Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific

H.A. Lessios and Iliana B. Baums

Abstract

Gene flow can provide cohesion between conspecific populations. In order to obtain an indirect measure of gene flow between coral reef species in the eastern tropical Pacific (ETP) and between these populations and those of the rest of the Pacific we compiled available data from sequences of DNA and microsatellites for corals, gastropods, echinoderms and fishes, and calculated FST statistics. The ETP consists of a narrow strip of continental shelf along the coast of the Americas and a deeper water gap between the coast and the outer eastern Pacific Islands; a large expanse of deep ocean separates the ETP and the closest islands in the central Pacific. We have, therefore, compared populations in four major directions: (1) between the eastern and the central Pacific, (2) between the coast and the outer islands, (3) among the outer islands, and (4) along the coast and nearshore islands. The available data are biased in favor of showing high levels of gene flow because they contain an excess of transpacific species, which are a minority among ETP biota. Despite this bias, shallow water populations of the ETP are isolated from the rest of the world's oceans. Occasional breaching of the expanse of water between the ETP and the Central Pacific by some species is also possible. Gene flow between the outer eastern Pacific islands and the mainland coast is variable, depending on the species examined. Gene flow among populations at the outer eastern Pacific islands is high except for those at Easter Island (Rapa Nui), in which all but one sampled species show large and significant values of F_{ST} in comparisons with populations from all other islands. Gene flow rates among populations along the ETP coast are high. There is no evident genetic break resulting from the Central American Gap (southern Mexico to the Gulf of Fonseca, Honduras) in any of the sampled species. A trend of isolation by distance along the coast is evident in corals and fishes.

Keywords

Genetic connections \bullet Mitochondrial DNA \bullet Microsatellites \bullet Genetic structure \bullet F_{ST} statistics

H.A. Lessios (🖂)

Smithsonian Tropical Research Institute, 0843-03092 Balboa, Panama e-mail: Lessiosh@post.harvard.edu

I.B. Baums The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA e-mail: baums@psu.edu

© Springer Science+Business Media Dordrecht 2017 P.W. Glynn et al. (eds.), *Coral Reefs of the Eastern Tropical Pacific*, Coral Reefs of the World 8, DOI 10.1007/978-94-017-7499-4_16

16.1 Introduction

Gene flow is the exchange of genes between conspecific populations. It is an important biological process in every species because gene transfer provides cohesion between populations, preventing their independent evolution. The movement of genes over generations assures that new advantageous mutations that arise in one location can eventually spread throughout the species' range. When gene flow becomes restricted populations become "genetically structured", diverging from each other and (if the restrictions become severe and last a long time) possibly turning into separate species. The sharing of genes between populations can also dilute adaptation to local environmental conditions, thus averaging the response to natural selection over the connected populations. It may thus limit the geographic extent over which a species can spread, as peripheral populations are prevented from adapting to conditions at the edge of a species range and then proceed to colonize new, previously unsuitable, areas (Haldane 1956; Case and Taper 2000; Sexton et al. 2009; Dawson et al. 2010).

Genetic exchange is effected by the dispersal of propagules from one population to another, but, as propagules are difficult to follow, most estimates of gene flow do not involve direct observations of such transfers; they rely instead on assessing divergence between populations. This is particularly true for marine organisms in which planktonic larvae maintain genetic connections over very long distances and are virtually impossible to track in the water column. Species with this kind of larvae are expected to show high rates of genetic exchange between populations and thus high genetic homogeneity, although this expectation is not always met. Several studies have indicated that in a number of marine species self-recruitment to the natal population is high, and the dispersal potential expected of their larvae fails to be realized (Jones et al. 1999; Swearer et al. 1999, 2002; Hellberg et al. 2002; Taylor and Hellberg 2003). Such studies have led to doubts that the dogma of near-panmixia in marine organisms is ever realized (Hellberg 2009). Even when local recruitment does occur, however (as it undoubtedly does in most populations), and even if the fraction of the larvae that recruit successfully at a distant locality is small, it may be sufficient to homogenize genetic constitution of populations over large distances.

The position of coral reef organisms of the eastern tropical Pacific (ETP) in the spectrum between panmixia and high genetic structure is the subject of this chapter. We begin by considering geographical and oceanographic features that would be expected to affect rates of contemporary and historical gene flow, then summarize existing data from the literature about genetic connectivity. Not all of the data were gathered to assess population structure, and the organisms for which genetic data exist are far from uniformly spread over taxonomic groups. Nevertheless, a compilation of such data can begin to address the question of whether general patterns exist. In "coral reef organisms" we include all species that are represented by populations resident in coral reefs, even if they are not exclusively found in this particular habitat. As most of these species (even corals) are capable of living outside coral reefs (Robertson 1998; Guzmán et al. 2004), this means that we have attempted to include studies on all organisms that live on hard substrata in the photic zone, except for those limited to the upper intertidal shore line.

16.2 Oceanographic Features of the Tropical Eastern Pacific Relevant to Gene Flow

The ETP (Fig. 16.1) consists of a narrow strip of continental shelf along the coast of the American continent with some islands close to the shore, a deeper water gap between the coast and the outer eastern Pacific Islands (Easter Island, the Galápagos Archipelago, Malpelo Island, Isla del Coco, Clipperton Atoll and the Revillagigedo Archipelago). A large expanse of deep ocean separates the ETP and the closest islands in the central Pacific (the Line Islands, the Marquesas, and Hawaii). Thus, shallow water populations in the ETP can exchange genes in four major directions: (1) between the eastern and the central Pacific, (2) between the mainland coast and the outer islands, (3) among the outer islands, and (4) along the coast and nearshore islands. Potential barriers to gene flow in each direction consist of habitat unsuitable for the establishment of adult populations and of currents that channel the movement of larvae along a particular vector, or that alter environmental conditions as to exceed the tolerances of propagules in a particular area (see Chaps. 3 and 4, Fiedler and Lavín, and Wang et al., respectively). Expanses of deep water that are difficult to cross in a single larval life can be expected to cause the most marked restrictions to the exchange of genes. If impassable, these barriers can prevent the spread of species, thus establishing different biogeographic provinces as determined by patterns of species presence and absence.

Physical barriers that impede gene exchange between populations in the ETP and those in the rest of the world define it as a separate oceanic region. Towards the east, an uninterrupted land bridge has existed for the last 2-3 million years (Coates and Obando 1996). [It has been claimed recently that a nearly complete barrier to water exchange with the Caribbean has existed since the Eocene or early Miocene (Montes et al. 2012) but this claim is incompatible with paleoceanographic (Keigwin 1982; Collins 1996; Haug and Tiedemann 1998; O'Dea et al. 2007), paleontological (Webb 1976; Coates and Obando 1996), and genetic (Lessios 2008) data.] Towards the west lies the widest marine biogeographical barrier on the planet, 4000-7000 km of deep water without any stepping stone habitats on which adults of shallow water marine species can exist (Ekman 1953; Briggs 1974). This ocean configuration, known as the "Eastern Pacific Barrier" (EPB) has been in place for most of the Cenozoic (Grigg and Hey 1992). It is so difficult to cross, that most shallow water benthic genera are represented by different species on its two sides. Had it not been for the small number of "transpacific species", species that span the EPB (Emerson 1978, 1982; Vermeij 1978; Rosenblatt and Waples 1986; Lessios et al. 1996; Robertson et al. 2004; Lessios and Robertson 2006), it would not have figured in a

Fig. 16.1 Ten year mean (1993–2003) ocean surface currents in the Central-East Pacific (**a**) and the Eastern Tropical Pacific (**b**). Given are surface current vectors with 1 degree (**a**) or 1/3 degree (**b**) resolution. Basemap generated with ETOPO 2 (USGS). CC = California Current, NEC = North Equatorial Current, NECC = North Equatorial Current, SEC = South Equatorial Current, CRCC = Costa Rica Coastal Current

discussion of conspecific gene flow. The barrier is traversed by the westerly North and South Equatorial Currents and by the easterly North Equatorial Counter Current. The speed of the latter increases greatly during El Niño events, reducing the transit time between the Line Islands and the eastern Pacific to periods that may not exceed the larval duration of a number of organisms (Richmond 1990; Glynn et al. 1996; Glynn and Ault 2000; Robertson et al. 2004). This acceleration of the North Equatorial Counter Current is generally proposed as the conveying mechanism for the dispersal of species from the species-rich central Pacific into the ETP (Dana 1975; Richmond 1990; Robertson et al. 2004) and may also be responsible for recurrent events of gene flow, at least in one direction.

Expanses of deep water narrower than the EPB are also of potential relevance to genetic divergence between conspecific populations of the outer islands of the eastern Pacific and the mainland. Easter Island (Rapa Nui), 4000 km from the coast of Peru, is the most remote of these islands. As its distance from Pitcairn is 1700 km, it can either be considered as the westernmost island of the eastern Pacific or the easternmost island of the central Pacific. Its marine fauna consists of a mixture of endemic, Indo-West-Pacific, transpacific, and cosmopolitan species, but it also contains several species characteristic of the eastern Pacific (Fell 1974; Rehder 1980; Randall 1998; Glynn et al. 2007). The latter may be the result of larval transport in currents that flow predominantly towards the west (Glynn et al. 2007). The next most remote island, Clipperton Atoll, lies inside the tropics, 1000 km from the coast of Mexico and 4000 km from the Marquesas Islands. It is intermittently bathed by either the easterly North Equatorial Counter Current or the westerly North Equatorial Current and may well represent a stepping stone between the central and eastern Pacific (Glynn et al. 1996; see Chap. 5, Glynn et al.). As at Easter Island, the marine fauna of Clipperton is a mixture of Indo-West and east Pacific species, and also endemics (Glynn et al. 1996; Lessios et al. 1996; Robertson and Allen 1996). The Galápagos Islands comprise the only oceanic Archipelago in the Equatorial eastern Pacific. San Cristóbal, the closest island to the mainland, lies 930 km west of the coast of Ecuador. The Galápagos Islands contain the best studied marine biota among those of the outer islands (e.g., Bowman 1966; Glynn and Wellington 1983; James 1991; Grove and Lavenberg 1997). The marine fauna contains numerous species that are also found on the west coast of America, several species endemic to the eastern Pacific outer islands or just to the Galápagos, and a few Indo-Pacific species (Briggs 1974). The Archipelago is influenced by the Peru Oceanic Current flowing towards the Galápagos from the mainland, the North Equatorial Counter Current bringing water from the central Pacific, the South Equatorial Current flowing in the opposite direction, plus a southerly flowing current during the dry season out of the Panama Bight (Ab bott 1966; Glynn and Ault 2000; Kessler 2006). Isla del Coco is situated 690 km northeast of the Galápagos and 500 km west of Costa Rica. Its marine fauna consists mostly of eastern Pacific species, but there is a small number of outer island endemics and of Indo-Pacific species (Hertlein 1963). The four Revillagigedo islands lie approximately 390 km southwest of the southern tip of Baja California. The shallow water marine species on these islands are mostly a subset of those found on the mainland, but some Indo-Pacific species are also present. The corals show affinities with those of Clipperton (Glynn et al. 1996; Glynn and Ault 2000; Ketchum and Bonilla 2001). The Revillagigedo Archipelago is influenced both by the northerly Costa Rica Current and by the southerly California Current (Glynn and Ault 2000; Kessler 2006; see Chap. 3, Fiedler and Lavín).

Marine populations of the coastal ETP are expected to show more genetic connectivity than those of island populations. This coast, however, is not entirely without potential barriers. Hard substrate bottoms are interrupted by river

estuaries and mangrove areas, unsuitable as habitats for adults of many coral reef species. A 1000 km stretch from southern Mexico to the Gulf of Fonseca at the Honduras-El Salvador border (the Central American Gap) is devoid of coral reefs or rocky bottoms, except for a small Pocillopora reef in Los Cóbanos, El Salvador (Glynn and Ault 2000; Reyes-Bonilla and Barraza 2003; but see Chap. 5, Glynn et al.). Wind-driven upwelling in the Bay of Panama, the Gulf of Papagayo, and at Tehuantepec (Kessler 2006) may also exclude some species with narrow thermal tolerances, such as Acanthaster planci (Glynn 1974). Separate biogeographic provinces along the American coast recognized by some authors (Briggs 1974; Veron 1995; Hastings 2000; but see Robertson and Cramer 2009; Briggs and Bowen 2012) attest to the existance of barriers to dispersal that prevent a number of species from spreading along its entire length. Major currents may be of less importance to dispersal along the coast compared to tidal flux and eddies, likely to spread larvae over moderate distances. Nevertheless, larval connectivity might be influenced by the general circulation pattern from south to north between approximately 20°N and 20°S (Kessler 2006; Fiedler and Lavín (Chap. 3)). The northerly Peru Oceanic and Coastal currents reach almost to the Panama Bight; in this area a reversing gyre moves water towards the north or towards the south, depending on the season. From Costa Rica to Baja California, the current flow along the coast is northward, all the way to the entrance of the Sea of Cortez (Gulf of California). The cold California Current flows southward on the west side of Baja California and limits colonization of most tropical species, thus defining the northern termination of the ETP.

16.3 Data on Gene Flow Between Conspecific Populations in the Eastern Pacific

We have attempted to compile all the existing data published until 2013 that can be used to calculate rates of gene flow among ETP populations of coral reef organisms. Most of these data consist of mitochondrial DNA (mtDNA) sequences. The mtDNA of corals, however, evolves at slow rates and does not provide information useful in comparing conspecific populations (Shearer et al. 2002; Hellberg 2006). Population genetic research of corals has, therefore, had to rely on either sequences of ribosomal internal transcribed spacers (ITS) or microsatellites. We have not included data from isozyme studies because the original data are not readily available, and because many of the organisms for which isozyme data exist have been revisited by studies involving DNA, less subject to the problem of "hidden variation". Most of the studies that generated the data were not designed to address the question of gene flow within the eastern Pacific; because of this, the sample sizes for each local population are often smaller than necessary for robust statistical analysis. Nevertheless, sequence data from only a few individuals may present a not too distorted view of gene flow (Pluzhnikov and Donnelly 1996). Some of the published studies have included summary statistics that could be used directly. When they did not, we calculated these statistics from raw data downloaded from GenBank. Some studies had to be omitted because authors have not included locality information with the accessioned sequences, making it impossible to use their data to calculate gene flow between local populations.

In order to quantify degree of divergence relevant to gene flow, we used F_{ST} statistics (Wright 1951). F_{ST} is the ratio of genetic variance between populations over the pooled variance within populations. There are two, qualitatively different, ways of calculating F_{ST} statistics. One, as originally conceived by Wright, is based on the frequency of alleles. The other is relevant only to DNA sequences, and is based both on the frequency of haplotypes and on the number of nucleotide differences between them (Hudson et al. 1992). This measure is sometimes referred to as Φ_{ST} . We have used frequency-based F_{ST} for microsatellite data and Φ_{ST} for sequence data. As most of the published studies have not applied corrections to either of these values, we avoided using them in what we calculated from raw data.

F_{ST} is far from a perfect measure of gene flow. Under an island model (in which migration and genetic drift are at equilibrium, and in which migration rates and effective population sizes are equal between all demes), F_{ST} can be used to estimate the number of propagules dispersed from one population to another per generation (Wright 1951). These conditions, however, are rarely met in any species (Whitlock and McCauley 1999), and much less so in marine populations, which are open to immigration of larvae with potentially different genetic constitutions in each generation (Johnson and Black 1984). An additional problem with F_{ST} , particularly for frequency-based data, is that high within-population heterozygosity can create the appearance of no differentiation between populations, even if they share no alleles (Hedrick 2005; Hellberg 2007, 2009). Φ_{ST} can assume negative values if within-population variation is higher than between-population variation. Such negative values are incompatible with the notion that they estimate gene flow. Finally FST statistics are incapable of distinguishing between recurrent gene flow at low levels among recently separated populations and higher levels of gene flow between anciently separated ones (Hey and Nielsen 2004; Marko and Hart 2012). Despite these problems, F_{ST} is a useful index of genetic differences between populations over and above local variation, differences that increase with genetic isolation, and, unlike more sophisticated statistics of gene flow, it can be applied to all genetic markers. The latter advantage is the main reason why we use it in this chapter. We have arranged the data in tables organized along four axes in which populations can be compared, i.e. between the central and the eastern Pacific, between the outer (oceanic) islands of the eastern Pacific and the mainland, among the outer islands, and among populations distributed along the coast. This, of course, does not imply that the directions in which genes have traveled over the generations are necessarily limited to these axes.

16.3.1 Gene Flow Between the Central and the Eastern Pacific

As few species are shared between the ETP and the central Pacific, the number of studies comparing conspecific populations in the two areas is necessarily limited. Under the island model of Wright (1951), values of $F_{ST} \ge 0.2$ (if calculated from nuclear markers) or ≥ 0.33 (if calculated from mtDNA), which is haploid and maternally inherited) correspond to an estimate of less than one propagule per generation. Accordingly, F_{ST} values that approach these thresholds are held to indicate genetic exchange that cannot overcome the diversifying effects of genetic drift. By this standard, many of the F_{ST} values in Table 16.1 represent a high degree of divergence, indicative of low rates of gene flow over the enormous distances between shallow water habitats in the two oceans. The patterns of genetic exchange, however, differ between species, as would be expected if the EPB is sporadically breached by larvae carried during periods of acceleration of the North Equatorial Counter Current.

Combosch et al. (2008) compared sequences of the internal transcribed spacer (ITS) from the main reef frame-builder of the eastern Pacific, Pocillopora damicornis, with sequences from Hawaii and from the western Pacific. Divergence between populations at Hawaii and at Panama was high (Table 16.1) and approximately equal to divergence between populations from the eastern and the western Pacific. Combosch et al. (2008) attributed part of this divergence to introgression of genes from P. eydouxi and P. elegans into the genome of ETP populations of P. damicornis, facilitated by a shift from a brooding reproductive mode in the central and western Pacific to free-spawning of gametes in the ETP (Glynn et al. 1991). This conclusion has been challenged by Pinzón and LaJeunesse (2011), who regard all three morphospecies as a single genetic entity, and consider evidence of apparent hybridization to be artifacts of cloning and sequencing of ITS, due to its representation by multiple copies in the genome (see below). Despite this disagreement, the FST value between populations of Pocillopora on the two sides of the EPB is not large enough to suggest that what is regarded as P. damicornis in Hawaii is a different species than the eastern Pacific form. The planulae

Organism	Reference	Locus	bp or no of		F _{ST}	Distance	FsT	Distance	Fsr	Distance	Fsr	Distance	F _{ST}	Distance	F _{ST} L	Distance	ST D	istance
			loci			(km)		(km)		(km)		(km)	-	(km)	2	km)	3	(m:
Corals																		
Pocillopora	Combosch et al.	5.8S-ITS2	555 bp	Panama (10)	Hawaii ((2												
damicornis	(2008)				0.419	8400	1											
Porites lobata	Forsman et al. (2009)	18S-5.8S-ITS2	673 bp	Galápagos (15)	Tahiti (9)													
	÷				0.070	6600	1											
				Easter Is. (10)	0.370	4200												
Porites lobata	Baums et al. (2012)	Microsatellites	12 loci		Midway Islands (8	& NW (4)	Hawaii C (149)	Central	Hawaii M	lain (53)	Johnston 4	Atoll (58)	Kingman	Rf. (22)	Palmyra (1	T (61	eraina (10	
				Clipperton (5)	0.380	6760	0.405	6200	0.406	5100	0.191	6500	0.198	5860	0.117 5	840 0	073 5	200
				Darwin, Gal (46)	0.298	8800	0.324	7900	0.315	7200	0.152	8600	0.165	7800	0.116 7	0 002.	121 7	550
				Wolf, Gal (45)	0.318	8830	0.345	7930	0.342	7230	0.179	8630	0.173	7830	0.124 7	730 0	146 7	200
				Marchena, Gal (38)	0.319	8890	0.346	2990	0.344	7290	0.130	8690	0.182	7890	0.110 7	0 062.	142 7.	850
				S. Galápagos (14)	0.308	8940	0.336	8040	0.335	7340	0.118	8740	0.151	7940	0.088 7	840 0	-0 0 0	000
				Marino Ballena, CR (32)	0.319	9400	0.350	8700	0.346	7800	0.161	9300	0.155	8700	0.105 8	1020 0	120 8	500
				Is. Caño., CR (79)	0.296	9400	0.323	8700	0.314	7800	0.164	9300	0.154	8700	0.116 8	650 0	.129 8.	500
				Golfo Dulce, CR (29)	0.325	9400	0.353	8700	0.350	7800	0.197	9300	0.185	8700	0.150 8	650 0	165 8.	500
				Is. del Coco (55)	0.360	9220	0.388	8500	0.389	7500	0.204	8900	0.189	8200	0.148 8	300 0	174 8	001
				Panama (17)	0.329	9800	0.357	8900	0.359	8400	0.189	9700	0.175	0006	0.138 8	800 0	133 8	200
				Ecuador (20)	0.398	10200	0.417	9600	0.442	8500	0.221	9950	0.254	9100	0.190 9	080 0	221 8	006
				Clipperton (5)	Tabuaera	n (7)	Kiritimat	i (49)	Jarvis (12		Moorea (5	(0	Hiva Oa ((22)	Motane (8	2)		
					0.107	5600	0.079	5400	0.110	5740	0.145	5400	0.153	4000	0.151 4	000		
				Darwin, Gal (46)	0.075	7500	0.106	7300	0.124	7600	0.129	6600	0.132	5350	0.148 5	350		
				Wolf, Gal (45)	0.073	7530	0.127	7270	0.162	7630	0.133	6640	0.124	5500	0.139 5	500		
				Marchena, Gal (38)	0.108	7590	0.098	7430	960.0	7690	0.144	6700	0.131	5500	0.138 5	500		
				S. Galápagos (14)	0.059	7640	0.078	7500	0.076	7740	0.119	6750	0.134	5525	0.144 5	525		
				Marino Ballena, CR (32)	0.061	8400	0.098	8200	0.127	8500	0.126	7800	0.138	6470	0.152 6	470		
				Is. Caño., CR (79)	0.063	8400	0.124	8200	0.142	8500	0.133	7800	0.126	5460	0.145 6	460		
				Golfo Dulce, CR (29)	0.096	8400	0.156	8200	0.182	8500	0.158	7800	0.159	6460	0.176 6	460		
				Is. del Coco (55)	0.084	8000	0.150	7900	0.196	8100	0.161	7300	0.170	5000	0.181 6	000		
				Panama (17)	0.065	8600	0.132	8700	0.181	8800	0.134	8200	0.154	5700	0.172 6	200		
				Ecuador (20)	0.220	8800	0.206	8600	0.189	8800	0.187	7400	0.215	5600	0.219 6	600		
																	(cont	inued)

Table 16.1 F_{ST} values and approximate distance by sea (in italics) between populations in the eastern and the central Pacific, sampled by various studies

(pər
ontinı
<u>ပ</u>
16.1
Table

Organism	Reference	Locus	bp or no of loci		F _{ST}	Distance [ST	Distance (km)	Fsr	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)
Snails														,		,		
Conus ebraeus	Duda and Lessios	COI	611 bp		Hawaii (17	(
	(6007)			Clipperton (10)	0.189	5100												
				Panama (2)	0.576	8400												
Conus chaldaeus	Duda et al. (2012)				Hawaii (29	()												
				Clipperton (9)	0.058	5100												
Sea stars																		
Acanthaster planci	Vogler et al. (2008)*	COI	632 bp		Hawaii (2)		ohnston A	tol (7)	Kingman I	łf. (8)	Moorea (6	()						
				Panama (2)	0.838	8400	.775	9700	0.095	0006	0.332	8200						
				Is. del Coco (13)	0.906	7500	.871	8900	0.447	8200	0.669	7300						
Sea urchins																		
Echinothrix diadema	Lessios et al. (1998)	CytB	642 bp		Hawaii (10	(Kiritimati ((12)										
				Is. del Coco (15)	0.048	7500	-0.032	7900										
				Clipperton (6)	-0.061	5100	-0.004	5400										
Tripneustes	Lessios et al. (2003)	COI	640 bp		Marquesas	(6)	Kiritimati (10)	Hawaii (10									
depressus/gratilla				Clipperton (11)	0.400	3900	.330	5400	0.380	5000								
				Is. del Coco (10)	0.410	6000	.440	7900	0.560	7500								
				Panama (4)	0.380	0069	.400	8700	0.550	8400								
				Galápagos (10)	0.180	5400	0.150	7400	0.230	7400								
				Easter Island (8)	0.180	3700	.080	6000	0.110	7300								
Fishes																		
Acanthurus nigricans	Lessios and	ATPase8-6	842 bp		Kiritimati	(10)	Marquesas	(10)										
	Robertson (2006)			Panama (6)	-0.012	8700	.008	6900										
				Clipperton (6)	-0.064	5400	-0.074	3900										
Acanthurus	Lessios and	ATPase8-6	842 bp		Hawaii (5)		ohnston A	toll (4)	Kiritimati	(5)	Marquesa	s (4)						
triostegus	Robertson (2006)			Is. del Coco (4)	0.883	7500	.845	8900	0.110	2900	0.060	6000						
				Revillagigedo (5)	0.941	4700	.915	6000	0.537	5300	0.706	4400						
				Panama (5)	0.898	8400	.866	9700	0.316	8700	0.308	0069						
				Clipperton (5)	0.905	5000	.873	6400	0.328	5400	0.333	3900						
Arothron meleagris	Lessios and	ATPase8-6	842 bp		Hawaii (3)		Kiritimati ((2)	Marquesas	(5)								
	Robertson (2006)			Panama (5)	0.547	8400	.625	8700	0.531	0069								
				Clipperton (5)	0.118	5000	0.100	5400	0.091	3900								
				Easter Is. (3)	-0.001	7300	-0.132	6000	-0.010	3700								
Calotomus carolinus	Lessios and	ATPase8-6	842 bp	Revillagigedo (5)	Hawaii (4)		Kiritimati (5)	Marquesas	(4)								
	Robertson (2006)				-0.073	4700	0.058	5300	-0.040	4400								
Cantherhinus	Lessios and	ATPase8-6	842 bp		Hawaii (3)		Kiritimati ((2)										
dumerilii	Robertson (2006)			Clipperton (5)	0.189	5000	0.125	5400										
Ctenochaetus	Lessios and	ATPase8-6	842 bp		Kiritimati	(5)	Marquesas	(5)										
margmatus	Kobertson (2006)			Panama (5)	0.084	8700	.034	6900										
				Clipperton (5)	0.050	5400	0.032	3900										
																	(co)	ntinued)

483

Organism	Reference	Locus	bp or no of loci		F _{ST}	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)	F_{ST}	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance I (km)	F _{ST} L	Distance km)
Forcipiger	Lessios and	ATPase8-6	842 bp		Kiritimati	(10)	Marquesas	(5)										
flavissimus	Robertson (2006)			Revillagigedo (3)	0.000	5300	-0.133	4400										
				Clipperton (5)	-0.064	5400	0.000	3900										
				Easter Is. (5)	0.041	6000	0.083	3700										
Heteropriacanthus	Lessios and	ATPase8-6	842 bp		Hawaii (4		Kiritimati	(10)										
cruentatus	Robertson (2006)			Revillagigedo (4)	0.082	4700	0.299	5300										
				Clipperton (7)	0.276	5000	0.343	5400										
				Is. del Coco (11)	0.288	7500	0.361	7900										
				Panama (2)	0.065	8400	0.212	8700										
				Galápagos (9)	0.122	7400	0.227	7400										
				Easter Is. (2)	-0.264	7300	-0.016	6000										
Mulloidichthys	Lessios and	ATPase8-6	842 bp		Hawaii (1	6	Kiritimati	(5)	Marquesa	(1)	Moorea (()						
vanicolensis	Robertson (2006)			Clipperton (9)	0.306	5000	0.290	5400	0.225	3900	0.034	5400						
				Easter Is. (5)	0.072	7300	0.151	6000	-0.010	3700	-0.066	4200						
Myripristis berndti	Lessios and	ATPase8-6	842 bp		Hawaii (8		Kiritimati	(11)	Marquesa	(6)								
	Robertson (2006)			Clipperton (6)	0.118	5000	0.376	5000	0.089	3900								
				Is. del Coco (3)	0.039	7500	-0.180	7900	0.226	6000								
				Panama (12)	0.022	8400	0.241	8700	0.091	0069								
Myripristis berndti	Craig et al. (2007)	CytB	700 bp		Hawaii (1	17)	Kiritimati	(12)	Marquesa	\$ (18)	Moorea ((8)						
				Clipperton (15)	0.424	5000	0.083	5400	0.333	3900	0.189	5400						
				Panama (19)	0.393	8400	0.074	8700	0.307	0069	0.177	8200						
Novaculichthys	Lessios and	ATPase8-6	842 bp		Hawaii (4		Kiritimati	(9)	Marquesa	; (5)								
taeniourus	Kobertson (2006)			Clipperton (5)	0.069	5000	0.117	5400	0.125	3900								
				Panama (5)	0.144	8400	0.167	8700	0.167	6900								
Ostracion meleagris	Lessios and	ATPase8-6	842 bp		Hawaii (5		Kiritimati	(4)	Marquesa	; (5)								
	Kobertson (2006)			Panama (4)	0.218	8400	-0.013	8700	-0.061	6900								
				Clipperton (5)	0.375	5000	0.305	5400	0.167	3900								
Scarus ghobban	Lessios and	ATPase8-6	842 bp		Kiritimati	(10)												
	Robertson (2006)			Panama (10)	0.169	8700												
Scarus	Lessios and	ATPase8-6	842 bp		Hawaii (5		Kiritimati	(10)	Marquesa	\$ (10)								
rubroviolaceus	Kobertson (2006)			Clipperton (6)	-0.128	5000	0.268	5400	0.156	3900								
				Is. del Coco (3)	-0.154	7500	0.411	7900	0.124	6000								
				Panama (10)	-0.028	8400	0.261	8700	0.042	0069							_	
																	(con	tinued)

Table 16.1 (continued)

-	•
	ς.
_	
-	•
	-
	-
_	-
- +-	-
-	-
- ÷-	-
~	× .
- 2	ς.
. с.	
~ 7	-,
~	-
_	-
· •	-
	•
	•
-	•
_	_
	1
•	
-	
-	
•	
-	
- 11	
- H 1	
_	

Organism	Reference	Locus	bp or no of loci		F _{ST}	Distance (km)	F _{ST}	Distance (km)	Fsr	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)	Fsr	Distance (km)	F_{ST}	Distance (km)
Scarus	Fitzpatrick et al.	Microsatellites	15 loci		Marquesas	: (14)	Big Island	(42)	Maui (24)		Oahu (44)							
rubroviolaceus	(2011)			Clipperton (6)	0.170	3900	0.260	4970	0.270	5140	0.250	5300						
				Is. del Coco (51)	0.140	6000	0.230	7480	0.230	7610	0.220	7790						
				Las Perlas (9)	0.150	0069	0.250	8530	0.270	8630	0.250	8800						
				Panama coast (7)	0.170	0069	0.260	8580	0.260	8680	0.250	8850						
Sectator ocyurus	Lessios and	ATPase8-6	842 bp		Marquesas	: (10)												
	Robertson (2006)			Panama (11)	0.120	0069												
Stethojulis	Lessios and	ATPase8-6	842 bp		Kiritimati	(10)												
bandanensis	Robertson (2006)			Clipperton (7)	0.030	5400												
				Is. del Coco (3)	0.420	2900												
				Panama (4)	0.190	8700												
Zanclus cornutus	Lessios and	ATPase8-6	842 bp		Hawaii (5)		Kiritimati	(4)	Marquesas	(5)								
	Robertson (2006)			Revillagigedo (3)	-0.079	4700	0.071	5300	0.036	4400								
				Clipperton (3)	-0.151	5000	-0.091	5400	-0.084	3900								
				Panama (4)	-0.099	8400	0.018	8700	-0.013	6900								

Numbers in parentheses next to locality names indicate sample sizes Asterisks next to references indicate that F_{3T} was calculated by us from the raw data, because it was not shown in the publication. See Fig. 16.1 for a map of locations. 5.8S-ITS2: ribosomal 5.8S and internal transcribed spacer 2, 18S-5.8S-ITS2: ribosomal 18S-5.8S and internal transcripted spacer 2, 18S-5.8S-ITS2: ribo

of *P. damicornis* contain phototrophic *Symbiodinium* endosymbionts, which permit them to generate energy during long-distance dispersal (Baird et al. 2009). Baird et al. (2009) have suggested that species with autotrophic larvae were the only ones capable of recolonizing the eastern Pacific after the formation of the Isthmus of Panama, following the extinction of the earlier western American coral fauna. Presumably, such colonization might have occurred during El Niño events, though there may be constraints in the period of development of zooxanthellate planulae at high temperatures (Yakovleva et al. 2009), which may limit the teleplanic advantages conferred by larval autotrophy.

The study of *Porites* by Forsman et al. (2009) included samples of the massive coral Porites lobata from Tahiti and the ETP. As expected, little gene flow was evident in ITS between the central Pacific and Easter Island, one of the most isolated islands in the world (Table 16.1). Surprisingly, however, divergence between populations from Tahiti and the Galápagos was very low, although significant. The low F_{ST} value in this comparison may be due to non-equilibrium conditions arising from a recent influx of larvae. In a study of the same species by Baums et al. (2012), based on 12 microsatellites, samples from Moorea were highly divergent from samples from four localities in the Galápagos Archipelago (Table 16.1). The extensive sampling in this study permits firm conclusions regarding gene flow in this widespread, broadcast spawning coral with autotrophic larvae. Gene flow in *P. lobata* is high within the ETP and within the central Pacific but severely restricted across the EPB, despite occasional low FST values between some populations from the Galápagos and some of the south central Pacific islands. Principal components and Bayesian STRUCTURE (Pritchard et al. 2000) analysis revealed that colonies at Clipperton Atoll group genetically with those from the central, rather than the eastern Pacific (Baums et al. 2012). Populations at Tabuaeran (Fanning Atoll) and Kiritimati were genetically less differentiated than those of other central Pacific islands from a number of locations in the ETP (Table 16.1).

The only genetic comparisons of transpacific molluscs are for two species of *Conus*. Duda and Lessios (2009) found that populations of *C. ebraeus* at Hawaii were highly differentiated in Cytochrome Oxidase I (COI) from two populations in the ETP (Table 16.1). It appears that Clipperton is a stepping stone to the rest of the ETP, because the sample from this atoll consisted of mitochondrial haplotypes also found in either Panama or Hawaii, plus an additional type otherwise only encountered in Okinawa. These three haplotypes were distantly related, suggesting that they did not evolve in situ, and that the Clipperton population is thus the result of haphazard, infrequent influx of larvae. Analysis of Molecular Variance (AMOVA) found high ($\Phi_{ST} = 0.263$) and significant differentiation across the EPB (Duda and Lessios 2009). In contrast to those of *C. ebraeus*, COI haplotypes of *Conus chaldaeus* from Hawaii and Clipperton were very similar (Table 16.1; Duda et al. 2012).

Data from the corallivorous sea star, Acanthaster planci, illustrate that different conclusions about gene flow are sometimes drawn when different genetic markers are used. ETP populations of Acanthaster were originally described as a separate species, A. ellisii, based on morphological differences (Madsen 1955). Sampled by isozymes, their genetic constitution appeared to be similar to those of the central Pacific, which led Nishida and Lucas (1988) to the conclusion that there was only one species, connected by high gene flow across the EPB. When sequences of the mitochondrial gene COI were subsequently obtained from the entire range of Acanthaster (Vogler et al. 2008), they showed that mtDNA of the ETP populations belonged to the same lineage as that of populations from the rest of the Pacific. F_{ST} values between eastern and central Pacific localities, however, are very large in seven out of eight comparisons (Table 16.1), suggesting that there is no gene flow across the EPB.

A number of tropicopolitan sea urchin genera show the deepest divergences between central-west and eastern Pacific extant species (Lessios et al. 1999, 2001; McCartney et al. 2000). There are, however, two exceptions. *Echinothrix* is a genus that, until one of its species, E. diadema, was observed at Isla del Coco in 1987, was unknown from the ETP (Lessios et al. 1996). Sequencing of Cytochrome B (CytB) found a higher amount of divergence between populations of E. diadema at Isla del Coco and at Clipperton, on the same side of the EPB, than between these populations and those at Kiritimati and at Hawaii (Table 16.1). Lack of divergence between ETP and central Pacific populations is more likely to be the result of recent introduction than of recurrent gene flow. Lessios et al. (1996, 1998) suggested that these populations may have become established during the 1982-1983 El Niño, which also introduced a number of central-west Pacific species of fishes into the ETP (Robertson et al. 2004). The second case of a transpacific echinoid is that of Tripneustes. Despite doubts by some taxonomic authorities, T. gratilla from the Indo-Pacific and T. depressus from the ETP were regarded as separate species. Lessios et al. (2003), however, found that these two putative species shared the same mtDNA clade and are, thus, in all probability conspecific. Sequences of bindin, a nuclear gene responsible for sperm-egg recognition, led to the same conclusion (Zigler and Lessios 2003). Gene flow across the EPB in Tripneustes was restricted, as evidenced by high pairwise FST values between five ETP and three central Pacific locations (Table 16.1).

Fishes are the group that contains the highest number of transpacific species (Robertson et al. 2004), and have thus provided the greatest opportunities for assessing gene flow across the EPB. Data from fishes illustrate great diversity of

evolutionary histories and gene flow rates, diversity that is consistent with "sweepstakes dispersal" between the oceanic regions on either side of the barrier. An isozyme study by Rosenblatt and Waples (1986) indicated little divergence between ETP and Hawaiian conspecific populations of twelve species. More recently, Lessios and Robertson (2006) compared two mitochondrial genes, ATPase8 and ATPase6, in twenty species considered as transpacific on the basis of morphology. Two of these turned out to be anciently separated between oceanic regions, as indicated by reciprocally monophyletic mtDNA clades, and thus should probably be recognized as separate species. Among the other eighteen, F_{ST} between central and eastern Pacific populations ranged from negative values to +0.94. The highest values, indicative of a complete cessation of gene flow, were those between demes of the surgeon fish Acanthurus triostegus sandvichensis from Hawaii and Johnston Atoll, and of A. triostegus triostegus from the ETP (Table 16.1), but also between A. triostegus sandvichensis and A. triostegus marquesensis from the Line Islands and the Marquesas (Lessios and Robertson 2006). It would appear, therefore, that there is genetic isolation between the Hawaiian-Johnston subspecies from the other two subspecies. These comparisons illustrate that populations at Hawaii are often isolated not only from those in the ETP, but also from the rest of the Pacific, as Baums et al. (2012) have also found in Porites lobata. Thus, data in Table 16.1 in which the central Pacific is represented only by samples from Hawaii may not be indicative of isolation between oceanic regions.

Divergence between populations of Acanthurus triostegus from Kiritimati and the Marquesas and from the ETP was generally high, but at the same time suggestive of low levels of gene flow, also evident in the sharing of the most common haplotypes (Lessios and Robertson 2006). Divergence between ETP and central Pacific localities was occasionally high (but inconsistent between comparisons of different populations) in the glass eye, Heteropriacanthus cruentatus, in the goatfish Mulloidichthys vanicolensis and in the squirrelfish Myripristis bendti. Such inconsistencies may well be the result of small sample sizes, because sampling of M. bendti CytB of some of the same localities by Craig et al. (2007) did not always produce similar F_{ST} values. Other species, such as the surgeon fish Acanthurus nigricans, the parrotfish Calotomus carolinus, the surgeon fish Ctenochaetus marginatus, the butterflyfish Forcipiger flavissimus and the moorish idol Zanclus cornutus showed practically no divergence across the EPB (Table 16.1), indicating that there has been either recent or recurrent gene flow. In an analysis of molecular variation (AMOVA) only two of the 18 transpacific species were found to have significantly higher differentiation between oceanic regions than within regions. F_{ST} and AMOVA cannot distinguish between on-going gene flow and recent isolation. For this

reason, Lessios and Robertson (2006) employed "IM", an algorithm of Bayesian estimation based on coalescence (Hey and Nielsen 2004), to deduce time of initial separation and degree and direction of subsequent gene flow. Such analyses do not always produce reliable results when they involve a single locus, but they can provide an indication regarding these parameters. Estimated time of initial separation between central and eastern Pacific conspecific populations ranged from 30,000 to 1,000,000 years ago, times more recent than the 3 million year final closure of the Isthmus of Panama (Coates and Obando 1996). These relatively recent estimates indicate that a vicariance scenario, according to which transpacific species are relicts of circumglobal connections that were severed by the rise of the Isthmus (McCoy and Heck 1976; Heck and McCoy 1978), is unlikely. Direction of gene flow deduced by IM was not always from West to East, as might have been expected if the North Equatorial Counter Current were the only means of conveyance. In eight out of the eighteen cases, migration was actually estimated as being higher in the opposite direction. Reconstruction of ancestral genotypes and comparisons of relative genetic diversity suggested that in at least two cases the original range expansion was from the ETP into the central Pacific. Thus, directions of initial colonization and subsequent gene flow do not always coincide.

In conclusion, marine shallow water biota of the ETP is, indeed, isolated from the rest of the world's oceans, but breaching of the EPB is also possible. Such transpacific migrations of larvae most likely are the result of haphazard combinations of factors favorable for migration, such as timing of spawning relative to current speed intensifications, availability of rafting materials, and good fortune in encountering suitable habitat at the end of the dispersal event.

16.3.2 Gene Flow Between the Outer Eastern Pacific Islands and the Mainland Coast

Compared to the distances between the ETP and the central Pacific, those between the American mainland coast and the outer oceanic islands of the ETP (Revillagigedo, Clipperton, Isla del Coco, the Galápagos and Easter Island) are shorter, but far from negligible. The available data on gene flow across this 520–4000 km oceanic divide (Table 16.2) are biased towards showing high rates of migration because, by and large, they come from transpacific species likely to possess traits conducive towards high rates of dispersal.

Data from corals found on at least one island and on the mainland come from studies on *Pocillopora* and *Porites*. In corals, morphological plasticity (Todd 2008) and gene exchange between distinguishable morphs (Willis et al. 2006)

Organism	Reference	Locus	bp or no of loci	•	FsT	Distance (km)	Fsr	Distance (km)	FsT	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)	Fsr 1	Distance km)
Corals		_											_		-	
Pocillopora type 1	Pinzón and LaJeunesse	Microsatellites	7 loci		Revillagige	sdo (2)	Clipperto	n (9)	Galápago	; (16)						
	2011			Sea of Cortez (173)	0.121	700	0.052	1600	0.083	2200						
				Banderas Bay, Mex (71)	0.117	600	0.021	1300	0.089	2900						
				Oaxaca, Mexico (15)	0.057	1700	0.036	1700	0.041	1800						
				Panama (22)	0.113	3800	0.050	3400	0.083	1500						
Pocillopora type 3	Pinzón	Microsatellites	7 loci		Galápagos	(3)										
	and LaJeunesse (2011)*			Panama (26)	0.239	2200										
Porites lobata	Baums et al. (2012)	Microsatellites	12 loci		Clipperton	(5)	Is. delC c	sco (55)	Darwin, C	ial (46)	Wolf, Gal	(45)	Marchen	a, Gal (38)	S. Galápa	gos (14)
				Marino Ballena (32)	0.142	2800	0.009	540	0.013	1230	0.006	1240	0.046	1230	0.031	1300
				Is. Caño., CR (79)	0.173	2700	0.021	520	0.018	1200	0.015	1200	0.057	1200	0.057	1360
				Golfo Dulce, CR (29)	0.190	2860	0.025	530	0.028	1230	0.014	1240	0.075	1230	0.064	1300
				Panama (17)	0.184	3200	0.024	840	0.011	1300	0.017	1300	0.082	1260	0.055	1330
				Ecuador (20)	0.298	3400	0.208	1000	0.145	1300	0.149	1270	0.130	0011	0.150	1000
Sea stars																
Acanthaster planci	Vogler et al. (2008)*	COI	632 bp		Is. del Coc	0 (13)										
				Panama (2)	0.000	840										
Sea urchins																
Echinometra vanbrunti	McCartney et al. (2000)*	COI	631		Galápagos	(4)										
				Mexico (9)	0.064	2200										
				Panama (7)	-0.022	1500										
Diadema mexicanum	Lessios et al. (2001)	ATPase8-6	614		Clipperton	(12)	Is. del Cc	жо (12)	Galápago	; (4)						
				Sea of Cortez (9)	0.000	1200	-0.020	3500	0.000	3600						
				Panama (5)	0.040	3200	-0.010	840	-0.110	1500						
Tripneustes	Lessios et al. 2003	COI	640		Clipperton	(11)	Is. del Cc	sco (10)	Galápago	; (10)	Easter Is.(8)				
gratula/depressus				Panama (10)	0.540	3200	-0.120	840	0.170	1500	0.480	5100				
Fishes																
Acanthurus nigricans	Lessios and Robertson	ATPase8-6	842 bp	Panama (6)	Clipperton	(9)										
	(2006)				-0.082	3200										
Acanthurus triostegus	Lessios and Robertson	ATPase8-6	842 bp		Revillagige	sdo (5)	Clipperto	n (5)	Is. del Co	co (4)						
	(2006)			Panama (5)	-0.0006	3600	-0.196	3200	-0.042	840						
Arothron meleagris	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(5)										
	(0007)			Panama (5)	0.239	3200										
Ctenochaetus	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(5)										
margmatus	(2000)			Panama (5)	0.036	3200										
Diodon holocanthus	Lessios and Robertson	ATPase8-6	842 bp		Revillagige	sdo (5)	Galápago	s (10)	Easter Isl:	10 (6)						
	(2006)*			Sea or Cortez (20)	0.046	890	-0.005	3700	0.442	6000						
				Panama (20)	0.140	3600	0.036	1500	0.550	5100						
	_			-	_								_		(00)	ntinued)

488

(continued)
6.2
e 1
Tab

Organism	Reference	Locus	bp or no of loci		F _{ST}	Distance (km)	Fsr	Distance (km)	F _{ST} I	Distance (an)	Fsr	Distance km)	F _{ST}	Distance F (km)	² sr D	istance cm)
Epinephelus labriformis	Craig et al. (2006)	CytB	468 bp		Is. del Coco	(11)	Galápagos	(35)								
				Lower Cape, Baja Calif. (12)	0.064	3200	0.064	3300								
				Loreto, Baja California (38)	0.045	3800	0.048	3900								
				Mazatlan (30)	0.050	3000	0.052	3150								
				Puerto Vallarta (49)	860.0	2680	0.036	2830								
				Oaxaca (26)	0.040	1600	-0.014	1850								
				El Salvador (21)	-0.008	890	-0.008	1500								
				Panama (46)	0.073	840	0.012	1500								
Heteropriacanthus	Lessios and Robertson	ATPase8-6	842 bp		Revillagige	do (4)	Clipperton	(1)	Is. del Cocc	(11)	Galápagos	(6)				
cruentatus	(2006)			Panama (2)	-0.191	3600	-0.085	3200	-0.085	840	-0.141	1500				
Myripristis berndti	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(9)	Is. del Coo	0 (3)								
	(2006)			Panama (12)	-0.049	3200	0.234	840								
Myripristis berndti	Craig et al. (2007)	CytB	700 bp		Clipperton	(15)										
				Panama (19)	-0.061	3200										
Novaculichthys	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(5)										
taeniourus	(2006)			Panama (5)	0.063	3200										
Ophioblennius	Muss et al. (2001)	CybB	630 bp		Clipperton	(17)	Galápagos	(6)								
steindachneri				Sea of Cortez (11)	0.396	1700	2	3200								
				Panama (13)	6	3200	0.000	1500								
Ostracion meleagris	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(5)										
	(2006)			Panama (4)	-0.122	3200										
Scarus rubroviolaceus	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(9)	Is. del Coo	30 (3)								
	(2006)			Panama (10)	-0.083	3200	-0.135	840								
Scarus rubroviolaceus	Fitzpatrick et al. (2011)	Microsatellites	15 loci		Clipperton	(9)	Is. del Coo	30 (51)								
				Panama Coast (7)	0.080	3200	0.000	840								
				Is. Perlas (9)	0.020	3150	0.000	290								
Stethojulis bandanensis	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(L)	Is. del Coo	30 (3)								
	(2000)			Panama (4)	0.590	3200	0.376	840								
Zanclus cornutus	Lessios and Robertson	ATPase8-6	842 bp		Revillagige	do (3)	Clipperton	(3)								
	(2000)			Panama (4)	-0.231	3600	-0.180	3200							_	
Numbers in parentheses ne: Asterisks next to references	xt to locality names indicate s indicate that FsT was calculat	ample sizes ted by us from the	raw data, beca	ise it was not shown in the	publication.	COI: Cytochro	me Oxidase	I, ATPase8-6:	mitochondri	al ATP synt	hetase8 and	6, CytB: Cytoc	chrome O	xidase B. Value	s in bold:	p < 0.05 as

determined by 1000 reshufflings of individuals between localities. 7: Sequences necessary for the calculations are not in GenBank

contribute to uncertainties as to which populations belong to the same species. This is particularly true for Pocillopora in the ETP. Pinzón and LaJeunesse (2011) sampled individuals of this genus that by morphological criteria belonged to P. damicornis, P. verrucosa, P. capitata, P. meandrina, and P. eydouxi. They determined sequences of the internal transcribed spacer 2 (ITS2) and of an unidentified open reading frame in mitochondrial DNA, and they also genotyped seven microsatellite loci. According to all of these markers, Pocillopora in the ETP belong to three distinct clades, independently of morphotype. Microsatellites were the only markers sampled in both the islands and the mainland in Pocillopora types 1 and 3. They indicate little differentiation between islands and mainland in *Pocillopora* type 1 (the larger values between Revillagigedo and the mainland are based on only two specimens), but substantial divergence between the Galápagos and Panama in Pocillopora type 3 (Table 16.2). Pocillopora type 2 is endemic to Clipperton. The population of Porites lobata at Clipperton sampled with microsatellites by Baums et al. (2012) was strongly differentiated from populations on the mainland (Table 16.2). Populations from Isla del Coco and the Galápagos maintain high rates of gene flow with populations at the mainland, except for the one at the Ecuadorian coast.

There are high rates of genetic exchange between conspecific populations of echinoderms from the islands and the mainland (Table 16.2). Acanthaster planci from the ETP, though genetically differentiated from the same species from the central Pacific, was represented by identical COI haplotypes at Isla del Coco and in the Gulf of Chiriquí, Panama. All three species of sea urchins for which data exist were genetically homogeneous between the islands and the coast with one exception. Paradoxically, this exception consists of the transpacific species Tripneustes gratilla/depressus, in which populations at Clipperton and Easter Island maintain very little gene flow with populations along western American shores. Other sea urchin species in which larvae from the islands have not established viable populations on the mainland are Echinothrix diadema, which has yet to be observed outside Clipperton and Isla del Coco (Lessios et al. 1996), and Eucidaris galapagensis at the islands, which is reciprocally monophyletic in COI with respect to the continental E. thouarsii (Lessios et al. 1999). It is doubtful that larvae of these species are incapable of crossing between the islands and the continental shore; a more plausible cause of this pattern is that they fail to become established due to ecological factors.

Practically all the existing data regarding fishes at the oceanic islands of the ETP come from transpacific species, and, as expected, indicate high genetic connectivity with coastal populations (Table 16.2). The grouper *Epinephelus labriformis*, though endemic to the ETP, fits the same

pattern. The wrasse *Stethojulis bandanensis*, however, shows a high degree of genetic isolation, both at Clipperton and at Isla del Coco. The cosmopolitan puffer *Diodon holocanthus* is the only fish species sampled from both Easter Island and the mainland; like *Tripneustes*, it illustrates that populations at this remote locality are genetically isolated from populations in the rest of the ETP.

Examination of F_{ST} values from species that have been sampled at more than one island suggests that populations at Easter Island and Clipperton Atoll are less connected to populations along the mainland (Table 16.2). Ideally we would like to test statistically whether there is a general trend showing that populations at geographically more remote islands are also genetically more isolated from conspecific coastal populations. As there are few islands, this cannot be done through correlation of genetic and geographic distances; it can be addressed, instead, by comparison of intraspecific divergence between the residents of each island and those of a common locality on the mainland. The only such comparison that provides a sample size sufficient for statistical testing is between populations from Panama and Clipperton, on the one hand, and between Panama and Isla del Coco, on the other. We compared F_{ST} values of the same nine species sampled in all three localities paired by genetic marker. The results indicate that, as expected from relative geographic distances, genetic isolation of populations at Clipperton from those at Panama was significantly higher than isolation of the same nine species at Isla del Coco (Wilcoxon paired sample test, p < 0.05).

16.3.3 Gene Flow Between the Outer Eastern Pacific Islands

Although genes are not necessarily transferred directly between the outer islands (mainland populations may act as stepping stones) it is useful to ask how genetically different island populations are from each other. The general picture in comparisons between island populations of various species (Table 16.3) is almost identical to the one presented by comparisons between the islands and the mainland (Table 16.2). There is high genetic connectivity between conspecific residents of most islands, except for those at Easter Island, in which all but one species show large and significant values of F_{ST} in comparisons with populations from all other islands. Clipperton Atoll shows a mixed pattern. Populations of Porites lobata, Tripneustes gratilla, the blenny Ophioblennius steindachneri and the wrasse Stethojulis bandanensis are very different from populations from all other islands. Populations of all other species, however, show high rates of gene flow.

16.3.4 Gene Flow Along the Coast of the Eastern Pacific

We would expect to observe the highest rates of gene flow along the American shores of the ETP. This is generally the case. Pinzón and LaJeunesse (2011) found no significant restrictions of gene flow in microsatellites of Pocillopora "type 1" in populations spanning approximately 4200 km from the Sea of Cortez to Panama (Table 16.4). Combosch and Vollmer (2011), on the other hand, reported that their microsatellite data of Pocillopora damicornis show significant structure at a much smaller scale on the Panamanian coast. This structure is not evident in F_{ST} values, in which only two comparisons between populations are larger than 0.073 (Table 16.4). It is somewhat more evident in R_{ST} [an F_{ST} equivalent that takes the step-wise mutation pattern expected from microsatellites into account (Slatkin 1995)]. AMOVA analysis found significant, but small variation between individual populations and also between populations that were grouped in three areas along the Panamanian coast. High rates of gene flow were found between microsatellite frequencies of most coastal populations of Porites lobata by Baums et al. (2012). One exception was the population at Ecuador, which is different from all populations at Costa Rica, though not from the one at Panama (Table 16.4).

In four species of sea urchins, genetic connectivity in mtDNA along the coast is generally high from Mexico to Panama (Table 16.4). As in *Porites*, the population of the echinoid *Arbacia stellata* in the southernmost periphery of the species is highly differentiated from those in the species' center of distribution.

Among the fishes, those with transpacific ranges, *Diodon* holocanthus and Scarus rubroviolaceus, show no genetic structure (Table 16.4). This is hardly surprising in the case of the latter, because both sampling localities of this species are situated close to each other in the Bay of Panama, but in the case of Diodon they lie 4000 km apart on either side of the Central American Gap. Epinephelus labriformis also shows high genetic connectivity over long spans of the coast from Baja California to Panama. The case of the three species of the grunt Anisotremus studied by Bernardi et al. (2008) is somewhat surprising. Anisotremus interruptus and Anisotremus taeniatus, species usually found only in the proximity of hard bottoms, show no significant structure in either mitochondrial CytB or the nuclear S7 region over 4000 km of coastline. Anisotremus dovii, on the other hand, even though it prefers sandy and muddy bottoms (and should thus be more continuously distributed along the coast) appears to experience marked restrictions in gene flow between Mexico and Panama, at least in CytB. Only one out of the total twelve CytB sequences sampled in this species is shared between the two locations, which accounts for the high and significant FST value.

In contrast to the pattern of high gene flow along most of the tropical west coast of America, genetic connectivity within the Sea of Cortez can be quite low in a number of species. Gene flow in the ovoviviparous sea horse Hippocampus ingens was high among all populations sampled from Mexico to Peru by Saarman et al. (2010) except for one; the mitochondrial control region of the population from Guaymas in the Sea of Cortez was highly differentiated from that of every other population (Table 16.4). Sequences of the mitochondrial control region of the scarletfin blenny Coralliozetus micropes were reciprocally monophyletic between upper and lower Gulf regions (Riginos 2005), a level of divergence that is reflected in the F_{ST} values in Table 16.4. This is also the case in the Cortez triplefin Axoclinus nigricaudus (Table 16.4) and in the Gulf of California endemic sand bass Paralabrax maculatofasciatus (Stepien et al. 2001; Riginos 2005), but not in the redside blenny Malacoctenus hubbsi (Table 16.4). These genetic breaks were attributed by Riginos (2005) to a hypothetical Pleistocene deep water break of the Baja California Peninsula that bisected habitats of hard bottom fishes, as it did of terrestrial mammals and reptiles. IM analyses yielding similar times of divergence between upper and lower Gulf populations of five fish species supported the hypothesis that a historical barrier was responsible for present-day isolation patterns, but environmental differences might also be responsible (Riginos 2005).

Along a linear coast, such as that of the ETP, one would expect a pattern of isolation by distance (Wright 1943), as one population acts as a stepping stone for the dispersal of genes towards others down the line. To determine whether this was the case, we analyzed the data of all species in Table 16.4 for which more than three localities were sampled. We calculated correlations between FST values and geographical distance along the coast, using Mantel (1967) tests to estimate probabilities of the correlation coefficient. For this analysis, negative values of FST were replaced by zero, because negative gene flow has no meaning (Hudson et al. 1992). Combosch and Vollmer (2011) found no correlation between genetic differentiation and distance in Pocillopora damicornis over the limited geographic extent of their samples, but our analysis of populations from Mexico to Panama of the data of Pinzón and LaJeunesse (2011) shows that such a correlation does exist in Pocillo*pora* type 1 (r = 0.349, p < 0.005). Baums et al. (2012) found a strong isolation by distance trend in Porites lobata in the ETP, including the outer islands. The correlation remains significant when only coastal localities are considered (r = 0.856, 0.01). In Epinephelus labriformis, most F_{ST} values were negative (and replaced by 0), which resulted in a slight, but still significant correlation with geographic distance (r = 0.051, 0.01).

Pocillopora type 1 Pinzón Porites lobata Forsmi Porites lobata Baumi	and LaJeunesse					(<i>km</i>)	16.	(km)	10	(km)		(km)		(km)
Pocillopora type 1 Pinžón (2011) Porites lobata Eorsm Porites lobata Baums	and LaJeunesse													
Porites lobata Forsmi Porites lobata Baums		Microsatellites	7 loci		Clippertor.	(6)	Galápago	s (16)						
Porites lobata Forsmi Porites lobata Baums			i	Revillagigedo (2)	0.079	950	0.176	3000						
Porites lobata Forsm. Porites lobata Baums				Clipperton (9)			0.058	2100						
Porites lobata Baums	an et al. (2009)*	18S-5.8S-ITS2	673 bp		Easter Isla	nd (10)								
Porites lobata Baums				Galápagos (15)	0.258	3500								
	i et al. (2012)	Microsatellites	12 loci		Is. del Co	20 (55)	Darwin, (Gal (46)	Wolf, Ga	1 (45)	Marcher	a, Gal (38)	S. Galá	pagos (14)
				Clipperton (5)	0.212	2500	0.134	2100	0.160	2100	0.150	2350	0.089	2500
				Is. del Coco (55)			0.048	700	0.032	700	0.086	690	0.087	815
				Darwin, Gal (46)					0.012	37	0.030	217	0.007	420
				Wolf, Gal (45)							0.048	180	0.045	322
				Marchena, Gal (38)									0.026	197
Sea urchins														
Echinothrix diadema Lessio	s et al. (1998)	CytB	642 bp		Clipperton	(9)								
				Is. del Coco (15)	-0.044	2500								
Eucidaris galapagensis Lessio	s et al. (1999)	COI	640 bp		Galápagos	(1)								
				Is. del Coco (6)	-0.060	750								
Diadema mexicanum Lessio	s et al. (2001)	ATPase8-6	642 bp		Is. del Co	x0 (12)	Galápago	s (4)						
				Clipperton (11)	-0.010	2500	-0.130	2300						
Tripneustes	s et al. (2003)	COI	640 bp		Is. del Co	xo (10)	Galápago	s (10)	Easter Isl	and (8)				
gratilla/depressus				Clipperton (11)	0.600	2500	0.110	2300	0.400	4100				
				Is. del Coco (10)			0.250	750	0.490	4300				
				Galápagos (10)					0.190	3500				
Fishes														
Acanthurus triostegus Lessio	s and Robertson	ATPase8-6	842 bp		Clipperton	(5)	Is. del Cc	oco (4)						
(0007)				Revillagigedo (5)	0.000	950	0.358	3000						
				Clipperton (5)			-0.042	2500						
Arothron meleagris Lessio	s and Robertson	ATPase8-6	842 bp		Easter Is.	(3)								
(0007)				Clipperton (5)	0.032	4100								
Diodon holocanthus Lessio	s and Robertson	ATPase8-6	842 bp		Galápagos	(10)	Easter Isl	. (6)						
(2006)				Revillagigedo (5)	0.022	3000	0.325	5000						
				Galápagos (10)			0.470	3500						
Epinephelus labriformis Craig	st al. (2006)	CytB	468 bp		Galápagos	(35)								
				Is. del Coco (11)	0.045	750								
Forcipiger flavissimus Lessio	s and Robertson	ATPase8-6	842 bp		Revillagig	edo (3)	Easter Is.	(5)						
(2006)				Clipperton (5)	0.000	950	0.250	4100						
				Revillagigedo (3)			0.118	5000						

492

H.A. Lessios and I.B. Baums

Organism	Reference	Locus	bp or no of loci		F _{ST}	Distance (km)	F_{ST}	Distance (km)	F_{ST}	Distance (km)	F_{ST}	Distance 1 (km)	F _{ST}	Distance (km)
Heteropriacanthus	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(1)	Is. del Co	co (11)	Galápagos	(6)				
cruentatus	(2006)			Revillagigedo (4)	-0.075	950	-0.117	3000	-0.031	3000				
				Clipperton (7)			-0.117	2500	0.004	2300				
				Is. del Coco (11)					0.048	750				
Mulloidichthys vanicolensis	Lessios and Robertson	ATPase8-6	842 bp		Easter Isla	nd (5)								
	(2006)			Clipperton (9)	0.179	4100								
Myripristis berndti	Lessios and Robertson	ATPase8-6	842 bp		Is. del Coc	20 (3)								
	(2006)			Clipperton (6)	0.360	2500								
Ophioblennius steindachneri	Muss et al. (2001)	CytB	658 bp		Galápagos	(6)								
				Clipperton (17)	0.379	2300								
Scarus rubroviolaceus	Lessios and Robertson	ATPase8-6	842 bp		Is. del Coc	20 (3)								
	(2006)			Clipperton (6)	-0.193	2500								
Stethojulis bandanensis	Lessios and Robertson	ATPase8-6	842 bp		Clipperton	(1)								
	(2006)			Is. del Coco (3)	0.783	2500								
Zanclus cornutus	Lessios and Robertson	ATPase8-6	842 bp		Revillagig	edo (3)								
	(2000)			Clipperton (3)	-0.250	950								

Table 16.3 (continued)

Numbers in parentheses next to locality names indicate sample sizes Asterisks next to references indicate that F_{3T} was calculated by us from the raw data, because it was not shown in the publication. 18S-5.8S-ITS2: ribosomal 18S-5.8S and internal transcribed spacer 2, COI: Cytochrome Oxidase I, ATPase8-6: mitochondrial ATP synthetase8 and 6, CytB: Cytochrome Oxidase B. Values in *bold: p* < 0.05 as determined by 1000 reshuftlings of individuals between localities

Image: IS in the second secon	(km)
disc. (3) Damma (2) A	Mexico
30 2001 2	Banderas Bay (71)
32 160 0.03 260 1	Sea of Cortez 0.080 600 (173)
	Banderas Bay (71)
Image: I	Oaxaca (15)
inite (3) i.e. $Articer (18)$ Artioner (5) k. guana (23) i.e. $Articer (18)$ Artioner (13) Article (13) Artioner (13) Article (13)	Gulf of Chiriqui
65 34 0.033 116 0.015 250 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 0.035 16 17 17 1	N. of Is. Coiba (21)
73 20 6.23 100 200	Uva, G. Chiriqui 0.035 30 (23)
$ \ \ \ \ \ \ \ \ \ $	N. of Is. Coiba (21)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bahia Damas, Is. Coiba (30)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Is. Canal de Afuera. G. of Chiriqui (18)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Achotines, Azuero Pen. (30)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Is. Iguana, B. of Panama (23)
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	Taboga, Bay of Panama (21)
• Dullet (29) Paramati (17) Eurador (20) Diamati (17) Diamati (1	Saboga, Is. Perlas (22)
0 Dule<(20) Rummat(1) Eurodor (20) Eurodor (20) Eurodor (2)	ci Costa Rica
08 150 0.08 320 0.15 1020 0.15 1020 0.15 1020 0.15 1020 0.15 1020 10	Is. Caño (79) G
06 242 400 0.16 $1/50$ 0.150 0.150 0.150 0.167 $1/200$ 0.167 $1/200$ 0.167 $1/200$ 0.167 $1/200$ 0.167 $1/200$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 $7/20$ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0101 <t< td=""><td>Marino Ballena 0.003 119 (</td></t<>	Marino Ballena 0.003 119 (
$ \begin{array}{ $	Is. Caño (79)
	Golfo Dulce (29)
(4) (4) 73 800 13 800 14 14	Panama (17)
(4)	-
08 1700 1 <td>Panama (9) Pe</td>	Panama (9) Pe
33 860 13 800 13 10 13 10 13 10 13 10 13 10 13 10 13 10 14 10 15 10 15 10 16 10 17 10 18 10 19 10 19 10 10 <td>El Salvador (11) 0.179 1300</td>	El Salvador (11) 0.179 1300
	Panama (9)
	p Panama (5)
	Mexico (9) 0.020 4000
	p Panama (7)
	Mexico (5) -0.095 4000
	p Panama (4)
	Mexico (6) -0.030 4000

(continued)	
16.4	
Table	

Organism	Reference	Locus	bp or no of loci		Fsr	Distance (km)	Fsr	Distance (km)	Fsr	Distance (km)	F_{ST}	Distance (km)	Fsr	Distance (km)	Fsr (Distance F km)	Fsr L	Distance F ₅ km)	sT Di	stance n)
Fishes																				
Anisotremus	Bernardi et al.	S7	531 bp		Panama (4)															
dovii	(2008)*			Mexico (8)	0.166	4000														
		CytB	692 bp	Mexico (8)	0.304	4000														
Anisotremus	Bernardi et al.	S7	529 bp		Costa Rica	(5)	Panama (;	5)												
interruptus	(2008)*			Mexico (6)	0.281	2600	-0.014	4000												
				Costa Rica (5)			0.091	300												
		CytB	750 bp		Costa Rica	(5)	Panama (t													
				Mexico (6)	-0.034	2600	0.076	4000												
				Costa Rica (5)			0.056	300												
Anisotremus	Bernardi et al.	S7	529 bp		Costa Rica	(4)	Panama (G	7)												
taeniatus	(2008)*			Mexico (2)	0.000	2600	-0.316	4000												
				Costa Rica (4)			-0.098	300												
		CytB	728 bp		Costa Rica	(4)	Panama (8	()												
				Mexico (2)	-0.264	2600	-0.214	4000												
				Costa Rica (4)			-0.095	300												
Axoclinus	Riginos	dloop	206 bp		Bahia Kinc	0(10)														
nigricaudus	(2005)*			Bahia Los Angeles (10)	0.350	154														
Coralliozetus	Riginos	dloop	206 bp		B. S. L. Go	nzaga (6)	Isla Mons	erat (5)	Punta Ch	ivato (5)										
micropes	(2005)*			Bahia Los Angeles (9)	0.030	260	0.689	700	0.730	260										
				Bahia San Luis Gonz	taga (6)		0.795	660	0.838	460										
				Isla Monserat (5)					-0.069	260										
Diodon	Lessios and	ATPase8-6	842 bp		Panama (20	()														
holocanthus	Robertson (2006)			Sea of Cortez (20)	-0.004	4000														
Epinephelus	Craig et al.	CytB	468 bp		Lower Cap	ie (12)	Mazatlan	(30)	Puerto Vi	allarta (49)	Oaxaca (.	26)	El Salvador	. (21)	Panama (46	_				
labriformis	(2006)			Loreto, Baja California (38)	-0.018	400	-0.001	590	-0.006	800	0.015	1800	0.001	2500	-0.011	1000				
				Lower Cape, Baja C ² (12)	alifornia		-0.020	270	-0.013	490	0.017	1500	-0.003	2400	-0.004	3800				
				Mazatlan (30)					0.000	300	0.015	1400	0.014	2300	0.006	3700				
				Puerto Vallarta (49)							0.008	1200	0.014	2000	-0.011	3400				
				Oaxaca (26)									-0.017	800	-0.008	2200				
				El Salvador (21)											-0.007	1500				
																			(conti	nued)

Organism	Reference	Locus	bp or no of loci		F_{ST}	Distance (km)	F_sT	Distance (km)	F_sT	Distance (km)	Fsr	Distance (km)	Fsr	Distance (km)	Fsr	Distance (km)	F _{ST}	Distance (km)	F _{ST}	Distance (km)
Hippocampus	Saarman et al.	doob	359 bp		Mexico						Ecuador				Peru					
ingens	(2010)				Mazatlan	(9)	Salina Cri	ız (5)	Guatemala	1 (30)	Manta/Si (17)	alango	Guayaquil	(9)	Chiclayo	(1)	Pisco (4)			
				Sea of Cortez (10)	0.168	600	0.134	2000	0.210	2500	0.355	4300	0.263	4300	0.342	5200	0.328	6000		
				Mazatlan (6)			-0.099	1700	-0.041	2100	0.041	3900	-0.108	4200	-0.024	4700	0.002	5300		
				Salina Cruz (5)					-0.030	420	0.008	2300	0.000	2700	0.062	3100	0.030	3900		
				Guatemala (30)							0.022	2000	-0.061	2300	0.043	2600	0.007	3500		
				Manta/Salango (17)									0.097	330	0.034	770	0.028	1600		
				Guayaquil (6)											-0.079	670	-0.022	1500		
				Chiclayo/Sechura (7)													-0.067	870		
Malacoctenus	Riginos	doob	206 bp		Bahia Kir	io (10)														
hubbsi	(2005)*			Bahia Los Angeles (10)	0.080	154														
Scarus	Fitzpatrick	microsatellites	15 loci		Perlas Is.	(6)														
rubroviolaceus	et al. (2011)			Panama coast (7)	0.000	58														
Numbers in parent	heses next to local	lity names indicate	e sample si:	zes																

Asterisks next to references indicate that Far was calculated by us from the raw data, because it was not shown in the publication. COI: Cytochrome Oxidase I, ATPase8-6: mitochondrial ATP synthetase8 and 6, CytB: Cytochrome Oxidase B, S7: ribosomal protein S7, dloop: mitochondrial control region. Values in *bold: p* < 0.05 as determined by 1000 reshufflings of individuals between localities

Table 16.4 (continued)

Saarman et al. (2010) reported no significant correlation between F_{ST} and distance in *Hippocampus ingens*, which would have been surprising given that sea horses are sedentary and have no larval stage. Our re-analysis of their F_{ST} data, however, shows that the expected relationship does, in fact, exist (r = 0.441, 0.01). The difference between their analysis and ours is not only that they (presumably) used negative FST values, but also because some of the geographic distances they listed in their Table 4 cannot be correct because they show Peru situated north of Ecuador. Thus, the available data are consistent with a general trend of isolation by distance along the ETP coast. Such a correlation, however, is not necessarily the result of genes dispersing via stepping stones, because populations on either side of a barrier are also more distant from each other than populations on the same side of the barrier. Riginos and Nachman (2001), using partial Mantel tests, found that genetic divergence of populations of Axoclinus nigricaudus in the Sea of Cortez was caused not only by the distance between localities, but also by a genetic break between the upper and central parts of the Gulf of California.

In conclusion, gene flow rates among populations along the ETP coast are high, at least between central Mexico and the Panamanian coast. There is no evident genetic break resulting from the Central American Gap in any of the sampled species. Populations at the northernmost and the southernmost peripheries of the ETP appear to be genetically more isolated, possibly as the result of historical barriers, or possibly due to ecological conditions unfavorable to tropical species. A trend of isolation by distance is evident in corals and fishes.

16.4 General Conclusions and Future Prospects

The compilation of existing data regarding gene flow of coral reef organisms in the ETP suggests that gene flow within this oceanic region is generally high; this is certainly true along the coast, except perhaps for the northernmost and southernmost limits of tropical species ranges. Documented genetic connectivity is also generally high between populations at the outer ETP islands <1000 km offshore and the mainland, and (in some transpacific species) between the residents of islands in the central Pacific and ETP. These generalizations, however, need to be tempered by the realization that all coral reef organisms in which genetic structure has been sampled to date, except for sea horses, possess planktonic larvae. Large genetic differences among closely situated populations of the same morph of the ovoviviparous intertidal isopod Excirolana braziliensis were found in both isozymes (Lessios and Weinberg 1993, 1994) and in mtDNA (Sponer and Lessios 2009). The same may well turn

out to be true for coral reef organisms with limited means of dispersal. It would be of interest to obtain data from ascidians, bryozoans, and other organisms with abbreviated larval phases to see how they compare with data from organisms with planktonic larvae. It is also important to sample genetically more species of corals, the ecological engineers responsible for creating the habitats in which other coral reef organisms live. The isolation of the ETP from other oceanic regions, the remote location of its outer islands, and the simple spatial arrangement of its coastal populations, can produce interesting contrasts in patterns of gene flow. Such data can address general population genetic theory in addition to producing information regarding the natural history of the organisms in this ocean.

Acknowledgements We thank G. Bernardi, S. Coppard, L. Geyer, A. Hiller, P.W. Glynn, and C. Riginos for comments on the manuscript.

References

- Abbott DP (1966) Factors influencing the zoogeographic affinities of the Galápagos. In: Bowman RI (ed) the Galápagos. Univ California Press, Berkeley, pp 108–112
- Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol S 40:551–571
- Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral *Porites lobata*. Mol Ecol 21:5418–5433
- Bernardi G, Alva-Campbell YR, Gasparini JL, Floeter SR (2008) Molecular ecology, speciation, and evolution of the reef fish genus *Anisotremus*. Mol Phylogenet Evol 48:929–935
- Bowman RI (1966) The Galápagos. Univ California Press, Berkeley, California, p 318
- Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York, p 475
- Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30
- Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. Am Nat 155:583–605
- Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Coates AG, Budd A (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 21–56
- Collins LS (1996) Environmental changes in Caribbean shallow waters relative to the closing tropical American seaway. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 130–167
- Combosch DJ, Guzmán HM, Schuhmacher H, Vollmer SV (2008) Interspecific hybridization and restricted trans-Pacific gene flow in the Tropical Eastern Pacific *Pocillopora*. Mol Ecol 17:1304–1312
- Combosch DJ, Vollmer SV (2011) Population genetics of an ecosystem-defining reef coral *Pocillopora damicornis* in the Tropical Eastern Pacific. PLoS ONE 6(8):e21200. doi:10.1371/ journal.pone.0021200
- Craig MT, Hastings PA, Pondella DJ, Robertson DR, Rosales-Casian JA (2006) Phylogeography of the flag cabrilla *Epinephelus*

labriformis (Serranidae): implications for the biogeography of the Tropical Eastern Pacific and the early stages of speciation in a marine shore fish. J Biogeogr 33:969–979

- Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish *Myripristis berndti* (Holocentridae). Mar Ecol Prog Ser 334:245–254
- Dana TF (1975) Development of contemporary eastern Pacific coral reefs. Mar Biol 33:355–374
- Dawson MN, Grosberg RK, Stuart YE, Sanford E (2010) Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle *Tetraclita rubescens*. Mol Ecol 19:1585–1605
- Duda TF, Lessios HA (2009) Connectivity of populations within and between major biogeographic regions of the tropical Pacific in *Conus ebraeus*, a widespread marine gastropod. Coral Reefs 28:651–659
- Duda TF, Terbio M, Chen G, Phillips S, Olenzek AM, Chang D, Morris DW (2012) Patterns of population structure and historical demography of *Conus* species in the tropical Pacific. Am Malacol Bull 30:175–187
- Ekman S (1953) Zoogeography of the sea. Sidgwick and Jackson Ltd, London, p 417
- Emerson WK (1978) Mollusks with Indo-Pacific faunal affinities in the eastern Pacific Ocean. Nautilus 92:91–96
- Emerson WK (1982) Zoogeographic implications of the occurrence of Indo-Pacific gastropods on the west American continental borderland. West Soc Malacol Ann Rep 1982:13–14
- Fell FJ (1974) The echinoids of Easter Island (Rapa Nui). Pac Sci 28:147-158
- Fitzpatrick JM, Carlon DB, Lippe C, Robertson DR (2011) The west Pacific diversity hotspot as a source or sink for new species? Population genetic insights from the Indo-Pacific parrotfish *Scarus rubroviolaceus*. Mol Ecol 20:219–234
- Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in *Porites*. BMC Evol Biol 9:45. doi:10.1186/1471-2148-9-45
- Glynn PW (1974) The impact of *Acanthaster* on corals and coral reefs in the eastern Pacific. Environ Conserv 1:295–304
- Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. Univ California Press, Berkeley, p 330
- Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23
- Glynn PW, Gassman NJ, Eakin CM, Cortés J, Smith DB, Guzmán HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galápagos Islands (Ecuador).1. Pocilloporidae. Mar Biol 109:355–368
- Glynn PW, Veron JEN, Wellington GM (1996) Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs 15:71–99
- Glynn PW, Wellington GM, Riegl B, Olson DB, Borneman E, Wieters EA (2007) Diversity and biogeography of the scleractinian coral fauna of Easter Island (Rapa Nui). Pac Sci 61:67–90
- Grigg RW, Hey R (1992) Paleoceanography of the tropical eastern Pacific Ocean. Science 255:172–178
- Grove JS, Lavenberg RJ (1997) The fishes of the Galápagos Islands. Stanford Univ Press, Stanford, CA, p 871
- Guzmán HM, Guevara CA, Breedy O (2004) Distribution, diversity, and conservation of coral reefs and coral communities in the largest marine protected area of Pacific Panama (Coiba Island). Environ Conserv 31:111–121
- Haldane JBS (1956) The relation between density regulation and natural selection. Proc Royal Soc London Ser B-Biol Sci 145:306– 308

- Hastings PA (2000) Biogeography of the Tropical Eastern Pacific: distribution and phylogeny of chaenopsid fishes. Zool J Linn Soc 128:319–335
- Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676
- Heck KL, McCoy ED (1978) Long-distance dispersal and the reef-building corals of the eastern Pacific. Mar Biol 48:349–356
- Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
- Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evolutionary Biology 6:24. doi:10.1186/1471-2148-6-24
- Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473
- Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol S 40:291–310
- Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290
- Hertlein LG (1963) Contribution to the biogeography of Cocos Island, including a bibliography. Proc Calif Acad Sci 32:219–289
- Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of *Drosophila pseudoobscura* and *D. persimilis*. Genetics 167:747–760
- Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589
- James MJ (1991) Galápagos marine invertebrates. Taxonomy, biogeography, and evolution in Darwin's islands. Plenum, New York, p 474
- Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804
- Johnson MS, Black R (1984) Pattern beneath the chaos: the effects of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383
- Keigwin LD (1982) Isotopic paleoceanography of the Caribbean and east Pacific: role of Panama uplift in Late Neogene time. Science 217:350–353
- Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217
- Ketchum JT, Bonilla HR (2001) Taxonomy and distribution of the hermatypic corals (Scleractinia) of the Revillagigedo Archipelago, Mexico. Rev Biol Trop 49:803–848
- Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol S 39:63–91
- Lessios HA, Weinberg JR (1993) Migration, gene flow and reproductive isolation between and within morphotypes of the isopod *Excirolana* in two oceans. Heredity 71:561–573
- Lessios HA, Weinberg JR (1994) Genetic and morphological divergence among morphotypes of the isopod *Excirolana* on the two sides of the Isthmus of Panama. Evolution 48:530–548
- Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc B-Biol Sci 273:2201–2208
- Lessios HA, Kessing BD, Wellington GM, Graybeal A (1996) Indo-Pacific echinoids in the tropical eastern Pacific. Coral Reefs 15:133–142
- Lessios HA, Kessing BD, Robertson DR (1998) Massive gene flow across the world's most potent marine biogeographic barrier. Proc R Soc Lond Ser B 265:583–588
- Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin *Eucidaris* in relation to land barriers and ocean currents. Evolution 53:806–817

- Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin *Diadema*. Evolution 55:955–975
- Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin *Tripneustes*: contrasting patterns of population structure between oceans. Evolution 57:2026–2036
- Lessios HA, Lockhart S, Collin R, Sotil G, Sanchez-Jerez P, Zigler KS, Perez AF, Garrido MJ, Geyer LB, Bernardi G, Vacquier VD, Haroun R, Kessing BD (2012) Phylogeography and bindin evolution in *Arbacia*, a sea urchin genus with an unusual distribution. Mol Ecol 21:130–144
- Madsen FJ (1955) A note on the sea star genus *Acanthaster*. Vidensk Medd Dansk Naturhist Foren Kbh 117:179–192
- Mantel N (1967) The detection of disease clustering and the generalized regression approach. Cancer Res 27:209–220
- Marko PB, Hart MW (2012) Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evol Ecol 26:291–315
- McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation of Atlantic and eastern Pacific *Echinometra* sea urchins. Mol Ecol 9:1391–1400
- McCoy ED, Heck KL Jr (1976) Biogeography of corals, sea grasses, and mangroves: an alternative to the center of origin concept. Syst Zool 25:201–210
- Montes C, Cardona A, McFadden R, Moron SE, Silva CA, Restrepo-Moreno S, Ramirez DA, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012) Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geol Soc Am Bull 124:780–799
- Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of *Ophioblennius*: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572
- Nishida M, Lucas JS (1988) Genetic differences between geographic populations of the crown-of-thorns starfish throughout the Pacific region. Mar Biol 98:359–368
- O'Dea A, Jackson JBC, Fortunato H, Smith JT, D'Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci USA 104:5501–5506
- Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus *Pocillopora* using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325
- Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144:1247–1262
- Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
- Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268
- Rehder HA (1980) The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gómez. Smithson Contrib Zool 289:1–167
- Reyes-Bonilla H, Barraza JE (2003) Corals and associated marine communities from El Salvador. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 351–360
- Richmond RH (1990) The effects of the El Niño/Southern Oscillation on the dispersal of corals and other marine organisms. In: Glynn PW (ed) Global ecological consequences of the 1982-83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 127–140
- Riginos C (2005) Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution 59:2678–2690
- Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453

- Robertson DR (1998) Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs 17:179–186
- Robertson DR, Allen GR (1996) Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15:121–131
- Robertson DR, Cramer KL (2009) Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser 380:1–17
- Robertson DR, Grove JS, McCosker JE (2004) Tropical transpacific shore fishes. Pac Sci 58:507–565
- Rosenblatt RH, Waples RS (1986) A genetic comparison of allopatric populations of shore fish species from the eastern and central Pacific Ocean: dispersal or vicariance? Copeia 1986:275–284
- Saarman NP, Louie KD, Hamilton H (2010) Genetic differentiation across eastern Pacific oceanographic barriers in the threatened seahorse *Hippocampus ingens*. Conserv Genet 11:1989–2000
- Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol S 40:415–436
- Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487
- Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462
- Sponer R, Lessios HA (2009) Mitochondrial phylogeography of the intertidal isopod *Excirolana braziliensis* on the two sides of the Isthmus of Panama. Smith Contr Mar Sci 38:219–228
- Stepien CA, Rosenblatt RH, Bargmeyer BA (2001) Phylogeography of the spotted sand bass, *Paralabrax maculatofasciatus*: divergence of Gulf of California and Pacific Coast populations. Evolution 55:1852–1862
- Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802
- Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271
- Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109
- Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337
- Vermeij GJ (1978) Biogeography and adaptation. Harvard Univ Press, Cambridge, Mass, p 332
- Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. Ithaca, Comstock/Cornell, p 321
- Vogler C, Benzie J, Lessios H, Barber P, Worheide G (2008) A threat to coral reefs multiplied? Four species of Crown-of-thorns Starfish. Biology Lett 4:696–699
- Webb SD (1976) Mammalian faunal dynamics of the great American interchange. Paleobiology 2:220–234
- Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: $F_{ST} \neq 1/(4Nm+1)$. Heredity 82:117–125
- Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol S 37:489–517
- Wright S (1943) Isolation by distance. Genetics 28:114–138
- Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354
- Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112
- Zigler KS, Lessios HA (2003) Evolution of bindin in the pantropical sea urchin *Tripneustes*: comparisons to bindin of other genera. Mol Biol Evol 20:220–231