ibid. vol. 12, p. 623, 1893.
§ F. M. Raoult, C. R. 1 14, p. 268.
§ F. M. Raoult, C. R. ${ }^{114} 50$, p. 268 . average of 3 per gramme.
Smithsonian Tables.

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gramme-molecules of the salt in a litre of water. The numbers in these columns give the lowering of the fapor pressure produced by the salt at the temperature of boiling water under 76 centmetres barometric pressure.

[^54]VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.		0.5	1.0	2.0	3.0	4.0	6.0	6.0	8.0	10.0
MgSO_{4}	. .	6.5	12.0	2.4 .5	47.5					
MgCl_{2}.	. .	16.3	39.0	100.5	153.3	277.0	377.0			
$\mathrm{Mg}\left(\mathrm{N}_{3}\right)_{2}$ -	-	17.6	42.0	101.0	174.8					
Mglir.	.	17.9	4.4 .0	115.8	205.3	298.5				
$\mathrm{MgH}_{2}\left(\mathrm{SO}_{4}\right)_{2}$	- .	18.3	46.0	116.0						
MnSO_{4}	- .	6.0	10.5	21.0						
MnCl_{2}.	. .	15.0	34.0	76.0	122.3	167.0	209.0			
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$. .	10.5	20.0	36.5	51.7	66.8	$8 \geq .0$	95.5	126.7	157.1
NaILSO_{4}	. .	10.9	22.1	47.3	75.0	100.2	126.1	1.48 .5	150.7	231.1
NaNO_{3}	. .	10.6	22.5	46.2	65.1	90.3	111.5	131.7	167.8	105.8
NaClO_{3}	- .	10.5	23.0	48.4	73.5	9 9゙. 5	123.3	147.5	196.5	223.5
$(\mathrm{NaPO})_{3}$	- .	11.6								
Na)H	- .	11.5	22.8	45.2	77.3	107.5	139.1	172.5	243.3	314.0
NaNO_{2}	- .	11.6	2.4 .4	50.0	75.0	98.2	122.5	146.5	IS9.0	
NaHP_{4}	- .	12.1	23.5	43.0	60.0	78.7	99.5	122.1		
NaHCO_{2}	- -	12.9	24.1	4 S.2	77.6	102.2	127.8	152.0	198.0	239.4
NaSO_{4}	. .	12.6	25.0	4 4.9	74.2					
NaCl .	. .	12.3	25.2	52. I	So.0	111.0	1.43 .0	176.5		
NaHrO_{3}	- .	12.1	25.0	54.1	SI. 3	108.8	130.0			
Nabr .	- .	12.6	25.9	57.0	89.2	12.4 .2	159.5	197.5	265.0	
Nal	-	12.1	25.6	60.2	99.5	136.7	177.5	221.0	301.5	370.0
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	- .	13.2	22.0							
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	14.3	27.3	53.5 6.5						
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	- -	14.5	30.0		115	140.0 162.6				
$\mathrm{Na}_{2} \mathrm{WO}_{4}$	- .	14.5	33.6	71.6	115	162.6				
$\mathrm{Na}_{3} \mathrm{PO}_{4}$	- .	16.5	30.0	52.5						
	$\cdots \cdot$	17.1	36.5 22.0	42.1	62.7	82.9	103.8	121.0	152.2	1 So. 0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiFl}_{6}$	$\cdots \quad$.	11.5	25.0	44.5						
$\mathrm{NH}_{4} \mathrm{Cl}$.	. .	12.0	23.7	45.1	69.3	94.2	118.5	13 S .2	179.0	213.8
$\mathrm{NH}_{4} \mathrm{HSO}_{4}$.	11.5	22.0	46.5	71.0	9-4.5	118.	139.0	ISI.2	218.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.	.	11.0	24.0	46.5	69.5	93.0	117.0 121.5	$141 . \mathrm{S}$		
N $\mathrm{H}_{4} \mathrm{Br}$.	. .	11.9	23.9	48.8	74.1	99.4	121.5	145.5 156.0	190.2 200.0	228.5 $2+3.5$
$\mathrm{NH}_{4} \mathrm{I}$.	- .	12.9	25.1	49.8	7 \%. 5	10.45	$132 \cdot 3$	150.0	200.0	-43.5
NiSO_{4}	- .	5.0	10.2	21.5						
NiCl_{2}.	- .	16.1	37.0	86.7	1.47 .0	212.8				
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$. .	16.1	37.3	91.3	156.2	235.0				
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. .	12.3	23.5	45.0	63.0					
$\mathrm{Sr}\left(\mathrm{SO}_{3}\right)_{2}$	- \cdot	7.2	20.3	'47.0						
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$. .	15.8	31.0	6.4 .0	97-4	131.4				
SrCl_{2}.	- .	16.8	$3 S .5$	91.4	156.8	223.3	281.5			
SrBr_{2}.	. .	17.8	42.0	101.1	179.0	267.0				
ZnSO_{4}		4.9	10.4	21.5	$\underline{+2.1}$	60.2				
ZnCl_{2}.	-	9.2	18.7	46.2	75.0	107.0	153.0	195.0		
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	- .	16.6	39.0	93.5	$15 \% \cdot 5$	223.8				

Smithsonian Tables.

Table 203.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grammes of the salt which, when dissolved in 100 grammes of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimetres.

* Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

Smithsonian Tables.

CONDUCTIVITY FOR HEAT.

Metals and Alloys.

The coefficient k is the quantity of heat in therms which is transmitted per second through a plate one centimetre thick per square centimetre of its surface when the difference of iemperature betwecn the twr faces of the plate is one degree Cemtigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is ex. pressed approximately by the equation $k_{t}=k_{0}(1+a, f)$. In the table k_{0} is the value of k_{e} for o $\mathcal{C}_{0, t} t$ the tempera ture Centigrade, and a a coustant.

AUthorities.
I Lorenz. 3 J. Forbes.
5 Kohlrausch.
7 II jeltström.
S G. Forbes.
9 R. Wैंher.
2 Berget. 4 II. F. Weber.
6 H. L. \& I). \dagger
Io Stefan.

* A repetition of Forbes's experiments by Mitchell, under the direction of Tait, shows the conductivity to increase with rise of temperature. (Trans. R. S. F. vol. 33, 1897.)
\dagger Herschel, Lebour, and Dunn (British Association Committee).

Gmithsonian Tables.

TABLES 205-208.
CONDUCTIVITY FOR HEAT.

TABLE 205. - Varlous Substances.

Substance.	t	k_{t}	$\begin{aligned} & \text { Au- } \\ & \text { thor- } \\ & \text { ity. } \end{aligned}$
Carbon .	\bigcirc	. 000405	1
Cement .	\bigcirc	. 000162	1
Cork	\bigcirc	. 000717	1
Cotton wool.	\bigcirc	. 000043	1
Cotton pressed .	-	. 000033	1
Chalk . . .	-	. 002000	2
Ehonite .	49	. 000370	2
Felt . .	\bigcirc	. 00003_{7}	1
Flannel - .	\bigcirc		I
Glass $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$	-	$.0005$	3
Horn to.	-	.0023 .000087	1
Haircloth . .	-	. 000042	I
Ice $\{$	-	. 00223	1
	-	. 00568	4
Caen stone (build- 1 ing limestone).	-	. 00433	2
$\left.\begin{array}{c} \text { Calcareous sand- } \\ \text { stone (freestone) } \end{array}\right\}$	-	.00211	2

Authorities.

1 G. Forbes. 3 Various.
2 II., L., \& D.* 4 Neumann.

TABLE 206. - Water and Salt Solutions.

Substance.	Density.	t	k_{t}	$\begin{aligned} & \text { Au- } \\ & \text { thor- } \\ & \text { ity. } \end{aligned}$
Water	-	-	. 002	1
"	-	\bigcirc	. 00120	2
"	-	9-15	. 00136	2
"	-	4	. 00129	3
" .	-	30	. 00157	4
" .	-	18	.00124	5
Solutions in water.				
CuSO_{4}	1.160	$4 \cdot 4$. 00118	2
KCl	1.026	13	. 00116	
NaCl .	$33 \frac{1}{3} \%$	10-18	. 00267	6
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.054	20.5	.00126	5
	1.100 1.180	20.5	. 00128	5
ZnSO_{4}	1.180 1.134	21	.00130 .00118	5
${ }_{\text {204 }}$	1.134 1.156	4.5 4.5	.00115	-

Authorities.

I Bottomley.
4 Graetz.
2 H . F. Wéber.
5 Chree.
3 W'achsmuth.
6 Winkelmann.

TABLE 207. - Organic Liquids.

Authorities.

i H. F. Weber. 2 Graetz. 3 Wachsmuth.

TABLE 208.-Gases.

Substance.	t	$\begin{gathered} l_{i t} \\ \times 1000 \end{gathered}$	a	
Air .	\bigcirc	. 568	. 00190	1
Ammonia .	-	. 458	.00548	1
Carbon monoxide	\bigcirc	.499	-	1
'، clioxide.	\bigcirc	-307	-	1
Ethylene . .	-	-395	. 00445	1
Hydrogen . . .	\bigcirc	. 327	. 00175	1
Methane. .	7-S	. 647		1
Nitrogen .		-524		1
Nitrous oxide .	7-8	$.350$. 00446	1
Oxygen . . .	7-8	.563		1
AUTHORITY. I Winkelmann.				

[^55][^56]FREEZINC MIXTURES.*

Column I gives the name of the principal refrigerating substance, A the proportion of that substance, f the proportion of a second substance named in the colman, (the propoteton of a third substance, D) the temperature ot the substances before mixture, fis the temperature of the miature, F bie lowering of temperature, fore femper ture when all snow is metted, when show is uset, and
of is grammes). Temperatures are in Contigrade degrees

* Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moriz, Pfanndler, Rudorf, and Tollinger.
\dagger Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

$\theta=$ Critical temperature
$P=1$ 'ressure in atmospheres.
$\phi=$ Volume referred to air at 0° and 76 centimetres pressure.
$d=$ Density in grammes per cubic centimetre.

* Abridged for the most part from Landolt and Boernstein's "Plys. Chem. Tab."

Note. - Guldberg shows (Zeit. fuir Phys. Chem. vol. 5, p. 375) that for a large number of organic substances the ratio of the absolute boiling to the absolute critical temperature, although not constant, lies between 0.58 and 0.7 , the majority being between .65 and .7. Methane, ethane, and ammonia gave approximately 0.58 . $\mathrm{H}_{2} \mathrm{~S}$ gave . 566 , and $\mathrm{C}_{2}, \mathrm{~N}_{2} \mathrm{O}$, and O gave about $\cdot 59$.
Smithsonian Tables.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds.
Products of combustion, CO_{2} or SO_{2} and water, which is assumed to be in a state of vapor.

Substance.	Therms per gramme of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols: Amyl	S95S	Favre and Silbermann.
Ethyl . . .	7183	" " "
Methyl . .	5307	" " "
Benzene	9977	Stohmanı, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite . . .	7 Soo	Average of various.
Lignite	6900	" ." .
Coke	7000	" " "
Carbon disulphide . . .	32.44	Berthelot.
Dynamite, 75%. .	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating . .	5200-5500	Various.
Methane	13063	Favre and Silbermann.
Naphthalene . . .	96IS-9793	Various.
Gunpowder	720-750	"
Oils : Lard	9200-9400	"
Olive	$9328-9+42$	Stohmann.
Petroleum, Am. crude	11094	Mahler.
" " refined .	11045	*
" Russian.	10800	"
Woods: Beech with $12.9 \% \mathrm{H}_{2} \mathrm{O}$	4165	Gottlicb.
Birch " 11.83 "	4207	"
Oak " 13.3 "	3990	"
Pine " 12.17 "	4422	"

[^57]HEAT OF
Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

Substance.	Combined with oxygen forms	Heat units.	Combined with chlorine forms -	Heat units.	Combined with sulphur forms -	Heat units.	它
Calcium .	CaO	32.4	CaCl_{2}	4255	CaS	2300	I
Carbon-Diamond	CO_{2}	7859	-	-	-	2300	2
	CO	2141	-	-	-	-	3
" - Graphite	CO_{2}	7796	-	-	-	-	3
Chlorine . .	$\mathrm{Cl}_{2} \mathrm{O}$	-254	-	-	-	-	1
Copper	$\mathrm{Cu}_{2} \mathrm{O}$	321	CuCl	520	-	-	1
-"	CuO_{\sim}	585	CCl_{2}	Si9	CuS	15 S	1
H.drogen*	"	593	HCl	-	H S		4
Hydrogen*	$\mathrm{H}_{2} \mathrm{O}$	34154	HCl	22000	$\mathrm{H}_{2} \mathrm{~S}$	2250	3
"	"	$34 \mathrm{So0}$	-	-	-	-	5
Iron .	FeO	34417 1353	FeCl_{2}	1464	$\mathrm{FeSiH}_{2} \mathrm{O}$	- 42 S	3
"	-	,	FeCl_{3}	1714	-	-	3
Iodine	$\mathrm{I}_{2} \mathrm{O}_{5}$	177	-	-	-	-	1
Lead	PbO	243	$\mathrm{Pl}_{3} \mathrm{Cl}_{2}$	400	PbS	98	1
Magnesium	MgO	6077	MgCl_{2}	6291	MgS	3191	1
Mangatuese	$\mathrm{MnOH}_{2} \mathrm{O}$	1721	MnCl_{2}	2042	$\mathrm{MnSH}_{2} \mathrm{O}_{2}$	841	1
Mercury .	$\mathrm{Hg}_{2} \mathrm{O}$	105	$\mathrm{HgCl}^{\text {a }}$	206	-	-	1
" ${ }^{\text {N }}$	Iggo	153	HgCl_{2}	310	HgS	84	1
Nitrogen*	$\mathrm{N}_{2} \mathrm{O}$	-654	-	-	-	-	1
" .	NO	-1541	-	-	-	-	1
,	NO_{2}	- I43	-	-	-	-	1
Phosphorus (red)	$\mathrm{P}_{2} \mathrm{O}_{5}$	5272	-	-	-	-	1
" (yellow)		5747	-	-	-	-	7
" ${ }^{\text {\% }}$	"	5964	-	-	-	-	1
Potassium	$\mathrm{K}_{2} \mathrm{O}$	1745	KCl	2705	$\mathrm{K}_{2} \mathrm{~S}$	1312	8
Silver	$\mathrm{Ag}_{2} \mathrm{O}$	27	AgCl	27 I	$\mathrm{Ag}_{2} \mathrm{~S}$	24	I
Sodium	$\mathrm{Na}_{2} \mathrm{O}$	3293	NaCl	42.43	$\mathrm{Na}_{2} \mathrm{~S}$	1900	8
Sulphur	SO_{6}	2241	-	-	-	-	1
"'		2165	,		-	-	2
Tin	SnO	573	SnCl_{2}	690	-	-	4
"	O		SnCl_{4}	1089	-	-	7
Zinc .	ZnO_{6}	$11 S_{5}$	$-$	-	-	-	4
" .		1314	ZnCl_{2}	1495	-	-	I
Substance.	Combined with SO_{4} to form -	Heat units.	Combined with NO_{3} to form -	Heat units.	Combined with CO_{3} to form-	Heat units.	宮
Calcium	CaSO_{4}	7997	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	5080	CaCO_{3}	6730	I
Copper	CuSO_{4}	2857	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	1304	Ca	,	I
Ifyclrogen	$\mathrm{H}_{2} \mathrm{SO}_{4}$	96450	HNO_{3}	41500	-	-	I
Iron.	FeSO_{4}	420 S	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	2134	-	-	1
Lead .	PbSO_{4}	1047	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	512	PbCO_{3}	SI4	I
Magnesium	MgSO_{4}	12596	-	5	-	S	1
Mercury .	-	-	-	-	-	-	1
J'otassium	$\mathrm{K}_{2} \mathrm{SO}_{4}$	4416	KNO_{3}	3061	$\mathrm{K}_{2} \mathrm{CO}_{3}$	3583	I
Silver Sodium	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	776	AgNO 3	266	$\mathrm{Ag}_{2} \mathrm{CO} \mathrm{S}_{3}$	56 I	I
Sodium Zinc.	$\mathrm{Na}_{2} \mathrm{NnSO}_{4}$	$\begin{aligned} & 7119 \\ & 3538 \end{aligned}$	NaNO_{-}	483.	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	58.4	I
Zinc .	ZnSO_{4}	3538					I
Authorities.							
I Thomsen. 3 Fa 2 Berthelot. 4 Jou	nd Silberma	$\begin{aligned} & \text { nn. } \\ & 6 \end{aligned}$	Iess. Average of	even di	ferent. $\quad \begin{aligned} & 7 \\ & 8\end{aligned}$	ndrew oods	

* Combustion at constant pressure.

Smithsonian Tables.

COMBINATION.
caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, is the same from 0° to $1^{\circ} \mathrm{C}$. by the addition of that heat.

Substance.	In dilute solutions.						
	Forms -	Heat units.	Forms -	Heat units.	Forms -	11.at units.	
Calcimm Carbon-1) ${ }_{6}$. " - Graphite	$\mathrm{CaOH}_{2} \mathrm{O}$	3734	$\mathrm{CaCl}_{2} \mathrm{H}_{2} \mathrm{O}$	4690	CaS +112 O	2.157	I
					-	-15	2
	-	-	-	-	-	-	3
	-	-	-	-	-	-	3
Chlorine . . .	-	-	-	-	-	-	1
	-	-	-	_	-	-	1
Copper	-	-	-	-	-	-	1
	-	-	-	-	-	-	4
Hydrogen .	-	-	-	-	-	-	3
"	-	-	-	-	-	-	5
Iron .	-	-		-	-	-	6
	$\mathrm{FcO}+\mathrm{H}_{2} \mathrm{O}$	1220*	$\mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{O}$	1785	-	-	3
Iron ${ }_{\text {\% }}$		-	FeCl_{3}	2280	-	-	3
Iodine	-	-	-	-	-	-	1
Lead . .	-	-	PbCl_{2}	368	-	-	I
Magnesium	$\mathrm{MgO}_{2} \mathrm{H}_{2}$	9050	MgCl_{2}	7779	MgS	4784	1
Manganese	-	-	MnCl_{2}	2327	-	-	1
Mercury ${ }^{\text {a }}$	-	-	${ }^{-}$	-	-	-	1
	-	-	HgCl_{2}	299	-	-	1
Nitrogen	-	-	-	-	-	-	1
"	-	-	-	-	-	-	I
" •	-	-	-	-	-	-	1
	-	-	-	-	-	-	1
Phosphorus (red) ${ }_{\text {a }}^{\text {(yellow) }}$)	-	-	-	-	-	-	7
" "	-	-	-	-	-	-	1
Potassium .	$\mathrm{K}_{2} \mathrm{O}$	2110*	KCl	2592	$\mathrm{K}_{2} \mathrm{~S}$	1451	S
Silver	-	-	-		${ }^{-}$	-	1
Sodium	$\mathrm{Na}_{2} \mathrm{O}$	3375	NaCl	4190	Na2S	2260	8
Sulphur	-	337	-	-	-	-	1
Tin	-	-	$\mathrm{Sn}^{-} \mathrm{Cl}_{2}$	$\overline{691}$	-	-	7
	-	-	$\mathrm{SnCl}{ }_{4}$	1344	-	-	7
Zinc .	-	-	--	,	-	-	4
	-	-	ZnCl_{2}	1735	-	-	I
Substance.	In dilute solutions.						高
				Heat	Forms -	Heat	
	Forms-	units.	Forms -	units.	Forms -	units.	
Calcium . . .	-	-	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	5175	-	-	1
Copper	CuSO_{4}	3150	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	1310	-	-	I
Hydrogen.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	10530	$\mathrm{H}_{2} \mathrm{NO}_{3}$	24550	-	-	I
Iron.	FeSO_{4}	4210	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{8}$	2134	-	-	1
Lead .	-	-	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	475	-	-	1
Magnesium	MgSO_{4}	13420	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	S 595	-	-	I
Mercury .	${ }^{\text {b }}$	-	$\operatorname{IIg}\left(\mathrm{NO}_{3}\right)_{2}$	335	-	-	1
Potassium.	$\mathrm{K}_{2} \mathrm{SO}_{4}$	4324	KNO_{3}	2860	-	-	I
Silver .	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	753	AgNO_{3}	216	-	-	1
	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	7160	NaNO_{3}	$46 \geq 0$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	5995	I
Sodium	ZnSO_{4}	3820	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	2035	-	-	I
	Authorities.						
$\begin{array}{ll} 1 \text { Thomsen. } & 3 \\ 2 & \text { Berthelot. } \end{array}$	Favre and Sil Joule.	ermann	5 Hess. 6 Average	seren	different. $\stackrel{7}{8}$	Andre Wood	

* Thomsen.

Smithsonian Tables.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in calories per kilogramme or in therms per gramme by H; the total heat from $0^{\circ} \mathrm{C}$. in the same units by $H I^{\prime}$. The pressure is that due to the vapor at the temperature r ?

Smithsonian Tables.

Substance, formula, and temperature.	$l=$ tutal heat from thuich at o to vapor at t. $r=$ latent heat at t.	Authority.
$\begin{aligned} & \text { Acetone, } \\ & \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, \\ & -3^{\circ} \text { to } 147^{\circ} . \end{aligned}$	$\begin{aligned} & l=140.5+0.366 .4 t-0.000516 t^{2} \\ & l=139.9+0.23356 t+0.00055358 t^{2} \\ & r=139.9-0.27257 t+0.0001571 t^{2} \end{aligned}$	Kegnault. Winkclmann.
$\begin{gathered} \text { Benzene, } \\ C_{6} I I_{6} ; \\ 7^{\circ} \text { to } 215^{\circ} . \end{gathered}$	$l=109.0+0.24429 t-0.0001315 t^{2}$	Regnault.
Carbon dioxide, CO_{2}. $-25^{\circ} \text { to } 31^{\circ} .$	$r^{2}=11 S^{2} .485(31-t)-0.4707\left(31-t^{2}\right)$	Cailletet and Mathias.
Carbon disulphide, CS: -6° to 143°.	$\begin{aligned} & l=90.0+0.14601 t-0.000412 t^{2} \\ & l=50.5+0.16993 t-0.0010161 t^{2}+0.000003424 t^{3} \\ & r=89.5-0.06530 t-0.0010976 t^{2}+0.000003424 t^{3} \end{aligned}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl_{4}, S° to 163°.	$\begin{aligned} & l=52.0+0.14625 t-0.000172 t^{2} \\ & l=51.9+0.17867 t-0.0009599 t^{2}+0.000003733 t^{3} \\ & r=51.9-0.01931 t-0.0010505 t^{2}+0.000003733 t^{3} \end{aligned}$	Regnault. Winkelmann.
Chloroform, CHCl_{3}, -5° to 159°.	$\begin{aligned} & l=67.0+0.1375 t \\ & l=67.0+0.14716 t-0.0000437 t^{2} \\ & r=67.0-0.08519 t-0.0001444 t^{2} \end{aligned}$	Regnault. Winkelmann
Nitrous oxide, $\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ -20^{\circ} \text { to } 36^{\circ} . \end{gathered}$	$r^{2}=131.75(36.4-t)-0.928(36.4-t)^{2}$	Cailletet and Mathias.
Sulphur dioxide, SO_{2}, 0° to 60°.	$r=91.87-0.3842 t-0.000340 t^{2}$	Mathias.

* Quoted from Landolt and Boernstein's "Plys. Chem. Tab." p. 350 .

Smithsonian Tables.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances. It has been compiled principally from Landolt and Boernstem's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	C	T	H	Authority.
$\begin{aligned} & \text { Alloys: } 30.5 \mathrm{~Pb}+69.5 \mathrm{Sn} \\ & 36.9 \mathrm{~Pb}+61.3 \mathrm{Sn} \\ & 6.7 \mathrm{~Pb}+36.3 \mathrm{Sn} \\ & 77.5 \mathrm{~Pb}+22.2 \mathrm{Sn} \end{aligned}$	PbSn_{4}	IS3	17	Spring.
	PbSn_{3}	179	15.5	
	PbSn	177.5	11.6	"
	$\mathrm{Pb}_{2} \mathrm{Sn}$	176.5	9.54	Ledebur
Pritannia metal, $9 \mathrm{Sn}+\mathrm{IPb}$ Rose's alloy,$24 \mathrm{~Pb}+27.3 \mathrm{Sn}+48.7 \mathrm{Bi}$	-	236	28.0*	Ledebur.
	-	98.5	6.55	Mazzotto.
Wood's alloy $\left\{\begin{array}{l}25.8 \mathrm{~Pb}+14.7 \mathrm{Sn} \\ +52.4 \mathrm{Bi}+7 \mathrm{Cd}\end{array}\right\}$	-	75	S. 10	"،
Bromine	Br	-7.	16.2	
Bismuth .	Bi	266.8	12.64	Person.
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	$5 \cdot 3$	30.85	Fischer.
Cadmium . .	Cd	320.7	13.66	Person.
Calcium chloride	$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	28.5	40.7	"
Iron, Gray cast .	-		23	Gruner.
Slag .	-	-	33 50	"،
Iodine .	I	-	11.71	Favre and Silbermann.
Ice . .	$\mathrm{H}_{2} \mathrm{O}$	\bigcirc	79.24	Regnault.
،		\bigcirc	S0.02	Bunsen.
" (from sea-water)	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{O}+3.535 \\ \text { of solids } \end{array}\right.$	-S.7	54.0	Petterson.
Lead .	Pb	325	5.56	Rudberg.
Mercury .	Hg	$3-$	2.82	Person.
Naphthalene	$\mathrm{C}_{10} \mathrm{H}_{8}$	79.87	35.62	Pickering.
Palladium .	Pd	(1500) ?	36.3	Violle.
Phosphorus .	P	40.05	4.97	Petterson.
Potassium nitrate	KNO_{3}	333.5	48.9	Person.
Phenol	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	-25.37	24.93	Petterson.
Paraffin	,	52.40	35.10	Batelli.
Silver Sodium nitrate	Ag	999	21.07	Person.
Sodium nitrate .	NaNO_{3}	305.5	64.87	"
Sodium phosphate	$\left\{\begin{array}{c}\mathrm{Na}_{2} \mathrm{HPO}_{4} \\ +\mathrm{I} 2 \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	36.1	66.8	"
Spermaceti	,	43.9	36.9S	Batelli.
Sulphur ${ }^{\text {a }}$	S	115	36.98 9.37	I'erson.
Wax (bees)	-	61.8	42.3	،
Zinc.	Zn	415.3	2S.I3	"

*Total heat from $\mathrm{o}^{\circ} \mathrm{C}$.

Smithsonian Tables.

The melting-noints of the chemical clements are in many eases somewhot macerain, owing to the very different results obtaned by different observers. 'This toble gises the extrente salues recoreled except in ofew eases where one observation differed so much from ail mhers as to make its atceuracy expremely improbable. 'I he culam headed "Mtem" gives a protsible average value.

Table 216.
BOILING-POINT OF CHEMICAL ELEMENTS.
The column headed "Range" gives the extremes of the records found. Where the results are from one observer the authority is quoted with date of publication.

Substance.	Range.		Mean.		Substance.	Range.		Mean.	第
	Min.	Max.				Min.	Max.		
Aluminium .	above white heat			I	Nitrogen ()xygen	-ISI.		-10.14	8
Antimony	1470.	1700.	1535				-	-153.	9
Arsenic Pismuth	449. 1090.	450. 1700.	- 413.	2	1'hosphorus	287.3	290.	- 2 SS .	
Bromine .	59.27	63.05	62.08		Potassium .	667. 725		695.	
Cadmium	720.	860.	779.		Seleninm	664. 683.		675.	
Chlorine.		-	-33.6	3	Sodium.	$\begin{array}{ll} 742 . & 907 . \\ 447 . & 448 . \end{array}$		S25.	
Iodine .		ver 200		4	Sulphur Thallium.			448.1	
Lead .	bet. 1	50° an	1600° 1100.	5	Thallim.	bet. I 450° and 1600°			
Magnesium . Mercury .	-	-	1100. 357.	7	Zinc ${ }^{\text {P }}$.	S91.	10.40.	958.	

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.*

"For more exiensive tables on this subject, see Carnclley's "Melting and Boiling-point Tables," or Landolt and Pnernstein's " Phys. Chem. 'Iab."

Smithsonian Tables.

MELTING－POINTS OF VARIOUS INORGANIC COMPOUNDS．

Substance．	Chemical furmul．e．	Msting prom．				bate uf jub． hatis 12.
		1111．	M．x．	$\begin{aligned} & \text { loricular } \\ & \text { prom } \\ & \text { whbluc. } \end{aligned}$	$\begin{array}{l\|l} & 1 \\ & \\ & \end{array}$	
		-	$\begin{gathered} - \\ - \\ 100 \end{gathered}$		1	$\begin{aligned} & 1 \sin 0 \\ & \text { is } 51 \end{aligned}$
＂．nitrate ${ }^{\text {a }}$ ．				$\begin{aligned} & 56.7 \\ & y y . \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1．59 1.54 cis
Nitric acid．		go．	100.	-47.	．	18゙ら
${ }^{\text {6／}}$ amhydride ${ }^{\text {a }}$	N゙ッ以	－		30.	5	1572
＂oxide＊	N0	－	－	-16.7	1	$1 \mathrm{SNS}_{5}$
＂peroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	－	－	－10．14	7	$1 \mathrm{~S}^{150}$
Nitrous anh dride	$\mathrm{N} 2 \mathrm{O}_{3}$	－	－	－Š．	S	1880
－oxide．	NiO	－	－	－99．	9	1873
Phosphoric acid（ortho）	$\mathrm{H}_{3}{ }^{\prime}()_{1}$	38.6	41.7	10.3	－	
Phosphorous acid ．	$\mathrm{H}_{3} \mathrm{P}^{\prime}()_{3}$	70.1	74.	72.	－	S以
Phosphorus trichloride	${ }^{\prime}{ }^{\prime} 1_{3}$	－	－	111.8	10	15^{183}
＂، oxychloricle	$\mathrm{I}^{\prime} \mathrm{ClO}_{3}$	－	－	-1.5	11	1571
＂disulphicle	PS．2	296．	29 S．	297.	12	1570
＂pentasulphide．	$\mathrm{P}_{2} \mathrm{~S}_{5}$	274.	276.	275.	13	150
＂Sesquisulphide	$\mathrm{r}_{4} \mathrm{CH}_{3}$	142.	167.	158. 200.	－ 1.	－50．t
＂${ }^{\text {chisulphicle }}$	HCO_{3}	834．	1150 ？	S36．	4	18.
＂chlorate	KClO_{3}	334.	372.	35.	－	－
＂perchlorate	KClO_{4}		－	610.	15	ISSO
＂chloride	Kく1	730.	73 S．	73%	－	－
＂nitrate	KNO_{3}	327.	353．	310.	－	
＂acid phosphate	$\mathrm{Kll} \mathrm{P}^{(0)}$	－		96.	3	1584
＂acid sulphate	$\mathrm{Klls})_{4}$	－	－	200.	16	1510
Silver chaloride ．．	$\triangle \mathrm{gCl}$	150.	457.	453.		
＂ $\begin{aligned} & \text { nitrate } \\ & \text { mitrogenictted }\end{aligned}$	$\operatorname{AgN()}$ AgN	198. -	22.10	21.4 250.	－	1890
، perchlorate	AgCJ_{4}	－	－	456.	is	ISH_{4}
＂phosphate ${ }^{\text {a }}$	$\mathrm{Ag}_{3} \mathrm{P}^{(1)} 4$	－	－	849.	15	$1 \mathrm{STO}_{5}$
＂metaphosphate	人gl＇（ ${ }^{\text {a }}$	－	－	483.	15	1878
＂sulphate．	$\left.\mathrm{Ag}_{2} \mathrm{SO}\right)_{4}$	－	－	65.	15	IS－S
Sodium chloride．	NaCl	772.	960.	772.	－	－
＂hydroxide	NaOJI			60.	17	1584
＂nitrate．	$\mathrm{NaN} \mathrm{O}_{3}$	298.	330.	315. 302.	5	15－8
＂chlorate ．	Na	－	－	4 Sz	IS	15^{54}
＂．carbonate	$\mathrm{Na}_{2} \mathrm{CO}$	S14．	9こ0．	SS4．	－	18.
＂	$\left.\mathrm{Na}_{2} \mathrm{CO}\right)_{3}+10 \mathrm{H}_{2} \mathrm{O}$			34.	3	1584
＂phosphate ．	$\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{HIL}_{2} \mathrm{O}$	35.	36.4	35.7		IS－8
＂metaphosphate	$\mathrm{NaP}^{\text {Nab }}$			SSS．	15	－ 5
＂．pyrophosphate				＋8．	19 19	185is
＂phosphite	$\mathrm{HaNaNO}_{\mathrm{Na}}^{\mathrm{Na}} \mathrm{S}()_{4}+5 \mathrm{H}_{2} \mathrm{O}$	S6ı．	S65．	S63．	15	$15-5$
＂sulphate	$\mathrm{Na}_{2} \mathrm{SO}_{4}+101 \mathrm{I} \mathrm{I}_{2} \mathrm{O}$	S6．	86s．	34.	3	18 SO
＂hyposulphite	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O}$	45.	4.1	17.		－
Sulphur dioxide ．	SO_{2}	76.	79.6	7 7.		$1 \mathrm{SNS}_{1}$
Sulphuric acid	$\mathrm{I}_{21} \mathrm{INOS}_{4} \mathrm{SO}_{4}+$	10.1	10.6	－0．5	22	1．553
＂\％＂	$\begin{aligned} & 1211_{2} \mathrm{SO}_{4}+ \\ & 11_{2} \mathrm{SO}+1 \end{aligned}$	$7 \cdot 5$	8.5	S．	－	ハ5
＂${ }^{\text {a（pyro）}}$	$1 \mathrm{I}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	－	－	35.	22	1853
｜Sulphur trioxide	S1，	14.8	15.	14.9	5	15－（1）－1880
Tin，stannic chboride	SnCl_{1}	－		－3．3．	23	160）
＂．stamous＂	SnCl_{2}	－		250.	24	，
Zinc chloride	CnCl_{2}	－		262.	25	isci
＂، nitrate		－	－	7.		－
＂ $\begin{aligned} & \text {＂} \\ & \text { citrate } \\ & \text { sulphate }\end{aligned}$	$7 \mathrm{n}(土)(1) 2+$.	－	－	30.4 50.	3	15 S
sulphate	nnO1 +71					
	Wroblewski \＆Olszewski． Genther \＆Dichaelis． Ramme． V．\＆C．Meyer． 18 Carn Lemoine．		lev． herlich． Shea．	20 Curlius 21 Slendel 22 Maricn 23 Besson 24 Clark，	juff． c． Const	25 Braun 26 Engel． t．of NaI．＂

[^58]

- For a more complete table, see Clark"s "Constants of Nature" (Smithsonian Collections)
\dagger Pressure 76 cm . $\quad \ddagger$ Pressure 2.64 atmos. \quad. l'ressure 68 mm . || P'ressure 75.8 cm .

MELTING-POINTS OF MIXTURES.*

Table 220.
DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME
ORGANIC COMPOUNDS.
N. B. - The data in this table refer only to normal conpounds.

Substance.	Formula.	Tenc.	Density.	Meltingpoint.	Boiling-point.	Authority.
(a) Parafin Series: $\mathrm{C}_{n} \mathrm{II}_{2 n+2}$						
Methane* İthanct. Propane. Butane l'entane. llexane lieptane. Octane Nonane 1)ecane Undlecane 1)odecane Tridecane Tetradecane Pentadecane Ilexadecane IIeptadecane Octadecane. Nonadecane Eicosane Hencicosane Docosame Tricusane Tetracosane Heptacosane l'entriacontane I Iicetyl Penta-tria-contane	ClH_{4} $\mathrm{C}_{2} \mathrm{H}_{6}$ $\mathrm{C}_{3} \mathrm{H}_{8}$ $\mathrm{C}_{4} \mathrm{H}_{10}$ $\mathrm{C}_{5} \mathrm{H}_{12}$ $\mathrm{C}_{6} \mathrm{II}_{14}$ $\mathrm{C}_{7} \mathrm{It}_{16}$ $\mathrm{C}_{8} \mathrm{II}_{18}$ $\mathrm{C}_{9} \mathrm{H}_{20}$ $\mathrm{C}_{10} \mathrm{H}_{22}$ $\mathrm{C}_{11} \mathrm{II}_{2 \pm}$ $\mathrm{C}_{121} \mathrm{I}_{20}$ $\mathrm{C}_{13} \mathrm{I}_{28}$ $\mathrm{C}_{14} \mathrm{H}_{30}$ $\mathrm{C}_{15} \mathrm{H}_{32}$ $\mathrm{C}_{16} \mathrm{I}_{34}$ $\mathrm{C}_{17} \mathrm{II}_{36}$ $\mathrm{C}_{18} \mathrm{I}_{35}$ $\mathrm{C}_{19} \mathrm{H}_{40}$ $\mathrm{C}_{24} \mathrm{IH}_{42}$ $\mathrm{C}_{21} \mathrm{II}_{44}$ $\mathrm{C}_{2} \mathrm{IH}_{46}$ $\mathrm{C}_{23} \mathrm{H}_{48}$ $\mathrm{C}_{2} \mathrm{H}_{50}$ $\mathrm{C}_{27} \mathrm{H}_{56}$ $\mathrm{C}_{31} \mathrm{H}_{64}$ $\mathrm{C}_{32} \mathrm{I}_{66}$ $\mathrm{C}_{35} 11_{72}$	-164. - - 0 17. 17. 0 0 20. 20. -26. -12. 6. +4. 10. 18. 22. 28. 32. 37. 40. 44. 48. 51. 60. 68. 70. 75.	$\begin{gathered} 0.415 \\ - \\ - \\ .60 \\ .626 \\ .663 \\ .701 \\ .719 \\ .718 \\ .730 \\ .774 \\ .773 \\ .775 \\ .775 \\ .776 \\ .775 \\ .777 \\ .777 \\ .777 \\ .778 \\ .778 \\ .778 \\ .779 \\ .779 \\ .750 \\ .781 \\ .781 \\ .782 \end{gathered}$	-IS5.S - - - - - - - -51. -31. -26. -12. -6. +4. +10. 18. 22. 28. 32. 370. 40. 4. 48. 51. 60. 6. 70. 75.	$\begin{gathered} -164 . \\ - \\ -25 \text { to }-30 \\ +1 . \\ +37 . \\ +69 . \\ 95.4 \\ 125.5 \\ 150 . \\ 173 . \\ 195 . \\ 214 . \\ 23 . \\ 252 . \\ 270 . \\ 287 . \\ 303 . \\ 317 . \\ 330 . \\ 205 . \ddagger \\ 215 . \ddagger \\ 22.4 . \ddagger \\ 234 . \ddagger \\ 243 . \ddagger \\ 270 . \ddagger \\ 302 . \ddagger \\ 310 . \ddagger \\ 331 . \ddagger \end{gathered}$	Olszewski. Roscoe and Schorlemmer. Butlerow. Schorlemmer. " Thorpe. Krafft. " " " " 66 66 66 66 66 66 66 66 66 66 66 66 66

(b) Olefines, or the Ethylene Series: $\mathrm{C}_{n} \mathrm{H}_{2 n}$.

Ethylene	$\mathrm{C}_{2} \mathrm{IH}_{4}$	-	-	-169.	-103.	W'roblewski or Olszewski.
Propylene .	$\mathrm{C}_{3} \mathrm{IH}_{6}$	-	-		-	
Sutylene .	$\mathrm{C}_{4} \mathrm{H}_{3}$	-13.5	0.635	-	1.	Sieben.
Amylone	$\mathrm{C}_{5} \mathrm{H}_{10}$	-	-	-	36.	Wagner or Saytzeff.
Hexylene	$\mathrm{C}_{6} \mathrm{IH}_{12}$	\bigcirc	${ }^{7} 76$	-	69.	Wreden or Znatowicz.
Ieptylane	$\mathrm{C}_{7} \mathrm{H}_{14}$	19.5	.703	-	96.-99.	Morgan or Schorlemmer.
Octylene .	$\mathrm{C}_{5} \mathrm{II}_{16}$	17.	.722	-	122.-123.	Möslinger.
Nonylene .	$\mathrm{C}_{9} \mathrm{H}_{18}$	-	-	-	153.	Bernthsen, "Org. Chem."
Jecylene	$\mathrm{C}_{10} \mathrm{H}_{20}$	-	-	-	175.	" ${ }^{\text {a }}$
Undecylene	$\mathrm{C}_{11} \mathrm{H}_{2}$	-	-	-	195.	" ، "
Wodecylene	$\mathrm{C}_{12} \mathrm{H}_{24}$	-31.	. 795	-31.	90. \ddagger	Krafft.
Tridecytenc	$\mathrm{C}_{13} \mathrm{H}_{26}$,	-	r	233.	Bernthsen.
Tetradecylene.	$\mathrm{C}_{1.1} \mathrm{II}_{28}$	-12.	. 794	-12.	127.	Krafft.
P'entadecylene	$\mathrm{C}_{15} \mathrm{II}_{3}$	-	-	-	247.	Bernthsen.
Hexarlectlene.	$\mathrm{C}_{16} \mathrm{II}_{32}$	$+4$.	. 792	$+1$.	155.	Krafft, Mendelejeff, etc.
Octadecylene	(1: 11:6	18.	.791	$+18$.	179.7	Krafft.
licosylane	$\mathrm{C}_{20} \mathrm{II}_{11}$	-	-	-	-	
Corotene	$\mathrm{Caz}_{2} \mathrm{H}_{54}$	-	-	5%.	-	Bernthsen.
Melene	$\mathrm{C}_{30} \mathrm{H}_{6} \mathrm{O}$	-	-	62.	-	"

[^59]
Smithsonian Tables.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORCANIC COMPOUNDS.

Substance.	Chemical formula.	Tımp. C.	-precific graty	Mtrinspent.	1:oilingjum.	Authorily.
(c) Aectylene suries: $\mathrm{C}_{n} \mathrm{Il}_{2 n-2}$.						
Acetylene Abylene Ethylacetylene	$\begin{aligned} & C_{2} 1_{1} \\ & C_{3} 11_{4} \\ & C_{4} 1_{6} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	-		-	
			-	-	$+18$	Liruylants, バutstie-
Propylacetylene.						rofl, and uthers. Bruwhus, Tanorski.
liutylacetylene.	$\begin{aligned} & \mathrm{C}_{611} \mathrm{I}_{10} \\ & \mathrm{C}_{7}\left[\mathrm{I}_{12}\right. \end{aligned}$	-	-	-	6S.-70.	'limurski.
Oenanthylidene . .				-	106.-105.	1 Bruylants, lichal,
						d others.
Caprylidene . . Cndecrlidene		o.	0.771		133.-134.	lbehal.
Undecrlidene.	$\mathrm{C}_{\text {c }} \mathrm{Cl}_{11}$		-		210.-215.	liruylants.
Tetradecylidene.	$\mathrm{C}_{12} 112$	-2.	. Sio	- 9.	105...	Kraift.
	$\mathrm{C}_{14} 1120$	$+6.5$. $\mathrm{So6}$	$+6.5$	13.4*******	
liexadecylidene.	$\begin{aligned} & \mathrm{C}_{16} 1_{30}^{0} \\ & \mathrm{C}_{18} \mathrm{H}_{3,4} \end{aligned}$	20.	. SO_{4}	20.	1 10.**	
Octadecylidene .		30.	.802	30.	154	
(d) Monatomic alcohols : $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{O} \mathrm{II}$.						
Methyl alcohol Ethyl alcohol. l'ropyl alcohol Jiutyl alcohol Amyl alcohol. 1Hexyl alcohol Heptyl alcohol ()ctyl alcohol Nonyl alcohol I Necyl alcohol Dodecyl alcohol Tetradecyl alcohol Hexadecyl alcohol Uctadecyl alcohol		$\begin{array}{r} \hline 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ 0 . \\ +7 . \\ 24 . \\ 3 S . \\ 50 . \\ 59 . \end{array}$	$\begin{aligned} & 0 . S 12 \\ & . S 06 \\ & . S_{17} \\ & . S_{23} \\ & . S_{2} 9 \\ & . S_{33} \\ & . S_{30} \\ & . S_{19} \\ & . S 2 \\ & .839 \\ & .831 \\ & .824 \\ & . S_{1} 5 \\ & .8 \end{aligned}$	$\begin{array}{\|c\|} \hline- \\ -130 .+ \\ - \\ - \\ - \\ - \\ - \\ - \\ \hline+5 . \\ 24 . \\ 3.5 \\ 50 . \\ 59 . \\ \hline \end{array}$	$\begin{gathered} 66 . \\ 78 . \\ 97 . \\ 117 . \\ 135 . \\ 15 \% \\ 176 \\ 195 \\ 213 . \\ 231 . \\ 143 . \\ 167 \\ 190 . * \\ 211 . \end{gathered}$	From Zander, "Liel). Ann." vol. 224, p. S5, and krafft, "lier" vol. 16, 171.1, $\begin{aligned} & 19.2221, \\ & 23,2360, \end{aligned}$ and also 1 i'roblewski and (1szcwshi, " Monatshefte," vol. 4, p. 33 S.
(e) Alcoholic ethers: $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$.						
Dimethyl ether . . .	$\mathrm{C}_{2} \mathrm{II}_{6} \mathrm{O}$	-	-	-	-23.6	Erlenmeyer, Kreichbaumer.
Diethyl ether . . .Jipropyl ether . .Di-iso-propyl cther . .Di-n-butyl ether . . .	$\begin{aligned} & \mathrm{C}_{4} \mathrm{II}_{10} \mathrm{O} \\ & \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O} \\ & \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O} \\ & \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O} \end{aligned}$	4.	0.731	-	$+34.6$	Regnault.
		0.	.763	-	90.7	Zander and others.
		0.	-7-43	-	69.	
		o.	-84	-	14.	Licben. Rossi. and others.
1)i-sec-butyl ether . .	$\mathrm{C}_{8} \mathrm{II}_{1,8} \mathrm{O}$	21.	.756	-	121.	Kisicl.
J) i-iso-butyl 1) i-iso-amyl	$\mathrm{C}_{8} \mathrm{H}_{1} \mathrm{~S}$$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$	J 5.	-762		122.	
		0.	. 299	-	170.-175.	IV urtz.
$\begin{array}{ll}\text { Di-iso-amyl } \\ \text { Di-sec-hexyl } & \text { " }\end{array}$		-		-	203.-20S.	Frlenmever and II anklyn.
Ji-norm-octyl "	$\mathrm{C}_{16} \mathrm{II}_{34} \mathrm{O}$	17.	. $\mathrm{So5}$	-	2So.-2S2.	Moslinger.
(f) Ethyl ethers: $\mathrm{C}_{n} \mathrm{H}_{2 n+z}$ ().						
Ethyl-mothyl ether . " propyl " iso-propyl ether " norm-butyl cther " iso-butyl ether " iso-amyl ether	$\begin{aligned} & C_{3} 1 I_{4}() \\ & C_{5} 1 I_{12}() \\ & C_{5} H H_{12}() \\ & C_{6} H_{14}() \\ & C_{66} 1 H_{14}() \\ & C_{7} H_{16}() \end{aligned}$	-	-	-	$\begin{gathered} 11 . \\ 63 .-64 . \\ 54 . \\ 92 . \\ 7 .-80 . \\ 112 . \end{gathered}$	Wurt, Williamson. (hamecl. liruhl. Markownike II. 1.ichun, Rossi. Wurtr. Williamson and others. Licben, Janeczek. (ross. Moslinger.
		20.	0.739	-		
		0.	.709 .708	_		
		-	. 75^{1}	-		
		IS.	.76. 4	-		
" norm-hexyl ether	$\mathrm{Ca}_{8} \mathrm{H}_{4 \times} \mathrm{O}$	-	-	-	$134 .-137$.	
" norm-heptyl cther	$\mathrm{C} \mathrm{H}_{20} \mathrm{O}$	16.	. 790	-	165	
" norm-octyl cther	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	17.	. 794	-		

- Boiling-point under 15 mm . pressure.
\dagger Liquid at $-11 .{ }^{\circ} \mathrm{C}$. and 180 armospheres' pressure (Cailletet).

COEFFICIENTS OF THERMAL EXPANSION.

Coefficlents of Linear Expansion of the Chemical Elements.

In the heading of the columns ' T ' is the temperature or range of temperature, C the coefficient of linear expansion, A_{1} the authority for \mathcal{C}, μ the mean cocfficient of expansion between \circ° and $100^{\circ} \mathcal{C}_{0}, \alpha$ and β the coefficients in the equation $l_{t}=l_{0}\left(1+a^{2}+\beta t^{2}\right)$, where l_{0} is the length al $0^{\circ} \mathrm{C}$. and l_{t} the length at $t \mathrm{C}_{2}, A_{2}$ is the authority for a, β, and m.

Substance.	T	${ }_{\times}^{C}$	A_{1}	$\begin{array}{r} M \\ \times{ }_{10+1} \end{array}$	$\times{ }_{10}{ }^{\text {a }}$	$\begin{gathered} \beta \\ \times 10^{6} \end{gathered}$	A_{2}
Aluminium	$\begin{aligned} & 40 \\ & 600 \end{aligned}$	$\begin{array}{r} 0.2313 \\ .3150 \end{array}$	Fizeau . . Les Chatelier.	0.2220	-	-	$\left\{\begin{array}{l}\text { Calvert, John- } \\ \text { son and Lowe. }\end{array}\right.$
Antimony: larallel to cryst. axis.	40	.1692	Fizeau.				
Perp. to axis	40	.08S2					
Mean -	40	.1152	" • •	.1056	. 0923	.0132	Matthieson.
Arsenic .	40	. 0559	"				
bismuth:							
P'arallel to axis	40	.1621	"				
Perp. to axis	40	. 1208	"				
Mean . .	40	. 3446	" . .	.1316	.1167	. 0149	Matthieson.
Cadmium .	40	- 3069	" . .	. 3159	. 2693	. 0.466	
Carbon:							
biamond.	40	. 01.18	"				
Gas carbon .	40	. 05.40	"				
Graphite .	40	. 0786	"				
Anthracite	40	. 2078	"				
Cobalt .	40	.1236	"				
Copper	40	. 1678	"	. 1666	.1481	. 0185	Matthieson.
Cold. -	40	. 1443	"	. 1470	. 1358	. 0112	"
Indium .	40	. 4170					
Iron:							
Soft	40	. 1210	"				
Cast . .	40	. 1061	"				
IVrought.	-ISto 100	.1140	Andrews.				
Stecl . .	40	. 1322	Fizeau.				
" annealed	40	. 1095	" .	.1089	. 1038	. 0052	Benoit.
I ead . . .	40	. 2924	"	. 2709	. 0273	. 0074	Matthieson.
Magnesium	40	.2694	"				
Nickel .	40	.1279 .0657	"				
Palladium .	40	. 11.176	"	. 1104	.101I	. 0093	Matthieson.
Phosphorus .	--40	1.2530	Pisati and De Franchis.				
Platinum	40	. 0899	Fizeau. .	. 0886	.0851	. 0035	Matthicson.
Potassitum	--50	. 8300	Hagen.				
Rhodium .	40	.0S50	Fizeau.				
Ruthenium.	40	. 0960	"				
Selenium	40	-3680	"	. 6604	-	-	Spring.
Silicon -	40	. 0763	"				
Silver . . . sulphur:	40	.192 I	"	.1943	. ISo9	. 0135	Matthieson.
Cryst mean.	40	. 6413	" . . .	1.ISO	-	-	Spring.
'T'ellurium	40	. 1675	"	. 3687	-	-	
Thallium	40	-3021	"				
$\operatorname{Tin}_{\operatorname{Zinc} \times .} \cdot . \quad$.	40 40	.2234 .2918	" 2296	. 2033	$.2063$	Matthicson.

N. I., - "The above table has been with a few exceptions compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Mathieson, "Proc. Koy. Soc,," vol. 15.

[^60]Coeffictent of Linoar Expansion for Miscellanoous Substances.
N. B. - The coefficient of cubical expansion may he taken as three times the linear coefficient. T is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

Substance.	T	C $\times 1{ }^{4}$	λ	Substance.	$\%$	$C^{\prime} \times 10^{4}$	A	
Brass : Cast Wire $\begin{gathered} 71.5 \mathrm{Cu}+27.7 \mathrm{Zn+} \\ 0.3 \mathrm{Sn+0.5Pb} \\ 71 \mathrm{C} 11+29211 \end{gathered}$	$0-100^{\circ}$	$\begin{gathered} 0.1875 \\ 0.1930 \\ .17 S^{-.1930} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	Platinum-silver: $1 l^{\prime} t+2 \lambda g$ lorcelain Bayenx	$\begin{gathered} 0-100^{\circ} \\ 20-790 \\ 1000-1.900 \end{gathered}$	$\begin{array}{\|l\|} 0.1523 \\ 0.0 .413 \end{array}$	16	
	40	0.1559	3	Quartz:				
	--100	0.1900		l'arallel to axis	O-So	0.0797	6	
Bronze:				Perpend. to axis Specilum metal Topaz:	0-100	0.1337	6	
	16.6-100	0.1844	5 5 5			0.1933	1	
	$16.6-350$	0.211		l'arallel to lesser horizontal axis				
		0.1			"	0.0832	8	
$97.6 \mathrm{Cu}+2.2 \mathrm{Snn}+$	40	0.1782	3	Parallel to greater horizontal axis	"	0.0836	§	
0.2 P, hard	O-So	0.1713	,	parallel to vertical axis	"	0.0472		
" "، " soft		0.1703	6				8	
Caoutchouc	-	.657-.656		Tourmaline:				
Ebonite	25.3-35.4	0.542	7	tudinal axis	*	0.0937	8	
Fluor spar: CaF_{2}	0-100	0.1950	S	Parallel to hori-				
German silver	"	0.1836	S	Type metal .		0.0773	δ	
Gold-platinum : $2 A u+1 P t$	"	0.1523		Vulcanitc Wedgwood ware	$\begin{gathered} 0-1 S \\ 0-100 \end{gathered}$	0.6360	15	
, Gold-copper:			4			0.0850	5	
$2 \mathrm{Au}+\mathrm{ICu}$		0.1552	4	Wood: $\mathrm{Parallel} \mathrm{to} \mathrm{fibre:}$				
Glass :	"	0.08	1	Parallel to fibre:	"	0.0951	19	
Tube	'6	0.0828	9	leech .	2-3t	0.0257	20	
Plate . .	/	0.0891	10	Chestnut .		0.0649	$=0$	
Crown (mean)		0.0897	10	Elm.		0.0565	20	
	50-60	0.0954	II	Mahogany	"	0.0361	20	
Flint .	+	0.0788	II	Naple .	"	0.0635	20	
Jena thermometer				Oak .		0.0492	20	
(normal)	0-100	0.08 I	12	Walnut -		0.05 .15	20	
" " $59^{\text {III }}$		0.058				$0.065{ }^{\text {S }}$		
Gutta percha .	20	1.953	13	Across the fibre:	"		20	
Ice . .	-20 to -I	0.375	1.4	Chestuit.		0.014		
Iceland spar: Parallel to axis			6	Elm. . .	"	$\begin{array}{l\|l} 0.443 & =0 \\ 0.40 .4 & =0 \end{array}$		
Parallel to axis . Perpendicular to	O-So	0.203	0		،			
Perpentichar axis	"	0.0544	6	Maple Or	"	$\begin{array}{ll}0.4)^{4.4} & =0 \\ 0.54 .4 & \geq 0\end{array}$		
Lead-tin (solcler)				l'ine.				
$2 \mathrm{I}^{\prime} \mathrm{b}+1 \mathrm{Sn}$	0-100	0.2508	1			$0.3412=0$		
Paraffin	0-16	1.0662	15	Walnut		$0 \cdot+1.4$	202021212121	
"	16-38	1.3030	15	Wax: White	10-26	2.300		
	3^{8-49}	4.7707	15		$26-31$	3.120		
Platinum-iricium					31-43	+. 560		
$10 \mathrm{Pt}+\mathrm{ilr}$	40	0.0SS. 4	3		43-57	15.23		
Authorities.								
1 Smeaton. 6 2 Various. 7 3 Fizcau. 8 4 Mathieson. 9 5 Danicll. Io 1	6 Penoit.		I Pulfrich. 16 Braun			21 Kopp .		
	Kohlrausch.		12 Schott.	17 I l ville and Troost.				
	I'faff.		13 R	ismer. If Mayer.				
	Deluc. avoisier and Laplace.		$1+$ Brumer.	19 (ilatzel. 20 Villari.				
			odwell. 20 Villari.					

COEFFICIENTS OF THERMAL EXPANSION.
Coefficients of Cubical Expansion of scme Crystalline and other Sollds.*
$T=$ temperature or range of temperature, $C=$ coefficient of cubical expansion, $A=$ authority.

Substance.	T	$C \times 10^{+}$	A
Antimony .	$0-100$	0.3167	Mathieson.
Beryl.	-100	0.0105	Pfaff.
lismuth . . .	-	0.4000	Kopp.
Diamond .	40	0.0354	Fizeau.
Emerald	40	0.0168	"
Fluor spar . . .	1.4-47	0.6235	Kopp.
Garnet . . .	$0-100$	0.2543	Pfaff.
Glass, white tube	0-100	0.26 .48	Regnault.
" grcen tube	$0-100$	0.2299	"
" Swedish tube .	0-100	0.2363	"
" hard French tube	$0-100$	0.2142	"
" crystal tube	0-100	0.2101	"
" common tube.	O-1	0.2579	"
" Jena . .	0-100	0.2533	Keichsanstalt.
Ice . . .	-20 to -1	1.1250	lirumer.
Iceland spar	50-60	0.1447	I'ulfrich.
Idocrase . .	0-100	0.2700	Pfaff.
Iron	0-100	0.3550	D)ulong and Petit.
" . .	$0-300$	0.4 .410	" ، "
Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$	0-100	0.2862	I'faff.
Manganic oxide, $\mathrm{Mn}_{2} \mathrm{O}_{3}$	0-100	0.522	Playfair and Joule.
Orthoclase (adularia)	0-100	0.1794	Pfaff.
Porcelain .	0-100	0.1080	Deville and Troost.
Quartz	50-60	0.3530	Pulfrich.
Kock salt	50-60	1.2120	"
Spinel ruby	40	0.1787	Fizeau.
Sulphur, rhombic	0-100	2.2373	Kopp.
Topaz	$0-100$	0.2137	Pfaff.
Tourmaline	$0-100$	0.2181	"
Zincite, ZnO	40	0.0279	Fizeau.
Zircon	$0-100$	0.2835	Pfaff.

[^61]Coctficlents of Cubical Expansion of Liquids．
This table contains the coefficients of expansion of some lifuids and solutions of ants．When not otherwise stated

Liquid．	7	$\begin{array}{r} C \\ \times 1000 \end{array}$	A	$x^{\prime \prime \prime}$	a $\times 1000$	$\beta \times 10^{n}$	$\gamma \times 10^{\circ}$	A $=$
Acetic acid	$16^{3}-107^{\circ}$	－	－	． 1433	1.0630	0.126 .7	$1.05-6$	3
Acetone	0－54	－	－	． 1616	1.3240	3．Sopo	－．らフバ	3
Alcohol： Amyl	-15 to＋So						1．18．36	
Ethyl，sp．gr．Soo 5°	－15 ${ }_{\text {－}}^{\text {－}}$－ 80	－	－	－	0.5900 1.0414	0．653	1.7168	5
＂ 50% by volume	0－39	－	－	－	0.7450	I．${ }^{\text {S }} 50$	0.730	6
＂ 30%＂	18－39	－	－	－	0.2925	17.900	11.57	6
＂ 500 atmo press．	－－40	． 866	1	－	－	－	－	－
＂ 3000 ＂	0－40	－524	1	－	－ 56	5	－	－
Methyl．	-35 to＋70	5	－	．14．33	1．1856	1． 5649	0.9111	4
Benzene	$1 \mathrm{I}-\mathrm{S}_{\text {I }}$	－	－	.1385	1.1763	1.2775	0.8065	5
Bromine	\rightarrow to +60	－	－	．1168	1.0382	1.7114	0．5．4．4	4
Calcium chloride ：	1S－25	－	－	． 050	0.0	4.2742	－	7
$\mathrm{CaCl}, 2.80 \%$ ．	$17-25$ $17-24$	－	－	． 0510	0.423	0.5571	－	7
Carbon disulphide ．．	-34 to +60	－	－	．1468	1.1398	1． 3706	1.9122	4
500 atmos．pressure．	－－50	． 940	1	－	－	－	－	－
3000 ＂＂．	－50	． 5 SI	I	－	－	－	－	
Chloroform	－0．63		－	． 1399	1.1071	4.6647	1.7433	4
Ether	－I 5 to +3 S	－	－	． 2150	1.5132	2.3592	4.0051	4
Glycerine		－	－	． 0534	0.4553	0.4595		S
If rdrochloric acid ：$\begin{aligned} & 11 \mathrm{Cl}+6.25 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{IICl}+5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$								
	0－30	－	－	． 0489	0.4460	\bigcirc	－	9
	－－30	－	－	． 0933	0.0625	S．710	－	${ }_{10} 9$
Mercury ．．．．．	24－299	－	－		0.1818	0.000175	0.003512	10
Olive oil ．．．		－	－	． 0742	0.6821	1.1405	－．539	11
Potassium chloride： $\mathrm{KCl}, 2.5 \%$ solution KC（1，24．3\％								
	－	－	－	.0572 .0477	－	－		7
	－		－	． 0.477	－			
Potassium nitrate ： $\mathrm{KNO}_{3}, 5 \cdot 3 \%$ sol＇n $\mathrm{KNO}_{3}, 21.9 \%$	－	－	－	． 0539	－	－	－	12
	－	－	－	． 0577	－	－	－	12
Phenol， $\mathrm{C}_{6} \mathrm{LH}_{6} \mathrm{O}$ ．	$36-157$	－	－	． 0599	0.8340	0.1073	0.4446	13
Petroleum ．Sp. gr. o.S467.	7－38	．992	2	－	－	－	－	－
	$2.4-120$		－	． 1039	0.8994	1．396	－	14
Sodium chloride： $\mathrm{NaCl}, \mathrm{r} .6 \%$ solution．	－	－	－	． 1067	0.0213	10.462	－	9
Sodium sulphate： $\mathrm{Na}_{2} \mathrm{SO}_{4}, 24 \%$ sol＇n．								
	10－40	－	－	．0611	0.3599	2.516	－	9
Sodimm nitrate： $\text { NaNO }{ }_{3} .36 .2 \% \text { sol'n. }$	20－78	－	－	． 0627	0.5408	1.075	－	12
Sulphuric acid：								
$\mathrm{H}_{2} \mathrm{SO}_{4}$ ．．	$0-30$	－	－	．0489	0.5758	0.864		9
$\mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{OH}_{2} \mathrm{O}$	－－30		－	． 0799	0.2835	5.160		？
Turpentine ．．．	$-9 \text { to }+106$	－	－	． 1051	0.9003		－	－
	Water ．．．．．．0－200		－	＿	－．065	8.507	-6.769	15
		A UThorities．						
	4 l＇ierre．				10 Brach		Pinette．	
2 liarrett $5 \mathrm{~K}$	5 Kopp．	S Emo．			11 Spring	14	Frankenh	
3 Zander．	${ }_{6}$ Recknagel．	9 Marignac．			12 Nicol．	15	Scheel．	

Smithsonian Tables．

Cooffic!ents of Expansion of Gases.

The numbers obtained by direct experiment on the change of volume at constant pressure, E_{p}, are separated in the table from those obtamed from the chance of presure at constant volume. $E_{\%}$, The two parts of the table are headed "Coefticient at constant pressure" and " (vetficient at constant volume," respectively. Urdinary changes of atmospheric pressure produce very hule change in the coefficient of expansion, and hence entries in the pressure colum of i atm, have been made for all pressures near to 76 centimetres of mercury. The other numbers in the pressure columns are centimetres of mercury at o $\left(\mathbb{C}\right.$. and approx. 45° latitude, unless otherwise marked.
Thomson has given (arde lineve. Brit, art. "Heat") the following equations for the calculation of the expansion, E, between 0^{-}and $100^{\circ} \mathrm{C}$. of the gases named. Kxpansion is to be understood as change of volume under constant pressure.
Hydrogen . . $E=.3662\left(1-.00049 \frac{V_{0}}{v_{0}}\right)$
Common air . $E=.3662\left(1+.0026 \frac{V_{0}}{v_{0}}\right)$
Oxygen . . $E E=.3662\left(1+.0032 \frac{V_{0}}{v_{0}}\right)$
Nitrogen . . $E=.3662\left(1+.0031 \frac{V_{0}}{v_{0}}\right)$
Carbon dioxide . $E=.3662\left(1+.0164 \frac{V_{0}}{v_{0}}\right)$
where V_{0} / v_{0} is the ratio of the actual density of the gas at $0^{\circ} \mathrm{C}$. to the density it would have at $\circ^{\circ} \mathrm{C}$. and one atmosphere of pressure. The same experiments (Thomson \& Joule, Trans. Roy. Soc. 1860), - which, together with Regnault's data, led to these equations, - give for the absolute temperature of melting ice 2.731 times the temperature interval between the melting-point of ice and the boiling-point of water under normal atmospheric pressure.

Coefficient at constant volume.				Coefficient at constant pressure. \dagger			
Substance.	Pressure.	$\begin{gathered} E_{v} \\ \times \quad{ }_{\text {100 }} \end{gathered}$		Substance.	Pressure.	$\begin{gathered} E_{p} \\ \times 100 . \end{gathered}$	高
Air	0.6	. 3765	I	Air	76.	0.3671	3
"	1.6	.3703	I		257.	0.3695	3
"	7.6	. 3665	I	Hydrogen.	76.	0.36613	3
"	10.0	. 3663	1	" .	254.	0.36616	3
"	26.0	. 3660	1	Carbon dioxide	76.	0.3710	3
" . . .	37.6	. 3662	1	"	252.	0.3845	3
" . . .	75.0	. 3665	1	" " $0^{\circ}-64^{\circ}$	17.1 atm .	0.5136	6
"	$76-83$. 3670	2*	" " $64^{\circ}-100^{\circ}$	17.1 "	0.4747	6
"	11-15	. 364 S	3	" " $0^{\circ}-7.5^{\circ}$	2.4 .81 "	0.7000	6
"	17-2.4	.3651	3	" " $0^{\circ}-64^{\circ}$	24.81 "	0.6204	6
" . . .	37-51	. 3658	3	" "64 ${ }^{\circ}-100^{\circ}$	24.81 "	0.5435	6
" . . .	76	. 3665	3	" " $0^{0}-7.5^{\circ}$	34.49"	1.0970	6
" . . .	200	. 3690	3	" " $0^{\circ}-64^{\circ}$	34.49 "	0.8450	6
" . . .	2000	. 3857	3	" " $0^{\circ}-100^{\circ}$	34.49 "	0.6574	6
" . . .	10000	. 4100	3	Carbon monoxide	76.	0.3669	3
" . . .	76	. 3669	3*	Nitrous oxide.	76.	0.3719	3
" . . .	76	. 3671	4	Stuphur dioxide	76.	0.3903	3
" . .	1 atm .	. 3670	5*		98.	0.39 So	3
Carbon dioxide	1 "	. 3706	5	Water rapor, $0^{\circ}-119^{\circ}$	1 atm .	0.4187	7
" "	1 "	. 3726	1	" " $0^{\circ}-141^{\circ}$	1 "	0.4189	7
- " .	76-104	. 3686	3	" " ${ }^{\circ} 0^{\circ}-162^{\circ}$	I "	0.4071	7
"	174-234	. 3752	3	" " $0^{\circ}-200^{\circ}$	1 "	0.3938	7
" $0 \cdot$	793	. 4252	3	" " $0^{\circ}-247^{\circ}$	1 "	0.3799	7
" " $0^{\circ}-64^{\circ}$.	16.4 atm .	. 4754	6				
" 3 " $64^{\circ}-100^{\circ}$	16.4 25.57	.4007 .5728	6	Autho	Rities.		
" " $6.4^{\circ}-100^{\circ}$	25.87 "	. 5406	6				
" " $0^{\circ}-64^{\circ}$.	33.53 "	. 6973	6	1 Melander.	5 Jolly.		
" " $64^{\circ}-100^{\circ}$	33.53 "	.633.4	6	2 Magnus.	6 Andre		
Carbon monoxide	1 "	. 3667	3	3 Regnault.	7 Hirn .		
Hydrogen .	I "،	.3669 .3656	3 5	4 Rowland.			
Nitrogen .		. 3608	3				
Nitrous oxide		-3676	3				
Oxar "	1 "،	- 3707	5				
Oxygen Sulphur dioxide, SO_{2}	1 "	-3674	5				
Sulphur dioxide, SO_{2}.	"	-38.45	5				

[^62]Smithsonian Tables.

Table 226.

DYNAMICAL EQUIVALENT OF THE THERMAL UNIT.

Rowland in his paper quoted in 'Table 227 has given an elaborabe discussion of Joule's defermimanions and ble corrections required to reduce them formperatures as measured by the arr thermometer. 'Ifle fullumang table enth-
 variation for change of temperature in Ruwland's result is due to the variation with temperature of the spectic luat of water.

Date.	Method of experiment.	$\begin{aligned} & \text { Tump. } \\ & \text { of } \\ & \text { water } \\ & \text { C. } \end{aligned}$	Joule's value.	Joule"s value reducerd bo ar thermometer and latitule of Hallimore		Row. land's value.	$J-R$.	$\begin{aligned} & = \\ & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
				Eng. units.	Met. units.			
18_{47}	Friction of water .	15	$7{ }^{\text {7 }} 1.5$	7S7.0	+42.S	$427 \cdot 4$	+15.4	\bigcirc
1850	" ، "	14	772.7	778.0	426.5	427.7	-0.9	10
1850	" " mercury	9	772.8	779.2	427.5	$4=S . S$	-1.3	2
1850	" " "	9	775.4	781.4	428.7	42S.5	-0.1	2
IS50	" " iron	9	776.0	7S2.2	429.1	428.8	+0.3	1
1850	" " "	9	773.9	${ }_{7} \mathrm{SO} .2$	$42 S .0$	$42 S .5$	-0.5	1
1567	Electric heating . .	18.6	-	-	42 S .0	426.7	+1.3	3
$\mathrm{IS7}_{7} \mathrm{~S}$	Friction of water	14.7	772.7	776.1	425.5	427.6	-1.S	2
IS78	" " "	12.7	774.6	778.5	427.1	423.0	-0.9	3
${ }_{1878}$	" ، ،	I 5.5	773.1	776.4	426.0	427.3	-1.3	5
1878	" " "	14.5	767.0	770.5	422.7	427.5	-4.8	1
${ }_{18} 88$	" " "	17.3	774.0	777.0	426.3	426.9	-0.6	1

From the above valnes and weights Rowland concludes as the most probable value from Joulc's experiments, at the temperature $1.4 .6^{\circ} \mathrm{C}$. and the latitude of Baltimore, 426.75 . and from his own experiments 427.52

The mean of these results is 427.13 in metric units, or 778.6 in British units. Correcting back for latitude, and to mercury thermometer, this gives about $77 \% \cdot 5$ for the latitude of Manchester, instead of 772 , as has been commonly used.
An elaborate determination recently made by Griffith and referred to in Table 227 gives a value about one tenth of one per cent higher than Rowland's. Probably when a mercury thermometer is involved in the measurements we may take 776 as the nearest whole number in foot-pounds and British thermal units for the latitude of Manchester, and 777 for that of lialtimore. The corresponding values in the metric system will be $425 . \mathrm{S}$ and 426.3 , or in round numbers 426 for both latitudes.

The following quantities shonld be added to the equivalent of lBaltimore to give the equivalent at the latitude named: -

Latitude	0	10°	20^{3}	30°	40°	50^{5}	60°	70°	80°	90^{3}
Kilogramme-metres	S9	0.82	0.63	0.3 .4	0.08	-0.41	-0.77	-1.06	-1.26	-1.33
Foot-pounds .	62	1.50	1.15	0.62	0.15	-0.75	-1	-1.93	-2.30	-2.43

MECHANICAL EQUIVALENT OF HEAT.

The following historical table of the principal experimental determinations of the mechanical equivalent of the unit of heat has been, with the exception of the few determinations bearing dates later than is79, taken from Kowland.* The differene determinathons are divided into four groups, according to the method used. Calculations based on the constants of gases and vapors as determined by others are not included in this table.

Method.	Observer.	Date.	Result.
Compression of air	Joule ${ }^{1}$	1845	443.8
Expansion ". "	Joulc ${ }^{1}$	1845	437.8
Lxperiments on steam engine .	$11 \mathrm{irn}{ }^{2}$	1857	413.0
	Ifirn ${ }^{2}$	1860-1	$420-432$
Expansion and contraction of metals			443.6
	Edlund ${ }^{3}$	1865	430.1
" " ${ }^{\text {a }}$	Haga ${ }^{4}$	$1 S_{1}$	437.5
Measurement of the specific volume of vapor			428.1
	Perot ${ }^{5}$	ISS6	424.3
Boring of cannon	Rumford ${ }^{6}$	1799	$940 \mathrm{ft.-lbs}$.
Friction of water in tubes	Joulc ${ }^{7}$	1543	424.6
" " " " calorimeter	Joulc ${ }^{1}$	1845	$4 \mathrm{SS}$.
" " " " .	Joule ${ }^{8}$	1847	42 S. 9
" " " " . . .	Joule ${ }^{9}$	$1 S_{50}$	423.9
" " mercury in	Joule ${ }^{9}$	1550	424.7
" "plates of iron	Joule ${ }^{\text {a }}$	1850	425.2
" " metals	Hirn ${ }^{-}$	1857	371.6
" " " in mercury calorimeter.	Favre ${ }^{19}$	155	413.2
Poring " " .	Tirn ${ }^{2}$	185	400-450
Water in bulance à frottement	Hirn ${ }^{2}$	1860 180	425.0
Flow of liquids under strong pressure	Hirn ${ }^{2}$	I 860 -	432.0
Crushing of lead . .	Hirn ${ }^{2}$	1860-1	425.0
Friction of metals . . .	Puhij ${ }^{11}$	1876	426.6
Friction of water in calorimeter	Joule ${ }^{12}$	1878	423.9
" " ، " ،	Rowland ${ }^{13}$	1879	426.3
" metals	Sahulka ${ }^{\text {It }}$	I 890	427.5
Heating by magneto-clectric currents Ileat gencrated in a disc between the poles of a magnet	Joule ${ }^{7}$	${ }_{1} S_{43}$	460.0
		¢	435.2 434.9
	Viollc ${ }^{15}$	1870	434.9
			437.4
Flow of mercury under pressure Heat developed in wire of known abso- $\{$ lute resistance	Qartoli ${ }^{16}$	ISSo	$42 \mathrm{S.4}$
	Quintus Icilius, ${ }^{17}$ also Weber	\} 1857	399.7
Heat developed in wire of known abso- $\{$ lute resistance	Lenz Weber	\} 1859 \{	$\begin{aligned} & 396.4 \\ & 478.2 \end{aligned}$
Ileat dereloped in wire of known absolute resistance	Joule ${ }^{18}$	1867	470.2 429.5
Ileat developed in wire of known absolute resistance	H. F. Weber ${ }^{19}$	1877	42 S.15
Ileat developed in wirc of known absolute resistance lleat developed in wire of known absolute resistance	Welster ${ }^{20}$	IS85 \{	414.0 ergs per gramme degree.
	Dicterici ${ }^{21}$	1888	42.4 .36
References.			
See opposite page.			

*"Proc. Am. Acad. Arts and Sci." vol. 15.

Smithsonian Tableb.

MECHANICAL EQUIVALENT OF HEAT.

Method. Observer.	D.ate.	kesult.
Diminishing the heat contained in a battery when the current produces work Diminishing the heat contained in a battery when the current produces work Heat due to electrical current, electro-chemical equivalent of water $=.009379$, absolute resistance, electro-motive force of Daniell cell, heat developed by action of zine on sulphate of copper Heat developed in Daniell cell . Electromotise force of Daniell cell Combination of electrical heating and mechanical action by stirring water Referlinces. 1 Joule, "Phil. Mag." (3) vol. 26. z Hirn, "Théorie Méc. de la Chaleur," sér. I, 3me éd. 3 Edlund, "Pogg. Ann." vol. 14. 4 Haga, "Wied. Ann." vol. 15. 5 Perot, "Compt. Rend." vol. 102. 6 Rumford, "Phil. Trans. Roy. Soc." 1798 ; Favre, "Compt 7 Joule, "Phil. Mag." (3) vol. 23. 8 Joule, " " " " 27 . 9 Joule, "، " " 3 r. 10 Favre, "Compt. Rend." 1858 ; "Phil. Mag." (4) vol. 15. II Puluj, " Pogg. Anu." vol. I 57. 12 Joule, " lroc. Roy. Soc." vol. 27. 13 Rowland, "Proc. Am. Acad. Arts \& Sci." vols. I 5 \& 16. 14 Sahulka, "Wied. Ann." vol. 4 r. 15 Violle, "Ann. de Chim." (4) vol. 22. 16 Bartoli, "Mem. Acc. Lincei," (3) vol. S. 17 Quintus Icilius, "Pogg. Ann." vol. 101. IS Joule, "Rep. Com. on Elec. Stanc.,"" "B. A. Proc." IS67. 19 H. F. Weber, "Phil. Mag." (5) vol. 5. 20 Webster, "Proc. Am. Acad. Arts \& Sci." vol. 20. 2 I Dieterici, " Wied. Ann." vol. 33. 22 Farre, "Compt. Rend." vol. 47. 23 Boscha, "Pogg. Ann." vol. ro8. ${ }_{24}$ Griffiths, "Phil. Trans. Roy. Soc." 1 S93. 2	1843 1850° 1857 1559 1893 Rend."	$+99.0$ 433.0 432.1 419.5 425.0

SPECIFIC HEAT.

Specific Heat of Water.

The specific heat of water is a matter of considerable importance in many physical measurements, and it has been the subject of a number of experimental investigations, which unfortunately have led to very discordant results. Kegnault's measurements, published in is 47 , * show an increase of specific heat with rise of temperature. His results are approximately expressed by the equation

$$
c=1+.0004 t+0000009 t^{2}
$$

which makes the specific heat nearly constant within the atmospheric range. A different equation was found from Regnault's results by lioscha, who thought the temperatures required correction to the air-thermometer. Regnault, however, pointed out that the results had already been corrected. Jamin and Amaury \dagger found, for a range from 9° to $76^{\circ} \mathrm{C}$., the equation

$$
c=\mathrm{I}+.001 \mathrm{I} t+.00000 \mathrm{I} 2 t^{3},
$$

which nearly all the evidence available shows to be very much too rapid a change. Willner gives, for some experiments of Munchhausen, \ddagger the equation

$$
\begin{gathered}
c=\mathrm{I}+.00030102 t \\
c=\mathrm{I}+.000425 t
\end{gathered}
$$

in vol. IO, for a range of temperature from 17° to 64°. In 1879 , experiments are recorded by Stamo. § by Henrichsen, \| and by Baumgarten, ${ }^{\circ}$ all of them giving large variation with temperature.

111 1879, Rowland inferred from his experiments on the mechanical equivalent of heat that the specific heat of water really jasses through a minimum at about 30°. and he attempted to verify this by direct experiment. The results obtained by direct experiments were not by any means so satisfactory as thuse obtained from the friction experiment; but they also indicated that the specific heat passed through a mimimum, - but, in this case, at about $20^{\circ} \mathrm{C}$. Further, direct experiments were made in 1883, in Rowland's laboratory, by Liebig, using the same calorimetric apparatus; and these experiments also show a minimum at about $20^{\circ} \mathrm{C}$. ${ }^{\circ}$ Since the publication of Rowland's paper a number of new determinations have been made. Gerosa gave, in ISSr, a series of equations which show a maximum at $4^{\circ} \cdot 4$, then a minimum a little above 5° and afterwards a rise to 24° ! Neesen ${ }^{* *}$ found a minimum near 30°, but got rather less variation than Kowland. Kapp, t† taking the mean specific heat between 0° and 100° as unity, gives the equation

$$
c=1.039925-.007068 t+.00021255 t^{2}-.000001584 t^{3}
$$

which gives a minimum between 20° and 30° and a maximum about 70°. Volten $+\ddagger$ gives an equation which is even more extraordinary with regard to coefficients than the last, namely,

$$
c=1
$$

which puts the minimum between 40° and 50°, and gives a maximum at 100°; which maximum is, however, less than unity. Dieterici, in his paper on the mechanical equivalent of heat, discusses this subject; but his own results being in close agreement with Rowland's, his table practically only extends Kowland's results through a greater range of temperature, assuming straightline variation to the two sides of the minimmm. Bartoli and Stracciati $\$ \S$ found a minimum at about 30° : while Johanson in the same year gives a minimum at about 4° and then a rise about 12 times as rapid as that of Regnault. Griffiths $\mid \|$ finds the equation

$$
c=1-.0002666(t-15)
$$

to satisfy his experiments through the range from 15° to 26°. This agrees fairly well with Rowland through the same range, and indicates that the minimum is at a temperature higher than $20{ }^{2}$.

The following table gives the results of Rowland, Hartoli and Stracciati, and Griffiths. The column headed "Rowland" has been calculated from kowland's values of the mechanical equivalent of heat at different temperatures, on the assumption that the specific heat at 15° is equal to unity.

```
    - "Wém. de l'Acad." vol. 2r.
    \ddagger "Wied. Ann.", vols. I and ro.
    i1 "Wied. Ann." vol.&.
    * Rowland, "Proc. Am. Acad." vol. 15, and Liebig, "Am. Jour. of Sci." vol. 26.
    - "\vied. Ann." vol. 18, aS83.
    t+ "l\iss. Ziirich."" (%,
$§ "Wied. leib." vol. 15, r89s. ||| "Phil. Trans." I893.
\ddagger\ddagger "Wied. Ann." vol. 21, 1884.
```

Smithsonian Tables.

TABLE 228．－Specific Hoat of Water．

Temp.$\mathrm{C} .$	Rowland．	Bartoli and Stracciati．	（iriffitis．	7＂emp． C．	Rowland．	Ibartuli amd Stractati。	Griffilis．	1）ietrich．	
								1．13！ （	$\begin{gathered} \text { Hinc if } \\ \text { herab. } \end{gathered}$
0°	1.0075^{*}	1.0006	－	10°	0.09 S	0.9095	$0.0 n \mathrm{n}$	0	1.0000
I	1.0070%	1.0060	－	20	0.9 ¢So	0.9095	$0 . r$ ¢isio	10	$0.141+3$
2	． $1.0005^{* *}$	1.0054	－	21	0.9976	$0.9(x) 5$	－0．04S	$こ 0$	0．介）ハ」
3	1．006\％＊	1．00．49	－	22	0.09973	0.706	－0．yが「	30	－ハがこ
4	1.0055^{*}	1．004，	－	23	0.0071	－0．yy）	0.64570	10	0.14 .31
5	1．0050	1.0036	－	24	0.7968	$0.999{ }^{\text {a }}$	$0.14) 70$	50	－¢ットリ
6	1.0045	1.003 ？	－	25	0.9097	1.0001	0.91473	（o）	1.0057
7	1.0040	1.0025	－	26	0.9095	1.0003	0.9971	70	1.0120
S	1.0034	1.0023	－	27	0.9964	1.0006	0.9967	S＇o	1．01S2
9	1.0029	1.0019	－	23	0.9963	1.0010	－	（1）	1.02 .4
10	$1.00=4$	1.0015	－	29	0.9962	1.0014	－	100	1.0300
I I	1.0019	1.0011	－	30	0.9962	1.0019	－	－	
12	1．0014	1.0008	－	3 I	0.9963	1.0024	－	－	－
13	1.0009	1.0005	－	32	0.9963	－	－	－	－
14	1.0005	1.0002	－	33	0.9964	－	－	－	－
15	1.0000	1.0000	1.0000	34	0.9965	－	－	－	－
16	0.9996	0.9708	0.9997	35	0.9966	－	－	－	－
17	0.9991	0.9997	0.9995	36	0.9967	－	－	－	－
IS	0.9987	0.9936	0．9992						

TABLE 229．－Specific Heat of Alr．
The ratio of the specific heat at constant pressure to the specific heat at constant wolume has been the subject of much investigation，and more particularly so in the case of atmospheric air，on account of its interest in comection with the velocity of sumd．The following table gives the results of the principal direct determinations of this ratiofor air．It may be remarked that the methods most commonly employed have been modifications of that empleved by Clement and Desormes，and that the chances of error towards too small a ratio by this method are considerable．

Date．	Ratio．	Experimenters．	Some of these results are clearly too low ；
ISI2	1.354	Clement and I esormes．	and hence neglecting all those that fall be－
－	1.374	Cily Lussac and W＇elter．	remainder we obtain，with a somenh hat larec
－	1.249	lelaroche and Berard．	remamder we obtam，with a sometr hat large
IS53	1.121	Filve and Silbermann．	The values obtained indirectly from the
185	1.4196	Masson．	The values obtained indirectly from the
I． 859	1.1025	Weisbach．	relocity of sound are undoultedty mach
1801	1． 3 ¢ 45	Hirn．	more accurate，juctiged either hy the greater
1.662	1.11	Cazin，	ease of the experiment or ly the lietter
1863	I． 3.99	1）upre．	agreement of the results．Aswming that
1564	1.11 1.3109	Tram and Richards．	the value 332 metres per second is good for
1869	1．，${ }^{\text {O2 }}$	K゙っhlrausch．	the relocity of sound，the ratio of the specitic
1573	1.4053	liöntgen．	heats must be near to $1 . . f$ ofig．Irobably
1874 1883	I． 397 1.4062	Amigat． Muiller．	I fors may be taken as fairly representing
$\begin{aligned} & 1883 \\ & 1887 \end{aligned}$	$\begin{aligned} & 1.4062 \\ & 1.384 \end{aligned}$	Muller． Lummer．	present knowledge of the subject．

[^63]Note．－For specific heats of metals，solids and liquids，see pp． 29410296.

SPECIFIC HEAT.
Specific Heat of Gases and Vapors.

Substance.	Range of temp..	$\begin{gathered} \text { Sp. ht. } \\ \text { pressure } \\ \text { constant. } \end{gathered}$	Authority.	$\begin{gathered} \text { Mean } \\ \text { ratio of } \\ \text { Sp. his. } \end{gathered}$	Authority.	
Acctone	26-110	0.3468	Wiedemann	-	-	
"	27-179	0.3740	Wiod	-	-	
" . . .	129-233	0.4125	Regnault	-	-	
Air	$-30 \text { to }+10$	0.23771		-	-	
"	0-100 $0-200$	0.23741 0.23751	"	-	-	
" . .	20-100	0.23751 0.2359	Wiedemann	-	-	
" . . .	mean	0.23788	-	1.4066	Various	0.1691
Alcohol, ethyl	108-220	0.4534	Regnault	1.136	\{ Jaegcr	0.3995
" methyl	101-223	0.4550	,	,	(Neyreneuf	
Ammonia .	23-100	0.5202	Wiedemann	-	-	
"	27-200	0.5356	"	-	-	
"	24^{-216}	0.5125	Regnault	-		
" .	mean	0.5228	-	I. 31	\{ Cazin \{ Wiulner	- 3999
Benzene .	34^{-115}	0.2990	Wiedcmann	-	IWumer	
" . . .	35-180	0.3325	"	-	-	
	${ }_{116-218}$	- 0.3754	Regnault	-	-	
Bromine	S3-228 $10-388$	0.0555 0.055 0	Strecker	- ${ }_{1.293}$		
Carbon dioxide	- 25 to +7	0.0553 0.1843	Strecker Regnault	$\stackrel{1.293}{-}$	Strecker	0.0428
	15-100	0.2025		-		
" "	$11 \mathrm{~L}-214$	0.2169	"	-	-	
" " .	mean	0.2	-	1.300	$\left\{\begin{array}{l}\text { Röntgen } \\ \text { Wiillner }\end{array}\right.$	0.1548
Carbon monoxide .	-99	0.2425	Wiedemann	-	,	
" "	26-198	0.2426	"	1.403	f Cazin Wiilher	0.1729
Carbon disulphide .	86-190	0.1596	Regnault	1.200	Beyne	0.1330
Chlorine :	13-202	0.1210	"			
Chloroform	$16-343$ $27-115$	0.1125 0.1441	Strecker Wiedemann	1.323	Stricker	0.0850
" .	28-189	0.148	,	1.106	\{ Beyme	
Ether	69-224		Regnault	-	-	
,	$27-189$	0.4615	Wiedemann	-	-	
	25-111	0.4230		-	-	
" ${ }^{\text {a }}$	mean	0.4565	-	1.029	Miiller	0.4436
Hydrochloric acid	22-214	0.1852	Regnault	-		
	13-100	0.1940	Strecker	I. 395	Strecker	0.1391
Hydrogen	- 28 to +9	3.3996	Regnault	-	-	
" . .	12-199	3.4090		-	-	
" ${ }^{\text {a }}$	21-100	3.4100	Wjedemann	-	,	
" sulphide $\left(\mathrm{H}_{2} \dot{\mathrm{~S}}\right)$	mean	3.4062		1.410	Cazin	0.2419
Methane sulphide ($\mathrm{H}_{2} \mathrm{~S}$)	$20-206$ $18-208$	0.2451	Regnault	1.276	Miuller	O. 1925
Nitrogen	0-200	0.243^{8}	"	1.410	Cazin	-0.1729
Nitric oxide (NO)	13-172	0.2317	"			
Nitrogen tetroxide (NO_{2})	$27-67$	1.625	$)$ Berthelot	-	-	
" "،	27-150	1.115	Sancl	-	-	
" "	27-2SO	0.650	Ogier	-	-	
Nitrous oxide	16-207	0.2262	Regnault	-	-	
"	26-103	0.2126	Wiedemann	-	-	
" "	${ }_{\text {27-200 }}^{\text {mean }}$	0.2241 0.2214		-	Wiilner	
Sulphur dioxide (SO_{2})	16-202		Regna	1.26	\{ Cazin $\}$	
Water	12S-217	0.450		-	-	
" . .	100-125	0.3787	Macfarlane			
" . . .	can	0.4296		1.300	Various	0.3305

TABLE 231. - Vapor Prossuro of Ethyl Alcohol.*

$\begin{gathered} \dot{U} \\ \dot{\text { E}} \\ \stackrel{y}{5} \end{gathered}$	0°	$1{ }^{\circ}$	2	3	4	5	6	7	8	9
	Vapor pressure in millimetres of mercury alo C.									
0°	12.24	I 3.18	14.15	15.16	16.21	17.31	18.46	19.65	20.9 .5	22.34
10	23.75	25.31	27.94	25.67	30.50	32..14	34.49	$3{ }^{3} 0.67$	35.97	11.40
20	44.00	46.66	49.47	5-44	55.56	58.56	62.33	65.97	9. 50	73.83
30	7S.06	S2.50	S7.17	92.07	97.21	102.60	103.24	11.4 .15	I 20.35	126.56
40	133.70	140.75	I. 4 S. 10	155.80	163.80	172.20	I81.00	190.10	199.65	209.6
	220.00	230.50	242.50	253.80	265.90	278.60	291.85	305.65	319.95	334.85
60	350.30	366.40	353.10	400.40	415.35	437.00	456.35	476.45	497.25	518.85
70	5+1.20	$56+35$	585.35	613.20	638.95	665.55	693.10	721.55	751.00	781.45

From the formula $\log p=a+b a^{*}+c \beta^{\prime}$ Ramsay and Voung obtain the following numbers. \dagger

	0^{3}	10°	20°	30°	40°	50°	60°	70°	80°	90
	Vapor pressure in millimetres of mercury at $0^{\circ} \mathrm{C}$.									
$\begin{gathered} 0^{\circ} \\ 100 \\ 200 \end{gathered}$	$\begin{aligned} & 12.24 \\ & 1692.3 \\ & 22182 . \end{aligned}$	$\begin{gathered} 23.73 \\ 2359.8 \\ 26325 . \end{gathered}$	$\begin{gathered} 43.97 \\ 3223.0 \\ 32196 . \end{gathered}$	$\begin{gathered} 78.11 \\ 4318.7 \\ 38389 . \end{gathered}$	$\begin{aligned} & 133.42 \\ & 5686.6 \\ & 45519 . \end{aligned}$	$\begin{gathered} 219.82 \\ 7368.7 \end{gathered}$	$\begin{array}{r} 350.21 \\ 9409.9 \end{array}$	$\begin{aligned} & 5+0.91 \\ & 1.853 . \end{aligned}$	$\begin{gathered} S_{17} 11 . S_{1} \\ l_{4} . \end{gathered}$	$\begin{aligned} & \text { IIS6. } 5 \\ & \text { ISIS5. } \end{aligned}$

TABLE 232. - Vapor Pressure of Methyl Alcohol. \ddagger

	0^{3}	$1{ }^{\circ}$	$2{ }^{3}$	$3{ }^{3}$	4°	5^{3}	6°	$7{ }^{3}$	8	9
	Vapor pressure in millimetres of mercury at $0^{\circ} \mathrm{C}$.									
0^{3}	29.97	31.6	33.6	35.6	37.8	40.2	42.6	45:2	47.0	50.8
10	53.8	57.0	60.3	63.8	67.5	71.4	$75 \cdot 5$	79.8	S4.3	59.0
20	94.0		104.7	110.4	116.5	122.7	I 29.3	136.2	143.4	151.0
30	I 5 S.9	167.1	175.7	$18_{4} .7$	194. 1	203.9	214.1	22.4 .7	235.8	247.4
40	259.4	271.9	255.0	29.5	312.6	327.3	342.5	35S.3	374.7	391.7
	409.4	427.7	446.6	466.3	486.6	507.7	529.5	552.0	$575 \cdot 3$	599.4
60	624.3	650.0	676.5	703.5	732.0	761.1	791.1	S22.0	5-	-

[^64]Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0^{3}	1	2	3°	$4{ }^{\circ}$	$5{ }^{\circ}$	6	7	8°	9°
(a) Carion Disulimide.										
0	127.90	133.55	140.05	146.45	153.10	160.00	167.15	174.60	18.25	190.20
10	105.45	207.00	215.80	224.95	23.4 .40	24.15	$25+25$	264.65	275.40	286.55
20	298.05	300.90	32-.10	334.70	347.70	361.10	374.95	380.20	103.90	419.00
30	+34.60	$+50.65$	467.15	48.45	501.65	519.65	538.15	557.15	576.75	596.5
40	617.50	638.70	660.50	682.90	705.90	729.50	753.75	775.60	504.10	830.25
(b) Chiorobenzene.										
20°	8.65	9.14	9.66	10.21	10.79	11.40	12.04	12.71		14.17
30	14.95	15.77	16.63	17.53	18.47	19.45	20.48	21.56	22.69	23.57
40	25.10	26.38	27.72	29.12	30.58	32.10	33.69			
50	40.75	42.69	44.72	46.84	49.05	51.35	53.74	56.22	5S. 79	61.45
60	64.20	67.06	70.03	73.11	76.30	79.60	$\bigcirc 3.02$	S6.56	90.22	94.00
70	97.90	101.95	106.10	110.41	114.85	119.45	12.4 .00	129.10	$13+15$	139.40
So	14.80	150.30	156.05	161.95	168.00	174.25	181.70	187.30	$19+10$	201.15
90	208.35	215.50	223.45	231.30	239.35	247.70	256.20	265.00	27. 4.00	283.25
100	292.75	302.50	312.50	322.50	333.35	344.15	355.25	366.65	3.8 .30	390.25
110	402.55	415.10	427.95	441.15		468.50	482.65	497.20	512.05	527.25
120	542.80	55S.70	575.05	591.70	608.75	626.15	643.95	662.15	650.75	699.65
130	718.95	738.65	758.80		-	-		-		-
(c) Bromobenzene.										
40°	-	-	-	-	-	12.40	13.06	13.75	14.47	15.22
50	16.00	16.52	17.68	18.58	19.52	20.50	21.52	22.59	23.71	24.88
60	26.10	27.36	28.68	30.06	31.50	33.00	34.56	36.18	37.86	39.60
70	+1.40	43.28	45.24	47.28	49.40	51.60	53.88	56.25	51.71	61.26
So	63.90	66.64	69.48	7242	75.46	78.60	81.84	85.20	88.68	92.28
90	96.00	99.84	103.50	107.85	112.08	116.40	120.86	125.46	130.20	135.08
100	140.10	145.26	150.57	156.03	161.64	167.40	$173 \cdot 32$	179.41	185.67	192.10
110	195.70	205.48	212.44	219.58	226.90	234.40	242.10	250.00	258.10	266.40
120	274.00	283.65	292.60	301.75	311.15	320.80	330.70	340.50	351.15	361.80
130	372.65	383.75	395.10	. 106.70	418.60	430.75	443.20	+55.90 509.65	468.90	4S2.20
140	+95.80	509.70	523.90	538.40	553.20	568.35	583.85	599.65	615.75	632.25
150	649.05	666.25	65_{3}. 50	701.65	719.95	73 S. 55	$757 \cdot 55$	776.95	796.70	816.90
(d) Aniline.										
80°	18.80	19.78		21.83		24.00			27.54	
90	30.10	31.44	32.83	3.4 .27	35.76	37.30	3 38.90	40.56	42.28	44.06
100	45.90	47.So	49.78	51.84	53.98	56.20	58.50	60.88	63.34	65.85
110	(S.50	71.22	74.04	76.96	79.98	83.10	56.32	89.66	93.12	96.70
120	100.10	10.4.22	108.17	112.25	116.46	120.50	125.28	129.91	134. 69	139.62
130	1.41 .70	149.94	155.34	160.90	166.62	172.50	178.56	184.80	191.22	197.82
140	20.40	211.58	218.76	226.14	233.72	241.50	249.50	257.72	266.16	274.82
150	$2 \mathrm{~S}_{3} .70$	292.80		311.75	321.60	331.70		352.65		374.60
160	356.00	397.65	409.60	421.80	$43+30$	447.10	460.20	473.60	487.25	501.25
170 180	515.60 615.15	530.20 695.30	5+5.20	560.45	576.10	592.05	60S. 35	625.05	642.05	659.45
$1{ }^{\text {So }}$	677.15	695.30	713.75	732.65	751.90	771.50	-	-	-	-

*These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

[^65]Mothyl Sallcylato，Bromonaphthaline，and Morcury

$\begin{aligned} & \text { Temp. } \\ & \text { Col } \end{aligned}$	0	13	2	3	4	6^{3}	6^{\prime}	7	8	9
70^{3}	2.40	2.55	2.77	2.97	3.18	$3 \cdot 40$	3．62	3.95	4．99）	4.31
So	4.60	4.57	5.15	5．1．4	$5 \cdot 74$	4.05	6． 37	6.70	7.05	7.1
90	7.50	S． 20	8.6	9.60	9．5＝	0.95	10.41	10.95	13.15	1203
100	12.60	13.20	13.82	1.4 .47	15.15	15.85	16．5．8	17.31	18．13	14.65
110	19. ®o	20.65	21.60	22.55	23.53	24.55	25.61	20.71	27.35	20．0；
120	30.25	31.52	32.84	$3 \cdot 4.21$	35.63	37.10	3 3－17	40.10	11．8． 1	＋3．54
130	45.30	47．12	－19．01	50.96	52．97	55.05	57． 20	$55^{1 \cdot 13}$	$1,1.73$	41.10
140	66.55	69.05	71.69	74.35	77.15	So．00	82．94	－5．97	Sy，Oy	リ2． 30
150	95.60	99.00	102.50	106．10	109.15	113.60	117.51			
160	$13+25$	135.72	$143 \cdot 31$	148.03	152． 58	$15 \% .55$	162.95	165．19	173.56	171）．06
170	184\％O	190.45	196.41	202．．19	208.72	215.10	221.05	22 S .30	$=35.15$	2.42 .15
150	$=49.35$	256.70	264.20	271.90	こ：9．75	2S7．So	296100	30．4．15	313.05	321.55
190	330.55	340.05	$3+9.45$	350.05	365.55	378.90	389.15	399.60	＋10．30	＋21．20
200	432.35	＋43．75	453.35	＋167．25	479.35	491.70	504.35	517.25	530.10	51350
210	557.50	571.45	585.70	600.25	615.05	630.15	$645 \cdot 55$	661.25	077.25	693.10
220	710.10	727.05	74＋35	761.90	779.85	798.10				

（f）Bromunabuthabine．

110°	3.60	3.74	3．59	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	$5 \cdot 45$	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	S．12
130	8.50	8.59	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
1.40	13.15	13.72	14.31	14.92	15.55	16.20	16.57	17．56	1S．2S	$1{ }^{1} .03$
150	19.50	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.53	27.83
160	25.55	29.90	30.98	32.09	33.23	34.40	35.6	36.8 .3	3 3．10	3011
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52．96	$5: .65$
rSo	56.45	58.27	60.14	62.04	6.06	66.10	68．19	70.34	7255	－4in＝
190	77.15	79.54	81.99	S．4．5I	87.10	80．75	92．47	95.26	g6．12	101.05
200	104.05	107．12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	131．57
210	${ }_{13}{ }^{3} .40$	$1+2.30$	146.29	150.35	154.57	158.85	163.25	167.70	$17 \pm .30$	$17 \% 1.15$
220	1 1 1.75	186.65	101.65	196.75	202.00	207．35	212.10	215.40	22.1 .15	$=30.00$
230	$=35.95$	2.42 .05	248.30	$25+65$	261.20	267.55	274.65	2ら1．60	2 S 3.70	－ 5.5 .55
240	$303 \cdot 35$	310.90	318.65	$3=6.50$	33＊ 55	342.75	351.10	359.65	365.40	357.30
250	356.35	395.60	405.05	f14．65	424.45	434.45	＋4．4．65	455．00	46	151． 15
260	457.35	498.55	509.90	521．50	53.335	545.35	557.60	$5: 0.05$	5Sこ－0	515.100
2， 0	608．75	622．10	635.70	640.50	663.55	677.85	692.40	707.15	7ニ2．15	$737 \cdot 15$

（g）Mercury．

270^{2}	123.92	126.97	r 30．0．S	133.26	136.50	130.81	1．4．3．15	18 ¢，（1）	150.12	$15.3 \% 0$
2So	157.35	161.07	נ 2.4 .6	168.73	172.67	1－6．79	1SO．SS	155.05	ISo． 30	10.36
290	195.04	202.53	20－． 10	211.76	216.50	221.33	$2=6.25$	231.25	230.34	2.41 .53
300	246.81	252．18	257.65	263.21	265.57	$2-4.63$	280.48	296.13	202.47	205.66
310	304.93	311.30	317.75	$3=4 \cdot 37$	331.08	337．59	3＋4．i1	－51．55	357.00	$3(x) 25$
320	373.67	$3^{51.18}$	358.81	30×6.56	40.4 .43	412.4	120．53	－パ゙心	4，37．22	145
330	454.41	463.20	472.12	481.19	$490 . .10$	409.74	507.22	こ心．ち5	5こS．03	
340	$5+8.64$	558.87	569.25	579.78	$590 \ldots$	601.33	612.34	023.51	63.4 .85	（．46．36
$\begin{array}{r} 350 \\ 360 \end{array}$	$\begin{aligned} & 658.03 \\ & 784.31 \end{aligned}$	669.56	6Sı．S6	694.04	706．40	718.94	731.65	7．44．54	757.61	770.57

Rowland has shown (Proc. Am. Acad. Sci. vol. 15) that, when 0° and 100° are chosen for fixed points, the relation between the readings of the air and the mercury in glass thermometers can be very nearly expressed by an equation of the form

$$
t=T-a t(100-t)(b-t)
$$

where t is the reading of the air thermometer and T that of the mercury one, a and b being constants. The smaller a is, the more nearly will the thermometers agree at all points, and there will be absolute agreement for $t=0$ or roo or b.
Regnatult found that a mercury thermometer of ordinary glass gave too high a reading between 0° and 100°, and too Tow a ruading between 100 and about 245°. As to some other thermometers experimented on by kegnanlt, litule is recorded of their performance between 0° and 100 , but all of them gave too high readings above 100°, indicating that below 100° the mercury thermoncter probably reads 100 low. Kegnault states this to be the case for a thermometer of Choisy le Roi crystal glass, and puts the maximum error at from one tenth to two tenths of a degree. Kegnault's comparisons of the air and mercury thermometers and a comparison by Kecknagel of a mercury thermometer of common glass with the air thermometer are compared with the above formula by Rowland. The tables are interesting as showing approximately the error to be expected in the use of a mercury thermometer and the magnitude of the constants a and b for different glasses. They are given in the following Table.
Regnault's results above 1o0 C. compared with the formula $t=T-a t(100-t)(b-t)$, give for the constants a and b the following values:

oi	32,	$b=0^{\circ}$.
Verre ordinaire . .	$a=0.00000034$,	$b=2_{4} 5^{\circ}$.
Verre vert	$a=0.000000095$,	$b=-270^{\circ}$.
Verre de Suède	$a=0.00000014$,	$b=10^{\circ}$.
Common glass (Recknagel)	$a=0.00000033$,	$b=290^{\circ}$.

(a) Temperatures between a° and $100^{\circ} \mathrm{C}$.

There are no observed results with which to compare the calculations for the Choisy le Roi thermometer through this range, and in the case of the verre ordinaire, the specimen for which the readings below noo ${ }^{\circ}$ are given was not the same as that used above 100 , from which the constants a and b werc calculated. Rowland shows that $a=0.00000044$ and $b=260$ give considerably better agrement.

Air thermometer.	Regnault's thermometers.				Recknagel's thermometer.		
	Choisy le Roi. Calculated.	Verre ordinaire.		Difference.	Observedi.	Calculated.	Difference.
		Observed.	Calculated.				
0	00.00	00.00	00.00	-	00.00	00.00	. 00
10	10.00	-	10.07	-	10.08	10.08	. 00
20	19.99	-	20.12	-	20.14	20.14	. 00
30	29.95	30.12	30.15	$+.03$	30.IS	30.15	. 00
40	30.97	40.23	40.17	-. 06	40.20	40.20	. 00
50	49.96	50.23	50.17	-. 06	50.20	50.20	. 00
60	59.95	60.24	60.15	-. 09	60.15	60.15	. 00
70	69.95	70.22	70.12	-. 10	70.14	70.15	$+.01$
80	79.96	S0.10	So.09	-.OI	So. 10	So.II	$+.01$
90	89.97	-	90.05	-	90.05	90.06	$+.01$
100	J00.00	100.00	100.00	-	100.00	100.00	+.0

(b) Temperatures above ioo ${ }^{\circ}$., Regnault's Thermometers.

Air ther.	Choisy le Roi.			Verre ordinaire.			Verre vert.			Verre de Suède.		
	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.
100	100.00	100.00	$+.00$	100.00	100.00	. 00	100.00	100.00	. 00	100.00	100.00	. 00
120	I 20.12	120.09	$+.03$	119.95	119.90	$+.05$	120.07	120.09	-.01	120.04	120.04	. 00
140	J 40.29	I 40.25	+.0.4	I 39.85	139.80	+. 05	1.40 .21	140.22	-. 01	140.11	140.10	+.01
160	160.52	I 60.49	$+.03$	159.74	159.72	+.02	160.40	I 60.39	+.01	160.20	160.21	-.01
1 So	1So.So	1So.S 3	-. 03	179.63	179.68	-. 05	I So. 60	180.62	$-.02$	I So. 33	ISo. 34	-.01
200	201.25	201.2	-. 03	199.70	199.69	+.01	200.So	200.89	-. 09	200.50	200.53	-. 03
220	221.82	221.86	-.0.4	219.80	219.78	+.02	221.20	221.23	-.03	220.75	220.75	-. 03
2.40	242.55	2.42 .56	-. 01	239.90	239.96	-. 06	241.60	241.63	$-.03$	2.41 .16	241.08	+.08
260	263.44	263.46	-. 02	260.20	260.21	-. 01	262.15	262.09	$+.07$			
2 So	28.4 .45	2S4.52	-. 0.4	280.58	280.00	-.02	$2 \mathrm{~S} 2 . \mathrm{S}_{5}$	282.63	$+.22$			
300	305.72	305.76	-. 0.4	301.08	301.12	-.04						
320	327.25	327.20	-. 05	321.80	$321 . \mathrm{So}$. 00						
340	349.30	3.48 .88	+.42	343.00	342.64	$+.36$						

* Misprinted [+] 270 in Rowland's paper.

Smithsonian Tableg.

COMPARISON OF THERMOMETERS.*
Chappius gives the following equations for compring glass thermometers:

$N=$ nitrogen ; $\ell=$ hydrogen $C O$, - carbon dioxide ; $m=$ mercury.
TABLE 235. - Hydrogen Thormomotor comparod with others.
This table gives the correction which added tu the themmmeter reading gives the temperature by the hydrogern thermonteter.

Temperature by hydrogen thermometer.	Chappius's experiments. \dagger			Marek's evperimed 14.\%				
	Mard French glass mercury thermometer.	Nitrogen thermomeler.	Carbon dioxide thermometer.	Mercury in glass.				
							Thuring	11 glass.
				glass.	iss.	glass.	1930-40.	
-20	+0.172	+0.014	+0.071					
-10	+0.073	+0.007	+0.032					
\bigcirc	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	-0.052	-0.006	-0.025	-0.044	-0.060	-0.056	-0.056	-0.072
20	-0.085	-0.010	-0.0.43	-0.073	-0.100	-0.091	-0.149	-0.125
30	-0.102	-0.011	-0.054	-0.091	-0.125	-0.109	-0.191	-0.159
40	-0.107	-0.011	-0.059	-0.005	-0.134	-0.111	-0.213	-0.175
50	-0.103	-0.009	-0.059	-0.096	-0.132	-0.103	-0.216	-0.1io
60	-0.090	-0.005	-0.053	-0.056	-0.118	-0.056	-0.201	-0.16S
70	-0.072	-0.001	-0.0.44	-0.070	-0.096	-0.064	-0.171	-0.143
So	-0.050	$+0.002$	-0.030	-0.050	-0.068	-0.041	-0.127	-0.106
90	-0.026	+0.003	-0.016	-0.026	-0.035	-0.018	-0.069	-0.05S
100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

TABLE 236. - Air Thermometer compared with others.
This table gives the correction which added to the thermometer reading gives the temperature by the air thermometer.

Temperature by air thermometer.	Mercury in Thuringian glass thermonseter (Grummach §).	Mercury in Jena glass thermometer (Wiebe and Böttcher il).	Temperature by air thermometer.	Mercury in Jena glass thermoneter (Wiebe and Bötcher 1).	Temperature by air thermonneter.	Baudin alcohol ilicrmometer (11 hile ').
$\begin{array}{r} -20 \\ -10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 54 \\ 60 \\ 70 \\ 73 \\ 80 \\ 82 \\ 90 \\ 100 \\ 110 \\ 120 \end{array}$	+0.03 +0.02 0.00 -0.03 -0.11 -0.12 -0.05 - -0.0 .4 - - -0.06 - -0.04 - - - -	$\begin{array}{r} +0.153 \\ +0.067 \\ 0.000 \\ -0.049 \\ -0.053 \\ -0.103 \\ -0.110 \\ -0.107 \\ - \\ -0.096 \\ -0.078 \\ - \\ -0.054 \\ - \\ -0.028 \\ -0.000 \\ -0.03 \\ -0.05 \end{array}$	$\begin{aligned} & 130 \\ & 1.40 \\ & 150 \\ & 160 \\ & 170 \\ & 150 \\ & 190 \\ & 200 \\ & 210 \\ & 220 \\ & 230 \\ & 240 \\ & 250 \\ & 260 \\ & 270 \\ & 250 \\ & 290 \\ & 300 \end{aligned}$	$\begin{aligned} & -0.07 \\ & -0.09 \\ & -0.10 \\ & -0.10 \\ & -0.08 \\ & -0.06 \\ & -0.02 \\ & +0.04 \\ & +0.11 \\ & +0.21 \\ & +0.32 \\ & +0.46 \\ & +0.63 \\ & +1.82 \\ & +1.30 \\ & +1.55 \\ & +1.91 \end{aligned}$	$\begin{array}{r} 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -25 \\ -30 \\ -35 \\ -40 \\ -45 \\ -50 \\ -55 \\ -60 \\ -65 \\ -70 \\ -80 \\ -90 \\ -100 \end{array}$	$\begin{aligned} & -0.000 \\ & -0.144 \\ & -0.352 \\ & -0.704 \\ & -1.100 \\ & -1.563 \\ & -2.082 \\ & -2.6 .45 \\ & -3.253 \\ & -3.557 \\ & -.4 .511 \\ & -5.206 \\ & -5.472 \\ & -0.531 \\ & -7.174 \\ & -5.371 \\ & -9.392 \\ & -10.103 \end{aligned}$

* These two tables are taken with some slight alteration from Landolt and Hoernstein's "Phys. Chem. "Iab."
P. Chappius, "Trav. et Mém. du Bur. internat. des Poids et Més." vol. 6, 1888.
\ddagger Marck, "Zeits. für Inst.-K." vol. ro, p. 28_{3}.
§ Grommach, "Meqr. Reitr. heraus. v. d. Kaiser. Norm.-dich. Comm." 1 \$72.
Wiebe und Böttcher, "Zeits. fiir Inst. K." vol. 10, p. 233.
F White, "Proc. Am. Acad. Sci." vol. 21, p. 45.

Smithsonian Tables.

Table 237.

CHANGE OF THERMOMETER ZERO DUE TO HEATING**

When a thermometer is used for measurements extending over a range of more than a few degrees, its indications are generally in error due to the change of volume of the glass lagging behind the change of temperature. Some data are here given to illustrate the magniude of the change of zero after heating. 'Ihis change is not permanent, but the thermometer may take several days or even weeks to return to its normal reading.

No. of experiment.	Maximum temp. in deg. cent.	Time at maximum temp. in hours.	Kind of glass.			Composition of Jena glass used.
			Normal Jena glass.		Thuringian glass.	
			1.	II.		
			Depression of freezing-point.			
1	290	5	1.0	1.0	2.1	ZnO 7%
2	290	5	1.3	1.5	2.7	$\mathrm{CaO} 7 \%$
3	290	5	1.5	1.7	3.1	$\mathrm{Na}_{2} \mathrm{O} 14.5 \%$
4	290	5	1.6	1.8	$3 \cdot 4$	$\mathrm{Al}_{2} \mathrm{O}_{3} \quad 2.5 \%$
5	290	5	1.7	1.9	3.6	$\mathrm{B}_{2} \mathrm{O}_{3} \quad 2 \%^{2}$
6	290	5	I. 8	2.0	$3 \cdot 7$	$\mathrm{SiO}_{2} 67 \%$
7	290	25	2.0	2.2	4.2	-

Table 238.

CHANGE OF THERMOMETER ZERO DUE TO HEATING.

Description of thermometer.		Year of manufacture.	Ratio of soda and potash in the glass.		Depression of zero due to one hour's heating to $100^{\circ} \mathrm{C}$.
			$\mathrm{Na}_{2} \mathrm{O} / \mathrm{K}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O} / \mathrm{Na}_{2} \mathrm{O}$	
Ilumboldt, No. 2 .		Before 1835	0.04	-	0.06
J. G. Greiner, F_{1}. .		1S.4S	0.08	-	0.15
". " F F_{0}. .		IS56	0.22	-	0.35
${ }^{6}$ " F_{3}		1872	-	0.21	0.38
Ch. F. Cielssler, No. I 3		IS75	-	0.26	0.40
G. A. Schultze, No. 3 .	-	1875	-	0.24	0.44
Kapp's Successor, $\mathrm{F}_{ \pm}$.		IS7S	-	0.83	0.65

"Allihn, "Zeits. fiir Anal. Chem." vol. 29, p. 385.
\dagger W. Fresenius, "Zeits. für Anal. Chem." vol. 27, p. r89. See also, for this and following table, Wiebe in the "Zeitschrift für Instrumentenkunde," vol. 6, p. 167, from which Fresenius quotes. The thermometer referred to in this table belonged to the Kaiserlichen Normal-Aichungs Commission.

Smithsonian Tables.

EFFECT OF COMPOSITION ON THERMOMETER ZERO.*

Jena Glasses.

Descriptive number.	$\mathrm{Si}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{Kg} \mathrm{O}^{\prime}$	(a)	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{B}_{2} \mathrm{C}_{3}$	\%.10)	[) mpe ion . I zero due ?. (til) lomer's lacorting to (16) 1.
IV		-	13.5	16.5	-	-	-	0.08
V1II	70	15		15	-	-	-	0.05
NXII	66	14	14	6	-	-	-	1.05
※犬土I	66	11.1	10.9	6	-	-	-	1.03
XVIIII	69	15	10.5	-	5	-	-	1.06
$\mathcal{S N}^{\text {HII }}$	70	$7 \cdot 5$	7.5	15	-	-	-	0.17
SIT ${ }^{\text {min }}$	69	14	-	7	1	2	7	0.05
	67.5	14	-	7	2.5	2	7	0.05
XVIII	52	-	9	-	-	9	30	0.05

Table 240.

CHANGE OF ZERO OF THERMOMETER WITH TIME.

Closely allied to the changes illustrated in Tables $235^{-2} 37$ is the slow clange of volume of the bulb of a thermometer with age. The following short table shows the change for the normal Jena thermometer. \ddagger

Thermometer number.	Date of observation.			Total rise.
	1886	1889	1890	
	Rise of zero.			
106	0.00	0.3	0.04	0.04
108	0.01	0.2	0.04	0.03
665	0.01	0.3	0.05	0.04
667	0.02	0.4	0.05	0.03
668	0.02	0.5	0.06	0.04
670	0.00	0.3	0.04	0.04
671	0.05	0.9	0.09	0.04
672	0.05	0.8	0.08	0.03

- Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189.
\dagger Normal Jena glass.
\ddagger Allihu, "Zeits. für Anal. Chem." vol. 29, p. 385 .

Smithsonian Tables.

Table 241.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.*
$T=t-0.0000795 u\left(t^{\prime}-t\right)$, in Fahrenheit degrees; $T=t-0.000143$ n $\left(t^{\prime}-t\right)$, in Centigrade degrees. Where $T=$ corrected temperature, $t=$ observed temperature, $t^{\prime}=$ mean temperature of glass stem and mercury column, $n=$ the length of mercury in the stem in scale degrees.

(a) Correction for Fahrenheit Thermometer $=$ value of $0.0000795 n\left(t^{\prime}-t\right)$.										
n	$t-t$									
	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
10°	0.01	0.02	0.02	0.03	0.04	0.05	0.06	0.06	0.07	0.08
20	0.02	0.03	0.05	0.06	0.08	0.10	0.11	0.13	0.14	0.16
30	0.02	0.05	0.07	0.10	0.12	0.14	0.17	0.19	0.21	0.24
40	0.03	0.06	0.10	0.13	0.16	0.19	0.22	0.25	0.29	0.32
50	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36	0.40
60	0.05	0.10	0.14	0.19	0.24	0.29	0.33	0.38	0.43	0.48
70	0.06	0.11	0.17	0.22	0.28	0.33	0.39	0.45	0.50	0.56
So	0.06	0.13	0.19	0.25	0.32	0.38	0.45	0.51	0.57	0.64
90	0.07	0.14	0.21	0.29	0.36	0.43	0.50	0.57	0.64	0.72
100	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64	0.72	0.79
110	0.09	0.17	0.26	0.35	0.44	0.52	0.61	0.70	0.79	0.87
120	0.10	0.19	0.29	0.38	0.48	0.57	0.67	0.76	0.86	0.95
130	0.10	0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03

(b) Correction for Centigrade Thermometer
$=$ value of $0.000143 n\left(t^{\prime}-t\right)$.

n	$t^{\prime}-t$							
	10°	20°	30°	40°	50^{2}	60°	70°	80°
10°	0.01	0.03	0.0 .4	0.06	0.07	0.09	0.10	O. I I
20	0.03	0.06	0.09	O. I I	0.14	0.17	0.20	0.23
30	0.04	0.09	0.13	O.I 7	0.21	0.26	0.30	0.34
40	0.06	O. II	0.17	0.23	0.29	0.34	0.40	0.46
50	0.07	O.I. 4	0.21	0.29	0.36	0.43	0.50	0.57
60	0.09	O.I 7	0.26	0.34	0.43	0.51	0.60	0.69
70	0.10	0.20	0.30	0.40	0.50	0.60	0.70	$0 . S 0$
80	0.11	0.23	0.34	0.46	0.57	0.69	0.80	0.92
90	O. 13	0.26	0.39	0.51	0.6 .4	0.77	0.90	1.03
100	0.14	0.29	0.43	0.57	0.72	0.86	1.00	I. 14

N. B. - When $t^{\prime}-t$ is negative the correction becomes additive.

* "Smithsonian Meteorological Tables," p. 12.

Bmithsonian Tables.

\prime											
	$1-11$										11
	70°	80°	90°	100	120	140	160	180	200	$220{ }^{\circ}$	
10°	0.02	0.03	0.05	0.07	0.11	0.17	0.21	0.27	0.33	0.35	10°
20	0.13	0.15	0.15	0.22	0.29	0.35	0.16	0.53	0.61	0.67	20
30	0.24	0.25	0.33	0.39	0.48	0.59	0.70	0.75	0. 5.5	0.97	30
40	0.35	0.41	0.48	0.56	0.68	0.52	0.94	1.0 .4	1.16	1.25	40
50	0.47	0.53	0.62	0.72	0.68	1.03	1.17	1.31	1.44	1.59	50
60	0.57	0.66	0.77	0.89	1.09	1.25	1. 4^{2}	1.53	1.74	1.90	60
70	0.69	0.79	0.92	1.06	1.30	I. 47	1.67	1.86	2.04	2.23	70
So	0.50	0.91	1.05	1.21	1.52	1.71	1.94	2.15	2.33	2.55	80
90	0.91	1.04	1.19	1.38	1.73	I. 96	2.20	2.42	2.64	289	90
100	1.02	1. 18	1.35	1.56	1.97	2.18	2.45	2.70	2.94	3.23	100
110	-	-	-	1.75	2.19	2.43	2.70	2.95	3.26	3.57	110
120	-	-	-	1.98	2.43	2.69	2.95	3.26	$3 \cdot 58$	3.92	120
130	-	-	-	-	2.68	2.94	3.20	$3 \cdot 56$	3.89	4.28	130
140	-	-	-	-	2.92	3.22	$3 \cdot 17$	3.86	4.22	4.64	140
150	-	-	-	-	-	-	$3 \cdot 74$	4.15	4.56	5.01	150
160	-	-	-	-	-	-	4.00	4.46	4.90	$5 \cdot 39$	160
170	-	-	-	-	-	-	4.27	4.76	5.2.4	5.77	170
I So	-	-	-	-	-	-	4.54	5.07	$5 \cdot 59$	6.15	180
190	-	-	-	-	-	-	-	$5 \cdot 38$	5.95	6.54	190
200	-	-	-	-	-	-	-	5.70	6.30	6.94	200
210	-	-	-	-	-	-	-	-	6.68	7.35	210
220	-	-	-	-	-	-	-	-	7.04	7.75	220

*This table is quoted from Rimbach's results, "Zeit. für Instrumentenkunde," vol. ro, p. 153. The numbers represent the correction made by direct experiment for thermometers of Jena glass graduated from o to 3 \%o C., the degrees being from 10 m .6 mm . long. The first column gives the length of the mercury in the part of the stem which is exposed in the air, and the headings under $t-t^{\prime}$ give the difference between the observed temperature and that of the air.

Smithsonian Tables.

TABLE 242. - Emissivity at Ordinary Pressures.
According to Ilcliarlane the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about if C., can be expressed by the equations

$$
e=.000233^{5}+3.06 \times 10^{-6} t-2.6 \times 10^{-8} t^{2}
$$

when the surface of the sphere is blackened, or

$$
e=.000168+1.05 \times 10^{-6 i t}-1.7 \times 10^{-8} t^{2}
$$

when the surface is that of polished copper. In these cquationse is the emissivity in c. g. s. units, that is, the quantity of heat, in therms, radiated per second per square centimetre of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the splece and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Difference of temperature t	Value of \boldsymbol{e}.		Ratio.
	Polished surface.	Blackened surface.	
5	.000178	.000252	.707
10	.000186	$.000=66$.699
15	.000193	.000279	.692
20	.000201	.000289	. 695
25	. 000207	.000298	.694
30	.000212	.000306	.693
35	. 000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	. 690
55	.000226	.000328	. 690
60	.000226	$.00032 S$. 690

TABLE 243. - Emissivity at Different Pres sures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about $8^{\circ} \mathrm{C}$.

Polished surface.	Blackened surface.		
t	et	t	et

Pressure 76 cals. uf Mercury.

63.8	.00957	61.2	.01746
57.1	$.00 S 62$	50.2	.01360
50.5	.00736	41.6	.01078
44.8	$.0062 S$	34.4	.00860
40.5	.00562	27.3	.00640
34.2	.00438	20.5	.00455
29.6	.00378	-	-
23.3	$.0027 S$	-	-
18.6	.00210	-	-

Pressure 10.2 cms. of Mercury.

67.8	.00492	62.5	.01298
61.1	.00433	57.5	.01158
55	.00383	53.2	.01048
49.7	.00340	47.5	.00898
44.9	.00302	43.0	.00791
40.8	.00268	28.5	.00490

Pressure 1 cm . of Mercury.

65	.00388	62.5	.01182
60	.00355	57.5	.01074
50	.00256	54.2	.01003
40	.00219	.41 .7	.00726
30	.00157	37.5	.00639
23.5	.00124	34.0	.00569
-	-	27.5	.00446
-	-	24.2	.00391

[^66]
Smithsonian Tables.

Tables 244， 245.

EMISSIVITY．

TABLE 244．－Constants of Emissivity．
The constants of radiation into vacuum have been determined for a few substance．The object of several of the investigations hats been the detemmitution of the law of bariatom with temperature or the relatise merits of Dulong and Petit＇s and of Alefon＇s law of coollint．

Dulong and I＇etit＇s law gives for the amount of heat radiated in at given time the expation

$$
I S-A \sin ^{\theta}\left(n^{t}-1\right)
$$

where A is a constant depending on the units emploged and on the nature of the surface，the surface，a a constant determined by loulong and l＇ctit to be 1.00 年， 0 the almolute temperature of the enclosure，and the difference of temperature between the hot surface and the enthonte． The following yalues of A are taken from the experiments of W ．Hopkins，the results being reduced to centimetre second units，and the therm as unit of heat．

Cilass	
1）ry chalk	，
Dry new red－sandston	． $1=.00001162$
Sandstone（building）	． 00
Polished limeston	． 00
mpolished limestone （same block）	

Stefan＇s law is expressed by the equation

$$
I I=\sigma s\left(T_{1}^{4}-T_{0}^{4}\right)
$$

where $/ /$ and s have the same meaning as above，σ is a constant，called stefan＇s radiation con－ stant．T_{1} is the absolute temperature of the radiating body and T_{n} the absolute temperature of the enclosure．Stefan＇s constant would represent，if the law held to abolute zoro，the amount of heat which would be radiated per unit surface from the body at 1^{n} absolute temperature to space at absolute zero．The experiments of Schleiermacher，liottomley，and others show that this law approximates to the actual radiation only through a limited range of temperature．

Graetz＊finds for glass ．．．．．．$T_{1}=400, T_{0}=0, \sigma=1.08 .46 \times 10^{-12}$
Schleiermacher \dagger find for polished platinum wire
For copper oxide

$$
\left\{\begin{array}{l}
T_{1}=400, T_{0}=0, \sigma=1.0 .46 \times 10^{-12} \\
T_{1}=1085 . T_{0}=0, \sigma=0.1 .5 \times 10^{12} \\
T_{1}^{12}=1150, T_{0}=0, \sigma=0.177 \times 10^{-12} \\
T_{1}^{-12}=850, T_{1}=0, \sigma=0.600 \times 10^{12} \\
T_{1}=1050, T_{0}=0, \sigma=0.701 \times 10^{-12}
\end{array}\right.
$$

TABLE 245．－Effect of Absolute Temperature of Surface．

The following tabular results are given by Botomley．\ddagger The results of Schleiermacher were calculated from data given in the paper above quoted．The temperatures t_{1} are in degrees centigrade，and e is the emis ivity or arsum of heat in therms radiated per square centimetre of surface per degree difference of temperature betwect the het body and the enclosure．The results are all for high vacuum．

polished platinum wire，$t_{z=3}$ to blackened platinum wire．						I＇othomleres re ints fir po ithed platimum，thir enclosures leitanis	
t_{1}	${ }^{\prime} 1$	12	r^{2}	t_{3}	$\%_{3}$	t	r
130	21.6×10^{-6}	65	14.5×10^{-13}	16	60.0×10^{-6}	302	$6.5 .05 \times 10^{-6}$
200	30.0 ＂	110	18.7 ＂	$3 ¢$	67.6	4－5	120.3
3.37	53.5 ＂	232	32.2 ＂	0.4	83.7 ＂	1,13	ごこ．0
$5{ }^{51}$	137.0 ＂	$3{ }^{3}$	61.6 ＂	22.	1.47 .0	711	537.0
826	315.0 ＂	740	10 尔O＂		293.0 ＂．	Sob	653.0
		900	35̇．0＂	585	5.40 .0 ＂		

－＂Wied．Ann．＂vol．11，p． 297.
\dagger＂Wied．Ann．＂vol．2h，P．，305．
\ddagger＂Phil．Trans．Roy．Soc．＂ 155_{7} ，p．429．

EMISSIVITY.

TABLE 246. - Radlation of Platinum Wlre to Copper Envelope.

Bortomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attaiuable the following numbers:-

$$
\begin{aligned}
& t=40 \mathrm{~S}^{\circ} \mathrm{C} ., c t=378.8 \times 10^{-4}, \text { temperature of enclosure } 16^{\circ} \mathrm{C} . \\
& t=505^{\circ} \mathrm{C} ., c t=726.1 \times{ }_{10}{ }^{-4}, \quad " \quad 17^{\circ} \mathrm{C} .
\end{aligned}
$$

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure $16^{\circ} \mathrm{C} ., t=408^{\circ} \mathrm{C}$.		Temp. of enclosure $17^{\circ} \mathrm{C}$., $t=505^{\circ} \mathrm{C}$.	
Pressure in mm.	ct	Pressure in mm.	et
740. 440. 140. 42. 4. 0.444 .070 .034 . 012 .0051 .00007	$\begin{aligned} & \text { S1 37.0× } \times 1^{-4} \\ & 7971.0 \\ & 7875.0 \\ & 7591.0 \\ & 759 \\ & 6036.0 \\ & 2633.0 \\ & 1045.0 \\ & 727.3 \\ & 727.3 \\ & 539.2 \\ & 436.4 \\ & 378.8 \\ & \hline \end{aligned}$	$\left.\begin{array}{c}0.094 \\ .053 \\ .034 \\ .013 \\ .0046 \\ .00052 \\ .00019 \\ \text { Lowest reached } \\ \text { but not measured }\end{array}\right\}$	$\begin{array}{rl} 1688.0 \times 10^{-4} \\ 1255.0 & " \\ 1126.0 & " \\ 920.4 & " \\ 831.4 & " \\ 767.4 & " \\ 746.4 & " \\ 726.1 & " \end{array}$

TABLE 247. - Effect of Pressure on Radiation at Dlfferent Temperatures.

The temperature of the enclosure was about $15^{\circ} \mathrm{C}$. The numbers give the total radiation in therms per square centimetre per second.

Note. - An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed "with coating of hard bright carbon, was found to be as follows : -

> Dull black filament, 57.9 watts.
> Bright " " 39.8 watts.

Motrlo Moasuro.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for stram or water vapor stated in the headings of the columas, are here given. The gubutites of heat are in thetms or calories according as the gramme or the kilogramme is taken at the unit of mass.

* Where A is the reciprocal of the mechanical equivalent of the thermal unit.
$t=\underline{H-(/ 2+A p)}=\frac{\text { internal-work prescure }}{\text {. }}$. Where w is taken in litres the pressure is given per square decimetre, and where \boldsymbol{y} is taken in cubic metres the pressure is given per square metre, - the mechanical equivalent being that of the therm and the kilogramme-degree or calorie respectively.

Smithsonian Tables.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. 'F. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery ('Trans. Am. Suc. Mech. Eng. vol. xi.).

1	144	0.068	102.0	334.23	0.0030	70.1	9So.6	62.34	1043.	1113.0
2	288	.136	126.3	173.23	. 0058	94.4	961.4	64.62	1026.	1120.4
3	432	. 204	141.6	117.98	.0085	109.9	949.2	66.58	IOII.	1127.0
t	576	.272	153.1	S9.80	. 0111	121.4	940.2	67.06	1007.	1128.6
5	720	-340	162.3	72.50	. 0137	130.7	932.8	67.89	1001.	1131.4
6	S64	0.405	170.1	61.10	0.0163	I38.6	926.7	6S.58	995.2	1133.8
7	1008	. 476	176.9	53.00	. 0189	I 45.4	921.3	69.18	990.5	1135.9
8	1152	. 54.4	182.9	46.60	. 0214	151.5	916.5	69.71	986.2	1137.7
9	1296	. 612	188.3	41.82	.0239	156.9	912.2	70.18	952.4	1139.4
10	1440	. 680	193.2	37.50	.0264	161.9	908.3	70.61	979.0	1140.9
11	$15 S_{4}$	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	975.8	1142.3
12	1728	. 816	202.0	31.90	. 0314	170.7	901.5	71.34	972.8	1143.5
13	1872	.884	205.9	29.58	. 0338	174.7	895.4	71.68	970.0	1144.7
1.4	2016	.952	209.5	27.59	.0362	178.4	$895 \cdot 1$	72.00	$967 \cdot 4$	I I 45.9
15	2160	1.020	213.0	25.07	. 0387	181.9	892.7	72.29	965.0	1146.9
16	2304	1.088	216.3	2.4.33	0.0411	185.2	890.1	72.57	962.7	1147.9
17	2448	.156	219.4	22.98	. 0.435	188.4	887.6	72.82	960.4	1148.9
18	2592	.224	222.4	21.78	. 0459	191.4	885.3	73.07	958.3	1149.8
19	2736	. 292	225.2	20.70	. 0.483	194.3	883.1	73.30	956.3	1150.6
20	2880	.360	227.9	19.72	. 0507	197.0	8So. 9	73.53	95+.4	1151.4
21	3024	1.429	230.5	18.84	0.0531	199.7	878.9	73.74	952.6	1152.2
22	3^{168}	. 497	233.0	18.03	.0554	202.2	876.8	73.94	950.8	1153.0
23	3312	. 565	$235 \cdot 4$	17.30	. 0578	20.4 .7	874.9	74.13	949.1	1153.7
2.4	3456	. 633	237.7	16.62	.0602	207.0	873.1	$7+32$	947.4	1154.4
25	3600	.701	$2 \Varangle 0.0$	${ }^{1} 5.99$. 0625	209.3	87 I .3	$74 \cdot 51$	945.8	II 55.1
26	3744	1.769	242.2	15.42	0.0649	211.5	S69.6	74.69	944.3	I 155.8
27	3888	. 837	24.43	14.88	. 0672	213.7	867.9	74.55	$9+2.8$	1156.4
28	4032	. 905	246.3	14.38	. 0695	215.7	866.3	75.01	941 -3	1157.1
29	4176	. 973	2.48 .3	13.91	. 0619	217.8	864.7	75.17	939.9	1157.7
30	4320	2.041	250.2	13.48	.0742	219.7	863.2	75.33	938.5	1158.3
31	4.464	2.109	252.1	13.07	0.0765	221.6	861.7	75.47	937.2	1158.8
32	4608	. 177	253.9	12.68	. 0788	223.5	860. 3	75.61	935.9	1159.4
33	4752	. 245	255.7	12.32	. 0811	225.3	858.9	75.76	934.6	I 159.9
34	4896	. 313	257.5	11.99	.0835	227.1	S 57.5	75.89	933.4	1160.5
35	50.40	-381	259.2	11.66	.0858	228.8	$S_{56.1}$	76.02	932.1	1161.0
36	51S.4	2.449	260.8	11.36	0.0851	230.5	${ }_{5} 54.8$	76.16	931.0	1161.5
37	5328	-517	262.5	11.07	. 0903	232.2	${ }_{5} 53.5$	76.28	929.8	1162.0
38	5472	. 585	264.0	10.79	. 0926	233.8	852.3	76.40	928.7	1162.5
39	5616	. 653	265.6	10.53	. 0949	235.4	851.0	76.52	927.6	1162.9
40	5760	.722	267.1	10.29	. 0972	236.9	S49.8	76.63	926.5	1163.4
41	5904	2.789	268.6	10.05	0.0995	238.5	8.8 .7	76.75	$925 \cdot 4$	1163.9
42	60.48	. 857	270.1	9.83	. 1018	239.9	847.5	76.86	$924 \cdot 4$	1164.3
43	6192	.925	271.5	9.61	. 10.40	24.4	8.46 .4	76.97	$923 \cdot 3$	1164.7
44	6336	. 993	272.9	$9 \cdot 41$.1063	24.9	8.45.2	77.07	922.3	1165.2
45	6450	3.061	$274 \cdot 3$	9.21	. 1086	$244 \cdot 3$	S.4.1	77.18	921.3	1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	843.1	77.29	920.4	1166.0
47	6;68	. 197	277.0	8.84	.1131	2.47 .0	$8_{42} 2.0$	77.39	919.4	1166.4
48	6912	. 265	278.3	8.67	. 1153	2.48 .3	S41.0	77.49	918.5	1166.8
49	7056	. 333	279.6	8.50	. 1176	2.49 .7	S.40.0	77.58	977.5	1167.2

Smithsonian Tables.

Britlsh Moasuro．

50	7200	$3 \cdot 401$	280.8	8.34	0.1198	251.0	\＄39．0	77.67	911.6	1167.6
51	7344	． 469	2 S 2.1	8.19	． 1221	252.2	\＄35．0	77.76	915.7	116 ． 0
52	7458	． 537	283.3	8.04	12.43	$=53.5$	837.0	77.55	914．9	116が，
53	7632	.605	$23^{4.4} 5$	7.90	． 1206	$25 \cdot 4.7$	836.0	77.9 .4	，\％\％ 10	11 （よ． 7
54	7776	． 673	285.7	7.76	． 1288	$=56.0$	835.1	78.03	913.1	$116) .1$
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	212.3	1160.4
56	306.	． 301	2S8．1	7.50	． 1333	258.3	833.2	78.21	211.5	$11(x) 8$
57	S20S	． 878	289.2	$7 \cdot 35$	． 1355	259.5	832.3	78．29	910.6	1170．1
58	S352	.946	290.3	7.26	． 1377	260.7	831.5	78.37	902.8	1170.5
59	8496	4.014	291.4	7.14	． 1400	261.8	830.6	78.45	909．0	1170.8
60	S640	4．082	292.5	7.03	0.1422	262.9	829．7	78.53	905.2	1171.2
61	S7S4	． 150	293.6	6.92	． 1444	264.0	828.9	78.61	1907． 5	1171.5
62	S92 ${ }^{\text {S }}$	． 215	294.7	6.82	． 1.466	265.1	82S．0	78.68	906.7	1171.8
63	9072	． 286	295.7	6.72	． 1.485	266.1	827.2	78.76	905.9	1172.1
6.4	9216	． 354	296.7	6.62	．1511	267.2	826.4	75.53	905：2	1172.4
65	9360	4.422	297.8	6.52	0.1533	$26 S .3$	S25．6	78.90	904.5	1172.3
66	9504	． 490	295.8	6.43	． 1555	269.3	824.8	75.97	903.7	1173.1
67	9648	.558	299.8	6.34	． 1577	270.4	824.0	79.04	903.1	1173.4
68	9792	． 626	300.1	6.25	． 1599	271.4	823.2	79.11	902.3	1173.7
69	9936	． 694	301.8	6.17	．3621	272.4	822.4	79.15	901.6	1174.0
70	100So	4.762	302.7	6.09	0.1643	273.4	S221．6	79.25	900.9	1174.3
71	10224	． 830	303.7	6.00	． 1665	274.3	820.9	79.32	900.2	1174.6
72	10368	． 898	304.6	5.93	． 1687	275.3	820.1	79.39	S99．5	1174.9
73	10512	． 966	305.5	5.55	.1709	276.3	819.4	79.46		1175.1
74	10656	5.034	306.5	5.78	．1731	277.2	818.7	79.53	SOS．1	1175.4
75	10Soo	5．102	$307 \cdot 4$	5.70	0.1753	278.2	S17．9	79.59	S97．5	1175.7
76	$109+4$	． 170	305.3	5.63	．1775	279.1	817.2	79.65	S96．9	1176
77	11088	． 238	309.2	5.57	． 1797	$2 S 0.0$	816.5	79.71	896.2 805.6	1176.2 1176.5
${ }_{7} \mathrm{~S}$	11232	－ 306	310.1	5.50	．1818	2 20．9	815.8	79.77	895.6	1176.5 1176.5
79	11376	－ 374	310.9	$5 \cdot 43$	． 1840	281.8	SI5．1	79.83	Sys	176.5
80	11520	5－442	$311 . S$	$5 \cdot 37$	0.1862	282.7	814.4	79．89	Sn4．3	1177.0
Si	11664	． 510	312.7	5.31	．1SS4	283.6	813.8	79.95	893.7	1178．3
S2	IISOS	． 57 S	313.5	5.25	． 1906	2S 4.5	813.0	S0．01	S93．1	1177.0
S_{3}	11952	． 646	314.4	5.19	.1928	285.3	812.4	80.07 So． 13	S92．5	1157.4 $11-8.0$
S4	12096	．714	315.2	$5 \cdot 13$	． 19.49	256.2	S11．7	So． 13	（5）1．9）	117．0
85	12240	5．7S2	316.0	5.07	0.1971	287.0	Sil．1	So． 19	Sorij	11－8．3
S6	11384	． 550	316.8	5.02	． 1993	287.9	810.4	S0． 25	2， 0.7	$11-8.0$
S7	1252 S	． 918	317.6	4.96	． 2015	285.7	Sog．${ }^{\text {S }}$	So． 30	is 0.1	11 ¢ \％ 9
SS	12672	．986	318.4	4.01	． 2036	2 S 9.5	SOg． 2	So． 35	Sis 0.5	1179.0
S9	128.6	6.054	319.2	4.56	． $205{ }^{8}$	290.4	SOS． 5	So． 10	S55．9	1：79．3
90	12960	6.122	320.0	4.81	0.2080	201.2	S07．9	S0．45	$5 s S_{4}$	
91	13104	． 190	320.8	4.76	－ 2102	292．0	807.3 806.7	So． 50 So． 56	8.8 .5 88.2	1179.8 1130.0
92	13248	.258	321.6	4.71	．2123	29.5 203.6	So6． Sc 6.1	So． S	88.2 886.7	1180.3
93	13392 13536	.327 .396	322.4 323.1	4.60 4.62	.2145 .2166	29.3 204.3	So5．5	So． 66	586．1	11 So． 5
94	13530	－396	323.1	7．6－		－				
95	13680	6.463	323.9	$4 \cdot 57$	0.2188	205.1		So． 71 So．-6	$\begin{aligned} & \$ S_{5} .6 \\ & 8 s_{5.0} \end{aligned}$	$\begin{aligned} & 11 \mathrm{SO} .7 \\ & 11 \mathrm{So} .9 \end{aligned}$
96	$13{ }^{13} 24$.531 .590	324.6 325.4	4.53 4.48	.2209 .2231	205.9 206.7	So． 4.3 80.3 8.7	So．is	85.0 884.5	1180.9 1181.2
97 98	13965 14112	.599 .667	325.4 326.1	4.15 4.44	.223 .2252	297.4	803.1	So． 86	884.0	$1_{118} S_{1} 4$
99	$1+256$	． 735	326.5	4.40	－22ブ4	298.2	SO 2.5	80.91	SS3．4	1 ISt． 6

PROPERTIES OF STEAM．

British Measure．

100	14400	6.803	327.6	4.356	0.2295	298．9	So2．0	80.95	SS2．9	118． 8
101	1.4544	． 871	328.3	． 316	． 2317	299.7	Sol． 4	81.00	SS2． 4	1182．1
102	14688	． 939	329．0	． 276	．2338	300.4	Soo．S	81.05	SSI． 9	1182.3
103	14832	7.007	329.7	． 237	． 2360	301.1	S00．3	81.10	SSI． 4	1182.5
104	14976	． 075	330.4	． 199	$.233^{1}$	301.9	799.7	81.14	SSo． 8	1182.7
105	15120	7.143	331.1	4.161	0.2403	302.6	799.2	SI．1S	880.3	IIS2．9
106	15264	． 211	331.8	． 125	． 2424	303.3	795.6	S1．23	S79．${ }^{\text {S }}$	1183.1
107	15408	． 279	332.5	．OSS	． 2446	304．0	798．1	S1．27	879.3	1183.4
108	15552	． 347	333.2	． 053	． 2467	304.7	797.5	81.31	878.5	1183.6
109	15696	． 415	333.8	． 015	． 2489	305.4	797.0	81.36	878．3	1183.5
110	${ }^{15} \$_{40}$	$7 \cdot 483$	334．5	3.984	0.2510	306． 1	796.5	SI． 41	877.9	1184.0
111	15934	． 551	335.2	． 950	． 2531	306.8	795.9	SI． 45	877.4	1184.2
112	16128	． 619	335．${ }^{\text {S }}$	．917	． 2553	307.5	795.4	81.50	876.9	1184.4
113	16272	． 687	336.5	． 855	． 2574	308.2	794.9	81.54	876.4	1184.6
114	16416	.757	337.2	． 853	.2596	308.8	794.4	8158	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	S75．5	1185.0
116	16704	． S_{91}	33 S． 5	． 790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	． 959	339．I	． 760	． 2660	310.8	792.8	81.70	874.5	1185.4
118	16992	S．027	339.7	． 730	． 2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	． 2702	312.1	791.5	S1．78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	SI． S_{2}	873.2	1185.9
121	17424	． 231	341.6	． 643	． 2745	313.4	790.3	SI． 86	S72．7	1186.1
1	17568	． 299	342.2	． 615	． 2766	314.1	790.3	81.90	872.2	1186.3
123	17712	$\cdot 367$	342.8	． 557	.2787	314.7	789.9	SI． 94	871.8	1186.5
12.4	17856	.435	$343 \cdot 5$	． 560	． 2809	315.3	7 So .4	81.98	871.4	1 I 86.7
125	I 8000	S． 503	344.1	3．534	0.2830	316.0	7SS．9	S2．02	870.9	1 IS6．9
126	18144	． 571	$3+4.7$	． 507	． $2 S_{5} 1$	316.6	785.4	S2．06	870.5	1187.1
127	18288	． 639	345.3	． 4 SI	． 2872	317.2	757.9	S2．09	\＄70．0	1187.2
128	18432	． 708	345.9	． 456	．2893	317.8	787.5	82．13	S69．6	1187.4
129	18576	.776	346.5	． 431	． 2915	318.4	787.0	S2．17	S69．2	1187.6
130	18720	S． 844	347.1	3.406	0.2936	319.0	786.5	S2．21	868.7	IIS7．S
131	${ }_{1} \mathrm{SSO}_{4}$	．912	347.6	． 3 S2	． 2957	319.7	786.1	S2．25	868.3	1188.0
132	19008	．9So	34 S .2	． 358	． 2978	320.3	785.6	S2．23	S67．9	1 ISS．I
133	19152	9.048	$3+4.8$	－334	． 2999	320．9	785.1	S2．32	867.5	1188.3
13.	19296	？．116	3．49－4	－310	． 3021	321.5	784.7	S2．35	S67．0	1188.5
135	19440	9.184	349.9	3.287	0.3042	322．1	$78_{4.2}$	82.3 S	866.6	1 IS8．7
136	1958.4	． 252	350.5	． 265	． 3063	322.6	783.8	82.42	866.2	1188.5
	19728	． 320	351.1	． 424	． 3084	323.2	783.3	82.45	865.8	1189.0
138	19872	－388	351.6	． 220	$\cdot 3105$	323.8	782.9	S2．49	865.4	1189.2
139	20016	． 456	352.2	． 199	$\cdot 3126$	324.4	782.4	S2． 52	865.0	1189.4
140	20160	9．52．4	352.8	3．177	0.3147	325.0	782.0	82.56	S64．6	1189.5
1.41	20304	． 592	353.3	． 156	． 3168	325.5	78.6	82． 59	864.2	1189.7
142	20448	． 660	353.9	． 135	． 3190	326.1	78 I． 1	82.63	S63．8	1189.9
143	20592	． 728	354．4	.115	．3211	326.7	780.7	82.66	863.4	1190.0
144	20736	.796	355.0	． 09.4	． 3232	327.2	780.3	82．69	863.0	1190.2
145	20SSo	9.864	355．5	3.074	0.3253	327.8	779.8	82.72	862.6	1190.4
146	21024	.932	356.0	． 054	． 3274	328.4	779.4	82.75	S62．2	1190.5
147	21168	10.000	356.6	． 035	． 3295	328.9	779.0	82.79	S61．8	1190.7
148	21312	． 068	357.1	． 016	． 3316	329.5	778.6	S2．S2	861.4	1190.9
149	21456	.136	357.6	． 997	． 3337	330.0	778.1	82.86	861．0	1191.0

Smithsonian Tables．

PROPERTIES OF STEAM.

British Measure.

150	21600	10.204	35S.2	2.97S	$0.335^{\text {S }}$	330.6	777.7	8.8 .80	Sin. 6	1101.2
151	21744	. 272	358.7	. 960	. 3379	331.1	777.3	S2.92	810.2	1191. 3
152	21588	-340	359.2	. 9.41	. 3.400	331.6	776.9	82.05	¢59.0	1191.5
153	22032	. 408	359.7	.923	-3t21	332.2	776.5	S2.94	859.5	1191.7
154	22176	.476	360.2	. 906	-3 +12	332.7	7\%6.1	83.01	859.1	1191.5
155	22320	10.544	360.7	2.858	0.3462	333.2	775.7	S3.0.4	858.7	1192.0
156	22464	. 612	361.3	. 871	. 3483	333.8	775.3	83.07	855	1192.1
157	22608	. 650	361.8	. S_{54}	. 3504	$33+3$	774.9	83.10	858.0	1192.3
15 S	22752	.748	362.3	. 537	. 3525	334.5	$77+5$	83.13	857.6	1192.4
159	22896	.816	362.8	. $\mathrm{S}=0$	-3546	$335 \cdot 3$	774.1	83.16	857.2	1192.6
160	23040	10.854	363.3	$2 . \mathrm{SO} 3$	0.3567	335.9	773.7	83.19	S56.9	1192.7
161	23184	. 952	363.8	. 787	. 3548	336.4	$773 \cdot 3$	83.22	856.5	1192.7
162	23328	11.020	364.3	.771	.3609	336.9	772.9	83.25	856.1	1193.0
163	23472	. 038	364.5	.755	. 3630	337.4	772.5	83.28	855.8	1193.2
164	23616	.157	365.3	.739	. 3650	337.9	772.1	$83 \cdot 31$	S 55.4	1193.3
165	23760	11.225	365.7	2.724	0.3671	338.4	771.7	83.34	S55.1	1193.5
166	23904	. 293	366.2	. 708	. 3692	335.9	771.3	83.37	${ }_{5} 54.7$	11936
167	24048	.361	366.7	. 693	.3713	339.4	771.0	\$3.39	S 54.3	1193.5
165	2.4192	.429	367.2	. 675	. 3734	339.9	770.6	S3.42	S54.0	1193.9
169	24336	. 497	367.7	. 663	. 3754	340.4	770.2	S3.45	553.6	1194.1
170	24.480	11.565	368.2	2.649	0.3775	340.9	769.8	83.48	S53.3	1194. 2
171	$2462+$. 633	368.6	. 634	. 3796	341.4	769.4	S3.51	852.9	1194.4
172	2.4768	. 701	369.1	. 620	. 3817	341.9	769.1	83.54	852.6	1194.5
173	24912	.769	369.6	. 606	- 3 S3S	342.4	768.7	S3.56	S52.2	1194.7
174	25056	. 837	370.0	- 592	- 3 S 58	342.9	768.3	S3.59	S51.9	1194.8
175	25200	11.905	370.5	2.578	0.3579	$343 \cdot 4$	767.9	S3.62	S51.6	1194.9
176	25344	. 973	371.0	. 56.4	. 3900	343.9	767.6	53.64	S51.2	11951
177	25488	12.041	37 I .4	. 550	- 3921	$3+4 \cdot 3$	767.2	S3.67	S50.9	1195.2
178	25632	.109	371.9	. 537	. 3942	$3+4.8$	766.8	S3.70	S50.5	11954
179	25776	. 177	372.4	524	. 3962	$345 \cdot 3$	766.5	S3.73	S50.2	1195.5
180	25920	12.245	$372 . S$	2.510	0.3983	345.8	766.1	S3.75	849.9	1195.6
181	26064	. 313	373.3	. 497	. 4004	346.3	765.8	83.77 53.80	849.5	1195.8 1195.0
182	26208	-3SI	373.7	.485	. 4025	3.46 .7 $3+7.2$	765.4 -65.0	S3. 83 8.83	849.2 845.9	1195.9 1196.1
iS3	26352	-449	374.2	.472 .459	.4046 .4066	347.2 $3+7.7$	765.0 764.7	83.83 83.56	S. 4.9 S. 45.5	1190.1 1196.2
184	26.496	-517	374.6	. 459	. 4066	347.7	764.7	53.50	8.40 .5	1190.2
185	26640	$12.5 S_{5}$	375.1	2.447	0.4087	348.1	764.3	83. 88	8.8 .2	1196.3
186	26784	. 653	375.5	- 434	. 4108	348.6	764.0	S3.90	817.9	1190.5
187	2692 S	.721	376.0	4.42	.4129	349.1	763.6	${ }^{\text {S }} 3.92$	$\mathrm{S}_{4} \mathrm{~S}^{-5} 5$	1196.
188	27072	.789	376.4	. 410	+150	$349 \cdot 5$	763.3	S3.95	847.2	1190.7
1 S 9	27216	. 557	376.8	-398	. +170	350.0	762.9	S3.97	S46.9	1190.9
190	27360	12.925	377.3	2.386	0.4191	350.4	762.6	83.99	S.46.6	1197.0
191	27504	. 993	377.7	. 374	. 4212	350.9	762.2	S4.02	S 46.3	1197.1
192	27648	13.061	378.2	. 362	. 4233	351.3	761.9	S4.04	845.9	1197.3
193	27792	.129	378.6	. 351	4254	351.8	761.6	S4.06	S. 45.6	1197.4
19.4	27936	. 197	379.0	. 339	. 4275	352.2	761.2	S.4.08	S.45.3	1197.5
195	2 SoSo	13.265	379.4	2.328	0.4206	352.7	760.9	S4.10	845.0	1197.7
196	2S22.4	${ }^{3} .333$	379.9	. 317	- +316	353.1	760.5	8.4 .13	84.4 .7	1197.8
197	$=8368$	-401	$3^{80.3}$. 306	. 4337	353.6	760.2		$\begin{aligned} & 8.4 .4 .4 \\ & \text { S.4. } \end{aligned}$	1197.9 1196.1
198	28512	. 469	3 30. 7	.295	- +358	354.0	759.9	8.16 84.21	S43.7	1198.2
199	28656	. 537	$3^{\text {SI.I }}$. 284	$\cdot 4379$	354.4	$759 \cdot 5$	84.21	543.7	1195.2

PROPERTIES OF STEAM．

British Measure．

200	28800	13605	3 3＇． 6	2.273	0.4399	$354 \cdot 9$	759.2	84.23	843.4	1198.3
201	28944	13.673	382.0	． 262	． 4420	$355 \cdot 3$	758.9	S4．26	843.1	1198.4
20	29088	13.742	382.4	． 252	． 4441	355.8	758.5	84．28	842.8	1198.6
203	29232	13.510	3 S 2.8	． 241	－446r	356.2	758.2	84.30	S42．5	1198.7
204	29376	13.878	383.2	． 231	． 4482	356.6	757.9	84.33	842.2	1198.8
205	29520	13.946	383.7	2.221	0.4503	357．I	757.5	84．35	841.9	1199.0
206	29664	14.014	3 34．I	． 211	． 4523	357.5	757.2	84.37	841.6	I 199．I
207	29808	I． 4.082	384.5	． 201	． 4544	357.9	756.9	S4．40	841.3	I 199.2
208	29952	14.150	384.9	．191	． 4564	358.3	756.6	84.42	841.0	1199.3
209	30096	1．4．218	385.3	．18I	． 4585	358.8	756.2	84.44	S40．7	I 199.4
210	30240	14.386		2.171	0.4605	359.2	755.9	84.46	S40．4	1199.6
211	30384	1.4 .454	386.1	．162	． 4626	359.6	755.6	84.48	840.1	1199.7
212	30528	14.522	386.5	． 152	.4646	360.0	755.3	84.51	839.8	1199.8
213	30672	14.590	386.9	． 143	． 4666	360.4	755.0	84． 53	839.5	1199.9
214	30816	I 4.658	387.3	． 34	． 4687	360.9	754.7	S4．55	839.2	1200.1
215	30960	14.726	387.7	2.124	0.4707	361.3			838.9	1200.2
216	31104	14.794	388．1	． 115	． 4727	361.7	754.0	84.60	838.6	1200.3
217	31248	14.862	388.5	． 106	． 4748	362.1	753.7	84.62	${ }_{8} 38.3$	1200.4
218	31392	1.4 .930	388.9	． 097	． 4768	362.5	753.4	8．4．64	838.0	1200.5
219	31536	14.995	389.3	． 088	． 4788	362.9	753.1	84.66	837.7	1200.7

Smithsonian Tables．

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY (v) IN RELATION TO THE VELOCITY OF LIGHT.

Ratio of electrical units.			Reference.	
Date of determination.	in cms. per sec.*	Determiued by -	Publication.	Year.
${ }_{18} 5_{6}$	3.107×10^{10}	Weber \& Kohlrausch	Pogg. Ann.	1853
1868	2.842×10^{10}	Maxwell	Phil. Trans.	1848
1869	2.808×10^{10}	W. Thomson \& Ǩing .	13. A. Report .	1869
1872	2.896×10^{10}	Mckichan	Phil. Trans.	1872
1879	$2.960 \times 10{ }^{10}$	Ayrton \& Perry .	Jour. Soc. Tel. Eng.	1879
1879	2.968×10^{10}	Mocken	B. A. Report .	1879
1880	2.955×10^{10}	Shida	Phil. Mag. . .	ISSo
188 I	$2.99 \times 1{ }^{10} \dagger$	Stoletow	Soc. de Phys. . .	1S8:
1881	3.019×10^{10}	Klemenčič	Wien. Ber. .	ISS4
1882	2.923×10^{10}	Exner .	Wien. Ber. . .	1882
${ }_{1} 8 S_{3}$	2.963×10^{10}	J. J. Thomson .	Phil. Trans. . .	1883
I 888	3.009×10^{10}	Himstedt	Wied. Ann. 35	1588
1889	2.9 SI $\times 10^{10}$	Rowland	Phil. Mag. . .	18S9
ISS9	3.000×10^{10}	Rosa	" "	1S89
1859	3.004×10^{10}	W. Thomson	Phil. Mag.	1889
1890	2.995×10^{10}	J. J. Thomson \& Searle	Phil. Trans. . .	IS90

*The results in this column correspond to a value of the B. A. ohm $=.9866_{4} \times 10^{\circ} \mathrm{cms}$. per sec. If we neglect the first four determinations, and also that of Exner and Shida, because of their large deviation from the mean, the remaining determinations give a mean value of $2.9889+.0137$, a value which practically agrees with the best determinations of the velocity of light. (Cf. Table 181.)
\dagger Given as between 2.98×10^{10} and 3.00×10^{10}.
Smithsonian Tables.

From the above table it appears, as remarked by Freyberg, that for each length of spark there is a particular size of ball which requires the greatest difference of potential to produce the spark.
(c) Comparison of Results of Determinations, the Terminais being Balls.

Spark length in cms.	Difference of potential required to produce a spark in air according to -								
	Baille.	Bichat and Blondlot. 1	Paschen.	Freyberg.	Pasclen.	Freyberg.	Quincke. ${ }^{2}$	Baille.	Freyberg.
	Balls I centimetre diameter.				Balls 2 cms . diameter.			Balls 6 cms . diam.	
. 1	4590	4200	4860	4660	4830	4560	4440	4440	4530
. 2	8040	8130	8.430	9500	83.0	8700	7920	7680	7860
-3	III90	10860	11670	11670	11670	11550	I II 90	10830	10470
. 4	13650	14130	14830	139 So	14820	14400	14010	13500	12750
. 5	16410	16800	17760	16800	ISO30	17040	16920	16530	16410
. 6	19560	19350	20.460	19260	20820	19470	19980	19560	19200
. 7	21690	21030	226.40	20970	23670	22530	22590	22620	22590
. 8	23280	23190	24780	23220	-	24630	25770	26400	26010
. 9	2.4030	24540	-	25110	-	27240	-	29220	28770
I. 0	24930	25800	-	25770	-	29040	-	33870	31620
1 "Electricien," Aug. 1886. 2 "Wied. Ann." vol. 19, 1883.									

Smithsonian Tableg.

DIELECTRIC STRENCTH.

TABLE 252. - Effect of Prossuro of tho Gas on the Dlolectric Strongth.*
Length of spark is indicated by 6 in centimetres. The pressure is in centimetres of mercury at 0 (.

Pressure.	Hydrogen.			Air.			Carbon dioxide.		
	$t=0.2$	$l=0.4$	$l=0.6$	$1=0.2$	$l=0.4$	1-0.6	$1=0.2$	$1 \quad 10.4$	10.6
2	510	606	-	819	1202	1536	1125	1.4 .46	16,50
4	729	1017	1437	1140	1725	2289	1438	1971	2373
6	945	1323	1S39	1455	2229	3012	1755	2.4 ¢ 4	3105
S	1008	1572	2172	1740	2721	368.	2070	2913	$3 ¢ 13$
10	1242	1506	2463	200.4	3186	4272	2355	3285	4275
15	${ }_{1584}$	2376	3330	2664	4212	5736	2991	4227	5592
20	1366	2937	4020	3294	5205	7074	3705	5235	6501
25	2169	34.4	4668	$3 \$ 16$	6108	8346	42.48	6120	S00. 4
30	2475	3957	5331	$43+7$	7020	9570	4707	6921	91.47
35	2748	4407	5997	$48+5$	7980	10797	5163	7737	10293
40	3051	4863	6681	5349	8853	12009	5772	8543	11397
45	3339	5334	7347	5 S 53	9639	1322.4	6222	9303	12483
50	3606	5 529	7971	6283	10431	14361	${ }_{64}{ }_{6} \mathrm{~S}_{59}$	$1003{ }^{\circ}$	13557
55	2834	6294	8583	6711	11259	15411	6759	10650	1.4610
60	4107	6747	9222	7134	12084	16548	7197	11397	15702
65	4476	7197	9867	7569	12885	17688	7605	12114	16740
70	4731	7629	10476	Sol 6	13710	1 SSO 4	Sool	12816	17727
75	4914	$\mathrm{So3}^{1}$	110.40	8.487	14523	19896	8388	13506	15705

Paschen deduces from the above, and also shows by separate experiments, that if the product of the pressure of the gas and the length of spark be kept constant the difference of potential required to produce the spark also remains constant.

In the following short table l is length of spark, P pressure, and V difference of potential, the unit being the same as above. The table illustrates the potential difference required to produce a spark for different values of the product $\ell . P$.

2.P.	V for H	V for Air.	$\stackrel{\sim}{\text { f for } \mathrm{CO}_{2}}$	l.P.	V for H	V for Air.	V for CO_{3}
0.2	456	669	873	6.0	2481	4251	4443
0.4	567	837	1110	10.0	3507	6162	6195
0.6	660	996	1281	20.0	$5{ }^{\text {S }} 35$	10392	10011
1.0	846	1326	1599	30.0	5004	13448	13527
2.0	1427	2019	2271	45.0	11013	19848	18705
4.0	188.4	3216	3468				

TABLE 253. - Dielectric Strength (or Difference of Potential per Centumetre of Spariz Length) of Different Substances, in Kllo Volts. \dagger

Substance.		Substance.		Substance.	号它
Air (thickness 5 mm .) Carbon dioxide ". Coal gas $"$ Hydrogen " Oxygen $"$	23.8 22.7 15.1 22.2 22.3	Beeswaxed paper Paraffined paper Paraffin (solid) .	$\begin{aligned} & 540 . \\ & 360 . \\ & 130 . \end{aligned}$	Kerosenc oil Oil of turpentine Olive oil Paraffin oil Paraffin (melted)	$\begin{aligned} & 50 . \\ & 94 . \\ & 82 . \\ & 57 . \\ & 56 . \end{aligned}$

* Paschen.
+ MacFarlane and Pierce," Phys. Rev." vol. 1, p. 165, 1893.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Double Fluid Batteries.					
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	边
Bunsen . .	Amalgamated zinc	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Carbon	Fuming $\mathrm{H}_{2} \mathrm{NO}_{3}$	1.94
"	، "	"	"	HNO_{3}, density I. 3 S	I. 86
Chromate .	، "	$\left\{\begin{array}{c}12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 25 \text { parts of } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \text { and } 100 \\ \text { parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	"	$\left\{\begin{array}{cc} \mathrm{I} \text { part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ & 12 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	2.00
"	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	"	$\left\{\begin{array}{c} 12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 100 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	2.03
Daniell * .	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Copper	$\left\{\begin{array}{c} \text { Saturated solution } \\ \text { of CuSO} \end{array}\right\}$	1.06
"	" "	$\left\{\begin{array}{c} 1 \text { part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 12 \text { parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	"	"	1.09
"	" 6	$\left\{\begin{array}{c} 5 \% \text { solution of } \\ \mathrm{ZnSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	1.08
"	" "	$\left\{\begin{array}{cc} 1 & \text { part } \mathrm{NaCl} \text { to } \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	1.05
Grove .	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I2 parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	Platinum	Fuming HNO_{3}. .	1.93
"	" "	Solution of ZnSO_{4}	"	HNO_{3}, density I .33	1. 66
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } \mathrm{I} .136 \end{array}\right\}$	"	Concentrated HNO_{3}	1.93
"	" "	$\left\{\begin{array}{r} \left\{\mathrm{H}_{2} \mathrm{SO}_{4}\right. \text { solution, } \\ \text { density } \mathrm{I} . \mathrm{I} 36 \end{array}\right\}$	"	HNO_{3}, density 1.33	1.79
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density I.06 } \end{array}\right\}$	"	"	1.71
"	" "	$\left\{\begin{array}{c} \mathrm{II}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } \mathrm{I} .14 \end{array}\right\}$	"	HNO_{3}, density I.19	1. 66
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.06 \end{array}\right\}$	"	" " ،	1.61
"	" ${ }^{\text {a }}$	NaCl solution. .	"	" density 1.33	I. 88
Marié Davy	" "	$\left\{\begin{array}{cc} \mathrm{I} & \text { part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 12 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Carbon	$\left\{\begin{array}{c} \text { Paste of protosul- } \\ \text { phate of mercury } \\ \text { and water } \end{array}\right\}$	1.50
Partz	" "	Solution of MgSO_{4}	*	Solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	2.06

[^67]Smithsonian Tables.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

Name of cell.	$\begin{aligned} & \text { Negative } \\ & \text { pole. } \end{aligned}$	Solution.	Positive pole.	F.. M. 1:. in wils
(b) Single Fluid battikies.				
L.eclanche	Amal zinc	$\left\{\begin{array}{c} \text { Solution of sal-ammo- } \\ \text { niac } \end{array}\right\}$	$\left\{\begin{array}{l}\text { Carbon surround- } \\ \text { cd by powdered } \\ \text { carbon and perox- } \\ \text { ide of mangance }\end{array}\right\}$	$1 . .46$
Chaperon . .	"	$\left\{\begin{array}{c}\text { Solution of caustic } \\ \text { potash }\end{array}\right\}$	Copper and Cu()	0.98
Edison-Lelande .	"			0.70
Chloride of silver	Zinc	$\left\{\begin{array}{c}23 \% \text { solution of sal- } \\ \text { ammoniac } .\end{array}\right\}$	$\left\{\begin{array}{c}\text { Silver surrounded } \\ \text { by silver chloride }\end{array}\right\}$	1.02
Law	"	$\left(\begin{array}{l} 15 \% \\ 15 \mathrm{pt} .2 \mathrm{ZOO}, 1 \mathrm{pt} . \mathrm{NH}_{4} \mathrm{Cl}, \end{array}\right.$	Carbon . . .	1.37
Dry cell (Gassner)	"	$\left\{\begin{array}{c}\text { 3 pts. plaster of paris, } \\ \text { 2 pts. ZnClere } \\ \text { to make water } \\ \text { maste. }\end{array}\right\}$	"	1.3
Poggendorff . .	Amal. zinc	$\left\{\begin{array}{l} \text { Solution of chromatc } \\ \text { of potash } \\ 12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\cdot\{ \end{array}\right\}$	"	1.08
"	"	$\left\{\begin{array}{c}12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+ \\ 25 \text { parts } \mathrm{H}_{2} \mathrm{SO}_{4}+ \\ \left.100 \text { parts } \mathrm{H}_{2} \mathrm{O}\right)^{+}\end{array}\right\}$	"	2.01
J. Regnault . .	"	$\left\{\begin{array}{c} 1 \text { part } \mathrm{H}_{2} \mathrm{SO}_{4}+ \\ 12 \text { parts } \mathrm{HI}_{2} \mathrm{O}+ \\ 1 \text { part CaSO } \end{array}\right\}$	Cadmium	0.34
Volta couple . .	Zinc	$\mathrm{H}_{2} \mathrm{O} \cdot \ldots .$.	Copper . . .	0.05

(c) Standard Cells.

$\begin{gathered} \text { Kelvin, Gravity, } \\ \text { Daniell . . . } \end{gathered}$	Amal. zinc	$\left\{\begin{array}{c} \mathrm{ZnSO}_{4} \text { solution, den- } \\ \text { sity } \mathrm{I} .40 \end{array}\right\}$	$\left\{\begin{array}{l} \text { Electrolytic cop- } \\ \text { per in CuSO } \\ \text { density } 1.10 . \end{array}\right\}$	$\left\{\begin{array}{l} 1.072[1 \\ -.00016 \\ (1-15)] \end{array}\right.$
Clark standard .	"	$\left\{\begin{array}{c} \text { Mercurous sulphate in } \\ \text { paste with saturated } \\ \text { solution of neutral } \\ \mathrm{ZnSO}_{4} \cdot . \cdot . \end{array}\right\}$	Mercury . . .	$\left\{\begin{array}{l}1.434[1 \\ -.00077 \\ (1-15)]\end{array}\right.$
Baille \& Ferry .	"	$\left\{\begin{array}{c} \text { Zinc chloride, density } \\ \text { I.157. } \end{array}\right\}$	$\left\{\begin{array}{l}\text { Lead surrounded } \\ \text { by powdered } \\ \text { lbCl }\end{array}\right\}$	$\left\{\begin{array}{l}\text { 0.50 tem- } \\ \text { perature } \\ \text { coeffic't } \\ \text { about } \\ .00011\end{array}\right.$
Gouy . .	"	$\left\{\begin{array}{c} \text { Oxide of mercury in a } \\ \text { Io \% sol. of } \mathrm{ZnSO} \\ \text { (paste) } \end{array}\right\}$	Mercury . .	$\left\{\begin{array}{l}1.357[1 \\ -.0002 \\ (1-12)]\end{array}\right.$

Lodge's standard cell and Fleming's standard cell are, like the Kelvin cell above, modifications of the Daniell zine-zinc sulphate, copper-copper sulphate cell.
(d) Secondary Cells.

* F. Streintz gives the following value of the temperature variation $\frac{d E}{d t}$ at different degrees of charge : -

E. M. F.	$d E / d t \times 10^{63}$	E. M. F.	$d E / d t \times 10^{0}$	E. M. F.	$d E / d t \times 10^{8}$
1.9223	140	2.0031	335	2.0779	130
1.9828	228	$2.00{ }_{4}$	285	2.2070	73
		2.0105	255		

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals at mean temperature t is the electromotive force in the circuit for one degree difference of temperature between the junctions. It is expressed by $d E / d t=A+B t$, when $d E^{*} / d t=0, t=-A / B$, and this the neutral point or temperature at which the thermoelectric power vanishes. The ratio of the specific leat of electricity to the absolute value of the temperature t is expressed by - B for any one metal when the other netal is lead. The themoelectric power of different couples may be inferred from the table, as it is the difference of the tabulated values with respect to lead, which is here taken as zero. The table luas been compiled from the results of Becquerel, Mathieson, and Tait. In reducing the results the electromotive forces of the Grove's and the Daniell cells have been taken as 1.95 and 1.07 volts respectively.

Substance.	A	$B \times \mathrm{so}^{-2}$	Thermoclectric power at mean temp. of junctions (microvolts).		Neutral$\begin{aligned} & \text { point } \\ & -\frac{A}{B} \end{aligned}$	Author ity.
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.		
Aluminium ${ }^{\text {a }}$ - ${ }^{\text {a }}$	0.76	-0.39	0.68	0.56	195	T
Antimony, comm'l pressed wire	-	-	-6.0		-	M
" axial . . .	-	-	-22.6			
" equatorial	-	-	-26.4	-	-	"
Argentan ordinary .	11.91	506	-17.0	-	-	B
$\underset{\text { Argentan }}{ }$. . .	11.94	5.06	12.95	14.47	-236	'T
Arsenic $\quad . \quad$.	-	-	13.56	12.7	-	B
Hismuth, comm'l pressed wire	-	-	97.0	-	-	,
". pure " "	-	-	89.0	-	-	"
" crystal, axial ${ }^{\text {ch }}$	-	-	65.0	-	-	"
" " equatorial	-	-	45.0	-	-	"
Cadmium commercial .	-			39.9	-	13
${ }_{\text {"admum }}$ fused . .	-2.63	-4.24	-3.48	-4.75	-62	T
Cobalt . . .	-	-	22.	-2.45	-	M
Copper .	-1.34	-0.94	-1.52	-1.81	-143	T
" commercial .	-		-0.10	-	_	M
" galvanoplastic	-	-	-3.8	-	-	،
Gold	-	-	-1.2	-	-	"
" -	-2.80	-1.01	-3.0	-3.30	-277	T
Iron	-17.15	4.82	-16.2	-14.74	356	,
", pianoforte wire.	-	-	-17.5	-	35	M
" commercial .	-	-	-	-12.10	-	B
Lead.	-	-	-	-9.10	-	"
Magnesium	-2.22	0.00	0.00	0.00	-	-
Mercury .	-	- 0.9	-2.03	-1.75	236	T
"	-	-				B
Nickel .	-	-	-	3.30 15.50	-	"
"، (-180 to 175 ${ }^{\circ}$)	21.8	5.06	22.8	2.4.33	-438	T
" $\left(250^{\circ}-300^{\circ}\right)$.	83.57	-23.84	-		43	T
" (above 340°) .	3.04	5.06	-	-	-	"
Palladium	6.18	3.55	6.9	7.96	-174	"
" ${ }^{\text {Pr }}$	-	-	-	6.9	-	B
Phosphorus (red)	-	-	-29.9	-	-	M
Platinum . .	-	-	-0.9	-	-	"
" (hardened)	-2.57	0.74	-2.12	-2.20	347	T
" (malleable).	0.60	1.09	8.82	1.15	-55	"
" wire another specimen	-	-	-	-0.9.4	_	B
" another specimen	-	-	-	2.14	-	1
Platinum-iridium alloys:						
$85 \% \mathrm{Pt}+15 \% \mathrm{rr}$	-7.90	-0.62	-8.03	-8.21	-1274	T
90\% Pt $+10 \% \mathrm{Ir}$	-5.90	1.33	-5.63	-5.23	444	"
5 $95 \% \mathrm{Pt}+5 \% \mathrm{Ir}$	-6.15	-0.55	-6.26	-6.42	-1118	"
Selenium . . .	-	-	$-\mathrm{So7}$.	- ${ }^{\text {2 }}$	-	M
Silver - .	-2.12	-1.47	-2.41	-2.86	-I44	T
" (pure hard)	-	-	-3.00	-	-	M
"" wire	-	-		-2.18	-	B
Steel . .	- 11.27		-10.62	-9.65	347	T
Tellurium .	-	-	-502.	-	-	M
Tin ${ }^{\text {c }}$ -	-	-	-	-429.3	-	I
Tin (commercial)	-	-	-	-0.33	-	"
" . . .	-	-	-0.1		-	M
" ${ }^{\text {anc }}$ -	0.43	-0.55	0.33	0.16	78	T
"inc pure pressed	-2.32	-2.38	-2.79	-3.51	-98	"
pure pressed			-3.7		-	M
$B=$ Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. 'I = Tait, " "rans. R. S. E." vol. 27, reduced by Mascart.			$\begin{gathered} \mathrm{M}= \\ =\begin{array}{c} \text { Matthieson, "Pogg. Ann."" vol. ro3, } \\ \text { reduced by Fleming Jenkin. } \end{array} \end{gathered}$			

Table 256.
THERMOELECTRIC POWER OF ALLOYS.
The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of $50^{\circ} \mathrm{C}$. In redueing the results from copper as a refereuce metal, the thermoelectric power of tead to copper was taken as -1.9.

Table 257.
Table 258.
SPECIFIC HEATS OF ELECTRICITY. \dagger

NEUTRAL POINTS WITH LEAD.*

Substance.	Temp. C.	Substance.	Temp. C.
Bismuth .	$-5 \mathrm{SO}^{\circ}$	Zinc . . .	-95°
Nickel .	-424	Cadmium .	-59
Gold . .	-276	Platinum	-56
Argentan	-23 S	Tin . . .	75
Cobalt .	-22 S	Rhodium .	132
Pallaclium	-172	Ruthenium	136
Antimony	-156	Aluminium	212
Silver . .	-144	Magnesium	239
Copper .	-132	Iron . .	356

The numbers are the coefficients B in the equation $\frac{d E}{d t}=A+B t$, and have to be multiplied by the absolute temperature T to give the specific heat of electricity. (See also Table 255.)

Metal.	$\frac{\text { Sp.ht. of el }}{T}$	Metal.	$\frac{\text { Sp. hr. of el. }}{7}$
Aluminium		Magnesium Nickel:	-.00094
Antimony	.00039	To 175 ${ }^{\circ} \mathrm{C}$	00507
Argentan	-.00507	$250^{\circ}-310^{\circ}$.00219
Bismuth .	-.01073	Abore 340°	-.00351
Cadmium	.00425	Platinum (soft)	-.00109
Cobalt	$-.011+1$	Palladium .	-. 00355
Copper	. 00094	Rhodium .	-.00113
Gold .	. 00101	Rubidium	-. 00206
Iron .	-.004SI	Silver	.00148
Iridium	. 00000	Tin .	. 00055
I.ead	. 00000	Zinc .	. 00235

* Tait's " Heat," p. ı8o.
\dagger Calculated from a table given by Tait by assuming the electromotive force of a Grove's cell $=1.95$ volts.

Smithsonian Tables.

THERMOELECTRIC POWER OF METALS AND SOLUTIONS.*

Thermoelectric power of circuits, the two parts of which are either a metal and a solution of a salt of that metal or two solutions of salts. The concentration of the solution was such that in 1000 parts of the solution there was two solutions on salfs. gramme equivalent of the crystailized salt. The circuit is indicated symbolically; for example, Cu and CuSO_{i} indicates that the circuit was partly copper and partly a solution of copper sulphate.

Substances forming circuit.	Thermoelectric power in microvolts.	Insoluble salts mixed with a solution of the corresponding zinc or cadmium salts for the purpose of acting as a conductor. The other part of the circuit was the metal of the insoluble salts. The results are complex and of donbtful value.	
Cu and CuSO$)_{4}$	$\begin{aligned} & 754 \\ & 760 \\ & 660 \end{aligned}$		
Zn and $\mathrm{ZnSO} \mathrm{H}_{4}$.			
Cu and CuAc (acctate) Pb and PbAc			
Zn and ZnAc	$\begin{aligned} & 176 \\ & 693 \end{aligned}$		
Cd and CdAc	503562	Substances forming circuit.	Thermoelectric power in microvolis.
Zn and ZnCl_{2}			
Zn and ZnBr_{2}	502		
Zn and ZnI_{2}	602		
Cd and CdI_{2}	59.4		143
		Ag and AgCl in CdCl_{2}	310
CuSO_{4} and ZnSO_{4}	40	Ag and AgBr in ZnBr_{2}	327
CuAc and ZnAc.	S	Ag and AgBr in CdBr_{2}	461
ZnAc and CdAc .	\bigcirc	Ag and $\mathrm{AgI} \mathrm{in} \mathrm{ZnI}_{2}$	414
CuAc and CdAc .	\%	Ag and $\mathrm{Agl} \mathrm{in} \mathrm{CdI}_{2}$ -	unsuccessful
PbAc and ZnAc		Hg and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in ZnCl 2	650
IPAc and CdAc.	54	Hg and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in CdCl_{2}	673
$\mathrm{Pb} A c$ and CuAc.	133	Hg and $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ in Znlra_{2}	650
ZnCl_{2} and CdCl_{2}	9	Hg and $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ in CdBr_{2}	815
Zalr_{2} and CdBr_{2}	${ }_{5} 5$	Hg and $\mathrm{Hg}_{2} \mathrm{I}_{2}$ in $7 \mathrm{nI} \mathrm{I}_{2}$.	945
$\mathrm{ZnI} \mathrm{I}_{2}$ and CdI_{2}		Hg and $\mathrm{Igg}_{2} \mathrm{I}_{2}$ in Cdl_{2}	891

Tables 260, 261.

PELTIER EFFECT.

TABLE 260. - Jahn's Experlments. \dagger
TABLE 261.-Le Roux's Experiments. \ddagger

Current flows from copper to metal mentioned. Table gives therins per ampere per hour.

Metals.			Therms.
Cadmium	-	,	-0.616
Iron .	-	-	-3.613
Nickel.		.	4.362
llatinum		-	0.320
Silver	-	-	-0.413
Zinc	-	-	-0.585
Cdto CdSSO_{4}	-	.	4.29
Cuto CuSO)	-	-	-I. 4
Ag to $\mathrm{AgNO} \mathrm{O}_{3}$.	-	7.53
Zn to ZnSO	-	-	-2.14

Table gives therms per ampere per hour, and current flows from copper to substance named.

[^68]Conductivity $C_{t}=C_{0}\left(1+a t+b_{t}\right)$.

Smithsonian Tables.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_{0} were obtained from the original results by assuming silver $=\frac{10^{6}}{1.585}$ mhos. The conductivity is taken as $C t=C_{0}\left(1-a t+\beta t^{2}\right)$, and the range of temperature was from o^{0} to soo C .
The table is arranged in three groups to show (I) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.
It is pointed out that, with a few exceptions, the percentage variation between o^{4} and roa^{3} can be calculated from the formula $l^{\prime}=F_{c} l_{l}$, where l is the observed and l^{\prime} the calculated conducting power of the mixture at $100{ }^{\circ} \mathrm{C}$., and P_{c} is the calculated mean variation of the metals mixed.

Alloys.	Weight \%	Volume \%	$\frac{C_{0}}{10^{4}}$	$a \times 10^{3}$	6×10^{9}	Variation per $100^{\circ} \mathrm{C}$.	
	of first	named.				Observed.	Calculated.
Grout 1.							
$\mathrm{Sn}_{6} \mathrm{~Pb}$	77.04	83.96	7.57	3890	S670	30.18	29.67
$\mathrm{Sn}_{4} \mathrm{Cd}$	S2.41	S3.10	9.15	4080	11870	28.89	30.03
SnZn	7 7 .06	77.71	10.56	3 SSo	S720	30.12	30.16
Pbosn	6.4 .13	53.41	6.40	37 So	S420	29.41	29.10
ZnCd_{2}	24.76	26.06	16.16	3780	Sooo	29.86	29.67
SnCl_{4}	23.05	23.50	13.67	3850	9410	29.08	30.25
$\mathrm{CdI}^{\prime} \mathrm{b}_{6}$	$7 \cdot 37$	10.57	5.7S	3500	7270	27.74	27.60
Group 2.							
$\begin{aligned} & \text { Lead-silver }\left(\mathrm{Pb}_{20} \Lambda g\right) \\ & \text { Lead-silver }\left(\mathrm{l}^{\prime} \mathrm{D}_{\mathrm{A}}\right) \\ & \text { Lead-silver }\left(\mathrm{I}^{\prime} \mathrm{b} \mathrm{~g}_{2}\right) \end{aligned}$	95.05	94.64	5.60	3630	7960	28.24	19.96
	+ 8.97	46.90	S.03	1960	3100	16.53	7.73
	32.44	30.64	13.80	1990	2600	17.36	10.42
Tin-gold ${ }_{\text {/ }}^{\left(\sin _{12} A u\right)}\left(\operatorname{Sn}_{5} \cdot 14\right)$.	77.94	90.32	5.20	3050	66.10	24.20	14.83
	59.54	79.54	3.03	2920	6300	22.90	5.95
Tin-copper .	92.24	93. 57		3650	Sizo	28.71	19.76
"، ${ }^{\text {" }}$ " ${ }^{\text {c }}$	So. 58	83.60	S. 05	3330	68.0	26.24	14.57
	12.49	14.91	5.57	547	29.4	5.18	3.99
" " \quad ". .	10.30	12.35	6.41	666	1185	5.48	$4 \cdot 46$
" " \dagger	9.67	11.61	7.6 .4	691	304	6.60	5.22
" " \dagger	4.96	6.02	12.44	995	705	9.25	7.83
" " \dagger.	I. 15	1.41	39.41	2670	5070	21.74	20.53
Tin-silver .		96.52	7.51	3 S20	Sino	30.00	23.31
" ،	53.85	75.51	S.65	3770	8550	29.18	11.89
Zinc-copper \dagger	36.70	42.06	13.75	1370	1340	12.40	11.29
" ${ }^{\prime}$ " 6	25.00	29.45	13.70	1270	12.40	11.49	10.08
" ${ }^{\text {" }}$ " ${ }^{\text {\% }}$	16.53	23.61	13.44	1880	1500	12.50	12.30
" 6	8.59	10.88	29.61	2040	3030	17.41	17.42
" " t	4.06	5.03	38.09	2470	4100	20.61	20.62

Note. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y=\frac{n}{x}-m$, where y is the temperature coefficient and x the specific resistance, n and n being constams. If a be the temperature cocfficient at $0^{2} C$. and s the corresponding specific resistance, $s(a+m)=n$.

For platinum alloys Barus's experiments gave $m=-.000194$ and $n=.0378$. F'or stecl $m=-.000303$ and $n=.0620$.
Matthieson's experiments reduced by Barus gave for
Gold alloys $m=-.000045, n=.0072 \mathrm{r}$.
Silver " $m=-.000112, n=.00538^{\circ}$.
Copper " $m=-.000386, n=.00055$.
"From the experiments of Mathieson and Vogt, " Phil. Trans. R. S." v. 154.
\dagger Hard-drawn.
Bmithsonian Tables.

CONDUCTING POWER OF ALLOYS.

Smithsonian Tables.

SPECIFIC RESISTANCE OF METALLIC WIRES．

This table is modified from the table compiled by Jenkin from Matthieson＇s results by taking the resistance of silver， gold，and copper from the observed metre gramme value and assuming the densities found by Matthieson，namely， $10.468,19.265$ ，and 8.95.

Substance．	\because U虎 \therefore 으․․․ ฮั 烒 嵏它	$\stackrel{\circ}{0}$ U 으를 ～～ 등 를馮范		$\underset{\sim}{\circ}$ ن セิo 응 デ $\%$ 무若出． 듄 ㄷ．禹電品	$\stackrel{\pi}{0}$ 으읎 ＂̈̈ 	
Silver annealed ．	$1.460+10^{6}$	0.01859	．1523	S．781	．2184	0.377
＂hard drawn	1．585＂	0.02019	． 1659	9.538	.2379	－
Copper annealed	1．584＂	0.02017	．142I	9．529	． 2037	0.388
＂hard drawn	1．619＂	0.02062	． 1449	9.741	． 2078	－
Gold annealed	2.088 ＂	0.02659	． 4025	12.56	－577 I	0.365
＂hard drawn	2.125 ＂	0.02706	.4094	12.78	． 5870	－
Aluminium annealed．	2.906 ＂	0.03699	． 0747	17.48	． 1071	－
Zinc pressed	5.613 ＂	0.07146	.4012	33.76	－5753	0.365
Platinum annealed	9.035 ＂	O．1150	x． 934	54.35	2.772	－－
Iron＂	9.693 ＂	0．1234	．7551	58.31	1．083	－
Nickel＂	12.43 ＂	0.1583	1.057	74.78	I． 515	－
Tin pressed	13.18 ＂	0.1678	． 9608	79.29	1.377	0.365
Lead＂	19.14 ＂	0.2437	2.227	II 5．I	3.193	$0.3 S_{7}$
Antimony pressed ．	35.42	0.4510	2.379	213.1	3.410	0.389
Bismuth＂	130.9 ＂	1． 667	12.86	787．5	I8．43	0.354
Mercury＂	94.07 ＂	I．198	12.79	565.9	I8．34	0.072
$\left.\begin{array}{c} \text { Platinum-silver, } 2 \text { parts } \Lambda g,\} \\ \text { I part I't, by weight } . \end{array}\right\}$	24.33 ＂	0.3098	2.919	146.4	4.186	0.031
German silver ．	20.89 ＂	0.2660	1.825	125.7	2.617	0.044
$\begin{gathered} \text { Gold-silver, } 2 \text { parts Au, } \\ \text { I part } A g, \text { by weight } . \end{gathered}$	10.84 ＂	0.1380	1.646	65.21	2.359	0.065

Smithsonian Tables．

SPECIFIC RESISTANCE OF METALS.

The specific resistance is here given as the resistance, in microhms, per centimetre of a bar one square centimetre in cross section.

Smithsonian Tables.

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*
When the temperature is raised above $0^{\circ} \mathrm{C}$. the coefficient decreases for the pure metals, as is showu by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature $=$	100°	20°	\bigcirc	-80°
Metal or alloy.	Specific resistance in c. g. s. units.			
Aluminium, pure hard-drawn wire . . .	4745	3505	3161	-
Copper, pure electrolytic and annealed .	1920	1457	1349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	I $3970{ }^{\circ}$	9521	8613	-
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	8752	S221	6133
Silver, pure wire	2139	1647	1559	1138
Tin, pure wire . .	13867	10473	9575	6681
German silver, commercial wire . . .	35720	34707	34524	33664
Palladium-silver, 20 P d +80 Ag	15410	14984	14961	14482
Phosphor-bronze, commercial wire	9071	8588	S479	So54
Platinoid, Martino's platinoid with I to 2%. tungsten	44590	43823	43601	43022
Platinum-iridium, So $\mathrm{Pt}+20 \mathrm{Ir}$. .	31848	29902	29374	27504
Platinum-rhodium, $90 \mathrm{Pt}+10 \mathrm{Rh}$.	18417	14586	13755	10778
Platinum-silver, 66.7 $\mathrm{Ag}+33.3 \mathrm{Pt}$. .	27404	26915	26818	26311
$\begin{aligned} & \text { Carbon, from Edison-Swan incandescent } \\ & \text { lamp } \end{aligned}$	-	4046×10^{3}	4092×10^{3}	4189×10^{3}
$\left.\begin{array}{c}\text { Carbon, from Edison-Swan incandescent } \\ \text { lamp }\end{array}\right\}$.	3834×10^{3}	3908×10^{3}	3955×10^{8}	4054×10^{3}
Carbon, adamantine, from Woodhouse and \} Kawson incandescent lamp	6168×10^{3}	6300×10^{3}	6363×10^{3}	6495×10^{3}

* "Phil. Mag." vol. 34, 1892.
\dagger This is given by Dewar and Fleming as 13777 for $96^{\circ} \cdot 4$, which appears from the other measurements too high.

Smithsonian Tables.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest
ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

Temperature $=$	-100°	-182°	-197°	Mean value of temperature co-
Metal or alloy.	Specific resistance in c. g. s. units.			- 100° and $+100^{\circ} \mathrm{C}$.
Aluminium, pure hard-drawn wire . .	1928	S94	-	. 00446
Copper, pure electrolytic and annealed.	757	272	${ }_{17} \mathrm{~S}$	431
Gold, soft wire	1207	604	-	375
Iron, pure soft wire . .	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	6110	1900	-	53S
Platinum, annealed	5295	2S21	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	567 I	2553	-	42 S
German silver, commercial wire . . .	33280	32512	-	035
Palladium-silver, $20 \mathrm{Pd}+80 \mathrm{Ag}$. . .	14256	${ }^{1} 3797$	-	039
Phosphor-bronze, commercial wire . . .	${ }_{7} \mathrm{SS}_{3}$	737 I	-	070
$\left.\begin{array}{l}\text { Platinoid, Martino's platinoid with I to } 2 \% \\ \text { tungsten }\end{array}\right\}$.	42385	41454	-	025
Platinum-iridium, 8o $\mathrm{Pt}+20 \mathrm{Ir}$	26712	24440	-	OS_{7}
Platinum-rhodium, $90 \mathrm{Pt}+10 \mathrm{Rh} . \quad$.	9834	7134	-	312
Platinum-silver, 66.7 Ag + 33.3 Pt . .	26108	25537	-	024
Carbon, from Edison-Swan incandescent lamp .	$4=18 \times 10^{8}$	4321×10^{3}	-	-
Carbon, from Edison-Swan incandescent $\}$ lamp	4079×10^{3}	4150×10^{3}	-	031
Carbon, adamantine, from Woodhouse and ? Rawson incandescent lamp	6533×10^{8}	-	-	029

* This is α in the equation $R=R_{0}(x+a t)$, as calculated from the equation $\alpha=\frac{R_{800}-R_{-100}}{200 R_{0}}$.

Smithsonian Tables.

Table 267.
EFFECT OF ELONGATION ON THE SPECIFIC RESISTANCE OF SOFT METALLIC WIRES.*

TABLE 268.

EFFECT OF ALTERNATING THE CURRENT ON ELECTRIC RESISTANCE.

This table gives the percentage increase of the ordinary resistance of conductors of different diameters when the current passing through them alternates with the periods stated in the last column. \dagger

Diameter in -		Area in -		Percentage increase of ordinary resistance.	Number of complete periods per second.
Millimetres.	Inches.	Sq. mm.	Sq. in.		
10	. 3937	78.54	. 122	Less than $\frac{1}{10}$)
15	. 5905	176.7	. 274	2.5	
20	. 7874	314.16	.487	8	
25	. 9842	490.8	.760	17.5	$\} 80$
40	1. 575	1256	1.95	68	
100	3.937	7854	12.17	3.8 times	
1000	39.39	785400	1217	35 times	J
9	- 3543	63.62	. 098	Less than $\frac{10}{10}$)
13.4	. 5280	141.3	. 218	2.5	
18	. 7086	254.4	-394	8	
22.4	. 8826	394	. 611	17.5	
7.75	.3013	47.2	. 071	Less than $\frac{1000}{}$	
If.61	. 4570	106	.164	2.5	
15.5	. 6102	189	.292	8	${ }^{133}$
19.36	.7622	294	. 456	17.5	

[^69]Omithsonian Tableg.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dihute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its clectrochemical equivalent, some simple relations become apparent. The solutions used by kiohlrausch were therefore made by taking numbers of grammes of the pure salts proportional to their electrochemical equivalent, and using a litre of water as the standard quantity of the solvent. 'Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grammes to the litre of water, we get what is called the normal or gramme molecule per litre solution. In the table, m is used to represent the number of gramme molecules to the litre of water in the solution for which the conductivitics are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for $15^{\circ} \mathrm{C}$., and relative to mercury at $0^{\circ} \mathrm{C}$., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:-
Let $K_{18}^{\prime}=$ conductivity of the solution at $18^{\circ} \mathrm{C}$. relative to ntercury at $0^{\circ} \mathrm{C}$.
$K_{18}^{-18}=$ conductivity of the solvent water at $1 S^{\circ} \mathrm{C}$. relative to mercury at $0^{\circ} \mathrm{C}$.
Then $K_{18}^{\prime}-K_{18}^{\prime \prime \prime}=k_{18}=$ conductivity of the electrolyte in the solution measured.
$\frac{k_{18}}{m}=\mu=$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

TABLE 269. - Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO_{3}	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	MgSO_{4}
0.00001	1.216	1.024	1.0So	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	נ.SS6	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.52.4	6.216
0.0001	12.09	10.29	10.75	9.34	12.49	10.34

TABLE 270. - Electro-Chemical Equivalents and Normal Solutions.
The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grammes per cubic centimetre of the solution at the temperature given.

Salt dissolved.	Grammes per litre.	m	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Density.	Salt dissolved.	Grammes per litre.	m	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Density.
KCl	74.59	1.0	I 5.2	1.0457	${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{SO}_{4}$	87.16	1.0	18.9	$1.065 S$
$\mathrm{NII}_{4} \mathrm{Cl}$	53.55	1.0009	I 8.6	1.0152	${ }_{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	71.09	1.0003	I 8.6	1.0602
NaCl .	58.50	1.0	18.4	1.0391	${ }_{2}^{1} \mathrm{Lj}_{2} \mathrm{SO}_{4}$	55.09	1.0007	18.6	1.0445
LiCl	42.48	I. 0	18.4	I. 0227	${ }_{2}^{1} \mathrm{MgSO}_{4}$	60.17	1.0023	IS 6	1.0573
$\frac{1}{2} \mathrm{BaCl}_{2}$	104.0	1.0	ıS.6	I.oS8S	${ }_{2} \mathrm{ZnSO}_{4}$	So. 58	I. 0	$5 \cdot 3$	1.0794
$\frac{1}{2} \mathrm{ZnCl}_{2}$	68.0	1.012	15.0	1.0592	${ }_{2}^{1} \mathrm{CuSO}_{4}$	79.9	1.001	18.2	1.0776
KI.	165.9	1.0	I 8.6	1.1183	${ }_{2} \mathrm{~K}_{2} \mathrm{CO}_{3}$	69.17	1.0006	18.3	1.0576
KNO_{3}	101.17	1.0	18.6	1.0601	${ }_{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$	53.04	I. 0	17.9	1.0517
NaNO_{3}.	S 5.08	1.0	IS. 7	1.0542	KOH	56.27	1.0025	18.8	1.0477
AgNO_{3}.	169.9	1.0	-	,	HCl	36.51	1.00 .41	18.6	I. 0161
${ }_{2}^{1} \mathrm{~Pa}\left(\mathrm{NO}_{3}\right)_{2}$	65.28	0.5	-	-	$11 \mathrm{NO}_{3}$.	63.13	1.0014	18.6	1.0318
KClO_{3}	61.29	0.5	IS. 3	1.0367	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$	49.06	1.0006	I 8.9	1.0300
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	95.18	1.0005	18.6	1.0467					

*"Wied. Ann." vol. 26, pp. 161-226.
Smithsonian Tables.

Table 271.
SPECIFIC MOLECULAR CONDUCTIVITY $\mu:$ MERCURY $=10^{\circ}$ ．

Salt dissolved．		$m=10$	5	3	1	0.5	0.1	． 05	． 03	． 01
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$ ．	－	－	－	－	－	672	736	897	959	1098
K゙く		－	－	827	919	958	1047	1083	1107	1147
K I	－	－	770	900	968	997	1069	1102	1123	II6I
$\mathrm{NH}_{4} \mathrm{Cl}$	－	－	752	825	907	948	1035	1078	1101	1142
KNO_{3}	．	－	－	572	752	S39	983	1037	1067	I 122
${ }_{2}^{1} \mathrm{BaCl}_{2}$	－	－	－	487	658	725	S6I	904	939	1006
KClO_{3}	－	－	－	，	5	799	927	（976）	1006	1053
${ }_{2}^{1} \mathrm{Ba}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$		－	－	－	－	531	755	828	（S70）	95I
${ }_{2}^{1} \mathrm{CuS()} 4{ }_{4}$ ．	－	－	－	150	241	288	424	479	537	675
$\mathrm{AgNO} \mathrm{S}_{3}$ ．	－	－	351	4.48	635	728	886	936	（966）	1017
${ }_{2}^{1} \mathrm{Z}_{1} \mathrm{nSO}_{4}$	－	－	S2	146	249	302	431	500	556	685
$\frac{1}{2} \mathrm{MgSO}_{4}$ ．	－	－	82	151	270	330	474	532	587	715
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	－	6	－	So	475	559	734	784	828	906
$\frac{1}{2} \mathrm{ZnCl}_{2}$	－	60	1 So	2 So	514	601	768	S17	851	915
NaCl	－	－	398	52 S	695	757	S65	S97	（920）	962
NaNO_{3}.	－	－	－	430	617	694	SI7	S55	S77	907
$\mathrm{KC} \mathrm{CH}_{3} \mathrm{O}_{2}$	－	30	240	$3{ }^{3}$	59.4	671	784	820	St1	879
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$	－	－	－	254	427	510	682	751	799	S99
${ }_{2}^{1} \mathrm{H}_{2} \mathrm{SO}_{4}$ ．	－	660	1270	1 560	1820	IS99	2084	2343	2515	2855
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ ．	－	0.5	2.6	5.2	12	19	43	62	79	132
1 Cl	－	600	1420	2010	2780	3017	32.44	3330	3369	3416
HNO_{3}	．	610	1470	2070	2770	2991	3225	3289	3328	3395
${ }_{3}^{1} 1 \mathrm{I}_{3} \mathrm{~J}^{2} \mathrm{O}_{4}$ ．	．	1.48	160	170	200	250	430	540	620	790
KOH ．	．	423	990	1314	1718	18.41	1986	2045	2078	2124
NH_{3}	－	0.5	2.4	$3 \cdot 3$	8.4	12	3 I	43	50	92
Salt dissolved．		． 006	． 002	． 01	． 0006	． 0002	． 0001	． 00006	． 00002	． 00001
${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{SO}_{4}$	－	1130	1181	1207	1220	1241	1249	1254	1266	1275
Kくl	．	1162	II S_{5}	1193	1199	1209	1209	1212	1217	1216
KI．	．	1176	1197	1203	1209	1214	1216	1216	1216	1207
$\mathrm{NH}_{4} \mathrm{Cl}$ ．	－	I I 57	I 1 So	1190	1197	1204	1209	1215	1209	1205
KNO_{3}	－	I 140	1173	1180	1190	1199	1207	1220	1198	1215
${ }_{2} \mathrm{BaCl}_{2}$	＊	1031	1074	1092	1102	III8	1126	II 33	II 44	1142
KClO_{3} ．	．	1068	1091	IIOI	1109	1119	1122	1126	1135	1141
${ }_{2}^{1} \mathrm{Jaa}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$	－	982	1033	1054	1066	1084	1096	1100	III4	III4
$\frac{1}{2} \mathrm{CuSO}_{4}$	－	740	873	950	987	1039	1062	1074	1084	1086
AgNO_{3}	－	1033	1057	1068	1069	1077	1078	1077	1073	IOSo
${ }_{2} \mathrm{ZnSO}_{4}$ ．	－	744	861	919	953	1001	1023	1032	1047	1060
$\frac{1}{2} \mathrm{MgSos}_{4}$ ．	－	773	SSI	935	967	1015	1034	1036	1052	1056
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	－	933	980	998	1009	1026	1034	103S	1056	1054
$\frac{1}{2} \mathrm{ZnCl} \mathrm{l}_{2}$	－	939	979	994	1004	1020	1029	1031	1035	1036
NaCl	－	976	998	I 008	IOI4	IOIS	1029	1027	102S	1024
NaNO_{3}.	－	921	942	952	956	966	975	970	972	975
$\mathrm{KC}_{2} \mathrm{Il}_{3} \mathrm{O}_{2}$	－	891	913	919	923	933	934	935	943	939
${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{CO}_{3}$	－	956	1010	1037	1046	988	874	790	715	697＊
${ }_{2}^{1} \mathrm{I}_{2} \mathrm{SO}_{4}$ ．	－	3001	3240	3316	3342	32So	3118	2927	2077	$1413 *$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	－	170	283	3 So	470	796	995	I 133	1328	I 304＊＊
HCI	－	3438	3455	3455	3440	3340	3170	2968	2057	I254＊
IINO3	－	3421	3448	3427	3408	3285	3085	2863	1904	I 144＊＊
${ }_{3}^{1} \mathrm{H}_{3} \mathrm{P}^{2} \mathrm{O}_{4}$ 。	－	S58	945	968	977	920	837	746	497	402＊
KOII	－	2141	2140	2110	2074	$1 \mathrm{S92}$	16S9	I 474	845	747＊＊＊
NH_{3}	－	116	190	260	330	500	610	690	700	560＊

[^70]Smithsonian Tables．

LIMITING VALUES OF μ.

This table shows limiting valucs of $\mu=\frac{k}{m} \cdot 10^{8}$ for infinite dilution for neutral salts, calculated from Table 278.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$.	12 So	$\frac{1}{2} \mathrm{BaCl}_{2}$	1150	$\frac{1}{2} \mathrm{MgSO}_{4}$	1080	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$	3700
KCl .	1220	$\frac{1}{2} \mathrm{KClO}_{3}$	1150	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$.	1060	HCl	3500
K I	1220	$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{6}$.	II20	$\frac{1}{2} \mathrm{ZnCl}$	1040	HNO_{3}.	3500
$\mathrm{NH}_{4} \mathrm{Cl}$.	1210	$\frac{1}{2} \mathrm{CuSO}_{4}$	1100	NaCl	1030	$\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}$.	1100
KNO_{3}. .	1210	AgNO_{3}	1090	NaNO_{3}	980	KOH	2200
-	-	$\frac{1}{2} \mathrm{ZnSO}_{4}$.	1080	$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	940	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$.	1.400

If the quantities in Table 271 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 272 are multiplied by Hittorf's constant, or 0.0001 I , quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the jons when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts liaving acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. $\mathrm{H}_{3} \mathrm{PO}_{4}$ in dilute solution seems to approach a monobasic acid, while $\mathrm{H}_{2} \mathrm{SO}_{4}$ shows two maxima, and like $\mathrm{H}_{3} \mathrm{PO}_{4}$ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

Table 273.

TEMPERATURE COEFFICIENT.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. Tlie following table gives the temperature coefficient for solutions containing o.or gramme molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl $\mathrm{NH}_{4} \mathrm{Cl}$. NaCl LiCl . $\frac{1}{2} \mathrm{BaCl}_{2}$ $\frac{1}{2} \mathrm{ZnCl}_{2}$ $\frac{1}{2} \mathrm{MgCl}_{2}$	$\begin{aligned} & 0.0221 \\ & 0.0226 \\ & 0.0238 \\ & 0.0232 \end{aligned}$	KI . . . KNO_{3} NaNO_{3}	$\begin{aligned} & 0.0219 \\ & 0.0216 \\ & 0.0226 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4} \\ & \frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4} \end{aligned}$	$\begin{aligned} & 0.0223 \\ & 0.0240 \\ & 0.0242 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \mathrm{~K}_{2} \mathrm{CO}_{3} \\ & \frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3} \end{aligned}$	$\begin{aligned} & 0.0249 \\ & 0.0265 \end{aligned}$
				$\frac{1}{2} \mathrm{Li}_{2} \mathrm{SO}_{4}$			
		$\mathrm{AgNO} \mathrm{O}_{3}$.	0.022 I	$\frac{1}{2} \mathrm{MgSO}_{4}$	0.0236		$\begin{aligned} & 0.0194 \\ & 0.0159 \end{aligned}$
	0.0234	$\frac{1}{2} \mathrm{Ba}\left(\mathrm{NHO}_{3}\right)_{2}$	0.0224	$\frac{1}{2} \mathrm{ZnSO}_{3}$	0.0234		
	0.0239	KClO_{3}.	0.0219	${ }_{2}^{1} \mathrm{CuSO}_{4}$	0.0229		
	0.024^{1}	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.	0.0229	-	-	$\left.\begin{array}{l}\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { for } m=.001\end{array}\right\}$	0.0159

Table 274.
VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM, ETC.*

	Observer.	Date.	Method.	Value of 13. A. U. in ohms.	Value of 100 cms. of Hg in 13. A.U.	$\begin{aligned} & \text { Value of } \\ & \text { olim in } \\ & \text { cms. of } \mathrm{Hg} . \end{aligned}$
1	Lord Rayleigh	$\begin{aligned} & \text { ISSz } \\ & \text { ISS } \\ & \text { ISS } \\ & \text { ISS } \end{aligned}$	Rotating coil Lorenz method. Induced current Mean of several methods	$\begin{aligned} & .9865 \mathrm{~J} \\ & .98677 \\ & .98611 \end{aligned}$	(.95412)	106.31
2	Lord Rayleigh					106.27106.33
3	Mascart. . . Rowland				. 95374	
4				.98644	-953.49	106.32
5	Kohlrausch	$1 S_{7}$	Damping of magnets.	.98660	. 05338	106.32
6	Glazebrook . .	ISS2 to ISSS	Induced currents .	.98665	. 95355	106.29
7		18901890	Lorenz method. .	. 98686	$\begin{array}{r} .95355 \\ .95341 \end{array}$	$106.3{ }^{1}$
S	1)uncan \& Wilkes			.98634		106.34
9	Jones.	1891	Lorenz method. Lorenz method. Mean			106.31
				.98653	-	106.31
10	Strecker. . .	1885	$\left\{\begin{array}{l} \text { An absolute de- } \\ \text { termination of re- } \\ \text { sistance was not } \\ \text { made. The value } \\ .98656 \text { has been } \\ \text { usel. } \end{array}\right\}$ Mcan	-	. 95334	106. 32
11	Ilutchinson . .	ISSS		-	. 95352	106. 30
12	Salvioni . . .	1890		-	$\begin{array}{r} .95332 \\ .95354 \end{array}$	$\begin{aligned} & 106.33 \\ & 106.30 \end{aligned}$
12	Salvioni . . .					
					. 95354	106.31
13	II. F. Weber . .	$\begin{gathered} \mathrm{ISS}_{4} \\ \mathrm{ISS}_{4} \end{gathered}$	Induced current Rotating coil Mean effect of in- duced current			$\begin{aligned} & 105.37 \\ & 106.16 \end{aligned}$
14	II. F. Weber . . Roti			Absolute measure-ments comparedwith Germansilyerwire coils issuedby Siemens orStrecker.		
15						105.59
16	Heinstedt . . .	$\begin{aligned} & 1855 \\ & 18 S 9 \end{aligned}$	Damping of magnet Damping of magnet Lorenz method.			105.98
17	Dorn . . .					106.24
18	Wild	1883				106.24
19	Lorenz	ıSS 5				106.03 105.93

The Board of Trade committee recommended for adoption the values . 9866 and 106.3 . The specific resistance of mercury in ohms is thus $.9407 \times 10^{-4}$.

$$
\begin{aligned}
\text { Also I Siemens unit } & =.9407 \mathrm{ohm} . \\
& =.9535 \mathrm{BA.} \text {. U. } \\
1 \mathrm{ohm} . \quad . & =1.01358 \mathrm{~B} . \mathrm{A} . \mathrm{U} .
\end{aligned}
$$

The following values have been found for the mass of silver deposited from a solution of silver nitrate in one second by a current of one ampere :-

The following values have been found for the electromotive force of a Clark cell at $15^{\circ} \mathrm{C}$. They have been reduced from those given in the original papers on the supposition that I B. A. U. $=.9866$ ohm, and that the mass of silver deposited per second per ampere is . 00 ilis gramme.

Rayleigh, "Trans." ii. 1884				
Carhart			1.4340	
Kohle, " 2 citschrift für Instrumentenkunde," IS92			4341	،
Glazebrook and Skinner, "Proc. R. S." li. 1 S92			1.4342	"

[^71]Smithsonian Tables.

SPECIFIC INDUCTIVE CAPACITY OF GASES.

With the exception of the results given by Ayrton and Perry, for which no temperature record has been found, the values are for $0^{\circ} \mathrm{C}$. and 760 mm . pressure.

Smithsonian Tables.

table 276.

```
SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR = UNITY).
```


* The values here quoted apply when the duration of charge lies between 0.25 and 0.00005 of a second. J. J. Thomson has obtained the value 2.7 when the duration of the charge is about $1 / 25 \times 10^{6}$ of a second; and this is confirmed by Blondlot, who obtained for a similar duration 2.8.
\dagger The lower values were obtained hy electric oscillations of duration of charge about 0.0006 second. The larger values were obtained when duration of charge was about 0.02 second.
Smithsonian Tables.

Table 277.

SPECIFIC INDUCTIVE CAPACITY OF LIQUIDS.

Gmithsonian Tables.

	$\begin{aligned} & \text { だ } \\ & \text { む̀ } \\ & \text { 心. } \end{aligned}$	芯	E	ゼ®	E	E	辰
Mercury ．．．．．．	$\left\{\begin{array}{l}.092 \\ .01 \\ \text { to } \\ .17\end{array}\right.$.308 .269 10 .100	.502 .148	．171	（ $\left.\begin{array}{c}.156 \\ .285 \\ \text { to } \\ .345\end{array}\right\}$	． 177	$\left\{\begin{array}{l}- \\ -.105 \\ \text { to } \\ +.156\end{array}\right.$
Alum solution：saturated at 160.5 C.	（．17	－．100	－． 653	－． 139	$(.345$.246	－． 225	+.156 -.536
Copper sulphate solution ： sp．gr．i． 057 at 160.6 C ．	－	．103	－	－	－	－	－
Copper sulphate solution：$\}$ saturated at $15^{\circ} \mathrm{C}$ ．．．	－	． 070	－	－	－	－	－
$\begin{aligned} & \text { Sea salt solution: sp. gr. } \\ & \text { I.IS at } 20^{\circ} .5 \mathrm{C} \text {. } \end{aligned}$	－	－． 475	－． 605	－	$-.856$	－． 334	－． 565
Sal－ammoniac solution： saturated at $15^{\circ} .5 \mathrm{C}$ ．	－	－． 396	－． 652	－．189	． 059	－． 364	－． 637
Zinc sulphate solution：sp．$\}$ gr． 1.125 at $16^{\circ} .9 \mathrm{C}$ ．	－	－	－	－	－	－	$-.238$
Zinc sulphate solution： saturated at $15^{\circ} \cdot 3 \mathrm{C}$ ．	－	－	－	－	－	－	－． 430
One part distilled water + 3 parts saturated zinc sulphate solution．	－	－	－	－	－	－	－． 444
Strong sulphuric acid in distilled water： I to 20 by weight	－	－	－	－	－	－	－． 344
I to io by volume	\｛about \}	－	－	－	－	－	－
I to 5 by weight ．．．		－	－	－	－	－	－
5 to I by weight ．．．．	$\left\{\begin{array}{l}.01 \\ \text { to } \\ 3.0\end{array}\right\}$	－	－	－． 120	－	－． 25	－
Concentrated sulphuric acid	$\left\{\begin{array}{l}.55 \\ 10 \\ .85\end{array}\right\}$	1.113	－	$\left\{\begin{array}{c}.72 \\ \text { to } \\ \text { 1．} 252\end{array}\right.$	$\left.\begin{array}{l}\text { I．} 3 \\ \text { to } \\ \text { 1．} 6\end{array}\right\}$	－	－
Concentrated nitric acid ．	（．55	－	－	O_{-}	${ }^{1.672}$	－	－
Mercurous sulphate paste ．	－	－	－	－	－	－	－
Distilled water containing $\}$ trace of sulphuric acid	－	－	－	－	－	－	－． 241

＊Everett＇s＂Units and Physical Constants：＂Table of

Smithsonian Tables．

POTENTIAL IN VOLTS.

Liquids with Liquids in Alr.*

during experiment about $16^{\circ} \mathrm{C}$.

Mercury	-	-	-	-	-	-	-	-	-	-
Distilled water .	.100	. 231	-	-	-	-. 043	-	. 164	-	-
$\left\{\begin{array}{c} \text { Alum solution: saturated } \\ \text { at } 16^{\circ} .5 \mathrm{C} . \end{array}\right\}$	-	-. 014	-	-	-	-	-	-	-	-
Copper sulphate solution : $\}$ sp. gr. I.OS7 at $16^{\circ} .6 \mathrm{C}$.	-	-	-	-	-	-	. 090	-	-	-
$\begin{aligned} & \text { Copper sulphate solution : } \\ & \text { saturated at } 15^{\circ} \mathrm{C} \text {. . } \end{aligned}$	-	-	-	-. 043	-	-	-	. 095	. 102	-
$\left.\begin{array}{l}\text { Sea salt solution: sp. gr. } \\ \text { I.IS at } 20^{\circ} .5 \mathrm{C} \text {. . . . }\end{array}\right\}$	-	-. 435	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { Sal-ammoniac solution: } \\ & \text { saturated at } 15^{\circ} \cdot 5 \mathrm{C} \text {. } \end{aligned}$	-	-. 348	-	-	-	-	-	-	-	-
Zinc sulphate solution: $\}$ sp. gr. I. 125 at $16^{\circ} .9 \mathrm{C}$.	-	-	-	-	-	-	-	-	-	-
$\left.\begin{array}{l} \text { Zinc sulphate solution : } \\ \text { saturated at } 15^{\circ}: 3 \mathrm{C} . \end{array}\right\}$	$-.284$	-	-	-. 200	-	-. 095	-	-	-	-
One part distilled water +$\}$ 3 parts saturated zinc sulphate solution	-	-	-	-	-	-. 102	-	-	-	-
Strong sulphuric acid in distilled water: I to 20 by weight	-	-	-	-	-	-	-	-	-	-
1 to 10 by volume	-.358	-	-	-	-	-	-	-	-	-
I to 5 by weight		-	-	-	-	-	-	-	-	-
5 to I by weight.		-. 016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	. 8.48	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid			-	-	-	-	-	-	-	-
Mercurous sulphate paste	-	-	.475	-	-	-	-	-	-	8
$\left.\begin{array}{l}\text { Distilled water containing } \\ \text { trace of sulphuric acid. }\end{array}\right\}$	-	-	-	-	-	-	-	-	-	. 075

Ayrton and Perry's results, prepared by Ayrton.
Smithsonian Tables.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Sollds with Sollds in Alr.*
Temperature of substances during the experiment about $18^{\circ} \mathrm{C}$.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	$\begin{gathered} \text { Zinc } \\ \text { anal- } \\ \text { gam. } \end{gathered}$	Brass.
Carbon .	0	$\cdot 370$.485	. 858	. 113	. 795	$1.096 \dagger$	1.208t	. $414 \dagger$
Copper .	-. 370	\bigcirc	.146	. 5.42	$-.238$. 456	. 750	. 894	.087
Iron .	$-.485 \dagger$	-.1.46	\bigcirc	. $401 \dagger$	$-.369$. $313{ }^{\dagger}$. 6001	. $744 \dagger$	-. 064
Lead	$-.858$	-542	-.401	\bigcirc	-.771	-. 099	. 210	-357 ${ }^{\dagger}$	-. 472
Platinum	-.113 ${ }^{\text {¢ }}$.23S	.369	. 771	\bigcirc	. 690	. 981	1.125^{\dagger}	.287
Tin .	-.795 \dagger	-.45S	-.313	. 099	-. 690	\bigcirc	. 281	.463	-. 372
Zinc	-1.096t	-. 750	-. 600	-. 216	-.981	. 281	\bigcirc	. 144	-. 679
" amalgam	-1.208 \dagger	-. 89.4	-. 744	-.357 \dagger	-1.125 ${ }^{\text {¢ }}$	$-.463$	-. 144	\bigcirc	-.S22
Brass	-.414	-. 087	. 06.4	. 472	-.2S7	-372	. 679	. 522	\bigcirc

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

* Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.
Smithsonian Tables. SALTE.

The following numbers are given by G. Magnanini for the difference of potential in hundredths of a volt between zinc in a nomal solution of sulphuric acid and the metals maned at the head of the different columns when placed in the solution named in the first column. The solutions were contaned in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strength of the solution in gramme molecules per litre.		Zinc. \dagger	Cadmium. \dagger	Lead.	Tin.	Copper.	Silver.	
No. of molecules.	Salt.	Difference of potential in centivolts.						
0.5	$\mathrm{H}_{2} \mathrm{SO}_{4}$	0.0	36.6	51.3	51.3	100.7	121.3	
1.0	NaOH	-32.1	19.5	3 I .8	0.2	So. 2	95.8	
1.0	KOII	-42.5	I 5.5	32.0	-1.2	77.0	10.4 .0	
0.5	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.4	35.6	50.8	51.4	101.3	120.9	
1.0	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	-5.9	2.4. 1	$45 \cdot 3$	$45 \cdot 7$	38.8	6.4 .8	
1.0	KNO_{3}	$1 \mathrm{r} . \mathrm{S} \ddagger$	31.9	42.6	31.1	81.2	105.7	
1.0	NaNO_{3}	11.5	32.3	5 I .0	40.9	$95 \cdot 7$	114.8	
0.5	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	$23.9 \ddagger$	42.8	41.2	40.9	9.4 .6	121.0	
0.5	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	72.8	61.1	78.4	6S.1	123.6	132.4	
0.5	$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.8	$34 \cdot 7$	51.0	40.9	$95 \cdot 7$	11.4 .8	
0.5	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	-0.5	37.1	53.2	$57.6 \ddagger$	IOI. 5		
0.25	$\mathrm{K}_{4} \mathrm{FeC}_{6} \mathrm{~N}_{6}$	-6.1	33.6	50.7	41.2	- \ddagger	87.8	
0.167	$\mathrm{K}_{6} \mathrm{Fe}_{2}(\mathrm{CN})_{2}$	$41.0 \$$	80.8	S1.2	130.9	110.7	12.4 .9	
1.0	KCNS	-1.2	32.5	52.8	52.7	52.5	72.5	
1.0	NaNO_{3}	$4 \cdot 5$	35.2	50.2	49.0	103.6	104.6?	
0.5	$\mathrm{Sr} \mathrm{NO}_{3}$	14.8	38.3	50.6	48.7	103.0	119.3	
0.125	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	21.9	$39 \cdot 3$	51.7	52.8	109.6	121.5	
1.0	KNO_{3}	- \ddagger	35.6	47.5	49.9	10.4 .8	115.0	
0.2	KClO_{3}	$15-10 \ddagger$	39.9	53.8	57.7	105.3	120.9	
0.167	$\mathrm{K} \mathrm{BrO}_{3}$	$13-201$	40.7	51.3	50.9	I 11.3	120.8	
1.0	$\mathrm{NH}_{4} \mathrm{Cl}$	2.9	32.4	51.3	50.9	81.2	101.7	
1.0	K	2.8	22.5	4 I I	50.8	61.3	61.5	
1.0	NaCl	-	31.9	51.2	50.3	So. 9	101.3	
1.0	KBr	2.3	31.7	47.2	52.5	73.6	82.4	
1.0	KCl	-	32.1	51.6	52-6	Si. 6	107.6	
0.5	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	$-\mathrm{S.2}$	28.7	41.0	31.0	68.7	103.7	
- \\|I	NaOBr	18.4	41.6	73.1	$70.6 \ddagger$	89.9	99.7	
1.0	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	5.5	39.7	61.3	$54 \cdot 4$ §	10.4 .6	123.4	
0.5	$\mathrm{C}_{4} \mathrm{II}_{6} \mathrm{O}_{6}$	4.1	41.3	61.6	57.6	110.9	125.7	
0.5	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNNaO}$	-7.9	31.5	51.5	42-47	$100 .{ }^{\text {S }}$	119.7	

[^72]
Smithsonian Tables.

Table 281.

VARIATION OF ELECTRICAL RESISTANCE OF GLASS AND PORCELAIN WITH TEMPERATURE.

The following table gives the values of a, b, and c in the equation
$\log R=a+b t+c t^{2}$,
where R is the specific resistance expressed in olims, that is, the resistance in ohms per centimetre of a rod one square centimetre in cross section.*

No.	Kind of glass.	Density.	a	ठ	. ${ }^{\text {c }}$	Range of temp. Centigrade.
I	Test-tube glass	-	13.86	-. 044	. 000065	$0^{\circ}-250^{\circ}$
2	" " "	2.458	14.24	-. 055	. 0001	37-131
3	Bohemian glass	2.43	16.21	-. 043	. 0000394	60-174
4	Lime glass (Japanese manufacture) .	2.55	13.14	-.031	-.000021	$10-85$
5	" "	2.499	14.002	-. 025	-.00006	35-95
6	Soda-lime glass (French flask)	2.533	14.58	-. 049	. 000075	45-120
7	Potash-soda lime glass	2.58	16.34	-.0425	. 0000364	66-193
S	Arsenic enamel flint glass	3.07	18.17	-. 055	. 000088	105-I 35
9	Flint glass (Thomson's electrometer jar)	3.172	18.021	-.036	-.0000091	100-200
10	Porcelain (white evaporating dish) .	-	15.65	-. 0.42	. 00005	6S-290

Composition of some of the above Specimens of Glass.

[^73]Smithsonian Tableg.

That there is a close relation between the thermal and the electrical conductivities of metal was shown experimentally by Wiedemamm and lo ranz in $1 \mathrm{I}_{53}$, and had been referred to by Forbes, with whom a difficulty arose with regard to the direction of the variation with temperature. The experiments of "lait and his students have shown that this difficulty was largely, if not emtrely, due to experimental error. The same relation has been shown to hold for alloys by Chandler Roberts and by Neumann. This relation was
a. Val.uis is Albitraby Units Atis C.

Substance.	l_{10}	k_{18}	l_{18} k_{18}
lead	7.93	4.569	1.74
Tin .	14.46	S.S23	1.6.1
Kinc.	25.45	1.4 .83	1.72
Copprer .	41.52	2.4 .04	1.73
lron, No. 1	14.15	6.803	2.08
" 62	9.64	4.060	2.37
" 3	13.75	6.565	2.09

denicel by 11. F'. W'ber, and has been again experimentally investigited and apparenly established by the experiments of Kirchhoff and Hancemann, of L. Lorenz, of I'. Kohlrausch, and of lerget.
l'utting $l=$ thermal conductivity, and $k=$ electrical conductivity, Kirchhoff and llansemann find the values in Table a. This talle shows iron to deviate consideridsy from the other metals in the relationship of the two conductivities; but this may possibly be explained by its magnetic properties.

Lorenz's results *how that the ratio l / k for the different metals, cxcept iron, is nearly constant for values at 0° and $100^{\circ} \mathrm{C}$., but that the ratio is generally greater for poorly conducting substances. He shows that the ratio $\frac{l_{10 n}}{k_{100}} \div \frac{l_{n}}{f_{0}}$ remains nearly constant for all metals examined, with the exception of iron, and has an average value, as shown by Table \mathbf{b}, of about 1.37. He concludes that $l / k=\operatorname{constant} \times T$, where T is the absolute temperature.

In this table the values of l and k are given in c. g. s. units, and the metals are arranged in the order of their heat conductivities. The same specimens were used for both the thermal and the electrical cxperiments.
b. Values in C. G. S. Units.

Substances.				$l o$	l_{100}	$k_{0} \times 1{ }^{5}$	$k_{100} \times 10^{5}$	$\frac{l_{0}}{k_{0}}$	$\frac{l_{100}}{l_{100}} \div \frac{l_{0}}{l_{0}}$
Copper	-	-	-	0.7198	0.7226	45.74	33.82	I 574	1.35 ${ }^{\text {S }}$
Magnesium	-	.		c. 3760	0.3760	24.47	17.50	1537	1.398
Aluminium	.	.	-	0.3435	0.3619	22.46	17.31	1529	1.367
Brass, red.	.	.	*	0.2460	0.2827	15.75	I 3.31	1562	1.360
Cadmium	0.2200	0.2045	14.41	I0.18	1527	1.315
brass, yellow	-	.	.	0.2041	0.25 .40	12.62	11.00	1617	$1.42 S$
Iron.	.	.	-	0.1665	0.1627	10.37	6.62 S	1605	$1.53{ }^{\circ}$
Tin.	.	.	.	0.152 S	0.1423	$9 \cdot 346$	6.524	1635	1.334
Lead.	.	.		0.0536	0.0764	5.141	3.602	1627	1.304
German silver	.	.	.	0.0700	0.0887	$3 \cdot 766$	3.632	1858	1.314
Antimony .	.	-	.	0.0.442	0.0396	2.199	1.522	2011	1.294
Bismuth.		.	.	0.0177	0.016 .1	0.929	0.633	1900	1.372

c. Berget's Experinents. \dagger

The same specimens were used for both experiments. It will be seen that the ratio is nearly constant, but not exactly so.

Substance.	l	$k \times 10^{-5}$	$\frac{l}{k} \mathrm{raO}^{-3}$	Substance.	l	$k \times{ }^{\text {ro-5 }}$	$\frac{l}{k}{ }^{10}-3$
Copper .	I. 0405	65.13	1.6	Tin.	0.151	8.33	I.S
Zinc.	0.303	15.00	1.7	Lead .	0.0810	5.06	1.6
Brass	0.2625	15.47	1.7	Antimony	0.042	2.47	1.7
Iron .	0.1587	9.41	1.7	Mercury .	0.0201	1.06	I. ${ }^{\text {S }}$

d. Kohlrausch's Results.

An interesting confirmation of the relationship of the two conductivities has been furnished by F. Kohlrausch, who has shown that tempering steel causes equal proportional changes in the thermal and electrical condnctivities of the metal, thus leaving the ratio l / k unclianged by the process. f

$$
\begin{aligned}
& \text { Tempered steel " } \quad . \quad \begin{array}{l}
=0.062 ; k=3.3 ; l / k=0.019 \\
\text { Soft steel }
\end{array} \quad . \quad=5.5 ; "=0.020
\end{aligned}
$$

In the consideration of this subject it must be borne in mind that closely accurate values of thermal conductivity are very difficult to obtain, and hence fairly large variations are to be expected.

ELECTROCHEMICAL EQUIVALENTS.*

With the exception of the values in heary type for copper and silver, the numbers in this table have been calculated from the atomic weights and valence, on the basis of the value given for silver which was adopted by the luternational Congress of Electricians at (hicago in 心.y. Many of the substances have not been separated electrically, and in these cases the numbers are purcly theoretical.

"The atomic weights are from a paper by F. W. Clarke. "Journ. Am. Chem. Soc." vol. 18, p. $213,1896$.

Smithsonian Tales.

ELECTROCHEMICAL EQUIVALENTS.

Smithsonian Tables.

Tables 284， 285.

PERMEABILITY OF IRON．

TABLE 284．－Permeablily of Iron Rings and Wire．

This table gives，for a few specimens of iron，the magnetic induction B ，and permeability μ ，corresponding to the magneto－motive forces $/ f$ recorded in the first column．The first specimen is taken from a paper by kowhand，＊ and refers to a welded and amoealed ring of＂Burden＇s liest＂wrought iron．＂The ring was e．77 cins，in mean diameter，and the bar had a cross sectional area of 0.916 sq ．cms．Specimens $2-4$ are taken from a paper by Fosanquet．t and also refers to soft iron rings．The mean diameters were 21．5，22．1，and 22.725 cms．，and the hickness of the bars $2.535,1.245$ ，and .7544 cms ．respectively．These experiments were intended to illustrate the effect of thickness of bar on the induction．Specinen 5 is from Lwing＇s book，t and refers to one of his own experiments on a soft iron wire .077 cms ．diameter and 30.5 cms ．long．

H	Specimen 1		2		3		4		5		
	B	μ	B	μ	B	${ }^{\mu}$	B	${ }^{\mu}$	B	μ	
0.2	So	400	126	630	65	325	S_{5}	425	22	110	
0.5	330	660	377	75.	224	4.45	214	425	7.4	1.45	
1.0	1.450	1450	14.49	14.19	8.40	S．40	S85	SS5	246	2.46	
2.0	48.40	2.420	4564	2282	3533	1766	2417	1208	950	475	
5.0	9880	1976	9900	1980	8203	1659	SS8．	1777	12430	2.486	
10.0	12970	1297	13023	1302	125.10	1254	11388	1139	15020	1502	
20.0	1.7740	737	14911	746	1.4710	735	13273	66.4	15790	789	
50.0	16390	$3=$ S	16217	324	16062	321	13890	278	－	－	
100.0	－	－	17148	171	17900	179	14837	1.48	－	－	

TABLE 285．－Permeabllity of Transformer Iron．§

This table contains the results of some experiments on transformers of the Westimehouse and Thonson－Houston types．Referring to the headings of the different columns， $1 /$ is the total magneto－motive force applied to the iron ： A／／l the magncto－motive force per centimetre length of the iron circuit：B the total induction through the mag－ netizing coil：B / a the induction per square centimetre of the mean section of the iron core：B / B the magnetic reluctance of the iron circuit；$J l / 1 / a$ the pemeability of the iron，a being taken as the mean cross section of the iron circuit as it exists in the transfomer，which is thus shighty greater than the actual cross section of the iron．

M	（a）Westinghouse No． 8 Transformers（abuet 2500 Watts Capacity）．								
	$\frac{17}{1}$	First specimen．				Second specimen．			
		B	$\frac{\beta}{a}$	$\frac{1 / 2}{B}$	$\frac{B l}{M u z}$	B	$\frac{b}{a}$	$\frac{31}{3}$	$\frac{B l}{1 H a}$
20	0.597	218×10^{3}	1406	0.917×10^{-4}	2360	16×10^{4}	1032	1.25×10^{-4}	1730
10	1．191	587	3790	0.651	3120	49	3140	0.82	2640
60	1．791	57S	5660	0.683	3180	82	5290	0.73	2970
So	$2.33{ }^{8}$	1091	7040	$0.734 \quad 6$	2960	104	6－10	0.77 ＂	2820
100	2.955	1219	7860	0.5 ± 9	26.40	118	7610	$0 . S_{5}$＂	2560
120	3．542	1330	85%	0.1003	2.410	12.1	SOOO	0.97 ＂	2250
1.40	4.159	1405	9060	0.994	2186	131	8450	1.07	2036
160	4.776	1.475	9510	1.090 ＂	2000	135	8710	1.18	1830
180	5.373	15.32 ＇	9SSo	1．150	1850	1.40	9030	1.29	1690
200	5.970	15 118	10200	1.270	1720	142	9160	1.41	1540
220	6.5617	1 tS ＂	10.4 .30	1.360	1590	144	9290	I． 53	1.410
260	$7 \cdot 761$	1692	10910	1.5 .40	1.410	－			－

－＂Phil．Mag．＂sth serics，vol．xlv．p． 15 r．
t 1 birl．sth series，vol．xix．p． 73.
\ddagger＂Wasnetic Induction in Iron and Other Metals．＂
§＇1．Gray，from special experiments．
(b) Westinghouse No. 6 Transformbes (about iSoo Watts Capacity).

This table and Table 2 So below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel. which is stated in the paper to have been 240 . The maximum magnetization is not tabulated; but as stated in the by 4π. "Coercive force" is the magnetiLing force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the " maximun induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

* Phil. 'Trans. Roy. Soc. vol. xxxv.
\dagger Graphitic carbon.

Smithsonian Tables.

Table 286.
PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetiaing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force " is the magnetizing force which had to be applied in order to leave no residual magnetioation after dissipated" was calculated from the furmula: - Eneggy dissipated $=$ coercive force \times maximum induction $\div \pi$

$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { Test. } \end{aligned}$	Description of specimen.	'Temper.	Specificclectri-calresis-tance.	Magnetic properties.				Energy dis sipated per cycle.
				Maxinum in duction	Residual induction.	Cocrcic force.	1)emas. nenzive furce.	
1	Wrought iron	Ammealed	. 01378	18251	72.45	2.30	-	13356
2	Malleable cast iron	"	.03254	12408	7479	8.50	-	34742
3	Cray cast iron. .	-	. 10560	10783	3928	3.80	-	13037
4	Be-semer steel	-	. 01050	18190	7860	2.96	-	17137
5	Whitworth mild steel	Anmealed	. 01080	198.40	7080	1.63	-	10289
6	"		. 01446	15736	9840	6.73	-	40120
7	" "	\{ Oil-hard- d ened	. 01390	18796	110.40	11.00	-	65786
S	" ${ }^{\prime}$	Ammealed	. 01559	16120	10740	8.26	-	42366
9	6 "	$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$. 01695	16120	S736	19.38	-	99401
10	$\left.\begin{array}{l}\text { Haclfield's manganese } \\ \text { steel }\end{array}\right\}$	-	. 06554	310	-	-		-
11	Manganese steel .	As forged	.05368	4623	2202	23.50	37.13	34567
12	.. ${ }^{\text {a }}$	Annealed	. 03928	10578	5S48	33.86	46.10	113963
13	" " .	f Oil-hard- l ened	.05556	4769	2158	27.64	40.29	419.11
14	" " .	As forged	. 06993	747	-	-	-	-
15	" " .	Annealed	.06316	1985	540	24.50	50.39	$154 \% 4$
16	" " .	\{ Oil-hard- \{ ened	. 07066	733	-	-	-	-
17	Silicon stee]	As forged	.06I63	15148	11073	9.49	12.60	45740
IS		Annealed	. 06185	14701	SI 49	7.80	10.74	36.485
19	" "	$\left\{\begin{array}{l} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 06195	14696	SoS.	12.75	17.14	59619
20	Chrome steel	As forged	. 02016	15778	9315	12.24	13.57	61.439
21	" " . .	Annealed	. 01942	148.48	7570	S.98	12.24	42425
22	"	\{ Oil-hard-	. 02708	I 3960	S595	3 3.15	48.45	169455
23	" "	As forged	. 01791	1.4680	7568	18.40	22.03	S 5944
2.4	"	Amealed	. 01849	13233	6489	15.40	19.79	64842
25	"	$\{$ Oil-hard-	. 03035	I2S68	$7 \mathrm{S91}$	40.50	56.70	167050
26	Tungsten steel	As forged	.02249	157 IS	1014	15.71	17.75	78568
27	" " . .	Anmealed (Ilardened	. 02250	16498	11008	15.30	16.93	80315
28	" "	in cold water	. 02274	-	-	-	-	-
29	"	$\left\{\begin{array}{l} \text { Hardened } \\ \text { in tepid } \\ \text { water } \end{array}\right.$. 02249	15610	9482	30.10	34.70	149500
30	" " (French)	f Oil hard-	. 03604	14.450	S643	47.07	64.46	216864
3 I	" " . .	Very hard	. $04+27$	12133	68.8	51.20	70.69	197660
32	Gray cast iron .	-	. 11.400	9145	3161	13.67	17.03	39789
33	Mottled cast iron	-	. 06286	10546	5108	12.24	-	$4107=$
34	White " "	-	. 05661	9312	5554	12.24	20.40	36383
35	Spiegeleisen	-	. 10520	385	77	-	-	

Smithsonian Tables.

Table 287.
PERMEAB!LITY OF SOME OF THE SPECIMENS IN TABLE 286.
This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 286 . The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Ilr. Hopkinson, and may tharefore be slighty in crror; they are the mean values for rising and fallung magnetizations.

Magnetizing iurce. H	Specimen I (iron).		Specimen 8 (annealed steel).		Specimen 9 (same as S tempered).		Specimen 3 (cast iron).	
	F	μ	b	μ	B	μ	B	μ
I	-	-	-	-	-	-	265	265
2	200	100	-	-	-	-	700	350
3	-	-	-	-	-	-	1625	542
5	10050	2010	1525	300	750	150	3000	600
10	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	575	5875	294	6000	300
30	15200	507	12650	422	9875	329	6500	217
40	15800	395	13300	332	11600	290	7100	177
50	16000	320	13500	276	12000	2.40	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	165	14900	149	14500	145	S500	S5
I 50	17.400	116	15700	105	15 SOO	105	9500	63
200	17950	90	16100	So	16100	So	10190	51

Tables 298-292 give the results of some experiments by Du Bois,* on the magneric pronerties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals is centimetres long and 0.6 centimetres diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density $7 . \%_{2}$. (2) Hard English cast steel yellow tempered at $230^{\circ} \mathrm{C}$.; density $7.7 \mathrm{~K}^{\circ}$. (3) Hard drawn best nickel containing $99 \% \mathrm{Ni}$ with some SiO_{2} and traces of Fe and Cu : density 8.82 . (4) Cast cobalt giving the following composition on analysis: $\mathrm{Co}=93.1, \mathrm{Ni}=5.8, \mathrm{Fe}=0.8, \mathrm{Cu}=0.2, \mathrm{Si}=0.1$, and $\mathrm{C}=0.3$. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gramme, and I the magnetic moment per cubic centimetre. $I I$ and S are taken from the curses published by Du Bois; the others have been calcalated using the densities given.

Table 288.
MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND $100^{\circ} \mathrm{C}$.

Soft iron ato C .					Soft iron at $100^{\circ} \mathrm{C}$.				
H	S	I	B	μ	H	S	I	B	μ
100	1 So.0	1408	17790	177.9	100	180.0	1402	17720	177.2
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0
400	208.0	1627	20530	52.1	400	207.0	1613	20660	51.6
700	215.5	1685	21870	31.2	700	213.4	I 663	21590	29.8
1000	218.0	1705	22.420	22.4	1000	215.0	1674	22040	21.0
1200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.6

TABLES 289.
MACNETIC PROPERTIES OF STEEL AT 0^{3} AND $100^{\circ} \mathrm{C}$.

Steel at $0^{\circ} \mathrm{C}$.					Steel at $100^{\circ} \mathrm{C}$.				
II	S	I	B	μ	H	S	I	B	μ
100	165.0	1283	162.10	162.4	100	165.0	1278	16170	161.7
200	181.0	1408	17900	S9.5	200	1 So.0	I 395	17730	S8.6
400	193.0	1500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	155^{2}	20210	28.9	700	197.0	1527	19890	2 S .4
1000	203.5	15 \%	20900	20.9	1000	199.0	I 543	20380	20.4
1200	205.0	1595	21240	17.7	I 500	203.0	I 573	21270	14.2
$3750{ }^{\text {t }}$	212.0	1650	2.4770	6.5	3000	205.5	I 593	23020	$7 \cdot 7$
					5000	208.0	1612	25260	5.I

*"Phil. Max." 5 series, vol. xxix.
\dagger 'The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but frmm a small piece of the metal provided with a polished mirror surface and placed, with its polished face mormal to the lines of force between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 292.)

MACNETIC PROPERTIES OF METALS.

TABLE 290. - Cobalt at 100 C.

H	S	I	F	μ
200	106	S.4	10850	5.4.2
300	116	9ご	11960	39.9
500	127	1016	13260	26.5
700	131	10.45	13570	19.8
1000	134	1076	1.45=0	14.5
1500	138	1104	153 So	10.3
2500	143	1144	16870	6.7
4000	145	1104	15630	4.7
6000	147	1176	20780	3.5
9000	149	1102	239 So	2.6
At $0^{\circ} \mathrm{C}$. this specimen gave the following results:				
7900	154	1232	23350	3.0

TABLE 291. - Nickel at $100^{\circ} \mathrm{O}$.

H	S	I	B	μ
100	35.0	309	3980	39.8
200	43.0	3 So	4966	24.8
300	40.0	406	5399	I 8.0
500	50.0	4.4	6043	12.1
700	51.5	45.1	6.109	9.1
1000	53.0	468	6875	6.9
1500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59.4	524	15585	1.7
12000	59.6	526	18606	1. 5
At $0^{\circ} \mathrm{C}$. this specimen gave the following results :				
12300	67.5	595	19782	1.6

TABLE 292. - Magnetite.
The following results are given by Du Bois * for a specimen of magnetite.

$-H$	I	B	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	$100 \$_{4}$	5.0
12000	350	2008_{4}	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals. \dagger The results show that the intensity of magnetization does not increase much in iron after the field has reaclied an intensity of swo c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, $d B / d / I$ is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Eladfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of $10 . n 00$. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.
rable 293. - Lowmoor Wrought Iron.

H	I	B	μ
$30 S 0$	$16 S 0$	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1650	39900	2.13
18980	1730	40730	2.15

TABLE 294. - Vicker's Tool Stecl.

TABLE 295. - Hadficld's Manganese Steel.

H	I	B	μ
1930	55	2620	1.36
2380	8.4	3430	1.44
3350	84	4.400	$\mathbf{1} .31$
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 296. - Saturation Values for Steels of Different Kinds.

		H	I	B	μ
1	liessemer steel containing about 0.4 per cent carbon	17600	1770	39580	2.27
	Siemens-Mlarten steel containing about 0.5 per cent carbon	15000	1660	38560	2.16
3	Crucible steel for making chisels, containing about 0.6 per cent carbon	19470	1480	3 Solo	1.95
4	Finer quality of 3 containing about 0.8 per cent carbon.	15330	1550	3 SI 190	2.05
5	Crucible steel containing I per cent carbon	19620	1440	37690	1.92
6	Whitworth's fluid-compressed steel.	15700	1590	35710	2.07

[^74]\dagger "Phil. Trans. Roy. Soc." 1885 and IS89.

Table 297.
MACNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.
The effect of very small magnetizing forces has been studied by C. liaur and by lord Rayleigh.t The following short tuble is then from Ihar's paper, ond is taken by him to indicate that the susceptibility is finite for zero values of H and i or a finite range increases in simple proportion to $\%$. We gives he formula $:=15+100 ~ H$, or $l=$ $15 / H-10$ - $H-$. The ex, eriments were made on an annealed ring of round bar 1.013 cms . radius, the ring having a ratins of 4.422 cms. Lord kayleigh's results for an iron wire not annealed give $k=6.4+5.1 / I$, or $l=6.4 / f$ $+5.1 H \%$. The forces were reduced as low as $0.00004 \mathrm{c} . \mathrm{g}$. so, the relation of k to H remaining constant.

First experiment.			Second experiment.	
H	$\%$	1	H	k
. O1 5So	16.46	2.63	.0130	15.50
.03081	17.65	5.47	. 0847	18.38
.07033	23.00	16.33	.0946	20.49
.131SS	28.90	3 S. 15	. 1864	$=5.07$
. 23011	39.81	91.56	.2903	32.40
-35+22	5 S .56	22.4 .87	. 3397	35.20

Tables 298, 299.

DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass throngh a closed cycle of magnctization dissipation of encrgy results. I.et us suppose the iron to pass from zero magnetization to strong magnetioation in one direction and then gradually lack through zero to strong magnetization in the uther direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. 'That this fact involves a dissipation of energy which can be calculated from the open loop formed be the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg \ddagger in ISSr, reference being made to experiments of Thomson, s where such curses are illustrated for magnetism, and to F . Cohn, where similar curves are given for thermoelectricity. 'The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. Extensive investigations have since been made by a number of investigators.

TABLE 293.- Soft Iron Wire.
(From Ewing's rss 5 paper.)

Total induction per sq. 13	nissipation of cnergy in ergs per cu. cm.	Horse- wower wasted per on at ino cycles per sec.
2000	420	0.74
3000	800	1.41
4000	1230	2.18
5000	1700	3.01
6000	2200	3.89
7000	2760	4.88
8000	3450	6.10
9000	4200	7.43
10000	5000	8.84
11000	5820	10.30
12000	6720	11.89
13000	7650	13.53
14000	8650	15.30
15000	9670	17.10

*"Wied. Amı.". vol. xi.
\$ "Wird. Ann." vol. xiii. p. 141 .
|| "Wied. Ann." vol. 6.

TABLE 299. - Cable Transformers.

This table gives the results obtained by Alexander Siemens with one of Sienmens' cable transformers. The transformer core consisted of 900 soft iron wires imm. diameter and 6 metres long.** The dissipation of energy in watts is for 100 complete cycles per second.

Mean maxi mum induc tioul density in core. B	Total observerl dissipation of energy in the core in watts per 112 lbs .	Calculated coddy curremt loss in watts per 112 lbs.	Hysteresis loss of enersy in watts per 112 lbs.	Hysteresis loss of energy in ergs per $\mathrm{cu} . \mathrm{cm}$. per cycle.
1000	43.2	4	39.2	602
2000	96.2	16	So. 2	1231
3000	158.0	36	122.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	200.5	3217
6000	390.1	144	2.46 .1	3779

† "Pliil. May." vol. xxiii.
§ "Plil. Trans. Roy. Soc." vol. 175.

- "Proc. Roy. Soc." 1892 , and "Trans. Roy. Soc." $1 \$ 85$. * "Proc. Ins1. of Eleci. Eng." Lond., 1892.

Smithsonian Tables.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $c^{\circ}=a / j^{1.6}$, where c is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may he. His experiments show this to be nearly true when the induction does not exceed $\pm 15000 \mathrm{c}$. g. s. mits per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation walue of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification. \dagger

Values of Constant $\%$.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

* "Trans. Am. Inst. Elect. Eng.", January and September, 1892.
\dagger See T. Gray, "Proc. Roy. Soc." vol. lvi.

Smithsonian Tables.

DISSIPATION OF ENERGY IN THE CYCLIC MACNETIZATION OF TRANSFORMER CORES.*

This table gives, for the most part, results obtained for transformer cores. The electromagnet core formed a closed iron circuit of about 320 sq . cms. section and was made up of sheets of liessemer steel about $1-20$ inch thick. The No. 20 pransformer had a core of sult steel sheets abuut 7 -1000 inch thick insulated from each other by sheets of thin paper. The cores of the other transformers were formed of soft steel sheets $15-1000$ inch thick insulated from each other by their oxidized surfaces only. 'The following are the particulars of the data given in the different columns:-

Column 1. Description of specimen.
". 2. The total ener $5 y$, in joules per cycle, required to produce the magnetic induction given in column B
" 3. The energy, in joutes per cycle, returned to the circuit on reversal of the magnetizing force.
" 4. The energy dissipated, in joules per cycle, or the difference of columns 2 and 3.
" 5,6 , and 7 . The quantities in columns 2,3 , and 4 reduced to ergs per cubic centimetre of the core.
" b^{\prime}. The maximum induction in c. g. s. units per sq. cm.

1	2	3	4	5	6	7	H
Electromagnet	6.5	0.9	5.6	1010	140	867	2660
	24.4	2.6	21.8	3S00	406	3400	6700
	66.8	10.4	56.4	10.400	1620	8500	11600
	SI. 4	15.4	66.0	12700	2,400	10300	12700
	96.6	21.8	74.8	15100	3.400	11700	14100
	126.2	38.2	88.0	19700	5960	13700	15200
	153.0	57.6	95.4	23900	S990	14900	15900
	178.4	79.2	99.2	27800	12.400	15500	16600
	221.2	1 l 6.8	10.4	34500	IS300	16300	172.40
	275.6	168.0	107.6	42900	26200	16500	17420
Westinghouse No 20 transformer	1.31	0.30	1.01	I 435	328	1107	2330
	4.65	I.10	3.55	5110	1210	3900	49 So
	S. 25	I. 62	6.63	9060	1\%So	7280	6620
	10.36	I. S 9	8.47	11350	2070	9280	7720
	12.20	2.98	9.22	$13+40$	32.50	10160	S250
	1S. 20	5.15	13.05	19980	5660	14320	9690
Westinghouse No. S transformer, specimen I	0.45	0.055	0.400	S75	105	770	3.480
	0.80	0.102	0.101	1544	196	13.48	51.40
	I. 66	0.199	I. 460	3200	3 SO	$2 \mathrm{S20}$	7570
	2.42	0.406	2.010	4650	7 So	3570	9250
	3.54	0.795	2.750	6820	1530	5290	10940
$\begin{aligned} & \text { Westinghouse No. S } \\ & \text { transformer, specimen } 2 \end{aligned}$	0.399	0.0 .46	0.353	768	SS	680	3060
	0.820	0.085	0.735	1574	16.4	1410	4830
	1.713	0.183	I. 530	3300	352	2948	7570
	2.663	0.343	2.320	5120	660	4460	9270
Westinghouse No. 6transformer, specimen I	0.488	0.062	0.426	1360	172	IISS	46.40
	0.814	0.096	0.718	2260	266	1994	6760
	1. 430	0.205	I. 225	3980	570	3410	9370
	2.000	$0.33{ }^{\circ}$	1.670	55^{60}	918	46.42	10950
Westinghouse No. 6 transformer, specimen 2	0.722	0.100	0.622	2000	27 S	1722	7290
	1.045	0.16 .4	-. SS 4	2920	456	2464	9000
	I. 379	0.222	1.157	3530	616	3214	9990
	1.731	$0.3 \geq$ S	1. 403	4810	912	$3 \mathrm{S9S}$	11210
Westinghouse No. 4 transformer	0.355	0.044	0.311	1210	152	1058	4540
	0.549	0.074	0.475	ISSo	255	1625	5920
	0.753	0.126	0.657	2690	$+33$	2257	71.40
	0.970	0.175	0.795	3340	603	2737	7800
Thomson-IIouston 1500 watt transformer	0.413	0.105	0.308	1930	490	1440	6150
	0.681	0.189	0.492	3190	SSo	2310	8250
	1.207	0.389	0.818	5660	IS30	33^{30}	11110
	I. 797	0.710	1.087	8420	3320	5100	${ }^{1} 3290$

* T. Gray, from special experiments; see Table 285 for other properties.

Smithsonian Tables.

The first column gives the maximum magnetic induction B per square centimetre in c. g, s. units. The other columns give the dissipation of energy in ergs per cyele per cubic centimetre for the iron speciffed in the foot-note.

| B | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 400 | 420 | 530 | 600 | 750 | 230 | 1100 |
| 3000 | 780 | 800 | 1050 | 1150 | 1350 | 1700 | 2150 |
| 4000 | 1200 | 1260 | 1670 | 1780 | 2030 | 2600 | 3300 |
| 5000 | 1680 | 1770 | 2440 | 2640 | 2810 | 3800 | 4700 |
| 6000 | 2200 | 2370 | 3170 | 3360 | 3700 | 5200 | 6200 |
| 7000 | 2800 | 3150 | 4020 | 4300 | 4650 | 6600 | 7500 |
| 8000 | 3430 | 3940 | 5020 | 5300 | 5770 | 8400 | 9500 |
| 9000 | 4160 | 4800 | 6100 | 6380 | 6970 | 10100 | 11400 |
| 10000 | 4920 | 5730 | 7200 | 7520 | 8340 | 11800 | 13400 |
| 11000 | 5800 | 6800 | 8410 | 8750 | 9850 | 13600 | 15600 |
| 12000 | 6700 | 8000 | 9750 | 10070 | 11550 | 15400 | - |
| 13000 | 7620 | 9200 | 11200 | 11460 | 13260 | 17300 | - |
| 14000 | 8620 | 10500 | 12780 | 13100 | 15180 | - | - |
| 15000 | 9730 | 12150 | 14600 | 14900 | 17300 | - | - |

The iron for which data are given in columns ito 7 is described as follows:-
I. Very soft iron wire (taken from a former paper).

2a. Sheet iron 1.95 millimetres thick $\}$ almost alike.
2b. Thin sheet iron 0.367 millimetres thick
3. Iron wire 0.975 millimetres diameter.
4. Iron wire of hedgehog transformer 0.602 millimetres diameter.
5. Thin sheet iron 0.47 millimetres thick.
6. Fine iron wire 0.2475 millimetres diameter.
7. Fine iron wire 0.34 millimetres diameter.

* Ewing and Klassen, "Phil. Trans. Roy. Soc." vol. clxxxiv. A, p. sor5.

Table 303.

MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heary glass is placed in magnetic fickl and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation wes fousd to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experinents agree fairly well with the formula -

$$
\theta=c l H\left(r-\lambda \frac{d r}{d \lambda}\right) \frac{r^{2}}{\lambda^{2}}
$$

where c is a constant depending on the substance used, l the length of the path through the substance, $/ /$ the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, $l H$ is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this clifference of potential a', we may write $\theta=A r^{\prime}$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 303-310. For variation with temperature the following formula is given by Bichat : -

$$
R^{\prime}=R_{0}\left(\mathrm{I}-0.00104 t-0.0000 \mathrm{I}_{\mathrm{f}} t^{2}\right)
$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be usect:-

$$
\frac{\theta_{1}}{\theta_{2}}=\frac{\mu_{1}^{2}\left(\mu_{1}^{2}-1\right) \lambda_{2}^{2}}{\mu_{2}^{2}\left(\mu_{2}^{2}-1\right) \lambda_{1}^{2}}
$$

where μ is index of refraction and λ wave-length of light.
A large number of measurements of what has been called molecular rotation have been made, particularly for organic stibstances. These numbers are not given in the table, hut numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formule are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verclet's constant less than 0.0130 at $20^{\circ} \mathrm{C}$., Verdet's constant for the salt is negative.

The talble has been for the most part compiled from the experiments of Verdet, \dagger H. Becquerel \ddagger Cuincke, $\$$ Kocpsel, $\|$ Arons ${ }^{*}$ Kundt,** Jahn, $\dagger \dagger$ Schönrock, $\ddagger \ddagger$ Gordon, $\$ \S$ Rayleigh and Sidgewick, || Perkin, Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at $20^{\circ} \mathrm{C}$.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H . E. J. G. Du liois (Wied. Ann. vol. 35).
\dagger "Am. de Chim. et de Plhys." [3] vol. 52.
\ddagger "Ann. de Chim. et de Phys." [5] vol. $12 ;$ "C. R." vols. 90 and 100.
"Wied. Ann.", vol. 24.
"Wied. Ann." vol. 26.
- "Wied. Ann." vol. 24.
-. "W'ied. Ann." vols. 23 and 27.
††"Wied. Ann." vol. 43.
姓" Zeits. für Plhys. Chem." vol. Ir.
§§ "Proc. Rny. Soio." 1883 .
ili " Phil. Trans. K. S." 1895.
er "Jour. Chem. Sioc." vols. 8 and 12.
".. "Jour. de Phys." vols. 8 and 9.
Smithsonian Tables.

MACNETO-OPTIC ROTATION.

Sollds.

Substance.	Chemical formula.	$\begin{aligned} & \text { Density } \\ & \text { or } \\ & \text { grammes } \end{aligned}$	Kind light	Verdet's constant in \qquad	Temp. C.	Authority.
Amber	-	-	D	0.0095	$18-20^{\circ}$	Quincke.
Blende	ZnS	-	"	0.2234	15	Becquerel.
Diamond .	C	-	"	0.0127	"	"
Fluor spar	CaFl_{2}	-	"	0.0087	"	"
Glass :						
Crown .	-	-	"	0.0203	"	"
Faraday A . .	-	$5 \cdot 458$	"	0.0782	18-20	Quincke.
" 13.	-	4.284	"	0.0649	"	،
Flint	-	-	"	0.0.420	"	"
"	-	-	"	0.0325	15	Becquerel.
"	-	-	"	0.0416	"	"
" dense . . .	-	-	"	0.0576	"	"
" "	-	-	"	0.0647	"	"
Plate .	-	-	"	0.0406	IS-20	Quincke.
Lead borate	$\mathrm{PbJ}_{2} \mathrm{O}_{4}$	-	"	0.0600	15	Becquerel.
Quartz (perpendicular to axis)	-	-	"	0.0172	18-20	Quincke.
Rock salt . . .	NaCl	-	"	0.0355	15	Becquerel.
Selenium . . .	Se	-	B	0.4625	"	"
Sodium borate	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	-	D	0.0170	"	"
Spinel (colored by chrome)	-	-	"	0.0209	"	"
Sylvine . . .	KCl	-	"	0.0283	"	"
Ziqueline (suboxide of copper)	$\mathrm{Cu}_{2} \mathrm{O}$	-	B	0.5908	"	"

Emithsonian Tables.

Liquids.

Smithsonian Tables.

MACNETO-OPTIC ROTATION
Liquids.

| Substance. | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Smithsonian Tables.

MACNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

MACNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Wator.

Smithsonian Tables.

MACNETO-OPTIC ROTATION.
TAELE 305. - Solutions of Aclds and Salts in Water.

TABLE 306. - Solutions of Salts in Alcohol.

TABLE 307. - Solntlons in Hydrochloric Acid.

Smithsonian Tables.

TABLE 308.

MAGNETO-OPTIC ROTATION.

Gases.

Du Bois discusses Kundt's results and gives additional experiments on nickel and cobalt. He shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and I)u Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam,

Table 309.

VERDET'S AND KUNDT'S CONSTANTS.

The following short table is quoted from Du Bois' paner. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant "and "Kundt's constant."

Name of substance.	Magnetic susceptibility.	Verdet's constant.		Wave-length of light in cms.	Kundt's constant.
		Number.	Authority.		
Cobalt .	-	-	-	6.44×10^{-5}	3.99
Nickel .	-	-	-	6	3.15
Iron .	-	-	-	6.56 '	2.63
Oxygen: 1 atmo.	+0.0126×10 ${ }^{-5}$	0.000179×10^{-5}	Becquerel.	5.89	0.014
Sulphur dioxide	-0.0751"	0.302		"،	-4.00
Water .	-0.0694 "	0.377 66	Arons	"	-5.4
Nitric acid	-0.0633 "	0.356	Becquerel.	"	-5.6
Alcohol	-0.0566 "	0.330	De la Rive.	"	-5.8
Ether : .	-0.0541"	0.315		"	-5.8
Arsenic chloride	-0.0876 "	1.222	Becquerel.	"	-14.9
	-0.0716	$\text { I. } 222$	Rayleigh.	"	-17.1
Faraday's glass	-0.0982 "	$1.733^{\text {¢ }}$	Becquerel.		-17.7

MAGNETIC SUSCEPTIBILITY OF LIQUIDS AND GASES.

The following table gives a comparison by Du loois* of his own and some other determinations of the magnetic sus ceptibility of a few standard substances. Verdet's and Kundt's constants are in radians for the sodium line D.

Substance.	Verdet's constant.	Faraday's value $\mathrm{k} \times 10^{6}$		$\begin{gathered} \text { Becquerel's } \\ \text { value } \\ k \times 10^{6} \end{gathered}$	$\begin{gathered} \text { Wähner's } \\ \text { value } \\ : \times 10^{6} \end{gathered}$
Water .	3.77×10^{-6}	-0.69		-0.63	-0.536
Alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.	3.30 "	-0.57		-0.49	-0.388
Ether, $\mathrm{C}_{4} \mathrm{I} \mathrm{H}_{10} \mathrm{O}$.	3.15 "	-0.54		-	-0.360
Carbon disulphide	12.22 "	-0.72		-0.84	-0.465
Oxygen at I atmosphere	0.00179 "	0.13		0.12	-
Air at I atmosphere.	0.00194 "	0.024		0.025	-
Substance.	Quincke at $20^{\circ} \mathrm{C}$.		Du Bois at $15^{\circ} \mathrm{C}$.		
	Density.	$k \times 10^{6}$	Density.	E $\times 10^{0}$	Kundt's constant.
Water	0.9983	-0.815	0.9992	-0.837	-4.50
Alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.	0.7929	-0.660	0.7963	-0.694	-4.75
Ether, $\dot{\mathrm{C}}_{4} \mathrm{H}_{10} \mathrm{O}$	0.7152	-0.607	0.7250	-0.642	-4.91
Carbon disulphide	1.2644	-0.724	1.2692	-0.8ı6	-14.97
Oxygen at 1 atmosphere	-	-	0.00135	0.117	0.016
Air at I atmosphere.	-	-	0.00123	0.024	0.08 I

Table 311.

VALUES OF KERR'S CONSTANT.†

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K^{\prime}. He calls this con-

Color of light.			Spectrum line.	Wave-lengthin cmis. $\times 10^{13}$	Kerr's constant in minutes per c. g. s. unit of magnetization.			
					Cobalt.	Nickel.	Iron.	Magnetite.
Red	- .	-	Li a	67.7	$\bigcirc 0.0208$	-0.0173	-0.01 54	+0.0096
Red	- .	-	-	62.0	$\bigcirc .0198$	$\bigcirc 0.0160$	-0.0138	+0.0120
Yellow	. .	-	D	58.9	$\bigcirc 0.0193$	$\bigcirc .0154$	-0.0130	+0.0133
Green	.	-	b	51.7	$\bigcirc 0.0179$	-0.0159	-0.011 1	+0.0072
Blue	- .	-	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026
Violet	- .	-	G	43.1	-0.0182	-0.0175	-0.0089	-

" "Wied. Ann." vol. 35, p. 163.
† H. E. J. G. Du Bois, "Phil. Mag." vol. 29.

Smithsonian Tableg.

EFFECT OF MACNETIC FIELD ON THE ELECTRIC RESISTANCE OF BISMUTH."

table 312. - Resistance One Ohm for Zero Fleld and Vartous Temperatures.

This table gives the resistance to the flow of a steady electric current when conveyed across a magnetic field of the strength in c. g. s. units given in the first column if the wire has a resistance of one olm at the temperature given at the top of the column when the field is of zero strength.

Tcmp. C. $=$	0°	10°	18	30°	50°	$8{ }^{3}$
Field.	Resistance.					
000	1.000	1.000	1.000	1.000	1.000	1.000
1000	1.018	1.019	1.018	1.017	1.014	1.007
2000	I. 045	1.050	1.045	1.041	1.034	1.015
3000	1.088	1.094	1.054	1.074	1. 055	1.032
4000	1.135	1.153	1.131	I.IIS	I.OS 5	1.050
5000	I. 185	1.214	1.183	1.156	1.113	1.074
6000	1.240	1. 273	1.242	1.202	1.148	1.100
7000	1.304	I. 340	I. 295	1.258	1. 190	1.127
8000	1. 365	1. 406	1.35S	1.30S	1.223	1.154
9000	1.423	I. 467	1.417	I. 355	1. 266	1.182
10000	I. 480	1. 535	I. 4 So	1. 409	1.303	1. 203
15000	1.743	1. 575	1.785	1. 665	I. 505	I. 343
20000	-	2.507	2.087	1.927	1.713	1.490
25000	-	2.846	2.393	2.193	1.931	I. SO4
30000	-	-	2.704	-	-	-
35000	-	-	3.031	-	-	-
40000	-	-	$3 \cdot 369$	-	-	-

TABLE 313. - Resistance One Ohm for Zero Field and Temperature Zero Centigrade.

This table gives the resistance in different magnetic fields and at different temperatures of a wire, the resistance of which is one ohm at $0^{\circ} \mathrm{C}$., when the magnetic ficld is zero. The current is supposed to be steady and to flow across the field.

Temp. C. $=$	$0{ }^{3}$	10°	18°	30°	50°	80°
Field.	Resistance.					
0000	1.000	1.037	1.072	I. 115	1.200	1.332
1000	I. O IS	1.057	1.091	1.129	1.217	1.34 I
2000	1.045	1.059	1.118	1.156	1.241	1.352
3000	1.088	1.134	1.162	1.19S	I. 266	1.375
4000	1.135	I. 198	1.210	1.2.46	1. 302	I. 397
5000	1.195	1.260	1.265	I. 290	1. 335	1.428
6000	1.240	1.323	1.327	1.341	I. 379	1. 464
7000	1.304	1.392	I. 3 S 5	1.404	1.428	1. 500
So00	I. 365	I. 458	1.453	I. 460	I. 465	1. 536
9000	1.423	I. 523	1.515	1.509	1. 520	I. 573
10000	I. 4 So	I. 592	I. 583	I. 573	1.562	1.610
15000	1.743	1.946	1.907	I. 860	I. 805	I. 784
20000	_	2.295	2.243	2.148	2.055	I. 9 So
25000	-	2.645	2.560	2.445	2.320	2.157

- Calculated from the results of J. B. Henderson's experiments, "Plinl. Mag." vol. 38, p. 488.
table 314.

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.*

Refereycrs.

A M = A. M. Mayer.	$13=$ Ratclli.	$\mathrm{D}=$ Dewar	$\mathrm{E}=$ Emo.
Fi\& $\mathrm{T}=\mathrm{Gec} \& \mathrm{~S}^{\text {Terry }}$.	$1[\& I)=1)$	een \& Deruyts.	II M = II. Meyer.
H W = H. F. Weber.	$\mathrm{J} \& \mathrm{~B}=$ Joly	Bartoli.	$\mathrm{K}=\mathrm{Kopp}$.
$\mathrm{J},=$ Lorenz.	$\mathrm{Ln}=$ Luginin.	M = Mazotto.	Ma $=$ Marignac .
$\mathrm{P}=\mathrm{l}$ 'erson.	P a $=$ Pagliani.	$\mathrm{P} \mathrm{n}=$ Pionchon.	$\mathrm{R}=$ Regnault.
$\mathrm{R} \mathrm{W}=\mathrm{R} . \mathrm{W}$ eber.	$\mathrm{T}=$ II. Tomlinso	$\mathrm{Th}=$ Thomsen.	$\mathrm{W}=\mathrm{W}$ achsmuth.

"Condensed from more extensive tables given in Landolt and Börnstein's " Phys. Chem. Tab."

Smithsonian Tables.

| | Substance. | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Liguids.

Alcohol, ethyl	- .	. -	.	.	-	-	-20	0. 5053	R
"	\bigcirc	. 5475	"
"	. .	-	40	. 6.479	"
" methyl	5-10	. 5901	"
" "			$15-10$. 6009	"
Benzene	-	-	.	.	10	. 3402	H\&D
"	-			40	. 4233	
Ethyl ether	\bigcirc	.5290	R
Glycerine	I 5-50	. 576	E
Oils, castor	-	. 434	IV
" citron	. .	- .	-	.	.	.	$5 \cdot 4$. 43 S	II W
" olive	6.6	. 471	"
" sesame	-	-387	W
" turpentine	\bigcirc	.4106	R
Petroleum	-	21-58	. 511	Pa
$\mathrm{CuSO}_{4}+50 \mathrm{H}_{2} \mathrm{O}$	$12-15$. 848	"
$"+200 \mathrm{H}_{2} \mathrm{O}$. .	- .		-	.	-	12-14	. 951	"
$"+400 \mathrm{H}_{2} \mathrm{O}$	13-17	. 975	"
$\mathrm{ZnSO}_{4}+50 \mathrm{H}_{2} \mathrm{O}$		-	-	.	20-52	. 842	Ma
"* + $200 \mathrm{H}_{2} \mathrm{O}$. .	- .	.	-	.	-	20-52	.952	"
$\cdot \mathrm{KOH}+30 \mathrm{H}_{2} \mathrm{O}$	18	. 876	Th
" $+200 \mathrm{H}_{2} \mathrm{O}$	-	18	. 975	"
$\mathrm{NaOH}+50 \mathrm{IH}_{2} \mathrm{O}$	18	. 942	"
" $+100 \mathrm{H}_{2} \mathrm{O}$.				.		18	. 983	"
$\mathrm{NaCl}+10 \mathrm{H}_{2} \mathrm{O}$	-	18	. 791	"
${ }^{\prime}+200 \mathrm{H}_{2} \mathrm{O}$.				.	.	IS	.978	"
Sea water: density	1.0043				.	-	17.5	.980	"
" " "	1.0235	(abou	t nor	mal)		.	17.5	. 938	"
" ، ،	1.0463	(a)	,	(1)	-	.	17.5	. 903	"

References.

Smithsonian Tables.

SPECIFIC HEAT OF METALS.*

[^75]
Smithsonian Tables.

INDEX.

page
Absorption of gases by liquids 125 of solar energy by the atmosphere..... 177
Capillarity (continued) surface-tension of water and alcohol ... 12 §Acceleration, angular and linear, conversion
factors for 17, IS
Activity, conversion factors for 19, 21
Aerodynamics; data for the soaring ofplanes.109
data for wind pressure 108
Agonic lines 117
dir, specific heat of 223
thermometer 8, 229
Alcohol, density of 96-98
vapor pressure of 126, 225
Alloys, electric conductivity of.........251-253electric resistance of251-253, 256, 257density of85
specific heat of 294
strength of 73
thermal conductivity of 197
thermoelectric power of 248, 249
Alternating currents, resistan 258
Alums, indices of refraction for ISo
Angles, conversion factors for 14
Aqueous solutions, boiling-points of I96
vapor, density of 155
pressure of $.151-154$
Arc spectrum, wave-lengths in 172
Areas, conversion factors for. 11
Atmosphere, pressure of vapor in I 57
Atomic weights 272
Barometer, correction for capillarity I 24
determination of heights by 169
reduction to latitude 45° 122, 123
reduction to sea level I2I
reduction to standard temperature 120
Battery cells, composition and clectromotiveforce of246, 247
Bismuth, electric resistance of, in magnetic field293
Boiling-point, of chemical elements 207
of various inorganic compounds 210
of various organic compounds 212
of water, barometric height corrcspond-ing to 171
of water, effect of dissolved salts on..... 196
Brick, strength of 70
British weights and measurcs, equivalents in metric 7
Capacities, conversion factors for 12
Capacity, specific inductive 263-265
Capillarity, of aqueous solutions 128
correction of barometer for 124
of liquids as solidifying-point I29
of soap films 120various liquids 127
Carat, definition of127
Cells, battery 246, 247
secondary 247
standard 247
Chemical elements, boiling and meltingpoints of.207
Cobalt, Kerr's constants of 291
magnetic properties of 279
Coefficients, isotonic 150
of diffusion 47, 149
of friction I35
of thermal cxpansion 214-2IS
of viscosity 137, 146
Color scale, Newton and Reinold andRucker
130
Combination, heat of 202
Combustion, heat of 201
Compressibility, of gases 79, 81
of liquid 82
of solids 83
Conducting power of alloys 251-253
Conductivities, molecular 260, 261
of electrolytes 259
thermal 97, 198
Contact, difference of potential 268
Conversion factor, definition of xviii
Conversion factors for acceleration, angular .. is
acceleration, linear 17
activity 9, 21
angles 14
areas 1 I
capacities 12
densities 23
electric deposition 24
electric clisplacement 25
electric potential 27
electric resistance 23
energy: 20, 2 I
film tension 20, 22
force 17
heat, quantities of 24
intensity of magnetization 26
length II
masses 13
moment of inertia 13
moment of momentum 16
momentum 16
magnetic moment 27
magnetization, intensity of 26
magnetization, surface density of 26
power 19, 21
resistance, electric 23
stress 19, 22
temperatures 25
tension, film or surface 20
Conversion (continued).
time, intervals of
volocities 1.4
volumes 12
Critical temperature of gases 20, 2 I
Crystals, cubic expansion of 216
clastic constants of 78
formalæ for elasticity of 77
Cubic expansion, gases -15
liquids 217
solids. 21
Cyclic magnetization, dissipation of energy ill 280-283
Declination, magnetic II ${ }^{-1 I S}$
Densities, of air, values of $/ 8 / 560$ 162
alcohol
96-98 ${ }^{5} 5$
alloys and other solids
90
90
aqucous solutions
aqucous solutions S_{9}
liquids. 88
mercury 95
metal. 86
organic compounds 212
water. $.92-94$
woods. 5
Density, conversion factors for 23

1) ew-points, table for calculating 58
Diamonds, unit of weight for
13
13
Dielectric strength 244, 245
Diffusion of gases and vapors 149
liquids and solutions. 147
1)inution of solution, contraction due to:
134
134
Dimension formulx (see also ('nits) x vii
Dip, magnetic 111
I) ynamic units, dimension formulx of xvii
formule for conversion of
219
Dynamical equivalent of thermal unit
Earth, misccllaneous data concerning 106
Elasticity, moduli of $.74-78$
Electric conductivity of alloys 251,252
of metals
of metals 255
relation to thermal 271
constants of wires 5\$-6S, 254
5s-6s
25
potential, conversion factors for 27
resistance, conversion factors for 23
resistance, effect of elongation on 258
units, conversion factors for 3
units, dimension formulat xiv
Electrochemical cquivalents and atomic weight. 272 25
of solutions
of solutions
Flectrolytes, conductivities of
259
259
Wectrolytic deposition, conversion factors for 2. 4
xxix
Electromotive force of battery cells
246, 247
246, 247
Electrostatic system of units xxy
Electrostatic unit of electricity, ratio of, to clectromagnetic.
243
Elliptic integrals
43
43
llongation, cffect on resistance of wires
Emissivity 234, 235
Energy, conversion factors for 20, 21 272
Equivalent, electrochemical
Equivalent, electrochemical
clectrochemical of solutions 259
mechanical, of heat
220
220
Expansion, thermal 214, 218
Factors, conversion 1I-27
formulæ for conversion.
2, 3
2, 3
Film-tension, conversion factors for 20, 22 constants for 12S, I=0
Fluor spar, refractive index of 183
Formulx for consersion factors, dynamic units 2
electric and magnetic units 3
fundamental units 3
geometric units 2
heat units.

- 3
- 3
Formulx, dimension (see also Ćnits). . xvii-xxix
Force, conversion factors for 17
Force de cheral, definition of
19
19
Fraunhofer lines, wave-lengths of 175
Freezing mixtures 199
Freezing-point, lowering of, by salts 192
Friction, coefficients of
135
135
Functions, hyperbolic S-35
gamma 38
Fundamental units 206
Gamma functions 38
Gases, alsorption by liquids 125
compressibility of 79-81
critical temperatures of 200
density and specific gravity of 89
expansion of 218
magnetic susceptibility of 292
magneto-optic rotation in 291
refractive indices of 190
specific heat of 224
thermal conductivity of 195
viscosity of. 5, 146
volume of perfect (values of $1+.00367$)164-168
Gauges, wirc
58-68
58-68
Geometric units, conversion formulæ for

Glass, electric resistance of 270
indices of refraction for 178, 179
Gravity, force of 102-104
Marmonics, zonal
lleat, conversion factors for quantities of. 40
latent heat of fusion 24
latent heat of vaporization 204
mechanical equivalent of 220
units, conversion factors for 24
dimension formule for xuiii
formula for conversion factors of 3
Heats of combustion and combination. . 201, 202
Meights, determination by barometer 169
Itumidity, relative 161
lydrogen thermometer
233
233
Hyperbolic cosines 29-31
$11 y p e r b o l i c$ functions
$11 y p e r b o l i c$ functions 28-35
Hyperbolic sines 2S-30
Ilysteresis, magnetic 2SO-283
Iceland spar, refractive index of 185
Indices of refraction for alums 180
crystals. 187
fluor spar 185
gases and rapors 190
glass
17S, 179
17S, 179
Iceland spar IS
liquids, various 189
metals and metallic oxides iSI
monorefringent solids I84

Indices of refraction for aluns (continued). quartz .. quartz | 186 |
| :--- |
| 182 | rock salt S

solutions of salts ISS
sylvine. 182
Inductance, mutual $.4^{2}$
Integrals, elliptic 43
Intensity, horizontal, of uarth's magnetic field112
total, of earth's magnetic ficld 110
Iron, clasticity and strength of 72
liysteresis in. 280-283magnetic propertics of274-283, 292
Isotonic coetficients150
Jewels, unit of weight for 13
Joule's cquivalent 220
Kerr's constant, definition and table of 292
Kilogramme, definition of xvi
Kundt's constants
Kundt's constants 291
Latent heat 204, 206
Least squares, various tables for 35. 37
Legalization of practical electric unit xxxiv
Length, conversion factors for
$766-2.43$
$766-2.43$
Light, velocity of
191
191
rotation of plane of polarized
rotation of plane of polarized
214
214
Linear expansion of chemical elements.
215
215 of various substances of various substances
125
125
Liquids, absorption of gases by
Liquids, absorption of gases by 82
compressi
28, 287
magneto-optic rotation in 292
mafractive indices of 189
specific heat of
107 195
107 195
thermal conductivity of
217
thermal expansion of.
192
Lowering of freczing-point by salts
Magnetic field, effect of, in resistance of bis- muth293
moment, conversion factors for. 27
permeability 274-2SO 274-2SO
properties of cobalt, mangancse steel,miagnetite and nickel.279
properties of iron and steel 276
saturation values for steel. 279
susceptibility of licuuids and gases 292
units, conversion formula forxxy
Magnetism, conversion factors for surfacedensity
terrestrial 26
Magnetization, conversion factors for inten-sity of26
Magnetite, Kerr's constant for 292
magnetic properties of 279
Magneto-optic rotation, general reference to
tables of $.285-291$
Masses, conversion factors for $\cdots .13$
$70-73$
Materials, strength of
x
x
Measurement, units of
220
220
Mechanical equivalent of heat
207
207
Melting-points of chemical elcments
Melting-points of chemical elcments 208

Melting-points (confinued).
of mixtures and alloy: 211
of organic compounds 212
Mercury, density of 86
clectric resistance of 255, 256
index of refraction 181
specific heat of 225
strength of 70
Mctals, density of 86 86
electric resistance of 50
specific heat of 197
Mctals and metallic oxides, indices of refrac- isi
tion for
tion for
Mctre, definition of xvi
Metric weights and measuresequivalents in liritish 5
equivalents in United States 10
Mixtures, frcezing 199
Moduli of clasticity $.74-78$
Molecular conductivities 261, 262
Moments of inertia, conversion factors for. .
Moment of momentum, conversion factorfor16
Momentum, conversion factors for 13
Mutual inductance, table for calculating 42
Neutral-points, thermoelectric 249
Newton's rings and scalc of colors 130
Nickel, Kerr's constants for 292
magnctic properties of 279
Ohm, various detcrminations of 262
Osmose and osmotic pressure. 150
Pcarls, unit of weight for 13
Peltier effect 250
Pendulum, length of seconds 104, 105
Permeability, magnetic 274-280
Photometric standards 176
Planets, miscellaneous data concerning. 106
Poisson's ratio 76
Polarized light, rotation of the plane of 191
Potential, contact difference of 268
difference of, between metals in solu- tions 209
electric, conversion factors for 27
Pound, definition of x'i
Power, conversion factors for 19, 21
Practical electrical units xxxiii
Pressure, barometric, for different boiling
points of water 170, 171
critical, of gases 200
effect on radiation 236
of aqueous vapor $.151-154$
at low temperatures 156 156
in the atmosphere. 157
of mercury column 119
osmotic. 150
of rapors 126,225-227 126,225-227
of wind 10. 10.
Probability, table for calculating $.3^{6}$
Quartz, fibres, strength of 70
refractive index of 186
Radiation, effect of pressure on 236
Relative humidity 6

Relative humidity

Resistance (see also Conductivity), electric. of alloys. 251-253, 256, 257 of electrolytes 259 of glass and porcelain 270 of metals and metallic wires........254-257 of wires, effect of elongation on258
Rigidity, modulus defined. 74 of metals . 74 variation of, with temperature...........76
Rotation, magneto-optic.................284-291

Saturation values, magnetic, for stecl 279
Seconds pendulum, length of104, 105
Secondary batteries
.247
Sections of wires 44-54, 5S-6S
Sheet metal, weight of 56, 57
Soaring of planes, data for. 109
Solar constant. 177
Solar spectrum, wave-length in...............172
Solids, compressibility and bulk moduli of. . . 83 density of
. S_{5}
magneto-optic rotation in. 284
Solution, contraction produced by $\cdot . .$. 131-1 34
Solutions, aqueous, boiling-points of 196 density of .90
magneto-optic rotation in.2S8-290
refractive indices for 188
specific heat of . 224
Sound, velocity of, in air. 99
in gases and liquids 101
in solids . 100
Specific electrical resistance, conversion fac-
tors for23, 254-256
Specific gravity (see also Density).
of aqueous ethyl alcohol. 96 methyl alcohol 97
of gases 89
Specific heat of air. 223
of gases and vapors....................... . 224
of metals 296
of solids and liquids294, 295
of water.................................... 223
of water, formulx for 222
Specific incluctive capacity...............263-265 viscosity, aqueous solutions.............. I 44 oils. 137 water................................... 136
Spectra, wave-lengths in arc and solar 172
Standard cells. 247
wave-lengths of light 172
Standards, photometric. 176
Steel, plysical properties of.................... 71
Steam, propertics of saturated 237
Steinmetz, constants for hystercsis of $2 S_{1}$
Stone, strength of. 70
thermal conductivity of. 197
diclectric
244
Strength of materials. $70-73$
Stress, conversion factors for 19, 22
Surface-tension, constants of IzS, 129 conversion factors for 20, 22
Sylvine, refractive index of.....................ISz

Tempcrature, conversion factors for 25 critical, of gases

200
Terrestrial magnetism, agonic lines117 declination, data for maximum east at various stations

118 dip and its secular variation for different latitudes and longitudes.
. III
Terrestrial magnetism (continuted).
horizontal intensity and its secular varia-tion for different latitudes and longi-tudes112
secular variation of declination113-116
Thermal conductivities 197, 105
relation to electrical..................271
expansion, coefficients of $14-218$
units, dynamic equivalent of 219
Thermoelectricity 48-250
Thermometer 228-233
air 22S, 231
correction of, for mercury in stem 232
hydrogen 231
mercury in glass 229
zero change duc to heating 229
zero, change of, with time 230
Timber, strength of 70
Time, unit of, defined xvii
Times, conversion factors for 14
Transformers, permeability ofiron in$274,275,280,282$
Units of measurement xv
dimension formulx for dynamic xviii
electric and magnetic xxy
electromagnetic xxix
electrostatic xxvi
fundamental 2
heat xiii
practical, legalization of electric xxxiii
ratio of electrostatic to electromagnetic
243
United Statcs weights and measures in metric 9
Vapor, density of aqueous I 55
diffusion of 149
pressure of 126,225-227
pressure of aqueous 151-154
values of 0.378 160
pressure of, for aqueous solutions. 194
refractive indices for 190
specific heats of 22.4
Vaporization, latent heat of 204
Velocity, angular and linear, conversion fac-tors for 15
of light. 176, 243
of sound 99, 101
Verdet's constants for alcoholic solution ofsalts.290
aqueous solutions of salts 287
gases 291
hydrochloric acid solutions of salts 290liquids and solids..............285-287
and Kiundt's constants 292
Viscosity, coefficient, definition of. 136
coefificient of, for aqueous alcohol 137
for gases. 146
for liquids I 38
temperature effect on, for liquids I 39
specific, for oils 137
for water 136
Volumes, conversion factors for
critical, of gases 200
Water, boiling-point for various barometric pressures I70, 171
density of. 92-94
specific heat of 222, 223

Water (conthisued).
thermal conductivity of

Wive-lenerths of jranibiofer lines 5 standard for are and solar spectrun $17=$ Weights and measures -
liritish Imperial to Metric .7 .8 Metric to diritish lmperial. 5, 6 Metric to United States 10
United States to Metric
.9
Weights of sheet metal 56, 57
Weights of wires $11-5$

Wind, pressure of 108
Wire, gatges. 5ii-67
IV uods, dersities of . SS
WVork, conversion factors for 20,21

Vard, definition of
Voung's mocluli 75
modulus, cletinitiont of 75

Zonal harmonics.
.40

[^0]: Rose Polytechnic Institute,
 Terre Haute, Ind., July 13, 1896.

[^1]: * It is important to remember that in problems like that here given the term "pound " or "gramme" refers to force and not to mass.

[^2]: * It will be noticed that when Θ is given the dimension formula $\mathrm{L}^{2} \mathrm{~T}^{-2}$ the formulx in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

[^3]: * According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K , or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as I on the electrostatic and as $l^{-2} t^{2}$ on the electromagnetic system.

[^4]: * The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

[^5]: * I'ermeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as I in the electromagnetic and $l^{-2} t^{2}$ in the electrostatic systems.

[^6]: "The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimetres in diameter and from 4 to 5 centimetres in depth.
 "The anode should be a plate of pure silver some 30 square centimetres in area and 2 or 3 millimetres in thickness.
 "This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.
 "The liquid should consist of a ncutral solution of pure silver nitrate, containing about I 5 parts by weight of the nitrate to 85 parts of water.
 "The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should lee inserted in the circuit. The total metallic resistance of the circuit should not be less than ro ohms."

 * " A committce, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received."
 \dagger The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

[^7]: * Taken as unit.

[^8]: Smithsonian Tables.

[^9]: * Diameters and sections in terms of thousandths of a centimetre.

[^10]: * Diameters and sections in terms of thousandihs of a centimetre.

[^11]: * Diameters and sections in terms of thousandths of a centimetre.

[^12]: * Diameters and sections in terms of thousandths of a millimetre.

[^13]: * Diameters and sections in terms of thousandths of a centimetre.

[^14]: * Diameters and sections in terms of thousandths of a centimetre.

[^15]: * Diameters and sections in terms of thousandths of a centimetre.

[^16]: * Diameters and sections in terms of thousandths of a ceatimetre.

[^17]: * The strength of most matcrials is so variable that very little is gained by simple tabulation of the results which have been obtained. A few approximate results are given for materials of common occurrence, mainly to indicate the iimits between which the strength of fairly good specimens may lie. Some tables are also given indicating the relation of strength to comprocition in the case of alloys. It has not been thought worth while to state these results in other than the ordinary incl pound units.
 \dagger On the authority of Wertheim.
 \ddagger The crushing strength of cast iron is from 5.5 to 6.5 times the tensile strength.
 Notes. - According to Boys, quartz fibres have a tensile strength of between 116000 and $\mathbf{1 6 7 0 0 0}$ pounds per square inch.

 Leather belting of single thickness bears from 400 to 1600 pounds per inch of its breadth.

[^18]: * These tables were compiled from the results published by the U. S. Board on Testing of Metals. The numbers refer to unwrought castings, and are subject to large variations for individual specimens.
 \dagger The crushing strengths here given correspond to to per cent compression for those cases where the total compression exceeds that amount.
 \ddagger For crushing strength, io per cent compression was taken as standard.
 § This table covers the range of triple combinations of these three metals which contain alloys of useful strength and moderate ductility. The weaker cases here given, and those lying outside the range here taken, are generally weak and brittle. The absolute strength may of course be varied by the method of fusing and casting, and certainly can be greatly increased by working. The object of the table is to show relative values, and to give an idea of the strengtb of sound castings of these alloys.

[^19]: * In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. 'The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.
 \dagger Voigt, "Wierl. Inn." vol. 3r, 34-35.
 \ddagger Koch, "Wied. Ann." vol. is.
 § Meckenkamp, " Zeit. für Kryst." vol. 10
 II The subscripts $1,2,3$ indicate that the three principal axes are the axes of stress; $4,5,6$ that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.
 * laumgarten, "Pogg. Ann." vol. is2.

[^20]: * From the experiments of Roth, "Wied. Ann." vol. ı1, 1880.

[^21]: * Tait finds for fresh water the value $.0072(1-0.034 \phi)$ and for sea water $.00666(1-0.034 p)$ where β is the pressure in tons per square inch. The range of variation of was from 8 to 3 tons.
 \dagger Röntgen and Schueider by piczometric experiments obtained $5.0 \times{ }_{10}{ }^{-6}$ for rock salt and $5.6 \times{ }_{10}{ }^{-6}$ for sylvine (Wied. Ann., vol. 3 r).

[^22]: * When the temperature is not given, ordinary atmospheric temperature is to be understood.
 \dagger The density of titanium is inferential, and actual determination a year or two ago gave a lower value.
 \ddagger The lower value for thorium represents impure material.

[^23]: * This table is given by Marek in "Wied. Ann.," vol. 44, p. 172, 1891.

[^24]: * The table is quoted from I Iandolt and Börnstein's "Physikalische Chemie Tabellen," and depends on experiments by Thiesen, Scheel, and Marek.
 Smithsonian Tables.

[^25]: ＊Fownes，＂Phil．Trans．Roy．Soc．＂ 1847
 \dagger＂Pogg．Am．＂vol．138， 1869.

[^26]: * Mendelejeff, " Pogg. Ann." vol. I 3 .
 † Quoted from Landolt and Börnstein, "Plyys. Chem. Tab." p. 223.

[^27]: * G. R. Putnam, Phil. Soc. of Washington, Bull. vol. xiii.
 \dagger Takern as standard. The other values were obtained from this by means of invariable pendulums.
 \ddagger Calculated from force of gravity table by the formula $l=g / \pi^{2}$. For each soo feet of elevation subtract 0.000596 centimetres, or 0.000235 inches, or .0000196 feet.

[^28]: * The data here given with regard to the different determinations which lave been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 189r).
 \dagger Calculated from a logarithmic expression given by Unferdinger.

[^29]: ＊Harkness，＂Solar Parallax and Allied Constants．＂

[^30]: *The pressure on a spherical surface is approximately 0.36 that on a plane circular surface of the same diameter as the sphere ; on a cylindrical surface wilh axis normal to the wind, about 0.5 that on a rectangular surface of length equal to the length, and breadth equal to the diameter of the cylinder.
 \dagger The data here given on Professor Langley's authority were communicated by him to the author.

[^31]: * Tables 120-125 have been compiled from a very full discussion of the magnetic dip and intensity for the United States and adjacent countries, given in Appendix 6 of the Report of the United States Coast and Geodetic Survey for 1885 . Later Reports of the survey have been consulted, particularly in connection with the extrapolation of the values of horizontal intensity to 8890 and 1895 , but most of the data are taken from Mr. Schott's Appendix to the 1885 Report.

[^32]: * Approximate expression.
 \dagger East longitude.
 \ddagger Compiled from a serics of observations extending back to 154 T . The primary wave follows the sum of the constant and first periodic term closely. The period seems to be about 470 years. In the expression for the secondary wave $n=t-1700$.

[^33]: * This table gives the secular variation of the declination since the year r8on for a series of stations in the Eastern States and adjacent countries. Compiled from a paper by Mr. Schott, forming App. 7, Keport of the Uniled States Coast and Geodetic Survey for 1888. The minus sign indicates eastern declination.

[^34]: * This table gives the secular variation of the declination since the year 1800 for a series of stations in the Western States and adjacent countries. The declinations are all east of north. Reference same as Table 127.

[^35]: * The beight of the barometer is affected by the relative thermal expansion of the mercury and the glass in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments gradualed on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the Intermatinnal Meteorological Tables. The numbers tabulated under a are the values of α in the equation $H_{t}=/ t^{\prime}-a\left(t^{\prime}-t\right)$ where H_{t} is the height at the standard temperature, $H t^{\prime}$ the observed beight at the temperature $t^{\prime \prime}$, and at the correction for temperature. The standard temperature is $0^{\circ} \mathrm{C}$. for the metric system, and 28.5 F. for the English system. "The Linglish barometer is correct for the lemperature of melting ice at a temperature of approximately 28.5 F . . because of the fact that the brass scale is graduated so as to be standard at $62^{\prime} \mathrm{F}$., while mercury has the standard density at $32^{\circ} \mathrm{F}$.

 FXAsple. - A harometer having a brass scale gave $/ /=765 \mathrm{~mm}$. at $25^{\circ} \mathrm{C}$. ; required, the corresponding reading at $3^{\circ} \mathrm{C}$. Here the value of a is the mean of .1235 and .125s, or $.1243 ; \therefore a\left(t^{t}-t\right)=.1243 \times 25=3.11$. Hence $/ \mathrm{H}_{0}=76,5-3.11=761.89$.
 N. B. - Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. lis fact, all harometers have not the same values for α, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

[^36]: " "Smithsonian Meteorological Tables," p. 58.

[^37]: Smithsonian Tables.

[^38]: * This determination of the capillary constants of fiquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not asree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (1'hil. Mag. 18gn) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1803) have been prefered, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcolol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

 The authority for a few of the other values civen is quoted, but they are for the most part average values derived tom a large number of results published by different experimenters.
 from Golkmam (Wied. Amm. vol. 87, p. 353).

[^39]: * Authority not given.
 \dagger R. Broom, " Proc. Roy. Soc. Edin." vol. 13, p. 172.

[^40]: Smithsonian Tables.

[^41]: " "Comptes rendus," vol. 15, 1842. " Mém. Serv. Etr." ${ }_{1} 8_{46}$
 f "Pose. Ann." vol. 109, 1860.
 f "Zeits. fuir Plyss. Chim." vol. 6, 18 go.
 § The value 0.0178 is taken from a paper hy Crookes (Phil. Trans. R. S. L. I886), where the coefficient is given as $\mu=0.0177931 l^{\prime}$, where $P^{-1}=1+.0335793 T+.0002209636 \%^{\circ 2}$, where T is the temperature of the water in degrees Cemtigrade. The numbers in the table were calculated not from the formula but from the numbers in the column headed "mean value."

[^42]: Calculated from the formula $\mu=.017-.000066 t+0000002 t^{2}$ - .00000000025 t^{3} (vide Koch, Wied. Ann. vol. 14 . p. 1).
 \dagger Given as $=3.2653 e^{-.0123 T}$, where T is Iemperature in Centigrade degrees.

[^43]: * Calculated from the specific viscosities given in Landolt \& Boernstcin's "Phys. Chem. Tab." p. 289 et seq., on the assumption that the coefficient for water at $0^{\circ} \mathrm{C}$. is .or78.
 \dagger For inorganic acids, see Solutions.

[^44]: *See "Smithsonian Meteorological Tables," pp. 132-133

[^45]: Smithsonian Tables.

[^46]: *Scems to be the only single carbon line not belonging to a band in the are spectrum. It was determined to belong to carbon by the spark spectrum.

 + This line appears as a sharp reversal, with no shading, in the spectra of all substances tried that contained any trace of a continuous spectrom in the region.
 \ddagger There is a faint line visible on the violet side.

[^47]: *This line is doubly reversed and spread out in broad shading for 6.000107 .000 on cither side. In each case the second reversal is slightly excentric with respect to the other, being displaced towards the red.

 + Seven or eight lines, the brightest, and most of the others are due $t 0$ iron.
 \ddagger There is a faint side line towards the red.
 § This line is shaded towards the violet, probably due to a close side line.

[^48]: I Fizeau, "Comptes Rendus," ${ }^{1} \$_{49}$
 2 Foucault, "Recueil des travaux scientifiques," Paris, 1878.
 3 Cornu, "Jour. de l'Ecole Polytechnique," Paris, 1874.
 4 Cornu, "Annales de l'Observatoire de Paris," Memoires, tome 13, p. A. 298, 1876.
 5 Michelson, "Proc. A. A. A. S." iS78.
 6 Young and Cr. Forbes, "Phil. Trans." 1882.
 7 Newcomb, "Astronomical Papers of the American Ephemeris," vol. 2, pp. 194, 201, and 202.
 8 Michelson, "Astronomical Papers of the American Ephemeris," vol. 2, p. 244.
 9 Harkness.

[^49]: * Qunted from Harkness, "Snlar Parallax," p. 33.
 \dagger This table, founded on Violle's experiments, is quoted from Paterson's translation of Palaz' "Industrial Photometry," n. 173.
 \ddagger The Violle unit is sometimes called the absnlute standard of white light. It is the quantity of light emitted normally by one square centimetre of the surface of melted platinum at the temperature of solidification.

 ## Smithsonian Tables.

[^50]: \dagger Nearly pure oxide.
 § "Wied. Ann." vol. 39.

[^51]: * For wave-lengths, see Tables 190 and 192.

[^52]: * Weegmann gives $\mu_{D}=1.59668-.000518 t$. Knops gives $\mu_{P}=1.61500-.00056 t$.
 \dagger Weegmann gives $\mu_{D}=8.58474-.000665$ \%. Knops gives $\mu_{D}=1.51399-.000644$ \%
 \ddagger Wüllner gives $\mu_{C}=1.63407-.00078 t ; \mu_{P}=1.66908-.00082 t ; \mu_{n}=1.69215-.0005_{5} 6$
 § Dufet gives $\mu_{D}=1.33397-10^{-7}\left(125 t+20.6 \ell-.000435 t^{\beta}-.00115 t^{t}\right)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_{D}=1.33373-10^{-7}\left(20.146^{2}+.000494\right.$ th $\left.^{2}\right)$.

[^53]: "In " Zeits. fuir Physik. Chem." vol. 2, p. 489, 8888,
 Ibid. vol. 2, p. 49r, 1888.
 \ddagger Ibid. vol. 11, p. $110,1893$.
 § Ibid. vol. 11, p. 529, 1893.

[^54]: *Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.
 Smithsonian Tables.

[^55]: - Herschel, Lebour, and Dunn (British Associalion Committee).

[^56]: Smithsonian Tables.

[^57]: Smithsonian Tables.

[^58]: ＊Under pressure 138 mm ．mercury．

[^59]: *Liquid al -ir. C. and 180 almospheres' pressure (Cailletet).
 \ddagger Doiling-poimt under 15 mm . pressure.

[^60]: Smithsonian Tables.

[^61]: *For more complete tables of cubical expansion, see Clarke's "Constants of Nature," (Smithsonian Collections), published in 1876 .
 Smithsonian Tables.

[^62]: - Corsected by Mendelejeff to 45° latitude and absolute expansion of mercury. Rowland gets almost the same correction on Regnault, using Wiillner's value of the expansion of mercury.
 \dagger The series of resnits at different pressures are given because of their interest. The absolute values are a little 100 low. (See preceding footnote.)

[^63]: －Variation assumed uniform below 7 with same slope as from 7 to 5 ．

[^64]: * This table has been compiled from results published by Ramsay and Young (Jour. Chom. Soc. vol. 47, and Plil Trans. Roy. Soc., I886).
 \dagger In this formula $a=5.0720308 ; \log b=\overline{2} .6406131 ; \log c=0.60508_{54} ; \log a=0.003377538 ; \log \beta=\overline{1.0 y y^{\prime} a_{2424}}$ (c is negative).
 \ddagger Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).
 Smithsonian Tables.

[^65]: Smithsonian Tables.

[^66]: * "Proc. Roy. Soc.", 1872.
 t "Proc. Roy. Soc." Ledinb. IS69.

[^67]: * The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

[^68]: " Conckel, "Wied. Ann." vol. 2t, P. 63 \{.
 t "Wied. Ann." vol. 34, p. 767.
 \# "Ann. de Chim. et de Phys." (1) vol. 10, p. 201.
 § Recquercl's antimony is 806 parts $\mathrm{Sb}+406$ parts $\mathrm{Zn}+121$ parts Bi . \| Becquerel's bismuth is 10 parts $\mathrm{Bi}+1$ part Sb .

[^69]: * T. Gray, "Trans. Roy. Soc. Edin." 1880.
 \dagger W. M. Mordey, "Inst. El. Eng. London," 1889.

[^70]: ＊Acids and alkaline salts show peculiar irregularities．

[^71]: * Abstract from the Report of the British Association Committee on Practical Standards for Electrical Measurement, "Proc. Brit. Assoc." 1892.
 $\dagger \pm .0000002$ T. G.

[^72]: * " Rend. della R. Acc. di Roma," 1890.
 \dagger Amalgamated.
 \ddagger Not constant.
 § After some time.
 || A quantity of bromine was used corresponding to $\mathrm{NaOH}=\mathrm{r}$.

[^73]: * T. Gray, "Phil. Mag." 188o, and " Proc. Roy. Soc." 188 z.

[^74]: * "Phil. Mag." 5 series, vol. xxix.

[^75]: "Condensed from Landolt and Börnstein's " Phys. Chem. Tab."

