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ARTICLE INFO ABSTRACT

Keywords: The first phase in the stepwise collapse of the Carboniferous Coal Forests occurred near the
Pennsylvanian Desmoinesian-Missourian boundary (early Kasimovian, ~307 Ma), and involved extirpation of Lycospora-pro-
Coal Forest collapse ducing lepidodendrids, and some other lycopsids, across most of tropical Euramerica. In this paper, we follow-up
Cyclothems

on historical reports of silicified tree-stumps in Peoria County, northwest-central Illinois, USA, which have
significant implications for understanding Carboniferous Coal Forest collapse. Rooted near the paleoweathered
top of the Lonsdale Limestone, and widespread across an area of ~250 km?, the silicified tree-stumps belong to
Amyelon-type coniferopsids. A key feature of the fossil wood is the occurrence of abundant axial parenchyma
arranged along irregular growth interruptions, suggestive of climatic seasonality, an inference consistent with
silicic preservation. The silicified fossil forest directly underlies the Exline Limestone and Athensville Coal, the
horizons that mark the US-wide loss of Lycospora, and demonstrate that lowland areas were colonized by dryland
coniferopsid forests following Coal Forest collapse. Placed in a cyclothem context, the silicified fossil forest
horizon lies above the Maria Creek mudstone paleosol (top of Piasa cyclothem), in which earlier d'®o analyses
have identified a major pulse of global warming, and coincides with the ‘Hanna City’ paleosol (top of Lonsdale
cyclothem), which is correlative with the Seminole Sandstone, a Midcontinent incised valley-fill representative
of one of the most profound glacioeustatic falls seen in the Pennsylvanian record. Our new findings therefore
demonstrate that Coal Forest collapse was closely linked to intensification of glacial cycle amplitude near the
Desmoinesian-Missourian boundary, involving both extreme episodes of global warming and cooling.

Fossil wood
Glacial cycles

1. Introduction

The iconic Carboniferous Coal Forests, mostly dominated by ar-
borescent Lycospora-producing lepidodendrids and other lycopsids,
covered much of north-equatorial Euramerica throughout latest
Mississippian to late Middle Pennsylvanian times (Phillips and
DiMichele, 1992; DiMichele et al., 2007; Thomas, 2007; DiMichele and
Falcon-Lang, 2011; Falcon-Lang, 2006; Falcon-Lang et al., 2006;
DiMichele et al., 1996b, 2001; Cleal et al., 2012). The first phase of
their step-wise collapse (Phillips et al., 1974, 1985), occurred at the
‘traditional’ plant-based Desmoinesian-Missourian boundary in the
USA (sensu Falcon-Lang et al., 2011a) at a level within the early part of
the current Kasimovian global stage (c. 307 Ma; Richards, 2013). This
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short-lived episode witnessed the abrupt extirpation of lepidodendrids
across the whole of north-equatorial Euramerica, west of the Appa-
lachians (Phillips et al., 1985; Peppers 1997), and coincided with a
marked reduction to the east of the Appalachians as well (Bek, 2012). In
total, 87% of peatland tree species went extinct (DiMichele and Phillips,
1996), and Coal Forest collapse profoundly impacted the evolution of
associated cosmopolitan tetrapod faunas (Sahney et al., 2010).

The cause of the Desmoinesian-Missourian event has received
considerable attention, and there is agreement that a short-term episode
of tropical aridification was involved (Phillips and Peppers, 1984;
Winston, 1990; Kosanke and Cecil, 1996; Falcon-Lang and DiMichele,
2010; Rosenau et al., 2013a, 2013b). The inference is that — stressed
beyond an ecological tipping point — the hydrophilic lepidodendrid
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forests that had dominated for the previous 15 million years were un-
able to recover (Phillips and Peppers, 1984; Heckel, 1991; Falcon-Lang
and DiMichele, 2010). This event is marked by the abrupt loss of Ly-
cospora, the dominant miospore of lepidodendrids, west of the Appa-
lachians, at a level prior to the Mason Coal in the Appalachian Basin,
the Lake Creek and Athensville coals in the Illinois Basin, and the Tulsa
and Hepler Coals in the Midcontinent Basin, i.e., immediately following
the Lost Branch cyclothem (Peppers, 1996, 1997; Heckel, 2008, 2013;
Falcon-Lang et al., 2011a). When Coal Forest communities became re-
established, following a return to humid climates in earliest Missourian
times, marattialean tree-ferns rose to dominance (Phillips et al., 1974;
Willard and Phillips, 1993; Kosanke and Cecil, 1996; Falcon-Lang,
2006; DiMichele and Phillips, 2002). What triggered this short-term
arid excursion continues to be debated, with climatic cooling and
warming implicated as competing drivers of vegetation change.

One hypothesis is that global cooling linked to Gondwanan ice-dy-
namics was involved. Glacial-interglacial cycles are known to have
driven coupled fluctuations in climate and sea level (Tandon and
Gibling, 1994; Cecil et al., 2003; Heckel, 2008; Eros et al., 2012) and
forced Coal Forests to repeatedly contract into isolated refugia during
drier glacial episodes (Heckel, 1991; Falcon-Lang, 2004; Falcon-Lang
and DiMichele, 2010). Following most Desmoinesian glacial cycles,
lepidodendrid-dominated Coal Forests managed to rebound with their
species composition largely intact (DiMichele et al., 1996a). However,
the glacioeustatic event at the Desmoinesian-Missourian boundary is
inferred to have been particularly intense (Heckel, 1991), judging by
the unusual magnitude of sea level fall (Rygel et al., 2008) and marine
regression (Falcon-Lang et al., 2011a; Heckel, 1991, 2013). In this
scenario, the establishment of widespread dryland environments, as the
seas retreated, fragmented lepidodendrid populations to such an extent
that they could not recover from the Lost Branch event (Falcon-Lang
and DiMichele, 2010).

A second hypothesis to explain Coal Forest collapse involves global
warming (Montafiez et al., 2016). Rosenau et al. (2013a, 2013b) noted
that paleosol pedotypes, formed during times of glacio-eustatic fall,
shifted to a drier mode (typified by calcic Vertisols), just below the
Desmoinesian-Missourian boundary, and also following it. Further-
more, based on d*®0 analyses of paired samples of flint-clay kaolinite
and sphaerosiderite in paleosols in the Illinois Basin, Rosenau et al.
(2013a) identified an intense but short-lived episode of temperature
rise of up to 6 °C near the Desmoinesian-Missourian boundary, and
inferred that Coal Forest collapse was linked to global warming and
associated aridification (Rosenau et al., 2013b). This is consistent with
near-field records that suggest that the Gondwanan ice cover was
subdued during the Desmoinesian-Missourian boundary interval (Isbell
et al., 2003; Fielding et al., 2008), and the Earth was experiencing a
greenhouse episode (Montanez and Poulsen, 2013). Although the poles
were not completely ice-free, cyclothems suggest reduced amplitude
(30-60 m) of glacio-eustatic fluctuations in Missourian times (Rygel
et al., 2008), following the major eustatic events near Desmoine-
sian-Missourian boundary (Heckel, 1991, 2008, 2013).

In this current paper, we further address these paleoclimatic issues
through a detailed study of Desmoinesian—-Missourian boundary sec-
tions in Peoria County, northwest-central Illinois, USA. In particular, we
document silicified tree-stump sites within a sedimentologic and cy-
clothemic context, which sheds light on the vegetation-dynamics that
occurred near the boundary in tropical Euramerica. Our findings show
how the two alternative paleoclimate hypotheses explaining this sig-
nificant ecological event can be reconciled when placed in a high-re-
solution temporal context.

2. Pennsylvanian cyclothems and the Lycospora extirpation
Based on conodont biozonation and previous correlation of major

coal seams, Heckel (2008, 2013) identified Desmoinesian-Missourian
cyclothems that can be traced across central to eastern USA (Fig. 1).
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Each major marine cyclothem represents a predominantly aggrada-
tional transgressive phase mostly characterized by marine beds, in-
cluding limestone and a conodont-rich shale that represents sediment
starvation in the condensed interval. Transgressive flooding progressed
in a northeasterly direction, from the low to mid shelf of the Mid-
continent Basin, through the high mid shelf of the Illinois Basin, and
into the high shelf of the Appalachian Basin (Heckel, 2008). Cyclothems
are separated by unconformity surfaces formed during predominantly
degradational regressive and lowstand phases, which are represented
by paleosols and equivalent incised paleovalleys, with the magnitude of
sedimentary hiatus similarly increasing in duration in a northeasterly
direction (Falcon-Lang et al., 2011a).

2.1. Desmoinesian-Missourian boundary cyclothems

Heckel (2008, 2013) also recognized major cyclothem groupings,
calibrated to be of ~400 kyr duration, and typically comprising up to
several transgressive-regressive cycles of lesser magnitudes, centered
around one major transgressive episode. In the Illinois Basin (Figs. 1, 2),
the major transgressive phases of the latest two Desmoinesian cy-
clothem groupings (Altamont and Lost Branch groupings) are re-
presented by the Piasa and Lonsdale limestones, respectively, and their
immediately underlying conodont-rich shales. Below the Piasa cy-
clothem, the shelly, conodont-rich shale at the base of the Farmington
Shale and the directly underlying Danville Coal represent an inter-
mediate cyclothem within the Altamont grouping, which provides an
important marker zone throughout our study area in Peoria County.
The base of the earliest Missourian cyclothem grouping (Hertha
grouping) in Illinois is represented by the Scottville/Exline Limestone, a
cyclothem of intermediate scale below the major cyclothem represented
in Illinois by the Cramer Limestone, Chapel Coal, associated shale, and
the Trivoli Sandstone. Across the Desmoinesian—-Missourian boundary
on the Midcontinent low shelf in southern Kansas and northern Okla-
homa are two minor marine cycles, the Glenpool above the Lost Branch,
and Checkerboard-South Mound below the Exline, which have no
equivalents higher on the shelf in Illinois (Fig. 1).

Throughout most of the Desmoinesian—early Missourian interval
(Fig. 1), regressive phases were typically subdued, with the lowstand
shoreline not extending much south of the Kansas-Oklahoma border in
the Midcontinent Basin, typical of small to moderate glacial buildup at
these times. This is in contrast to the two regressions both immediately
preceding and following the Lost Branch cyclothem, when shoreline
withdrew to south-central Oklahoma, some 200-250 km south of the
Kansas-Oklahoma border into the basin (Falcon-Lang et al., 2011a;
Fig. 1). In this paper, we informally name the major regression that
divides the Midcontinent Altamont and Lost Branch groupings as the
‘Upper Memorial regression’ because the lithic unit of that name can be
traced as a paleosol from upper mid-shelf Iowa to the low shelf of
central Oklahoma (Heckel, 1991). The major regression that divides the
Lost Branch and Hertha cyclothem groupings is termed the ‘Seminole
regression’, after the sandstone of that name that fills the incised pa-
leovalleys at this horizon from northern to central Oklahoma (Fig. 1).

2.2. Timing of Lycospora extirpation

Within this cyclothem context (Fig. 1), and at a coarse scale of re-
solution, final Lycospora extirpation occurred at a horizon prior to de-
position of the Mason Coal in the Appalachian Basin, the Lake Creek
and Athensville coals in the Illinois Basin, and the Tulsa and Hepler
coals in the Midcontinent Basin in the earliest part of the Midcontinent
Hertha cyclothem grouping (Peppers, 1996; Heckel, 2008, 2013;
Falcon-Lang et al., 2011a), i.e., following the ‘Seminole regression’.
However, more detailed intra-cyclothem analysis shows that sharp
decline actually commenced during the minor Glenpool cyclothem
(Fig. 1), near the end of the Lost Branch cyclothem grouping (Peppers,
1997), with Lycospora persisting only in tiny quantities into the earliest
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Fig. 1. Correlation of ~400-kyr marine cyclothem groupings across central and eastern USA, from complete succession in Midcontinent basin-margin region of Oklahoma through
Kansas-Missouri low shelf, Illinois Basin mid-shelf, to Appalachian high shelf, showing up-shelf decrease in number of marine units and concomitant increase in time gaps between them
(after Heckel et al., 2007; Falcon-Lang et al., 2011a; Heckel, 2013). Traditional Desmoinesian-Missourian boundary horizon marks US-wide loss of Lycospora, denoting lepidodendrid
extirpation. Peoria Fossil Forest stump sites rest on Lonsdale Limestone and overlying complex paleosol that formed during a major stratigraphic gap within which a fossil tree trunk also
is present in the Seminole Sandstone in Oklahoma. This forest developed following an intense transgression during the Lost Branch 400-kyr cyclothem grouping, when a short intense
glacial episode took lowstand shoreline basinward into south-central Oklahoma both prior to and following the transgression; note that during three older Desmoinesian (Upper Fort
Scott, Pawnee, Altamont) and two younger Missourian (Hertha, Swope) cyclothem groupings, lowstand shoreline did not extend much past Kansas-Oklahoma state border, during these

longer-term generally more interglacial times.

coals in the Hertha grouping. Therefore, the extirpation event com-
menced towards the end of the Lost Branch grouping, during the medial
stages of the ‘Seminole regression’ (Heckel, 1991) and was completed at
an unrecorded point during that regressive phase when no sedimentary
record was accumulating along accessible outcrop. It should be noted
that the Lycospora is a proxy for a larger suite of spores, which also
includes the lycopsid spore Granisporites, produced by members of the
Diaphorodendraceae, another major wetland lycopsid element
(DiMichele and Bateman, 1992).

3. Cyclothems and silicified trees in Peoria County

In this report, we describe Desmoinesian-Missourian boundary cy-
clothems, and associated silicified tree stumps, in Peoria County in
northwest-central Illinois, USA (Fig. 3). This is an area of classic
geology where Udden (1912) and Wanless and Weller (1932) first de-
scribed and named cyclothems, and Wanless and Shepard (1936) in-
terpreted them as the far-field expression of glacioeustatic cycles. The
presence of silicified trees is noteworthy, because it is the only such
confirmed occurrence in the entire Pennsylvanian succession of the

377

Illinois Basin. (We note that at the time of writing, a second occurrence
of silicified trees, but at the same stratigraphic level, has been reported
from Vermilion County, east-central Illinois by one of us (SDE) - al-
though we currently have insufficient data to fully integrate with the
findings of this paper).

3.1. Previous work

The complex stratigraphy of the Desmoinesian-Missourian
boundary succession for Peoria County is summarized in Fig. 4, which is
based on our synthesis of various Illinois Geological Survey field reports
(especially Udden, 1912; Cady et al., 1939; Dunbar and Henbest, 1942;
Wanless, 1956, 1957, 1958) combined with our own general field ob-
servations. Four cyclothems of major to intermediate scale are re-
cognized here, equivalent to the Altamont (2), Lost Branch, and Hertha
groupings of the Midcontinent Basin (Heckel, 2008). The upper three
cyclothems are separated by two prominent unconformities, re-
presenting significant erosional surfaces.

The first (lowermost) cyclothem is the Lower Farmington cy-
clothem, equivalent to the intermediate Farlington cyclothem at the
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Herrin Coal distribution data from Treworgy et al. (2000).

base of the Altamont grouping in the Midcontinent Basin (Fig. 1). It
comprises the late Desmoinesian Danville Coal, sharply overlain by a
thin, fossiliferous, conodont-rich marine shale to shaly limestone, fol-
lowed by several metres of Farmington Shale. Conodont faunas (labeled

[*1] on Figs. 4 and 6), collected above the Danville Coal at two lo-
calities west of Peoria are nearly exclusively dominated by Swadelina
neoshoensis and lack Idiognathodus (Heckel, 2013). Above this zone, the
lower part of the Farmington Shale coarsens upward into siltstone.
The second cyclothem upward is the major Piasa cyclothem, which
commences with an unnamed coal followed upward by nonmarine to
marine shale and the Piasa Limestone Member; it is equivalent to the
middle part of the Altamont grouping in the Midcontinent Basin. The
Piasa Limestone Member is a 1-2-m-thick skeletal wackestone with a
rich marine fauna, and was previously unrecognized in Peoria County.
In its type area in Jersey County, Illinois to the south, it overlies a dark
shale that contains a conodont fauna (labeled [*2] on Figs. 4 and 6),
which is dominated by Idiognathodus spp., contains Neognathodus spp.,
and includes Swadelina neoshoensis (Heckel, 2013). In Peoria County,
and more widely across Illinois, the Piasa Limestone is overlain by a
1.5-3-m-thick, informally named Maria Creek mudstone, a prominent
varicolored paleosol, and in places by its lateral equivalent, the Gimlet
Sandstone Member, a paleovalley-fill that locally incises down ~45 m
to just above the level of the Herrin Coal (Wanless, 1957), which is
below the Danville Coal, thus representing a major phase of regression.
The third is the latest Desmoinesian Lonsdale cyclothem, equivalent
to the Lost Branch cyclothem of the Midcontinent Basin (Figs. 1, 2). It
consists of the Lonsdale Limestone (Worthen, 1873), a typically
1.8-2.5-m-thick bioclastic wackestone (Wanless, 1957), with a rich
marine fauna (Waldo, 1928) and a brecciated top, overlain by an olive-
grey mudstone paleosol, ~0.7 m thick, informally named here as the
‘Hanna City’ paleosol. Near its base in Peoria County, 15 km west-
southwest of Hanna City (Wanless, 1957, locality 11), the typical
Lonsdale Limestone facies contains a conodont-rich shale, with a fauna
(labeled [*3] on Fig. 4) that is dominated by Swadelina nodocarinata,
and contains Neognathodus spp., Idiognathodus sp. and Gondolella magna,
the latter in its only stratigraphic appearance in the Illinois or Mid-
continent basins (Swade, 1973; see Swade, 1985; Lambert et al., 2003;
Barrick et al., 2013 for evolution of taxonomic names). Its components,
particularly Gondolella magna, allow correlation of the Lonsdale Lime-
stone with the Attila Shale of southern Illinois, and with the Nuyaka
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Fig. 4. Late Desmoinesian-early Missourian stratigraphy in Peoria area of Illinois, showing key beds named in text, cyclothems recognized in Illinois, correlation with Midcontinent
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interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Creek Shale in the Lost Branch cyclothem along the entire Midcontinent
outcrop from Iowa to Oklahoma (Heckel, 1991, 2013). Lateral to the
‘Hanna City’ paleosol, in places, a conglomeratic limestone facies of the
Lonsdale represents a paleovalley-fill that reworked fragments of the
typical Lonsdale facies. This channel incises down ~15-20 m, close to
the level of the Danville Coal (Fig. 4), and locally near the valley center,
to only 6 m above the Herrin Coal (Wanless, 1957). Reworked lime-
stone conglomerate is locally 9-m thick in parts of the paleovalley-fill.
Together, this incised paleovalley and paleosol surface represents an-
other major regressive phase. The silicified tree stumps, reported here,
occur above the Lonsdale Limestone horizon (Wanless, 1958), at the
level of the ‘Hanna City’ paleosol, as elaborated below.

The fourth (uppermost) cyclothem is equivalent to the Exline cy-
clothem in the lower part of the Hertha grouping in the Midcontinent
Basin (Figs. 1-2, 4). It commences with the very thin Athensville Coal,
whose base marks the ‘traditional’ Desmoinesian—-Missourian boundary
that is based on plant fossils (Fig. 4). This is overlain by the Scottville/
Exline Limestone, whose base marks the ‘revised’ Desmoine-
sian-Missourian boundary, which is based on conodonts in the Mid-
continent (see Falcon-Lang et al., 2011a, Fig. 2). In Peoria County, the

Exline Limestone is a black, platy carbonaceous limestone, 0.1-0.8 m
thick, with abundant plant fossils, worm tubes and some bivalves, and
is typically overlain by black shale with plant fossils (Wanless, 1957).

3.2. ISGS borehole description of boundary section

To improve knowledge of these four boundary-section cyclothems,
we drilled a borehole (Illinois State Geological Survey borehole:
ISGS#1 Eric Miller) to a depth of 500 ft (~152 m) in the Hanna City
7.5’ Quadrangle at a location (Section 2, T8N, R6E, Peoria County, ISGS
county number 35491) that is fairly central to the silicified tree-stump
sites (Fig. 5A, B). The relevant portion of the borehole is presented on
the accompanying graphic log (Fig. 6A), from the late Desmoinesian
Danville Coal to the base of the shales and sandstone above the prob-
able horizon of the earliest Missourian Exline Limestone. Depth is given
in feet (with equivalent metres denoted below) to allow easy correla-
tion with ISGS drill core records, which use imperial measurements.
Logs and core descriptions are on file at Geologic Records of the ISGS
and available via the ISGS website. Core is archived at the ISGS Samples
Library in Champaign. To aid biostratigraphic correlation, the borehole
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was sampled for conodonts using standard procedures, and specimens
were identified using Lambert et al. (2003) and Barrick et al. (2013).
The first (lowest) cyclothem, the Lower Farmington cyclothem,
comprises the ~0.5-m-thick Danville coal (base at 118.9 ft/~39 m),
overlain by black fossiliferous shale that contains abundant conodonts
strongly dominated by Swadelina neoshoensis (fauna [*1] on Fig. 6A),
followed upward by ~6.3 m of dark grey shale that grades upward to
lighter grey siltstone at the top beneath the base of the unnamed coal at
97.1 ft (~29 m). This cyclothem is equivalent to the Midcontinent in-
termediate Farlington cyclothem at the base of the Altamont cyclothem
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grouping there (Fig. 1).

The second cyclothem, the Piasa cyclothem (depth interval of
61.2-97.1 ft/~29-18.4 m in the borehole core), comprises a ~10.6-m
interval consisting of, from base to top, 0.3 m of coal, ~2.9 m of mostly
non-marine grey shale, a thin 0.3-m bed of slightly dolomitic fossili-
ferous limestone, ~2m of pyritic black shale, mottled at the top,
~2.7 m of nodular limestone in transition to grey shale with limestone
nodules, gradationally overlain by ~2.7 m of dark olive grey, mostly
massive mudstone with a brecciated zone in the upper part. The pyritic
black shale produces a high gamma-ray spike on the wire-line log
(Fig. 6A). Both it and the underlying thin dolomitic limestone bed
contain an abundant conodont fauna ([*2] on Fig. 6A) dominated by
Idiognathodus spp., containing Neognathodus spp., and including Swa-
delina neoshoensis, confirming the first recognition of the typically
erosionally degraded Piasa unit in this area. Based on this fauna, the
nodular carbonate unit that forms the upper marine part of this cy-
clothem is recognized as the Piasa Limestone, and is in its expected
position above the Danville Coal and below the Lonsdale Limestone.
Above the Piasa Limestone, the 2.7-m-thick unit of mostly massive to
brecciated dark olive grey mudstone is recognized as the Maria Creek
mudstone, a regionally extensive, mature, polygenetic paleosol. Based
on all this information, we correlate this cyclothem with the major
Altamont cyclothem in the Midcontinent Altamont grouping.

The third cyclothem, the Lonsdale cyclothem (depth of
56.4-61.2 ft/~16.9-18.4 m in the borehole core) is much thinner and
less completely developed in the borehole. The only definitely re-
cognizable element is the Lonsdale Limestone Member, here only
1.44 m thick, with brecciated fabric in the top. Above this unit, the core
has poor recovery in the stratigraphic position of the ‘Hanna City’ pa-
leosol, which is best exposed in the nearby Edwards strip mine (see
Section 3.3). No conodonts were recovered from the shale below the
Lonsdale. Their absence is probably a result of pervasive paleo-
weathering and erosional excavation of the shale below this limestone,
during karstification associated with early development of the ‘Hanna
City’ paleosol.

The fourth (uppermost) cyclothem (depth of 36.2-56.4 ft/
~10.9-16.9 m in the borehole core) is poorly represented at its base in
the core profile because of the poor recovery in the interval directly
above the Lonsdale Limestone (i.e., in the ‘Hanna City’ paleosol);
however, an overlying sharp-based calcareous shale, 0.43 m thick, with
thin-shelled brachiopods may represent a facies of the earliest
Missourian Exline Limestone. Based on this information, we correlate
this cyclothem with the intermediate Exline cyclothem in the lower part
of the Midcontinent Hertha grouping, and place the
Desmoinesian-Missourian boundary at a depth of 56.4 ft (~16.9 m) in
the borehole core.

3.3. Edwards strip mine exposure of boundary section

The only known place in Peoria County where this
Desmoinesian-Missourian boundary succession is accessible to more
detailed study is in the abandoned Edwards strip mine, north of Hanna
City and about 2 km north of the borehole core location (Fig. 5B). The
floor of the Edwards strip mine is flooded but the upper ~10-12 m part
of the northern highwall shows good exposure along a 500-m transect,
principally through the interval from the late Desmoinesian Farmington
Shale through the Piasa and Lonsdale limestones to the earliest Mis-
sourian Exline Limestone. Outcrop studies allow further insights into
the paleoweathering profiles developed between each major cyclothem
(Fig. 7).

The major Piasa cyclothem at this locality has thickened con-
siderably from the borehole location. Here the Piasa Limestone is up to
~6 m thick, and its upper surface comprises a series of irregular pin-
nacles of carbonate, up to 2.5m high and spaced 5-10 m apart
(Fig. 7A). In the lower part of the Piasa Limestone, 2-4 m diameter
blocks of bedded carbonate are randomly tilted at angles of up to 25°
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Fig. 6. Local stratigraphy. A, Graphic log of relevant part of Illinois State Geological Survey borehole (ISGS#1 Eric Miller; Latitude 40°41’51”N; Longitude 89°47’15”W; Section 2, T8N,
R6E, Peoria County, ISGS county number 35491; see Fig. 5B for location), from late Desmoinesian Danville Coal to just above earliest Missourian Exline horizon, showing Illinois
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complex ‘Hanna City’ paleosol.

(Fig. 7C). We interpret these features as limestone dissolution phe-
nomena developed in a karstic terrain; the large-scale pinnacles re-
present subdued tower-karst topography, and the tilted limestone
blocks record sub-surface dissolution and bedrock foundering into ca-
verns (Ford and Williams, 1989). The Maria Creek mudstone paleosol
infills and overlies this karst topography, and comprises olive-grey

mudstone beds that contain brecciated clasts of carbonate ranging in
size from pebbles to boulders.

The major Lonsdale cyclothem is thin at this locality (< 1.75m),
and the upper surface of the Lonsdale Limestone similarly shows a
karstified top with small-scale pot-hollows (Fig. 7B), interpreted as
solution-widened grykes. It is overlain by a second olive-grey mudstone
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Lonsdale Limestone, and interpreted as grykes, scale: 0.1 m. C., Large, randomly tilted blocks in Piasa Limestone, suggestive of foundering into solution caverns, scale: ~1 m. (For
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bed with brecciated clasts of carbonate, capped by a 12-cm thick
claystone with a structure of hematite-skinned peds (Fig. 6B). Although
representing a complex history of paleosol formation during the Des-
moinesian transition, both are assigned to the ‘Hanna City’ paleosol
based on its stratigraphic position (Fig. 7A). Silicified tree stumps are
seen in several places around the Edwards mine highwall at the ap-
proximate level of the ‘Hanna City’ paleosol, although their precise
stratigraphic position cannot be accurately determined due to cover,
with approximately 0.5 m of vertical uncertainty in placement.

The base of the Exline cyclothem is marked by a 5-cm thick layer of
dark grey shale, coaly shale and coal, which overlies the olive-grey
paleosol of the underlying cyclothem with a sharp contact, and re-
presents a younger poorly drained paleosol related to the Exline
transgression. The thin coal smut is interpreted as the Athensville Coal
(Fig. 6B), representing brief establishment of mire vegetation, and also
recording final Lycospora extirpation. This is, in turn, overlain by a 10-
cm thick calcareous shale with pectenoid bivalves, followed by the 15-
cm-thick dark grey Exline Limestone with pectenoid bivalves (Fig. 8A),
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spirorbids (Fig. 8B), abundant plant assemblages (especially Cordaites
leaves: Fig. 8), and insect wings. This facies of the Exline Limestone
formed in a dysaerobic brackish-marine embayment. A further 12-cm-
thick calcareous shale containing ostracods caps the highwall succes-
sion.

4. Geological context of silicified tree-stumps

Sites with silicified tree-stumps (Fig. 5) were first reported in Peoria
County in the course of late nineteenth to mid-twentieth century field
mapping by Illinois State Geological Survey field geologists (Worthen,
1873; Lesquereux, 1879; Udden, 1912; Bevan and Wanless, 1929, 1942;
Cady et al., 1939; Dunbar and Henbest, 1942; Wanless, 1957, 1958). In
this study, we were able to re-locate most of the historic sites, find new
ones, and place them in a precise sedimentologic, stratigraphic and
cyclothemic context within the Desmoinesian-Missourian boundary
section.
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Fig. 8. Cordaites leaves in earliest Missourian Exline Limestone at Edwards strip mine. A., Randomly orientated Cordaites leaves with pectinoid bivalves, scale: 2.5 cm. B., Close-up of a

Cordaites leaf enrusted with spirorbids, scale: 5 mm.

4.1. Oak Hill 7.5’ Quadrangle

The earliest report was by Worthen (1873), who noted highly
abundant “fossil wood, all of it completely silicified” along a branch of
the north fork of Kickapoo Creek (Oak Hill 7.5’ Quadrangle; Section 4,
T10N R6E; no spot in section; Locality 1 on Fig. 5A). Worthen (1873)
commented that pieces are “two to three feet in length” and represent
remains of “what were once large trees” (p. 245). All the material that
Worthen (1873) observed was in float, but he had “no doubt” that it
derived from an interval of yellow/green shale developed on top of the
Lonsdale Limestone (Worthen's “limestone conglomerate”) and below
the ‘Exline’ Limestone, i.e., the interval of the ‘Hanna City’ paleosol.
Worthen (1873) made no comment about whether the fossil wood
specimens were rooted tree stumps, specifically, and we were unable to
re-locate this site to confirm details.

4.2. Hanna City 7.5’ Quadrangle

A further cluster of six occurrences was documented in the Hanna
City 7.5” Quadrangle (Fig. 5A). In this region, Cady et al. (1939) re-
corded “an exposure of black limestone” (the Exline Limestone based on
our own field mapping) close to “an upright tree stump” exposed in a
ravine (Locality 2 of Fig. 5B), 400 m west of the Edwards strip mine. We
managed to re-locate this site and confirm that fossil material did, in
fact, comprise silicified tree-stumps rather than more general trunk
fragments. However, material was exclusively in float, and whereas
stumps were below the level of the Exline Limestone, and close to
outcrops of the Lonsdale Limestone, their precise stratigraphic position
could not be determined accurately. At other nearby localities southeast
of the Edwards strip mine, Bevan and Wanless (1929) reported “large
pieces of petrified wood, source not seen” (Section 1; T8N R6N; NW-
SW-NW; Locality 3 on Fig. 5B), and Bevan and Wanless (1942) noted
“many blocks of silicified wood” in a clay overlying the Lonsdale
Limestone (Section 1; T8N R6E; NE-SW-SE; Locality 4 on Fig. 5B). We
documented three additional occurrences of silicified tree stumps
(grouped together as Locality 5a—c), north and west of the Edwards
strip mine (Fig. 5B), and our own mapping confirmed that these oc-
currences were near the level of the Lonsdale Limestone, although exact
field relationships were obscured by cover. We also met several local
people in the area who had silicified wood specimens in their yards, and
Kent Snowdon, the owner of the Edwards strip mine site, reported that,
“all the local kids have collections of fossil wood”, suggesting that this
material is widely scattered across the Hanna City area. It is difficult to
determine, with precision, the stratigraphic horizon of these occur-
rences, but most likely they derive from the ‘Hanna City’ paleosol.
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4.3. Peoria West 7.5’ Quadrangle

Udden (1912) described “large pieces of silicified trunks of trees”
associated with a “dirt bed” (p. 38) developed 1.5 m above the Lonsdale
Limestone from a locality in the Peoria West 7.5’ Quadrangle (Section
11 of Limestone Township; T8N R7E; Locality 6 on Fig. 5A). The his-
torically obsolete quarryman term “dirt bed” was used to refer to pa-
leosols associated with the Purbeck Fossil Forest in the Jurassic of
Dorset, UK (Francis, 1984), and its usage was popularized in geological
textbooks (e.g., Lyell, 1871) that would have been familiar to Udden. It
is certain that Udden (1912) was using “dirt bed” in this sense, to sig-
nify a paleosol, because he described the layer with the silicified wood
as an “old soil, indurated, dark, micaceous, with fragments of vegeta-
tion, impressions of stems” (p. 39). We could not re-locate this site to
confirm details but the stratigraphic description closely fits with the
‘Hanna City’ paleosol.

4.4. Dunlap 7.5” Quadrangle

Lesquereux (1879) described a silicified tree-fern trunk, referred to
Caulopteris (Psaronius) giffordi (Lendemer, 2002), from Alta, northwest
of Peoria (Dunlap 7.5’ Quadrangle; T1ON R7E, no spot in section; Lo-
cality 7 on Fig. 5A). No details of the geological context were given, but
this location comprises a small outlier above the Danville Coal, near the
level of the Lonsdale Limestone. It remains uncertain if this fossil is
from exactly the same horizon as the other tree-stumps although it
clearly came from near the ‘traditional’ Desmoinesian-Missourian
boundary.

4.5. Glasford 7.5’ Quadrangle

In the most explicit documentation of silicified tree stumps in their
geological context, Wanless (1958, p. 23) reported the following ob-
servations: “In one locality in the Glasford Quadrangle, erect silicified
stumps were observed rooted in the top of the Lonsdale Limestone, and
fragments of silicified wood are common at the top of the Lonsdale
Limestone at several places. This is interpreted as showing that the sea
drained away shortly after the Lonsdale limestone was formed and the
emerged limestone provided a “soil” that supported forest vegetation”.
No specific localities were identified, but the geologic maps show that
this area comprises a small outlier of Middle Pennsylvanian strata
capped near the level of the Lonsdale Limestone (Locality 8 on Fig. 5A).
We visited the site, and identified outcrops of Lonsdale Limestone in
stream sections but did not find evidence of the in situ stumps reported
by Wanless (1958). However, Steve Thomson, the landowner, showed
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Fig. 9. Silicified tree-stump morphology. A., The larger stump morphotype showing a gently tapering trunk, robust taproot, and symmetrically distributed lateral roots, scale: 10 cm. B.,
The smaller stump morphotype showing a sharply tapering trunk, twisted wood grain, and asymmetrical roots, scale: 6.5 cm.

us eight large specimens of silicified wood, including at least one tree-
stump, in his yard, which he had collected in float, lending credence to
the historical observations. This is a clear record of silicified tree-
stumps rooted in the ‘Hanna City’ paleosol.

4.6. Stratigraphic context of silicified tree-stumps

Despite our own field survey, we were unable to observe silicified
tree-stumps in growth position, in a sedimentologic context, with the
level of geological detail given by earlier workers. Examination of late
nineteenth to mid-twentieth century field photographs (ISGS archives)
show that rock exposure was more widespread in the ravines of Peoria
County than it is today. This is almost certainly because, at that time,
much of the land had been cleared for farming. With improved soil
conservation today, many formerly bare areas have become re-vege-
tated, concealing rock exposures. And, as mentioned above, local col-
lectors have hauled away many of the most accessible specimens over
the past 150 years. Consequently, we have had to be more reliant on
historical sources that we would have liked in order to glean an un-
derstanding of the silicified tree-stumps.

4.6.1. Critical stratigraphic placement

Only Wanless (1958) reported to have observed field relationships
clearly, and he was certain that “erect silicified stumps” were rooted
within what we now know as the ‘Hanna City’ paleosol developed on
the paleoweathered top of the Lonsdale Limestone. Udden (1912) is
also noteworthy for stating that the silicified trees were associated with
a paleosol. While his stratigraphic section points to an association with
the ‘Hanna City’ paleosol, he does not specifically state that silicified
trees were rooted in the paleosol. Other reports (Worthen, 1873; Cady
et al., 1939; Bevan and Wanless, 1942) infer a similar relationship, with
greater uncertainty. Least certain is if the material described by
Lesquereux (1879) is from the same horizon as the rest of the material,
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although it is clearly from that approximate interval. Our own field
observations confirm that silicified fossil wood is abundant near the
level of the Lonsdale Limestone, and within 0.5 m of the ‘Hanna City’
paleosol level, at many localities, and comprises, specifically, mostly
tree-stumps with lateral roots as described below. Overall, it is highly
probable that this material derives from an autochthonous silicified
‘fossil forest’ (sensu DiMichele and Falcon-Lang, 2011), rooted in
growth position in the ‘Hanna City’ paleosol developed on top of the
Lonsdale Limestone. The area over which silicified tree stumps are
found amounts to ~250 km?, making it one of the most widespread
fossil forests ever described. Outside of Peoria County, silicified wood is
extremely rare in Pennsylvanian rocks of the Illinois Basin. To find such
uncommon fossils at more than one stratigraphic horizon in the same
geographic area would be most remarkable.

4.6.2. Biostratigraphic age of ‘Hanna City’ paleosol and fossil forest

The typical Lonsdale Limestone facies contains a conodont-rich
shale near its base dominated by Swadelina nodocarinata, and including
Neognathodus, Idiognathodus and Gondolella magna. This fauna ([*3]),
particularly Gondolella magna, allows correlation of the Lonsdale
Limestone with the Attila Shale of southern Illinois, and with the
Nuyaka Creek Shale in the Lost Branch cyclothem along the entire
Midcontinent outcrop from Iowa to Oklahoma (Heckel, 1991, 2013). In
this cyclothem context, the silicified forest correlates with the major
marine drawdown event related to part of the ‘Seminole’ regression
(Fig. 1).

5. Anatomy of silicified tree stumps

In the course of our field investigations, ~ 45 specimens of silicified
fossil wood were observed, all in float, near the top of the Lonsdale
Limestone of Peoria County. The morphology and anatomy of the four
most completely preserved silicified tree-stumps are described.
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5.1. Stump gross morphology

The four specimens represent two tree-stump morphotypes. The
larger morphotype (n = 3) comprises buttressed stumps, 0.51-0.67 m
diameter, that slowly taper upwards, show a single, robust, vertical
taproot, up to 0.21 m diameter, and a broadly symmetrical pattern of
robust lateral roots that curve towards the horizontal plane (Fig. 9A).
The smaller morphotype (n = 1), 0.19 m diameter, comprises a much
more sharply tapering stump, showing a distinctively corkscrew twisted
grain, and a complex array of lateral roots, of various sizes, which are
strongly asymmetric in distribution (Fig. 9B).

5.2. Wood anatomy

Standard petrographic thin sections were prepared for each of the
four stump specimens in transverse, radial longitudinal and tangential
longitudinal sections (TS, RLS, and TLS, respectively). Thin sections
were described and imaged using an Olympus binocular BH-5 and a
Nikon digital camera system. Only secondary xylem was preserved, and
anatomy was identical for both stump morphotypes.

In RLS, tracheids show 1-5 (mostly 2-3) seriate, alternate, circular
bordered pits (Fig. 10A, B), 8-12 um diameter, with oblique, oppositely
oriented apertures (Fig. 10C). Cross-field pitting comprises 2-6 arau-
carioid pits per field (Fig. 10B). In TLS, rays are dominantly uniseriate,
1-17 cells high, with short biseriate portions (Fig. 10D-F). Very
common are strands of axial parenchyma, typically up to 5-10 cells
high (Fig. 10D, E). In TS, tracheids, 35-50 pym diameter are arranged in
radial files (Fig. 10G), and show irregular growth interruptions,
1-4 mm wide, comprising zones of smaller, thin-walled tracheids,
20-25 um diameter, interspersed with abundant axial parenchyma
(Fig. 10H) with profusely pitted transverse walls (Fig. 101I).

5.3. Stump identification

Secondary xylem of this type is characteristic of late Palaeozoic
coniferopsids (Falcon-Lang et al., 2014). Where found without details of
pith and vasculature, such material would normally be placed in Da-
doxylon (Noll et al., 2005); however, the presence of growth interrup-
tions with abundant axial parenchyma is uncommon for this genus.
Identical, but more completely preserved material, assigned to Amyelon
(Barnard, 1962) and inferred to represent the root/stump wood of
cordaitaleans (Cridland, 1964), has recently been described from
Middle Pennsylvanian dryland alluvial facies in Staplehill, Bristol, UK
(Falcon-Lang et al., 2011b). Therefore, we assign the Peoria material to
Amyelon, an inference that is consistent with its known origin as root/
stump tissue.

In the Staplehill assemblage, Amyelon is closely associated with
specimens of Mesoxylon, which Falcon-Lang et al. (2011b), similarly,
interpreted as a dryland cordaitalean. However, those Staplehill axes,
also, closely resemble axes more-recently described as Giblingodendron
(Falcon-Lang et al., 2014), an enigmatic dryland coniferopsid, which
has been compared with cordaitaleans, conifers and dicranophylls (see
Falcon-Lang et al., 2016, for an in-depth discussion of affinity). None-
theless, three considerations favour a cordaitalean affinity for the
Peoria specimens: (1) Cordaites leaves are co-dominant, together with
pecopterid ferns, in the adpression assemblage in the earliest Mis-
sourian ‘Exline’ Limestone that directly overlies the silicified fossil
forest (Fig. 8); (2) walchian conifers are extremely rare in latest Des-
moinesian time, with only four records known (Arnold, 1941; Rothwell,
1982; Falcon-Lang et al., 2009; Plotnick et al., 2009; Scott et al., 2010);
and (3) dicranophylls generally do not occur west of the Appalachians
until mid-to-late Missourian times (Fig. 10A; Mamay, 1981; Falcon-
Lang et al., 2016). However, given the uncertainties surrounding wood
identification, we remain cautious about assigning the Peoria stumps to
any particular clade, and refer to them here as indeterminate con-
iferopsids.
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5.4. Paleoecologic and paleoclimatic interpretation

Based on anatomical observations, there is no evidence that the two
stump morphotypes are of systematic significance, and we interpret
them here as either ontogenetic variants or, more likely, reflecting local
growing conditions. For example, the larger stump morphotype is
characteristic of trees growing on thick, well-drained soils, where the
taproot is able to penetrate deeply and the lateral roots spread sym-
metrically (Gasson and Cutler, 1990). In contrast, the smaller mor-
photype, though more adaptable with regard to soil depth, has features
that are consistent with growth on thin rocky soils, where the root bole
develops asymmetrically due to obstacles, and the grain of the wood
becomes twisted as the tree compensates to maintain an erect trunk
(Gasson and Cutler, 1990). Another significant feature is the presence of
growth interruptions, marked by small, thin-walled tracheids and an
abundance of axial parenchyma. Weakly developed growth rings are
typical of stump wood, and correlate with more marked rings higher in
the trunk of some cordaitalean taxa (Falcon-Lang et al., 2011b). The
presence of such features suggests growth under intermittent periods of
edaphic water stress, the most likely cause of which would be tropical
seasonality (Jacoby, 1989).

6. Silicified tree stumps in cyclothem context

Here we discuss the significance of the silicified tree-stumps in
Peoria County, and their implications for the stepwise collapse of the
Carboniferous Coal Forests. This discussion is based on a critical
synthesis of the new findings with earlier analyses of the con-
temporaneous Lost Branch cyclothem in the Midcontinent (Heckel,
1991), the continent-wide sea-level curve and correlation of cyclothems
(Heckel, 2008, 2013), and the extraordinarily high paleotemperature
inferred from a late Desmoinesian Maria Creek mudstone paleosol
(Rosenau et al., 2013b).

6.1. Intensification of end-Desmoinesian glacial cycles

Although near-field records suggest that Gondwanan ice cover was
fairly low during the Desmoinesian-Missourian interval (Isbell et al.,
2003; Fielding et al., 2008), and the Earth was experiencing a green-
house episode (Montanez and Poulsen, 2013; Montanez et al., 2016),
near-field records are generally coarse compared to the far-field record
of lateral extent of correlatable cyclothemic marine transgression
(glacial melting) alternating with sea-level fall (glacial buildup) that
resulted in formation of paleosols and incised valleys.

The far-field sea-level curve for the Midcontinent (Heckel, 2008,
2013) shows that lowstand shorelines between most late Desmoinesian
and early Missourian cyclothems (Fig. 1) did not extend basinward very
far south of the Kansas-Oklahoma border (long interglacials I and II of
Heckel, 2008, 2013; see also Rygel et al., 2008). However, after the
minor Idenbro transgression into southeastern Kansas, there was a
marked intensification of the amplitude of glacial cycles. The shoreline
regressed some 250 km farther, to the vicinity of Ada, about 100 km
southeast of Oklahoma City in south-central Oklahoma (Fig. 1). The
evidence is the development of a paleosol in the Upper member of the
Memorial Shale across the Midcontinent, which we informally name the
‘Upper Memorial’ regression. This major regression was in response to a
short, but much greater, buildup of Gondwanan ice than for, perhaps,
the previous two million years of the late Desmoinesian (Fig. 1; Heckel,
2013, p. 15). It is noteworthy that the North American record conforms
closely to the sea-level curve developed for the Donets Basin (Eros et al.,
2012; Montanez et al., 2016), which is also the time during which the
latter authors inferred the greatest fluctuations in the amplitude of CO,
fluctuations.

During this time of significant regression, all cyclothemic sediments
of the major Altamont grouping were subject to subaerial exposure, soil
formation, erosion, and paleovalley incision. This was particularly true
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Fig. 10. Silicified stump anatomy. A., Tracheid showing 2-3-seriate, alternate, circular bordered pits, RLS, scale: 100 um. B., Cross-field pitting with 2-6 araucarioid pits per field, RLS,
scale: 50 pm. C., Close-up of tracheid pitting showing distinctly circular shape (not hexagonal) and opposite, oblique apertures, RLS, scale: 25 pm. D., Axial parenchyma strands, TLS,
scale: 100 um. E., Axial parenchyma strand > 8 cells high, TLS, scale: 80 um. F., Uniseriate rays, 1-17 cells high, with short biseriate portions, TLS, scale: 300 pm. G., Tracheids,
35-50 pm diameter, arranged in radial files, TS, scale: 150 pm. H., Close-up of growth interruption zone showing smaller, thin-walled trachieds, 20-25 pm diameter, interspersed with
abundant axial parenchyma, TS, scale: 150 um. I., Axial parenchyma cells show profusely pitted transverse walls, TS, scale: 25 um.

for the major Altamont and equivalent Piasa cyclothems, which were
exposed for the longest times on the higher mid-shelf of their respective
basins. It must have been during the initial part of the ‘Upper Memorial’
regression that the top of the Piasa Limestone became strongly kar-
stified, under humid climate conditions, as seen in the Edwards mine
north of Hanna City in Peoria County (Fig. 7). After exposure, this
dissolution surface became overlain by the cumulative paleosols of the
Maria Creek mudstone observed across the northwest part of Illinois
Basin, including the study area in Peoria County.

It was from the Maria Creek mudstone paleosol that Rosenau et al.
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(2013b) obtained their significant temperature excursion showing up to
6 °C of global warming. These were sufficiently high temperatures and
aridity, in the latter stage of paleosol formation, for the mudstone to
become locally reddened to high-chroma color, unlike any older Des-
moinesian paleosols or any younger early Missourian paleosols in the
region. The paleotemperature estimate obtained by Rosenau et al.
(2013b) from this paleosol characterizes an interglacial phase warm
enough to melt the greater buildup of Gondwanan ice and trigger the
Attila-Lonsdale transgression into the Illinois Basin. During the early
part of this major transgression, peat mires (represented by the
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Lycospora-rich Dawson Coal in northern Oklahoma and southern
Kansas, and the Pond Creek and Rock Branch coals in southern Illinois)
were populated by the last widespread lepidodendrid forests west of the
Appalachians (Peppers, 1996). Palynological studies from overlying
sections show a progressive decline in Lycospora through the medial
interval of the Lost Branch cyclothem (Peppers, 1997).

The regression that followed deposition of the Lonsdale Limestone
on the northern shelf of the Illinois Basin, again took the shoreline far
southward and basinward into south-central Oklahoma with only a
minor transgression (Glenpool) in the Kansas-Oklahoma border region
(Fig. 1). No coals are known to be associated with this minor reversal of
shoreline trend, but the abundance of palynomorphs associated with
lycopsids decreased moderately upward through the Lost Branch-
Glenpool interval and these kinds of spores nearly disappeared above
the Glenpool, whereas those associated with ferns increased sig-
nificantly above the Glenpool into the Hepler Coal (Peppers, 1997). In
Oklahoma, the shoreline regressed far enough that a major incised
paleovalley system formed and ultimately became filled with the
Seminole Sandstone, hence we informally name this episode the
‘Seminole’ regression. This paleovalley-fill contains a silicified tree
trunk near Ada, Oklahoma that shows seasonal growth rings (Wilson,
1963), indicating that the lowstand coincided with a seasonally dry
climate.

This regression was in response to the second and final major
Gondwanan glacial buildup of the relatively short-term glacial episode
B of Heckel (2008, 2013), and may have been the most intense short-
lived glacial phase of the Pennsylvanian. This event probably further
stressed any remaining sparse lepidodendrid communities, by taking
the shoreline into the steeper margins of the basins of central Okla-
homa, where the swamps they required for reproduction were greatly
reduced in areal extent (Heckel, 1991). Lycospora finally disappeared
from Pennsylvanian sediments west of the Appalachians during an
unrecorded interval of the non-depositional episode represented by the
Seminole regression (Peppers, 1997).

After deposition of the Seminole Sandstone, initial melting of the
Gondwanan ice cap resulted in the Checkerboard-South Mound trans-
gression, which extended only into southeastern Kansas. This was
preceded by mires that produced the Tulsa and Hepler coals of northern
Oklahoma and southern Kansas, respectively, which lack Lycospora and
are dominated by palynomorphs of tree-ferns and seed-ferns (Peppers,
1996, 1997). After the shoreline regressed back into northern Okla-
homa, the next transgression deposited the open marine Exline Lime-
stone onto the northern Midcontinent shelf into Iowa, and the open
marine Scottville Limestone in the Illinois Basin, which extends into
Peoria County as the black dysaerobic limestone and calcareous shale
that have long been termed the Exline Limestone in this area.

6.2. ‘Hanna City’ paleosol and the silicified fossil forest

Prior to the Scottville-Exline transgression, the northern shelf of the
Illinois Basin was subject to a long period of subaerial exposure (Fig. 1).
During this Seminole regression, the Lonsdale Limestone initially be-
came subject to intense meteoric diagenesis, resulting generally in a
mottled semi-brecciated appearance with partially spar-filled fractures
separating in-place irregular ‘clasts’. In parts of Peoria County, how-
ever, meteoric diagenesis went much further, resulting in karstification
that left grykes and pinnacles at the top of the Lonsdale, and erosion in
some places that cut out large areas of the limestone and allowed cut-
ting of deep channels into the underlying mudstone. Collapse of much
of the remaining karstic brecciated carbonate into the channels and
later reworking by running water rounded the clasts into pebbles and
formed the limestone conglomerates that dominate the Lonsdale in
these places. All this must have occurred under moist subhumid to
humid climates (as circumscribed by Cecil, 2003, based on monthly
rainfall vs. evapotranspiration patterns). As sea-level continued to fall,
material was reworked into incised valleys, cutting down in places, up
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to 55 m, nearly to the level of the Herrin Coal (Wanless, 1957), and
infilling with accumulations of carbonate conglomerate, up to 9 m
thick.

It was during this long sedimentary hiatus, of perhaps ~300 kyr
(Fig. 1), that the tree-stumps, reported here, grew on top of the Lons-
dale Limestone in northwestern Illinois, and eventually became silici-
fied. That hiatus includes two minor glacial-interglacial climate cycles,
probably with coupled oscillations in wet-dry climates (Glenpool and
Checkerboard-South Mound cyclothems: Fig.1). It is therefore of no
surprise that historical reports of the geological context of this fossil
forest are variable and uncertain because the forest must have been
established on a complex paleoweathered surface that may have been
further altered after the forest was fossilized. It is unfortunate that the
complicated paleosol facies means that we cannot place the silicified
stumps in a more definite paleoclimatic context based on independent
sedimentary criteria; however, growth interruption features of the tree-
stumps themselves do provide some inferences as to the climate con-
text, suggesting that these trees flourished under seasonally dry cli-
mates.

This implies that the establishment of the Peoria silicified fossil
forest did not coincide with early periods of karstification of the
Lonsdale Limestone (which would have required mostly humid climatic
conditions: Ford and Williams, 1989), but with subsequent drier sub-
humid climatic phases, marked by wet-dry seasonality. An origin
during a drier climate is also supported by preservation of the wood in a
silicified state; silicification mostly occurs in dryland soils with an
elevated pH (Parrish and Falcon-Lang, 2007; Mencl et al., 2009), when
not associated with volcanism (Scott, 1990). Those drier climatic
phases probably occurred after sea level had withdrawn from the mid
shelf (Heckel, 2013), when the upper surface of the Lonsdale Limestone
was becoming incised by valley-systems (Wanless, 1957), and calcic
Vertisols and Calcisols were forming elsewhere in the Illinois Basin
(Rosenau et al., 2013a), although we have no direct evidence of well-
drained paleosol development on the complex polygenetic Lonsdale
karstified catena in Peoria County.

6.3. Reconciling competing hypotheses for Lycospora extirpation

In the introduction, we outlined two hypotheses to explain the
stepwise collapse of the Carboniferous Coal Forests: Was this profound
ecological event caused by global cooling (Falcon-Lang and DiMichele,
2010) or global warming (Rosenau et al., 2013a, 2013b)? Our new
findings, presented here, allow these apparently competing hypotheses
to be reconciled.

We show that in the interval leading up to Coal Forest collapse,
there was an intensification of the amplitude of glacial cycles in end-
Desmoinesian times. This conclusion also was reached by Montafiez
et al. (2016) with an independent data set. The penultimate Desmoi-
nesian major Piasa (and Altamont) cyclothems were followed by a
profound sea-level fall (‘Upper Memorial’ regression), signaling sig-
nificant ice buildup on Gondwana, followed by a global temperature
spike, signaling onset of sharp global warming (Rosenau et al., 2013b).
The inferred temperature rise of up to 6 °C (Rosenau et al., 2013b) seen
in the latest Desmoinesian Maria Creek mudstone paleosol above the
Piasa Limestone is larger than the trough-to-peak temperature changes
of 4°C = 0.8 °C inferred for the last Quaternary glacial cycle (Annan
and Hargreaves, 2013), and would necessitate a shift to so-called ‘super
interglacial’ conditions (Melles et al., 2012), consistent with the spike in
atmospheric CO, inferred at this time (Montafez et al., 2016). This was
then followed by the largest of all, marine regressions, the ‘Seminole’
regression that witnessed the sea retreat beyond the Midcontinent shelf
edge.

Detailed analysis of palynological data in this context allows the
following conclusions to be drawn: (1) Whereas the Maria Creek
warming pulse must have stressed lepidodendrid Coal Forests, it failed
to completely destabilize them. This is indicated by the continued
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development of Lycospora-rich mires as warming was reaching its peak,
represented by the Dawson Coal in the subsequent Lost Branch cy-
clothem in the Midcontinent and by the Rock Branch and Pond Creek
coals in southern Illinois (Peppers, 1996). (2) Lycospora began its final
sharp decline after this global warming spike, during the peak of the
minor Glenpool transgression (Peppers, 1997), which preceded the
profound glacial phase represented by the ‘Seminole’ regression
(Heckel, 1991, 2008, 2013). The lepidodendrids were then completely
eradicated in western Euramerica at the ‘traditional’ Desmoinesian-
Missourian boundary.

The commencement of Lycospora decline in the course of a transi-
tion between sharp warming and sharp cooling means that it is cur-
rently impossible to ascertain which was the more pivotal event. Rather
than hot or cold temperature extremes being to blame, a further related
possibility is that it was the rate of global climate change that was a key
factor in Lycospora extirpation.

7. Discussion

In this paper, we report evidence for silicified coniferopsid tree-
stumps (Figs. 9-10), possibly associated with localized tree-ferns
(Lesquereux, 1879), which grew and were preserved during a 300-kyr
hiatus in sedimentation within the study area, spanning the ‘traditional’
Desmoinesian-Missourian boundary. The forest is documented
throughout an area of ~250 km? in Peoria County, northwest-central
Illinois, USA, making it one of the largest fossil forests ever so docu-
mented. Should the other documented occurrence of silicified wood
from Vermilion County, east-central Illinois, be confirmed from the
same horizon, this fossil forest would be of even greater extent. Based
on growth interruptions and silicic preservation, the coniferopsid (and
marratialean?) trees flourished during a seasonally dry episode. The
stratigraphic position of the forest coincides exactly (within the limits
of stratigraphic resolution) with the initial stepwise collapse of the
Carboniferous Coal Forests, characterized by the extirpation of Lycos-
pora-producing lepidodendrids, west of the Appalachians (Phillips
et al., 1974, 1985; DiMichele and Phillips, 1996; Kosanke and Cecil,
1996; Peppers, 1997; Falcon-Lang et al., 2011a). The collapse event was
probably linked to an intensification of the amplitude of glacial cycli-
city, and the spike of warming represented by isotopic records in the
Maria Creek mudstone may have been the initial trigger. Here, we
discuss the implications of the new fossil discoveries for the better
understanding of this key event in the History of Life.

7.1. Biogeography of north-equatorial Euramerica, west of Appalachians

To appreciate the wider significance of the Peoria silicified fossil
forest for understanding the biome-scale vegetation-dynamics that may
have been involved in the Desmoinesian-Missourian lepidodendrid
extirpation, it is important to clarify regional tectonics and vegetation
biogeography (Fig. 11A). During Middle Pennsylvanian time, north-
equatorial Euramerica contained a number of interconnected tectonic
basins (Oplustil, 2004), which were effectively separated into two
drainage networks by a continental divide, associated with a northern
spur of the Appalachian Orogen (Gibling et al., 1992, 2008); one net-
work, west of the orogenic spur (USA), drained towards Panthallassa,
and the other, east of the spur (Atlantic Canada, Europe, Ukraine),
drained towards the Paleo-Tethys.

West of the Appalachians, in the area that forms the focus of this
study (Fig. 11B), at least two major vegetation biomes existed. In the
area closest to the Orogen, including the Appalachian, Michigan, Illi-
nois, Midcontinent, and Midland basins (Greb et al., 2003), wetland
forests dominated by arborescent lycopsids, including the Lycospora-
producing lepidodendrids prevailed during humid climate episodes
(DiMichele et al., 2010). This vegetation was broadly similar on both
peatland soils (DiMichele and Phillips, 1985, 1994; Phillips and
DiMichele, 1992) and waterlogged clastic soils associated with fluvial
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drainages (Pfefferkorn and Thomson, 1982; DiMichele and DeMaris,
1987; Gastaldo, 1987; DiMichele and Philips, 1988; Willard et al.,
1995; DiMichele et al., 2007; Thomas, 2007; Cleal et al., 2009, 2012).
Farther to the west, in the tectonic basins associated with the
Ancestral Rocky Mountains in Colorado and New Mexico and the Antler
volcanic arc in Idaho, Oregon, and Nevada (Blakey, 2008), climate
conditions were more uniformly arid with environments including
evaporitic gulfs, sabkhas, aeolian ergs, and dryland alluvial plains
(Blakey and Knepp, 1989; Blakey et al., 1988; Blakey, 2009; Soreghan
et al., 2008; Sur et al., 2010; Jordan and Mountney, 2012). The vege-
tation of this western arid region included permanent populations of
drought-adapted gymnosperms such as conifers, cordaitaleans and
certain pteridosperms, with lepidodendrids, sigillarians, and sphe-
nopsids restricted, mostly, to localized wetland settings (Fig. 11B;
Arnold, 1941; Rothwell, 1982; Mamay and Mapes, 1992; Tidwell and
Ash, 2004; Lerner et al., 2009; Lucas et al., 2009; DiMichele et al.,
2010; Falcon-Lang et al., 2011c; DiMichele et al., 2017). This type of
vegetational mosaic persisted during the glacial-interglacial cycles that
were accompanied, in the more central region of Pangaea, by major
swings between the wetland and seasonally dry adapted biomes
(Falcon-Lang et al., 2009; Falcon-Lang and DiMichele, 2010).

7.2. Significance of Peoria silicified fossil forest

The silicified tree-stumps, reported here, are unusual and surprising
because they represent evidence for the existence of a seasonally dry
coniferopsid (and possibly marattialean) vegetation, similar to that
known from the arid western part of Euramerica (Falcon-Lang et al.,
2011c), but developed much farther east in the region, in an area (Il-
linois Basin) that lay near the center of the lepidodendrid Coal Forest
belt in end-Desmoinesian times (Greb et al., 2003). The silicified stumps
provide fossil evidence that stepwise Coal Forest collapse was asso-
ciated with an arid climate phase and the temporary colonization by
dryland coniferopsid vegetation of the regions occupied by lepidoden-
drid Coal Forests, prior to the rise of the tree-fern coal forests of the
Missourian. This coniferopsid vegetation, probably, dispersed east-
wards from the Ancestral Rocky Mountains region in response to cli-
mate change (Fig. 11C; DiMichele, 2014).

As summarized above, the cause of this short-term phase of extreme
tropical aridification apparently involved an intensification of glacial
cycles including a super interglacial phase (the initial trigger) and
subsequent profound cooling, drying, and sea-level fall (which ulti-
mately eradicated the lepidodendrids). This climatic excursion, in the
area west of the Appalachians, evidentially pushed the hydrophilic le-
pidodendrids beyond an ecological tipping point from which they could
not recover (Phillips et al., 1974; Falcon-Lang and DiMichele, 2010),
leading to their extirpation across this region. The orogenic spur that
formed the continental drainage divide (Gibling et al., 1992) must have
been sufficiently elevated to prevent the subsequent re-introduction of
lepidodendrids from the eastern Euramerican region, where they con-
tinued to persist, although in much reduced numbers, until, at least,
until the end-Carboniferous (Bek and Oplustil, 2006; Oplustil et al.,
2013). The Peoria silicified fossil forests therefore shed important light
on the biome-scale vegetation-dynamics that accompanied Coal Forest
collapse.

7.3. Was Coal Forest collapse pan-tropical?

If tropical aridification was to blame for Coal Forest collapse, a
pertinent question is why did it affect the western side of north-equa-
torial Euramerica more profoundly than the eastern side? Although it is
possible that climate change and its impact on vegetation was re-
gionally variable, a more nuanced look at the fossil record suggests that
the apparent partial collapse of lepidodendrid Coal Forests may actually
be an artifact of an incomplete understanding of the fossil record, and
that the collapse may, in fact, have been pan-tropical.
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Fig. 11. Biome-scale vegetation-dynamics at the Desmoinesian-Missourian boundary (paleomaps courtesy of Ron Blakey, deeptimemaps.com). A., Desmoinesian biogeography of the
three coniferopsid clades (cordaitaleans, dicranophylls, conifers), to constrain the identity of the Peoria tree stumps. B., Biogeography of tropical Euramerica, west of the Appalachians,
showing the two major vegetation biomes (see text for discussion) including location of major US coal basins. C., Inferred eastward dispersal (arrow) of dryland vegetation displacing Coal

Forests at Desmoinesian-Missourian boundary.

The Lycospora-producing lepidodendrids are mostly represented by
three taxa of the Lepidodendraceae: Lepidodendron sensu stricto,
Lepidophloios, and Paralycopodites (DiMichele and Phillips, 1985). In
addition to their well-known extirpation, west of the Appalachians, the
Lycospora-producing lepidodendrids appear to have undergone sharp
decline at a level equivalent to the Desmoinesian-Missourian boundary,
east of the Appalachians (Bek and Oplustil, 2006). Of the six Lycospora
groups identified by Bek (2012), only two persisted, in small numbers,
into the late Pennsylvanian of Europe (Bek, 2012): the L. micropapillata
group found within Lepidocarpon magnificum strobili (Balbach, 1966)
and produced by an unknown lepidodendrid, and the L. brevijuga group
found within Lepidostrobus stephanicus strobili and believed to be pro-
duced by Asolanus (Bek and Oplustil, 2004, 2006). Therefore, not only
was there a sharp loss of Lycospora-producing lepidodendrids in Europe
based on palynology, there also seems to have been a total loss of the
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most iconic taxa: Lepidodendron s.s., Lepidophloios, and Paralycopodites
(Ulodendron in adpression; Thomas, 1967), the core taxa of the Lepi-
dodendraceae and the Ulodendraceae in the classification of DiMichele
and Bateman (1996).

This is borne out by a review of the literature of adpression fossils.
Although ‘Lepidodendron’ is commonly described from the Stephanian
of Europe (Psenicka et al., 2014; Oplustil et al., 2017), assignment may
not always be strictly correct. The genus Lepidodendron, as traditionally
recognized in adpression floras, has been subdivided into two families,
Lepidodendraceae and Diaphorodendraceae, based on permineralised
coal ball material (DiMichele and Bateman, 1992, 1996), but adpres-
sion remains are easily confused. Examination of the published images
of the Stephanian records of various species attributed to ‘Lepidoden-
dron’ suggests that they actually are representatives of the Diaphor-
odendraceae (see comments in Bashforth, 2005; Wagner and Alvarez-
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Vézquez, 2010; Pendleton et al., 2012; Alvarez-Vizquez and Wagner,
2014), a group that also disappeared along with the Lycospora-produ-
cers to the west of the Appalachian divide. It is beyond the scope of this
paper, however, to undertake a comprehensive systematic review of
this matter. Nevertheless, the findings presented here suggest that Coal
Forest collapse at the Desmoinesian-Missourian boundary was, prob-
ably, pan-tropical, at least for the best-known members of the Lepido-
dendraceae and Ulodendraceae.

7.4. Excluding orogenesis as a significant confounding factor

One final point requiring discussion is the putative role of orogen-
esis in Carboniferous Coal Forest collapse. Cleal and Thomas (1999,
2005) have argued that the rise of the Variscan-Appalachian-Ouachita
mountain chain may influenced the extirpation of Lycospora-producing
lepidodendrids, through suppression of the regional water table, and
development of palaeosols of drier character. This hypothesis can be
excluded from various perspectives. First, orogenesis, in a very general
sense, developed with an east to west diachrony (Leveridge and
Hartley, 2006), and does not closely coincide with the near-synchro-
nous pan-tropical extirpation (Falcon-Lang et al., 2011a) identified at
the Desmoinesian-Missourian boundary. Indeed, the Coal Forest col-
lapse event reported here, in detail, from Illinois occurred in a stable
cratonic area, 750 km north of the nascent Orogen, and at least
10 million years before the first signs of regional uplift of the Laur-
entian craton. Second, the wet/dry climate-fluctuations reported here
from Illinois occur with a 100-400 kyr periodicity (Heckel, 2008;
Falcon-Lang et al., 2011a) whereas studies of orogenesis suggest that
maximal rates of sustained surficial uplift of 1 km per million years
(Abbott et al., 1997). Given that an increase in elevation of at least 1 km
would be required to influence equatorial climate and vegetation based
on Amazonian analogues (Colinvaux et al., 1996), the rate of orogenesis
is at least an order of magnitude too slow to generate the palaeoclimate
signatures observed. Further, the climate oscillations observed would
necessitate repeated cycles of rapid uplift and subsidence for which no
plate tectonic model exist. For these reasons, evidence marshaled here
points to an amplification of glacial cyclicity as the driver of near-
synchronous, pan-tropical Coal Forest collapse at the Desmoinesian-
Missourian boundary.

8. Conclusions

1. We describe autochthonous silicified tree-stumps preserved at the
Desmoinesian-Missourian boundary at seven localities spread over
~250 km? of Peoria County, Illinois, USA.

. The stumps, referred to Amyelon, represent large coniferopsid trees,
and parenchyma-rich growth interruptions and silicic preservation
are consistent with growth under seasonally dry conditions

. The new findings shed light on the biome-scale vegetation dynamics
that led to the extirpation of lepidodendrid Coal Forests at the
Desmoinesian-Missourian boundary. We infer that lepidodendrid
extirpation was in response to an intensification of the amplitude of
glacial cycles involving, first, a spike of global warming (which
stressed forests), followed by, second, intense cooling and greater
withdrawal of the sea. Coal Forest collapse commenced during the
rapid transition from hot to cold climate states, with final extirpa-
tion occurring during the ‘Seminole’ regression.

. The wetland areas occupied by lepidodendrids, and the vegetation
for which they are iconic, were colonized by dryland coniferopsid
populations present in western Euramerica, which temporarily dis-
persed eastwards in response to an unusual high amplitude climate
oscillation, after which hydrophilic lepidodendrid communities
were pushed beyond an ecological tipping point from which they
were unable to recover.
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