ABSTRACT

The highland valley networks are perhaps the most compelling evidence for widespread fluvial activity on Mars >3.5 Ga. However, determining the hydrology of these features has been difficult owing to poor image resolution and the lack of available topographic data. New orbital imaging reveals 21 late-stage channels within valley networks, which we use to estimate formative discharges and to evaluate water supply mechanisms. We find that channel width and associated formative discharge are comparable to terrestrial valley networks of similar area and relief. For 15 narrow channels in basin-filling networks, likely episodic runoff production rates up to centimeters per day and first-order formative discharges of ~300–3000 m³/s are similar to terrestrial floods supplied by precipitation. Geothermal melting of ground ice would produce discharges ~100 times smaller per unit area and would require pulsed outbursts to form the channels. In four large valleys with few tributaries, wider channels may represent large subsurface outflows or paleolake overflows, as these four channels originate at breached basin divides and/or near source regions for the catastrophic outflow channels.

Keywords: Mars, channels, discharge, runoff, Noachian Period.

INTRODUCTION

Most Martian valley networks date to the Noachian Period, generally inferred to be >3.7 Ga, when both impact cratering and erosion rates were higher than at present (Craddock et al., 1997; Carr, 1996; Hartmann and Neukum, 2001). Fluvial erosion is thought to be responsible for the branching valley networks, with water supplied by groundwater springs (Pieri, 1980; Gulick, 2001) or precipitation (Craddock and Howard, 2002). Support for past precipitation on Mars comes from tributaries that commonly head near sharp ridge crests where groundwater sources are unlikely (Fig. 1) (Milton, 1973; Masursky et al., 1977; Irwin and Howard, 2002), ubiquitous Noachian impact craters in the equatorial highlands that appear degraded by fluvial processes (Craddock et al., 1997; Forsberg-Taylor et al., 2004), and the need for recharge to support the erosion of valley network volumes (Howard, 1988; Goldspink and Squyres, 1991; Grant, 2000; Gulick, 2001; Craddock and Howard, 2002). Martian valley networks are immature if formed by runoff, with numerous enclosed drainage basins, headcuts, or knickpoints along their longitudinal profiles (Baker and Partridge, 1986; Aharonson et al., 2002; Irwin and Howard, 2002), and relatively sparse tributary development on intervalley surfaces (Carr, 1996; Malin and Carr, 1999).

The low abundance of chemical weathering products (Bandfield et al., 2000) and difficulty in modeling a warm atmospheric greenhouse (e.g., Haberle, 1998) are counterarguments to the concept of a warmer, wetter early Mars. Mariner 9 (1971–1972), Viking Orbiter (1976–1980), and Mars Global Surveyor (1997–present) imaging suggested that channels are extremely rare on valley floors, even where resolution was not a limiting factor (Pieri, 1980; Carr, 1996; Malin and Edgett, 2001). Here we use new and recent observations of interior channels to evaluate the water sources for valley networks. Channel dimensions provide the first empirical indication of formative discharge Q (m³/s) and runoff production rate P ($P = Q/A$) for Martian drainage basins as a function of drainage area, A. Results indicate that valley networks commonly formed in likely runoff-dominated but immature drainage basins, as well as by late-stage paleolake overflows and possible large subsurface outflows.

MARTIAN CHANNELS

At least eight exposed channel segments were identified within small valleys prior to this study, and we have identified 13 additional examples (Table 1; Fig. 2). This low occurrence may be largely due to more than 3.5 b.y. of evident eolian infilling and impact gardening (Hartmann et al., 2001) after fluvial activity ceased. Several other possible channels were identified in Mars Odyssey (2001–present) Thermal Emission Imaging System (THEMIS) visible (17–35 m/pixel) and infrared (100 m/pixel) imaging, but preservation or resolution prevented their use in this study.

Features identified herein as channels are elongated, flat-floored troughs that dissect the otherwise flat floors of larger branching valley networks (Fig. 2). In the few examples where we observe the confluence of a trunk and major tributary channel, the tributary channel dissects the valley floor to the level of trunk channel floor, suggesting contemporary activity. In contrast, short tributaries originating on...
individual valley sidewalls generally did not incise the channel banks, suggesting flow in the channel during or after activity of the valley wall gullies. The nearly constant width, sinuosity, branching planform with distributed levee wall gullies. The nearly constant width, the channel during or after activity of the valley.

\[\lambda = \frac{K_w}{W} \]
(1)

where \(K_w = 7–14 \) (Knighton, 1998). Otherwise, the channel segments have low sinuosity, as do the valley networks they occupy. The observed channels drained northward and most are located within the more heavily dissected regions on Mars, e.g., Margaritifer Sinus, Terra Cimmeria, and Terra Sirenum.

DISCHARGE AND RUNOFF PRODUCTION

Discharge was estimated in 19 of the 21 channels identified to date, using an empirical function that relates channel width \(W \) to discharge \(Q \) (with a recurrence interval of 2 yr) in alluvial channels of the Missouri River basin (Osterkamp and Hedman, 1982):

\[Q_2 = 1.9W^{1.22}. \]
(2)

Bankfull floods with recurrence intervals of 1–2 yr appear to control alluvial channel dimensions in many terrestrial humid regions, but limitations to this relationship are noted (Knighton, 1998, p. 162–167), and we imply no particular recurrence interval for the Martian channels. Equation 2 is most applicable to sand-bed channels with sand or silt banks, which have greater width per unit discharge than do channels that are confined by clay-rich or bedrock banks (Osterkamp and Hedman, 1982; Montgomery and Gran, 2001). We also measured width at relatively narrow, straight channel segments, and we used the channel floor rather than the bank-to-bank width, as the channels could be somewhat entrenched or the banks may have been laid back by subsequent mass wasting. Our discharge estimates are therefore conservative. To scale this empirical equation to Martian gravity, we use a combination of the unit-balanced continuity equation and empirical Manning equation, which is applicable to channels that are much wider than they are deep:

\[Q = HWV = H^{5/3}S^{1/2}g^{1/2}Wn^{-1}. \]
(3)

In equation 3, \(H \) is mean flow depth, \(V \) is mean velocity, \(S \) is slope, \(g \) is relative gravity (0.38), and \(n \) is the Manning roughness coef-
Figure 2. Channels on floors of Martian valley networks, using THEMIS (see Fig. 1) visible reference images listed in Table 1. A: Parana Vallis. B: Dawes-Mamers drainage basin. C: Samara Vallis. D: Durius Vallis. E: Licus Vallis. F: Cutoff meander loop (white arrow) and interior channel in Nirgal Vallis. Locations given in Table 1.

Figure 3. Comparison of discharge-area relationship between valley networks on Mars and drainage basins of similar area and relief in United States. S is Susquehanna River at Harrisburg, Pennsylvania; Y is Yukon River at Eagle, Alaska; C is Colorado River at Lee’s Ferry, Arizona; M is Missouri River at Omaha, Nebraska (Brush, 1961; Benson, 1962; Howard and Dolan, 1981; Osterkamp and Hedman, 1982; Kane and Janowicz, 1989). Discharge \(Q \) is shown for floods with recurrence interval of 2.0–2.33 yr, although no particular recurrence interval is implied for Mars. Regression equations are given for trend lines. Slope of Mars trend line and \(Q \) estimates would increase with greater assumed bank resistance.

Runoff production rate includes all water discharged by a river, regardless of whether it may have moved across part of a drainage basin in the subsurface. Some of the larger topographically defined drainage basins incorporate large plains surfaces and enclosed, degraded impact craters that may have contributed runoff or groundwater to the channel discharge. However, errors in the remaining area measurements (Table 1) are likely smaller, because these regions are heavily dissected and the drainage basins are sharply defined, with narrow undissected divides separating them from neighboring basins.

RESULTS AND CONCLUSIONS

Channel width, contributing area, formative discharge, and runoff production rates are given in Table 1. Channel width varies from \(\sim 100 \) to \(\sim 1000 \) m. Channels \(< 90 \) m wide were not observed, consistent with results from Mars Orbiter Camera studies (Malin and Carr, 1999), which may reflect the effectiveness of postfluvial erosion processes in eradicating or burying landforms of that size (Crandock and Howard, 2002). For 15 Martian valley networks that extend to topographic basin divides, our estimates of \(Q \) range from \(\sim 300 \) to \(\sim 3000 \) m\(^3\)/s and increase with contributing area (Fig. 3). Estimated runoff production rates for these 15 valley networks are 0.1–6 cm/d and decline with increasing area, as they do in terrestrial valley networks. Three larger valleys that originate at breached basin divides, including Nanedi Vallis, had formative discharges of \(\sim 3000–7000 \) m\(^3\)/s. The interior channel in Nirgal Vallis is similarly wide, but its tributaries do not extend to topographic divides, so its contributing area was not available for a runoff production rate. These four large channels may reflect drawdown of paleolakes and/ or subsurface outflows rather than the primary production of runoff from drainage basins.

Figure 3 shows the Martian \(Q \) and \(A \) results plotted against similar measured discharges with a 2 or 2.33 yr recurrence interval from diverse regions in the United States. Our data suggest that \(W \propto A^{0.27} \) (\(R^2 = 0.75 \)) and \(Q \propto A^{0.33} \) (\(R^2 = 0.75 \)) on Mars. These exponents are somewhat lower than is observed in terrestrial regions, where \(W \propto A^{0.43–0.5} \) and \(Q \propto A^{0.7–0.75} \) (Leopold et al., 1964; Montgomery and Gran, 2001). The discharge-area relationship for Mars partially reflects the Missouri River basin on which it is based, but the
width-area relationship also suggests that Martian drainage basins produced runoff inefficiently. This may reflect the low drainage density, the occurrence of level surfaces within the drainage basins, or the small size of Martian storm cells relative to contributing area. These empirical relationships for Mars could change with the introduction of more data.

Although both runoff and groundwater discharges should increase with contributing area, the discharges reported here are inconsistent with runoff production rates that are possible through ambient geothermal heat flux, such as melting of ground ice (Gulick, 2001) or basal melting of a thick snow pack (Carr and Head, 2003). Contemporary geothermal heat fluxes on Mars are thought to have been 0.05–0.15 W/m² (Schubert et al., 1992; Spohn et al., 2001), which, if the energy could be applied entirely to melting water ice, could produce as much as 14 kg/m² of water from the drainage basin. To account for estimated runoff production of 1 cm/d, locally greater heat fluxes or some mechanism for suddenly releasing area-dependent water volumes would be required. These channels represent flows toward the end of fluvial activity on Mars and may or may not be representative of conditions earlier in the Noachian Period. The preservation and low sinuosity of these wide channels suggest an abrupt decline in conditions that supported fluvial activity.

ACKNOWLEDGMENTS

This study was supported by National Aeronautics and Space Administration grant NAGS-13422 (Smithsonian Institution). Vic Baker, Mike Carr, and Oded Aharonson provided valuable and constructive reviews.

REFERENCES CITED

Manuscript received 1 November 2004
Revised manuscript received 2 February 2005
Manuscript accepted 5 February 2005
Printed in USA