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Genetic variability in seed populations play an initial 
role in establishing the demographic substructure for 
succeeding generations. Gene f lows of plant popula- 
tions are mediated by both pollen and seed dispersal. 
Limited pollen and seed dispersals may lead to  pollen 
pool heterogeneity, genetically distinct seed shadows 
among maternal plants (Linhart et  al., 1981), and 
eventually t o  the development of genetic structure 
within populations (Hamrick and Nason, 1996). Spatial 
genetic substructuring within populations has been 
reported for many woody species (Epperson, 1989; 
Epperson and Allard, 1989; Knowles, 1991; Xie and 
Knowles, 1991 ; Perry and Knowles, 1991 ; Young and 
Merriam, 1994; Geburek and Tripp-Knowles, 1994; 
Alvarez-Buylla and Garay, 1994; Alvarez-Buylla et al., 
1996; Epperson and Alvarez-Buylla, 1994; Boshier et 
al., 1995; Shapcott, 1995; Leonardi et al., 1996). 

In the genus Fagus, genetic spatial substructurings 
have also been reported for European beech (Merzeau 
et  al., 1994; Leonardi and Menozzi, 1996). The 
Japanese beech populations (Kitamura et al., 1997a,b; 
Kawano and Kitamura, 1997) have also been shown to  
have extremely localized genetic patterns at the local 
population scales. 

In this short communication, we  report on genetic 
substructuring of the North American beech (Fagus 
grandifolia Ehrh.) in a population in Maryland, on the In- 
ner Coastal Plain. The American beech is widespread 
throughout eastern North America and occurs in a wide 
range of habitats. The American beech shows mast 
flowering and fruiting about every three to  four years 
(Fowells, 1965).  The goal of the study was to  deter- 
mine the genetic variability in seed populations pro- 

duced by mother trees in an area where individuals had 
been mapped and genetically identified (Kitamura and 
Kawano, 1996). We sought t o  determine the degree of 
variability in the pollen pool among mother trees, 
estimate outcrossing rates, and evaluate the impor- 
tance of genetic heterogeneity of the seed population 
in influencing the spatial and temporal genetic sub- 
structurings in the study area. 

Materials and Methods 

Fifteen mother trees were chosen within a study plot 
(20 x 100  m) that had been established at the Smithso- 
nian Environmental Research Center, Edgewater, 
Maryland. Diameters of mother trees ranged from 33.4 
to  104.7 cm (Table 1). In 1994, we  observed all of the 
trees in this population whose diameter a t  breast height 
was larger than 30 cm, and which flowered and bore 
fruits. Seeds from each mother tree were collected us- 
ing seed traps in October 1994. The seeds were 
stratified at 5OC for three months and germinated in a 
greenhouse. After the first t w o  true leaves developed, 
leaves were removed and stored at -8OOC until the en- 
zymes were extracted. 

Enzyme extractions (Shiraishi, 1988) and polyacryl- 
amide vertical slab gel electrophoreses (Davis, 1964; 
Orstein, 1964) were carried out. Nine polymorphic loci 
from eight enzyme systems were scored: 6Pgdh2, 
6Pgdh3, Adhl ,  Amyl ,  Fum, Got l ,  Lap, Pgi, and Pgm. 

Genetic variability measures such as genotype, allelic 
frequencies, and heterozygosity (He) (Nei and 
Roychoudhury, 1974) of progenies were compared 
among mother trees. Relationships between genetic 
diversity of progenies and the number of heterozygous 
loci for mother trees were examined by Kendall’s 
coefficient of rank correlation ( T )  (Sokal and Rohlf, 
1995). 
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Table 1. Diameter, numbers of analyzed seed progenies, and genotypes of 15 mother trees. 

Mother tree D1l(cm) N21 6Pgdh2 6Pgdh3 Adhl Amyl Fum Gotl Lap Pgi Pgm 

m t l  4731 
m t l 5 4  
mt46431 
mt465 
mt489 
mt497 
mt5413' 
mt5423' 
mt545 
mt710 
mt811 
mt838 
mt864 
mt91 331 
mt943 

38.8 
49.3 
34.7 
34.7 
71.6 
54.1 
36.6 
33.4 
36.6 
77.0 
47.4 
54.1 
84.7 
35.3 

104.7 

7 aa 

31 aa 

8 aa 
16  ab 

34 bb 

40  aa 

3 bb 

8 aa 

41 bb 
28 aa 

59 ab 

44 ab 

29 ab 
8 aa 

82 aa 

bb 
bb 

bb 

bc 

bc 

bb 

cc 
bc 

bc 

bc 
bc 

bc 

bc 

bc 

be 

bb 

bb 
bb 

bb 

ab 

ab 

bb 

bb 

bb 
bb 

bb 
ab 

bb 

bb 

bb 

bb 

bb 
bb 

bb 

bb 

ab 

bb 

bb 

bb 
bb 

bb 
bb 

bb 

ab 

bb 

bb 

bb 
bb 

bb 

bb 

bb 

bb 

bb 

bb 
bc 

bb 
ab 

bb 

bb 

ab 

bb 

bb 

bb 
bb 

bb 

bb 

bb 

bb 

bb 

bb 
bb 

bb 

bb 
bb 

bb 

ce 

ce 
ce 

ce 

ce 

ce 

ce 

ce 

cc 
cc 

ce 
ce 

ac 

ce 

cc 

bb 

bb 

bb 

bb 

bb 
bb 

bb 

bb 

bb 
bb 

bb 

bb 
bb 

bb 

bb 

bb 

bb 

bb 
bc 

bb 

bb 
bb 

bb 

bb 

bb 
bb 

bc 

bb 
bb 

bb 

Total 638 

' I  Diameter at breast height, the number of seed progenies analyzed, 
mother tree with less than ten progenies was excluded from estimation of outcrossing rates. 

For estimation of single-locus (t,) and multilocus (t,) 
outcrossing rates, we used ten mother trees with more 
than ten seed progenies (Table I), and applied the mix- 
ed mating model of Ritland and Jain (1981). We used 
the computer program MLTR supplied by K. Ritland 
(Ritland, 1990). Standard errors of outcrossing rates 
were calculated based on 100 bootstraps. Pollen pool 
allele frequencies were obtained by the Estimation- 
Maximization method, and heterogeneity among 
mother trees was tested by chi-square test of independ- 
ence (Sokal and Rohlf, 1995). 

Results 

A total of 638 progenies were analyzed, with the num- 
bers of progeny per mother tree ranging from three to  
144 (Table 1). Allele frequencies of seed population 
for each mother tree and totals for all seed populations 
are shown in Table 2. Two loci, G o t l  and Pgi, did not 
show allelic polymorphism (Table I), however, im- 
migrant alleles were observed in low frequencies, one 
mother tree for Got1 and t w o  for Pgi (Table 2). 

Genotypic components for seed progenies differed 
among mother trees. For example, Fig. 1 a shows geno- 
type frequencies of seed population for each mother 
tree in the Fum locus. Mother trees located at the right 
side of the study plot (mt l47,  154, 838, 864, 91 3 and 
943) had a greater frequency of genotypes with Fum-a 
allele compared to those in the left side of the plot. An- 

other trend was observed for 6Pgdh3 (Fig. I b )  and 
Pgm (Fig. I c ) ,  in which specific genotypes appeared 
only in limited maternal trees (mt489 and 838). 

The relationship between the number of hetero- 
zygote loci of the maternal tree and the heterozygosity 
of its seed population was highly significant based on 
Kendall's coefficient of rank correlation (.r=0.62; 
p<.0006). The result suggests that the greater the 
number of heterozygote loci in the mother tree, the 
higher is the genetic diversity of its seed progeny. 
Levels of genetic differentiation in seed populations 
among mother trees were measured by GsT=0.05. 

The estimated outcrossing rates (t, and t,) are 
shown in Table 3. Single-locus estimation of outcross- 
ing rate (t,) ranged from 0.91 2 for tree mt545 to  0.973 
for tree mt838. The average t, over all mother trees 
was 0.955. Multilocus estimates (t,) ranged from 
0.930 for tree mt545 to  1 .OOO for tree mt465, mt497 
and mt838. The average t, for all mother trees was 
1 .OOO, which indicates a high degree of outcrossing. 

Estimated pollen allele frequencies for ten mother 
trees are shown in Table 4. Differences in pollen allele 
frequencies among mother trees were significant 
(p<0.05) in Amyl ,  and highly significant ( p < O . O I )  in 
6Pgdh2, 6Pgdh3, Adhl ,  Fum, and Lap. 

Discussion 

Genetic substructuring could be influenced by among 
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features including the degree of cross-pollination, em- 
bryo survival, seed dispersion, seedling establishment, 
and environmental heterogeneity. Genetic sub- 
structuring could also be influenced by the genetic het- 
erogeneity of pollen and maternal trees. 

The present study revealed the existence of a high de- 
gree of genetic heterogeneity in the pollen pool among 
maternal plants (Table 4). Seeds produced by  maternal 
plants also had a high level of genetic heterogeneity 
(Fig. 1, Table 2). The genetic relationship found be- 
tween mother trees and seed progeny indicated that 
the genetic diversity of the seed population is primarily 
influenced by  the maternal genotype. Similar results for 
the genetic heterogeneity in the pollen pool (Merzeau e t  
al., 1989; Rossi e t  al., 1996)  and seed populations 
(Gregorius et al., 1986)  have been reported for Euro- 
pean beech populations. 

Plant species exhibit a great variety of breeding sys- 
tems, and many studies have documented that trees 
are predominantly outcrossing (summarized in Brown, 
1989; Muona, 1989; Perry and Knowles, 1990; 
Morgante e t  al., 1991; Lewandowski et al., 1991; 
Coates and Sokolowski, 1992; Cottrell and White, 
1995; Kjaer and Suangtho, 1995) .  The American 

beech population studied in Maryland demonstrated a 
high degree of outcrossing (t,=l) which is typical of 
anemophilous pollinated flower. High outcrossing rates 
(0.94-0.98) were also reported in the European beech 
(Rossi e t  al., 1996).  

Evidence of limited gene f low would greatly affect 
the effective population size, and suggest the predic- 
t ion for long-distance pollen f low in long-lived woody 
species w i th  anemophilous flowers (summarized in 
Hamrick and Godt, 1989, 1997).  The evidence of rare 
genotypes within the seed population examined in- 
dicate pollen f low from remote mature trees (Table 2, 
Fig. 1) .  

The observed level of genetic differentiation (GST= 
0.05) provides evidence for heterogeneity in seed popu- 
lations among mother trees. American beech has a typi- 
cal barochory type of seed dispersal, resulting leptokur- 
tic seed shadows (Kitamura and Kawano, 1996).  The 
subsequent phenomena, such as limited seed dispersal 
and post-dispersal environmental heterogeneity of an 
establishment site, would produce much higher genetic 
differentiation on a fine spatial scale. 

In conclusion, main findings of this study are; 1 )  a 
long distance pollination bring new genes, at a less fre- 

Table 3. Estimation of single- and multilocus outcrossing rates for ten mother trees. 

Locus mt154 mt465 mt489 mt497 mt545 mt710 mt811 mt838 mt864 mt943 Whole 

Lap 

6Pgdh2 

6Pgdh3 

Furn 

Pgm 

Pgi 

Adh I 

Amy I 

Got I 

.96 

(.01) 
.91 

(.01) 
.92 

( . 02 )  
.91 

l.02) 
.86 

LO31 
.90 

(.02) 
.91 

(.01) 
.86 

(.OO) 
.87 

( .OO) 

.97 

(.01) 
.90 

(.02) 
.84 

(.09) 
.91 

l.04) 
1 .oo 
t.00) 

.83 

( .OO) 
.82 

(.OO) 
.81 

( .OO) 
.83 

(.OO) 

.94 

(.03) 
.91 

( .02) 
.91 

(.02) 
.90 

t.02) 
.89 

(.01) 
.87 

LOO) 
1 .oo 
(.OO) 

.86 

(.OO) 
.87 

( .OO) 

.97 

( .OO) 
.92 

(.01) 
.85 

( .02)  
.89 

t.02) 
.87 

(.02) 
.87 

(.OO) 
1 .oo 
( .OO) 

.86 

(.OO) 
.88 

( .OO) 

.92 

( .02)  
.92 

(.02) 
.88 

(.01) 
.91 

LO1 1 
.84 

(.OO) 
.88 

( .OO) 
.90 

(.01) 
.90 

( .OO) 
.88 

( .OO) 

.93 

(.01) 
.93 

(.01) 
.90 

(.01) 
.91 

(.02) 
.89 

(.OO) 
.89 

( .OO)  
.90 

(.OO) 
.90 

( .02)  
.90 

(.OO) 

.97 

( .OO) 
.91 

(.01) 
.88 

(.OO) 
.90 

(.01) 
.88 

(.OO) 
.88 

( .OO) 
.91 

(.01) 
.91 

(.01) 
.88 

LOO) 

.90 

(.01) 
.91 

(.01) 
.90 

LOO) 
.94 

t.02) 
1 .oo 
LOO) 

.90 

(.OO) 
1 .oo 
(.OO) 

.90 

LOO) 
.89 

(.OO) 

.96 

(.03) 
.98 

(.OO) 
.87 

(.03) 
.92 

t.02) 
.87 

(.02) 
.86 

( .OO) 
.91 

(.01) 
.85 

(.OO) 
.86 

( .OO) 

,972 

(.007) 

.968 

(.009) 
,912 

(.024) 

,967 
(.006) 

.967 

(.010) 

,900 

(.OOO) 
,991 

(.002) 
,885 

(.020) 
,900 

(.001) 

ts” ,928 ,943 .952 .949 ,912 ,937 .917 .973 ,937 ,932 .955 

(.007) (.005) (.004) (.003) (.025) (.003) (.007) (.OOO) (.021) (.005) (.006) 

t,*’ ,999 1.000 ,999 1.000 .930 .998 ,955 1.000 .968 .995 1.000 

(.023) (.OOO) (.016) (.OOO) (.055) (.012) (.062) (.OOO) (.055) (.014) (.ooo) 

’ I  Average across single-locus estimations of outcrossing rate, 
Standard errors are given in parentheses. 

multilocus estimation of outcrossing rate. 
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Table 4. Allele frequencies of pollen pool for ten of the mother trees shown in Table 1. 

Locus mt154 mt465 mt489 mt497 mt545 mt710 mt811 mt838 mt864 mt943 

6Pgdh2 ** N 26 16 30 38 35 118 53 132 27 79 
a .65 .64 .67 .58 .74 .51 .79 .78 .96 .76 

(.09) (.16) (.09) (.07) (.09) (.05) (.08) ( .05)  (.oo) (.05) 
b .35 .36 .33 .42 .26 .49 .21 .22 .04 .24 

(.09) (.16) (.09) (.07) (.09) (.05) (.05) (.OO) (.05) 
16 30 38 38 121 55 133 27 79 

.01 
6Pgdh3 ** N 27 

a .04 .06 .07 .03 .03 .01 .02 .01 .04 
(.OO) ( .OO) (.04) (.OO) ( .OO) (.oo) (.(lo) (.01) (.oo) (.oo) 

b .36 .67 .56 .74 .51 .72 .58 .47 .64 .60 
(. lo) (.15) (.16) (.06) (.11) (.06) (.11) (.06) (.07) 

c .61 .27 .37 .23 .46 .27 .40 .52 .33 .39 
(. lo) ( . I S )  (.17) t.06) 1.11) t.06) (.I11 (.OW (.13) (.07) 

a . I 3  .06 .03 .02 .05 .07 . I 9  .01 . I 2  .04 

(.06) (.OO) (.OO) 1.001 f.04) 1.02) t.05) 1.00) f.06) f.02) 
b .87 .94 .97 .98 .95 .93 .81 .99 .88 .96 

(.06) (.OO) (.OO) LOO) (.04) LO21 (.05) (.Oo) (.06) (.02) 

a .97 .94 .97 .98 .87 .87 .86 .92 .97 .98 
(.OO) ( .OO) ( .OO) (.OO) (.05) (.04) (.05) (.02) (.oo) (.01) 

b .03 .06 .03 .02 . I 3  . I 3  . I 4  .08 .03 .02 
(.OO) (.OO) (.OO) (.OO) (.05) (.W LO51 (.OW (.01) 

a .26 . I 4  . I 4  .06 .22 .21 .I 1 .06 .62 .08 

(.08) (.08) (.06) (.04) (.07) (.04) (.04) (.03) ( . lo)  (.04) 
b .65 .64 .78 .86 .60 .68 .70 .83 .33 .82 

(.09) (.12) (.07) (.05) (.08) (.05) (.07) (.04) ( . lo)  (.05) 
c .09 .21 .07 .08 . I 8  . I 2  . I 9  .I 1 .04 .I 1 

(.05) (.I 1) (.04) (.04) (.07) (.04) (.06) (.03) (.01) 
Got7 n.s. N 31 16 34 40 41 128 59 144 29 82 

a .03 .06 .03 .02 .03 .01 .02 .01 .03 .01 

( .OO) ( .OO) (.OO) ( .OO) (.OO) (.OO) (.OO) LOO) ( .OO) LOO) 
b .97 .94 .97 .98 .97 .99 .98 .99 .97 .99 

1.00) f.00) 1.00) (.OO) t.00) f.00) (.OO) (.OO) (.OO) ( .OO) 

a .09 .06 .03 .02 . I 5  .03 .05 .02 .05 .02 

t.06) 1.04) t.02) (.02) t.06) f.01) (.03) 1.01) t.04) f.02) 
c .84 .06 .59 .02 .39 .43 .91 .67 .23 .29 

(.06) ( .OO) ( . lo)  (.OO) (.08) (.05) LO31 LO61 Log) 
d .03 .06 .24 . I 5  .03 .02 .02 .01 .04 .o I 

(.OO) (.OO) (.07) (.06) ( .OO) LO11  (.OO) (.W (.(lo) 
e .03 .83 . I 4  .80 .44 .52 .02 .30 .68 .67 

(.OO) (.04) (.lo) (.06) (.09) (.05) (.OO) (.06) (.09) (.05) 

b .97 .94 .97 .98 .97 .99 .98 .99 .96 .99 
(.02) (.OO) ( .OO) (.OO) ( .OO) LOO) LOO) LOO) (.01) 

c .03 .06 .03 .02 .03 .01 .02 .01 .04 .01 

Adhl  ** N 31 15 34 40 41 128 55 140 26 82 

Amy7 * N 30  16 34 40 41 128 59 144 29 82 

Furn ** N 23 14 28 36 35 116 50 131 24 77 

Lap ** N 31 16 34 40 41 128 59 144 29 82 

Pgi n.s. N 31 16 34 40 41 128 57 144 28 82 

(.02) (.OO) (.OO) (.OO) (.OO) LOO) LOO) (.01) LOO) (.01) 
Pgm n.s. N 30 16 34 40 36 128 55 144 28 82 

a .03 .06 .03 .02 .03 .01 .02 .03 .04 .01 
LOO) LOO) LOO) (.OO) (.OO) LOO) LOO) (.01) LOO) (.OO) 

b .94 .89 .80 .95 .94 .93 .91 .96 .86 .93 
(.03) (.OO) (.06) (.02) (.OO) (.02) (.04) (.01) (.06) (.03) 

c .03 .06 . I 7  .02 .03 .06 .08 .01 .I 1 .06 
(.03) (.OO) (.06) (.02) (.OO) (.02) (.04) (.OO) (.06) (.03) 

Results of chi-square test of independence among mother trees are given as follows. 
n.s., Not significant; *, significant (p<0.05); **, highly significant (p<O.OI  1. 
N: Number of seed progenies analyzed. 
Standard errors are given in parentheses. 
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quency into the local population, 2) the genetic variabili- 
t y  of maternal trees mostly influence the genetic diversi- 
t y  of the seed, 3) genetic heterogeneities of pollen 
pools and seed populations exist among mother trees, 
and 4) limited seed dispersal may lead to genetic sub- 
structurings. 
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