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We advocate the use of fractal surface statistics as a simple, 
quantitative, and general model for planetary surface 
roughness. We determine the shadowing behavior of a wide 
range of fractal surfaces using computer simulations, and pre- 
sent an empirical function that reproduces their observed be- 
havior within statistical uncertainties. We compare the shadow- 
ing behavior of fractal surfaces to four analytic shadowing 
models for random surfaces and find that three of these, includ- 
ing the Hapke (1984, Zcarus 59,41-59) model, are well approxi- 
mated by specific cases of a general fractal surface model. In 
addition, we demonstrate that a fractal surface model provides 
a way of quantitatively verifying and extending previous inter- 
pretations of the Hapke (1984) roughness parameter. We hy- 
pothesize that the scale which dominates surface shadowing, 
and by extension photometric roughness, is the smallest surface 
scale for which shadows exist and that this scale is a function 
of intrinsic physical parameters such as the single scattering 
albedo and particle phase function. If correct, a major implica- 
tion of this hypothesis is that photometric roughness may have 
different physical meanings on different surfaces. o 1998 Aca- 

demic Press 
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I. INTRODUCTION AND RATIONALE 

An important goal of planetary remote sensing is to 
quantitatively "link" scattering parameters extracted from 
remote observations to physical parameters that can be 
measured in situ. This link requires the utilization of at 
least two types of models: (1) a model that describes the 
interaction between electromagnetic radiation and ideal- 
ized surfaces, often chemically homogeneous and smooth 
at wavelength scales; and (2) a model that describes specific 

variations in the idealized behavior of the surface, e.g., 
chemical inhomogeneities and/or surface roughness. In 
planetary applications, these models are combined into a 
general surface scattering model; common examples in- 
clude the Hagfors quasi-specular model for radar (Hagfors 
1964) and the Hapke (1981,1984) model for photometry. 
In order for geologic inferences based on a general scatter- 
ing model to be sound, each model component must be 
realistic, i.e., based upon physical principles and/or empiri- 
cally observed behavior, and general enough to encompass 
the widest range of surface types one is likely to encounter. 
Although the interactions between electromagnetic waves 
and idealized surfaces have been reasonably well charac- 
terized for over a century, we suggest that significant im- 
provements can still be made in the characterization of 
geologic surface roughness. In this paper, we advocate the 
use of fractals as a simple, quantitative, and general model 
for surface roughness. The major advantage of fractals 
over all surface models currently in use is that they explic- 
itly account for changes in surface roughness with scale. 

Our purpose in this paper is to: 

(1) demonstrate that fractals are capable of quantifying 
observed surface roughness; 

(2) generate a shadowing function for fractal sur- 
faces-a first step in the use of fractal surfaces for general 
scattering models; 

(3) demonstrate that fractal surfaces are more general 
descriptors of surface roughness than models currently em- 
ployed by comparing their shadowing behaviors; 

(4) examine the interpretation of scale in generalized 
scattering models that utilize shadowing functions, most 
notably the Hapke (1984) photometric model; and 

(5) present a new hypothesis for the physical interpreta- 
tion of photometric roughness. Although our ultimate goal 
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is to analytically incorporate fractal surface behavior into 
general scattering models, that is not a goal of this paper. 
Rather, we wish to demonstrate that the level of work 
necessary to incorporate fractal behavior into these models 
is justified by potential benefits and take some initial steps 
toward its realization. 

In what follows, we briefly describe fractal surfaces and 
illustrate their utility in representing natural surfaces. Fol- 
lowing that, we begin the process of integrating a fractal 
surface model into a general scattering model by numeri- 
cally determining the shadowing function for fractal sur- 
faces observed at nadir. To demonstrate that a fractal sur- 
face model is more general in scope than surface models 
previously utilized, we compare its shadowing behavior to 
that of four published surface roughness models, including 
the well known Hapke (1984) model. Finally, we address 
the question of scale in the Hapke (1981,1984,1986) photo- 
metric model using the results of the shadowing computa- 
tion, illustrate how a fractal model may quantitatively ver- 
ify previous interpretations of the physical meaning of the 
Hapke roughness parameter, and conclude with some fur- 
ther speculations on this topic. 

11. FRACTAL SURFACE ROUGHNESS MODELS 

A wide variety of surface models have been or are cur- 
rently utilized in planetary remote sensing. In the broadest 
possible terms, these can be broken into three major cate- 
gories. Models in the first category we call "deterministic" 
since they are composed of one or more well defined ele- 
ments in a predetermined arrangement. Periodic surfaces, 
e.g., sinusoidal, sawtooth, or rectangular corrugated sur- 
faces (cf. Beckmann and Spizzichinno 1963), are common 
forms of this surface type. In the second category, the 
surface is also composed of well-defined elements, but 
there may be random quantities of elements, they may 
have random sizes and/or aspect ratios, and they may be 
randomly arranged; examples used by the planetary com- 
munity include the crater roughness model of Veverka and 
Wasserman (1972), the "hole" roughness model of Lumme 
and Bowel1 (1981), and Helfenstein's (1988) synthetically 
cratered landscape. The third category of models are 
strictly random and consist only of a specified distribution 
of surface heights or slopes and (often) some statistical 
relationship between adjacent elements. Connecting three 
points on such a surface (two on a profile) with straight 
lines forms a "facet"; therefore, these models are also 
referred to as facet models. Examples of this last model 
type include those used by Hagfors (1964), Beckmann 
(1965), Smith (1967a), Wagner (1967), and Hapke (1984). 
Because nature is rarely deterministic when shaping plane- 
tary surfaces, the randomized models of the second and 
third categories are often more applicable to the general 
scattering problem. Real surfaces are usually (if not al- 

ways) quantified by measuring surface heights at regular 
intervals, i.e., by measuring a profile (e.g., Farr 1992, Camp- 
bell and Garvin 1993, etc.). For this reason, facet models 
are often better suited for quantitative or statistical com- 
parisons to real surfaces. 

One difficulty with the random models listed above is 
the lack of an intrinsic or explicit scale dependence. Several 
(e.g., Beckmann 1965, Smith 1967a, Wagner 1967) explic- 
itly assume that there is no scale dependence in parameters 
such as the root-mean-square (RMS) height, u, an assump- 
tion commonly referred to as stationarity. However, it is 
now recognized that real surfaces are not stationary and 
that the RMS height (among other parameters) is a func- 
tion of the scale at which it is measured (cf., Sayles and 
Thomas 1978). Figure 1 illustrates how commonly mea- 
sured topographic parameters vary with scale on a basalt 
flow in the Lunar Crater Volcanic Field, Nevada (Arvidson 
et al. 1991, Shepard et al. 1995). Other models (e.g., Lumme 
and Bowel1 1981, Hapke 1984) assume that the roughness 
varies with scale or extends to all scales. While this is more 
realistic than those models listed above, it is still restrictive 
in the sense that the scale dependence cannot be varied. 
Furthermore, the scale dependence is not made explicit, 
making it difficult to evaluate its applicability to natural 
surfaces. 

The measured behavior of real surfaces (Fig. 1) suggests 
that a single parameter surface roughness model, such as 
those above, is insufficient to quantitatively or statistically 
describe their form. Rather, there must be some knowledge 
of the distribution of surface heights or slopes at a single 
scale and a function that expresses the change in surface 
properties with scale. Theoretically, there is no restriction 
on the form of this function. However, empirical analysis of 
numerous natural surfaces has revealed a relatively simple 
functional form which has been termed self-affinity or, 
more commonly, "fractal7' (Mandelbrot 1982). Over a 
range of scales, spanning from micrometers to kilometers, 
relationships observed to hold for many natural surfaces in- 
clude 

where u(L) is the RMS height for a profile of some length, 
L, Lo is the length of some reference profile (often chosen 
to be 1 unit in length), s(Ax) is the RMS slope of a surface 
between points a distance Ax apart, Axo is, again, a refer- 
ence distance of arbitrary length, and H is a parameter 
variously referred to as the Hurst exponent or Hausdorff 
measure, 0 < H < 1 (Hastings and Sugihara 1993, Shepard 
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The first expression in (3) is applicable to a profile, and 
the second is applicable to a surface (Mark and Aronson 
1984, Shepard et al. 1995, Turcotte, 1997). To avoid switch- 
ing back and forth between fractal dimensions for profiles 
and surfaces, we will primarily utilize the Hurst exponent, 
H, in this paper. 

Like any model, fractals have limitations. The most sig- 
nificant of these is the implicit assumption that the surface 
is "noise." AS a result, fractals cannot easily forward model 
(or generate) surfaces like those of category two above, 
i.e., a randomized landscape composed of discrete geologic 
features (e.g., craters, river channels, etc.). Nevertheless, 
fractals are a robust tool for reverse modeling homoge- 

1 " ' I " ' I " ' I " ' -  
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neous regions of random structure. In other words, given 
1 .O 1.2 1.4 1.6 1.8 2.0 specific examples of any homogeneous landscape from cat- 

Log (Length) (cm) egory two or three (i.e., surfaces one might encounter in 
the field), fractals provide a simple, yet powerful way of 
quantifying their intrinsic scale-dependent surface 
roughness. A less significant limitation of fractals is the 
number of required parameters; current roughness models 
utilize only one (or effectively one as we see below) 
roughness parameter, while the simplest fractal model in- 
corporates two. 

It is not well understood why natural surfaces obey the 
relationships (or derivatives of them) expressed by Eqs. 
(1) and (2); the evidence that they do, however, is over- 
whelming. Figure 1 illustrates this behavior for the basalt 
flow; both the RMS height and RMS slope obey the scaling 
relationships of Eqs. (1) and (2) with H - 0.6. Mark and 
Aronson (1984) report values of H ranging from 0.1 to 
0.96 for a variety of geologic provinces at scales ranging 
from tens of meters to tens of kilometers. Brown and 
Scholz (1985) report H values ranging from -0.4 to 1.0 

FIG. 1. RMS heights and slopes of the Black Rock lava flow (Lunar 
Crater Volcanic Field, Nevada) as a function of the measurement scale. 

et al. 1995, Turcotte 1997). In Eqs. (1) and (2), a(Lo) and 
s(AxO) are "anchoring" parameters and His  the parameter 
that describes how these values change with scale. To illus- 
trate the role of H, Fig. 2 shows three synthetic fractal 
profiles which have the same RMS slope at the smallest 
scale, but different values of H. Note that, consistent with 
Eq. (I), the surfaces with higher H values retain their 
roughness even at large scales while those with low H 
do not. A commonly reported parameter is the fractal 
dimension, D, which is related to H by 

-200 0 200 400 600 800 1000 1200 
Horizontal displacement 

FIG. 2. Plots of three different fractal profiles, offset for clarity, 

(3) illustrating the effect of different Hurst exponents, H. Each profile has 
the same RMS slope (Bo = 45") at the smallest horizontal scale, i.e., 1 unit. 
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for rock surfaces measured at scales of micrometers to 
centimeters. Our own work with numerous lava flows 
yielded H values from 0.25 to 0.75 at scales of centimeters 
to tens of meters (Campbell and Shepard, 1996). Farr 
(1992) found H - 0.5 on a wide range of geologic surfaces, 
also at scales of centimeters to tens of meters. Recent 
work on the terrestrial planets has shown similar behavior. 
Haldemann et al. (1997, personal commun.) found H - 
0.5 for the terrain around the Mars Pathfinder landing site 
at scales of centimeters to tens of meters, while Helfenstein 
et al. (1998) report H values 0.5 to 0.7 for undisturbed 
lunar regolith at scales of micrometers to centimeters. 

It has been noted that some surfaces obey different scal- 
ing laws over different ranges of scale, i.e., H is itself a 
function of scale. Mark and Aronson (1984) and Campbell 
and Shepard (1996) (among others) have speculated that 
these "breaks" in H represent the scales at which different 
processes dominate the formation and evolution of the 
surface. As an example, Campbell and Shepard (1996) 
noted that, on pahoehoe lava flows, centimeter-scale to- 
pography obeyed a different scaling law than the meter- 
scale topography. Field observations revealed the centime- 
ter scales to be dominated by glassy weathering rinds, while 
meter scales were dominated by constructional flow fea- 
tures. 

Rarely reported, but of some importance, is the value 
of RMS height or slope at an anchoring scale. Campbell 
and Shepard (1996) found RMS heights on a 1-m-long 
profile to range from -8 cm on a very rough a'a flow to 
-0.5 cm on a very smooth pahoehoe flow. RMS slopes on 
the same surfaces measured between points separated by 
a distance of 1 m ranged from -13" to -2". Shepard et al. 
(1995) reported the RMS slope of a particularly rough a'a 
basalt flow to be >70" at a scale of 1 cm and -20" at a 
scale of 1 m (see Fig. 1). On undisturbed lunar regolith 
Helfenstein et al. (1998) report RMS slopes ranging from 
12" to 37" at the millimeter scale. 

The above discussion leads us to conclude that fractal 
surface models are both realistic in their ability to quantify 
the behavior of natural surfaces, and general enough to 
quantify a wide range of geologic terrain. Their disadvan- 
tages include an assumption that the surface is "noise" 
and a required minimum of two parameters. Their over- 
whelming advantage is that many real surfaces are ob- 
served to obey fractal statistics. 

111. COMPARISON OF SHADOWING ON FRACTALS TO 
OTHER SURFACE TYPES 

An inevitable question to address is "how do surface 
models that have been used in planetary applications com- 
pare with fractal surfaces?" Straight analytical compari- 
sons are difficult or impossible because of scale issues; 

parameters such as surface RMS height and autocorrela- 
tion length are taken as constants or contain implicit and 
unspecified scale dependencies in published models, while 
in fractal models they are functions of scale; i.e., one must 
agree upon some scale at which these parameters are mea- 
sured for comparison. We have therefore chosen a more 
indirect approach and compare the shadowing behavior of 
these published surface models to the shadowing behavior 
of fractal surfaces. A benefit of this approach is that we 
also determine one property of fractal surfaces that can 
be incorporated into general scattering models, i.e., their 
shadowing behavior. In making this comparison, we as- 
sume that similar shadowing behavior implies similar sur- 
face morphology; i.e., the surfaces are statistically similar. 
It could be argued that any number of different surfaces 
might be constructed that have similar shadowing behav- 
ior. However, our assumption should be reasonable if the 
surfaces being compared are all strictly random. We there- 
fore restrict ourselves to a comparison with models from 
category three, i.e., random faceted surfaces, and leave the 
comparison with models from category two for future 
analysis. 

Methodology 

To our knowledge, there is currently no analytic solution 
to the problem of shadowing on a fractal surface. However, 
random fractal surfaces are relatively easy to synthesize 
and ray trace. Therefore, we make our comparisons based 
upon the shadowing behavior of synthetic random fractal 
surfaces. We make several assumptions in our numerical 
simulations which make them compatible with the analyti- 
cal models to which they will be compared. First, the sur- 
face is assumed to be a composite of smooth facets and 
geometric optics applies, i.e., the facets are large with re- 
spect to the wavelength. Second, the facets are distributed 
uniformly in azimuth. Further, secondary reflections, i.e., 
multiple scattering, from adjacent facets are ignored. Fi- 
nally, the distribution of facet slopes about a mean hori- 
zontal plane is assumed to be Gaussian. This latter assump- 
tion is consistent with observations on many real surfaces, 
with fractal models (Hastings and Sugihara 1993), and with 
the analytic surface models we examine. 

Shadows created on a fractal surface by a collimated 
source behave identically to shadows created on the series 
of profiles that make up that surface, i.e., the three-dimen- 
sional shadowing problem can be reduced to a two-dimen- 
sional one. Because the creation of fractal surfaces is com- 
putationally more expensive than profiles, we chose to 
work with fractal profiles for the numerical component of 
this work. We emphasize, however, that the results ob- 
tained by examining fractal profiles are identical to those 
that we would obtain from a fractal surface, and we will 
therefore interchangeably refer to the shadowing behavior 
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FIG. 3. Rendered image of a synthetic fractal surface, H = 0.7, so = tan(45"), incidence angle = 45". The rendering assumes the surface facets 
obey a Lommel-Seeliger scattering law. 

of fractal surfaces or fractal profiles. To convey a sense of 
the realism of textures generated by fractal algorithms, 
Fig. 3 shows an example of a random fractal surface we 
generated, shaded using a ray-tracing algorithm, and ren- 
dered assuming a Lommel-Seeliger scattering law. 

Using the spectral method outlined by Voss (1988) and 
Turcotte (1997), we generated fractal profiles with Hurst 
exponents (H) of 0.1,0.3,0.5,0.7, and 0.9 and five different 

values of 80 = tan-'(so) ranging from 10" to 50". The values 
of the Hurst exponent were verified using the variogram 
method (Shepard et al. 1995). The parameter so(=tan Bo) is 
the RMS slope for these surfaces at the smallest horizontal 
interval. Slopes of the profile at larger scales can be calcu- 
lated from Eq. (2). It is necessary to specify a lower bound- 
ary on the facet size of a fractal profile or surface because, 
if allowed to decrease in scale indefinitely, the RMS slope 
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will go to infinity (Eq. (2)). We discuss the interpretation 
of this in more detail below. 

For each of the generated profiles, we assumed parallel 
illumination at a range of incidence angles (angle from 
nadir), i, from 10" to 80". The emission angle was set at 
O", i.e., nadir-viewing, and a ray-tracing algorithm run to 
determine the fraction of the profile in shadow. Because 
each fractal profile generated is only a single realization 
of a random process, each simulation was run under the 
same conditions 10 times (i.e., 10 different fractal profiles 
with the same statistical behavior) from which the mean 
shadowing behavior was determined. All profiles were 
100,000 units long. Half of this profile was used only as a 
border to ensure adequate shadowing behavior for points 
on the edge of the surface. This relatively large border is 
required for low values of H (0.1-0.3) to ensure accurate 
shadowing statistics. Because shadowing is an anisotropic 
operation, each profile was illuminated from both sides for 
comparative purposes and to obtain better averaging sta- 
tistics. 

Fractal Shadowing Function Properties 

Table I lists the fraction of the profile (or surface) not 
shadowed, S, as a function of i, H, and go, along with the 
range of shadowing behavior observed for each profile. In 
general, the higher values of H (lower fractal dimensions) 
exhibit wider variation in shadowing behavior across the 
multiple realizations. Figure 2 illustrates why this is the 
case. Surfaces with higher H values have more extreme 
values of surface height; i.e., for a given profile length, 
they tend to be more rugged. This gives rise to greater 
statistical variations in the amount of surface in shadow. 
Conversely, surfaces with low H values have height distri- 
butions which remain close to the mean value-large scale 
topography is conspicuously absent. 

Figure 4 illustrates the effect of varying H for a constant 
RMS slope, in this case 30". Note that surfaces which main- 
tain more of their initial roughness as scale increases, i.e., 
those with higher H values, are shadowed to a greater 
degree than those with low H values. Figure 5 illustrates 
the shadowing function for surfaces with the same value 
of H, in this case 0.5, but different so. Not unexpectedly, 
for a given value of H, larger RMS slopes at the smallest 
scales lead to increased shadowing. We have found the 
following empirical relationship to provide excellent ap- 
proximations to the shadowing function, S: 

scale, as defined earlier. In practice, the summation needs 
only to be carried to six terms or less to converge to within 
1% of the final value. Equation (4) is found to reproduce 
the majority of the data in Table 1 to within 0.01, well 
within the expected uncertainties of our numerical proce- 
dure. The reproduction is worse for high H, high 80 sur- 
faces, although still within the range of values quoted in 
the table. Equation (4) also has interesting similarities to 
the analytic formulations that we examine below. 

Comparison to Analytic Models 

We chose to compare the numerical results found above 
to four random surface models for which shadowing func- 
tions were derived. In all but one of these models (Hapke 
1984), the shadowing function is derived for the case of 
nadir-viewing only. Hapke's (1984) model is more general 
in that any combination of incidence, emission, and phase 
angle is permitted and that it is intimately convolved into 
a general scattering model. We will examine only the nadir- 
viewing case here to maintain consistency with the other 
models. In what follows, we briefly describe the surface 
model, present a summary of the shadowing function, and 
compare it with the shadowing behavior found on a fractal 
surface. We will refer to "surface model7' and "shadowing 
model" synonymously since we are vicariously equating 
surface behavior to shadowing behavior. 

A. Beckmann shadowing model. Beckmann (1965) de- 
rived his shadowing model for the study of microwave 
quasi-specular scattering. We include this model because 
the surface description is identical to that assumed by many 
in the radar scattering community (e.g., Hagfors 1964). We 
note, however, that the shadowing formula derived in this 
work has been the subject of some controversy because 
attempts to verify it using numerical simulations were not 
successful (Brockelmann and Hagfors 1966). 

Beckmann (1965) assumed that the surface in question 
is stationary and characterized by a Gaussian height distri- 
bution and an arbitrary autocorrelation function, B(x) .  Al- 
though it was not included in this derivation, Beckmann 
(1965) foresaw the necessity of fractal models in his discus- 
sion on the relative importance of small and large scale 
topography. Beckmann's shadowing function is 

1 "  
S(i, O0,H) = 1 --2- erfc ( 

"I-" ), where S(i) is the fraction of surface not in shadow, i is the 
2 ,,=, 2.3"-' ~ tan(i) tan(Oo) incidence angle (from nadir), erfc is the error function 

(4) complement, and BV(O) is the second derivative of the 
surface autocorrelation function analyzed at a lag of 0. 

where erfc is the error function complement, i is the inci- Explicit expressions for the argument of the error function 
dence angle, and 80 is the RMS slope at the smallest facet complement are 
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TABLE I 
Average Shadowing Function (Fraction of Surface Not in Shadow) for 10 Fractal Surfaces with Hurst Exponent, H, 

and RMS Slope at the Smallest Scale, s,," 

Note. See text for a discussion of how these numbers are generated. 
"The error bars indicate the range of the data, i.e., the maximum deviation on either side of the mean. Note that the range in observed shadowing 

behavior increases significantly for high values of H. 

for Gaussian autocorrelation and 

lation length. The ratio of RMS height to autocorrelation 
(6) length observed in Eqs. (6) and (7) is often used in radar 

general scattering models and has been referred to as the 
"effective" slope (Campbell and Garvin 1993). Note that 
a change in the autocorrelation function changes the argu- 
ment of Eq. (5) only by a constant and does not affect the 

1 T 
- cot(i) - (7) general shape of the shadowing function. In other words, 
.\/z (T this model is really a function of a single surface pa- 

rameter-the effective slope. 
for exponential autocorrelation, where T is the autocorre- While examples of the Beckmann function can be found 
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lncidence Angle (deg) 

FIG. 4. The shadowing function for ray-traced fractal surfaces with 
same value of so, but different Hurst exponents, H. 

that are reasonably approximated by the shadowing behav- 
ior of a fractal surface (for example, the behavior for an 
effective slope of 47" and a fractal surface, H = 0.5, O0 = 
30°), no systematic relationship appears to exist between 
the effective slope of the Beckmann function and the frac- 
tal Oo for any value of H tested. Based on this and the 
earlier work by Brockelmann and Hagfors (1966), we con- 
clude that either the surface model assumed is an unrealis- 
tic one or (more likely) that an error was made in the 
shadowing derivation. 

B. Smith shadowing model. Smith (1967a) derived a 
shadowing model which he later applied to thermal emis- 
sion and optical shadowing studies of the Moon (Smith 
1967b). Smith's analysis contains similarities to both Beck- 

+ H = 0.5; so = tan(50) 

0.0 I , , I t  

0 20 40 60 80 
lncidence Angle (deg) 

FIG. 5. The shadowing function for ray-traced fractal surfaces with 
same Hurst exponent, H, but different values of so. 

10 20 30 40 50 60 70 80 90 
lncidence Angle 

FIG. 6. Comparison of the Smith (1967a) shadowing function and 
ray-traced fractal profile, H = 0.7. 

mann (1965) and Wagner (1967) (below). However, he 
includes a surface slope distribution (instead of an autocor- 
relation function) in addition to a height distribution and 
explicitly assumes that heights and slopes on the surface 
are uncorrelated. His shadowing solution is 

where s,, is the RMS surface slope. Note that this is also 
a single parameter roughness model. We found a close 
correspondence between Eq. (8) and fractal surfaces with 
H = 0.7 (Fig. 6): 

for H = 0.7. 

This fit between the Smith model and fractal surface behav- 
ior degrades significantly for lower and higher values of H. 

C. Wagner shadowing model. Wagner (1967), starting 
with essentially the same assumptions and using an analyti- 
cal method similar to Smith (1967a), derives a shadowing 
function of the form 

where the roughness term, v, is the same argument found 
in the Beckmann (1965) expression, (Eqs. (6) and (7)), 
and X is given by 
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W a g n e r ,  seH= tan(38) 
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0.2 H = 0.1, so= tan(30) 

H = 0.1, $= tan(40) 

A H = 0.1, so= tan(50) 

0.0 
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Incidence Angle 

FIG. 7. Comparison of the Wagner (1967) shadowing function and 
ray-traced fractal profile, H = 0.1. 

X =  
e - ~ ~  - &v erfc v 

4&v 

If we assume that v is given by Eq. (6), i.e., a Gaussian 
autocorrelation function, then the shadowing observed on 
a Wagner surface with effective slope, seff, appears to 
mimic that of a low H fractal surface if 

seff = 1 .3so for H = 0.1. 

Figure 7 illustrates the shadowing of the Wagner model 
and fractal surfaces with H = 0.1. The ability of the fractal 
shadowing function to mimic the Wagner model degrades 
as H increases. As with the Beckmann model, there is no 
change in the shape of the shadowing curve for different 
autocorrelation functions. 

D. Hapke shadowing model. Because of the popularity 
and complexity of the Hapke (1981, 1984) model, we dis- 
cuss its derivation in somewhat more detail than those 
above. Hapke (1981) derived an approximation to the 
problem of light scattering and absorption from a regolith 
or particulate surface. Later, Hapke (1984) improved upon 
this model by incorporating the effects of rough topogra- 
phy. Unlike the previous models, the Hapke (1984) model 
incorporates the roughness correction into the "ideal" sur- 
face scattering problem, i.e., scattering from a smooth rego- 
lith. It can therefore be considered a general scattering 
model as defined earlier. 

In his roughness correction, Hapke (1984) makes the 
following assumptions: (1) all scattering objects are large 
with respect to the wavelength, i.e., geometric optics ap- 
plies; (2) the mean slope of the surface (defined below) is 
reasonably small, i.e., no overhangs or scarps; (3) multiple 

scattering between adjacent facets is ignored so that facets 
in cast shadows contribute no light to the return, even if 
in the view of the sensor; and (4) the surface slopes obey 
Gaussian tilt statistics and are isotropically distributed in 
azimuth. The mean surface slope is defined as 

2 n12 
tan 3 = - 1 a(6) tan(6) do, 

T o  

where a(@) is the distribution of surface slopes, and 8 is 
the Hapke roughness parameter. The full Hapke (1984) 
photometric roughness correction incorporates two effects: 
(1) the change in the "effective" incidence and emission 
angles caused by rough topography and illuminating and/ 
or viewing the surface from off-nadir directions and (2) 
the removal of portions of the surface by cast shadows. 
Both of these correction factors were derived assuming 
the same surface model. In this paper, we are not "testing" 
the full roughness correction as done by Helfenstein 
(1988). Rather, we are concerned only with the shadowing 
portion of that correction as a means of comparing Hapke's 
assumed surface with fractal surfaces. 

As noted earlier, the Hapke (1984) shadowing function is 
significantly more complex than those previously discussed 
because it accounts for any general configuration of inci- 
dence, emission, and azimuth angles. The interested reader 
is referred to that reference for the full set of equations. 
However, under the conditions of this work, i.e., observing 
the surface from directly overhead, the equation can be 
greatly simplified and is given by 

(14) 
exp (- 1 77 cot2(3) cotz(i)) 

+ sin(i) tan(8) 

2 - exp - - cot@) cot(i) ( : 1 
The shape of the Hapke shadowing function is nearly 

indistinguishable from the observed shadowing on a fractal 
surface with H = 0.5 and obeying 

tan 8 = 0 . 7 ~ ~  for 

Figure 8 shows a comparison of the shadowing behavior 
predicted by Eq. (14) and that observed from the synthetic 
fractal surfaces obeying Eq. (15). The goodness of fit ob- 
served in Fig. 8 degrades significantly for higher and lower 
values of H. We note that fractal surfaces or profiles with 
this specific value for H are often referred to as 
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FIG. 8. Comparison of the Hapke (1984) shadowing function and 
ray-traced fractal profile, H = 0.5. 

"Brownian" and that Brownian surfaces are fairly common 
on Earth (Farr 1992, Shepard et al. 1995, Campbell and 
Shepard 1996). 

Generality of Fractal Surface Models 

great practical interest is the scale of surface roughness that 
is being detected by optical shadowing and photometric 
models. All of the conclusions and speculations offered 
below are based only on the observed shadowing behavior 
of fractal surfaces. However, because shadowing is an im- 
portant and integral component of any model that purports 
to extract roughness information remotely, we suggest 
that our discussion will have relevance to photometric 
roughness models in general. 

Confirmation and Extension of Previous Studies 

In the Beckmann (1965), Smith (1967a), and Wagner 
(1967) models, the scale of surface roughness was never 
directly addressed. Hapke (1984), however, explicitly as- 
sumed that surface roughness, and therefore shadowing, 
occurred at all scales. He suggested, though, that the sur- 
face reflectance would be dominated by the largest surface 
slopes, and that these would occur at the smallest scales 
since this is the range at which surface material strength 
and particle cohesiveness dominate over gravity. Helfen- 
stein (1988) was the first to test these hypotheses using a 
synthetically cratered and illuminated surface. He found 
that the photometrically derived value of Hapke's 8 was 

To briefly summarize the results of the previous section, equivalent to the value measured from the topographic 
we have found that the Smith, Wagner, and Hapke shadow- model at the smallest faceted scales. He further reasoned 
ing models can be approximated by the shadowing behav- that 3 was an integrated parameter describing the 
ior of a fractal surface with specific values of H and a roughness of all scales below the resolution of the sensor 
constant, linear relationship between their respective and above the size of the incident wavelength. Helfen- 
roughness Parameters and the fractal surface Parameter stein's results and interpretation were, however, based on 
so. The Bdanann  (1965) model could not be reproduced a single realization of a randomly cratered surface. We 
in any systematic fashion. As noted7 however, previous believe that our numerical experiment can extend these 
numerical work by E3mckelman and Hagfors (1966) has results to a much wider range of surfaces, and provide 
cast doubt on the validity of its derivation and we therefore additional insight into the physical interpretation of jj or 
exclude it from further consideration. related parameters. 

In our analysis, we have made the assumption that similar we first address the issue of the dominant surface scale 
shadowing behavior implies similar surface statistical be- at which shadowing occurs. our results suggest that the 
haviOr. If then we can that each smallest faceted scale is the dominant s a l e  for surface shad- 
of the surface be Y P e  owing. This does not mean that the smallest scale is the 
cific case of a general fractal surface model, i.e., a random only one to contribute to shadows on a surface, but only 
surface with a power law Eqs. that it contributes a much larger share than any other scale. 
('1 and (2). this suggest that One Or more are Take the example of a fractal Brownian surface (H = 0.5) 

cases of a (with fixed H), we with 1-cm facets and an RMS slope of 40' at this scale. If 
demonstrate this with our current empirical results. Given illuminated at an incidence angle of 50", then approxi- 
the range of fractal behavior observed on natural surfaces mately 208 of the surface would be in shadow (Table 
and the ability of fractal surfaces to mimic the analytic mod- I). If we took the same surface and added an additional 
els above, we suggest that incorporating a fractal surface 'ccrenulationn to create facets 1 cm in size, the RMS slope 
model into general scattering models would make them ap- at this scale would be 50" (using Eq. (2)). From Table 1, 
plicable to a wider range of planetary surfaces than possible approximately 338 of this surface would be in shadow, 
utilizing these or any other single parameter models. meaning that the additional crenulation is responsible for 

IV. THE SCALE OF SURFACE SHADOWING 40% of the overall shadowing. The smallest scales become 
of even greater importance for H < 0.5, and of less impor- 

As we have noted throughout this work, surface tance for H > 0.5. This result fits with our intuition of 
roughness changes with scale. Therefore, a question of natural surfaces and confirms that of Hapke (1984) and 
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the findings of Helfenstein (1988). What is new in this work 
is that we can quantify this intuitive knowledge, and extend 
it to a much greater range of surface types than pre- 
viously available. 

- Next, we address Helfenstein's (1988) interpretation of 
8 as a measure of the integrated surface roughness. This 
is entirely consistent with the concept of a fractal surface 
and the previous discussion. In the above example, a full 
40% of the total shadowing was due to the smallest facets. 
The remaining 60% was due to all the facets at larger scales. 
Therefore, we can consider the shadowing, and presumably 
any inferred photometric roughness, to be a function of 
all the scales of roughness "integrated" together. However, 
we note that the scale which quantitatively "controls" or 
"represents" the overall shadowing behavior of the surface 
is the smallest scale as defined above. Once that scale is 
set and defined, the remaining surface behavior is defined 
by the Hurst exponent (or fractal dimension). As before, 
what is new in this work is that we can now quantify this 
effect and extend it to a greater range of surface types. 

Speculations on  the Physical Meaning of 
"Smallest" Facet 

In all of the surface/shadow models considered here 
there is an explicit assumption that the surface is composed 
of smooth facets large compared with the wavelength of 
incident light. As noted earlier, however, facets are a mod- 
eler's contrivance-essentially, they are an approximation 
to the surface structure at scales smaller than those defined 
or measured. Interestingly, real surfaces continue to be 
fractal, not faceted, even at the micron scale, i.e., well 
below the geometric optics limit (cf. Brown and Scholz 
1985, Helfenstein et al. 1998). Under these conditions, we 
run into a "fractal paradox" in which every surface should 
be completely, or at least largely, shadowed. Since this is 
not observed, we wish to know the scale on a real surface 
at which the roughness "stops" and therefore corresponds 
to the "faceted" scale extracted from an analysis that in- 
cludes shadowing behavior. 

We must first carefully define what is meant by 
"roughness." Fractal surfaces obey two basic relationships 
(Eqs. (1) and (2)). First, the RMS height of a surface 
decreases as the scale of measurement decreases. Second, 
RMS slope increases as scale decreases. Although the two 
may seem incongruous, they are a result of self-affinity, 
i.e., the vertical scaling is "slower" than horizontal scaling. 
A surface may be considered "smooth" or faceted once 
vertical deviations are approximately 1110th the size of 
the wavelength, i.e., the Rayleigh criterion for roughness. 
Several geologic agents could create surfaces which meet 
this requirement, including eolian abrasion by submicromi- 
crometer dust, glacial or fault-induced polishing, and com- 
positionally dependent jointing and/or weathering. How- 

ever, under most geologic conditions, deviations of this 
small magnitude are not realized until the horizontal scales 
approach the order of a wavelength, again below the scales 
at which geometric optics are valid. 

Given the discussion above, we hypothesize that the 
scale of roughness that dominates shadowing, and by ex- 
tension photometric roughness, is the smallest scale at 
which shadows are still existent. In other words, we are 
suggesting that one or more processes remove shadows 
below some measurable scale, thereby rendering these 
scales effectively "invisible" to photometry and giving the 
appearance of a "faceted" surface. In support of this hy- 
pothesis is the recent observation of Helfenstein et al. 
(1998) that values of Hapke's 8measured from undisturbed 
lunar topography at submillimeter scales are systematically 
larger than those estimated from photometry. 

Two physical mechanisms can cause shadows to be effec- 
tively removed, both related to initial assumptions in most 
shadowing models. First, at scales approaching the wave- 
length of incident light, the diffraction of light around 
grains becomes a significant effect and shadows no longer 
exist. Under these conditions, one must assume that the 
shadowing behavior observed is dominated by the scale at 
which the assumptions of geometric optics become invalid, 
i.e., somewhat greater than the wavelength of incident 
light. 

Multiple scattering is a second mechanism which can 
effectively remove shadows. Higher order scattering events 
between adjacent particles or facet-like structures may be- 
come significant as the surface roughens andlor single scat- 
tering albedo increases. Under these conditions, contrast 
is reduced, and shadows become increasingly bright. 
Buratti and Veverka (1985) experimentally demonstrated 
that multiple scattering on a high albedo rough surface 
reduces shadow contrast and creates the appearance of a 
smoother surface. We speculate that this effect may be of 
importance, even on relatively dark surfaces, as the RMS 
slopes increase dramatically at millimeter or smaller scales. 
As adjacent areas of the surface increasingly expose more 
surface area to one another, light from transmission 
through adjacent particles and/or multiple surface reflec- 
tions may rival the incident light on surfaces tilted away 
form the source and brighten the shadows, thereby reduc- 
ing or removing contrast on an otherwise rough microstruc- 
ture. In addition to the critical role of the single scattering 
albedo, other factors contributing to this effect may include 
the single particle scattering phase function and particle 
size distribution. The "facet" scale would therefore be 
dependent upon intrinsic physical properties as well as the 
topographic expression of the surface. This interpretation 
suggests a fundamentally different treatment of multiple 
scattering in shadowing and photometric roughness model- 
ing. Rather than a property that invalidates traditional 
photometric models, we suggest that multiple scattering 



SHEPARD AND CAMPBELL 

may be a surface property that defines the scale to which 
these models are most sensitive. 

The discussions above suggest that the interpretation of 
surface roughness based on photometric behavior, and the 
use of a roughness parameter to compare different plane- 
tary surfaces, may be more complex than previously as- 
sumed. If our hypothesis is accurate, then it is almost cer- 
tainly true that the scale at which shadows are "erased" 
will differ for different surfaces, and may differ for the 
same surface at different wavelengths. This hypothesis can 
be tested both in the laboratory and/or on a planetary 
scale. One possible test would involve fitting the full Hapke 
model to observations of a single surface observed in multi- 
ple wavelengths. For the test to be convincing, the surface 
should have significantly different single scattering albedos 
at different wavelengths, and no Hapke parameters should 
be constrained by observations in other wavelengths, i.e., 
the assumption that some parameters are wavelength inde- 
pendent is not used. While many surfaces have been exam- 
ined in multiple wavelengths and inverted using the Hapke 
model, it has generally been assumed that roughness is 
independent of wavelength. 

V. SUMMARY 

Based upon the behavior of terrestrial surfaces and a 
limited sampling from the Moon and Mars, the most realis- 
tic and mathematically tractable model of planetary surface 
topography is a self-affine or fractal model. This type of 
model requires at least two parameters to define a surface: 
an RMS height or slope at a known, fixed scale, and a 
second parameter which controls the rate at which this 
parameter varies with scale. None of the shadowing and 
photometric models that we are aware of incorporate this 
type of surface model and instead utilize a single roughness 
parameter-typically the RMS slope at some unspecified 
scale. 

We have numerically determined the behavior of shad- 
owing on a wide range of fractal surfaces viewed at nadir 
and presented an empirical function that reproduces this 
behavior within the uncertainties of our analysis. A com- 
parison of the shadowing behavior of synthetic fractal sur- 
faces with the Smith (1967a), Wagner (1967), and Hapke 
(1984) shadowing functions suggests that the surfaces as- 
sumed by these authors can be approximated by specific 
cases of a general fractal surface model. 

tively removed and that this scale is a function of intrinsic 
surface roughness and other surface parameters such as 
single scattering albedo and particle phase function. If this 
hypothesis is correct, a surface roughness extracted photo- 
metrically will have a different physical meaning for differ- 
ent surfaces and for the same surface at wavelengths in 
which these other parameters differ significantly. While 
this interpretation precludes the direct comparison of to- 
pography from surface to surface, it may provide new in- 
sights into the processes that operate on planetary surfaces 
at the microscale. Future work should include testing this 
hypothesis and deriving a full photometric correction for 
fractal surface models. 
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