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Abstract—Phylogenomics, the use of large-scale data matrices in phylogenetic analyses, has been viewed as the ultimate
solution to the problem of resolving difficult nodes in the tree of life. However, it has become clear that analyses of these
large genomic data sets can also result in conflicting estimates of phylogeny. Here, we use the early divergences in Neoaves,
the largest clade of extant birds, as a “model system” to understand the basis for incongruence among phylogenomic
trees. We were motivated by the observation that trees from two recent avian phylogenomic studies exhibit conflicts. Those
studies used different strategies: 1) collecting many characters [~42 mega base pairs (Mbp) of sequence data] from 48
birds, sometimes including only one taxon for each major clade; and 2) collecting fewer characters (~0.4 Mbp) from 198
birds, selected to subdivide long branches. However, the studies also used different data types: the taxon-poor data matrix
comprised 68% non-coding sequences whereas coding exons dominated the taxon-rich data matrix. This difference raises the
question of whether the primary reason for incongruence is the number of sites, the number of taxa, or the data type. To test
among these alternative hypotheses we assembled a novel, large-scale data matrix comprising 90% non-coding sequences
from 235 bird species. Although increased taxon sampling appeared to have a positive impact on phylogenetic analyses
the most important variable was data type. Indeed, by analyzing different subsets of the taxa in our data matrix we found
that increased taxon sampling actually resulted in increased congruence with the tree from the previous taxon-poor study
(which had a majority of non-coding data) instead of the taxon-rich study (which largely used coding data). We suggest
that the observed differences in the estimates of topology for these studies reflect data-type effects due to violations of the
models used in phylogenetic analyses, some of which may be difficult to detect. If incongruence among trees estimated
using phylogenomic methods largely reflects problems with model fit developing more “biologically-realistic” models is
likely to be critical for efforts to reconstruct the tree of life. [Birds; coding exons; GTR model; model fit; Neoaves; non-coding
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DNA; phylogenomics; taxon sampling.]

INTRODUCTION

Advances in genomic data acquisition and
bioinformatics have led to the genesis of a novel
field of evolutionary biology, phylogenomics (Delsuc
et al. 2005). Phylogenomics was expected to signal the
“end of incongruence” in phylogenetics (Gee 2003)
and, potentially, to represent the ultimate solution for
resolving “bushes” (soft polytomies) in the tree of life
(Delsuc et al. 2005; Rokas and Carroll 2006). Recent
advances in sequencing technologies have made it
possible to obtain very large phylogenetic data sets by
using methods such as sequence capture (Faircloth et al.
2012; Prum et al. 2015; Hosner et al. 2016), transcriptome
sequencing (Misof et al. 2014; Wickett et al. 2014), and
whole-genome sequencing (Jarvis et al. 2014). Thus,

phylogenomics seemed poised to fulfill this promise
to resolve the tree of life. However, analyses of large
data matrices have sometimes yielded incongruent
topologies, emphasizing that data collection alone is
not sufficient to reach this goal. Herein, we assess
the potential of phylogenomics to accurately resolve
phylogenetic bushes by examining an extremely difficult
phylogenetic problem, the early evolution of birds.

The ability of phylogenomics to resolve the tree of life
may be limited by the existence of bias in phylogenetic
estimation (Jeffroy et al. 2006). Sources of bias include
long-branch attraction (Felsenstein 1978a; Hendy and
Penny 1989), base composition convergence (Jeffroy
et al. 2006; Katsu et al. 2009), and topological errors
that can emerge when the sequences being analyzed
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evolved on a mixture of gene trees (Kubatko and Degnan
2007; Matsen and Steel 2007; Roch and Steel 2014). If
bias exists, phylogenetic analyses will converge on an
incorrect result with increasing certainty as data are
added (Swofford et al. 2001). Increased taxon sampling
is one way to improve phylogenetic accuracy, helping to
overcome some biases, and there are many examples of
“problem” trees that have been improved by adding taxa
(Hillis 1996; Pollock et al. 2002; Zwickl and Hillis 2002;
Soltis et al. 2004); however, increased taxon sampling
is not a panacea (Poe and Swofford 1999; Braun and
Kimball 2002), and there are cases where appropriate
taxa simply do not exist (e.g., no organisms exist that
can break up the long branches leading to Amborella
in angiosperms, to coelacanths in vertebrates, or to the
hoatzin in birds).

The challenge posed by bias in phylogenetic analyses
raises a fundamental question: can phylogenomics
actually resolve difficult nodes in the tree of life? This
study asks a related but more focused and practical
question: are the evolutionary models implemented
in available phylogenetic software sufficient to resolve
difficult phylogenetic trees accurately using large
sequence data sets? Here, we seek insight into this
question by testing specific hypotheses about the early
evolution of birds, a phylogenetic problem that has
remained intractable despite a steady stream of large-
scale efforts to resolve relationships among major avian
lineages (e.g., Hackett et al. 2008; Kimball et al. 2013;
McCormack etal. 2013; Jarvis et al. 2014; Prum et al. 2015).

Birds as a Model System for Phylogenomics

In view of the continuing absence of trustworthy
information on the relationship of the highest
categories of birds to each other it becomes strictly
a matter of convention how to group them into
orders. Science ends where comparative morphology,
comparative physiology, comparative ethology have
failed us after nearly 200 years of efforts. The rest is
silence.—Stresemann (1959).

It has been appreciated for some time that the most
species-rich avian clade, Neoaves (Fig. 1), underwent
an extremely rapid radiation (Groth and Barrowclough
1999; Cracraft et al. 2004; Ericson et al. 2006). In fact,
Poe and Chubb (2004) suggested that the base of
Neoaves could represent a hard polytomy (simultaneous
speciation events) based on power analyses. The
hard polytomy hypothesis was consistent with the
observation that ordinal relationships in trees published
prior to 2008 showed only slightly greater congruence
than expected in random trees (cf. Table 4 in Chojnowski
et al. 2008). However, Hackett et al. (2008) falsified the
Poe and Chubb (2004) hard polytomy hypothesis, at
least partially, when they analyzed 19 unlinked nuclear
loci and found a topology (the “Early Bird tree”) with
many well-supported nodes that was also robust to gene
jackknifing. Much of the structure in the Early Bird

topology has been corroborated by subsequent analyses
that used independent sets of loci (Wang et al. 2012;
Kimball et al. 2013; McCormack et al. 2013; Smith et al.
2013), including some analyses based on very large data
matrices (e.g., Fig. la Jarvis et al. 2014 and Fig. 1b
Prum et al. 2015). These advances have led to increased
confidence in relationships among the major lineages in
Neoaves (see Fig. 1 and Supplementary Fig. S1, available
on Dryad at http://dx.doi.org/10.5061/dryad.6536v).

Continued data collection for large-scale phylogenetic
studies, however, has not resulted in a consistent
resolution of the deep branches of the bird tree.
Specifically, the Jarvis et al. (2014) “total evidence
nucleotide tree” (TENT, Fig. 1a), based on 42 Mbp of
data extracted from 48 complete avian genomes, and the
Prum et al. (2015) (Fig. 1b) tree, based on 0.4 Mbp of data
from 259 loci obtained by sequence capture (anchored
hybrid enrichment) and sampled for 198 bird species,
exhibit a number of conflicts. For instance, these two
trees differ in the groupings of the earliest split within
Neoaves (compare Fig. 1a and 1b) and the presence of
a clade of mainly aquatic birds in the Prum tree that
directly contradicts the Jarvis TENT. Both Jarvis et al.
(2014) and Prum et al. (2015) report strong support for
all of their relationships.

The conflicts between the Jarvis TENT and Prum
tree are surprising given the size of the data matrices
analyzed in each study. Prum et al. (2015) suggested that
the differences reflect greater taxon sampling in their
tree. If true, this would provide a striking example of
the assertion that “...a much broader sample of taxa
(perhaps sequenced for far less than full genomes) will
result in a much more accurate estimate of phylogeny
than will complete genomes of only a small number
of taxa” (Hillis et al. 2003). Although there are cases
where adding taxa reduces support and/or results in
decreased phylogenetic accuracy (e.g., Poe and Swofford
1999; Sanderson and Wojciechowski 2000; Braun and
Kimball 2002; Meiklejohn et al. 2014), adding taxa
usually improves phylogenetic accuracy (reviewed by
Heath et al. 2008). Moreover, one could argue that the
observation that many different topologies result from
analyses of subsets of the Jarvis et al. (2014) data, despite
the use of the same taxa and analytical methods (e.g.,
Fig. 1c vs. Fig. 1d), reflects instability due to poor taxon
sampling. This conclusion might lead one to embrace
the Prum et al. (2015) topology given its denser taxon
sampling. However, we believe itis important to examine
alternative hypotheses that can explain the differences
between the Jarvis TENT and Prum tree.

Hj: Insufficient signal—The size of the Prum et al.
(2015) data matrix (the number of sites, the number
of genes, or both) is insufficient to converge on the
topology expected given complete genomes. We
note that it is possible that the Jarvis et al. (2014)
TENT data matrix (~3.2% of the typical avian
genome) may not be large enough for analyses
to converge on the hypothetical “whole-genome
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FIGURE 1.

Recent estimates of Neoaves phylogeny. a) The Jarvis et al. (2014) TENT, based on 42 Mbp (46% intron, 32% exon, 22% non-coding

UCESs) extracted from complete genomes. The “magnificent seven” (clades i-vii) and the “Jarvis indicator clades” (J1 and J2) are highlighted.
b) The Prum et al. (2015) tree, based on 0.4 Mbp (82.5% exonic) obtained by sequence capture with the “Prum indicator clades” (P1 and P2)
indicated. c) Jarvis et al. (2014) intron tree, with the “Jarvis non-coding indicator clade” (J3y) identified. d) Jarvis et al. (2014) c12 coding exon
tree with a Prum indicator clade (P1) and an aquatic/semiaquatic clade similar to the clade P2 (P2;). The simplified names (J and P) are used
here to indicate clades that appear to be diagnostic for each of the two topologies; we provide full clade names from Jarvis et al. (2014) and Prum
et al. (2015) in Supplementary File S3. We present ordinal names (based on Cracraft 2013) in Table 1 and in Supplementary File S3. Bootstrap
support (based on the original publications) is below branches; “*” indicates 100% support.
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topology”. Indeed, it is possible that even whole-
genome data are insufficient to resolve avian
phylogeny (this would be indistinguishable from
a hard polytomy).

Hj: Hard polytomy—The base of Neoaves includes
at least some major lineages that form a hard
polytomy, as suggested by Poe and Chubb (2004).
This hypothesis is important to reconsider because
Suh (2016) recently suggested that a hard polytomy
(albeit one involving fewer lineages than suggested
by Poe and Chubb 2004) could explain the
observed conflicts among phylogenomic studies.
The expected set of gene trees given a hard
polytomy reflects only the random sorting of alleles
into descendant lineages (cf. Slowinski 2001).

Hj: Taxon sampling—The increased taxon sampling
in the Prum et al. (2015) study relative to Jarvis
et al. (2014) results in different estimates of the
bird tree. This hypothesis predicts that analyses
of data matrices with increased taxon sampling
should converge on the Prum tree topology.

Hy: Data-type effects—The differences between the
Prum tree and Jarvis TENT reflect the use of
different data types [i.e., primarily coding exons
for the Prum tree vs. a mixture of exons, introns,
and non-coding ultraconserved elements (UCEs)
in the Jarvis TENT]. Although this hypothesis has
not been articulated explicitly in previous studies,
Jarvis et al. (2014) did note differences among the
trees resulting from analyses of different data types
(e.g., Fig. 1c and 1d). This hypothesis predicts that
estimates of phylogeny obtained by analyzing the
same data type will converge on the same topology
regardless of taxon sampling.

Given the interest in the multispecies coalescent
methods for phylogenetic analyses (e.g., Edwards 2009;
Edwards et al. 2016) it may seem desirable to add
an Hs that invokes gene tree—species tree discordance.
However, this hypothesis is not viable as an explanation
for the observed differences between the Prum tree
and Jarvis TENT. Both trees reflect analyses of large
samples of concatenated genes from many locations
in the genome. Even if the avian species tree lies in
the anomaly zone, that part of treespace where the
most common gene tree disagrees with the species tree
(Degnan and Rosenberg 2006; Rosenberg 2013), analyses
of concatenated data are still expected to converge on
the same estimate of phylogeny as data are increased. Of
course, the tree resulting from analyses of concatenated
data would be an incorrect estimate of phylogeny if
the true species tree lies in the anomaly zone. But the
observation that motivated this study (incongruent trees
generated by analyses of concatenated data) would not
be expected because the same topology is still expected
to emerge from concatenated analyses whenever a
sufficient number of loci are sampled (Kubatko and
Degnan 2007). It is possible that the 259 loci sampled

by Prum et al. (2015) are insufficient to converge on the
same tree as the Jarvis TENT, which is based on more
than 12,000 loci. However, that would be a special case
of Hj. Under that scenario, the underlying reason for the
observed incongruence would indeed be discordance
among gene trees, but the only reason we observe that
incongruence is that the sample of gene trees for the 259
loci in the Prum et al. (2015) data set do not provide
sufficient information to converge on the tree expected
given all orthologous genes in bird genomes. For this
reason, we do not consider discordance among gene
trees to be a distinct explanation for the differences
between the Prum and Jarvis trees.

The high level of support that Prum et al. (2015) report
for their tree suggests we should reject H; (insufficient
signal). However, the high degree of support reported in
Fig. 1 of Prum et al. (2015) reflects the use of Bayesian
posterior probabilities. Bayesian MCMC methods can
overestimate support (Alfaro et al. 2003; Simmons et al.
2004), especially when the model of evolution used in the
analysisis misspecified (Buckley 2002) or incorrect priors
are used (Yang and Rannala 2005). Maximum-likelihood
(ML) bootstrap analysis of the Prum et al. (2015) data
(presented in their Supplementary Information) yields
much more limited (often <50%) support for many
important clades (Fig. 1b). This limited support includes
some clades that correspond to critical differences
between the Prum tree and Jarvis TENT (i.e., clades P1
and P2 in Fig. 1b). Thus, the degree of confidence in the
clades recovered by Prum et al. (2015) that contradict the
deep clades in the Jarvis TENT (i.e., clades J1 and ]2 in
Fig. 1a) depends on whether the priors and the fit of the
model used for the Bayesian analysis were sufficient to
yield accurate posterior probabilities.

Congruence offers a more appropriate test of Hy. Hy
postulates that the number of sites and/or loci in a
specific data set is not sufficient for analyses of those data
to converge on the topology expected given all genes.
Thus, trees based on two different data sets are expected
to differ for trivial reasons if Hj is true for one (or both)
the data sets. We can reject H; for a specific data set
if estimates of phylogeny contain one or more specific
clades that were defined a priori and the probability
of observing the specified clade (or clades) by chance
alone is low (e.g., finding a specific clade given a rooted
three-taxon tree is unsurprising but finding a specific
five-taxon clade in a rooted 10-taxon tree would be
highly significant). The early evolution of Neoaves can be
viewed as a rooted 10-taxon tree. This reflects the fact that
there are seven superordinal clades, which we call the
“magnificent seven,” in a strict consensus of the Jarvis
TENT and Prum tree (Fig. 1 and Supplementary Fig.
51, available on Dryad). This places 10 lineages in play
when the magnificent seven are combined with the three
“orphan orders” (shorebirds, cranes, and the monotypic
hoatzin) that cannot be placed in a strongly corroborated
superordinal clade. There are more than 34 million
possible rooted 10-taxon trees (Felsenstein 1978b), and
very few of those trees split Neoaves into either clades
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J1 and J2 or clades P1 and P2 (Supplementary File S1
and Supplementary Fig. S1, available on Dryad). Thus,
recovery of a tree with either of those sets of clades would
be highly unlikely to occur by chance. We proposed these
“indicator clades” based on comparisons of the trees in
Jarvis et al. (2014) and Prum et al. (2015); thus, their use
to test H; requires a novel data set. If an estimate of
phylogeny obtained by analyzing a novel data matrix
contains clades J1 and J2 or clades P1 and P2 we can
argue, based on congruence with either the Jarvis TENT
or the Prum tree, that Hj is unlikely to be correct.

Asufficient test of Hp (the hypothesis that the existence
of a hard polytomy explains the differences between the
Jarvis TENT and Prum tree) is difficult to undertake.
The existence of a hard polytomy can be corroborated if
one finds an unresolved topology and establishes that
the amount of data analyzed is sufficient to resolve
the relevant internal branches (see Braun and Kimball
2001). However, analyses of simulated data generated
on “star phylogenies” (trees with hard polytomies)
sometimes yield trees that include clades with high
support (Suzuki et al. 2002; Steel and Matsen 2007). This
“star tree paradox” has been observed in both Bayesian
(e.g., Lewis et al. 2005) and ML analyses (Susko 2008).
However, Hj is certainly not untestable. Moreover, our
articulation of Hp actually has two parts: 1) the base of
Neoaves is a hard polytomy for at least some lineages
(e.g., the magnificent seven and the orphan orders);
and 2) the hard polytomy explains the incongruence
among phylogenomic estimates of the bird tree. The star
tree paradox occasionally results in high support for
a random resolution but analyses of different samples
of the genome are expected to yield contradictory
topologies (often without support). Thus, the recovery
of many different trees when independent subsets of the
genome are analyzed, even if some clades appear to be
strongly supported in some (but never all) of the trees,
would be consistent with the hard polytomy hypothesis.
The argument from congruence with prior estimates of
phylogeny (i.e., the presence of indicator clades based on
the Jarvis TENT and Prum tree in this study) that can be
used to assess H1 can also be used to test Hy. Thus, Hj is
unlikely to be correct if we analyze another data matrix
comprising an arbitrarily chosen and independent set
of loci and it yields a tree with either J1 and J2 or P1
and P2.

In contrast to H; and Hj, for which tests are
subtle, assessing H3 (the taxon sampling hypothesis) is
straightforward. All that is necessary is to subsample
taxa from the study with more extensive taxon sampling.
Prum et al. (2015) performed such a test and found that
the resulting reduced-taxon tree [hereafter “Prum (Javis
taxon set)”] lacked clade P1. Although Prum et al. (2015)
interpreted this as support for Hj it is important to note
that clade P2 was present in the Prum (Jarvis taxon set)
tree. Since the presence of clade P2 is incompatible with
the existence of clades J1 and J2 (see Fig. 1a), simply
reducing the number of taxa included in analyses of the
Prum et al. (2015) data matrix is not sufficient to shift the

topology of the Prum tree to that of the Jarvis TENT (if
we view the presence of clades J1 and ]2 as markers for a
“Jarvis-like” tree). Since the taxon-sampling experiment
conducted by Prum et al. (2015) is ambiguous, a different
test of H3 is necessary. It is possible to conduct such a test
and corroborate (or falsify) Hs, at least in principle, by
examining the results of analyses using an independent
data matrix with a more extensive taxon sampling.

The final hypothesis, Hs, postulates that data type is
a critical variable. Both our group and others (Jarvis
E., personal communication) observed that the Prum
tree exhibits striking similarities, such as the presence
of clade P1, to the Jarvis et al. (2014) coding exon tree
(Fig. 1d). In addition to clade P1, the Jarvis et al. (2014)
exon tree contains an aquatic/semiaquatic clade (P2,
in Fig. 1). There are a priori reasons to believe that the
aquatic/semiaquatic clades P2 and P2; are effectively
the same. Jarvis et al. (2014) sampled a single crane and
Prum et al. (2015) specifically highlighted two orders as
undersampled by Jarvis et al. (2014): cranes and rails
(Gruiformes) and shorebirds (Charadriiformes). Thus,
P2; could reflect rogue behavior of the single crane
included in the Jarvis et al. (2014) study. The Prum
etal. (2015) data matrix largely (>80%) comprises coding
data (Supplementary File S2, available on Dryad) and is
therefore largely the same data type as the Jarvis et al.
(2014) exon tree. In contrast, the data used to generate
the Jarvis TENT (Fig. 1a) are 68% non-coding, a fact that
is especially important when we consider that the Jarvis
TENT is much more congruent with those trees in Jarvis
et al. (2014) that were estimated using only non-coding
data [i.e., the intron tree (Fig. 1c) and the UCE tree (see
Fig. 4b in Jarvis et al. (2014)]. These observations are the
basis for our hypothesis (Hy) that data type could be an
important variable.

There are several considerations when using indicator
clades. First, a general consideration is that indicator
clades should be chosen before analyses of a new
data matrix and they should reflect comparisons of
“independent trees” (i.e., trees estimated using data
from non-overlapping subsets of the genome). Clade
J2 is present in two independent trees (the intron and
UCE trees from Jarvis et al. 2014), as was a second
clade (J3y), which is present only in trees that are based
exclusively on non-coding data (e.g., Fig. 1c). In contrast,
the other indicator clades (J1, P1, and P2/P2;) were not
identified using comparisons of completely independent
trees. However, those indicator clades are present in
multiple published trees with large amounts of non-
overlapping data (Supplementary File S1, available on
Dryad). Specifically, clade J1 is present in three different
Jarvis trees that are dominated by non-coding data,
the intron tree, TENT, and a “whole-genome tree”
based on 322-Mbp of many different data types (see
Supplementary File S1, available on Dryad). Likewise,
P1 and P2/ P2; are present in the Prum tree and two
different Jarvis exon trees. Second, a consideration
specific to this study is that one must assume at least
a weak data-type effect in addition to a taxon-sampling
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effect to use P1 and P2; as indicator clades for Hj since
both are present in the Jarvis et al. (2014) exon trees
(e.g., Fig. 1d). This data-type effect could be the lower
rate of substitution in exons, which could make analyses
of exons less susceptible to long-branch attraction (thus
reducing the need for increased taxon sampling). We can
address both of these concerns by examining the tree
distances among the estimates of phylogeny to see if trees
cluster by taxon sampling (Hz3) or data type (Hy). Thus,
we view the indicator clade and tree distance approaches
as complementary.

Here, we test the hypotheses described above, with a
special focus on the taxon sampling (H3) and data type
(Hy4) hypotheses, by evaluating analyses of a novel data
matrix in light of the results published by Jarvis et al.
(2014) and Prum et al. (2015). Specifically, we recognized
that performing analyses of a matrix that primarily
comprises non-coding data (comparable to the Jarvis
TENT) but with taxon sampling comparable to Prum
et al. (2015) would result in a set of analyses analogous
to a2 x 2 factorial experiment (Fig. 2) to assess the
impact of taxon sampling and data type. To produce the
novel data matrix, we generated a largely intronic data
set by combining published data matrices (from Hackett
et al. 2008; Braun et al. 2011; Wang et al. 2012; Kimball
et al. 2013; Smith et al. 2013) and adding novel genes and
taxa to the matrix. This resulted in a data set we refer
to as Early Bird II (EB2) that comprises 54 loci sampled
from up to 235 bird species (Table 1 and Supplementary
File 53, available on Dryad). We also performed taxon
sampling experiments, reducing the EB2 taxon set to
the same 48 taxa as Jarvis et al. (2014) and to a second
taxon set of intermediate size (120 taxa) that bisected
long branches as much as possible. We examined the
presence or absence of the mutually exclusive indicator
clades present in the Jarvis TENT (clades J1 and ]2)
or in the Prum tree (clades P1 and P2/P2j). We also
assessed the distances among the estimates of phylogeny
obtained as part of this study and the Jarvis et al.
(2014) trees [including the Suh et al. (2015) transposable
element (TE) insertion tree based on the Jarvis data]
and the Prum et al. (2015) trees. The results of these
analyses have implications for the theory and practice
of phylogenomics that extend beyond the information
they provide about the avian tree of life.

MATERIALS AND METHODS

Data Collection and Sequence Alignment

We assembled a 54-locus data set (Supplementary File
S4, available on Dryad) by producing new sequences
and extracting data from draft genome assemblies
(listed in Supplementary File S3, available on Dryad)
and combining those novel data with sequences
collected in previous studies (Hackett et al. 2008;
Braun et al. 2011, Wang et al. 2012; Kimball et al.
2013; Smith et al. 2013). We added four loci that were
not sampled prior to this study and 66 species (both

for novel loci and the previously sampled loci). We
generated PCR amplicons for the new sequences using
standard methods described by Kimball et al. (2009) and

assembled contigs using Sequencher ™ 4.1 (Gene Codes
Corp.). The new sequences generated by PCR have
been deposited in GenBank with accession numbers
KY762311-KY763958. We also extracted data from
genome sequences using a custom pipeline. Briefly,
we used nhmmer (Wheeler and Eddy 2013) to search
genome sequences using profile hidden Markov models
(HMMs) for each gene region as queries. We generated
the query HMMs using the alignments of data generated
by PCR and Sanger sequencing. This pipeline (available
from hittps://github.com/aakankshal2/Extract_seq)
allowed us to extract sequences from genome assemblies
regardless of the quality of the annotation for those
genome sequences. Although many published avian
genomes, like those used to generate the data set
used in Jarvis (described by Zhang et al. 2014), are
relatively well annotated this is not the case for all
avian genome assemblies. Our pipeline allowed us
to include these low-coverage genome assemblies,
like the Gunnison sage-grouse (Centrocercus minimus)
and Clark’s nutcracker (Nucifraga columbiana) genome
sequences (Card et al. 2014).

Since some taxa with genomic data were also in
published matrices, our alignment had sequence data
from 258 individuals of 235 species (Supplementary File
53, available on Dryad). Our data set sampled diverse
taxa representing members of all orders of birds as
circumscribed in all modern checklists (Cracraft 2013;
Clements et al. 2015; Gill and Donsker 2016); we used
the Howard and Moore 4th edition checklist for species
names and other taxonomic information (Dickinson
and Remsen 2013; Dickinson and Christidis 2014). We
assembled four data matrices, each of which included
data from all 54 loci: 1) ALL (258 taxa, 137,463 bp): all
data, including multiple individuals of some species;
2) EB2 (235 taxa, 137,324 bp): all species with duplicate
individuals removed (we selected sequences extracted
from genome sequences whenever available); 3) KIM
(120 taxa, 118,233 bp): data from species sampled by
Kimball et al. (2013), which attempted to maximally
subdivide long branches in the avian tree, supplemented
with data extracted from genome sequences; and 4) JAR
(48 taxa, 91,483 bp): the species used by Jarvis et al.
(2014). All of these data matrices contain substantial
missing data, reflecting the large number of insertions
and deletions (indels) that accumulate in introns and
untranslated regions (UTRs) and the limitations of PCR-
based sampling. The specific taxa included in each taxon
set are listed in Supplementary File S3, available on
Dryad. We also conducted analyses after excluding the
limited amount of coding exon data in the EB2 matrix.

We aligned our sequences using MUSCLE v. 3.8.31
(Edgar 2004), which we chose because it appeared to
generate the best multiple sequence alignments in our
previous analyses of intronic data (Wang et al. 2012).
Afterward, we examined each alignment manually
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Analytical Design
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FIGURE 2.

Our analyses are analogous to a 2 x 2 factorial examination of the impact of data type (coding exon vs. non-coding) and

taxon sampling. We conducted analyses of various versions of the EB2 data matrix. Specifically, we predicted that analyses of EB2 will yield
a “Jarvis-like tree” (one with clades J1 and J2) if Hy is true, a “Prum-like tree” (one with clades P1 and P2/P2) if H3 is true, and a different
(and potentially poorly supported) tree if Hy or H; are correct. Hy also predicts that trees based on the same data type will cluster in treespace

whereas Hj predicts that trees with similar taxon sampling will cluster.

to identify exon—intron borders and assembled the
alignments of each locus to generate the annotated data
matrix (Supplementary File S5, available on Dryad). We
confirmed that all sequences sampled from individual
species clustered with conspecifics (when available)
by analyzing each gene with the ALL taxon set
(Supplementary File S6, available on Dryad); subsequent
phylogenetic analyses were conducted using the other
three data matrices. This allowed us to test the impact of
taxon sampling on the estimation of avian phylogeny for
these data.

We compared the EB2, Jarvis, and Prum data sets
in two ways. For these analyses we downloaded
the Jarvis data from http:/ /gigadb.org/dataset/101041
(Jarvis et al. 2015) and we obtained the Prum data from
https://zenodo.org/record/28343. First, we assessed
the amount of variation in base composition for each
locus in all three data sets. We used AGC;,¢, which
we define as the difference between the GC-content of
the parsimony-informative sites for the most GC-rich
taxon and the least GC-rich taxon, to assess GC-content
variation among loci. Second, we conducted analyses
of the EB2 and Prum data after excluding those sites
that overlapped with the Jarvis et al. (2014) data. To do
this, we identified the sequences in the EB2 and Prum
data sets that were also in the Jarvis TENT data set.
The Jarvis TENT data comprise 8251 coding regions,
at least some of the introns from 2516 of those protein-
coding loci, and 3769 non-coding UCEs. We conducted
BLASTN (Camacho et al. 2008) searches of the exons
and introns included in the Jarvis TENT data using EB2

and Prum et al. (2015) sequences as queries. There was
overlap for 19 of the 54 EB2 loci (Supplementary File 54,
available on Dryad), although the overlap was limited
to the small amounts of coding data in 11 of those 19
loci. We found that 146 of 250 Prum et al. (2015) loci that
include coding data overlapped with the Jarvis TENT
data (Supplementary File 52, available on Dryad; note
that 9 of the 259 Prum loci are conserved non-coding
regions).

Phylogenetic Analyses

We used RAXML v. 8.2.3 (Stamatakis 2014) and IQ-
TREE v. 1.3.10 (Nguyen et al. 2015) for ML analysis of
concatenated data. We used three different partitioning
schemes: 1) full: each region within each locus [i.e.,
each intron, the UTR (when present), and the coding
exons (all exons from a treated as a single partition
because the individual exons were short)] served as
a partition; 2) PF: the partitions generated by the
rcluster algorithm in PartitionFinder v 1.1 (Lanfear et al.
2012) using the Bayesian information criterion (BIC for
model selection); and 3) Unpart: unpartitioned analyses.
These partitions are available in Nexus files for the
sequence alignments we analyzed (Supplementary File
S5, available on Dryad). We assessed support using the
rapid bootstrap in RAXML (Stamatakis et al. 2008) and
ultrafast bootstrap (Minh et al. 2013) in IQ-TREE. We
also conducted one RAXML analysis using the standard
bootstrap with the GTR+T" model and PF partitioning
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TaBLE 1.  Taxon sampling for EB2, Jarvis et al. (2014), and Prum et al. (2015).

Taxon set
Order Common name JAR KIM EB2 Prum
PALAEOGNATHAE
Struthioniformes Ostrich 1 1 1 1
Rheiformes Rheas — 2 2 1
Apterygiformes Kiwis — — 1 1
Casuariiformes Emu and Cassowaries — 1 2 2
Tinamiformes Tinamous 1 2 5 4
GALLOANSERES
Anseriformes Waterfowl 1 3 8 7
Galliformes Landfowl 2 7 12 9
NEOAVES
Phoenicopteriformes Flamingoes 1 2 2 1
Podicipediformes Grebes 1 2 2 1
Columbiformes Doves 1 3 5 5
Mesitornithiformes Mesites 1 1 2 2
Pterocliformes Sandgrouse 1 2 3 2
Otidiformes Bustards 1 3 3 1
Cuculiformes Cuckoos 1 3 8 4
Musophagiformes Turacos 1 1 3 2
Gruiformes Cranes and rails 1 4 8 9
Charadpriiformes Shorebirds 1 3 14 16
Opisthocomiformes Hoatzin 1 1 1 1
Caprimulgiformes Nightjars and allies 3 9 19 13
(includes Hummingbirds and Swifts)
Gaviiformes Loons 1 2 2 1
Procellariiformes Tubenoses 1 2 6 8
Sphenisciformes Penguins 2 3 2 1
Pelecaniformes Pelicans and allies 4 7 19 13
Eurypygiformes Sunbittern and Kagu 1 2 2 1
Phaethontiformes Tropicbirds 1 1 2 1
Accipitriformes Eagles, Hawks, and allies 3 7 10 7
(includes New World vultures)
Strigiformes Owls 1 4 4 2
Coliiformes Mousebirds 1 3 3 2
Leptosomiformes Cuckoo roller 1 1 1 1
Trogoniformes Trogons 1 3 3 2
Bucerotiformes Hornbills and allies 1 4 6 4
Coraciiformes Bee-eaters and allies 1 3 9 7
Piciformes Woodpeckers and allies 1 4 13 10
Cariamiformes Seriemas 1 2 2 2
Falconiformes Falcons 1 4 6 4
Psittaciformes Parrots 2 4 11 6
Passeriformes Passerines 5 14 32 44
Total = 48 120 235 198

Note: Numbers reflect the number of species in each group.

scheme to assess bias (if any) in the fast bootstrap. We
used the GTR+TI" model in RAXML and the model chosen
by the -m TEST with the BIC option in IQ-TREE (-m
TEST assigns the best-fitting model to each partition).
We limited the set of models examined by IQ-TREE to
submodels of the GTR+I+T" with one (1ST), two (2ST),
or six (65T) substitution types (i.e., we used the -mset
mrbayes option); I'-distributed rates were approximated
using a four-category approximation (the +G4 option in
IQ-TREE and the default in RAXxML). We also tested the
free-rates model (Yang 1995) in IQ-TREE (i.e., we used the
-m TESTNEW option). Finally, we conducted analyses of
our data after excluding the small amount of coding exon
data.

We also conducted phylogenetic analyses using
MrBayes 3.2.6 (Ronquist et al. 2012) on the CIPRES
Science Gateway (Miller et al. 2010) and ExaBayes v1.4.1
(Aberer et al. 2014). We found that the default settings
for MrBayes analyses resulted in poor convergence
so we used these modified settings: brlenspr =
unconstrained:exponential (100); nrun = 1 nchain =
8 temp = 0.06 (Moyle et al. 2012). We used the
GTR+I+T model and executed six iterations starting
from random starting trees and sampled every 10,000
states. We ran each iteration until it reached the CIPRES
walltime (168:00:00). The six runs sampled 1,260,000;
1,760,000; 1,480,000; 2,120,000; 1,610,000; and 1,710,000
states, respectively. We examined parameter estimates
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to determine their stationarity in Tracer 1.5, and set
the burn-in to 200,000 states, except for run 1 which
did not reach stationarity until 650,000 states. When
combined, these six iterations resulted in 1368 post
burn-in posterior samples. Effective sample sizes for
the combined parameter estimates were all greater
than 200. Because Prum et al. (2015) used ExaBayes
for their Bayesian analyses we also conducted two
runs in ExaBayes using methods similar to that study;
specifically, we used the GTR+I" model with default
tuning and branch swapping parameters and four
Metropolis-coupled chains (three of which were heated).
We sampled 1,105,500 and 604,000 states, respectively,
for the first and second ExaBayes runs. The ExaBayes
runs converged rapidly and examination of the runs
using Tracer revealed that the post burn-in parameter
estimates for each run had effective sample sizes greater
than 200. We summarized the samples from the MCMC
chains using sumtrees.py 4.1.0 from the DendroPy
package (Sukumaran and Holder 2010).

We believe that it is valuable to conduct comparable
analyses using at least two different programs to show
that numerical optimization does not have an impact
on conclusions. Evidence is accumulating that even
minor differences in numerical optimization can result
in the recovery of fairly different trees if the data
matrix has a rough likelihood surface (e.g., Darriba et al.
2015). Meiklejohn et al. (2016) found conflicts with more
than 95% bootstrap support in species tree analyses
conducted using input trees generated using different
programs. It seems unlikely for differences among trees
due to this effect to achieve such high support unless
the data matrices used for analyses are large, but it is
certainly a concern for phylogenomics. This problem can
be viewed as another hypothesis to explain topological
differences among trees and it can be falsified by finding
that different software packages converge on the same
(or very similar) solutions.

To address whether our results were influenced by
base compositional variation (or any other deviations
from the GTR model), we conducted “squangle”
analyses, an invariants method for quartets that is
consistent given the general Markov model (GMM)
(Holland et al. 2013). We conducted squangle analyses
using the python program written by Holland et al.
(2013) that is available from http://datadryad.org/
resource/doi:10.5061 /dryad.2k9j0. We used the settings
HCQ = 0, CLEAN_EACH = 1, and EST_INV = 1
(the last setting is to use the GMM+I model) in the
squangle.py program for quartet inference. We used
two of the supertree methods implemented in clann
(Creevey and McInerney 2005) for quartet amalgamation
[neighbor joining (NJ; Saitou and Nei 1987) and matrix
representation with parsimony (MRP; Baum 1992; Ragan
1992)]. clann only produces an MRP matrix; the actual
parsimony analysis for the MRP data was conducted
in PAUP* 4.0a149 (Swofford 2016). We bootstrapped the
quartets to assess support in the squangle analyses. Since
the squangle.py program samples quartets exhaustively

it was only feasible to apply it to the relatively small JAR
taxon set.

We conducted multispecies coalescent (species tree)
analyses using ASTRAL v. 4.10.6 (Mirarab et al. 2014).
Briefly, we used RAXML and IQ-TREE to obtain the
ML tree and a set of bootstrap trees (100 fast bootstrap
replicates for RAXML and 1000 ultrafast bootstrap
replicates for IQ-TREE) for each locus. The estimates
of gene trees were generated by partitioned analyses
separating the introns, exons, and/or UTRs within each
locus. ASTRAL analyses were conducted using two
strategies: 1) using 54 gene trees as input, one for each
locus; and 2) using 51 gene trees as input, one for each
locus but excluding BDNF, NGF, and NTF3 (the three loci
with the greatest compositional variation; see below).

We measured distances among trees using symmetric
RF distances [Robinson and Foulds (1981) distances
multiplied by two] that were calculated using PAUP*.
We compared “backbone trees,” which we defined as
trees reduced to the taxa used Jarvis et al. (2014), further
reducing three orders (Passeriformes, Psittaciformes,
and Pelecaniformes) that are clearly monophyletic based
on extensive data to a single lineage. The use of backbone
trees allowed us to focus on the relationships among
major lineages instead of rearrangements within clades,
and it facilitated comparisons of trees with different
taxon samples. We used NJ (Saitou and Nei 1987) to
cluster the symmetric RF distances among backbone
trees.

RESULTS AND DISCUSSION

Analyses of Early Bird II Data Matrix

Analyses of the 54-locus, 235-taxon EB2 matrix
resulted in a tree with more than 70% ML bootstrap
support for many deep nodes (Fig. 3). This suggests
the data set has sufficient signal to provide information
about basal avian relationships and that it will allow
us to test our hypotheses. Most recovered nodes agreed
with published studies (e.g., Hackett et al. 2008; Jarvis
et al. 2014; Prum et al. 2015), including several studies
that used different taxon samples and genomic regions
(e.g., Harshman et al. 2008; Wang et al. 2012; Kimball
et al. 2013; McCormack et al. 2013; Smith et al. 2013),
indel data (Yuri et al. 2013), and TE insertions (Suh et al.
2011, 2015). This included six of the magnificent seven
clades (the exception was clade iv; cuckoos and bustards
formed a clade, but turacos were placed elsewhere).
Regardless, it is clear that the EB2 tree corroborates a
number of clades that were viewed as intractable less
than a decade ago. The EB2 tree and the Jarvis TENT
exhibited similar degrees of branch-length heterogeneity
among taxa (Fig. 4) and identical branching patterns
within the large superordinal clades (landbirds, clade
i, and waterbirds, clade ii, in Fig. 1). More significantly,
the two indicator clades of Jarvis et al. (2014) (J1 and
J2; see Fig. 1a) were recovered with a high degree of
bootstrap support (>95% and >70%, respectively; Fig. 3).
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FIGURE 3. The “Early Bird II” (EB2) ML tree of 235 birds using 54 loci. This cladogram is based on a RAXML analysis with the maximum

number of partitions. Filled circles indicate >95% support and open circles indicate >>70% support. We have indicated the data derived from
draft genome sequences by adding a “G” after the taxon name. We obtained similar trees using a variety of partitioning schemes in ML analyses
(Supplementary File S7) and in Bayesian analyses (although support values were much higher with the latter).
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FIGURE 4.

0.06

The Early Bird II tree presented as a phylogram. Colors are those used in Fig. 3, and they indicate the magnificent seven clades

(one of which, iv, was not monophyletic in analyses of these data). The Jarvis indicator clades (i.e., J1, ]2, and J3y) are highlighted to the left of

the relevant node. The scale bar indicates substitutions per site.

These “Jarvis indicator clades” directly contradict the
two “Prum indicator clades” (P1 and P2, see Fig. 1b).
These results corroborate the basal topology of the Jarvis
TENT (i.e., the division of Neoaves into clades J1 and J2).

Support for most clades in the EB2 tree was relatively
insensitive to details of the model and partitioning

scheme used. All analyses of the EB2 taxon sample
resulted in similar levels of support for most clades
(Fig. 5 and Supplementary File S7, available on Dryad).
As expected (Minh et al. 2013), the ultrafast bootstrap
support values were higher than those estimated using
the standard bootstrap or the RAXML fast bootstrap,
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Analysis and data matrix

Clade J1
EB2 KIM JAR

Taxon Sample
Clade J2
EB2 KIM JAR

Clade J3,
EB2 KIM JAR

RAXML, fast bootstrap, GTR+I' model
Early Bird Il data, fully partitioned 99
Early Bird Il data, optimal rcluster (PF) 97
Early Bird Il data, unpartitioned 98

Non-coding data, fully partitioned
RAXML standard bootstrap, GTR+I" model

Early Bird Il data, optimal rcluster (PF) [BELIIBEANELE | 53 | 51

IQ-TREE ultrafast bootstrap, I+I" rates
Early Bird Il data, fully partitioned
Early Bird Il data, optimal rcluster (PF)
Early Bird Il data, unpartitioned

100
100

100

IR [ ] 5 [ [78 [e2 [ 71

Non-coding data, fully partitioned

IQ-TREE ultrafast bootstrap, free rates
Early Bird Il data, fully partitioned

Non-coding data, fully partitioned

FIGURE 5.

99
97
97

T 56 ]

99

100
100

100 100 100 NEECHIEZE ||
R ELT ] [ 86 [ 57 | |[72 [ 75 | 68 |

Heat map showing support for the Jarvis indicator clades for different analyses and taxon samples. Colors indicate support values

99 73 | 55 60 | 76 | 57
100 71 49 70 | 55 | 53
98 64 | 52 58 | 56 | 44

66 | 67 | 56 |

[ 35 |[ 51 [ 56 [ 37 |

99 79 | 64 80 | 88 | 57
100 84 | 63 78 | 90 | 53
100 85 | 64 77 | 9 66

94 | 86 | 66 ]

(dark green: >95%; light green: >70%; yellow: >50%; uncolored: <50%; light red: not present in optimal tree). Clade J2 was not present in the
optimal tree for the JAR taxon set but the branch contradicting that clade had <50% support (see trees in Supplementary File S7).

but the differences were fairly modest (Fig. 5). Bayesian
support values were even higher (Supplementary File
S7, available on Dryad); moreover, the topology that
resulted from Bayesian analyses was virtually identical
to the ML topologies (Fig. 3 and Supplementary File
S7, available on Dryad) and clades J1 or J2 both had
posterior probabilities of 1.0. Thus, we recovered J1 and
J2 with support comparable to that reported for P1 and
P2 by Prum et al. (2015) using comparable (i.e., Bayesian
MCMC) methods. Taken as a whole, these analyses
indicate that the basal division of the EB2 tree into clades
J1 and ]2 is largely insensitive to the details of the model
or analytical method used to estimate phylogeny.

Taxon Sampling Does Not Explain Incongruence between
Avian Phylogenomic Studies

A fundamental prediction of the Prum et al. (2015)
taxon-sampling hypothesis (H3) is that analysis of
phylogenomic data should converge on the Prum tree
as the taxon sample increases. However, the EB2 tree
(Fig. 3) showed greater similarity to the Jarvis TENT
than to the Prum tree (compare the trees in Figs. 1-3).
These observations falsify the hypothesis (H3) that taxon
sampling is the primary explanation for the differences
between the Jarvis TENT and the Prum tree.

We emphasize that these analyses do not represent a
general test of the benefits of increasing taxon sampling;
the goal of these analyses was testing whether increased
taxon sampling would result in an estimate of Neoaves
phylogeny closer to the Prum tree (i.e., a tree containing
clade P1 and/or clade P2/P2)). Instead, increased taxon
sampling improved support for Jarvis indicator clades
(Fig. 5 and Supplementary File S7, available on Dryad),
particularly clade ]2 (Fig. 5). Analyses that used the JAR

taxon set typically did not recover clade J2 (Fig. 5 and
Supplementary File S7, available on Dryad), suggesting
that taxon sampling is indeed important. In addition,
reducing the number of taxa resulted in some modest
topological rearrangements that are likely to be errors
(Supplementary File S7, available on Dryad). Thus,
increased taxon sampling had the expected behavior
of improving phylogenetic estimation. However, the
observation that increased taxon sampling increased
support for a “Jarvis-like” tree and did not shift the
tree toward a “Prum-like” topology provided additional
evidence that the observed differences between the trees
recovered by Jarvis et al. (2014) and Prum et al. (2015) did
not reflect the more extensive taxon sampling in the latter
study (contra H3).

“Data-Type Effects” Explain Conflict between Avian
Phylogenomic Studies

Our analyses suggest that there is a “data-type effect”
(i.e., Hy) driving topological differences among trees
produced in phylogenomic studies of birds. Trees based
primarily on exon data (e.g., Fig. 1band 1d) include clade
P1 and clade P2 or P2;. In contrast, trees that are based
primarily or exclusively on non-coding sequence data
contain clades J1 and J2. The EB2 tree also has clade 3y,
which appears to be a potential indicator of non-coding
data because it is present in the Jarvis intron tree (Fig. 1c)
and UCE tree (Fig. 4b in Jarvis et al. 2014). Support for
clade J3y was insensitive to taxon sampling and removal
of the small amount of coding data in EB2 (Fig. 5 and
Supplementary File S7, available on Dryad). Taken as
a whole, these observations corroborate the data-type
hypothesis (Hs) and suggest that data type has a greater
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influence on topology than does taxon sampling for this
phylogenetic problem.

Insufficient Signal, Hard Polytomies, and the Avian Species
Tree

The observed support for many deep branches in the
EB2 tree (Figs. 3 and 4) falsifies H; (the insufficient signal
hypothesis). The congruence of the EB2 tree with the
Jarvis TENT and Prum tree with respect to relatively
difficult clades (e.g., the magnificent seven) suggests that
there is indeed a consistent signal in avian genomes that
emerges in analyses of as few as 54 loci. This congruent
signal contradicts the predictions of the hard polytomy
hypothesis (Hp), which predicts that we would either
observe no support for difficult branches (consistent
with Hj or Hp) or a random resolution reflecting the
star tree paradox (consistent with Hj).

Another important question is whether estimates of
the basal topology of Neoaves would change if “species
tree” analyses (i.e., methods that are consistent given
the multispecies coalescent) were used. The goal of this
study was to explore the differences between the Jarvis
TENT and the Prum tree, both of which reflect analyses
of concatenated data. However, both Jarvis et al. (2014)
and Prum et al. (2015) report multispecies coalescent
analyses. Species tree analysis of the TENT data and
intronic data support clades J1 and J2 (cf. Fig. 3b, and
Supplementary Figs. S9b and S9d in Jarvis et al. 2014),
but not of clade J3yn. Recovery of clades J1 and ]2
using species tree methods indicates that these clades do
not simply reflect the analysis of concatenated data. In
contrast to Jarvis et al. (2014), the multispecies coalescent
trees from Prum et al. (2015) are poorly resolved (e.g.,
Supplementary Fig. S3 in Prum et al. 2015) and none of
them include clade P1 or P2 (or P2)).

Our estimates of the avian species tree using
ASTRAL also exhibited limited support for most basal
relationships among Neoaves (Supplementary File S8,
available on Dryad), similar to other studies of deep
avian phylogeny that have employed species tree
methods (e.g., Kimball et al. 2013; McCormack et al. 2013;
Prum et al. 2015). Our multispecies coalescent trees were
also sensitive to the source of the input gene trees (i.e.,
whether RAXML or IQ-TREE was used to estimate gene
trees), a phenomenon noted in other studies (Meiklejohn
etal. 2016). Nonetheless, most of our species tree analyses
with the KIM and EB2 taxon samples recovered clade
J1, albeit with less than 50% bootstrap support. Clade
J3n was only recovered in two trees, both of which used
IQ-TREE estimates of gene trees for input. However,
failure to recover clade J3) in other species trees largely
reflected failure to recover clade iii (Fig. 1); most analyses
placed the sunbittern (along with the kagu when it
was included) as sister to landbirds (though with low
support). None of our species tree estimates included
clade J2. Regardless, the presence of clades J1 and J3y in
some of our ASTRAL trees, albeit with limited bootstrap
support, suggests that a phylogenetic signal congruent

with two of the Jarvis indicator clades can emerge in
multispecies coalescent analyses with as few as 54 loci,
as long as the data are largely non-coding.

To date, the only large-scale study that has found
high levels of bootstrap support for relationships at the
base of Neoaves using a species tree method was Jarvis
et al. (2014), which used thousands of genes. Recently,
Sayyari and Mirarab (2016) showed that the Prum et al.
(2015) study is unlikely to have enough loci to resolve
the bird tree using species tree methods that use gene
tree reconciliation, like ASTRAL or MP-EST. Thus, given
that the EB2 data set is smaller, our recovery of clade J1in
many of our species tree analyses (albeit with bootstrap
support <50%) is certainly provocative and points away
from the “Prum-like” tree topology. Collectively, these
results strongly support the inference that recovery of
clades J1 and ]2 does not reflect a straightforward bias
due to gene tree—species tree discordance.

Analyses of Independent Data Corroborate Hy (Data-Type
Effects)

Since neither the EB2 nor Prum data matrix are
completely independent of the Jarvis TENT data we
wanted to test whether trees based on truly independent
data included the indicator clades. Analyses of “EB2
noJAR”, a 45-locus data matrix excluding sites that
overlapped with the Jarvis TENT data, did recover clades
J1 and J3x (Supplementary File S9, available on Dryad).
However, the EB2 noJAR trees contradicted clade ]2
with fairly high (>70%) bootstrap support; instead, the
EB2 noJAR tree included a “J2-contradicting clade”
that resembled Metaves (Fain and Houde 2004; see
Supplementary Fig. S2, available on Dryad). Metaves
is a clade found in many analyses that include FGB,
a locus with strong phylogenetic signal (Kimball et al.
2013). To test the hypothesis that FGB was responsible
for the J2-contradicting clade we analyzed a data matrix
thatexcluded FGB (EB2noJAR/noFGB). Analyses of EB2
noJAR/noFGB recovered clades J1 and ]2 but not clade
J3n (Supplementary File S9, available on Dryad). The
sensitivity of tree building to inclusion or exclusion of
FGB (after excluding Jarvis-overlapping data) suggests
the EB2 data set could be near the lower size limit for data
matrices that can reliably recover the indicator clades.
However, the more important conclusion is that the sites
that overlap between the EB2 and Jarvis TENT data do
not explain the recovery of the indicator clades in the
EB2 data.

We also analyzed a 104-locus “Prum noJAR” data
matrix that excluded loci present in the Jarvis TENT
data. The Prum noJAR trees included clade P1 but it
did not include P2 or P2 (Supplementary File S10 and
Supplementary Fig. S3, available on Dryad). The absence
of P2/P2; in the Prum noJAR trees reflected a shift in
the position of clade iii that resulted in the recovery of
clade]3y. Recovery of clade J3y in the Prum noJAR trees,
which were largely based on coding sequences, was
surprising and provocative. However, we stress that all
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Prum noJAR trees exhibited limited bootstrap support,
which is not surprising given the low bootstrap support
in the original Prum tree (Fig. 1b). However, the most
important result is that clade P1 emerges in analyses
of two truly independent exonic data matrices (i.e., the
Jarvis exon trees and our Prum noJAR trees).

We also assessed whether trees based on the same
data type converged on similar topologies, regardless
of the presence or absence of the indicator clades. NJ
of symmetric RF distances among avian phylogenies
(Fig. 6) revealed a deep division between coding exon
trees and trees that are largely (or completely) based
on non-coding data. This result strongly corroborated
Hy. Interestingly, the two trees based on rare genomic
changes (RGCs) were placed in the same cluster as
the non-coding data; the tree based on indels actually
fell within the non-coding trees (Fig. 6). Sequence data
and RGCs have different strengths and weaknesses as
sources of phylogenic information. The fact that trees
based on non-coding sequence data and RGCs cluster in
treespace suggests that those trees could be closer to the
true evolutionary history of birds.

What Drives Data-Type Effects?

We suggest using the term “data-type effects” as
a way to discuss different signals associated with
analyses of subsets of the genome that can be defined
a priori using non-phylogenetic criteria. Here, we noted
a strong contrast in the phylogenetic signals associated
with coding and non-coding (largely intronic) data,
but similar phenomena might be found for more
finely subdivided subsets of the genome (e.g., globular
proteins vs. transmembrane proteins, long introns vs.
short introns, and so forth). Indeed, two studies have
reported that the phylogenetic signal associated with
ribosomal proteins conflict with the signal associated
with other proteins (Nosenko et al. 2013; Whelan et al.
2015), and another noted a difference between introns
and UTRs (Bonilla et al. 2010). There are two potential
explanations for data-type effects: 1) different data types
may have different underlying gene trees; or 2) model
violations prevent accurate reconstruction from one (or
more) data types.

The hypothesis that different data types are associated
with distinct sets of gene trees is unlikely because
many data types will reflect collections of unlinked gene
regions that may even be intermixed in the genome (e.g.,
exons are interspersed with introns). Thus, estimates of
trees based on concatenated data sets of each data type
should reflect the same sets of underlying gene trees, and
analyses of data that were generated on those gene trees
are expected to converge on the same topology (as long
as the model used does not exhibit a bias for any of the
data types being analyzed). Even if there is substantial
recombination within loci, as some have suggested to
be common (Gatesy and Springer 2014; Springer and
Gatesy 2016; Scornavacca and Galtier 2017), there is no

expectation that the spectra of gene trees for intermixed
data types (such as coding and non-coding sequences)
would differ.

There are two possible exceptions to the expectation
that the spectrum of gene trees would be similar across
a genome: 1) cases in which a data type is limited to
a specific genetic unit that has a distinct pattern of
inheritance (e.g., a sex chromosome or a uniparentally
inherited organelle genome); and 2) cases where data
types are globally subject to different patterns of
selection. The basis for the first is obvious, and it
does not apply to this study (the two different data
types we considered here were sampled both from
autosomes and the Z chromosome). The second issue
can occur when consistent purifying selection over long
evolutionary timescales leads to local reductions in
effective population size (Ne) (Comeron et al. 2008).
The reduction of N, due to selection is most famously
articulated in the case of the Hill and Robertson (1966)
effect, but it can occur under a number of conditions.
Reduction in N, decreases the time to coalescence for
relevant subsets of the genome (i.e., sites that are linked
to sites subject to selection) and this results in increased
coalescent branch lengths and different mixtures of gene
trees. It is unlikely that this effect could represent a
major explanation for the data-type effects we observed
here. Hill-Robertson effects have been invoked to explain
the correlation between efficiency of selection on coding
regions and localized differences in Ne (Axelsson et al.
2005; Kiinstner et al. 2010), although the spectrum of
gene trees for the regions that were suggested to have
low Ne was not assessed in those studies. Regardless,
analyses of UCEs, which are non-coding regions that
appear to be ultra-selected (Katzman et al. 2007), yield
a tree more similar to intronic trees than to coding exon
trees (Fig. 6), despite the fact that both UCEs and exons
are expected to be subject to stronger purifying selection
than introns. Taken as a whole, these observations
suggest that localized variation in Ne does not explain
the data-type effects that we observe here.

We believe that most data-type effects reflect poor
model fit. The slower accumulation and known patterns
of substitutions in coding regions (Supplementary Table
S1, available on Dryad) might give the impression that
their evolution is easier to model than that of non-coding
regions. However, the complexity of the factors that
determine rates of amino acid substitution (for recent
reviews, see Chi and Liberles 2016; Echave et al. 2016)
suggests this is unlikely to be the case. For example,
constraints that result in slower accumulation of
substitutions in coding regions could drive site-specific
biases in nucleotide frequencies due to correlation
between physicochemical properties of amino acids and
the structure of the genetic code (e.g., Supplementary
Fig. S4, available on Dryad). For example, Naylor
et al. (1995) describe a site-specific bias that reflects
the correlation between hydrophobicity and second
codon position pyrimidine content. Interactions among
amino acid residues after the polypeptide folds into
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Jarvis ¢12 [P1/P2 ]

Prum [P1/P2]

Prum (Jarvis data excluded) [P1/J3]

Prum (Jarvis taxon set) [P2]

TE insertions from Jarvis data [none]
Jarvis UCE [J2/J3,/]

Jarvis “whole genome” [J1/J2]

Jarvis introns [J1/J2/J3]

Jarvis TENT [J1/J2]

Jarvis TEIT (indels) [J1/J2/J3]

Jarvis low GC-variation [P1/P2

EB2 (Jarvis data excluded) [

EB2 (coding data excluded) [J1/J2/J3y/]
m— EB2 [J1/J2/J3)/]

EB2 (Jarvis data and FGB exclud

FIGURE6. Clustering of the Early Bird Il trees and other estimates of avian phylogeny using tree distances. We generated this dendrogram by NJ
of symmetric RF distances followed by midpoint rooting. The indicator clades present in each tree are provided in square brackets. Coding exon
trees used for these comparisons were: 1) Jarvis c12 (Fig. 1d); 2) Jarvis low GC variation (Fig. 6a in Jarvis et al. 2014); 3) Prum (Fig. 1b); 4) Prum,
Jarvis taxon set (Supplementary Fig. S8 in Prum et al. 2015); and 5) Prum, Jarvis data excluded (Supplementary File S10). Non-coding trees were:
1) Jarvis TENT (Fig. 1a); 2) Jarvis whole-genome tree (Supplementary Fig. S4d in Jarvis et al. 2014); 3) Jarvis intron (Fig. 1c); 4) Jarvis UCE (Fig.
4b in Jarvis et al. 2014); 5) EB2 (Fig. 3); 6) EB2, coding data excluded (Supplementary File S7); 7) EB2, Jarvis data excluded (Supplementary File
59); and 8) EB2, Jarvis data and FGB excluded (Supplementary File S9). RGC trees were: 1) Jarvis TEIT (total evidence indel tree; Supplementary
Fig. 512 in Jarvis et al. 2014); and 2) TE insertions from Jarvis data (Fig. 1B in Suh et al. 2015). All of these trees are available in Supplementary

File S11.

a tertiary structure have the potential to create even
more complex patterns of constraint (Penny 2017).
Finally, dependencies among codon positions can causes
standard phylogenetic models to underestimate branch
lengths, potentially resulting in biased estimates of
topology (Whelan 2008). These issues represent some
of the reasons why the commonly used GTR+I4T
model (and its submodels) is likely to exhibit a poor
fit to the underlying patterns of evolution of aligned
protein-coding regions.

The GTR model is also expected to exhibit poor fit
to regions where base composition has not remained
stationary. Although models that relax the assumption
that base composition remains stationary over the tree
havebeen developed (e.g., Lake 1994; Lockhart etal. 1994;
Galtier and Gouy 1998; Foster 2004; Holland et al. 2013),
the behavior of methods based on these models remains
relatively poorly explored, and in some cases their use
results in the recovery of unexpected (and probably
incorrect) clades (e.g., Katsu et al. 2009; Holland et al.
2013). Therefore, some authors advocate using loci with
limited base compositional variation for tree building
(e.g., Collins et al. 2005; Romiguier et al. 2013). Jarvis
et al. (2014) reported striking variation in GC-content in
some avian genomic regions (specifically coding regions;
cf. Fig. 6 in Jarvis et al. 2014). This finding suggests that

deviations from compositional stationarity could lead
to problems for analyses that depend on avian coding
regions.

Motivated by these observations, we examined the
GC-content variation in the EB2 and Prum data (Fig. 7
and Supplementary Fig. S5, available on Dryad). The
Prum data and the coding data of Jarvis et al. (2014)
exhibited more GC-content variation than the EB2 data
(Fig. 7). Moreover, the three EB2 loci with the greatest
compositional variation (BDNF, NGF, and NTE3) were
those for which we collected only exonic data. We
conducted analyses of the EB2 matrix after excluding
those three loci (and other coding exon sequences) and
found that our conclusions were unaltered (Fig. 5 and
Supplementary File S7, available on Dryad). GC-content
variation in the Prum data was less than that exhibited
by all exons in the Jarvis et al. (2014) data, but it was
similar to that in the Jarvis et al. (2014) c12 data, which
comprises first and second codon positions. However,
GC-content variation alone is unlikely to explain the
recovery of P1 and P2/P2; in trees based on coding
data, since the “Jarvis low GC-variation” tree, which was
estimated using the least GC-variable coding regions in
Jarvis et al. (2014), also contains those clades (Fig. 6).
Regardless, it is clear that the non-coding subset of the
EB2 data (like the Jarvis et al. 2014 introns) exhibited less
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FIGURE7. GC-content variation among taxa in phylogenomic data sets of birds showing the distribution of differences between the minimum
and maximum GC-content at each locus (AGCiy). Values that fell outside the interquartile range by >1.5-fold were designated outliers. We limited
GC-content calculations to parsimony-informative sites from regions with >50 parsimony-informative sites. The identity of three outliers in the
EB2 data is noted next to the relevant data points. We used the JAR taxon sets for EB2 and Prum et al. (2015) so analyses of those data set more
comparable to the data described by Jarvis et al. (2015). Analysis using the complete taxon sets (Supplementary Fig. S3) were very similar.

GC-content variation across species than any of the
exon data sets examined here. Thus, it is reasonable
to postulate that reduced base compositional variation
is one reason GTR+I4+T" and its submodels often fit
non-coding data better than they do coding data.

Since all three data sets include some loci with high
GC variation, we tested whether a method (squangles;
Holland et al. 2013) that is consistent under the general
(i.e., non-stationary) Markov model would improve the
tree estimated from the EB2 locus with the greatest
GC variation (BDNF). This effort resulted in limited
improvement to the BDNF gene tree (Supplementary File
S12, available on Dryad). Use of squangles with the JAR
taxon set of the EB2 data (the current implementation of
squangles was too slow for the larger taxon sets) resulted
in distinct topologies when different quartet assembly
methods (NJ and MRP, see Materials and Methods)
were used. However, clade J1 was present in trees based
on both quartet assembly methods (Supplementary
File S12, available on Dryad). Squangles + NJ did
succeed in recovering all of the magnificent seven
(Supplementary File 512, available on Dryad), unlike our
ML analyses (e.g., Fig. 3) and squangles + MRP analysis
(Supplementary File S12, available on Dryad). However,
both squangles analyses of the EB2 data exhibited some
unexpected (and probably incorrect) rearrangements
(e.g., withinlandbirds; Supplementary File 512, available
on Dryad). Continued development of methods based
on the GMM may be fruitful, but the method we used
clearly has some limitations.

We also explored the impact of assumptions regarding
among-site rate variation (+I+I" vs. free rates). Free
rate models fit the data better, suggesting that among-
site variation may be more complex than expected
given the +I4-I' model (Supplementary File S7, available
on Dryad). Their use also resulted in substantially
increased branch length estimates for the KIM and EB2
taxon sets. However, they had essentially no impact on
topology or support values (Fig. 5 and Supplementary
File 57, available on Dryad). Several well-characterized
sources of site constraint in non-coding regions have
the potential to drive among-site rate variation. This is
especially true for UTRs, which are known to regulate
translation and mRNA stability (Mazumder et al. 2003).
Visual examination of alignments also revealed an
ultraconserved region in one of the EB2 introns (a BLAST
search revealed that the region corresponded to a small
nucleolar RNA). However, most of the EB2 data were
intronic, and the majority of intronic sites do not exhibit
significant deviations from neutrality (e.g., see Keightley
and Gaffney 2003). Of course, Hill-Robertson effects
can reduce Ne for introns due to selection on adjacent
exons; this could explain the observation that introns
have lower nucleotide diversity (m) than anonymous
regions (Lee and Edwards 2008). Despite such factors,
it is likely that patterns of sequence evolution for introns
are less complex than for coding regions. This difference
makes it reasonable to postulate that standard analytical
methods (i.e., those using GTR+I+T and its submodels)
are likely to fit non-coding regions, especially introns,
better than coding regions.
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What Has Phylogenomics Taught us about the Avian Tree of
Life?

Falsification of H3 (taxon sampling) and corroboration
of Hy (data-type effects) makes establishing the most
accurate estimate of avian phylogeny challenging. If
analytical models have a better fit to non-coding data, as
may be likely, then the trees based largely or completely
on analyses of non-coding data [i.e., the Jarvis TENT,
the Jarvis et al. (2014) non-coding trees, and the EB2
tree] are likely to be the best available estimates of avian
phylogeny. On the other hand, the Prum tree, the Jarvis
et al. (2014) exon trees, and the Prum noJAR tree are
likely to be closer to the true bird tree if the models used
for analyses are more appropriate for coding sequences.
The clustering of non-coding and RGC trees (Fig. 6) may
indicate that the non-coding trees are closer to the true
avian tree, corroborating our arguments that it is likely to
be more difficult to model evolution for coding data than
non-coding data. Nevertheless, the community should
remain open minded to the possibility that the coding
sequences are actually the better source of phylogenetic
information. Ultimately, establishing the best estimate
of avian phylogeny requires establishing the data type
most likely to exhibit a good fit to the models of sequence
evolution used for phylogenetic estimation.

Many superordinal relationships are recovered in
the Jarvis TENT, Prum tree, and the EB2 tree. The
majority rule consensus of these three trees is actually
quite similar to Hackett et al. (2008), although it is
better resolved (Fig. 8). This consensus tree includes the
magnificent seven along with clades J1 and J2. There is
also substantial agreement among the aforementioned
studies and other studies (e.g., McCormack et al. 2013)
regarding relationships within the magnificent seven;
most or all of those relationships are very likely to reflect
the true avian phylogeny.

Resolving the remaining questions that surround
basal avian phylogeny will likely require a better
understanding of the underlying patterns of sequence
evolution for birds. Indeed, the situation actually
becomes more confusing if we look to TE insertions. In
contrast to indels as a whole, analyses of TE insertions
(Suh et al. 2015) revealed a tree that does not include
two of the magnificent seven (clades iv and vi), has
several rearrangements within landbirds, and (most
importantly) lacks all of the indicator clades (i.e., J1, ]2,
J3n, P1, and P2/P2j). Although the TE insertion tree
clustered with the non-coding trees (Fig. 6), it is clearly
fairly different from the non-coding trees and the tree
for all indels. This seems surprising since TE insertions
are often assumed to be essentially homoplasy-free. The
differences between the TE tree and other estimates
of avian phylogeny suggest that avian TE insertions
can exhibit true homoplasy, corroborating a previous
study (Han et al. 2011). Overall, the conclusions for TE
insertions are similar to our conclusions for analyses
of introns and coding exons: better models of genomic
change will be necessary to better understand avian

phylogeny.

There is certainly room for the addition of taxa to
further improve avian phylogenomic studies. Indeed,
our results indicate that analyses of the EB2 235-taxon
matrix yielded better estimates than the 120-taxon KIM
matrix despite the fact that the KIM taxa were selected,
as much as possible, to bisect long branches (see Kimball
etal. 2013). However, some of the instability at the base of
Neoaves involves lineages with no close living relatives
(e.g., hoatzin) and it is impossible to break up those long
branches in a meaningful way. Expanding the number
of species with underlying sequence data available for
large-scale “synthetic” phylogenies (e.g., Jetz et al. 2012;
Burleigh et al. 2015) will no doubt be invaluable for
analyses of biogeography and traits (e.g., Wang et al.
2017). However, simply adding taxa is unlikely to be
the key to resolving the most difficult nodes in the bird
tree. Instead, the key is likely to be improving models of
evolution for data types used in analyses. Finally, we also
need to remain open minded to the possibility that we
have reached the limits of resolution of the avian tree of
life; perhaps birds (or, more specifically, some Neoaves)
are indeed perched in a phylogenetic bush.

Broader Implications for Phylogenomic Studies

More taxa and characters may not guarantee a
“satisfying” answer, by which we mean having
resolution of nodes with sufficiently strong branch
support that additional data will merely confirm what
has already been found.—Cracraft et al. (2004).

The question of whether large-scale data sets,
potentially even complete genomes, will yield a
“satisfying” estimate of phylogeny is fundamental to all
phylogenomic studies. Our analyses suggest that simply
collecting more data and conducting analyses using the
same models is unlikely to resolve avian phylogeny
with confidence. Our results further suggest conclusions
from other phylogenomic studies that have examined
recalcitrantnodes in the tree of life should be reexamined
for data-type effects and interpreted with caution.

When large-scale data matrices are used to inspect the
difficult nodes, relatively subtle model violations may be
sufficient to mislead analyses (Hahn and Nakhleh 2016).
Those violations may not be obvious unless multiple
data types are analyzed, as in Jarvis et al. (2014). The
hypothesis testing approach we used here may be a
desirable way to explore the sources of conflicting
signals in phylogenomic analyses. We believe that data-
type effects represent a fundamental challenge for
phylogenomics and urge investigators to attack difficult
problems in the tree of life using as many data types
as possible. If it is established that there are data-type
effects, it becomes critical to use the best-fitting model
for analyses. Of course, it may be necessary to develop
substantially more complex and “biologically realistic”
models to achieve this goal.

Achieving “biological realism” may require very
complex models, which in turn present fundamental
challenges (cf. Steel 2005). First, complex models are

Downl oaded from https://academ c. oup. conl syshi o/ articl e-abstract/66/5/857/ 3091102/ Wy- Do- Phyl ogenomi c- Dat a- Set s- Yi el d- Conflicting

by guest

on 17 Cctober 2017



2017

POINTS OF VIEW 875

Vi

ﬂ'

B
[ ]
8
[
[ ]
[ ]
[ |
[ ]
'
v
[

ocooooooecooeogdoos

il

FIGURE 8.
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Mousebirds coliiformes &
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Trogons Trogoniformes 4‘
Hornbills & allies Bucerotiformes
Bee-eaters & allies Coraciiformes\
Woodpeckers & allies Ppiciformes
Seriemas Cariamiformes k ‘
Falcons Falconiformes ‘v
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i

Consensus phylogeny of birds. This topology reflects a majority rule consensus tree of the Jarvis TENT, the Prum tree, and the Early

Bird II tree; branches present in only two out of the three trees are presented as dashed lines. The ordinal classification follows Cracraft (2013).
Only two paleognath orders are shown because Jarvis et al. (2014) only sampled those orders; all other orders (as circumscribed by Cracraft 2013)
were sampled by all three studies. The magnificent seven are identified by lower case Roman numerals next to the relevant nodes and the colors
are identical to those in Fig. 3. Silhouettes were drawn by Sushma Reddy, Edward L. Braun, or obtained from http:/ /phylopic.org.

likely to impose a substantial computational burden.
Even with standard models, Jarvis et al. (2014)
required more than 400 years of CPU time to conduct
their analyses. Second, adding a large number of
free parameters may create problems with parameter
identifiability (cf. Ponciano et al. 2012). A potential
solution to this problem might be finding semi-
parametric approaches that add biological complexity
in other ways (e.g., penalized likelihood; Kim and
Sanderson 2008).

One final problem, which applies to both complex
and simpler models, is the accuracy of numerical
optimization routines. When analyzing very large data
matrices, the limitations of floating point arithmetic
can have a profound impact on analyses (cf. Sainudiin
and Yoshida 2005; Darriba et al. 2015; Meiklejohn et al.
2016). This potential certainly exits for programs that
use different libraries for likelihood calculations [e.g.,
the phylogenetic likelihood library (Flouri et al. 2015)
for IQ-TREE and the BEAGLE library (Ayres et al. 2012)
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for MrBayes]. However, differences in numerical
optimization can even exist for the same program
compiled in different environments (e.g., Darriba et al.
2015). If estimates of phylogeny were generated using
different programs then any observed conflicts could
reflect the failure to identify the true optimal trees due to
the impact of numerical optimization routines. The most
straightforward way to examine the potential impact of
this pitfall is running the same (or very similar) analyses
in multiple programs that employ distinct numerical
optimization routines. Herein, we tested the impact
of this issue on the EB2 phylogeny by using multiple
programs and found that they had no major effect on
our conclusions.

A final approach to solving the problem of data-type
effects might be the identification of data types that
yield unbiased estimates of phylogeny when analyzed
using available models and software. Some methods to
accomplish this have been proposed (e.g., Chen et al.
2015; Doyle et al. 2015), although the proportion of the
genome that we can realistically expect to exhibit a
sufficiently good fit to commonly used models remains
unclear. No doubt, phylogenomic data to address many
different questions will continue to be generated (e.g.,
Jarvis et al. 2014; Misof et al. 2014; Wickett et al. 2014).
The real test of whether phylogenomics can fulfill the
promise to resolve the tree of life will depend on careful
scrutiny of the data for patterns of sequence evolution
that might lead to bias and understanding the impact of
those patterns on the results of phylogenetic analyses.
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