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Abstract
The emergence of policies to reduce greenhouse gas (GHG) emissions 
motivated a rapid shift in ecosystem modeling, especially concern-
ing agricultural and forest management effects on nitrous oxide (N2O) 
emissions and soil carbon (C). First, we review models for estimat-
ing GHG fluxes in agricultural and forest landscapes. Second, we 
investigate the interplay of models with institutions that develop and 
implement climate change policy. Limited GHG flux observations con-
strain our understanding of process controls, especially with respect 
to N2O flux. Even when simulation models explicitly include N2O 
flux, this capability is infrequently applied or validated. In the policy 
arena, tools used to estimate aboveground forest biomass C rely on 
robust inventory data. Such data are scarce outside of the industrial-
ized world. Compared with biomass C, soil C storage in both forest 
and agricultural systems is difficult to quantify. Widely used estimates 
depend on critical assumptions such as the extent to which erosion 
contributes to C loss from fields and the mechanisms by which C is 
stabilized in soil, both of which are the subject of serious debate. As 
evidenced by at least one instance we explore, institutions dedicated 
to policy development and implementation can rapidly achieve a 
nuanced understanding of these limitations, given sufficient engage-
ment of the research community. Our review illuminates challenges 
that affect land-based GHG mitigation initiatives as a result of current 
knowledge gaps, institutional capacity, and decision-making frame-
works. We suggest key points that should be communicated to model 
users and raise questions that could be fruitfully addressed by model 
developers and consumers of modeled estimates.
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In this chapter, we draw together research and thinking centered on land use 
management and climate change mitigation. Three topics have their roots 

in ecosystem science. First, a long history of experimentation and modeling has 
examined changes in soil organic carbon (SOC) over time and the response of SOC 
to different management practices. Second, more recent efforts have measured 
and modeled nitrous oxide (N2O) emissions from agricultural soils, and some of 
these studies have targeted the influence of management practices on GHG emis-
sions. Third, a rich history of measuring tree growth across the United States 
has provided the foundation for estimating accumulation of carbon in aboveg-
round biomass in forests. The empirical measurements and associated models 
that developed in each of these areas have recently been called into service to 
estimate GHG balances in agricultural fields and forests and to project changes in 
GHG budgets that would result from specific land management changes.

Our investigation differs from previous analyses in three respects. In our 
review of models and model projections, we consider both complex process-based 
simulation models and simpler empirical models. We discuss model strengths 
and weaknesses given the data available to parameterize them. Furthermore, we 
discuss how limitations in both data availability and conceptual understanding 
affect how different models represent ecosystem processes. For example, while 
models of soil carbon cycling have taught us a great deal and sometimes effec-
tively project the trajectory of SOC over time, they remain limited by fundamental 
gaps in our understanding of processes that stabilize or destabilize SOC (Kramer 
et al., 2012, references therein; Kleber and Johnson, 2010; Guggenberger and Kai-
ser, 2003). While we are not the first to illuminate limitations to understanding 
these processes (e.g., Baker et al., 2007, for soil carbon responses to tillage prac-
tices in agriculture), our analysis is more synthetic, including both N2O and SOC 
and both agricultural and forest management. In addition, we place our model 
comparisons in historical contexts, showing how disciplinary roots of different 
models have influenced the complexity with which they represent different eco-
system processes (e.g., hydrology versus soil biogeochemistry).

In addition to this technical overview, we discuss how particular institutions 
that develop market-based GHG trading systems have used available science, 
illustrate how groups of research scientists and policy developers have influ-
enced each other, and discuss the institutional commitments that have structured 
those interactions. This kind of analysis should help us make the best use of eco-
system science to support land use management for climate change mitigation.
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Finally, by placing our analysis of data and model limitations directly adja-
cent to a summary of selected policy initiatives, we show how policies can benefit 
from model projections, but we also show the limitations of current models and 
data sets and the need for further development of both models and data.

Our intent is to ground policy application of cutting-edge research tools in 
an understanding of their limitations, to emphasize that the natural evolution of 
models in response to new scientific knowledge conflicts with the need for pol-
icy methodologies to be standardized and implemented over multiple years or 
decades, and to reinforce the need for continued model development apart from 
the immediate policy applications. This level of analysis supports the research 
community’s responsibility to provide best-available research for near-term man-
agement and policy decisions while simultaneously helping to retain a focus on 
studies that build deeper understanding over longer time frames.

The remainder of this chapter is divided into four sections. We begin by 
describing policy initiatives that have created demand for modeling tools that 
quantify net GHG emissions from agricultural and forest land management. We 
then review models for agricultural landscapes, including quantification of car-
bon dioxide (CO2), methane (CH4), and N2O fluxes, with a particular focus on 
N2O because of agriculture’s dominant role as an N2O source as well as the per-
sistent challenges in modeling N2O emissions. Our review complements recent 
work by Shepherd et al. (2011), which outlined the broad process-level capabili-
ties of 30 currently available simulation models in agricultural systems, but did 
not focus on model capacity with respect to N2O emissions. We subsequently 
review empirical models because they figure prominently in efforts to implement 
climate change mitigation policies and discuss challenges for improving our 
modeling tools with respect to SOC dynamics. For forest ecosystems we focus on 
modeling tools currently applied in policy settings to assess changes in biomass 
and soil carbon storage. We conclude by summarizing both the lessons learned 
and outstanding questions for the following three themes: (i) model structure 
and scale of application, (ii) data limitations and nonlinearity, and (iii) applica-
tions to GHG offset projects.

Institutions that Link Science and Policy to Reduce Net GHG Emissions

International
Since its adoption in 1992, the United Nations Framework Convention on Climate 
Change (UNFCCC) has spurred substantial international efforts to quantify 
annual GHG emissions from various sources, including agriculture and forestry. 
Most directly, the Kyoto Protocol established the Clean Development Mechanism 
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(CDM), which enables industrialized nations to meet emission reduction targets 
by supporting activities in less developed countries. A search of CDM agricultural 
projects demonstrates an emphasis on reclaiming CH4 from improved manure 
management or biomass processing. Land-management-based strategies such 
as REDD (and REDD+)—projects designed to prevent forest clearing or promote 
C sequestration through reforestation or afforestation—have also received 
considerable attention.

Similarly, the EU Emissions Trading System (EUETS) has focused on reduc-
ing emissions from power stations and manufacturing facilities—sources that 
can be measured, reported, and verified with a high level of accuracy. Regu-
lated entities can trade allowances with each other, so that facilities that reduce 
emissions more than required can sell unneeded allowances to companies 
that have not achieved required targets. While EUETS projects do not focus on 
land management, these projects can indirectly affect agricultural landscapes. 
Biomass energy plants initiated as EUETS projects have disrupted traditional 
agricultural uses for unharvested crop biomass (Gilbertson and Reyes, 2009), 
with the subsequent reduction in plant residue incorporation into soil poten-
tially reducing SOC stocks.

A number of countries and provinces have developed climate change mit-
igation programs that include market-based mechanisms. Some of these (e.g., 
Alberta, Canada) incorporate offsets that include agriculture and forestry man-
agement. Others, such as the nascent provincial markets in China (Qiu, 2013), 
could adopt land management offsets as they evolve, particularly if robust proto-
cols for estimating GHG emission reductions have already been developed. Other 
nations recognize the need to mitigate climate change and would like to harness 
the potential of land management to reduce emissions using other policy levers.

All these efforts to develop land-based climate change mitigation policy rely 
on a strong science base to quantify the relationship between specific land man-
agement practices and GHG emissions. Many nations support research on the 
climate change mitigation potential of agriculture and forestry, and the Global 
Research Alliance on Agricultural Greenhouse Gases facilitates information 
sharing among nations to accelerate the design and adoption of land management 
practices that reduce GHG emissions (http://www.globalresearchalliance.org, 
accessed 15 Sept. 2015). The United States, with its strength in scientific research 
and its culture of research collaboration across borders, is a major contributor 
to this effort. Identifying data needs to improve quantification of management 
effects, and the resources required to collect and interpret the data, will support 
wider adoption of agricultural and forest management practices that mitigate cli-
mate change. The scientific knowledge and research expertise of US researchers 

http://www.globalresearchalliance.org
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should provide a useful guide on quantifying management effects because of the 
substantial investment in research that has been made for decades and the associ-
ated availability of landscape- and national-scale data.

Major international efforts to promote Climate Smart Agriculture (CSA) 
include the work by the World Bank and the UN Food and Agriculture Organiza-
tion (FAO), and the nascent CSA Alliance. Although these organizations have not 
focused on quantifying emissions, they have played a major role in drawing atten-
tion to the potential to reduce GHG emissions via land management. In December 
2013, the Climate Change, Agriculture, and Food Security research program of 
the CGIAR system partnered with Future Earth to convene the third Global Con-
ference on Agriculture, Food and Nutrition Security and Climate Change. The 
purpose of the conference was to promote a CSA Alliance (http://ccafs.cgiar.org/
global-conference-agriculture-food-and-nutrition-security-and-climate-change#.
UzniR_ldWgY, accessed 15 Sept. 2015). A number of governments are now work-
ing to define the structure and objectives of this nascent organization. At over 
550 pages, the FAO’s CSA sourcebook defines a framework for linking climate 
change and agriculture in a landscape context and applies this framework to row 
crops, livestock, forestry, and fisheries (Food and Agriculture Organization, 2013). 
Leading institutions with leverage over the trajectory of development initiatives 
have made the connection between climate change and agriculture a centerpiece 
of their work. And while the need for adaptation appears to have been the main 
driver of these initiatives, the role for agriculture in mitigation has also received 
a great deal of attention.

The US government is also paying attention to CSA and land use in an inter-
national context. Secretary of State John Kerry’s initial policy guidance statements 
to the Department of State and the US Agency for International Development. 
This guidance focused on climate change and included the directive to slow, halt, 
and reverse emissions from land use.

United States
Before 2009, in anticipation of federal climate-and-energy legislation in the 
United States (e.g., HR2454, the American Clean Energy and Security Act), 
numerous organizations began to develop the analysis necessary for agriculture 
and forestry to participate in a cap-and-trade program (Broekhoff, 2008). The 
motivations for considering land use management in policy aimed primarily at 
reducing GHG emissions included (i) the need to make climate protection policy 
as affordable (hence feasible) as possible, coupled with analyses suggesting that 
emissions associated with land use change could be reduced at low cost rela-
tive to other emission reduction opportunities (Creyts et al., 2007); (ii) preexisting 

http://ccafs.cgiar.org/global-conference-agriculture-food-and-nutrition-security-and-climate-change#.UzniR_ldWgY
http://ccafs.cgiar.org/global-conference-agriculture-food-and-nutrition-security-and-climate-change#.UzniR_ldWgY
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Quantifying Greenhouse Gas Emissions for Policy Development and Verification 235

commitments of some stakeholders to protect forests, and the opportunity to find 
an additional lever to achieve that end; and (iii) the possibility of finding a rev-
enue stream for farmers linked to climate change mitigation and hence enrolling 
their support for (or at least reducing opposition to) policies that promote climate 
change mitigation. Most efforts to take advantage of GHG emission reductions 
associated with land use change assumed a policy structure in which directly 
regulated entities such as power plants could purchase carbon credits from 
growers who reduced emissions by using management practices they would not 
have employed without this market opportunity. However, for carbon credits to 
have robust value, there was a critical need for agreed-on, defensible methods to 
quantify the degree to which various agricultural and forest management prac-
tices reduce emissions.

Following the failure of the US Congress to pass this legislation, efforts to take 
advantage of agriculture’s potential role in climate change mitigation continued 
in several initiatives that also support the need for improved methods to quantify 
how much changes in agriculture and forest management lead to reduced GHG 
emissions. Within the United States, prominent public initiatives that include the 
agriculture and forestry sectors in climate change mitigation efforts are guidance 
provided to growers for voluntary use by the Climate Change Office of the US 
Department of Agriculture (Biggar et al., 2013); the Northeast Regional Green-
house Gas Initiative (RGGI) (Regional Greenhouse Gas Initiative, 2013a, 2013b); 
and the carbon offsets program administered by the California Air Resources 
Board, as it implements the California Global Warming Protection Act (Assembly 
Bill 32 [AB32]) (California Air Resources Board, 2013).

Under AB32, offsets can be used to meet up to 8% of required emission 
reductions and can originate anywhere in the United States, even though emis-
sion reduction requirements apply only to California. To take full advantage of 
this provision in the law, regulated entities would require approximately 200 mil-
lion metric tons of CO2 equivalents (CO2e) in offsets; generating that many offsets 
would require substantial tracts of land across the country (Stevenson et al., 2012). 
Approved offset protocols grant credits for projects that destroy ozone-depleting 
substances that have high global warming potential and for projects that seques-
ter carbon in US forests (California Air Resources Board Cap-and-Trade Protocols). 
However, existing offset protocols do not provide the opportunity to generate 200 
million metric tons of CO2e. Project eligibility for offset credits under Califor-
nia’s global warming protection law mandates that emission reductions would 
not have occurred in the absence of the regulation; because a suite of regula-
tions and incentive programs in California are already reducing emissions from 
many activities, the number of potential offset opportunities is rather limited. 
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Indeed, whether enough offset opportunities exist to generate 200 million tons 
of CO2e is an open question. Agriculture is typically unregulated, making the 
sector an appealing source of offset projects if the necessary quantification tools 
can be developed and if risks of emission reductions being temporary can be 
adequately addressed. Agricultural practices that might qualify as offsets include 
ones that sequester carbon in soil and ones that reduce emissions of nitrous oxide 
and methane (California Air Resources Board, 2011a, 2011b). The urgency behind 
efforts to identify offset opportunities and develop quantification methods and 
protocols has eclipsed a more fundamental question: When will research on agri-
culture and GHG emissions be able to credibly support these efforts?

In anticipation of a market-based GHG emissions reduction program, insti-
tutions like the Climate Action Reserve (CAR), the American Carbon Registry 
(ACR), and the Voluntary Carbon Standard (VCS) have produced protocols that 
define management practices eligible to earn carbon credits and quantify the 
GHG emissions reductions from specific management practices. Our treatment 
of carbon registries focuses on CAR. In contrast to the global distribution of CDM, 
EUETS, and REDD projects, for CAR these protocols primarily outline projects to 
be implemented within the United States. Exceptions include landfill, livestock, 
and forestry protocols developed specifically for implementation in Mexico (Cli-
mate Action Reserve, 2013). This national scope is consistent with requirements 
under California’s AB32. The California Air Resources Board, which administers 
AB32, is a potential user of CAR’s protocols.

Although research linking land management to GHG emissions and carbon 
storage in soil and forest biomass has been evolving for decades, only recently 
have a number of initiatives focused on synthesizing the science in a policy-
relevant form. These initiatives are framing how technical understanding is 
incorporated into policy. For example, with funding from the Packard Foun-
dation, the Technical Working Group on Agriculture and Greenhouse Gases 
(T-AGG) reviewed the literature to produce a current assessment of the GHG 
emission reduction potential of dozens of agricultural practices (Eagle et al., 2012). 
A set of USDA Conservation Innovation Grants (CIGs) focused on climate change 
mitigation included projects to assess barriers to farmers’ use of GHG reduction 
protocols (USDA-NRCS, 2011). The Coalition for Agriculture and Greenhouse 
Gases (C-AGG) provides a regular forum for information exchange among proj-
ect developers, scientists, growers’ organizations, investors, and government 
agencies (www.c-agg.org).

As organizations like C-AGG and USDA-NRCS have recognized, quantifica-
tion tools can be used in a variety of contexts apart from environmental markets or 
regulatory arenas. For example, COMET-FARM couples a complex biogeochemi-

c-agg.org


Quantifying Greenhouse Gas Emissions for Policy Development and Verification 237

cal model with a user-friendly interface and incorporates many default values for 
parameters. It therefore allows growers to estimate “best guesses” about GHG 
emission reductions that might result from practice changes on their land (http://
cometfarm.nrel.colostate.edu/, accessed 15 Sept. 2105).

The limited number of landscapes, climate regimes, and agricultural and for-
estry practices for which protocols have been approved can be attributed largely 
to a scarcity of affordable, robust tools that can currently be used to quantify the 
relationship between changes in land management and GHG emissions. The sta-
tus of tool development, in turn, can be traced to limited data and understanding. 
In the following sections we discuss the development and limitations of available 
GHG quantification tools and subsequently discuss how these limitations have 
influenced protocol development.

Quantifying GHG Emissions from Agricultural Land Management
Globally, agriculture is a dominant source of N2O and CH4, accounting for 82% 
and 43% of anthropogenic emissions, respectively (USEPA, 2012). In US agricul-
tural systems, soils account for about 70% of total anthropogenic N2O emissions, 
The majority of US anthropogenic CH4 emissions result from losses in the natu-
ral gas industry (?36%), landfill emissions (?19%), and enteric losses (20%), with 
manure management (<10%) also contributing significant emissions; in contrast 
rice cropping systems only account for approximately 1% of US anthropogenic 
CH4 emissions. Therefore, in the US context, cropping system management deci-
sions impact net N2O flux, but agricultural impact on CH4 emissions depends 
mainly on the number of livestock raised and how manure is managed. Because 
cropping system management is a primary driver of US net N2O flux, we focus 
our review of agricultural simulation models on tools that quantify N2O flux in 
response to agricultural management decisions.

The contribution of agricultural land management to CO2 emissions results 
from a net decrease in SOC on existing farms due to management practices; the 
influence of agricultural expansion on SOC and vegetation C; and fossil fuel 
combustion for farm management, fertilizer production, pesticide production, 
and manufacturing agricultural equipment. In the US context, CO2 emissions 
from agricultural inputs and operations are about 14% of total agricultural GHG 
sources (Del Grosso and Cavigelli, 2012) and represent a small contribution to 
net CO2 emissions relative to commercial, industrial, residential, and transpor-
tation CO2 emissions. However, changes to agricultural land management could 
produce a significant sink for atmospheric CO2 via SOC sequestration (e.g., Smith 
et al., 2008b). We discuss challenges regarding the accurate measurement of SOC 

http://cometfarm.nrel.colostate.edu
http://cometfarm.nrel.colostate.edu
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accumulation in the section entitled “Managing Agricultural Landscapes to Pro-
mote SOC Storage.”

Our ability to accurately model agroecosystem biogeochemical dynamics, 
and therefore net GHG emissions, remains constrained by limited data sets with 
spatially and temporally concurrent measurements of multiple C and N cycle 
processes. This challenge applies to both empirical models and mechanistic 
simulation models, though model performance has improved significantly after 
decades of model development and validation (e.g., Smith et al., 1997; Shepherd 
et al., 2011). We recognize that the distinction between mechanistic simulation 
models and empirical models is imprecise, as empirically derived functions 
relating ecosystem properties to GHG flux rate have served as the basis of both 
complex simulation model development (e.g., Parton et al., 1996), as well as simple 
empirical model development (e.g., Millar et al., 2010). However, we find the cat-
egorization of models as complex simulation or simple empirical models useful 
for understanding how models are being adopted in the policy arena. Below we 
review (i) agricultural models that explicitly simulate N2O flux, (ii) simple empiri-
cal modeling tools for quantifying N2O flux in agricultural landscapes, and (iii) 
broader challenges to accurately quantifying SOC response to agricultural man-
agement practices.

Simulation of Cropping System GHG Flux
Modeling net GHG emissions from agricultural landscapes requires accurate 
model description of (i) net CO2 flux as the balance between CO2 uptake resulting 
from C fixation during plant growth, and CO2 emissions from plant respiration 
and heterotrophic soil respiration due to organic matter decomposition, (ii) N2O 
emissions resulting from aerobic pathways during nitrification and anaerobic 
pathways during denitrification, and (iii) CH4 emissions by explicit modeling of 
methanogenesis and CH4 uptake through oxidation in non-saturated soils.

All agroecosystem models include the dominant processes of the C cycle, 
though mechanistic details vary. Models differ in how organic matter (OM) 
substrate pools are defined, which OM pools are explicitly tracked, and how 
environmental properties control decomposition rates. Models commonly distin-
guish between OM substrate quality in determining decomposition rate and OM 
residence time. Due to our incomplete mechanistic understanding of controls on 
carbon stabilization and decomposition, many modeled OM pools are conceptual 
rather than measurable pools. In other words, although models typically recog-
nize that some OM decomposes easily and some resists decay, the division of 
the total OM pool into different fractions has only limited basis in a mechanistic 
understanding of why these decay rates vary. Therefore, model ability to project 
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how decay rates will change in response to changes in management practices 
or environmental conditions is also limited. Without the ability to mechanisti-
cally simulate C stabilization, we cannot adequately study a major mechanism of 
long-term SOC accumulation in agricultural systems. We discuss recent mecha-
nistic work regarding SOC accumulation and stabilization in the section entitled 

“Managing Agricultural Landscapes to Promote SOC Storage.” Models also differ 
in how they simulate plant growth, with some models explicitly modeling gross 
primary productivity (GPP) and plant respiration, while other models calculate 
net primary productivity (NPP).

The complexity of N cycle description differs significantly among agroeco-
system models. Models differ in their assumptions regarding controls on net N 
mineralization during decomposition, as well as subsequent nitrification rates. 
The most important difference in N cycle description among agricultural models 
is whether the model explicitly simulates N2O emissions. We focus our simu-
lation model review on models that explicitly partition N2O and N2 flux. Since 
anthropogenic N2O emissions are largely controlled by agricultural soils, agro-
ecosystem model capacity to track N2O emissions is a critical model feature for 
application to GHG accounting questions. We complement the model review by 
Shepherd et al. (2011) by comparing simulation model commonalities and differ-
ences with respect to model description of C, N, and hydrologic cycles.

Overview of Models
We compare key features of agroecosystem models that are commonly applied 
to study environmental impacts of agricultural management and that explicitly 
quantify N2O emissions. These models have a varied history in terms of original 
purpose of model development, as well as coordination of model development 
with management objectives. The disciplinary roots of the development team 
and the primary objectives of model development influence the complexity or 
simplicity of process representation. Historically hydrologic models originated 
with simplified C and N cycle descriptions, while models focused on C and N 
cycles started with relatively simplified hydrology. However, over the course of 
model development all ecosystem models have increased the complexity of C, N, 
and hydrologic cycle descriptions

We review five ecosystem models—three with a historical focus in C and N 
cycling and two with a historical emphasis on hydrology. DAYCENT (Daily CEN-
TURY) (Parton et al., 1987, 1998, 2001) is a daily time-step model that tracks both 
N2O and N2 flux from agricultural systems and is based on the CENTURY model. 
CENTURY was originally developed as a monthly timescale model to quantify 
decadal and century-scale processes of SOC dynamics and soil development. The 
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development of the daily time-step DAYCENT model allowed the CENTURY 
description of soil organic matter (SOM) dynamics to be applied toward agri-
cultural management questions. Model application to address GHG emissions 
from agricultural landscapes has been a key goal over the course of DAYCENT 
development. The Denitrification–Decomposition (DNDC) model (Li et al., 1992) 
is grounded in the explicit representation of microbial populations and envi-
ronmental constraints that control C and N process rates. Throughout DNDC’s 
history, model developers have focused on describing GHG emissions. As a result, 
DNDC has been broadly applied to estimate agricultural GHG emissions and 
model development has been coordinated with various international research 
teams focused on quantifying GHG emissions for policy compliance, includ-
ing NitroEurope and Landcare Research in New Zealand. The ECOSYS model 
(Grant et al., 2001a) uses a highly detailed, mechanistic approach to simulate C 
and N processes, describing microbial control on C and N dynamics by repre-
senting populations of different microbial functional groups. ECOSYS model 
development has frequently been coordinated with model validation against flux 
tower measurements, offering a unique opportunity to test and refine modeled 
CO2 dynamics. Similar to other models reviewed, a fundamental goal of ECO-
SYS model development has been model application to support improved land 
management planning with respect to environmental impacts. The Agricultural 
Policy/Environmental eXtender (APEX) model (Williams et al., 2008) is derived 
from the Environmental Policy Integrated Climate (EPIC) model (Williams, 1995), 
which was originally developed to study watershed dynamics and soil erosion. 
The APEX model combines the hydrologic sophistication of EPIC with a complex 
N cycle and a CENTURY-like description of SOC decomposition processes. The 
Root Zone Water Quality Model 2 (RZWQM2) (Ma et al., 2001) is a widely applied 
model developed by USDA-ARS scientists. This model has been used to study 
various agricultural management scenarios, including tillage, fertilizer, manure, 
and pesticide management. The direct involvement of USDA-ARS scientists in 
APEX and RZWQM2 development has resulted in models that are well suited to 
addressing major management practices in US agricultural landscapes. Below we 
summarize key similarities and differences in how these five models describe C, 
N, and hydrologic processes and agricultural management practices. An over-
view of model similarities and differences is also summarized in Table 1.

C and N Process Description
A key distinction among models is whether C and N processes are described as 
explicit functions of microbial biomass with rates grounded in microbial metabo-
lism or whether descriptions are derived from empirical observations of process 
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rates across a gradient of environmental controls. Decisions regarding represen-
tation of C and N processes affect the method of coupling dynamics across C and 
N cycles and the parameterization requirements for model use. When microbial 
biomass controls process rates, model reliability depends on robust parameter-
ization of microbial metabolism rates. When empirical relationships determine 
process rates, model reliability depends on sufficient observations to parameter-
ize key functional relationships. Ideally empirical functions describe process rate 
response to environmental gradients relevant to the particular cropping system, 
climate, and soil type being studied. Currently available data sets are best suited 
for the parameterization of empirical relationships, because C and N process rates 
have been studied in the field and lab across a gradient of environmental condi-
tions such as soil texture, soil moisture, soil temperature, and cropping system.

CO2 Flux
Models have used two approaches to estimate plant uptake of CO2. One group of 
models bases plant uptake of CO2 on leaf carboxylation rate as a function of leaf 
traits (leaf area, leaf N or RuBisCO content, and the saturation function limited 
by leaf CO2 concentration). The other group models CO2 uptake on the basis of 
photosynthetically active radiation with downregulation controlled by nutrient, 
water, and temperature stress. Plant release of CO2 through respiration depends 
on stored C, N content, water balance, and temperature.

Most of the models we reviewed use first-order decay to represent the 
release of CO2 from soil microbial respiration. An alternative approach to model-
ing OM decomposition applies Michaelis–Menten kinetics to explicitly simulate 
microbial population controls on decomposition. When using Michaelis–Men-
ten kinetics, the decomposition rate depends on both substrate concentration and 
density-dependent microbial activity. Organic matter decay varies depending on 
the type of OM, and models differ in the categories of OM substrate explicitly 
represented and the decay rates of these substrates. Finally, models differ in how 
they represent environmental conditions such as water-filled pore spaces (WFPS), 
pH, temperature, and O2 and the response of decomposition to these environ-
mental constraints. The description of which environmental properties and how 
environmental properties affect decomposition rates is a key distinction among 
models. While a first-order rate equation is the dominant description of OM 
decomposition, models differ in their simulation of OM decomposition because 
decomposition rates are dynamically affected by environmental controls. Model 
assumptions regarding environmental controls and model ability to adequately 
model gradients in these environmental drivers across a range of soil texture and 
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climates ultimately determines simulated decomposition rates and is a key rea-
son for differences in model outcomes.

N Gas and Denitrification Description
Models represent denitrification and N2:N2O partitioning, as well as N2O lost dur-
ing nitrification, with varying degrees of complexity. The models describe N2O 
flux using first-order kinetics, Michaelis–Menten kinetics, or empirically derived 
functions. No single functional form dominated model representation of N2O 
flux, N2:N2O partitioning, or N2O lost during nitrification. As with decomposition, 
controls on N gas flux differ among models. The activity of denitrifying microbes 
primarily responds to soil aerobic status, with the observed relationship between 
WFPS and N2O flux varying across soil textures (e.g., Parton et al, 1996). Simu-
lated denitrification is controlled by a combination of soil properties including 
substrate, temperature, moisture or O2 concentration, texture, and pH. While all 
models calculate N2O flux on the basis of some measure of soil moisture or O2 
state, only DAYCENT and DNDC explicitly include soil texture as a control on 
N2O flux.

C and N Coupling
Model assumptions regarding how C to N ratios constrain decomposition and 
N mineralization are an important link between simulated C and N dynamics; 
these assumptions control decomposition as well as soil inorganic N available 
for plant uptake, or loss as NO3

- or N2O. For models with explicit simulation 
of microbial populations, net N immobilization is modeled on the basis of the 
C:N stoichiometry of the microbial population. In models driven by substrate 
composition, net immobilization and net mineralization are based on observed 
threshold C:N relationships across different OM substrate classes.

CH4 Flux
For models that consider methane flux, model representation of methanogenesis 
applied either Michaelis–Menten kinetics or first-order kinetics. Methane flux is 
mainly relevant in flooded rice production systems, waterlogged ecosystems such 
as wetlands and bogs, or during decomposition of manure stored where anaerobic 
conditions can develop. In models that explicitly simulate microbial populations, 
the rate of CH4 production is described using a Michaelis–Menten saturating func-
tion limited by substrate, soil acetate, CO2 or O2 concentration, Eh, or pH.
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Water Cycle
Hydrologic complexity varies significantly among the ecosystem models reviewed. 
Models developed primarily to investigate C and N dynamics commonly limit 
drainage to vertical flow, while models developed primarily as hydrologic mod-
els consider both vertical and lateral flow. The most simplistic representation of 
drainage is based on gravitational flow, with flow volume determined as soil 
layer water in excess of water holding capacity or field capacity. More complex 
representation of drainage includes information about the physical soil matrix by 
applying Darcy’s Law or Richards’ equations to describe flux on the basis of soil 
hydraulic properties of a given soil layer. An increasingly mechanistic modeling 
approach includes water vapor flux using Fick’s Law of diffusion.

A fundamental limitation to modeling denitrification is our inability to 
accurately model pore-scale soil moisture dynamics. Because it is currently not 
possible to accurately model the true distribution of pore-scale O2 or moisture 
conditions, structural model uncertainty is an inevitable component of denitrifi-
cation model description. However, simulated denitrification dynamics are often 
able to track observed trends in seasonal flux, implying that an approximation of 
soil properties using average, aggregate soil conditions is capable of approximat-
ing flux patterns that are actually occurring in temporal (hot moment) and spatial 
(hot spot) peak events.

Agricultural Management
Management practices that affect N2O flux include (i) tillage and its effect on soil 
physical properties, (ii) N fertilization rate, timing and type, and its effect on soil 
available N, (iii) crop rotation and its effect on N uptake and water balance, and 
(iv) residue management and its effect on C availability and water and nutrient 
retention. All the models that we reviewed have been extensively applied in agri-
cultural systems and include common conventional agricultural management 
practices: tillage, irrigation, fertilization rate and method, inorganic N or P fer-
tilizer type, manure, plant residue management, planting density, planting date, 
harvest date, harvest amount, and a range of crop types (see Olander et al. [2011] 
for more details on model management capabilities). Models used in rangeland 
applications can also simulate grazing and burning. The majority of model appli-
cations have focused on conventional rotations.

Model capacity to represent complex management options and ecological 
complexity is more limited. Techniques such as frost seeding and intercropping 
are not universal capabilities of agroecosystem models. The lack of capacity to 
simulate multiple species concurrently limits model applicability for testing eco-
logical management as a means of GHG emission reduction. Agroecosystem 
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models rarely simulate disease or pest effects, which can influence the accu-
racy of plant productivity modeling as well as soil biogeochemical processes. 
The effects of flooding on plant productivity or soil biogeochemical processes 
are also rarely modeled. Such ecological perturbations can significantly alter 
biogeochemical cycling and may become more frequent under climate change. 
Therefore, improved model representation of ecological complexity is necessary 
for assessing climate change scenarios.

While all models reviewed herein simulate common management practices, 
the sensitivity of modeled ecosystem dynamics to management scenarios differs 
among models. In models with a hydrologic development history (APEX/EPIC, 
RZWQM2), simulated changes in tillage affect soil physical properties and water 
dynamics. In contrast, management decisions in models with a development his-
tory emphasizing C and N dynamics (DNDC, ECOSYS) have more resolution in 
the ecology of different cropping systems. Increased capacity to differentiate soil 
physical properties resulting from management is useful for testing management 
impacts on physical processes such as erosion, as well as moisture-driven bio-
geochemical processes such as denitrification. Enhanced complexity with respect 
to the cropping system description allows model application to study ecological 
rotations and more generally the role of litter substrate in controlling net C and 
N process rates.

Model Limitations
More accurate simulation of the C cycle in agricultural systems depends on 
improved simulation of the biophysical impact of agricultural management 
(especially tillage), improved simulation of ecosystem processes such as decom-
position and SOC stabilization, and improved simulation of diverse management 
strategies such as rotation complexity, nutrient amendment strategy, and resi-
due management (see the section entitled “Managing Agricultural Landscapes 
to Promote SOC Storage” for further discussion of SOC dynamics). However, 
even when models represent detailed management practices, there are limited 
data to validate whether a model mechanistically captures land management 
effects on SOC accumulation and soil erosion, especially across a wide range of 
soil types and climatic conditions. Furthermore, the impacts of individual man-
agement practices on biogeochemical cycles are often studied independently. In 
the absence of improved data, a conservative modeling approach would assume 
an additive relationship for quantifying biogeochemical dynamics in complex 
landscapes under multiple management practices; this assumption is likely to 
be erroneous in many cases. Therefore, model validation for diversified cropping 



248 Tonitto et al.

systems will require improved access to long-term data sets under different man-
agement strategies.

The fundamental challenge to mechanistically simulating N2O flux is 
accurately modeling the spatial and temporal variation in soil environmental 
conditions. A classic study of N flux from structurally intact soil cores by Parkin 
(1987) demonstrated that 85% of N gas flux occurred in a soil aggregate represent-
ing <0.1% of the original core mass and largely resulted from the decay of a piece 
of pigweed substrate. This study exemplifies the extent to which extreme soil con-
ditions, rather than the mean, control cumulative N2O flux, and therefore clarifies 
the challenge to achieving a truly mechanistic model description of N gas flux.

Even though N2O flux from soils is part of an N cycle that potentially 
responds to numerous factors, in agricultural lands these emissions respond 
primarily to changes in soil aerobic state and the availability of labile forms of 
nitrogen. Simulation models generally describe average system properties, while 
in the agricultural landscape N2O flux occurs in microsites, with the majority 
of emissions occurring during ephemeral “hot moment” periods when high 
soil N availability coincides with optimal soil moisture (Groffman et al., 2009). 
Therefore, simulation models have been conceptualized to aggregate the tempo-
ral and spatial diversity of soil environmental state to generate an aggregated N 
flux emission rather than explicitly characterizing diversity. Despite these sim-
plifications in the spatial and temporal resolution of simulated N2O flux, models 
have been successfully calibrated to simulate annual N flux observations. They 
generally produce seasonal patterns where the highest emissions correspond 
to periods when heavy rainfall coincides with fertilization or with pulses in N 
mineralization under bare fallow. Both of these patterns are consistent with our 
mechanistic understanding and observations of N gas flux dynamics.

Global change adds to current limitations on accurate modeling of com-
plex C and N dynamics. Empirical observations of N2O flux, plant growth, and 
SOM decomposition across current climate, atmospheric chemical composition, 
and soil environmental conditions form the basis of both simulation and sim-
ple empirical models. Uncertainty about long-term, ecosystem-scale C and N 
process response to global change (e.g., Norby and Luo, 2004; Reich et al., 2006; 
Rustad, 2006; Lukac et al., 2009) reduces confidence in ecosystem model accuracy. 
In particular, it remains challenging to mechanistically model ecosystem process 
response to moisture, temperature, and anthropogenic forcing of biogeochemical 
element concentrations for SOM decomposition (e.g., Giardina and Ryan, 2000; 
Torbert et al., 2000; Norby et al., 2001; Ågren and Bosatta, 2002; Davidson and 
Janssens, 2006; Davidson et al., 2006; Erhagen et al., 2013; Stockmann et al., 2013; 
Gabriel and Kellman, 2014), net N mineralization-immobilization (e.g., Kätterer 
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et al., 1998; Thornley and Cannell, 2001; Reichstein et al., 2005; West et al., 2006; 
Guntiñas et al., 2012), and plant physiology (e.g., Karnosky et al., 2003; Ainsworth 
and Long, 2004; Li et al., 2007; Ziska and Bunce, 2007; Sun et al., 2009). In addi-
tion most ecosystem models do not consider the complexity of plant community 
response to global change (e.g., Araújo and New, 2007; Thuiller et al., 2008; Beale 
and Lennon, 2012; Svenning and Sandel, 2013). These responses depend not only 
on plant growth responses to novel climate conditions but also on climate-driven 
shifts in the behavior of invasive species (e.g., Whitney and Gabler, 2008; Bradley 
et al., 2010; Peltzer et al., 2010; Corbin and D’Antonio, 2012; Ibáñez et al., 2014) or 
pest dynamics (e.g., La Porta et al., 2008; Dukes et al., 2009; Ziska et al., 2011; West 
et al., 2012; Sutherst, 2014). While modeling remains our best tool for assessing 
long-term implications of land management, improving the mechanistic descrip-
tion of C and N dynamics as well as community dynamics will make ecosystem 
model predictions more robust for global change applications.

Making these improvements requires innovation in model development, and 
adequate model documentation is a barrier to innovation. The USDA-ARS sup-
ported model APEX/EPIC provides a stellar example of documenting the current 
state of a model’s scientific framework (Williams et al., 2008). Because compre-
hensive model documentation is a time-consuming, unrewarded activity, models 
developed in an academic environment often rely on peer-reviewed publications 
to document model development. As a result, model documentation may be scat-
tered among various journal articles, white papers, or technical reports. While 
individual advances in model components may be described in specific publica-
tions, it is generally difficult to get a comprehensive understanding of the current 
functional foundation of a particular model. Further limitations arise when the 
model code is not open source, which prohibits a researcher from reviewing how 
ecosystem processes are represented.

If the ecosystem modeling community were to establish documentation 
standards, benefits would be widespread. Standards could include guidelines for 
documenting the current conceptual framework of widely applied agricultural 
management models and for making model descriptions readily available on a 
website where model executable files are available for downloading. Addition-
ally, open-source code and detailed documentation within the code should be 
encouraged. A transparent understanding of how processes are described will 
allow developers to learn which functional forms are best suited to particular 
simulation scenarios, facilitating the development of new, improved hybrid mod-
eling approaches.
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Empirical Models for Estimating Cropping System GHG Flux
While complex simulation models define interdependencies between multiple 
ecosystem processes and drivers, simple empirical models determine N2O flux 
as a function of observed relationships between gas flux and one or two inde-
pendent variables, with limited additional environmental information. Simple 
empirical models for GHG accounting are typically expressed as emission fac-
tors (EFs) that define N2O emissions as a percentage of N addition. The database 
of N2O emissions compiled by Stehfest and Bouwman (2006) has served as a basis 
for estimating EF values across different cropping systems. The Intergovernmen-
tal Panel on Climate Change (2006) recognized two categories of empirical N2O 
models. Tier 1 models based on globally aggregated flux observations represent 
the coarsest approach to estimating N2O in agricultural systems. The Intergov-
ernmental Panel on Climate Change (2006) Tier 1 function for deriving N2O flux 
as a function of fertilizer inputs is based on the analysis of Stehfest and Bou-
wman (2006). Tier 2 approaches can be developed when national or regionally 
relevant N2O flux data are available. Because N gas flux is controlled by microbial 
response to oxygen state, and C and N availability, Tier 2 models define regionally 
specific functional relationships on the basis of observations relevant to specific 
cropping systems, soil textures, or climates (e.g., Dalgaard et al., 2011; Leip et 
al., 2011; Millar et al., 2010; Tonitto et al., 2009). Because empirical models do not 
mechanistically and dynamically describe environmental state, they cannot cap-
ture nuanced patterns of N2O flux resulting from spatial and temporal variation 
in environmental properties. The absence of a mechanistic basis for prediction 
also means that Tier 2 models cannot be applied outside specific conditions and 
systems that the underlying data represent. However, for environmental condi-
tions representative of the observation site, especially soil texture, climate, and 
cropping system, empirical model outcomes integrate the effect of environmental 
complexity on N2O flux.

Quantifying landscape N2O flux is difficult because N cycle processes are 
nonlinear. Nonlinear functions exhibit the property that function evaluation for 
the mean value of a controlling parameter is not equivalent to taking the mean of 
the function evaluated over the entire range of a controlling parameter, a prop-
erty known as Jensen’s Inequality. In a study of N losses from Danish agricultural 
landscapes, Dalgaard et al. (2011) demonstrated the problem of up-scaling nonlin-
ear N cycle processes by calculating that landscape-scale N loss estimates are 30% 
higher when empirical EF models are applied using farm-specific data compared 
with estimates using landscape-averaged data. Millar et al. (2010) addressed the 
nonlinearity of N2O flux by defining a nonlinear functional response of N2O flux 
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to N fertilization rate using flux observations from an N addition gradient experi-
ment. Because investigators applied a gradient of fertilizer application rate within 
a site, the shape of the N2O-N fertilizer rate relationship provides insight into 
the nonlinear trend in N2O loss. This data-intensive approach provides a robust 
method for quantifying N2O flux in response to changes in fertilizer rate for corn 
(Zea mays L.) grown on coarse textured soils, but few data sets exist for flux across 
an N addition gradient in other soil textures, cropping systems, or climates. The 
Millar et al. (2010) analysis serves as the basis of the Tier 2 MSU–EPRI model 
(developed by Michigan State University and the Electric Power Research Insti-
tute) applied in the CAR Nitrogen Management Project Protocol (Climate Action 
Reserve, 2012a) and the ACR N management protocol (American Carbon Registry, 
2012), allowing for increased data support relative to the Tier 1 linear extrapola-
tion of N2O emissions as a function of N applied. Recent N2O reviews by Kim et al. 
(2013) and Van Groenigen et al. (2010) confirmed the applicability of a nonlinear 
N2O flux response across an N input gradient, though Kim et al. (2013) reviewed 
studies where a linear response to N addition is the best fit to the data.

Various approaches have been applied to integrate existing data and quan-
titative tools into Tier 2 models. Leip et al. (2011) develop a hybrid approach to 
quantifying N2O flux by defining EF values using simulation modeling. Leip et al. 
(2011) implemented spatial simulations using DNDC-Europe to establish a range 
of EF values for different SOC, fertilizer scenarios, and climate zones in Europe, 
and they ultimately contrast these simulated EF ranges to Intergovernmental 
Panel on Climate Change Tier 1 outcomes. They found simulated EF values par-
alleled Tier 1 results at large scales (national estimates), but for higher-resolution 
estimates simulation methods allowed for better accounting of the effect of spa-
tial variation in management practices. Dechow and Freibauer (2011) contrasted 
a fuzzy logic model to empirical N2O functions (Bouwman, 1996; Freibauer and 
Kaltschmitt, 2003; Stehfest and Bouwman, 2006; Intergovernmental Panel on Cli-
mate Change, 2006). Their MODE model includes uncertainty due to variation in 
soil properties and climate. Their model often predicts lower N2O flux than Bouw-
man (1996) and Stehfest and Bouwman (2006) models. Tonitto et al. (2009) applied 
Monte Carlo sampling to a subset of the Stehfest and Bouwman (2006) database 
to define potential N2O flux ranges for specific grain cropping system and soil 
texture combinations under rainfed management. They found that observations 
supported the potential for N2O flux rates that exceed 5% of available soil inor-
ganic N, a rate significantly larger than Tier 1 estimates; however, these high flux 
events occurred with low probability.

While agricultural management has great potential for reducing N2O emis-
sions, the spatial and temporal resolution of emissions data remains poor because 
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of the cost of implementing N trace gas measurements with sufficient sampling 
intensity. When field observations are available for specific cropping systems 
on representative soil textures and in relevant climates, empirical models are a 
robust tool for bounding the range of N2O flux. Increased funding and improved 
N gas measurement methods are expanding the spatial coverage and manage-
ment scenarios included in observations. These data will allow Tier 2 models to 
be developed for more cropping systems covering a larger geographic range.

Accurately integrating the effect of seasonal flux variation currently remains 
a challenge for Tier 2 models. Groffman et al. (2000) concluded that multi-year, 
continuous data are necessary to derive meaningful patterns for establishing 
ecosystem N2O flux at regional scales. Their analysis of long-term data sets dem-
onstrated patterns of N2O flux related to soil N, C, and moisture state for cropland, 
forest, and grassland ecosystems, but did not find a single unifying description 
that could be applied broadly. For cropping systems in Ontario, Desjardins et 
al. (2010) demonstrate good agreement across measurement methods for a tran-
sect of tower and aircraft measurements, as well as simulations using DNDC. 
However, their work demonstrated the importance of spring snow melt in driv-
ing high N2O flux, with variable moisture controlling peak N2O flux events and 
thereby controlling annual flux totals. This nonlinear response to weather makes 
Intergovernmental Panel on Climate Change Tier 2 equations inadequate for cap-
turing flux trends with respect to pulse climatic events, though they may parallel 
multi-year average flux. Because experiments that measure N2O flux in the field 
typically do not continue over many years (or even a full calendar year), obser-
vations are unlikely to capture the full climate variation a site can experience. In 
the absence of measurements focusing on N2O flux response to extreme weather 
events, empirical models are unlikely to accurately capture the occurrence of 
pulse N2O flux events that often compromise the bulk of emissions.

Model inaccuracy due to the limited ability of empirical models to reflect 
ecosystem response to extreme weather events may be amplified as ecosys-
tems respond to climate change. Direct limitations will result for systems that 
experience more frequent extreme weather events. For instance, empirical 
relationships derived from observations with a uniform distribution of mean 
annual precipitation may not adequately describe a system in which the same 
total precipitation largely falls in extreme events. The application of empirical 
models under climate change is also complicated in systems where climatic 
change affects plant physiology. In systems experiencing substantial physio-
logical perturbation, historic observations will no longer adequately describe 
aggregate biogeochemical dynamics.
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GHG Data Availability and Model Validation Studies
Simulation models are often applied to combinations of crops, management prac-
tices, and environmental conditions for which there are limited or no GHG flux 
data. Even if GHG flux data are available, there are very rarely enough auxiliary 
data to support a mechanistic understanding of environmental drivers on net 
flux. For example, rarely are there measurements of N2O fluxes and water and 
nitrate leaching below the rooting zone throughout an entire year. Simulations 
of these systems do not focus on improved mechanistic representation of GHG 
flux. Instead, in these systems model-measurement comparisons are typically 
conducted for output variables such as SOC or crop yield. 

In managed landscapes, long-term SOC data sets have sometimes been avail-
able, allowing validation of the C cycle (e.g., Smith et al., 1997) and constraining 
modeled CO2 emissions resulting from plant and soil respiration, for a given set 
of assumptions about erosion rates. While some studies have validated models 
against observed steady state SOC at sites with long-term measurements, SOC 
response to management is difficult to measure accurately over shorter times-
cales and is therefore infrequently available for model validation. (We discuss this 
issue in more detail in the section entitled “Managing Agricultural Landscapes 
to Promote SOC Storage.”) With the exception of the ECOSYS model, validation of 
modeled CO2 flux against measurements is limited, though the increasing avail-
ability of flux tower data is making these comparisons possible (e.g., Schaefer et 
al., 2012; Dietze et al., 2011; Schwalm et al., 2010). Methane outcome validation 
exists for rice cropping systems (e.g., Fumoto et al., 2008; Smakgahn et al., 2009; 
Zhang et al., 2011a), and is not an important GHG source in other cropping sys-
tems. However, for croplands managed with manure inputs, manure storage is 
an important methane source. Methane loss responds to livestock management, 
especially manure management and diet selection, topics that are outside the 
scope of this chapter. Crop yield is the easiest C stock to measure and the most 
frequently validated model outcome. However, validating a model solely against 
crop yield provides limited constraint on the total C cycle and does not mean 
that the model delivers sound estimates of GHG flux. As models are increasingly 
applied in policy design and verification, model users should assess that a partic-
ular model has been adequately validated for the system and process of interest.

The full complexity of the N cycle remains a challenge to validate in model 
studies. Limited validation of modeled N cycle dynamics is largely due to the 
difficulty and expense of sampling nitrate leaching (Addiscott, 1996) and trace 
gas emissions (Groffman et al., 2006). Recent multi-scale N2O emission studies 
by Desjardins et al. (2010) provide rigorous data for both model validation as 
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well as understanding issues of integrating local-scale chamber measurements 
to landscape-scale emissions estimates, but high quality N2O emissions data are 
unavailable for most agricultural systems.

We conducted a comprehensive survey of model application for the five 
simulation models reviewed in this chapter. Our survey emphasized the spatial 
extent of model application, the primary goal of application, the model outcomes 
reported in the study, and the type and success of model validation studies. 
Our survey demonstrated that model application was dominated by field-scale 
studies, though small- and large-scale regional applications were significant for 
hydrologic-centered applications of APEX, applications of DNDC to well-studied 
rice systems of China as well as grain and grassland systems in Europe, and DAY-
CENT application in the United States (Fig. 1a). The primary goal of most studies 
was to address ecological impacts of agricultural management (Fig. 1b), though 
some model applications were focused on more agronomic questions such as 
yield. A few model applications were explicitly concerned with the economic 
viability of land management scenarios. The models were generally applied to 
simulate conventional agricultural systems, though model application included 
ecologically based management scenarios (e.g., cover cropping or buffer strip 
management) or addressed the sustainability of agricultural management with 
respect to climate change.

Model development history influenced choices about how and where to 
apply a model. Studies applying models with a development history focused on 
hydrology (APEX, RZWQM2) frequently reported hydrologic outcomes, while 
studies applying models with a development history focused on carbon and 
nitrogen cycling (DAYCENT, DNDC, ECOSYS) had the most frequent report-
ing of GHG outcomes (Fig. 1c). Model application frequently included other 
ecosystem properties such as soil inorganic N status, NO3

- or P leaching, soil 
temperature, or system energy balance (Fig. 1c). Models rooted in biogeochemis-
try (DAYCENT, DNDC, ECOSYS) were used predominantly in ecological studies 
(studies addressing GHG emissions, C storage, or water pollution). For models 
rooted in hydrology, APEX was generally used to address water quantity and 
quality questions, while RZWQM2 was applied to simulate water quantity and 
crop yield. In many applications the specific metric of the study (water quality or 
quantity, GHG emissions, C storage, or yield) was framed in a larger context of 
supporting ecosystem services.

Studies applying DNDC and ECOSYS most frequently validated biogeo-
chemical outcomes, while APEX and RZWQM2 had the highest occurrence of 
hydrology validation (Fig. 1d). Lack of model validation (applied to manuscripts 
where no validation data were presented and prior validation work relevant to 
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Fig. 1. Simulation model application and validation.
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the study was not referenced) occurred in 5, 6, and 17% of the studies for DNDC, 
APEX, and DAYCENT, respectively. While all of the models reviewed can simu-
late GHG emissions, GHG outcomes have not been broadly validated (Fig. 1e). 
Nitrous oxide emissions have been most frequently validated for DNDC, but N2O 
validation was also conducted in studies using DAYCENT and ECOSYS. Meth-
ane emissions have mostly been validated for rice cropping systems in China 
using the DNDC model. Net ecosystem CO2 emissions have been validated most 
frequently by comparing ECOSYS outcomes with sites on the basis of flux tower 
observations. APEX and RZWQM2 have not been validated with respect to GHG 
flux. Biogeochemical trends remain difficult to model, especially at seasonal 
timescales (Fig. 1f). At least one instance of poor model–data agreement for bio-
geochemical trends occurred in 13, 25, 37, and 50% of biogeochemical validation 
studies for ECOSYS, RZWQM2, DNDC, and DAYCENT, respectively. Few model 
applications concurrently validated all relevant agroecosystem properties: yield, 
biogeochemical cycles, and hydrology. While the modeling studies surveyed 
represent a comprehensive use of available data, limited observations remain a 
challenge for model validation of biogeochemical outcomes.

Whereas data availability limits development and application of both 
empirical and process-based models, the availability of dedicated, trained 
experts is a limitation primarily in the application of process-based models. 
Accurate application of biophysical models requires significant training to 
understand how to interpret results or estimate uncertainty. While a rigorously 
validated process-based model can be expected to generate GHG flux 
outcomes that reflect the system studied, many model validation studies have 
demonstrated initial inconsistency in comparisons between model outcomes 
and measured data, highlighting the need for model improvement (e.g., Beheydt 
et al., 2007). An individual responsible for model application needs to have a 
general familiarity with the range of plausible ecosystem fluxes in the system 
studied, an understanding of the mechanisms that drive ecosystem fluxes, and 
an understanding of how the applied model describes particular ecosystem 
processes to judge if model structural error is leading to spurious outcomes. The 
amount of training required to accurately apply a simulation model is a limitation 
to the widespread deployment of simulation models as policy verification tools.

Managing Agricultural Landscapes to Promote SOC Storage
Carbon turnover times have been studied in agricultural soils for well over 100 yr, 
and biogeochemical models such as Roth-C and CENTURY, developed to test and 
refine hypotheses about SOM in crop fields, appear to have been well validated 
for slow turnover SOC pools at steady state (Smith et al., 2012). However, the past 
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decade has witnessed a vibrant debate among competing hypotheses to explain 
why SOM is sometimes quickly mineralized by microbes and at other times per-
sists for decades to centuries. Inherent biochemical recalcitrance, protection from 
attack by virtue of position in the soil matrix, and physical stabilization on min-
eral surfaces have all received support as stabilization mechanisms (Giardina 
and Ryan, 2000; Kramer et al., 2012; Mikutta et al., 2006; Sollins et al., 2006; Torn 
et al., 1997, 2005). In contrast, models of SOM decomposition generally assume 
decay is primarily based on OM substrate chemistry mediated by environmental 
factors such as soil texture, moisture, and temperature. Because our understand-
ing of SOM dynamics is undergoing a major shift, models cannot incorporate 
a fully mechanistic description of SOM stabilization and destabilization. It is 
therefore worth asking whether SOM models capture how management prac-
tices influence soil carbon stability on short timescales and how those changes 
cascade to influence long-term SOC dynamics. If models cannot mechanistically 
describe the nuanced ways in which management changes the chemical and 
physical stabilization of SOM, will they provide a sufficiently unbiased compari-
son of how management techniques influence GHG budgets to develop policy 
recommendations?

Within the research community, opinions diverge regarding the extent to 
which the science behind soil carbon storage is robust, and several factors con-
tribute to that split. First, biogeochemical models of soil carbon cycling rely on 
conceptual definitions of carbon pools (fast-cycling, slow-cycling, and passive) 
that are based on long laboratory incubations (Paul and Clark, 1996) rather than 
incubations under field conditions. This is necessary because of the long tim-
escale of SOC decomposition dynamics, though SOC turnover times derived 
using 14C isotope methods have been applied to gauge SOC turnover rate in situ 
(e.g., Gaudinski et al., 2000) and serve as a foundation for SOM model develop-
ment (e.g., Tonitto et al., 2014). Because models built using these data can predict 
changes in total soil carbon that match data from long-term experiments (LTEs), 
they can be argued to provide a sufficient empirical foundation for model struc-
tural development and parameterization. However, as explained above, the 
underlying mechanisms have not been clearly established. A second school of 
thought holds that until mechanistic knowledge and understanding advances, it 
will be challenging to form robust expectations about how long SOM will persist 
and about how that persistence will change in response to a wide variety of man-
agement decisions (Crow et al., 2007) and global change.

Second, experiments comparing SOM content among different land uses 
and management practices appear to yield clear results, but assumptions and 
knowledge gaps across most experiments leave potentially important processes 
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unmeasured. Eagle et al. (2012) list 11 agriculture management practices with 
“significant” research, 8 of which appear to increase soil carbon storage compared 
with fields managed without that practice. However, empirical knowledge about 
plant–soil interactions belowground lags behind the understanding of aboveg-
round processes, and sometimes even well-understood interactions are not 
always incorporated into models. For example, several studies indicate that plant 
roots and plant shoots do not decompose at the same rate and do not contribute 
equally to soil carbon storage (Puget and Drinkwater, 2001). Roots may add more 
carbon to soil than shoots, but we know much less about their growth and decom-
position (Freschet et al., 2013; Karlen and Cambardella, 1996; Merrill et al., 2002). 
In addition, roots can stimulate decomposition of native SOM, including deep 
SOM that otherwise likely would remain in situ for years or longer (Dijkstra and 
Cheng, 2007; Fontaine et al., 2007; Fu and Cheng, 2004; Zhang et al., 2013). Despite 
the complexity of rhizosphere dynamics, most research on soils has focused only 
on shallow horizons. The dearth of research below 20 to 30 cm in the soil profile 
means that biophysical processes and different types of tillage that are known to 
affect deeper parts of the soil profile are not considered in most analyses (Baker 
et al., 2007). Although models vary in their ability to represent processes such as 
root growth explicitly, they do not generally capture the type of nuanced result 
from field experiments discussed above. Similarly, biogeochemical models tend 
to exclude soils deeper than 1 m from the system boundary, so projections from 
models largely ignore gains or losses in deep soil. Improved mechanistic repre-
sentation of management effects on the surface to 1-m depth is the most relevant 
scale for improving modeled response to management of most grain cropping 
systems in the United States; however, in cropping systems such as perennial 
grasses a deep and complex rooting zone can influence C accumulation below 
1-m depth. Current efforts to create a community platform for quantitative assess-
ment of agricultural systems (e.g., The Agricultural Model Intercomparison and 
Improvement Project [AgMIP] or The Global Research Alliance on Agriculture 
and Greenhouse Gases) may improve our collective ability to systematically 
address shortcomings in empirical knowledge and model development.

Third, few data sets are available that show changes in soil C in response to 
agriculture management practices and that enable us to ascertain whether these 
changes resulted from decomposition or erosion (Van Oost et al., 2007). Where 
soil carbon stocks have been observed to decline over time, it is often uncertain 
whether the decline represents a transfer of C from soil to atmosphere or move-
ment of C across the landscape. If the latter, SOM may actually be deposited in 
streams or ponds, where low oxygen concentrations retard rather than accelerate 
decomposition. While the mechanism of OM loss is relatively unimportant from 
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the perspective of soil fertility on the field, which declines in either case, it is 
critical from the perspective of GHG emissions. While simulation models with a 
hydrologic development history have often been validated with respect to runoff 
and sediment yield (e.g., Wang et al., 2008b, 2009), erosion processes have often 
been ignored in models with a development history emphasizing soil C and N 
dynamics. The assumption that C losses all result from decomposition is a critical 
weakness in model projections.

Fourth, to establish empirical relationships between a change in practice and 
soil carbon storage, experiments usually need to run for many years before a 
response can be detected (Richter et al., 2007). The need for long-term data arises 
because the soil carbon pool is very large, which means that even if the rate of 
soil carbon storage increases significantly, the total amount of carbon in the soil 
will not change enough over 1 to 5 yr for the change to be captured with a fea-
sible number of samples (Paul et al., 1997). Consequently, detecting a change in 
soil carbon in response to a change in land management requires soil samples 
taken many years apart, ideally on fields where different management practices 
have been maintained following initially similar histories (Rasmussen et al., 1998; 
Richter et al., 2007). These data can come either from experiments that run for at 
least 15 to 20 yr (Paul et al., 1997) or from working farm fields that have been man-
aged differently but consistently for many years and where we have good reason 
to believe the soils were similar at the beginning (Reganold et al., 1993). We iden-
tified 22 studies focused on agricultural ecosystems that have been running for 
at least 15 yr in the United States and Canada and that measured soil carbon. The 
longest-running of these include the Morrow Plots in Illinois, established in 1876, 
the Sanborn Plots in Missouri, begun in 1888, the Bretton Plots in Canada, initi-
ated in 1929, and the Pendleton Plots in Oregon, started in 1931.

Despite their scientific importance, LTEs in the United States and Canada 
have included only a few of the many management systems a grower might con-
sider, and they occur in a relatively small subset of the soil, climate, and landscape 
conditions where agriculture is practiced. For example, only three LTEs—two in 
the Mid-Atlantic and one in the Midwest—measured soil carbon in organic vs. 
conventional systems. And although LTEs in the United States and Canada cap-
ture large variations in soils and climates, there is a major gap in data showing 
how soil carbon responds to management change across the significant variation 
in soil and climate within regions. Similarly, LTEs have tended to focus on com-
monly used practices—a valuable approach to support choices among familiar 
options but much less useful for identifying practices with unrecognized prom-
ise (Stockmann et al., 2013).
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One way to validate agroecosystems models without establishing numerous 
LTEs—a costly proposition that would not yield the desired answers for many 
years—might be to periodically resample soil carbon from marked locations at 
a wide variety of working farms (Spencer et al., 2011). As long as biophysical 
characteristics are known, and management history has been well-documented, 
data from farms that vary broadly in crop rotations, fertilizer management, 
pesticide use (or lack thereof), soils, and climate would enable the research 
community to calibrate and validate models that project the response of soil 
carbon storage to changes in agriculture management. The National Resources 
Inventory (NRI) is a statistical survey of land use and natural resource conditions 
and trends on non-federal lands in the United States that includes about 200,000 
sample points on cultivated cropland. Existing resources already support periodic 
visits to these plots for sampling purposes, and the data collection for a subset of 
these plots could readily incorporate soil carbon measurements.

Reducing Agricultural GHG Emissions through Management  
of Agricultural Systems
Achieving sustainable, low GHG emitting agricultural landscapes will ultimately 
include more systemic management changes, such as diversified cropping sys-
tems and a more integrated distribution of animal and cropping systems to 
allow for efficient usage of manure. Current land management GHG mitiga-
tion strategies often focus on a single practice change to reduce GHG emissions. 
For example, the CAR nitrogen management protocol enables growers to earn 
carbon credits for reducing N2O flux by reducing N application rate. The struc-
ture of C market policy does not promote integrative management approaches, 
because verifying outcomes is more challenging for these systems. Simulation 
and empirical modeling tools are most easily applied to quantify how changes in 
conventional management practices (i.e., tillage, fertilizer method, fertilizer type) 
lead to net GHG reductions. The recently developed Manure-DNDC model (Li et 
al., 2012) is one tool for studying more integrated landscapes. Improved capacity 
for life-cycle analysis (LCA) of complex agricultural systems is needed to accu-
rately quantify net GHG emissions from more diversified landscapes.

There are fundamental inconsistencies between current GHG policy norms 
and an ecosystem management or LCA approach. Standard GHG accounting 
methodologies award CO2 reductions due to reduced fertilizer production to the 
fertilizer factory (Climate Action Reserve, 2013). While factory management can 
reduce CO2 emissions as a result of improved efficiency (lower CO2 per unit fer-
tilizer), it is the decisions and actions of the land manager that result in lower 
fertilizer per unit area. In rainfed grain cropping systems of the US Corn Belt, 
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fertilizer accounts for over 30% of fossil fuel energy inputs (Kim et al., 2009). 
Therefore, agricultural land managers can reduce CO2 emissions by increasing 
N fixation or improving nutrient retention through rotation diversification, or 
by applying manure as an N source, all of which reduce the need for fertilizer N 
application. Under current market approaches to GHG accounting, practices that 
reduce CO2 emissions by reducing fertilizer use cannot be incentivized.

In the US context, policy focusing on N management is relevant for reduc-
ing our GHG emissions from agriculture. The USEPA (2012) estimates direct N2O 
emissions are 215.9 Tg CO2-eq yr-1 (3.1% of all US GHG emissions), while total GHG 
emissions from agriculture are about 6% of total US emissions (USDA, 2011). How-
ever, in the global context, policies and economic structures that promote building 
SOC have a greater potential to reduce net GHG emissions while promoting the 
maintenance of soil fertility. Smith et al. (2008b) estimate the GHG mitigation poten-
tial of global agriculture as 5500 to 6000 Tg CO2-eq yr-1 by 2030, mostly resulting 
equally from cropland and grazing land management that promotes SOC accumu-
lation and from the restoration of cultivated organic soils, with each sequestering 
on the order of 1300 to 1350 Tg CO2-eq yr-1. Restoration of degraded lands is also 
an important SOC accumulation strategy comprising about half of the mitigation 
potential of cropland and grazing land management scenarios (?650 Tg CO2-eq 
yr-1), while improved rice and livestock management can reduce CH4 flux by ?250 
to 300 Tg CO2-eq yr-1. In contrast, improved cropland management is only pre-
dicted to decrease N2O flux by ?200 Tg CO2-eq yr-1. However, a reduction in N2O 
flux is realized each year best management practices are implemented in contrast to 
SOC accumulation in response to management, which ultimately achieves a steady 
state, after which further SOC accumulation is negligible.

Eagle and Olander (2012) reviewed the GHG mitigation potential of 42 agri-
cultural management strategies and determined sufficient data exist to promote 
20 strategies for their GHG reduction potential. Significant accumulation of 
SOC across the agricultural landscape requires management changes to rota-
tion, tillage, and organic amendments in cropland, and improved grazing land 
management. However, with SOC accumulation, future changes in management 
could again reduce SOC stocks, so the issue of permanence must be addressed 
carefully. While small changes to management practices are the easiest policies 
to initiate, management that promotes building SOC will require different eco-
nomic incentive structures.

Quantifying GHG flux from Land Use Change and Forestry
Similar to agricultural systems, in forest ecosystems there are two general mod-
eling approaches used to estimate carbon cycling: (i) simulations of forest stand 
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growth based on climatic and soil conditions and (ii) empirical estimates of stand 
growth based on repeated measurements of forest carbon stocks. Each approach 
can be used for plantations and naturally regenerated forests. In this section, we 
focus on how carbon cycling is modeled in the United States for (i) national-scale 
reporting under the UNFCCC and (ii) project-scale accounting using tools devel-
oped by CAR and RGGI. In these cases, the approaches are primarily empirical 
and are based on periodic measurements of the key carbon pools, either directly 
in the parcel of interest for the compliance programs or based on systematic for-
est surveys from similar forests within the region for voluntary programs and 
county, state, and national estimates of forest carbon fluxes. Therefore, we focus 
on empirical models and tools that are based on periodic measurements of for-
est carbon stocks. Because environmental markets use multiple GHG accounting 
tools, we briefly discuss how land-based empirical carbon flux estimates compare 
with those from ecosystem models and atmospheric inverse modeling.

Carbon accumulates in forest ecosystems because of the balance between 
fixation by photosynthesis and emission from respiration. The sum of these pro-
cesses is termed net ecosystem productivity (NEP). Both fixation and respiration 
are strongly affected by forest management. Forested ecosystems store large quan-
tities of carbon in living and dead biomass and soil, and changes in these carbon 
pools are a significant part of the global carbon budget. Globally, forest ecosys-
tems are major net sinks for CO2 (Pan et al., 2011), and in the US net CO2 uptake by 
forests is equivalent to approximately 16% of total CO2 emissions from fossil fuel 
combustion (USEPA, 2013). In many forests, the largest C pools are aboveground 
live biomass and mineral soils, with lesser amounts in belowground biomass and 
surface detritus (forest floor). But some of these pools, such as mineral soils, usu-
ally change slowly, while vegetation and forest floor pools can change quickly 
over short timescales in response to natural disturbance or forest management. 
In the United States, most of the change in forest carbon stocks (carbon sink) is 
in the aboveground biomass (49%) with an additional 27% in wood products in 
landfills and the remainder in down dead wood, wood products in use, and for-
est floor and soil (Woodbury et al., 2007b). However, in some forest ecosystems 
under some types of management or natural disturbance situations, changes in 
other pools such as forest floor and coarse woody debris can be very important.

The aboveground biomass of living trees is the most important carbon 
sink. Tree diameter and height can be readily measured using well-established 
protocols, and allometric equations then used to estimate aboveground forest 
carbon stocks. Modeling efforts have focused primarily on forest stands that do 
not already have measurements and for projecting the effects of changes due to 
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disturbances such as fire and insect pests and management practices such as dif-
ferent types of harvest and pre-commercial thinning.

National-, State-, and County-Scale Estimates  
Based on Forest Inventory Measurements

Flux of CO2 from Living Vegetation
At national, regional, state, and county scales in the United States, the Forest Inven-
tory and Analysis (FIA) program of the USDA Forest Service provides data from 
many thousands of permanent sampling plots on both private and public lands, 
and these data are available online (http://fia.fs.fed.us, accessed 15 Sept. 2015). 
Historically, the main purpose of the FIA program has been to estimate timber 
supply. However, the measurements taken to estimate timber supply include for-
est area and the species, diameter, and height of individual trees. These data can 
be used to estimate the amount of wood in entire trees using allometric equations.

To estimate the change in carbon over time, or net carbon flux based on inven-
tory data, a “stock change approach” is used. In this approach, carbon stocks 
are estimated at two or more times, and net annual carbon flux is estimated by 
subtracting one stock estimate from the other and dividing by the number of 
years between stock estimates. These FIA data have been used for decades to esti-
mate forest carbon stocks and stock changes. Over time the data have generally 
become available at finer spatial and temporal scales. Recently, additional mea-
surements of carbon pools beyond trees, including down dead wood, forest floor, 
and soil, have been included (reviewed by Heath, 2013). Forest inventory data are 
a useful basis for estimating carbon stocks and net fluxes for the sampled area. 
However, forest carbon pools such as coarse woody debris, soils, and understory 
have been difficult to estimate on the basis of data collected in inventories until 
very recently, so there is a need to augment inventory data with data from inten-
sive research sites and models. Using FIA data supplemented with models for 
carbon pools other than trees, carbon stocks, and stock changes throughout the 
United States have been estimated for decades, for example, as part of the annual 
greenhouse gas inventory required under the UNFCCC (e.g., Woodbury et al., 
2007a; USEPA, 2013, as reviewed by Heath, 2013). Over time, these estimates have 
expanded to cover non-forest land to represent effects of afforestation and defor-
estation, including changes in soil and forest floor carbon stocks, as discussed 
further in subsequent sections (Woodbury et al., 2007b; Heath, 2013).

http://fia.fs.fed.us
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Tools Based on Forest Inventory Data
Publically available tools that use FIA data to calculate forest carbon fluxes 
include the Carbon Online Estimator (COLE) (Proctor et al., 2005; Van Deusen 
and Heath, 2010) and the Carbon Calculation Tool (CCT) (Smith et al., 2007, 2010). 
The COLE was developed to allow easy estimation of forest carbon stocks for a 
user-specified region of interest (Proctor et al., 2005). During the US voluntary 
carbon program known as “1605b,” the Forest Service adopted COLE as the offi-
cial web tool for the forest portion of that program (Heath, 2013). Users can select 
specific forest regions of interest and generate a report that estimates the carbon 
accumulated in each forest carbon pool over time (Van Deusen and Heath, 2010). 
The CCT is a program that allows a user to download the latest FIA data and pro-
duce estimates at the state scale matching those in the national GHG inventories, 
and it can be used to develop estimates of state carbon fluxes since 1990 (Smith 
et al., 2010).

Flux of CO2 from Coarse Woody Debris
In many forests, large quantities of C accumulate in the form of coarse woody 
debris also called “down dead wood.” Unfortunately, the size of this pool is not 
closely related to aboveground biomass or forest age, so it is difficult to estimate 
coarse woody debris on the basis of frequently measured aboveground stand 
characteristics (Woodall et al., 2008). At state and national scales, estimates have 
been made on the basis of predictions of residues produced during harvest-
ing. These modeled estimates were recently compared with those based on field 
measurements. The total stock estimate for the United States differed by only 
9% between modeled and measured estimates, with the models underestimating 
total coarse woody debris in stands with little coarse woody debris and overes-
timating carbon in stands with high coarse woody debris (Domke et al., 2013). 
There were also regional differences in model accuracy, with greater accuracy 
in the Southeast and lower accuracy in the North Central and Northeast. On a 
regional basis, these discrepancies caused significant differences in coarse woody 
debris carbon stocks by region and ownership. On the basis of these results the 
authors suggest that the United States conduct systematic field sampling for the 
purpose of national inventories.

Flux of CO2 from Forest Floor, Soil, and Roots
The forest floor is defined broadly as the organic layer above the mineral soil 
including woody debris smaller than 7.5 cm in diameter. The forest floor contains 
fine woody debris, a litter layer (designated Oi and Oe), and humus (Oa). In most 
forests in the conterminous United States, these layers generally store smaller 



Quantifying Greenhouse Gas Emissions for Policy Development and Verification 265

amounts of C than do mineral soils, but they can change much more rapidly fol-
lowing harvest or fire, highlighting their importance when assessing effects of 
management. Changes in forest floor carbon for broad forest types and large 
regions of the United States have been modeled on the basis of available research 
and inventory data (Smith and Heath, 2002), and these models have been used 
to estimate national carbon stock changes for UNFCCC reporting. Root biomass 
is extremely challenging to measure directly, but it is usually closely correlated 
with aboveground biomass (typically 0.26 of aboveground biomass; Cairns et al., 
1997), and thus it can be modeled on the basis of measurements made in forest 
inventories. Changes in forest soil carbon are discussed in the subsequent section 
on land use change.

Land Use Change—Deforestation and Afforestation
When forest regrows immediately following a natural or anthropogenic distur-
bance, there may not be large, long-term (multi-decadal) changes in forest floor 
and soil carbon stocks, unless the soil surface is physically disturbed, for exam-
ple, is burned or plowed. However, if there is a change in land use from forest 
to plowed agriculture, there can be large and long-term decreases in these car-
bon stocks. In tropical regions, such deforestation to agriculture causes large 
emissions of CO2 (Ramankutty et al., 2007). In the United States, afforestation on 
abandoned agricultural land has acted as a major C sink, especially in the North-
east. This is supported by survey and experimental data for forest floor and soil 
and an empirical model (Woodbury et al., 2007a) as well as increased tree carbon 
stocks based on FIA data supplemented with models (Woodbury et al., 2007b). 
Effects of land use change have also been estimated using ecosystem models 
rather than empirical survey data (e.g., Houghton and Hackler, 2000; Houghton 
et al., 2000; Pielke et al., 2002).

It is important to note that carbon in forest floor litter and organic hori-
zons is lost within a few years after deforestation to plowed agriculture, but is 
gained only over many decades after afforestation (Woodbury et al., 2007a). For 
this reason, at regional and national scales it is important to model simultaneous 
afforestation and deforestation on the basis of gross land use changes, not just net 
land use changes. If only net land use change is modeled, the “lag” effect of affor-
estation can cause a large bias in the estimates (Woodbury et al., 2007a).

A comparison of tools for estimating the effect of land use change on carbon 
stocks demonstrates that alternative modeling approaches, which apply different 
types of input data, result in model outcomes that differ even at the national scale. 
Estimates based on FIA data supplemented with models (land-based estimates) 
can be compared with those from ecosystem models. For example in a study of 
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US forest carbon stocks, Hurtt et al. (2002) estimate 330 Tg of net change in soil, 
forest floor, and woody debris, which is fivefold greater than a land-based esti-
mate (Woodbury et al., 2007b). Despite these differences, changes in aboveground 
(tree) carbon still dominate the total carbon stock change from land use change, 
due to the large stocks in temperate forests and relatively rapid changes com-
pared with forest floor and soil carbon after afforestation (Woodbury et al., 2007b).

Flux of CO2 and CH4 from Wood Products
Up to now we have focused on changes in carbon stocks within forests. However, 
after harvest, wood products are usually not instantly decomposed or combusted; 
instead, wood products may be stored for decades or centuries when incorpo-
rated into buildings or other long-lived structures. Eventually, wood products 
are combusted or decayed to produce CO2 or CH4 (see methane discussion below). 
When wood products are disposed of in landfills, the carbon may be released 
many years or decades later, or may be stored almost permanently in the land-
fill. “Book-keeping” type accounting models have been used for many years to 
estimate the half-life of various types of wood products and their rate of decay 
after different types of disposal, including combustion with or without energy 
recovery (e.g., Skog and Nicholson, 1998; Skog et al., 2004). These approaches have 
been used for national GHG inventory reporting under the UNFCCC (e.g., USEPA, 
2013). In landfills, because of intentionally anaerobic conditions, both CO2 and 
CH4 may be produced from wood products and other wastes (USEPA, 2013). 
Because CH4 has such a high global warming potential (circa 23-fold higher than 
CO2), assumptions about CH4 versus CO2 emission are very important. Surpris-
ingly, landfills are among the fastest growing carbon pools in the United States, 
where wood products such as paper and construction waste break down only 
very slowly (Miner and Perez-Garcia, 2007; Skog, 2008). Emissions from landfills 
are modeled using a book-keeping approach as well as ongoing surveys of waste 
management practices and of different categories of solid waste, and on measured 
emissions of CO2 and CH4 from experiments and field studies (USEPA, 2013). A 
certain proportion of carbon is assumed to be stored indefinitely in landfills. The 
remainder is assumed to decay over time according to first-order kinetics.

Forest Stand and Project-Scale Estimates
At the scale of individual forest stands or carbon offset projects, there are limita-
tions to using FIA data and models based on them. First, FIA data are intended to 
measure forest attributes over wide areas, especially county and larger scales, so 
they may not represent a small forest parcel. Second, as mentioned above, infor-
mation on carbon stocks in coarse woody debris, soils, and understory often must 
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be modeled using data from research plots that may not represent the actual site 
conditions. Third, depending on the location, the sampling interval may be many 
years or longer and thus may not always represent current conditions. For these 
reasons, while data from FIA have been used for general planning purposes for 
estimating the potential value of carbon offsets, they are not generally appropri-
ate for specific offset projects. Instead, such projects generally required repeated 
sampling of the actual parcel of forest being used as an offset. For both voluntary 
programs such as the 1605b, and compliance markets such as the former Chicago 
Climate Exchange (CCX) and the current CAR and RGGI, verifiable estimates of 
carbon stock changes are required (as reviewed by Fahey et al., 2010).

To obtain carbon credits under compliance programs such as CAR and RGGI, 
applicants must submit a detailed application that explains how C sequestration 
will be quantified, monitored, and verified. The project area is divided into rela-
tively homogeneous units on the basis of factors such as forest type, stand age, 
slope, etc. For each unit, C pools must be sampled to achieve specific statisti-
cal confidence, such as >95% confidence that results are within 10% of the true 
value. Carbon pools include aboveground biomass, belowground biomass, coarse 
woody debris, soil, and harvested wood products. As discussed in subsequent 
sections, measuring changes in pools other than aboveground trees can be chal-
lenging, and may be very costly to achieve the required precision, but models 
may be used in some cases to supplement these measurements. Measurements 
must be repeated periodically, but may be estimated annually using models. 
Such precision of measurement for multiple pools and requirements for frequent 
resampling may increase transactions costs so much as to discourage participa-
tion in compliance markets.

Climate Action Reserve Forest Management Protocol
The CAR forest management protocol allows credits for CO2 emission reduc-
tions due to improved management associated with US projects supporting 
reforestation (forest regrowth on previously forested lands) and afforestation 
(establishment of forests in areas previously under non-forest landcover). Onsite 
forest carbon pools are broadly grouped into living biomass, dead biomass, and 
soils. Living biomass includes biomass in live trees and shrubs and herbaceous 
understory (live non-tree biomass). Onsite dead biomass includes biomass in 
dead trees, lying dead wood, and litter. Offsite dead biomass includes harvested 
wood products. A combination of modeling and measurements is used, similar 
to the forest inventory methods reviewed above, but with forest sampling data 
collected from the parcel. Projects must be verified by approved third-party veri-
fiers and by the CAR program. A report must be completed each year for 100 yr, 
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although measurements do not need to be made annually. All projects must use 
the appropriate biomass equations for the project location. The required biomass 
equations are found on the Reserve’s Forest Project Protocol webpage. The cal-
culation of CO2e for each inventoried tree must be conducted in a manner that 
provides project estimates for several components, as follows. Whole tree bio-
mass (roots, stump, bark, bole, top, and branches) is used to provide project totals 
and estimates of emissions associated with harvest activities. Bole biomass is the 
portion of harvested trees delivered to facilities for processing into wood prod-
ucts. The aboveground portion (stump, bark, bole, top, and branches) is used to 
compare project data with common practice statistics for improved forest man-
agement projects. Further information is available in publications (Climate Action 
Reserve, 2012b, 2012c) provided on the project website, which should be reviewed 
for updates (http://www.climateactionreserve.org/how/protocols/adopted/forest/
current/, accessed 15 Sept. 2105).

Regional Greenhouse Gas Initiative Forest Management Protocol
The RGGI protocol allows credits for CO2 emission reductions resulting from 
reforestation and afforestation projects in RGGI member states in the northeastern 
United States. The focus is on afforestation with native species to promote resto-
ration and sustainable management of native forests on lands that have not been 
forest for at least 10 yr before project initiation. Emissions reductions or carbon 
sequestration must be real, additional, verifiable, enforceable, and permanent. To 
ensure permanency a relevant state agency must approve a legally binding “per-
manent conservation easement.” This easement must require that all land within 
the offset project boundary be maintained in a forested state in perpetuity, and 
the carbon density within the project be maintained at or above that achieved 
at the end of the CO2 offset crediting period. The net carbon sequestered during 
the reporting period is also discounted by 10% to account for potential reversals 
of carbon sequestration, unless the project sponsor retains long-term insurance, 
approved by the relevant state agency where the offset project is located. Such 
insurance must guarantee replacement of any lost sequestered carbon for which 
CO2 offset allowances were awarded. Similar to the CAR protocol, it uses a com-
bination of modeling and measurements including forest sampling data collected 
from the parcel.

When direct sampling is not possible or cost-effective, empirical models are 
used to project the results of direct field sampling through simulated forest man-
agement activity. Models are also used to assist in updating inventory plots. By 
modeling tree growth in plots, these plots can represent a reporting year subse-

http://www.climateactionreserve.org/how/protocols/adopted/forest/current/
http://www.climateactionreserve.org/how/protocols/adopted/forest/current/
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quent to the actual sampling date. As of February 2013, RGGI had approved the 
following growth models for deriving these estimates:

·· CACTOS: California Conifer Timber Output Simulator,
·· CRYPTOS: Cooperative Redwood Yield Project Timber Output Simulator,
·· FVS: Forest Vegetation Simulator,
·· SPS: Stand Projection System,
·· FPS: Forest Projection System,
·· FREIGHTS: Forest Resource Inventory, Growth, and Harvest Tracking 

System,
·· FORESEE: FORESt Ecosystems in a Changing Environment.

Additional models are allowed following approval of a state forestry authority 
and meeting quality criteria to assure that the model will perform adequately for 
the forest type and location.

All projects must be verified by approved third-party verifiers. Further 
information is available in publications (Regional Greenhouse Gas Initiative, 
2013a, 2013b) provided on the project website, which should be reviewed for any 
updates (http://www.rggi.org, accessed 15 Sept. 2105).

Forest Vegetation Simulator
To project future forest stand growth, carbon sequestration, and the effects of 
silvicultural treatments, tools such as the Forest Vegetation Simulator (FVS) can 
be used (Crookston and Dixon, 2005; www.fs.fed.us/fmsc/fvs). The FVS con-
sists of a suite of growth and yield models that have been calibrated using FIA 
and other data to forests across the United States. The FVS has been approved 
for use by CAR and RGGI in conjunction with periodic sampling to meet their 
criteria for providing verifiable estimates of C sequestration for forestry offset 
projects. We discuss this particular tool because it has been used for decades to 
model forest stand growth and the effect of silvicultural treatments for many 
forest types throughout the United States on the basis of FIA data. The FVS is 
an individual‐tree, distance‐independent growth and yield model. More recently, 
the FVS‐CarbCalc tool has been added to simulate stand level carbon stocks and 
changes in forests and in harvested wood products using the approaches dis-
cussed above. The methods are consistent with the US 1605b program (USDOE, 
2007) calculating and reporting guidelines as well as the Intergovernmen-
tal Panel on Climate Change (2003). The following carbon pools are modeled: 
aboveground live biomass, aboveground dead biomass, belowground carbon, lit-
ter and duff (forest floor) biomass, and harvested merchantable biomass. The FVS 
uses FIA data or project data to describe initial stand conditions. Further infor-

http://www.rggi.org
www.fs.fed.us/fmsc/fvs
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mation is available at the FVS website (http://www.fs.fed.us/fmsc/fvs/index.shtml, 
accessed 15 Sept. 2105).

The FVS is a useful tool, but as with any modeling tool, users must be aware 
of the strengths and limitations of the model and follow guidance to obtain useful 
results (Hoover and Rebain, 2011). To investigate the utility of the FVS model for 
carbon offset projects, data from three long-term forest sites were compared with 
FVS predictions of carbon stock changes (Fahey et al., 2010). For northern hard-
wood forests in New Hampshire and Allegheny hardwoods in New York State, 
aboveground tree biomass was predicted accurately over 37-yr and 50-yr mea-
surement intervals, respectively. For a spruce–fir–birch forest in New Hampshire, 
projections were accurate from 1965 to 1987, but subsequent pollution-induced 
decline of red spruce (Picea rubens) resulted in a substantial overprediction by the 
model. The response to whole-tree harvest in New Hampshire was also modeled, 
and FVS greatly underestimated subsequent biomass accumulation, because it 
did not predict the occurrence of pin cherry (Prunus pensylvanica), a fast-grow-
ing tree species that can dominate initial biomass accumulation in this region 
(Fahey et al., 1998). These results suggest that no model simulation can represent 
events that are not anticipated, such as the decline of a dominant species. But 
these results also show that even commonly used models may not be correctly 
parameterized, in this example failing to include a fast-growing tree species.

Comparing and Evaluating Different Approaches  
to Modeling Forest Carbon
Estimates of net change in forest carbon stocks often seem to converge when scal-
ing up to regional and national scales. However, this convergence in the overall net 
change is based on conflicting estimates for particular pools and processes. For 
example, forest carbon flux estimates of ecosystem models driven by satellite mea-
surements were similar to those derived from land-based surveys supplemented 
with models, with the exception of the Terrestrial Ecosystem Model, which was 
only half that of other estimates (Woodbury et al., 2007b). However, estimates of 
specific carbon pools were extremely variable. For example, the overall estimate 
of net US forest C change for the ecosystem model of Hurtt et al. (2002) is 330 Tg 
yr-1, which is more than double a land-based estimate of 163 Tg yr-1 (Woodbury 
et al., 2007b). On the basis of an ecosystem growth model, Hurtt et al. (2002) esti-
mate changes in tree carbon stocks similar to the land-based estimate, but they 
estimate an additional very large change of 100 Tg yr-1 due to woody encroach-
ment on non-forest land in the arid Southwest. Furthermore, their estimate of net 
change in soil, forest floor, and woody debris is fivefold greater than the land-
based estimate. As in other ecosystem models, wood products are not included 

http://www.fs.fed.us/fmsc/fvs/index.shtml
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(Hurtt et al., 2002). At the national, continental, and global scale, improved esti-
mates of forest carbon flux will depend on reconciling estimates derived from 
different methods such as atmospheric inversion modeling, inventory-based 
approaches, ecosystem modeling, and land use change modeling.

During recent years, increased spatial and temporal resolution of forest 
inventory data and increased availability of measurements of additional pools 
have reduced uncertainties for some carbon pools including coarse woody debris 
and forest floor (Domke et al., 2013; Woodall et al., 2012). However, there will still 
be uncertainty in belowground pools that are impractical to measure directly 
and also because of changes that are not represented in models. For example, the 
spread of exotic earthworms can greatly reduce the thickness of organic layers, 
increase the bulk density of soils, and incorporate litter and humus materials into 
deeper horizons of the soil profile. All of these earthworm impacts could alter 
carbon stocks in the forest floor and mineral soil, and if this change is not mea-
sured or included in a model, it could result in substantial errors in carbon stock 
changes (Frelich et al., 2006).

At the project or forest stand level, estimates may differ widely depending on 
the approach and assumptions that are used. The comparison of changes in forest 
carbon stocks over decades for three sites in the Northeast demonstrated that the 
FVS modeling system could sometimes predict stock changes well, but in other 
cases could not because of decline of major species or lack of inclusion of fast-
growing species after harvest (Fahey et al., 2010). Discrepancies can occur even 
when models are used by research scientists familiar with the ecosystems and 
models themselves, implying that greater deviations can be expected when these 
models are employed by less experienced individuals or when biases toward eco-
nomically desirable outcomes might influence modeling procedures. Of course, 
model simulations cannot represent events that are not anticipated, such as the 
decline of a dominant species or effects of exotic earthworm invasion. For this rea-
son, compliance programs require third-party verification and periodic sampling 
of the site. Additionally, none of the models discussed herein include non-GHG 
effects, such as changes in albedo that might promote local and regional warm-
ing (Whitehead, 2011).

For carbon credit markets such as CAR and RGGI, the requirements for 
high-precision measurement of multiple pools, even those such as soil car-
bon that change very slowly, and requirements for frequent resampling may 
increase transactions costs so much as to discourage participation in such mar-
kets. In addition, requirements for permanent legal conservation easements and 
maintaining the land in forest in perpetuity after the project period may also dis-
courage participation.
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Model and Policy Synthesis
Advantages and Limitations of Mitigation Options
To assess the potential for agriculture and forestry to mitigate climate change, 
scientists focused first on carbon storage in trees and soil (Campbell et al., 1991; 
Rasmussen and Collins, 1991; Davidson and Ackerman 1993; Donigian et al., 1994; 
Hamburg, 2000; Intergovernmental Panel on Climate Change, 2000a,b; Lewand-
rowski et al., 2004). Carbon storage is a particularly attractive approach because 
it affords the possibility of reducing current atmospheric CO2 stocks through car-
bon fixation, whereas strategies available to most sectors of the economy focus 
on lowering GHG emissions, but do not remove existing atmospheric CO2. In 
addition, building soil carbon, growing trees, and conserving forests confer 
numerous benefits to agriculture and society (Magdoff and Van Es, 2010). At first 
glance, it is easy to imagine strong support for tools that incentivize growers to 
build soil carbon or that encourage forest managers and governments to reduce 
rates of deforestation in biologically diverse ecosystems.

Biomass Carbon Storage
Policy initiatives’ early focus on carbon storage in forest biomass (e.g., REDD) 
reflects the availability of reliable tools for estimating aboveground biomass, 
and the certainty that tree growth transfers carbon out of the atmosphere into 
organic matter. Allometric equations have long been used to estimate poten-
tial timber productivity (i.e., harvestable tree volume) for specific species on the 
basis of measurable tree attributes such as diameter at breast height and total tree 
height. To develop these relationships, researchers collected detailed destructive 
measurements of individual trees. These equations perform well for species and 
regions for which they were developed. The challenge is extrapolating the lim-
ited set of measurements to all species and regions of interest. Furthermore, data 
are generally scarce for tropical forests. Though allometric equations generally 
work well, there can be differences in predicted biomass from different equa-
tions (Ahmed et al., 2013). This variation in estimates among equations motivated 
efforts to develop a standardized set of equations for the conterminous United 
States (Jenkins et al., 2003). While variation in estimates of biomass using differ-
ent allometric equations for individual trees can be substantial, a recent study 
found only modest errors in forest C stocks at the hectare scale of 1 to 5 Mg for 
two well-studied sites in Massachusetts and Maine (Ahmed et al., 2013).

Forest carbon storage as an approach to climate change mitigation faces a 
number of challenges. Chief among them has been concern about leakage, i.e., the 
circumstance under which conservation of a forest in one location simply shifts 
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demand for forest products and associated tree harvest to a different location 
(Murray et al., 2002). Others include the very long time commitments (typically 
100 yr) required of landowners to ensure that climate benefits accrue and persist.

Soil Carbon Storage
Soil carbon storage as an approach to mitigate climate change also faces several 
challenges. First, in most cases, soil carbon storage is reversible. Just as soil car-
bon can accumulate in response to management changes, it can decompose in the 
absence of continued management or in response to unexpected temperature or 
precipitation patterns or fire.

Second, because plowing previously uncultivated land initiates a period of 
rapid decomposition of SOM, some changes in management during that period 
might only slow the rate of carbon loss rather than result in soil carbon gains 
(Rasmussen and Collins, 1991). Slowing the rate of soil carbon decomposition 
confers a climate benefit relative to the business-as-usual case, but soil is still 
releasing more carbon to the atmosphere than is being stored. Stabilizing the 
climate will require near-zero emissions (Matthews and Caldeira, 2008). Therefore, 
using practices that reduce the C loss rate takes us in the right direction, but the 
remaining emissions ultimately need to be mitigated.

Third, there are limits to the rate and amount of soil carbon storage that 
a management change can yield. Long-term experiments have revealed that 
inflows and outflows of carbon in agricultural fields reach equilibrium, often 
within a few decades (Jenkinson and Rayner, 1977; Paustian et al., 1997). The 
practical consequence is that changing management to increase carbon inputs 
(or decrease carbon losses) will lead the amount of soil carbon to increase for 
a period of time and then to stabilize at a new level. After that time, we expect 
no additional climate benefit absent additional management changes that further 
increase carbon inputs.

Fourth, estimates of soil carbon stocks and conclusions about the response 
of SOC to management changes depend on the depth of sampling (Baker et al., 
2007; Kravchenko and Robertson, 2011). Most studies of soil carbon have been 
restricted to the top 20 cm of the soil profile, where SOC content tends to be high-
est. However, carbon below 20 cm constitutes a very large proportion of total C in 
the profile and observations suggest that management changes influence carbon 
down to 1 m. For example, adding deep-rooted perennials to a rotation would be 
expected to increase SOC to at least 1-m depth (Kell, 2011), and shallow soil sam-
ples would fail to capture this change.

The case of reduced tillage illustrates the challenges that field scientists and 
modelers face as a result of questions about sampling depth. Hundreds of studies 
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support the hypothesis that no-till management leads to higher soil carbon con-
tent, but very few of these studies sampled below 20 cm. However, in fields where 
investigators sampled to greater depths, SOC content tended to be greater in 
conventionally plowed fields compared with fields managed with conservation 
tillage (Baker et al., 2007, and references therein). These results suggest that SOC 
accumulation at depth is greater in conventionally plowed fields than in fields 
managed with conservation tillage, although the results are not statistically dif-
ferent in part because studies that sample deeply are relatively rare (Baker et al., 
2007). One school of thought maintains that because agricultural management 
influences the soil profile at depth, comparisons among management practices 
require investigations of the entire profile (Baker et al., 2007). A finding of “no 
difference” in SOC from 0 to 100 cm between tillage practices precludes assigning 
climate benefits to conservation tillage. In contrast, Kravchenko and Robertson 
(2011) argue that no-till practices increase SOC in the top 20 of cm of the profile 
and not in the 20 to 100 cm segment. The absence of a detectable difference in the 
lower part of the profile results from the high variability among locations deeper 
in the profile. An unrealistically large number of samples would be needed to 
detect a difference given the known variability. According to this view, compar-
ing the entire profile (0–100 cm) between tillage practices masks the clear signal 
from the upper part of the profile with the high variability in the lower part of the 
profile, and the correct conclusion would be that conservation tillage increases 
SOC because that is the finding in the part of the profile where a power analysis 
shows that we can detect a difference with the number of available samples.

Tillage practices vary across regions and cropping system, raising ques-
tions about whether the necessary sampling depth also varies systematically 
with geography. In a national-scale review of tillage effect on SOC in Canada, 
VandenBygaart et al. (2003, 2008, 2011) conclude sampling below 30 cm is often 
necessary to detect SOC change in eastern Canada, because of the extensive use 
of deeper moldboard plowing. Even for fields with shallower tillage manage-
ment in western Canada, the authors found that increasing sampling from 15 
to 30 cm revealed SOC differences across tilled and no-till fields. These results 
suggest that in many agroecosystems the sampling depth of currently available 
measurements comparing SOC accumulation between till and no-till systems is 
insufficient to accurately describe the effects of tillage in ecosystem models.

Mechanistic understanding about how tillage influences SOC has also 
played into the debate about sampling depth and whether meta-analyses com-
prised mainly of studies that used shallow samples provide robust findings that 
can be used to address climate change mitigation. The finding that no-till man-
agement increases soil C in shallow horizons is consistent with the idea that 
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breaking up soil aggregates exposes more surface area to microbial attack. How-
ever, considering a more complete picture of how tillage influences the plant–soil 
ecosystem yields a less conclusive picture. For example, compared with conven-
tional tillage, conservation tillage leaves more plant residue on the surface after 
harvest, and the insulated soils stay cooler longer into the spring. Because soil 
temperature controls root growth rate, fields managed with conservation tillage 
may have slower root growth and therefore add less carbon to the soil (Baker et 
al., 2007). On the other hand, conservation tillage increases the amount of plant 
residue on the soil surface, which can increase soil moisture retention and hence 
root growth, especially in drier soils. Because the relationship between tillage 
practices and SOC sequestration is mediated by a variety of factors such as these, 
the net influence of changing tillage practice on SOC is not intuitively obvious.

Despite these limitations, soil carbon storage has been broadly studied as 
an option in cap-and-trade policies, as occurred in HR2454, the American Clean 
Energy and Security Act of 2009. Soil carbon storage can, on the basis of some key 
assumptions, be accomplished fairly cheaply—US$27 or less per ton CO2e—rela-
tive to other strategies for climate change mitigation (Creyts et al., 2007). There is 
a strong need to identify the most appropriate policy tools to take advantage of 
soil carbon storage, in light of these limitations and the large proportion of the 
landscape occupied by farms and forests.

Questions about how conservation tillage influences SOC sequestration illu-
minate the interplay of data availability, model projections, and policy. Although 
hundreds of studies support the relationship between no-till management and 
increased SOC, very few of these studies sampled below 20 cm. The mechanistic 
relationship between tillage and SOC is more complex than it might at first appear, 
and both tillage practices and the ecology of crop fields vary with geography and 
climate. A compilation by T-AGG of studies comparing tillage practices and SOC 
reinforced the “stamp of legitimacy” that no-till agriculture has received from 
the research community as an effective and quantifiable practice to increase soil 
carbon storage (Eagle et al., 2012; Eagle and Olander, 2012). Syntheses of available 
data and statements of consensus about policy-relevant science play a vital role 
at the science-policy nexus. However, what we can reasonably measure—hence 
what we have measured—and what we want to know are not necessarily the 
same thing. And given large investments in data collection, analysis, and inter-
pretation, there is of course a desire to make use of those data to answer key 
questions (including policy questions) and to drive models. Many of these issues 
that influence technical recommendations for policy do not receive attention at 
the science-policy interface even though they bear directly on debates such as 
whether no-till agriculture reliably increases SOC sequestration.
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Nitrous Oxide Emissions and Nitrogen Management
Issues of reversal and permanence that surround soil carbon storage, and leak-
age and permanence with forest carbon storage, are generally of less concern for 
reduced N2O emissions. It is possible that reduced fertilizer application rates in 
1 yr (with associated lower N2O emissions) would be followed by proportion-
ally higher fertilizer application (and higher N2O rates) in a following year. But 
such temporal “catch-up” is not considered likely. In this respect, reduced N2O 
emissions are significantly more straightforward to handle in a policy context, 
compared with soil carbon storage. Nevertheless, there are significant challenges 
in data availability and data quality related to developing robust policy tools.

Sound interpretation of N2O flux measurements requires several years of 
data or more because the response of N2O to particular management factors often 
depends on environmental variables such as rainfall and temperature, which vary 
from year to year (Groffman et al., 2000; Sistani et al., 2010). Data collected for less 
than one full year is particularly difficult to interpret with confidence because 
N2O emissions can occur throughout the year, including under snow, and can 
exhibit peaks during brief warm and wet periods during winter and early spring 
(e.g., Johnson et al., 2010; Wagner-Riddle et al., 2007; Wolf et al., 2010; Kim et al., 
2012). In addition, the amount of plant growth, which also varies across years, 
supplies carbon to microbes and therefore affects N cycling and N2O emissions 
(Woldendorp, 1962). Therefore, to establish general relationships between man-
agement choices and N2O emissions, it is necessary to capture the N2O response 
to management under a range of conditions (Mosier et al., 2006).

In the case of practices such as manure addition, the continued accumula-
tion of organic matter over many years can lead to changes in N2O emissions 
(Chang et al., 1998), suggesting that projections of future N2O emissions need to 
take into account expectations about how soil conditions will evolve in response 
to management as well as to changes in climate. So although N2O emissions do 
not pose the same challenge for detection as soil carbon storage, we nevertheless 
need measurements of N2O emission rates over multiple years following change 
in management, particularly where management changes influence soil charac-
teristics (Six et al., 2004).

A major challenge to characterizing the response of N2O emissions to agri-
cultural management is that N2O emissions are notoriously variable in both space 
and time, with the majority of emissions occurring in short bursts from particu-
lar (and difficult-to-predict) locations (Ambus and Christensen, 1994; Ambus and 
Robertson, 1998; Smith and Dobbie, 2001; Ellert and Janzen, 2008). For example, 
Ellert and Janzen routinely observed N2O emissions at one sampling location 12 
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to 23 times larger than at 5 other sampling locations within the same treatment. 
Similarly, N2O emissions commonly shift by orders of magnitude within short 
time periods (hours to days) depending on soil moisture (related to rain or irriga-
tion), temperature, and the supply of carbon and nitrogen available to microbes 
(Parkin, 2008). Therefore, to estimate N2O emissions accurately, experiments need 
to use sufficient replication at a site to capture spatial variation and measure 
emissions at key times of year (e.g., immediately after applying fertilizer) when 
we expect emissions to be well above background. In addition, to avoid miss-
ing the highest emissions—which in the case of N2O can constitute the majority 
of total emissions—investigators need to characterize the daily pattern of N2O 
fluxes at a site (Parkin, 2008).

Policies designed to reduce N2O emissions from agricultural soil focus 
primarily on N management, and this approach raises questions about the appro-
priate spatial scale of analysis. First, considerable amounts of nitrogen leave the 
farm field, raising the challenge of how to account for N2O that may result from 
its eventual processing. N lost from croplands escapes not only as N2O but also as 
N2 gas, NH3

+, or NO3
-. With the exception of N2 gas, all other forms of N remain 

subject to microbial conversion to N2O, so all management options that influence 
the rate of N loss from the field could influence rates of N2O production. Associ-
ated accounting methods have so far remained rudimentary, usually using global 
Intergovernmental Panel on Climate Change default values and failing to dif-
ferentiate between, for example, fields that use cover crops to trap N during the 
fallow season and fields that do not.

Available data suggest that the scale of analysis could have dramatic influ-
ence on estimates of potential reductions in N2O loss. Blesh and Drinkwater (2013) 
compared N budgets for farm fields in the Mississippi River Basin that use com-
mon fertilizer management practices with farms that use legumes as the primary 
N source. Fields using conventional fertilizer typically have an N surplus of 30 to 
38 kg ha-1 yr-1 N while fields managed with a legume N source have an N surplus 
of less than 4 kg ha-1 yr-1 N. Similarly, Tonitto et al. (2006) conducted a meta-analy-
sis of nitrate losses from fields managed with and without cover crops and found 
that using cover crops reduced nitrate loss 40 to 70%. Surplus available N can be 
lost as N2O or lost as NO3

- and denitrified elsewhere in the watershed. Therefore 
differences in the N saturation of agroecosystem management directly impacts 
net N2O loss potential. Models that consider only in-field N2O emissions and do 
not represent the difference in N leakiness across management practices would 
be expected to underestimate total N2O losses, and consequently to underesti-
mate the benefits of farm management systems that minimize N surplus.
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In addition, different sources of fertilizer N have radically different embod-
ied emissions, raising questions about whether “upstream” CO2 emissions should 
be coupled to policies designed to reduce N2O emissions. As discussed in the 
section entitled “Reducing Agricultural GHG Emissions through Management 
of Agricultural Systems,” on the “upstream” end of N management, synthetic 
N fertilizer production is an energy-intensive process driven by fossil fuel, with 
associated CO2 emissions. Substituting legume-derived N or manure for syn-
thetic N should drive reduced fertilizer production and hence reduced CO2 
emissions. An LCA approach would suggest granting growers credit for these 
CO2 savings, but in practice who (if anyone) receives this credit is a matter of 
debate. Broad policy decisions to treat the fertilizer industry as a regulated entity 
have precluded carbon offset protocols from awarding credit for these emission 
savings to growers, despite the fact that growers’ decisions drive (or diminish) 
fertilizer production.

Direct measurements of N2O emissions have shown that nitrification inhibi-
tors (NIs) and slow-release (SL) fertilizers reduce emissions from crop fields by 
approximately 38 and 21%, respectively, compared with conventional fertilizers 
that do not incorporate these technologies (Akiyama et al., 2010; Halvorson et al., 
2013). The NI estimate represents a meta-analysis of 113 data sets from 35 field 
studies, and the data represent one of the few cases where we have a substan-
tial number of studies and a consistent response of N2O flux to a management 
practice despite the high inherent variability in N2O emissions from soil. The 
estimate for SL is based on extensive research on irrigated corn fields at the USDA 
experiment station in Fort Collins, Colorado. These experiments found strong 
interactions between fertilizer technology and tillage; SL fertilizer led to reduced 
N2O emissions in no-till and strip-till treatments, but not under conventional 
tillage. These findings underscore the limitations of data that show how N2O 
emissions respond to management. Even these unusually robust data represent 
a narrow geography, and the relationships are restricted to a relatively specific 
cropping system and management context. In USDA’s newly developed method 
for estimating N2O emissions from agricultural fields in the United States, the 
Agency used both of these data sets (NI, SL) as a basis for adjusting estimates of 
N2O emissions based on growers’ use of NIs (Biggar et al., 2013).

Scientists and managers have devoted considerable attention to questions of 
scale for managing nitrogen losses from farm fields and their impacts on water 
quality (Lund et al., 2013, Giri et al., 2012; Jha et al., 2010). David et al. (2010) modeled 
riverine nitrate losses from counties in the Mississippi River Basin and identi-
fied 259 counties with predicted nitrate N yields >7.5 kg ha-1 N and 1135 counties 
with predicted nitrate yields <3 kg ha-1 N. They recommended using improved 
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practices in the 259 counties with high nitrate loss rates. Resource conservation 
professionals have applied targeting at finer scales. For example, riparian zones 
have long been considered hot spots of nitrogen removal from shallow ground-
water and are therefore targeted locations in the landscape to control nitrogen 
pollution of streams (Gurwick et al., 2008, and references therein; Vidon et al., 
2010). Analogous targeting approaches could be applied to reduce N2O losses 
from agricultural landscapes. Applying existing knowledge about N2O losses 
could help focus the location of management practices, and identification of rel-
evant knowledge gaps could help focus future research.

Consequences of Science Base for Protocol Development
If offsets are required to be permanent, progress developing offset protocols 
appears to reflect the relative strengths and limitations of soil carbon storage, 
forest carbon storage, and N2O emission reductions. Although no systematic or 
in-depth study of this area has yet been published to our knowledge, we offer 
the following observations. In 2011, CAR embarked on development of two agri-
cultural carbon offset protocols: one (termed “cropland management”) intended 
to grant credits for soil carbon storage and the other (“nitrogen management”) 
to grant credits for reduced N2O emissions. In the first case the Reserve’s deci-
sion not to adopt a cropland management project protocol (CMPP) highlights the 
multi-faceted challenge of SOC management. While Eagle et al. (2012) identify 
agricultural practices that support increased SOC, defining management prac-
tices that would qualify for offsets is not straightforward (Climate Action Reserve, 
2011a). For instance, the suite of available long-term data sets imposes some limi-
tations on model validation, particularly when the full soil profile is considered. 
Technical reports considered by the Reserve during the CMPP process identi-
fied cover cropping (Gershenson et al., 2011) and grassland management (Diaz et 
al., 2012) as promising techniques for increasing SOC storage. However, defining 
these management practices in a policy setting is challenging. Additionality was 
a major concern for protocol implementation, especially since no-till, reduced-till, 
and cover crops are supported by other conservation policy initiatives (Climate 
Action Reserve, 2011b). Permanence was also a major concern (Climate Action 
Reserve, 2011a). The workgroup was concerned about the ability of land own-
ers to guarantee adherence to a given management practice for a long duration, 
given both the short timescale nature of agricultural management and the fre-
quency of agricultural land renting.

In the second case (“nitrogen management”), CAR’s process for developing a 
protocol began with a relatively extensive list of practices that might qualify for 
carbon credits but ended with only one practice—reduced N fertilizer applica-



280 Tonitto et al.

tion rates on maize in 12 midwestern states (Climate Action Reserve, 2011c, 2012a). 
The narrow scope of the N management protocol reflects the guidance Reserve 
staff received from a panel of expert scientists as well as technical experts on an 
advisory multistakeholder workgroup, all of whom argued that evaluations of 
other practices were not yet possible owing to a dearth of necessary data—N2O 
emissions collected with appropriate spatial and temporal intensity from side-by-
side experiments differing only in management (Climate Action Reserve, 2011d, 
2011e). The breadth of the initial proposal indicates the kind of expectations and 
hopes that have been generated in the policy arena. Subsequent steps taken by 
the Reserve to refine this protocol, and to establish mechanisms for including 
additional practices as additional data become available, further demonstrate the 
extent to which data availability and advice from the research community have 
shaped this protocol.

Summary
Here we highlight the most important lessons learned for each topic in this chap-
ter as bullet points under the following three themes: (i) model structure and 
scale of application, (ii) data limitations and nonlinearity, and (iii) applications to 
GHG offset projects.

Model Structure and Scale of Application
Even though models may perform well across large regions over long time 
periods, there are almost always major uncertainties in estimates for specific 
locations and management practices.

·· Process models share basic approaches to representing ecosystem processes 
(e.g., controls on decomposition; which environmental conditions affect C 
and N cycling). However, apparently subtle differences in the way models 
represent ecosystem complexity lead to variation in strengths and weak-
nesses of different models.

·· Our ability to test the mechanisms that underlie model estimates of net eco-
system GHG fluxes is constrained by the availability of data for specific 
processes such as shoot, root, or heterotrophic soil respiration. Therefore, 
even if model estimates of an integrative variable like soil carbon storage or 
net CO2 flux reasonably match results of several experiments, there remains 
substantial uncertainty about whether the model will provide accurate esti-
mates under different environmental conditions.

·· Both process and empirical models tend to smooth out variation in GHG 
fluxes and estimate average values over time and space. For example, models 
of N2O flux perform much better at the annual scale than at the daily scale. 
Similarly, at very large spatial and temporal scales such as the conterminous 
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United States over a decade, estimates of total GHG flux from complex process 
models and simple empirical models often converge. The utility of modeling 
average values for integrative variables like N2O flux is limited if management 
recommendations require estimates that apply to specific localities.

·· Even at large scales, where values of ecosystem-scale variables converge 
among models, the extent to which different processes contribute to these 
values can vary substantially among models. For example, CO2 fluxes can 
originate mainly from litter decomposition in one model and more from 
woody debris and soil respiration in another. The source of GHG emissions 
is relevant for designing best management practices; therefore, discrep-
ancies in model outcomes regarding GHG source affects the suitability of 
models for broad application to management questions.

·· Because different models identify different underlying mechanisms for 
overall GHG flux, modelers and policymakers should exercise caution in 
concluding that any particular model accurately estimates GHG emissions.

Outstanding Questions
·· Why do models converge and diverge?
·· How important are the differences in representation of processes that 

control integrative variables? 
·· How much do different model representations of factors such as plant 

growth and soil water content account for variation in model performance 
under different environmental conditions?

·· What should the next set of model comparisons look like to maximize 
understanding of underlying ecosystem processes as well as to accelerate our 
ability to apply models for management at more local and regional scales?

Data Limitations and Nonlinearity
Models are only as good as the data used to develop, parameterize, and validate 
them, and relevant data are scarce for many agricultural and forest ecosystems. 
Data scarcity is a major limitation for modeling all but the most common 
agricultural systems in the industrialized world and for nearly all ecosystems in 
less-developed countries. Thus, it is important for model developers and model 
users to understand and communicate clearly about which model estimates are 
most robust and which require further validation for specific processes, pools, 
management practices, soil types, etc.

·· Agriculture and forest ecosystems are responding to shifting environmental 
and ecological conditions, and models often do not reflect such changing 
conditions. Changes include species invasions, changes in fire regimes, use 
of new management practices, and climate change. Models often omit such 
processes because starting with a simpler set of conditions is tractable and 
because data for many topics is very limited. Simple models are quite use-
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ful for research because they teach us how much variability in ecosystem 
processes can be explained by a small number of key factors. But when pro-
cesses or practices not included in a model are influential, estimates of GHG 
emissions are unlikely to be correct.

·· Despite increases in data availability, few data sets include concurrent mea-
surements of key processes, pools, and GHGs (e.g., plant growth, CO2, N2O, 
NO3

-, SOC, soil nutrient status). For example, there are hundreds of data sets 
that report N2O measurements in agricultural systems, but few are adequate 
to support robust understanding of how management practices influence 
N2O emissions. To assess the influence of different management practices on 
N2O emissions, we need side-by-side trials of different management systems. 
We also need measurements of fluxes from these side-by-side comparisons 
over entire years, not just growing seasons; over multiple years; and with 
sufficient temporal and spatial frequency to capture both hot spots and hot 
moments.

·· Estimating N2O flux is inherently challenging as flux often exhibits a nonlin-
ear response to controlling factors. Even when a model performs well after 
calibration at an annual scale, the seasonal pattern of flux may not be accu-
rate, suggesting that simpler empirical models operating at an annual scale 
may be just as useful for some purposes.

Outstanding Questions
·· Are data needs for model development and testing (to further our under-

standing of ecosystem dynamics) different from needs driven by existing 
policy and management frameworks? If so, what would be an appropriate 
process for balancing investments in data collection and model research to 
meet both objectives?

Applications to GHG Offset Projects
The application of models to estimate GHG emission reductions raises several 
issues that might not have been immediately apparent when agricultural offsets 
were first proposed for inclusion in environmental markets. These include (i) 
trade-offs between the cost of implementing an offset project—and hence the cost 
of carbon credits—and the precision and accuracy of estimates of GHG fluxes; 
(ii) the availability of tools to estimate agriculture-related GHG emissions at 
different scales; (iii) the likelihood of different kinds of crop fields being enrolled 
in carbon offsets programs; and (iv) the level of understanding about models 
within different policy institutions.

·· Models have increasingly been used to quantify GHG budgets associated 
with carbon offset projects, supplementing measurements to estimate car-
bon in aboveground biomass of trees, or predicting N2O fluxes that are too 
difficult and expensive to measure directly. But even well-validated models 
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are unlikely to make accurate predictions across all combinations of soils, 
climate, species, and management practices, especially with limited site-
specific measurements. Collecting sufficient site-specific data to accurately 
parameterize a model can be very costly and may still miss factors or prac-
tices that are not included in the model.

·· During the last decade, there have been many applications and modifica-
tions of some models to enhance their use for GHG offset projects. However, 
there will always be a tension between the need for models to evolve and 
improve and the need for tractable and stable rules for assessing compliance 
with GHG offset projects.

·· We can be confident that there is huge variation in the potential for N2O 
emission reductions and soil carbon storage among agricultural fields. This 
variation has implications that merit more attention than they sometimes 
receive in the agricultural GHG offset arena.

·· The understanding that ecosystem models do not produce robust estimates 
of GHG budgets at individual sites has led to a focus on average perfor-
mance over large spatial scales. This approach assumes that the fields over 
which a protocol is applied are representative of the population of fields for 
which the model has been validated. If, for example, fields enrolled under a 
GHG offset protocol tend to have high baseline soil C or low baseline N2O 
emissions compared with most fields, then they are not “average,” and the 
average GHG benefit estimated by the model may not be realized. Institu-
tions that apply an “average” approach should provide some assurance that 
the distribution of enrolled fields represents average conditions.

·· In the context of water quality protection, recognition of variability in N loss 
from crop fields has resulted in efforts to target areas of the landscape with 
the highest losses and the greatest potential for reducing N pollution. This 
targeting approach has not yet been applied in the context of agricultural 
GHG offsets. Such targeting could potentially enable much greater returns 
on investment in agricultural GHG emission reductions, underscoring the 
benefits of developing the research base that enables site-specific estimation.

·· For carbon offset projects, the desired accuracy often exceeds scientific capac-
ity. For example, the effect of reduced tillage in sequestering carbon was 
modeled for many years, but then questions were raised about whether esti-
mates were at all accurate when deeper soil horizons were included (Baker 
et al., 2007). Additionally, only a single agricultural practice was included 
in the CAR N management protocol- reduced N fertilizer rate on corn in 12 
states because scientists said tools were not adequate to quantify the benefit 
of other management practices.

·· Institutions like CAR that are charged with policy development have dem-
onstrated an impressive capacity to assimilate relevant technical knowledge 
and craft policies that reflect an appreciation for the abilities and limita-
tions of models. In the case of CAR’s nitrogen management protocol, the 
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perspective of CAR staff shifted radically over the course of several months, 
illustrating the initial absence of a clear appreciation for many of the issues 
raised in this paper and also the Reserve’s ability to learn quickly.

·· When a model has become visible to the policy and management community, 
the interaction with the modeling community can be critical in establishing 
realistic expectations about the model’s capability and limitations.

·· Regardless of model accuracy, there remain issues with permanence for car-
bon sequestration in soil and vegetation.

Outstanding Questions
·· Once a model has been published and accepted for certain uses in certain 

places, does it acquire legitimacy and credibility for application beyond 
those situations or processes for which it has been validated?

·· How many policy institutions related to agriculture and greenhouse gas 
emissions have a sufficiently strong understanding of model capabilities and 
limitations to instill confidence that these institutions will use them appropri-
ately and encourage investment in model development in the most useful ways?
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Appendix—Publications Reviewed for Simulation Model Comparison
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Appendix continued.

DNDC continued.
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 † APEX, Agricultural Policy/Environmental eXtender; 
DAYCENT, Daily CENTURY; DNDC, Denitrifica-
tion–Decomposition; EPIC, Environmental Policy 
Integrated Climate; RZWQM2, Root Zone Water 
Quality Model 2.


