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Abstract

Gene flow can provide cohesion between conspecific populations. In order to obtain an
indirect measure of gene flow between coral reef species in the eastern tropical Pacific
(ETP) and between these populations and those of the rest of the Pacific we compiled
available data from sequences of DNA and microsatellites for corals, gastropods,
echinoderms and fishes, and calculated Fgr statistics. The ETP consists of a narrow strip
of continental shelf along the coast of the Americas and a deeper water gap between the coast
and the outer eastern Pacific Islands; a large expanse of deep ocean separates the ETP and the
closest islands in the central Pacific. We have, therefore, compared populations in four major
directions: (1) between the eastern and the central Pacific, (2) between the coast and the outer
islands, (3) among the outer islands, and (4) along the coast and nearshore islands. The
available data are biased in favor of showing high levels of gene flow because they contain
an excess of transpacific species, which are a minority among ETP biota. Despite this bias,
shallow water populations of the ETP are isolated from the rest of the world’s oceans.
Occasional breaching of the expanse of water between the ETP and the Central Pacific by
some species is also possible. Gene flow between the outer eastern Pacific islands and the
mainland coast is variable, depending on the species examined. Gene flow among
populations at the outer eastern Pacific islands is high except for those at Easter Island (Rapa
Nui), in which all but one sampled species show large and significant values of Fgr in
comparisons with populations from all other islands. Gene flow rates among populations
along the ETP coast are high. There is no evident genetic break resulting from the Central
American Gap (southern Mexico to the Gulf of Fonseca, Honduras) in any of the sampled
species. A trend of isolation by distance along the coast is evident in corals and fishes.
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16.1 Introduction
Gene flow is the exchange of genes between conspecific
H.A. Lessios (5<) popu'lations. It is an important biol(?gical progess in every
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eventually spread throughout the species’ range. When gene
flow becomes restricted populations become “genetically
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structured”, diverging from each other and (if the restrictions
become severe and last a long time) possibly turning into
separate species. The sharing of genes between populations
can also dilute adaptation to local environmental conditions,
thus averaging the response to natural selection over the
connected populations. It may thus limit the geographic
extent over which a species can spread, as peripheral pop-
ulations are prevented from adapting to conditions at the
edge of a species range and then proceed to colonize new,
previously unsuitable, areas (Haldane 1956; Case and Taper
2000; Sexton et al. 2009; Dawson et al. 2010).

Genetic exchange is effected by the dispersal of propag-
ules from one population to another, but, as propagules are
difficult to follow, most estimates of gene flow do not
involve direct observations of such transfers; they rely
instead on assessing divergence between populations. This is
particularly true for marine organisms in which planktonic
larvae maintain genetic connections over very long distances
and are virtually impossible to track in the water column.
Species with this kind of larvae are expected to show high
rates of genetic exchange between populations and thus high
genetic homogeneity, although this expectation is not always
met. Several studies have indicated that in a number of
marine species self-recruitment to the natal population is
high, and the dispersal potential expected of their larvae fails
to be realized (Jones et al. 1999; Swearer et al. 1999, 2002;
Hellberg et al. 2002; Taylor and Hellberg 2003). Such
studies have led to doubts that the dogma of near-panmixia
in marine organisms is ever realized (Hellberg 2009). Even
when local recruitment does occur, however (as it
undoubtedly does in most populations), and even if the
fraction of the larvae that recruit successfully at a distant
locality is small, it may be sufficient to homogenize genetic
constitution of populations over large distances.

The position of coral reef organisms of the eastern tropical
Pacific (ETP) in the spectrum between panmixia and high
genetic structure is the subject of this chapter. We begin by
considering geographical and oceanographic features that
would be expected to affect rates of contemporary and his-
torical gene flow, then summarize existing data from the
literature about genetic connectivity. Not all of the data were
gathered to assess population structure, and the organisms for
which genetic data exist are far from uniformly spread over
taxonomic groups. Nevertheless, a compilation of such data
can begin to address the question of whether general patterns
exist. In “coral reef organisms” we include all species that are
represented by populations resident in coral reefs, even if
they are not exclusively found in this particular habitat. As
most of these species (even corals) are capable of living
outside coral reefs (Robertson 1998; Guzman et al. 2004),
this means that we have attempted to include studies on all
organisms that live on hard substrata in the photic zone,
except for those limited to the upper intertidal shore line.
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16.2 Oceanographic Features
of the Tropical Eastern Pacific
Relevant to Gene Flow

The ETP (Fig. 16.1) consists of a narrow strip of continental
shelf along the coast of the American continent with some
islands close to the shore, a deeper water gap between the
coast and the outer eastern Pacific Islands (Easter Island, the
Galapagos Archipelago, Malpelo Island, Isla del Coco,
Clipperton Atoll and the Revillagigedo Archipelago).
A large expanse of deep ocean separates the ETP and the
closest islands in the central Pacific (the Line Islands, the
Marquesas, and Hawaii). Thus, shallow water populations in
the ETP can exchange genes in four major directions:
(1) between the eastern and the central Pacific, (2) between
the mainland coast and the outer islands, (3) among the outer
islands, and (4) along the coast and nearshore islands.
Potential barriers to gene flow in each direction consist of
habitat unsuitable for the establishment of adult populations
and of currents that channel the movement of larvae along a
particular vector, or that alter environmental conditions as to
exceed the tolerances of propagules in a particular area (see
Chaps. 3 and 4, Fiedler and Lavin, and Wang et al.,
respectively). Expanses of deep water that are difficult to
cross in a single larval life can be expected to cause the most
marked restrictions to the exchange of genes. If impassable,
these barriers can prevent the spread of species, thus estab-
lishing different biogeographic provinces as determined by
patterns of species presence and absence.

Physical barriers that impede gene exchange between
populations in the ETP and those in the rest of the world
define it as a separate oceanic region. Towards the east, an
uninterrupted land bridge has existed for the last 2—3 million
years (Coates and Obando 1996). [It has been claimed
recently that a nearly complete barrier to water exchange
with the Caribbean has existed since the Eocene or early
Miocene (Montes et al. 2012) but this claim is incompatible
with paleoceanographic (Keigwin 1982; Collins 1996; Haug
and Tiedemann 1998; O’Dea et al. 2007), paleontological
(Webb 1976; Coates and Obando 1996), and genetic (Les-
sios 2008) data.] Towards the west lies the widest marine
biogeographical barrier on the planet, 40007000 km of
deep water without any stepping stone habitats on which
adults of shallow water marine species can exist (Ekman
1953; Briggs 1974). This ocean configuration, known as the
“Eastern Pacific Barrier” (EPB) has been in place for most of
the Cenozoic (Grigg and Hey 1992). It is so difficult to cross,
that most shallow water benthic genera are represented by
different species on its two sides. Had it not been for the
small number of “transpacific species”, species that span the
EPB (Emerson 1978, 1982; Vermeij 1978; Rosenblatt and
Waples 1986; Lessios et al. 1996; Robertson et al. 2004;
Lessios and Robertson 2006), it would not have figured in a
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Fig. 16.1 Ten year mean (1993— (a)
2003) ocean surface currents in
the Central-East Pacific (a) and
the Eastern Tropical Pacific (b).
Given are surface current vectors . e b8
with 1 degree (a) or 1/3 degree
(b) resolution. Basemap
generated with ETOPO 2
(USGS). CC = California Current, o AR
NEC = North Equatorial Current,
NECC = North Equatorial ; °
Counter Current, SEC = South
Equatorial Current, CRCC =
Costa Rica Coastal Current
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discussion of conspecific gene flow. The barrier is traversed
by the westerly North and South Equatorial Currents and by
the easterly North Equatorial Counter Current. The speed of
the latter increases greatly during El Nifio events, reducing
the transit time between the Line Islands and the eastern
Pacific to periods that may not exceed the larval duration of
a number of organisms (Richmond 1990; Glynn et al. 1996;
Glynn and Ault 2000; Robertson et al. 2004). This accel-
eration of the North Equatorial Counter Current is generally
proposed as the conveying mechanism for the dispersal of
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species from the species-rich central Pacific into the ETP
(Dana 1975; Richmond 1990; Robertson et al. 2004) and
may also be responsible for recurrent events of gene flow, at
least in one direction.

Expanses of deep water narrower than the EPB are also of
potential relevance to genetic divergence between conspeci-
fic populations of the outer islands of the eastern Pacific and
the mainland. Easter Island (Rapa Nui), 4000 km from the
coast of Peru, is the most remote of these islands. As its
distance from Pitcairn is 1700 km, it can either be considered
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as the westernmost island of the eastern Pacific or the east-
ernmost island of the central Pacific. Its marine fauna consists
of a mixture of endemic, Indo-West-Pacific, transpacific, and
cosmopolitan species, but it also contains several species
characteristic of the eastern Pacific (Fell 1974; Rehder 1980;
Randall 1998; Glynn et al. 2007). The latter may be the result
of larval transport in currents that flow predominantly
towards the west (Glynn et al. 2007). The next most remote
island, Clipperton Atoll, lies inside the tropics, 1000 km from
the coast of Mexico and 4000 km from the Marquesas
Islands. It is intermittently bathed by either the easterly North
Equatorial Counter Current or the westerly North Equatorial
Current and may well represent a stepping stone between the
central and eastern Pacific (Glynn et al. 1996; see Chap. 5,
Glynn et al.). As at Easter Island, the marine fauna of Clip-
perton is a mixture of Indo-West and east Pacific species, and
also endemics (Glynn et al. 1996; Lessios et al. 1996;
Robertson and Allen 1996). The Galapagos Islands comprise
the only oceanic Archipelago in the Equatorial eastern
Pacific. San Cristobal, the closest island to the mainland, lies
930 km west of the coast of Ecuador. The Galapagos Islands
contain the best studied marine biota among those of the
outer islands (e.g., Bowman 1966; Glynn and Wellington
1983; James 1991; Grove and Lavenberg 1997). The marine
fauna contains numerous species that are also found on the
west coast of America, several species endemic to the eastern
Pacific outer islands or just to the Galdpagos, and a few
Indo-Pacific species (Briggs 1974). The Archipelago is
influenced by the Peru Oceanic Current flowing towards the
Galéapagos from the mainland, the North Equatorial Counter
Current bringing water from the central Pacific, the South
Equatorial Current flowing in the opposite direction, plus a
southerly flowing current during the dry season out of the
Panama Bight (Ab bott 1966; Glynn and Ault 2000; Kessler
2006). Isla del Coco is situated 690 km northeast of the
Galapagos and 500 km west of Costa Rica. Its marine fauna
consists mostly of eastern Pacific species, but there is a small
number of outer island endemics and of Indo-Pacific species
(Hertlein 1963). The four Revillagigedo islands lie approxi-
mately 390 km southwest of the southern tip of Baja Cali-
fornia. The shallow water marine species on these islands are
mostly a subset of those found on the mainland, but some
Indo-Pacific species are also present. The corals show
affinities with those of Clipperton (Glynn et al. 1996; Glynn
and Ault 2000; Ketchum and Bonilla 2001). The Revil-
lagigedo Archipelago is influenced both by the northerly
Costa Rica Current and by the southerly California Current
(Glynn and Ault 2000; Kessler 2006; see Chap. 3, Fiedler
and Lavin).

Marine populations of the coastal ETP are expected to
show more genetic connectivity than those of island popu-
lations. This coast, however, is not entirely without potential
barriers. Hard substrate bottoms are interrupted by river
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estuaries and mangrove areas, unsuitable as habitats for
adults of many coral reef species. A 1000 km stretch from
southern Mexico to the Gulf of Fonseca at the Honduras-El
Salvador border (the Central American Gap) is devoid of
coral reefs or rocky bottoms, except for a small Pocillopora
reef in Los Coébanos, El Salvador (Glynn and Ault 2000;
Reyes-Bonilla and Barraza 2003; but see Chap. 5, Glynn
et al.). Wind-driven upwelling in the Bay of Panama, the
Gulf of Papagayo, and at Tehuantepec (Kessler 2006) may
also exclude some species with narrow thermal tolerances,
such as Acanthaster planci (Glynn 1974). Separate biogeo-
graphic provinces along the American coast recognized by
some authors (Briggs 1974; Veron 1995; Hastings 2000; but
see Robertson and Cramer 2009; Briggs and Bowen 2012)
attest to the existance of barriers to dispersal that prevent a
number of species from spreading along its entire length.
Major currents may be of less importance to dispersal along
the coast compared to tidal flux and eddies, likely to spread
larvae over moderate distances. Nevertheless, larval con-
nectivity might be influenced by the general circulation
pattern from south to north between approximately 20°N and
20°S (Kessler 2006; Fiedler and Lavin (Chap. 3)). The
northerly Peru Oceanic and Coastal currents reach almost to
the Panama Bight; in this area a reversing gyre moves water
towards the north or towards the south, depending on the
season. From Costa Rica to Baja California, the current flow
along the coast is northward, all the way to the entrance of
the Sea of Cortez (Gulf of California). The cold California
Current flows southward on the west side of Baja California
and limits colonization of most tropical species, thus defin-
ing the northern termination of the ETP.

16.3 Data on Gene Flow Between
Conspecific Populations
in the Eastern Pacific

We have attempted to compile all the existing data published
until 2013 that can be used to calculate rates of gene flow
among ETP populations of coral reef organisms. Most of
these data consist of mitochondrial DNA (mtDNA)
sequences. The mtDNA of corals, however, evolves at slow
rates and does not provide information useful in comparing
conspecific populations (Shearer et al. 2002; Hellberg 2006).
Population genetic research of corals has, therefore, had to
rely on either sequences of ribosomal internal transcribed
spacers (ITS) or microsatellites. We have not included data
from isozyme studies because the original data are not
readily available, and because many of the organisms for
which isozyme data exist have been revisited by studies
involving DNA, less subject to the problem of “hidden
variation”. Most of the studies that generated the data were
not designed to address the question of gene flow within the
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eastern Pacific; because of this, the sample sizes for each
local population are often smaller than necessary for robust
statistical analysis. Nevertheless, sequence data from only a
few individuals may present a not too distorted view of gene
flow (Pluzhnikov and Donnelly 1996). Some of the pub-
lished studies have included summary statistics that could be
used directly. When they did not, we calculated these
statistics from raw data downloaded from GenBank. Some
studies had to be omitted because authors have not included
locality information with the accessioned sequences, making
it impossible to use their data to calculate gene flow between
local populations.

In order to quantify degree of divergence relevant to gene
flow, we used Fgr statistics (Wright 1951). Fgr is the ratio of
genetic variance between populations over the pooled vari-
ance within populations. There are two, qualitatively dif-
ferent, ways of calculating Fgr statistics. One, as originally
conceived by Wright, is based on the frequency of alleles.
The other is relevant only to DNA sequences, and is based
both on the frequency of haplotypes and on the number of
nucleotide differences between them (Hudson et al. 1992).
This measure is sometimes referred to as ®gp. We have used
frequency-based Fgp for microsatellite data and ®gt for
sequence data. As most of the published studies have not
applied corrections to either of these values, we avoided
using them in what we calculated from raw data.

Fst is far from a perfect measure of gene flow. Under an
island model (in which migration and genetic drift are at
equilibrium, and in which migration rates and effective
population sizes are equal between all demes), Fst can be
used to estimate the number of propagules dispersed from
one population to another per generation (Wright 1951).
These conditions, however, are rarely met in any species
(Whitlock and McCauley 1999), and much less so in marine
populations, which are open to immigration of larvae with
potentially different genetic constitutions in each generation
(Johnson and Black 1984). An additional problem with Fgr,
particularly for frequency-based data, is that high
within-population heterozygosity can create the appearance
of no differentiation between populations, even if they share
no alleles (Hedrick 2005; Hellberg 2007, 2009). ®gr can
assume negative values if within-population variation is
higher than between-population variation. Such negative
values are incompatible with the notion that they estimate
gene flow. Finally Fgr statistics are incapable of distin-
guishing between recurrent gene flow at low levels among
recently separated populations and higher levels of gene
flow between anciently separated ones (Hey and Nielsen
2004; Marko and Hart 2012). Despite these problems, Fgr is
a useful index of genetic differences between populations
over and above local variation, differences that increase with
genetic isolation, and, unlike more sophisticated statistics of
gene flow, it can be applied to all genetic markers. The latter
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advantage is the main reason why we use it in this chapter.
We have arranged the data in tables organized along four
axes in which populations can be compared, i.e. between the
central and the eastern Pacific, between the outer (oceanic)
islands of the eastern Pacific and the mainland, among the
outer islands, and among populations distributed along the
coast. This, of course, does not imply that the directions in
which genes have traveled over the generations are neces-
sarily limited to these axes.

16.3.1 Gene Flow Between the Central
and the Eastern Pacific

As few species are shared between the ETP and the central
Pacific, the number of studies comparing conspecific popu-
lations in the two areas is necessarily limited. Under the
island model of Wright (1951), values of Fgr > 0.2 (if
calculated from nuclear markers) or >0.33 (if calculated
from mtDNA), which is haploid and maternally inherited)
correspond to an estimate of less than one propagule per
generation. Accordingly, Fgr values that approach these
thresholds are held to indicate genetic exchange that cannot
overcome the diversifying effects of genetic drift. By this
standard, many of the Fgr values in Table 16.1 represent a
high degree of divergence, indicative of low rates of gene
flow over the enormous distances between shallow water
habitats in the two oceans. The patterns of genetic exchange,
however, differ between species, as would be expected if the
EPB is sporadically breached by larvae carried during peri-
ods of acceleration of the North Equatorial Counter Current.

Combosch et al. (2008) compared sequences of the
internal transcribed spacer (ITS) from the main reef
frame-builder of the eastern Pacific, Pocillopora damicornis,
with sequences from Hawaii and from the western Pacific.
Divergence between populations at Hawaii and at Panama
was high (Table 16.1) and approximately equal to diver-
gence between populations from the eastern and the western
Pacific. Combosch et al. (2008) attributed part of this
divergence to introgression of genes from P. eydouxi and
P. elegans into the genome of ETP populations of P. dami-
cornis, facilitated by a shift from a brooding reproductive
mode in the central and western Pacific to free-spawning of
gametes in the ETP (Glynn et al. 1991). This conclusion has
been challenged by Pinzon and LaJeunesse (2011), who
regard all three morphospecies as a single genetic entity, and
consider evidence of apparent hybridization to be artifacts of
cloning and sequencing of ITS, due to its representation by
multiple copies in the genome (see below). Despite this
disagreement, the Fgt value between populations of Pocil-
lopora on the two sides of the EPB is not large enough to
suggest that what is regarded as P. damicornis in Hawaii is a
different species than the eastern Pacific form. The planulae
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of P. damicornis contain phototrophic Symbiodinium
endosymbionts, which permit them to generate energy dur-
ing long-distance dispersal (Baird et al. 2009). Baird et al.
(2009) have suggested that species with autotrophic larvae
were the only ones capable of recolonizing the eastern
Pacific after the formation of the Isthmus of Panama, fol-
lowing the extinction of the earlier western American coral
fauna. Presumably, such colonization might have occurred
during El Nifio events, though there may be constraints in
the period of development of zooxanthellate planulae at high
temperatures (Yakovleva et al. 2009), which may limit the
teleplanic advantages conferred by larval autotrophy.

The study of Porites by Forsman et al. (2009) included
samples of the massive coral Porites lobata from Tahiti and
the ETP. As expected, little gene flow was evident in ITS
between the central Pacific and Easter Island, one of the
most isolated islands in the world (Table 16.1). Surprisingly,
however, divergence between populations from Tahiti and
the Galapagos was very low, although significant. The low
Fst value in this comparison may be due to non-equilibrium
conditions arising from a recent influx of larvae. In a study
of the same species by Baums et al. (2012), based on 12
microsatellites, samples from Moorea were highly divergent
from samples from four localities in the Galapagos Archi-
pelago (Table 16.1). The extensive sampling in this study
permits firm conclusions regarding gene flow in this wide-
spread, broadcast spawning coral with autotrophic larvae.
Gene flow in P. lobata is high within the ETP and within the
central Pacific but severely restricted across the EPB, despite
occasional low Fgr values between some populations from
the Galapagos and some of the south central Pacific islands.
Principal components and Bayesian STRUCTURE (Pritch-
ard et al. 2000) analysis revealed that colonies at Clipperton
Atoll group genetically with those from the central, rather
than the eastern Pacific (Baums et al. 2012). Populations at
Tabuaeran (Fanning Atoll) and Kiritimati were genetically
less differentiated than those of other central Pacific islands
from a number of locations in the ETP (Table 16.1).

The only genetic comparisons of transpacific molluscs are
for two species of Conus. Duda and Lessios (2009) found
that populations of C. ebraeus at Hawaii were highly dif-
ferentiated in Cytochrome Oxidase I (COI) from two pop-
ulations in the ETP (Table 16.1). It appears that Clipperton
is a stepping stone to the rest of the ETP, because the sample
from this atoll consisted of mitochondrial haplotypes also
found in either Panama or Hawaii, plus an additional type
otherwise only encountered in Okinawa. These three hap-
lotypes were distantly related, suggesting that they did not
evolve in situ, and that the Clipperton population is thus the
result of haphazard, infrequent influx of larvae. Analysis of
Molecular Variance (AMOVA) found high (®gt = 0.263)
and significant differentiation across the EPB (Duda and
Lessios 2009). In contrast to those of C. ebraeus, COI
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haplotypes of Conus chaldaeus from Hawaii and Clipperton
were very similar (Table 16.1; Duda et al. 2012).

Data from the corallivorous sea star, Acanthaster planci,
illustrate that different conclusions about gene flow are
sometimes drawn when different genetic markers are used.
ETP populations of Acanthaster were originally described as
a separate species, A. ellisii, based on morphological dif-
ferences (Madsen 1955). Sampled by isozymes, their genetic
constitution appeared to be similar to those of the central
Pacific, which led Nishida and Lucas (1988) to the conclu-
sion that there was only one species, connected by high gene
flow across the EPB. When sequences of the mitochondrial
gene COI were subsequently obtained from the entire range
of Acanthaster (Vogler et al. 2008), they showed that
mtDNA of the ETP populations belonged to the same lin-
eage as that of populations from the rest of the Pacific. Fgt
values between eastern and central Pacific localities, how-
ever, are very large in seven out of eight comparisons
(Table 16.1), suggesting that there is no gene flow across the
EPB.

A number of tropicopolitan sea urchin genera show the
deepest divergences between central-west and eastern Pacific
extant species (Lessios et al. 1999, 2001; McCartney et al.
2000). There are, however, two exceptions. Echinothrix is a
genus that, until one of its species, E. diadema, was
observed at Isla del Coco in 1987, was unknown from the
ETP (Lessios et al. 1996). Sequencing of Cytochrome B
(CytB) found a higher amount of divergence between pop-
ulations of E. diadema at Isla del Coco and at Clipperton, on
the same side of the EPB, than between these populations
and those at Kiritimati and at Hawaii (Table 16.1). Lack of
divergence between ETP and central Pacific populations is
more likely to be the result of recent introduction than of
recurrent gene flow. Lessios et al. (1996, 1998) suggested
that these populations may have become established during
the 1982—-1983 El Nifio, which also introduced a number of
central-west Pacific species of fishes into the ETP (Robert-
son et al. 2004). The second case of a transpacific echinoid is
that of Tripneustes. Despite doubts by some taxonomic
authorities, 7. gratilla from the Indo-Pacific and T. depres-
sus from the ETP were regarded as separate species. Lessios
et al. (2003), however, found that these two putative species
shared the same mtDNA clade and are, thus, in all proba-
bility conspecific. Sequences of bindin, a nuclear gene
responsible for sperm-egg recognition, led to the same
conclusion (Zigler and Lessios 2003). Gene flow across the
EPB in Tripneustes was restricted, as evidenced by high
pairwise Fgr values between five ETP and three central
Pacific locations (Table 16.1).

Fishes are the group that contains the highest number of
transpacific species (Robertson et al. 2004), and have thus
provided the greatest opportunities for assessing gene flow
across the EPB. Data from fishes illustrate great diversity of
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evolutionary histories and gene flow rates, diversity that is
consistent with “sweepstakes dispersal” between the oceanic
regions on either side of the barrier. An isozyme study by
Rosenblatt and Waples (1986) indicated little divergence
between ETP and Hawaiian conspecific populations of
twelve species. More recently, Lessios and Robertson (2006)
compared two mitochondrial genes, ATPase8 and ATPase6,
in twenty species considered as transpacific on the basis of
morphology. Two of these turned out to be anciently sepa-
rated between oceanic regions, as indicated by reciprocally
monophyletic mtDNA clades, and thus should probably be
recognized as separate species. Among the other eighteen,
Fst between central and eastern Pacific populations ranged
from negative values to +0.94. The highest values, indicative
of a complete cessation of gene flow, were those between
demes of the surgeon fish Acanthurus triostegus sand-
vichensis from Hawaii and Johnston Atoll, and of A.
triostegus triostegus from the ETP (Table 16.1), but also
between A. triostegus sandvichensis and A. triostegus mar-
quesensis from the Line Islands and the Marquesas (Lessios
and Robertson 20006). It would appear, therefore, that there is
genetic isolation between the Hawaiian-Johnston subspecies
from the other two subspecies. These comparisons illustrate
that populations at Hawaii are often isolated not only from
those in the ETP, but also from the rest of the Pacific, as
Baums et al. (2012) have also found in Porites lobata. Thus,
data in Table 16.1 in which the central Pacific is represented
only by samples from Hawaii may not be indicative of
isolation between oceanic regions.

Divergence between populations of Acanthurus trioste-
gus from Kiritimati and the Marquesas and from the ETP
was generally high, but at the same time suggestive of low
levels of gene flow, also evident in the sharing of the most
common haplotypes (Lessios and Robertson 2006). Diver-
gence between ETP and central Pacific localities was occa-
sionally high (but inconsistent between comparisons of
different populations) in the glass eye, Heteropriacanthus
cruentatus, in the goatfish Mulloidichthys vanicolensis and
in the squirrelfish Myripristis bendti. Such inconsistencies
may well be the result of small sample sizes, because sam-
pling of M. bendti CytB of some of the same localities by
Craig et al. (2007) did not always produce similar Fgy val-
ues. Other species, such as the surgeon fish Acanthurus
nigricans, the parrotfish Calotomus carolinus, the surgeon
fish Ctenochaetus marginatus, the butterflyfish Forcipiger
flavissimus and the moorish idol Zanclus cornutus showed
practically no divergence across the EPB (Table 16.1),
indicating that there has been either recent or recurrent gene
flow. In an analysis of molecular variation (AMOVA) only
two of the 18 transpacific species were found to have sig-
nificantly higher differentiation between oceanic regions
than within regions. Fsy and AMOVA cannot distinguish
between on-going gene flow and recent isolation. For this
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reason, Lessios and Robertson (2006) employed “IM”, an
algorithm of Bayesian estimation based on coalescence (Hey
and Nielsen 2004), to deduce time of initial separation and
degree and direction of subsequent gene flow. Such analyses
do not always produce reliable results when they involve a
single locus, but they can provide an indication regarding
these parameters. Estimated time of initial separation
between central and eastern Pacific conspecific populations
ranged from 30,000 to 1,000,000 years ago, times more
recent than the 3 million year final closure of the Isthmus of
Panama (Coates and Obando 1996). These relatively recent
estimates indicate that a vicariance scenario, according to
which transpacific species are relicts of circumglobal con-
nections that were severed by the rise of the Isthmus
(McCoy and Heck 1976; Heck and McCoy 1978), is unli-
kely. Direction of gene flow deduced by IM was not always
from West to East, as might have been expected if the North
Equatorial Counter Current were the only means of con-
veyance. In eight out of the eighteen cases, migration was
actually estimated as being higher in the opposite direction.
Reconstruction of ancestral genotypes and comparisons of
relative genetic diversity suggested that in at least two cases
the original range expansion was from the ETP into the
central Pacific. Thus, directions of initial colonization and
subsequent gene flow do not always coincide.

In conclusion, marine shallow water biota of the ETP is,
indeed, isolated from the rest of the world’s oceans, but
breaching of the EPB is also possible. Such transpacific
migrations of larvae most likely are the result of haphazard
combinations of factors favorable for migration, such as
timing of spawning relative to current speed intensifications,
availability of rafting materials, and good fortune in
encountering suitable habitat at the end of the dispersal
event.

16.3.2 Gene Flow Between the Outer Eastern
Pacific Islands and the Mainland
Coast

Compared to the distances between the ETP and the central
Pacific, those between the American mainland coast and the
outer oceanic islands of the ETP (Revillagigedo, Clipperton,
Isla del Coco, the Galdpagos and Easter Island) are shorter,
but far from negligible. The available data on gene flow
across this 520-4000 km oceanic divide (Table 16.2) are
biased towards showing high rates of migration because, by
and large, they come from transpacific species likely to
possess traits conducive towards high rates of dispersal.
Data from corals found on at least one island and on the
mainland come from studies on Pocillopora and Porites. In
corals, morphological plasticity (Todd 2008) and gene
exchange between distinguishable morphs (Willis et al. 2006)
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contribute to uncertainties as to which populations belong to
the same species. This is particularly true for Pocillopora in
the ETP. Pinzén and LaJeunesse (2011) sampled individuals
of this genus that by morphological criteria belonged to
P. damicornis, P. verrucosa, P. capitata, P. meandrina, and
P. eydouxi. They determined sequences of the internal tran-
scribed spacer 2 (ITS2) and of an unidentified open reading
frame in mitochondrial DNA, and they also genotyped seven
microsatellite loci. According to all of these markers, Pocil-
lopora in the ETP belong to three distinct clades, indepen-
dently of morphotype. Microsatellites were the only markers
sampled in both the islands and the mainland in Pocillopora
types 1 and 3. They indicate little differentiation between
islands and mainland in Pocillopora type 1 (the larger values
between Revillagigedo and the mainland are based on only
two specimens), but substantial divergence between the
Galapagos and Panama in Pocillopora type 3 (Table 16.2).
Pocillopora type 2 is endemic to Clipperton. The population
of Porites lobata at Clipperton sampled with microsatellites
by Baums et al. (2012) was strongly differentiated from pop-
ulations on the mainland (Table 16.2). Populations from Isla
del Coco and the Galapagos maintain high rates of gene flow
with populations at the mainland, except for the one at the
Ecuadorian coast.

There are high rates of genetic exchange between con-
specific populations of echinoderms from the islands and the
mainland (Table 16.2). Acanthaster planci from the ETP,
though genetically differentiated from the same species from
the central Pacific, was represented by identical COI hap-
lotypes at Isla del Coco and in the Gulf of Chiriqui, Panama.
All three species of sea urchins for which data exist were
genetically homogeneous between the islands and the coast
with one exception. Paradoxically, this exception consists of
the transpacific species Tripneustes gratilla/depressus, in
which populations at Clipperton and Easter Island maintain
very little gene flow with populations along western Amer-
ican shores. Other sea urchin species in which larvae from
the islands have not established viable populations on the
mainland are Echinothrix diadema, which has yet to be
observed outside Clipperton and Isla del Coco (Lessios et al.
1996), and Eucidaris galapagensis at the islands, which is
reciprocally monophyletic in COI with respect to the con-
tinental E. thouarsii (Lessios et al. 1999). It is doubtful that
larvae of these species are incapable of crossing between the
islands and the continental shore; a more plausible cause of
this pattern is that they fail to become established due to
ecological factors.

Practically all the existing data regarding fishes at the
oceanic islands of the ETP come from transpacific species,
and, as expected, indicate high genetic connectivity with
coastal populations (Table 16.2). The grouper Epinephelus
labriformis, though endemic to the ETP, fits the same
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pattern. The wrasse Stethojulis bandanensis, however,
shows a high degree of genetic isolation, both at Clipperton
and at Isla del Coco. The cosmopolitan puffer Diodon
holocanthus is the only fish species sampled from both
Easter Island and the mainland; like Tripneustes, it illustrates
that populations at this remote locality are genetically iso-
lated from populations in the rest of the ETP.

Examination of Fgr values from species that have been
sampled at more than one island suggests that populations
at Easter Island and Clipperton Atoll are less connected to
populations along the mainland (Table 16.2). Ideally we
would like to test statistically whether there is a general
trend showing that populations at geographically more
remote islands are also genetically more isolated from
conspecific coastal populations. As there are few islands,
this cannot be done through correlation of genetic and
geographic distances; it can be addressed, instead, by
comparison of intraspecific divergence between the resi-
dents of each island and those of a common locality on the
mainland. The only such comparison that provides a sample
size sufficient for statistical testing is between populations
from Panama and Clipperton, on the one hand, and between
Panama and Isla del Coco, on the other. We compared Fgt
values of the same nine species sampled in all three
localities paired by genetic marker. The results indicate that,
as expected from relative geographic distances, genetic
isolation of populations at Clipperton from those at Panama
was significantly higher than isolation of the same nine
species at Isla del Coco (Wilcoxon paired sample test,
p < 0.05).

16.3.3 Gene Flow Between the Outer Eastern
Pacific Islands

Although genes are not necessarily transferred directly
between the outer islands (mainland populations may act as
stepping stones) it is useful to ask how genetically different
island populations are from each other. The general picture
in comparisons between island populations of various spe-
cies (Table 16.3) is almost identical to the one presented by
comparisons between the islands and the mainland
(Table 16.2). There is high genetic connectivity between
conspecific residents of most islands, except for those at
Easter Island, in which all but one species show large and
significant values of Fgt in comparisons with populations
from all other islands. Clipperton Atoll shows a mixed pat-
tern. Populations of Porites lobata, Tripneustes gratilla, the
blenny Ophioblennius steindachneri and the wrasse Stetho-
Jjulis bandanensis are very different from populations from
all other islands. Populations of all other species, however,
show high rates of gene flow.
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16.3.4 Gene Flow Along the Coast of the Eastern
Pacific

We would expect to observe the highest rates of gene flow
along the American shores of the ETP. This is generally the
case. Pinzon and LaJeunesse (2011) found no significant
restrictions of gene flow in microsatellites of Pocillopora
“type 1” in populations spanning approximately 4200 km
from the Sea of Cortez to Panama (Table 16.4). Combosch
and Vollmer (2011), on the other hand, reported that their
microsatellite data of Pocillopora damicornis show signifi-
cant structure at a much smaller scale on the Panamanian
coast. This structure is not evident in Fgt values, in which
only two comparisons between populations are larger than
0.073 (Table 16.4). It is somewhat more evident in Rgt [an
Fst equivalent that takes the step-wise mutation pattern
expected from microsatellites into account (Slatkin 1995)].
AMOVA analysis found significant, but small variation
between individual populations and also between populations
that were grouped in three areas along the Panamanian coast.
High rates of gene flow were found between microsatellite
frequencies of most coastal populations of Porites lobata by
Baums et al. (2012). One exception was the population at
Ecuador, which is different from all populations at Costa
Rica, though not from the one at Panama (Table 16.4).

In four species of sea urchins, genetic connectivity in
mtDNA along the coast is generally high from Mexico to
Panama (Table 16.4). As in Porites, the population of the
echinoid Arbacia stellata in the southernmost periphery of
the species is highly differentiated from those in the species’
center of distribution.

Among the fishes, those with transpacific ranges, Diodon
holocanthus and Scarus rubroviolaceus, show no genetic
structure (Table 16.4). This is hardly surprising in the case of
the latter, because both sampling localities of this species are
situated close to each other in the Bay of Panama, but in the case
of Diodon they lie 4000 km apart on either side of the Central
American Gap. Epinephelus labriformis also shows high ge-
netic connectivity over long spans of the coast from Baja Cal-
ifornia to Panama. The case of the three species of the grunt
Anisotremus studied by Bernardi et al. (2008) is somewhat
surprising. Anisotremus interruptus and Anisotremus taeniatus,
species usually found only in the proximity of hard bottoms,
show no significant structure in either mitochondrial CytB or
the nuclear S7 region over 4000 km of coastline. Anisotremus
dovii, on the other hand, even though it prefers sandy and
muddy bottoms (and should thus be more continuously dis-
tributed along the coast) appears to experience marked restric-
tions in gene flow between Mexico and Panama, at least in
CytB. Only one out of the total twelve CytB sequences sampled
in this species is shared between the two locations, which
accounts for the high and significant Fgt value.
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In contrast to the pattern of high gene flow along most of
the tropical west coast of America, genetic connectivity
within the Sea of Cortez can be quite low in a number of
species. Gene flow in the ovoviviparous sea horse Hip-
pocampus ingens was high among all populations sampled
from Mexico to Peru by Saarman et al. (2010) except for
one; the mitochondrial control region of the population from
Guaymas in the Sea of Cortez was highly differentiated from
that of every other population (Table 16.4). Sequences of the
mitochondrial control region of the scarletfin blenny
Coralliozetus micropes were reciprocally monophyletic
between upper and lower Gulf regions (Riginos 2005), a
level of divergence that is reflected in the Fgr values in
Table 16.4. This is also the case in the Cortez triplefin
Axoclinus nigricaudus (Table 16.4) and in the Gulf of Cal-
ifornia endemic sand bass Paralabrax maculatofasciatus
(Stepien et al. 2001; Riginos 2005), but not in the redside
blenny Malacoctenus hubbsi (Table 16.4). These genetic
breaks were attributed by Riginos (2005) to a hypothetical
Pleistocene deep water break of the Baja California Penin-
sula that bisected habitats of hard bottom fishes, as it did of
terrestrial mammals and reptiles. IM analyses yielding sim-
ilar times of divergence between upper and lower Gulf
populations of five fish species supported the hypothesis that
a historical barrier was responsible for present-day isolation
patterns, but environmental differences might also be
responsible (Riginos 2005).

Along a linear coast, such as that of the ETP, one would
expect a pattern of isolation by distance (Wright 1943), as
one population acts as a stepping stone for the dispersal of
genes towards others down the line. To determine whether
this was the case, we analyzed the data of all species in
Table 16.4 for which more than three localities were sam-
pled. We calculated correlations between Fgr values and
geographical distance along the coast, using Mantel (1967)
tests to estimate probabilities of the correlation coefficient.
For this analysis, negative values of Fgt were replaced by
zero, because negative gene flow has no meaning (Hudson
et al. 1992). Combosch and Vollmer (2011) found no cor-
relation between genetic differentiation and distance in
Pocillopora damicornis over the limited geographic extent
of their samples, but our analysis of populations from
Mexico to Panama of the data of Pinzon and LaJeunesse
(2011) shows that such a correlation does exist in Pocillo-
pora type 1 (r=0.349, p < 0.005). Baums et al. (2012)
found a strong isolation by distance trend in Porites lobata
in the ETP, including the outer islands. The correlation
remains significant when only coastal localities are consid-
ered (r = 0.856, 0.01 < p < 0.025). In Epinephelus labri-
formis, most Fgt values were negative (and replaced by 0),
which resulted in a slight, but still significant correlation
with geographic distance (r = 0.051, 0.01 < p < 0.025).
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16 Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific

Saarman et al. (2010) reported no significant correlation
between Fgr and distance in Hippocampus ingens, which
would have been surprising given that sea horses are
sedentary and have no larval stage. Our re-analysis of their
Fsr data, however, shows that the expected relationship
does, in fact, exist (r = 0.441, 0.01 < p < 0.025). The dif-
ference between their analysis and ours is not only that they
(presumably) used negative Fgt values, but also because
some of the geographic distances they listed in their Table 4
cannot be correct because they show Peru situated north of
Ecuador. Thus, the available data are consistent with a
general trend of isolation by distance along the ETP coast.
Such a correlation, however, is not necessarily the result of
genes dispersing via stepping stones, because populations on
either side of a barrier are also more distant from each other
than populations on the same side of the barrier. Riginos and
Nachman (2001), using partial Mantel tests, found that
genetic divergence of populations of Axoclinus nigricaudus
in the Sea of Cortez was caused not only by the distance
between localities, but also by a genetic break between the
upper and central parts of the Gulf of California.

In conclusion, gene flow rates among populations along
the ETP coast are high, at least between central Mexico and
the Panamanian coast. There is no evident genetic break
resulting from the Central American Gap in any of the
sampled species. Populations at the northernmost and the
southernmost peripheries of the ETP appear to be genetically
more isolated, possibly as the result of historical barriers, or
possibly due to ecological conditions unfavorable to tropical
species. A trend of isolation by distance is evident in corals
and fishes.

16.4 General Conclusions and Future
Prospects

The compilation of existing data regarding gene flow of
coral reef organisms in the ETP suggests that gene flow
within this oceanic region is generally high; this is certainly
true along the coast, except perhaps for the northernmost and
southernmost limits of tropical species ranges. Documented
genetic connectivity is also generally high between popula-
tions at the outer ETP islands <1000 km offshore and the
mainland, and (in some transpacific species) between the
residents of islands in the central Pacific and ETP. These
generalizations, however, need to be tempered by the real-
ization that all coral reef organisms in which genetic struc-
ture has been sampled to date, except for sea horses, possess
planktonic larvae. Large genetic differences among closely
situated populations of the same morph of the ovoviviparous
intertidal isopod Excirolana braziliensis were found in both
isozymes (Lessios and Weinberg 1993, 1994) and in
mtDNA (Sponer and Lessios 2009). The same may well turn
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out to be true for coral reef organisms with limited means of
dispersal. It would be of interest to obtain data from ascid-
ians, bryozoans, and other organisms with abbreviated larval
phases to see how they compare with data from organisms
with planktonic larvae. It is also important to sample
genetically more species of corals, the ecological engineers
responsible for creating the habitats in which other coral reef
organisms live. The isolation of the ETP from other oceanic
regions, the remote location of its outer islands, and the
simple spatial arrangement of its coastal populations, can
produce interesting contrasts in patterns of gene flow. Such
data can address general population genetic theory in addi-
tion to producing information regarding the natural history
of the organisms in this ocean.
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