FOUR NEW SUBTRIBES: ALLOLEPIINAE, JOUVEINAE, KALINIIINAE, AND
SOHNSIINAE IN THE CYNODONTEAE (POACEAE: CHLORIDOIDEAE)

PAUL M. PETERSON and KONSTANTIN ROMASCHENKO
Department of Botany
National Museum of Natural History
Smithsonian Institution
Washington, DC 20013-7012
peterson@si.edu

YOLANDA HERRERA ARRIETA
Instituto Politécnico Nacional
CIIDIR Unidad Durango-COFAA
Durango, C.P. 34220, MÉXICO

ABSTRACT

Allolepis, Jouvea, Kalina, and Sohnsia are small (only Jouvea contains two species), often overlooked genera that are morphologically and genetically isolated within the tribe Cynodonteae. We present a molecular phylogeny using sequence data from seven plastid markers (ccsA, ndhA intron, ndhF, rpl32-trnL, rpoC2, rps16-trnK, and rps16 intron) and the nuclear ribosomal internal transcribed spacer regions (ITS 1 & 2). Since Allolepis, Jouvea, Kalinia, and Sohnsia do not align within any of the 21 existing Cynodonteae subtribes, we describe Allolepiinae, Jouveinae, Kaliniinae, and Sohnsiinae as new. In addition, we provide descriptions, habitat, distribution, and comments for each subtribe.

Allolepis texana (Vasey) Scribn., Jouvea pilosa (J. Presl) Scribn, J. straminea E. Fourn., and Sohnsia filifolia (E. Fourn.) Airy Shaw are dioecious, caespitose grasses, whereas Kalinia obtusiflora (E. Fourn.) H.L. Bell & Columbus has 4–8 mm wide, sharp-pointed rhizomes and perfect florets. Historically, these western hemisphere grasses were placed in other genera, i.e., Brizopyrum (Presl, 1830; Fournier 1886), Calamochloa (Fournier 1877), Distichlis (Lamson-Scribner 1899), Eragrostis (Lamson-Scribner 1897), Poa (Kunth 1833; Vasey 1890b), and Rhachidospermum (Vasey 1890a), until recently being aligned within the Cynodonteae (Columbus 2007; Peterson et al. 2010, 2016). An early molecular phylogeny of the subfamily Chloridoideae placed Allolepis, Jouvea, and Sohnsia within the tribe Cynodonteae (Columbus et al. 2007). Later molecular studies have confirmed that these three genera, along with Kalinia, are members of the supersubtribe Boutelouodinae, a primarily Western Hemisphere clade within the Cynodonteae that includes six subtribes: Boutelouiniae, Hilariniae, Monanthochloiniae, Muhlenbergiiniae, Scleropogoniniae, and the Traginiae (Bell et al. 2013; Peterson et al. 2010; 2016; Soreng et al. 2017). However, these four genera do not align within any of the existing 21 subtribes of Cynodonteae (Peterson et al. 2010; 2016; Soreng et al. 2017) or within the six subtribes of Boutelouodinae. Allolepis, Jouvea, and Sohnsia are strictly dioecious whereas Kalinia is hermaphroditic. All four genera are endemic or centered in México (one extending into Texas, another into Arizona and New México, one other extending south to Panama in Central America, and Ecuador in South America), emphasizing the morphological diversification of the Boutelouodinae in this region and the correlation of outcrossing breeding systems with this diversification. We present a molecular phylogeny using sequence data from seven plastid markers (ccsA, ndhA intron, ndhF, rpl32-trnL, rpoC2, rps16-trnK, and rps16 intron) and a single nuclear marker (ITS) emphasizing these four genera, and describe four new, monotypic subtribes within the Boutelouodinae.
MATERIALS AND METHODS

The phylogram (Fig. 1) was generated with existing data from Peterson et al. (2010, 2016) and we added three samples, one for *Allolepis*, *Jouvea pilosa*, and *Sohnsia*. Voucher information and GenBank numbers for the four genera are given in Table 1. The methods for DNA extraction, primers, amplification, sequencing, and phylogenetic analysis are given in Peterson et al. (2010, 2016). We estimated the phylogeny among members of these four genera and the Cynodonteae based on the analysis of eight molecular markers (nuclear ITS 1&2 and plastid *ccsA*, *ndhA* intron, *ndhF*, *rpl32-trnL*, *rpoC2*, *rps16-trnK*, and *rps16* intron DNA sequences). To make the phylogram smaller, taxa already placed in existing subtribes or tribes are depicted only at that level.

Figure 1. Maximum-likelihood tree inferred from combined plastid (*ccsA*, *ndhA* intron, *ndhF*, *rpl32-trnL*, *rpoC2*, *rps16-trnK*, and *rps16* intron) and ITS sequences. Numbers above branches are bootstrap values; numbers below branches are posterior probabilities; vertical bars indicate our classification; circle with a cross = female plants; circle with an arrow = male plants; circle with cross and arrow indicates plants with perfect flowers; scale bar = 3%.

RESULTS AND DISCUSSION

The maximum-likelihood tree from the combined analysis of seven plastid regions *ccsA*, *ndhA* intron, *ndhF*, *rpl32-trnL*, *rpoC2*, *rps16-trnK*, and *rps16* intron) and ITS depicts *Allolepis*, *Jouvea*, *Kalinia*, and *Sohnsia* in separate clades embedded within the supersubtribe Boutelouidinae clade (Fig. 1). The species within each of the four genera form strongly supported clades [bootstrap (BS) = 100, posterior probability (PP) = 1.00]. *Kalinia* is moderately supported as sister to the Boutelouidinae–Monanthochloinae clade (BS = 73, PP = 0.96). *Allolepis* is unsupported as sister to the Hilariniae (PP = 0.61), *Jouvea pilosa* is unsupported as sister to the *Allolepis*–Hilariniae clade (PP = 0.91), and *Sohnsia* is unsupported as sister to the Scleropogoninae–*Jouvea*–*Allolepis*–Hilariniae clade. Successive sisters to the aforementioned lineage are the Muhlenbergiinae (near, BS = 76, PP = 1.00) and the Tragiinae (next, PP = 85, PP = 1.00). The Cynodonteae phylogeny based on analysis of 389 samples in 213 species presented in Peterson et al. (2016) is identical with our new phylogeny.
Table 1. List of sampled specimens of the genera *Allolepis*, *Jouvea*, *Kalinia*, and *Sohnsia*; taxon voucher (collector, number; all specimens housed at the United States National Herbarium), country and state of origin, and GenBank accession for DNA sequences is given.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher</th>
<th>Country</th>
<th>ITS</th>
<th>ccsA</th>
<th>ndhA intron</th>
<th>ndhF</th>
<th>rpl32-trnL</th>
<th>rpoC2</th>
<th>rps16-trnK</th>
<th>rps16 intron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allolepis texana (Vasey)</td>
<td>Hitchcock 7541</td>
<td>México, Durango</td>
<td>GU359264</td>
<td>JQ345048</td>
<td>GU359388</td>
<td>GU359577</td>
<td>GU360015</td>
<td>–</td>
<td>GU360573</td>
<td>GU360318</td>
</tr>
<tr>
<td>Allolepis texana (Vasey)</td>
<td>Harvey 1412</td>
<td>México</td>
<td>GU359265</td>
<td>–</td>
<td>GU359387</td>
<td>GU359588</td>
<td>GU360016</td>
<td>–</td>
<td>GU360572</td>
<td>GU360306</td>
</tr>
<tr>
<td>Jouvea pilosa (J. Presl)</td>
<td>Peterson 11017 & Annable</td>
<td>México, Colima</td>
<td>GU359144</td>
<td>JQ345095</td>
<td>GU359433</td>
<td>GU359737</td>
<td>GU359812</td>
<td>KX582800</td>
<td>GU360696</td>
<td>GU360379</td>
</tr>
<tr>
<td>Jouvea pilosa (J. Presl)</td>
<td>Reina 2007-1095, Van Devander, Chamberland & Bertelsen</td>
<td>México, Sonora</td>
<td>KJ768884</td>
<td>KX582279</td>
<td>KX582475</td>
<td>KX582538</td>
<td>KJ768979</td>
<td>KX582801</td>
<td>KX582972</td>
<td>KX582905</td>
</tr>
<tr>
<td>Kalinia obtusiflora (E. Fourn.) H.L. Bell & Columbus</td>
<td>Koch 7456</td>
<td>México, Lago de Texcoco</td>
<td>KX582380</td>
<td>–</td>
<td>–</td>
<td>KX582539</td>
<td>KX582656</td>
<td>–</td>
<td>KX582973</td>
<td>KX582906</td>
</tr>
<tr>
<td>Kalinia obtusiflora (E. Fourn.) H.L. Bell & Columbus</td>
<td>Reeder 3489, Reeder & Soderstrom</td>
<td>México, Chihuahua</td>
<td>KX582381</td>
<td>–</td>
<td>–</td>
<td>KX582540</td>
<td>KX582657</td>
<td>–</td>
<td>KX582974</td>
<td>KX582907</td>
</tr>
<tr>
<td>Kalinia obtusiflora (E. Fourn.) H.L. Bell & Columbus</td>
<td>Reeder 5530 & Reeder</td>
<td>USA, Arizona</td>
<td>KX582382</td>
<td>–</td>
<td>–</td>
<td>KX582541</td>
<td>KX582658</td>
<td>–</td>
<td>KX582975</td>
<td>KX582908</td>
</tr>
<tr>
<td>Sohnsia filifolia (E. Fourn.) Airy Shaw</td>
<td>Peterson 11129 & Annable</td>
<td>México, San Luis Potosi</td>
<td>GU359204</td>
<td>JQ345145</td>
<td>GU359531</td>
<td>GU359612</td>
<td>GU359918</td>
<td>KX582839</td>
<td>GU360634</td>
<td>GU360350</td>
</tr>
<tr>
<td>Sohnsia filifolia (E. Fourn.) Airy Shaw</td>
<td>Reeder 4073 & Reeder</td>
<td>México</td>
<td>GU359205</td>
<td>–</td>
<td>GU359532</td>
<td>GU359614</td>
<td>GU359917</td>
<td>–</td>
<td>GU360633</td>
<td>GU360332</td>
</tr>
</tbody>
</table>
In the taxonomy section below we describe each of these four genera as subtribes (Allolepiinae, Jouveinae, Kaliniinae, and Sohnsiinae) since they do not align within any existing Cynodonteae subtribes.

In the Boutelouodinae, dicliny occurs in the Allolepiinae, Boutelouinae (*Bouteloua*), Jouveinae, Monanthochloinae (*Distichlis*), Scleropogoninae (*Blepharidachne, Munroa*, and *Scleropogon*), and the Sohnsiinae. There are at least 15 diclinous species found in four sections of *Bouteloua*: *Buchloe, Cyclostachya, Opizia,* and *Triplathera* (Kinney et al. 2007; Peterson et al. 2015; Schrager-Lavelle et al. 2017). Within Chloridoideae, dicliny is apparently restricted to the western hemisphere (Connor 1979).

TAXONOMY

Allolepiinae P.M. Peterson, Romasch., & Y. Herrera, *subtribe nov.*

Dioecious, caespitose perennials with stolons 5–25 cm long, 1–4 mm wide. **Culms** 10–70 cm tall. **Leaf** sheaths shorter than flowering culm internodes with smooth margins; ligules 0.5–1.4 mm long, a ciliate membrane; blades 5–30 cm long, 2.5–6 mm wide, sometimes involute towards apex. **Panicles** 3–23 cm long, 1–6 cm wide, narrow; primary branches appressed to main axis (usually floriferous to base), terminating in a spikelet with appressed secondary branches; pedicels glabrous, smooth; disarticulation above glumes, lemma and palea falling as a unit; rachilla glabrous. **Staminate** spikelets 9–23 mm long, 3–8 mm wide, 4–14(–20)-flowered, ovate to lanceolate-linear, solitary, stramineous, terete, coriaceous; glumes 4–5 mm long, broadly ovate; lower glumes 1-veined; upper glumes 1 or 3-veined, a little longer than the lower; lemmas 5–5.5 mm long, 3-veined, glabrous, shiny; paleas equal or slightly longer than the lemma; stamens 3, anthers 3–5.5 mm long, yellow. **Pistillate** spikelets 10–30 mm long, 2.5–3.5 mm long, 5–10-flowered, slightly laterally compressed with sterile florets present above fertile, coriaceous; glumes 5–12 mm long, glabrous; lower glumes 5–10 mm long, 1-veined with 4 or 5 additional faint veins; upper glumes 6–12 mm long, 3-veined, sometimes with 2 or 4 additional faint veins; lemmas 5–11 mm long, 3-veined, coriaceous, glabrous, midvein scabrous above, margins irregular and scarious; paleas slightly shorter than the lemma, keels ciliolate; lodicules 3, cuneate; stigmas 2. **Caryopsis** ellipsoid, with a fused pericarp adherent. 2n = 40 (Gould, 1966).

Included taxon—*Allolepis texana* (Vasey) Soderstr. & H.F. Decker [syn. *Poa texana* Vasey; *Sieglingia wrightii* Vasey; *Distichlis texana* (Vasey) Scribn.].

Habitat—Sandy and silty soils but not in alkaline areas; 900–2000 m.

Distribution—Known from the Big Bend region of southwestern Texas, USA (Jeff Davis and Presidio counties) and Chihuahua, Coahuila (Municipio Satillo), Durango (Municipio Ocampo), and Tamaulipas, México (Powell 1994). Based on a Hitchcock 7541 (US-913782, US-913783) collection label that states “Torreón, Durango,” this species was reported as occurring in Durango by Soderstrom and Decker (1965) and Powell (1994). *Hitchcock 7540* was collected from Torreón-Durango border and *Hitchcock 7542 & 7543* was also collected from Torreón, Durango. It seems likely that Hitchcock knew what state he was in, and collected these plants in Torreón de Cañas, Durango and not Torreón, Coahuila.

Comments—Vasey (1890b) first described this *Allolepis texana* in *Poa* L. and later, based on a different collection, described the same species in *Sieglingia* Bernh. (Vasey 1893). Based on having a dioecious habit, a paniculate inflorescence, subcoriaceous glumes, exerted styles, and grains enclosed by a palea base, Lamson-Scribner (1899) transferred this species to *Distichlis*. *Allolepis* is very similar to *Distichlis*, sharing the dioecious habit, a ciliate membrane for a ligule, disarticulation above the glumes, and many florets per spikelet (Clayton & Renvoize 1986; Peterson...
et al. 1995, 1997). Soderstrom and Decker (1965) found that *Allolepis* can be distinguished from *Distichlis* in having stolons and the absence of rhizomes, non-distichous leaf blade arrangement, heteromorphic staminate and pistillate spikelets, non-sunken bicellular microhairs, and occurrence in sandy soils (not alkaline).

Jouveinae P.M. Peterson, Romasch., & Y. Herrera, *subtribe nov.*

Dioecious, caespitose perennials with stolons, often with scaly buds. **Culms** 20–60 cm tall, decumbent or mat forming, glabrous. **Leaf** sheaths shorter or longer than internodes with smooth margins; ligules 0.5–1 mm long, a line of hairs; blades 1–15 cm long, 1–4 mm wide, flat becoming involute, pungent. **Inflorescences** 2–3 cm long, of 1-many spikelets in fascicles of 1–5 in pistillate plants; inflorescence a panicked 2–6 cm long in staminate plants; inflorescence exserted (smooth in staminate plants) or fully included (pistillate plants spikelets are embedded in sponge-like tissue of rachilla, only summit of florets free); primary branches appressed to main axis terminating in a spikelet; disarticulation above the glumes, lemma and palea falling as a unit. **Spikelets** 8–40 mm long (15–40 mm long in staminate spikelets) or in clusters (pistillate spikelets), (3–)5–25-flowered, laterally compressed, sessile, sterile florets present about fertile florets; rachilla glabrous; glumes present or absent, shorter than spikelets (in staminate spikelets), smooth, glabrous; lower glume unveined; upper glume shorter than lower lemma, 1-veined; lemmas 3-veined, coriaceous, glabrous, smooth; paleas chartaceous, glabrous, smooth, margins not enfold the fruit; lodicules absent; stamens 3 or rudimentary, anthers yellow or reddish purple; stigmas 2 or rudimentary, exserted. **Caryopsis** ellipsoid, terete, with a fused pericarp. $2n = 20$ (Pohl & Davidse 1971)

Included taxa—*Jouvea pilosa* (J. Presl) Scribn. [syn. *Brizopyrum pilosum* J. Presl; *Poa preslii* Kunth; *Rhachidospermum mexicanum* Vasey]; *Jouvea straminea* E. Fourn.

Habitat—Near the immediate coast on sand dunes and unprotected beaches forming densely foliaceous mounds (*J. pilosa*) and in saline mud flats forming loosely interspersed culms (*J. straminea*) [Pohl & Davidse 1994].

Distribution—The genus occurs in México (Baja California Sur, Chiapas, Colima, Guerrero, Jalisco, Michoacán, Nayarit, Oaxaca, Sinaloa, Sonora), Central America (Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama), and Ecuador (*J. straminea*) [Pohl & Davidse 1994; Espejo Serna et al. 2000; Dávila et al. 2006].

Comments—Pilger (1956) recognized the unique morphological features by erecting the tribe Jouveeae Pilg. (Pilger 1956), referring to Weatherwax’s (1939) comments, “but the weight of evidence at present favors placement in the Festuceae.” Although Weatherwax did indicate that the staminate spikelets of *Jouvea* resembled those found in *Distichlis*. Pistillate plants are characterized by an inflorescence that consists of 2–5 spikelets embedded in a sponge-like tissue of the rachilla, with only the summit of the florets free (Peterson et al. 1997). Clayton and Renvoize (1986) placed *Jouvea* near *Distichlis* in the Monanthochloinae as treated then along with *Allolepis* and *Swallenia* Soderstr. & H.F. Decker. *Jouvea* and *Distichlis* share distichously arranged leaves and the dioecious habit (Peterson et al. 1997). Molecular studies clearly place *Swallenia* within the Scleropogoninae (Peterson et al. 2010; 2016).

Kaliniinae P.M. Peterson, Romasch., & Y. Herrera, *subtribe nov.*

Type: *Kalinia* H.L. Bell & Columbus, Aliso 30(2): 91–93, f. 9. 2012.

Hermaphroditic perennials with scaly, sharp-pointed rhizomes, with innovations, sometimes stoloniferous, the sharp-tipped rhizomes 4–8 mm thick. **Culms** 15–40(–50) cm tall, erect, stiff, hard, glaucous below the nodes. **Leaf** sheaths hairy at the apices, hairs to 2 mm long; ligules 0.2–0.4 mm
long, membranous, ciliate; blades 2–15 cm long, (1–)2–4 mm wide, involute, arcuate, glabrous abaxially, scabrous adaxially, apices sharply pointed. **Panicles** 6–20(–24) cm long, 2–8(–12) cm wide, ovate, open or contracted; primary branches 1–8(–15) cm long, appressed or diverging up to 50° from the rachises; pedicels 0–8 mm long, appressed, lower pedicels on each branch shorter than 1 mm long. **Spikelets** 8–14 mm long, 1.4–3 mm wide, ovate to lanceolate, stramineous with a reddish-purple tinge, with 5–10 florets; disarticulation basipetal, glumes 1(3)-veined, persistent; glumes unequal, chartaceous; lower glumes 2.4–3.6 mm long, 1-veined; upper glumes 3–4.5 mm long, sometimes 3-veined; lemmas 3.8–4.5 mm long, ovate, leathery, 3-veined, lateral veins evident, greenish, upper margins hyaline, apices acute to obtuse, usually erose; paleas 3.8–4.5 mm long, membranous, keels scabridulous, apices obtuse to truncate; stamens 3, anthers 2–2.4 mm long, purplish to yellowish. **Caryopses** 1.6–2 mm long, ellipsoid, with a fused pericarp, dorsally flattened, with a shallow adaxial groove, striate, reddish-brown. $2n = 40$ (Reeder 1977).

Included taxon—Kalinia obtusiflora (E. Fourn.) H.L. Bell & Columbus [syn. Brizopyrum obtusiflorum E. Fourn., Mexic. Pl. 2: 120. 1886; Eragrostis obtusiflora (E. Fourn.) Scribn.].

Habitat—It grows in dry or wet alkali flats and playas, often in association with Distichlis and Sarcobatus; 900–1400 m.

Distribution—Kalinia obtusiflora is native to the USA in southeastern Arizona and southwestern New México and occurs in the following Mexican states: Chihuahua (municipios Ascensión and Saucillo), Coahuila, Distrito Federal, Guanajuato, Jalisco, México (municipios Ecatepec de Morelos, Montecillo, Texcoco, and Tezoyuca), Michoacán (Municipio Cuitzeo), Nuevo León, Oaxaca, Sonora (municipios Bacoachi and Cananea), and Veracruz (Espejo Serna et al. 2000; Peterson 2003; Dávila et al. 2006; Valdés Reyna 2015).

Comments—The type species was first described by Fournier (1886) in Brizopyrum Link along with other species that are now included in Distichlis (= D. spicata subsp. stricta Thorne), Jouvea, and Uniola (U. pittieri Hack.). Ogden (1897) performed an anatomical survey of four grasses, Kalinia obtusiflora, Jouvea pilosa, J. straminea, and Distichlis spicata (L.) Greene, all inhabitants of saline environments in southwestern North America. Ogden had originally thought that Kalinia obtusiflora was conspecific with Jouvea. While all three of these species appear to be C$_4$ NAD-ME grasses, there are few unique anatomical features among each of these species (Peterson et al. 2005). **Kalinia obtusiflora** has a crown of colorless cells above each vein that is absent from the other three genera. Even though Fournier (1886) and later Ogden (1896) noticed affinities of Kalinia with Distichlis, Jouvea, and Uniola, all American agrostologists have followed Lamson-Scribner’s (1897) placement of this species in Eragrostis until Bell et al. (2013) erected Kalinia for it. Kalinia appears to differ from other species of Eragrostis in having leaf blades with papillae located in the intercostal zones on the abaxial surface, stomata on the lemma surface, and the lack of interruption of the bundle sheath with sclerenchyma (known in E. pergracilis S.T. Blake) [Bell et al. 2013]. Bell et al. (2013) also found that Kalinia differs from Distichlis in having a bundle sheath extensions of colorless cells (absent in Distichlis) and wide metaxylem cells (narrow in Distichlis). Distichlis and Kalinia do share sunken bicellular microhairs on the surface of the leaf blades (Bell et al. 2013).

Sohnsiinae P.M. Peterson, Romasch. & Y. Herrera, **subtribe nov.**

Type: Sohnsia Airy Shaw, Kew Bull. 18(2): 272. 1965.

Dioecious, caespitose perennials with short rhizomes forming tough clumps. **Culms** 30–100 cm tall, pubescent below the nodes. **Leaf** sheaths sometimes auriculate, hairy at summit margins; ligules 0.7–1.1 mm long, a line of hairs; blades flat becoming involute upon drying, antorsely scabrous. **Panicles** 7–21 cm long with 6–18 branches alternately inserted along the main axis, main axis pubescent; disarticulation above the glumes. **Spikelets** 5–12 mm long, 3–5-flowered, laterally compressed; rachilla prolonged above upper floret; callus pilose; glumes 2.8–7 mm long, the lower
usually shorter than the upper, 1-veined, the apex often mucronate; lemmas 5–7 mm long, 3-veined, the veins extending as macrost (mostly staminate plants) or into subulate awns (mostly pistillate plants), the awns 1–4 mm long, pilose on margins and each side of the midvein, apex cleft; palea as long as lemma or slightly shorter, with a narrow membranous wing on each keel (staminate plants); lodicules 2, membranous; stamens 3, anthers 2–3 mm long (staminate plants), reddish-purple; ovary glabrous, styles 2, free to base. Caryopsis with a fused pericarp. $2n = 24$ (Reeder, 1967).

Included taxon—Sohnsia filifolia (E. Fourn.) Airy Shaw (1965) [syn. Calamochloa filifolia E. Fourn. (1877), nom. illeg. hom. for Calamochloë Rchb. (1828); Eufornia filifolia (E. Fourn.) Reeder (1967)].

Habitat—Calcareous, rocky slopes usually on north- or east-facing slopes associated with thorn-scrub vegetation with Muhlenbergia, Bouteloua, Erioneuron, Aristida, Eragrostis, Quercus, Rhus, Croton, Mimosa, Dalea, Salvia, Tagetes, Agave, Yucca, Stevia, and Allium; 1100–2100 m.

Distribution—Known only from the two Mexican states: Querétaro (municipios Arroyo Seco, Cadereyta de Montes, Ezequiel Montes, Peñamiller, and Toliman) and San Luis Potosí (Municipio Guadalcázar).

Comments—Fournier (1877) originally described the genus Calamochloa as containing a single species, C. filifolia. Airy Shaw (1965) transferred the species to a new genus, Sohnisia, because it is confusingly similar, differing by only a single letter to Calamochloë, an earlier homonym (Article 53.3, ex. 14 of the International Code of Botanical Nomenclature; McNeill et al. 2006). The 3-awned nature of the lemma in Sohnisia is also found in the Boutelouinae, Scleropogoninae, and the Triaraphideae (Peterson et al. 1997, 2016). Hitchcock (1913) did not include Sohnisia in his Mexican grasses simply because no material was available at this time to study in the US National Herbarium. Although, Hubbard (1934) and Sohns (1956) had aligned Sohnisia with the tribe Pappophoraeae, now subtribe Pappophorinae in the Cynodonteae (Peterson et al. 2016). Reeder (1967) found meiotic irregularities, such as formation of 10 bivalents and four univalents at diakinesis and suggested a basic chromosome number of 10, a common number for the tribe. *Sohnsia filifolia* was collected by PMP west of Guadalcázar in 1991 [Peterson & Annable 11129 (US)], 2010 [Peterson, Saarela & Romaschenko 23359 (US)], and 2012 [Peterson & Romaschenko 24675 (US)]. In 2012, only sterile specimens were found, suggesting that it does not flower every year. This may contribute to the paucity of collections for this Mexican endemic.

ACKNOWLEDGEMENTS

We thank the National Geographic Society Committee for Research and Exploration (Grant No. 8848-10, 8087-06) for field and laboratory support and the Smithsonian Institution’s Restricted Endowments Fund, the Scholarly Studies Program, Research Opportunities, Atherton Seidell Foundation, Biodiversity Surveys and Inventories Program, Small Grants Program, the Laboratory of Analytical Biology; and the United States Department of Agriculture, all for financial support. We thank Robert J. Soreng and Kancheepuram N. Gandhi for help with nomenclatural decisions, Xu Su and Robert J. Soreng for suggesting changes to the manuscript, and Guy Nesom for editing the final version.

LITERATURE CITED

