INTRODUCTION
Mercurian lobate scarps were first discovered in *Mariner 10* images (Strom et al., 1975). Characterized as features unique in the solar system (Thomas et al., 1988), they are in fact similar in morphology to those found in the highlands of Mars (Watters, 1993; Watters and Robinson, 1996). In plan view, these scarps appear to be one-sided, often lobate, and occur in linear or arcuate segments. They are believed to have formed by thrust faulting on the basis of their morphology and the deformation of crater walls and floors (Strom et al., 1975; Cordell and Strom, 1977; Melosh and McKinnon, 1988; Watters, 1993; Schenk and Melosh, 1994). The compressional stresses that formed the lobate scarps are proposed to have resulted from either global contraction due to secular cooling of the interior, tidal despinning, or a combination of the two (Strom et al., 1975; Cordell and Strom, 1977; Melosh and Dzurisin, 1978; Pechmann and Melosh, 1979; Melosh and McKinnon, 1988). Tidal despinning models, however, predict a system of normal faults at Mercury’s poles that has not been observed (see Schubert et al., 1988). The formation of lobate scarps is generally thought to have occurred after the period of heavy bombardment (about 4 Ga), postdating the ancient tectonic fabric of the so-called mercurian grid (Strom, 1984; Melosh and McKinnon, 1988).

Moderate-scale mercurian scarps typically have lengths ranging from 20 to 150 km (Strom et al., 1975; Cordell and Strom, 1977; Dzurisin, 1978), and large-scale scarps have lengths >150 km (see Cordell and Strom, 1977, Fig. 3). The largest known lobate scarp on Mercury is Discovery Rupes (Fig. 1; note that only ~45% of Mercury has been imaged). Discovery Rupes is more than 500 km long, and its maximum relief has been estimated to be as low as 1 km and as high as 3 km (Strom et al., 1975; Dzurisin, 1978; Melosh and McKinnon, 1988; Schenk and Melosh, 1994). Although estimates of the dimensions of some of the mercurian lobate scarps are consistent with terrestrial thrust-fault structures (Strom et al., 1975; Cordell and Strom, 1977), the general lack of topographic data for Mercury has made comparisons problematic.

TOPOGRAPHY
Existing topographic data for Mercury have been derived from shadow measurements (Strom et al., 1975; Malin and Dzurisin, 1977; Pike, 1988), photoclinometry (Hapke et al., 1975; Mouginis-Mark and Wilson, 1981; Schenk and Melosh, 1994), point stereophotogrammetry (Dzurisin, 1978), and Earth-based radar altimetry (Harmon et al., 1986; Harmon and Campbell, 1988). New topographic data for 10 mercurian lobate scarps have been derived from photoclinometry and digital stereophotogrammetry using updated *Mariner 10* camera orientations (Davies et al., 1996; Robinson et al., 1997) and improved radiometry (Robinson and Lucey, 1997). A digital elevation model of the southern half of Discovery Rupes was generated by digital stereophotogrammetry (Fig. 2). These data represent the first two-dimensional stereophotogrammetry of a mercurian lobate scarp.

Digital stereophotogrammetry involves manually picking a few tie points to act as starting points for the automated stereo matching process, which subsequently finds corresponding points between the images (Day et al., 1992; Thornhill et al., 1993). The image pair coordinates found by the matcher are then fed through a stereo intersection camera model, and the closest point...
of intersection specifies the location and elevation of the corresponding ground points. The derived digital elevation model has a grid spacing of 1 km/pixel, and the relative vertical uncertainty of an individual matched point is <500 m. The digital elevation model indicates that Discovery Rupes has a maximum relief of ~1.5 km (Fig. 3). The average relief of the scarp over the general area encompassed by the profiles shown in Figure 3 is 1.3 ± 0.2 km \((n = 12)\). The relief of the southern segment of the scarp is generally <1 km, and the scarp face reaches a maximum slope of ~14°.

Photoclinometry was used to generate topographic profiles across Discovery Rupes and nine other lobate scarps including Santa Maria Rupes (another prominent large-scale scarp; 3.5°N, 19°W). These photoclinometric data provide an independent check of the accuracy of the stereo-derived digital elevation model. Employing the Lommel-Seeliger/Lambert photometric function (McEwen, 1991) that describes the photometric properties of the surface, and two empirically derived parameters, the scattered light value (which corrects for light scattered from surfaces outside a pixel into a given pixel) and the horizontal digital number (the brightness value of a horizontal surface within the image), the slope is recovered and the relative elevation calculated between adjacent pixels (Davis and Soderblom, 1984; Tanaka and Davis, 1988). A comparison of the average maximum relief determined from photoclinometric profiles \((n = 10)\) and profiles extracted from the digital elevation model \((n = 5)\) across the same area of Discovery Rupes indicates that the difference between the two methods is <10% (<100 m). The relief of the other lobate scarps analyzed with photoclinometry ranges from ~0.1 to 0.8 km. An Earth-based radar altimetry profile across Santa Maria Rupes shows that the scarp has a relief of 700 m (vertical uncertainty estimated to be 100 m for a horizontal surface within a resolution cell that is 0.15° longitude by 2.5° latitude or 6 × 100 km; Harmon et al., 1986). Photoclinometric profiles across Santa Maria, in the same location as the radar altimetry, indicate that the relief of the scarp is 712 ± 16 m (the error estimate is based on the variation in elevation for an error in the horizontal digital number of ±2; see Watters and Robinson, 1997).
ESTIMATES OF DISPLACEMENT AND HORIZONTAL SHORTENING

The simplest kinematic model for the formation of Discovery Rupes and other mercurian lobate scarps involves deformation associated with a thrust fault that propagates upward and breaks the surface. In this case, the amount of horizontal shortening is estimated assuming that it is a function of the dip of the fault plane and the displacement on the fault. Given the relief of the scarp \(h \) and the fault-plane dip \(q \), the displacement \(D \) necessary to restore the topography to a planar surface is given by

\[
D = h / \tan q
\]

and the horizontal shortening (this way is the uncertainty in the fault-plane dip). The uncertainty involved in estimating the displacement and horizontal shortening in this way is the uncertainty in the fault-plane dip.

The optimum angle \(q \) at which faulting will occur is given by \(\tan 2q = 1/\mu_s \), where \(\mu_s \) by analogy with ordinary sliding friction, is defined as the coefficient of internal friction (see Jaeger and Cook, 1979). Laboratory data on the maximum shear stress to initiate sliding for a given normal stress for a variety of rock types are best fit by a maximum coefficient of static friction of 0.6 to 0.9 (best fit \(\mu_s = 0.85 \)) (Byerlee, 1978). This suggests that thrust faults will form with dips from about 24° to 30° (~25° for \(\mu_s = 0.85 \)). Field measurements of \(q \) for thrust faults typically range between 20° to 25° (Jaeger and Cook, 1979). However, the Wind River thrust fault in Wyoming has an average \(q \) of 35° that extends to a depth of 36 km with a minimum of 21 km displacement (Brewer et al., 1980) and may have as much as 16 km of throw and 30 km of displacement (M. H. Anders, 1998, personal commun.). Thus it is assumed that thrust faults associated with mercurian lobate scarps will be within a range in \(q \) of 20° to 35°, and the optimum \(q \) is 25°. In the absence of any data to the contrary, it is assumed that fault-plane dips are uniform (i.e., linear, not curved or bent). The Wind River thrust fault (Brewer et al., 1980) and other thrust faults that cut the Precambrian basement of the Rocky Mountain foreland in Wyoming (Gries, 1983; Stone, 1985) are examples of terrestrial thrust faults that have uniform fault-plane dips that do not significantly steepen or shallow with depth. Some of these thrust faults steepen upward only where they cut Paleozoic sedimentary sequences (Stone, 1985). Using the Wind River thrust fault as an analog with a minimum throw of 12 km (based on 21 km of displacement on the fault), the horizontal shortening estimated using this method is 17 to 33 km for \(q \) in the range of 20° to 35° (~26 km at \(q = 25° \)).

The amount of horizontal shortening across Discovery Rupes based on a maximum relief of 1.5 km and a range in \(q \) of 20° to 35° is 2.1 to 4.1 km (~3.2 km at \(q = 25° \)). The range in horizontal shortening for the other lobate scars studied is 0.26 to 1.8 km at \(q = 25° \) (n = 9). It is important to note that these estimates assume there has been no significant translation of the fault block over the fault ramp onto the flat. If overthrusting is a significant component of the total horizontal shortening, these estimates are only lower limits. However, there is no significant difference in the diameter of Rameau crater, the larger of two craters cut by Discovery Rupes, regardless of the azimuthal orientation of the measured diameter. These measurements indicate that overthrusting is not a significant component of total horizontal shortening. Of the lobate scars studied, the only possible exception we have identified is Guido d’Arezzo crater, which is cut by Vostok Rupes (see Dzurisin, 1978).

COMPARISON WITH TERRESTRIAL FAULTS

Field observations of terrestrial faults indicate that a positive correlation exists between the maximum displacement on a fault \(D \) and the length of the fault trace \(L \) (Cowie and Scholz, 1992; Gillespie et al., 1992; Dawers et al, 1993; Cartwright et al., 1995). The ratio of displacement to fault length \(D/L \), defined as \(\gamma \), ranges between 10⁴ and 10⁵ for terrestrial faults (Cowie and Scholz, 1992). The scatter in the \(D \) and \(L \) data may reflect the growth of faults by segment linkage where the scaling characteristics change at different stages of fault evolution (Dawers and Anders, 1995; Cartwright et al., 1995; Wojtal, 1996). Cowie and Scholz (1992) suggested that the \(D/L \) relationship for continental faults is linear, such that \(D = \gamma L \) and \(\gamma \) is determined by rock type and tectonic setting. The value of \(\gamma \) for the mercurian lobate scarps studied (obtained by a linear fit to \(D-L \) data, estimates of \(D \) being based on \(q = 25° \)) is 6.5 × 10⁻³, consistent with the values of \(\gamma \) of terrestrial fault populations (see Cowie and Scholz, 1992). The displacements on the faults associated with lobate scarps are about an order of magnitude lower than those of the terrestrial thrust faults shown in Figure 4. This is likely a reflection of the difference in tectonic setting. Most terrestrial thrust faults are in foreland fold and thrust belts located at convergent plate margins where the structures accumulate large amounts of strain, i.e., the deformation is driven by plate tectonics. By contrast, thrust faulting on Mercury is distributed throughout the crust (Strom et al., 1975; Cordell and Strom, 1977) and is driven by global contraction due to a small change in the radius of the planet.

DISCUSSION

The distributed nature and random orientations of the mercurian thrust faults (Cordell and Strom, 1977) indicate that compressional stresses were global and horizontally isotropic, consistent with compressional stresses resulting from global contraction due to secular cooling. Estimates of the cumulative shortening and the decrease in radius reflected by the lobate scarps are an important constraint on thermal history models for Mercury (Solomon, 1976, 1977; Schubert et al., 1988; Phillips and Solomon, 1997). Thermal history models predict a 2 km decrease in the planet’s radius due to secular cooling of the interior (Solomon, 1976, 1977). The first estimate of the decrease in Mercury’s radius resulting from global contraction was made by Strom et al. (1975). They determined that the cumulative shortening due to lobate scarp formation resulted in a net decrease in surface area of 6.3 × 10⁴ to 1.3 × 10⁵ km², corresponding to a decrease in the radius of Mercury of about 1 to 2 km. The decrease in surface area was estimated by calculating horizontal shortening (\(S \)) assuming an average throw of 1 km (based on a range of maximum relief of 0.5 to 3 km) and \(q \) of 45° and 25°, respectively. The resulting \(S \) was multiplied by the total length of the scarps (15150 km) mapped over the area studied (~24% of the surface) to determine the decrease in area, and this decrease was then extrapolated to the entire surface. Adjusting the Strom et al. (1975) estimate using the upper and lower limits for \(q \) applied in this study (35° and 20°), the decrease in surface area becomes 9.09 × 10⁴ to 1.75 × 10⁵ km² and the corresponding decrease in radius is about 1.5 to 2.9 km.

We used an alternate method to that employed by Strom et al. (1975) to estimate the decrease in radius. This method involved determining the compressional strain utilizing displacement (\(D \)) and length (\(L \)) data for the lobate scarps. If the displacement-length scaling relationship of a fault population is known, the strain can be calculated using fault lengths alone (Scholz and Cowie, 1990; Cowie et al., 1993). The strain for large faults (\(L \geq \) the maximum depth of faulting) is given by

\[
\varepsilon = \frac{\cos q}{A} \sum_{k=1}^{n} D_k L_k
\]

where \(\varepsilon \) is the fault-plane dip, \(A \) is the size of the survey area, \(n \) is the total number of faults, and \(D = \gamma L \) (Cowie et al., 1993). The lengths of lobate scarps \((n = 52) \) were measured between 70°N and 70°S and 10°W to 90°W, an area covering about 19% of the surface of Mercury. Discovery and Santa Maria Rupes are within the survey area. Over a range in \(q \) of 20° to 35°, the compressional strain is estimated to be between 0.051% and 0.056% for \(q = 25° \). Assuming that the survey area is representative of the entire surface, the corresponding decrease in the radius of the planet is between ~0.62 and ~0.71 km (~0.69 km for \(q = 25° \)). This is below the range estimated by Strom et al. (1975) and predicted by current thermal history models (Solomon, 1976, 1977). Furthermore, the strain is not evenly distributed over the survey area. The compressional strain found in the southern (70°S to 20°S), equatorial (20°S to 20°N), and northern (20°N to 70°N) sections of the survey area is about 0.086%, 0.028%, and 0.058%, respectively.

Manuscript received April 9, 1998
Revised manuscript received July 17, 1998
Manuscript accepted July 30, 1998