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NOTES AND COMMENTS 

CHAOTIC MODELS AS REPRESENTATIONS OF ECOLOGICAL SYSTEMS 

Interest has been shown in the dynamics of simple models whose predictions 
can be "chaotic," that is, not tending toward an equilibrium point or limit cycle. 
Chaotic behavior has been reported in difference equations (e.g., May 1976), 
differential equations (e.g., Mackey and Glass 1977; Gilpin 1979), and linear 
differential equations with nonlinear feedback (Sparrow 1980). The most 
thoroughly studied models are single difference equations describing density- 
dependent population growth (e.g., Oster 1974; May 1974; Li and Yorke 1975). 
Speculations about the ecological importance of chaotic behavior include: (1) 
Populations may vary in an unpredictable manner so that long-term predictions 
may be impossible (May 1976). (2) Small changes in initial populations or growth 
rates can yield divergent predictions (Bunow and Weiss 1979). If these specula- 
tions are true, they have far-reaching consequences for ecological research and 
modeling. 

Evaluation of these results requires that model formulation, parameter values, 
and method of simulation be ecologically sound. The following observations seem 
relevant. (1) Values for the growth rate, r ,  must be biologically reasonable. (2) 
Parameter values of ecological models always contain uncertainty (Gardner et al. 
1980). (3) Extinction is an ecological reality when predicted values are close to 
zero. 

In addition to studies of the models, attempts have also been made to find 
populations exhibiting chaotic oscillations (Hassell et al. 1976), to assess the 
ecological relevance of chaotic models (Poole 1977; Smith and Mead 1980), and 
to formulate evolutionary explanations for the apparent failure to observe chaos in 
natural populations (Thomas et al. 1980). Many of these studies have analyzed the 
equation N,,, = N,exp[r(l - N,IK)] where N, is the population size at time t ,  r is 
the intrinsic growth rate, and K is the carrying capacity. This model has been 
widely applied in the ecological literature (Moran 1950; Ricker 1954) and its 
behavior is typical of a large class of population models (May and Oster 1976). 

In this study, we scale the population by its equilibrium value (i.e., X, = NJK) 
to obtain the normalized equation X,,, = X,exp[r(l - X,)]. Dynamic behavior of 
this equation is determined by the value ofr .  Ifr  > 2.69, model behavior is chaotic 
and the solution may oscillate aperiodically. We included ecological constraints 
by selecting r at each time interval from a uniform distribution with expected value 
r, and upper and lower limits of r;(l ? r,). Extinction was assumed to occur 
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FIG. 1.-Isopleths of c ,  the index of unpredictability, for values of r and r ,  ( r  is the 
coefficient of the discrete logistic model and was uniformly varied over the interval r ? r%). a ,  
Constant initial conditions of 0.01 and extinction of X, < 0.001. b ,  Initial conditions varied 
uniformly from 0.0 to 5.0 and extinction if X, < 0.001. 
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FIG. 1 .  (Continued)-<, Initial conditions varied uniformly from 0.0 to 5.0 and extinction 
criterion was removed. 

whenever X ,  was less than 0.001. For each r,,, and r,, 1,000 time series of 100 
generations were produced. 

To analyze results we adapted the frequency distribution approach of Hop- 
pensteadt and Hyman (1977). The solution for each time, r ,  was placed in one of 
100 frequency intervals from 0.0 to the maximum observed value. The 10 intervals 
containing the highest counts were eliminated. The total counts in the remaining 
90 intervals were divided by the expected value. This measure, c ,  approaches 0 if 
the time series approaches an equilibrium or cycles with period 10 or less. As the 
time series approaches "white noise," c approaches 100. 

Figure l u  shows isopleths of c for values of r,,, (abscissa) and r, (ordinate), using 
an initial condition of 0.01 for all simulations. At r,, = 1.5, the system is periodic 
even at r, = 100. At r,,, = 3.5, the system appears regular because of the high 
probability of extinction. At intermediate values of r,,,, the situation is more 
complex. Consider a value of r,,, near 2.5. As the range, r,, increases to 20, 
unpredictability increases dramatically. This is because the randomly chosen r's 
cover a wide range of behavior including stable cycles of various periods and 
chaotic behavior. However, as r, increases beyond 20, more of the randomly 
chosen r values lie in the stable region (v < 2.0), and more in the region of likely 
extinction (r > 3.5). For example, at r, = 100, 30% of the randomly chosen values 
will be above 3.5 and 40% will be below 2.0. For this reason the greatest irregular- 
ity of the system exists around values of 2.3 to 2.5 for r,, and 20 for r%. It is obvious 
that the uncertainty in r (i.e., r,) is as important in determining the regularity of 
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the system as the mean value and that model solutions are never completely 
unpredictable. 

Figure lb  illustrates the effect of varying the initial condition, X,, from a 
uniform random distribution between 0.0 to 5.0. Comparison of figures l a  and Ib 
indicates that the results are relatively insensitive to initial conditions, contrary to 
the theoretical expectation. 

Figure Ic illustrates the effect of removing the extinction criterion. The peak 
still dominates the graph at r,,, of 2.3 to 2.5, but the slope at higher r's is more 
gradual. Although this system is less predictable at higher r,,t, it is never totally 
unpredictable (i.e., c  is never 100). 

It is clear that inferences drawn from purely theoretical studies may be mis- 
leading. In this case, the theoretical studies were based on deterministic models. 
However, it is unlikely that any ecological system could exist for more than a few 
generations without being disturbed by stochastic effects. Smith and Mead (1980) 
analyzed a stochastic birth-death process and also concluded that the mathemati- 
cal details of deterministic dynamics are biologically irrelevant. Only those be- 
haviors of the deterministic model which reflect the behavior of the ecological 
system can be relevant. 

The results point out behaviors of the model which are ecologically relevant. (1) 
The predictions are always bounded when r. remains within biologically reason- 
able limits. (2) The mean population remains predictable for all values of r.. (3) Even 
when the time sequence seems erratic, the frequency distribution of observed 
population values is not. (4) If r is allowed to vary the system may, under some 
situations, become more predictable. These results are robust under different 
criteria of extinction and variability of the initial conditions. 
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