NEW ORCHID SPECIES NAMED FOR STRI’S SILVERA

Since she was child, Katia Silvera would hike the remote forests of Panama and collect plants with her father, Gaspar, who operates a small orchid company. On one such hike about eight years ago, the father-daughter team collected an orchid that turned out to be new to science. It was just named in their honor.

“We collected it thinking it was something else,” said the younger Silvera, who has a three-year Tupper Fellowship at STRI “When it bloomed in the greenhouse we realized we had no idea what it was.”

Lophiaris silverarum was formally described by Germán Carnevali, a Mexico-based orchid expert. Found in only small areas of Central Panama — in the provinces of Cocé and Veraguas — the species description was published in March in *Phytotaxa*.

Katia explained that difficulties in finding enough orchid material for analysis made the already long process of naming a new species even more drawn out. Yet after a series of studies including traditional morphological comparisons and DNA research, the scientists concluded they had found a new orchid.

“It’s difficult to find them. We do a lot of hiking at looking for plants and it took years to find this one,” she said. “It was a long process but it was very exciting to be a part of it.”

Silvera, who has conducted research at STRI since she was a botany undergraduate at the University of Panama, said coming across orchid species she is unfamiliar with — Panama has some 1,100 of the world’s roughly 30,000 orchid species — is normal, but a couple days of research in either the STRI or university herbarium usually turns up a name.

Silvera’s research at STRI focuses on the evolution of photosynthesis in orchids. In collaboration with STRI staff scientist Klaus Winter, she has discovered that many orchids use CAM photosynthesis, the same pathway used by many succulent plants to reduce water consumption in dry climates.

Continues on next page...
“A lot of people who study plants don’t like to study orchids because they are difficult to identify,” said Katia. As well as being the most numerous plant family in the world, many are hard to distinguish based on morphology alone. New genetic techniques often determine distinct species were wrongly classified and are constantly in need of renaming — in the course of Silveira’s five-year doctoral studies, one orchid she studied had its scientific name changed three times. “I grew up surrounded by orchids. I have fascination for plants, especially orchids, and I can learn about them really well.”

NUEVA ESPECIE DE ORQUÍDEA NOMBRADA EN HONOR A SILVERA, BECARIA DEL SMITHSONIAN EN

Desde que era una niña, Katia Silvera caminaba por los remotos bosques de Panamá y recogía plantas con su padre Gaspar, quien opera una pequeña empresa de orquídeas. Hace unos ocho años en una de esas caminatas, el equipo de padre e hija colectó una orquídea que resultó ser nueva para la ciencia. Recientemente ésta ha sido nombrada en su honor.

“La colectamos pensando que era otra cosa”, comentó la joven Silvera, que tiene una beca Tupper de tres años de duración en el Smithsonian en Panamá “Cuando floreció en el vivero nos dimos cuenta que no teníamos idea de lo que era.

La Lophiaris silverarum fue descrita formalmente por Germán Carnevali, experto en orquídeas con sede en México. Encontrada sólo en pequeñas zonas del centro de Panamá - en las provincias de Coclé y Veraguas - la descripción de la especie fue publicada en marzo en Phytotaxa.

Katia explicó que las dificultades para encontrar material suficiente para el análisis de la orquídea hicieron el ya largo proceso de nombrar a una nueva especie aún más elaborado. Sin embargo, después de una serie de estudios que incluyen comparaciones morfológicas tradicionales y la investigación del ADN, los científicos concluyeron que habían encontrado una nueva orquídea.

“Es difícil de encontrar. Hacemos mucho senderismo en busca de plantas y nos tomó años encontrar esta”, comentó. “Fue un proceso largo, pero fue muy emocionante ser parte de este.”

Silvera, que ha llevado a cabo investigaciones en el Smithsonian desde que era una estudiante de botánica en la Universidad de Panamá, comentó que referente a encontrarse con especies de orquídeas con las que no está familiarizada - Panamá cuenta con unas 1,100 de las cerca de 30,000 especies de orquídeas en el mundo - es normal, pero que después de un par de días de investigación, ya sea en el herbario del Smithsonian o el de la Universidad, por lo general sale a relucir un nombre.

La investigación de Silvera en el Smithsonian se centra en la evolución de la fotosíntesis en las orquídeas. En colaboración con el científico del Smithsonian, Klaus Winter, ha descubierto que muchas orquídeas utilizan la fotosíntesis CAM, la misma vía utilizada por muchas plantas suculentas para reducir el consumo de agua en climas secos.

“Muchas de las personas que estudian las plantas no les gusta estudiar a las orquídeas, ya que son difíciles de identificar”, comentó Katia. Además de ser la familia de plantas más numerosa en el mundo, muchas de ellas son difíciles de distinguir basándose sólo en la morfología. Las nuevas técnicas genéticas a menudo determinan especies distintas que fueron clasificadas erróneamente y constantemente existe la necesidad de cambiarles de nombre - en el curso de los estudios de doctorado de cinco años de Silvera, una orquídea que estudió, su nombre científico se le cambió tres veces. “Crecí rodeada de orquídeas. Tengo fascinación por las plantas, especialmente las orquídeas, y puedo aprender muy bien de ellas.”
Julian Schmid catches about four times as many spiny rats on the islands of Panama’s Barro Colorado Nature Monument than he does on the reserve’s equally protected peninsulas. This is symptomatic of habitat fragments like islands — biodiversity drops but the abundance of some creatures goes up.

This has implications for the health of both ecosystems and humans. Less diversity in forest fragments — whether surrounded by water, farmland or development — can lead to an increase in the prevalence of disease among the creatures that remain. These include illnesses that are transmitted to humans from animals, which are known as zoonotic diseases.

Schmid, a Ph.D. student at Germany’s University of Ulm, is investigating the role genetic diversity plays in this uptick. While isolated populations have greater numbers, their genetic variability decreases from inbreeding. Schmid expects spiny rat islanders to have less diversity in an essential group of immune-system genes.

“By altering the landscape and thereby gene flow, you might decrease the variability of this gene complex,” said Schmid, after taking samples of blood and prickly hair from spiny rats on Orchid Island.

Schmid, whose work is part of a larger research project funded by the German Research Foundation, hopes to directly correlate variability in immune relevant genes with gut parasite load, microbiome diversity and neglected tropical disease.

Julian Schmid atrapa cerca de cuatro veces más ratas espinosas (Echimyidae) en las islas del Monumento Natural Barro Colorado en Panamá que en las penínsulas de la reserva igualmente protegidas. Esto es sintomático de los fragmentos de hábitat como las islas - gotas de biodiversidad, pero la abundancia de algunas criaturas aumenta.

Esto tiene implicaciones para la salud de los ecosistemas y los humanos. Menos diversidad en fragmentos de bosque - ya sean rodeados de agua, campos agrícolas o de desarrollo - puede conducir a un aumento en la prevalencia de enfermedades entre los animales que allí se encuentran. Estas incluyen enfermedades que se transmiten de animales a humanos, las cuales se conocen como enfermedades zoonóticas.

Schmid, estudiante de doctorado de la Universidad alemana de Ulm, investiga el papel que la diversidad genética juega en este repunte. Mientras que las poblaciones aisladas tienen mayores números, su variabilidad genética disminuye por la endogamia. Espera que las ratas espinosas isleñas tengan menos diversidad en un grupo esencial de genes del sistema inmunológico.

“Al alterar el paisaje y por lo tanto el flujo de genes, es posible disminuir la variabilidad de este complejo de genes”, comentó Schmid, después de tomar muestras de sangre y pelo espinoso de las ratas en Isla Orquídea.

Schmid, cuyo trabajo es parte de un proyecto de investigación más amplio financiado por la Fundación Alemana de Investigación, espera correlacionar directamente la variabilidad en los genes relevantes inmunos con carga parasitaria intestinal, la diversidad de la microbioma y las enfermedades tropicales desatendidas.
¿Qué animal vivió hace 60 millones de años, medía 15 metros de largo y pesaba 1100 kg?

PRONTO EN PANAMÁ.

ARRIVALS

Gerald Schneider
University of Utah
Holding leaf defense chemistry up to the light: Foliar secondary metabolites and consumer interactions across gradients of solar radiation in tropical rain forests
Tupper and Barro Colorado Island

Jose Martínez
Universidad Autónoma de Santo Domingo
Biostratigrafía del Neotrópico *Center for Tropical Paleoecology*

Peter Tellez
Tulane University
Conflicts among members of interacting symbioses: How do symbiotic fungi influence plant defense against leaf-cutting ants?
Gamboa

Jon Harrison
Arizona State University
Physiological and behavioral effects of miniaturization in stingless bees
Gamboa

Noelle Beckman
Ohio State University
Determinants of the spatial distribution of tree recruitment in a neotropical rainforest
Barro Colorado Island

Pablo Ríba
Universidad de Costa Rica
Poachers, seed dispersal and seed predation in two palm species
Barro Colorado Island

Karina Montero
North Dakota State University
Ecology and species barriers in emerging viral diseases
Barro Colorado Island

DEPARTURES

Andrew Altieri
To Carrie Bow Cay SI field station
To deploy experiment on sea grass biodiversity for Grand Challenges

Ira Rubinoff
To Washington DC
To meet with donors and incoming STRI Director

Lisa Barnett
To Boston, MA
To meet with donors

Owen McMillan
To Raleigh NC
To meet with colleagues and students at NCSU and Duke

strinews@si.edu
Questions/comments
Preguntas/comentarios
@stri_panama
#smithsonian