3-D Imaging of Mars' Polar Ice Caps Using Orbital Radar Data

Frederick J. Foss II1, Nathaniel E. Putzig2, Bruce A. Campbell3, and Roger J. Phillips4

1 Freestyle Analytical & Quantitative Services, LLC, 2210 Parkview Drive, Longmont, CO 80504, foss@airmail.net
2 Planetary Science Institute, 1546 Cole Blvd, Suite 120, Lakewood, CO 80401, nathaniel@putzig.com
3 Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012, campbellb@si.edu
4 Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Campus Box 1169, One Brookings Drive, St. Louis, MO 63130-4899, phillips@levee.wustl.edu
Abstract

Since its arrival in early 2006, various instruments aboard NASA’s Mars Reconnaissance Orbiter (MRO) have been collecting a variety of scientific and engineering data from orbit around Mars. Among these is the SHAllow RADar (SHARAD) instrument, supplied by Agenzia Spaziale Italiana (ASI) and designed for subsurface sounding in the 15-25 MHz frequency band. As of this writing, MRO has completed over 46,000 nearly polar orbits of Mars, 30% of which have included active SHARAD data collection. By 2009, a sufficient density of SHARAD coverage had been obtained over the polar regions to support 3-D processing and analysis of the data. Using tools and techniques commonly employed in terrestrial seismic data processing, we have processed subsets of the resulting collection of SHARAD observations covering the north and south polar regions as SHARAD 3-D volumes, imaging the interiors of the north and south polar ice caps known, respectively, as Planum Boreum and Planum Australe. After overcoming a series of challenges revealed during the 3-D processing and analysis, a completed Planum Boreum 3-D volume is currently being used for scientific research. Lessons learned in the northern work fed forward into our 3-D processing and analysis of the Planum Australe 3-D volume, currently under way. We discuss our experiences with these projects and present results and scientific insights stemming from these efforts.
Introduction

The exploration of other planets in our solar system has been a dream of humankind since ancient times. Modern space exploration has turned that dream into reality through the successful building, launch and delivery of spacecraft to flyby, orbit, or land on every planetary body in the solar system. For no other planet has there been more of this remote exploration than for Mars, with some 44 Mars missions launched worldwide since 1960 and 21 of these successful to some degree. Among the most successful to date is NASA’s Mars Reconnaissance Orbiter (MRO) mission, which launched in August 2005, entered orbit around Mars in March 2006, and began collecting scientific observations in November 2006 (Zurek and Smrekar 2007). After orbit insertion and aerobraking, the spacecraft was placed into a sub-polar (87.4° inclination) and near-circular (ranging from 250 to 316 km elevation, with periapsis near the south pole) orbit of ~112 minutes in duration. MRO’s observation coverage of the planet’s surface has steadily grown during the more than 46,000 orbits completed as of the time of this writing. MRO carries six science instruments, including three cameras (HiRISE, the High Resolution Imaging Science Experiment; CTX, the Context Camera; and MARCI, the Mars Color Imager), a spectrometer (CRISM, the Compact Reconnaissance Imaging Spectrometer for Mars), a radiometer (MCS, the Mars Climate Sounder), and a radar sounder (SHARAD, the Shallow Radar).

The scientific observations and data provided by these instruments have directly led to significant discoveries about the geological and climatological histories of Mars.
Apart from major SHARAD-related findings in the polar regions (discussed later), some of the most important MRO discoveries, sorted roughly by the geologic time period to which they apply, include:

- MRO data provide evidence that the Tharsis volcanic plateau is underlain by part of an enormous elliptical basin, suggesting that the hemispheric dichotomy (northern lowlands vs. southern highlands) is the result of a giant impact very early in Martian history (Andrews-Hanna, Zuber and Banerdt 2008).
- MRO data indicate that ancient impacts produced extensive glass, which has important implications for early cratering rates and habitability (Schultz, et al. 2015).
- MRO found evidence that hydrothermal alteration occurred at regionally variable depths, and that older crust at greater depths was intruded by plutons (Wray, et al. 2013). In addition, new evidence has been found for fluvial/volcanic interactions in the shallow crust (Dundas and Keszthelyi 2013).
- A broad diversity of ancient environments has been revealed through detection of carbonates, exhumed hydrothermal deposits, and the spatial density of aqueous deposits. The data show that liquid water was once at and near the surface and that differing environments (wet/neutral or dry/acidic) did not evolve over time in a smooth progression but instead may have
occurred repeatedly or co-existed in adjacent locations (Ehlmann and Edwards 2014).

- Remnant debris-covered glaciers and other near-surface ices in the mid-latitudes have been discovered and characterized with MRO data. These features provide a record of past climates when ice was accumulating in these areas during times of higher obliquity (tilt of the planet’s spin axis) (Plaut, Safaeinili, et al. 2009); (Holt, Safaeinili, et al. 2008).

- The discovery of Recurring Slope Lineae (RSL) suggests that seepage of water is occurring seasonally today (McEwen, et al. 2014). Within the RSL, observed changes in hydrated perchlorates provide support to flowing brines as the RSL source (Ojha, et al. 2015).

- MRO has identified hundreds of new impact craters emplaced during the course of the mission, adding new data on the present-day cratering rate at Mars. Many such impacts have exposed water ice, extending the boundary of shallow ice closer to the equator in both hemispheres than inferred previously from thermal and neutron spectrometer data (Dundas, Byrne, et al. 2014).

- MRO has discovered and characterized non-uniform distributions of dust and ice clouds in the atmosphere, which have been found to give rise to many of the observed circulation features in the Martian atmosphere (Heavens, et al. 2011).
The data used for the work discussed herein comes from the SHARAD instrument, a
radar designed for subsurface sounding within the 15-25 MHz frequency band (R.
Seu, et al. 2007). SHARAD is the only instrument aboard MRO that offers a remote
sensing window into the interior of Mars, as demonstrated by its ability to provide
deep views into the polar ice caps (R. Seu, et al. 2007); (Phillips, Zuber, et al. 2008).
Termed Planum Boreum in the north and Planum Australe in the south, the Martian
polar caps are broad domes composed predominantly of layers of water ice (Grima,
et al. 2009) that extend 3-4 km above their surrounding terrains. Those
surroundings consist of a broad, low-lying plain (Vastitas Borealis) in the north and
heavily cratered highlands in the south. Both domes are interrupted by broad
canyons (chasmata) and imprinted with shallower troughs that trace out spiral
patterns (more pronounced in the north) that are roughly centered on each pole.
Such major topographical features within the polar ice caps are illustrated in Figure
1, which shows snapshots of SHARAD ground track coverage across the polar
regions color-coded by elevation above Mars' areoid (an equipotential surface of
Mars analogous to Earth's geoid or “sea level”), computed using altimetry acquired
by the Mars Orbiter Laser Altimeter (MOLA) aboard the Mars Global Surveyor
(MGS) spacecraft (Smith, et al. 2001). The layers outcrop in the troughs and
chasmata as well as on the periphery of the domes, and the layering is thought to be
the result of varying quantities of lithic materials (dust and sand) within adjacent
layers that may be associated with variations in the global climate of Mars (Clifford,
et al. 2000). Encompassing 10^6 km^2, Planum Boreum is split by Chasma Boreale into
two lobes, with the main lobe containing about two thirds of the deposit and
centered on the north pole and the secondary lobe (Gemina Lingula) extending south and west of the topographic saddle that joins the two lobes at the head of the chasma. In imagery of the layered outcrops, the upper two thirds of the main lobe and the entirety of Gemina Lingula exhibit a series of thin, nearly flat-lying layers that are laterally extensive and relatively bright and thus likely to contain a lower fraction of lithics (Tanaka, et al. 2008). These layers are commonly referred to as the north polar layered deposits, or NPLD. In its lower third, the main lobe exhibits coarser irregular layers that are relatively dark with a higher fraction of lithics (referred to as the basal unit) (Fishbaugh and Head 2005). The upper surface of Planum Boreum contains no craters larger than a few hundred meters, an indication of a very young age (Landis, et al. 2016). Covering 1.4x10^6 km^2, Planum Australe has a more complex form, with several large chasmata dividing its eastern half into a series of lobes. While the layering is pervasive, outcrop imagery suggests it is less conformal to the surface than in the north, and darker materials that may represent a lag deposit cover much of the surface (Milkovich and Plaut 2008). An exception is the highest terrains near the pole, which exhibit a capping layer of perennial CO_2 ice (much more extensive seasonal CO_2 ice is deposited from the atmosphere each winter and sublimates back into the atmosphere during spring in both hemispheres). Planum Australe contains many more and larger craters, indicating a substantially older surface (Plaut 2005). Prior to the arrival of SHARAD and MARSIS, the Mars Advanced Radar for Subsurface and Ionosphere Sounding onboard the European Space Agency’s Mars Express orbiter (Picardi, et al. 2004), the subsurface
structure of the polar layers could only be roughly inferred from imagery of the exposed sequences.

The list of discoveries about Planum Boreum and Planum Australe stemming from the use of SHARAD data is rather long, the most significant of which include:

- SHARAD returns from the base of the layered deposits in Planum Boreum have sufficient power to constrain the bulk lithic fraction through the stack to less than about 5% (Grima, et al. 2009).

- Depth correction of the returned signals within a reasonable range of assumed subsurface velocities indicates that the base of Planum Boreum is extremely flat-lying (see the bottom panel of Figure 13), and the lack of significant basal deflection by the 2-3 km load of icy layers points to a much thicker lithosphere and lower heat flow from the interior than previously thought (Phillips, Zuber, et al. 2008).

- SHARAD reveals repeated sequences of strongly reflective layers alternating with zones of lower reflectivity corresponding to the finely layered materials seen in outcrop in upper portion of Planum Boreum. The layering is largely conformal to the current surface. It is thought that the repeating sequences are the result of climate cycles that have occurred over the last four million years of Martian history (Phillips, Zuber, et al. 2008); (Putzig, Phillips, et al. 2009). A shallow unconformity seen in SHARAD data appears to correspond to a suspected retreat from an episode of mid-latitude glaciation 370,000 years ago (Smith, Putzig, et al. 2016).
• Mapping of layering unconformities in SHARAD data shows that Chasma Boreale is a center of near-zero net deposition rather than an erosional feature, having developed in conjunction with variable deposition rates across the region. In contrast, a paleo-chasma of similar size to Chasma Boreale that existed early in Planum Boreum history appears to have been infilled, leaving no appreciable surface expression (Holt, Fishbaugh, et al. 2010).

• Below the spiral troughs in Planum Boreum, layering discontinuities in SHARAD data extend downward, often to several hundred meters depth. These trough-bounding surfaces map out a poleward progression of the troughs over time while demonstrating that the troughs form largely as a result of aeolian erosion of water ice from their steeper poleward slopes and redeposition on their shallower equatorward slopes (Smith and Holt 2010).

• While SHARAD also reveals layering sequences beneath Planum Australe, they have characteristics distinct from those in the north, including truncation very near the surface in many locations (R. Seu, et al. 2007), and the signal-to-noise ratio (SNR) at depth is often attenuated, perhaps due to a broadly distributed scatterer in the near-surface (Campbell, Morgan, et al. 2015).

• SHARAD data show several regions in Planum Australe near the south pole that contain materials with extremely low reflectivity (see upper left and middle panels of Figure 11). These deposits have been shown to be made up of nearly pure CO2 ice, containing enough material to double Martian
atmospheric pressure if sublimated (Phillips, Davis, et al. 2011). The deposits occur in three layers that likely correspond to episodes of atmospheric collapse during times of low obliquity extending back at least 370,000 years, each capped by a ~30-m layer of water ice sufficient to prevent sublimation of the CO$_2$ in subsequent returns to higher obliquity (Bierson, et al. 2016).

The SHARAD instrument transmits and receives via a 10 m dipole antenna, emitting a 10 W linearly down-swept chirp from 25 to 15 MHz over 85.05 μs at a pulse repetition frequency (PRF) of 700.28 Hz. The terrain-following receive window is 135 μs in duration, within which the returned radar signal is sampled at rate of 37.5 ns, giving a total of 3600 voltage samples per radar frame (analogous to a trace in the seismic realm). Note that the sampling frequency (26.66 MHz) gives a fundamental frequency range of 0-13.33 MHz, which means that the non-baseband signal spectrum is fully aliased upon sampling. With these parameters and the spacecraft’s altitude and velocity, SHARAD samples any target within the 20.25 km range window with a 3-6 km Fresnel zone at the surface (improvable with Doppler processing along-track to 0.3-1 km) and $15/\sqrt{\varepsilon_r}$ m along range (so 15 m in free space and lower within the ice caps depending on the real dielectric constant ε_r). For further details about SHARAD and its counterpart MARSIS, see (R. Seu, et al. 2007); (Picardi, et al. 2004).

Over time, as the planet has rotated below (rotational period is 24 hours and 37 minutes), the nearly polar orbit of MRO has resulted in relatively dense coverage (when compared with the rest of the planet) of the polar regions with SHARAD
observations. After years of mapping and analysis using collections of SHARAD data from individual orbit passes, it became clear that the structural complexity of the polar ice caps was sufficient to merit 3-D treatment of the SHARAD data. In 2010, after the SHARAD coverage density over the poles became sufficient to support 3-D processing, we began work on the north polar SHARAD 3-D project. At that time, we limited our effort to about 500 observations (data collected continuously over a given orbit segment) distributed across Planum Boreum, but we later expanded the coverage to a final count of over 2300 observations. We further expanded our efforts in 2013 with another SHARAD 3-D project for Planum Australe. These two projects have resulted in the first high-fidelity 3-D images of the interiors of Mars’ polar ice caps, samples of which we include herein.

SHARAD Pre-processing

Before application of 3-D processing, the recorded (2-D) SHARAD data has undergone both onboard processing and Earth-based processing (Campbell and Phillips 2014). The onboard processing simply consists of coherent (with respect to the so-called Doppler bandwidth) summation of radar frames, typically by a factor of eight for this data set, to reduce the data volume transmitted to Earth. The processing on Earth consists of:

 cross-correlation of each radar frame with a model of the transmitted chirp. The chirp’s phase is modified with an estimate of the ionospheric phase distortion modeled via a focusing metric derived from the data, thereby
approximately removing the significant effects on the data of the signal’s passage through the Martian ionosphere. This process is implemented in the frequency domain, after which the redundant half of the spectrum is set to zero and the result is inverse Fourier transformed to obtain the corresponding (complex) analytic signal.

2. **Synthetic Aperture Radar (SAR) processing**: the range-compressed analytic data are assembled into a complex 2-D processing array (the synthetic aperture, with a pre-determined set of frames comprising the columns of the array) and the following operations are performed relative to the center location within the aperture resulting in an along-track focusing of the data:

 a. **Range migration**: up-range shifting of frames to align returns from the surface at the synthetic aperture center.

 b. **Doppler shift correction**: frequency-dependent, location-dependent along-track phase rotation to correct the Doppler shift caused by the relative motion of the spacecraft and synthetic aperture center.

 c. **Coherent summation**: to increase the SNR, iso-range delay samples along rows in the synthetic aperture are Fourier transformed and the total power in the spectrum computed and output at each time delay index to form each output frame, the collection of such frames along-track comprising the so-called *radargram*.

a. Residual ionospheric time delays revealed and modeled as a linear regression between differential time delays and corresponding differential ionospheric distortion parameter values (derived in Step 1) measured using co-located frames from different observations within high-latitude, high-fold “gathers” (see discussion below).

b. Corrections applied to every frame through a polynomial fit of the derived differential time delays against solar zenith angle (SZA) for every frame.

4. Datuming: the radargram is datumed to 10,125 m above Mars’ areoid.

Every such radargram and its processing description using the aforementioned pre-processing workflow are available in NASA’s Planetary Data System (PDS) archive (Campbell and Phillips 2014). Note that we widened the Doppler bandwidth (used in Step 2b above) for the radargrams used in 3-D processing over that used for the radargrams delivered to the PDS, as we found that doing so better preserved radar returns with steeper slopes. It is important to emphasize that Step 3 in this pre-processing workflow is a direct consequence of the analysis of a set of high-latitude, high-fold “gathers” (quotes to indicate that the data is zero-offset, so there is no offset distribution typical of terrestrial seismic gathers), each comprised of frames taken from different radargrams falling within a common spatial bin. Because the ionosphere is a sun-driven dynamic distortion medium for any electromagnetic signal above its plasma frequency, radargrams sufficiently separated in their

*Electromagnetic waves of radial frequency ω will not propagate through a plasma if $\omega < \omega_p$, the plasma frequency. Above the plasma frequency the propagation is dispersive because the phase
acquisition timing are likely to be affected differently by the ever-changing ionosphere, including with respect to their relative signal phases at crossover locations. The gather analysis revealed such residual relative ionospheric time delays that theretofore had not been assessed in individual radargrams, thereby providing valuable feedback that has benefited the SHARAD pre-processing workflow.

Two typical radargrams across Planum Boreum (top) and Planum Australe (bottom) resulting from the SHARAD pre-processing workflow are shown in Figure 2. In scrutinizing and comparing these observations, the SHARAD signal character difference between the two ice caps is rather apparent, with Planum Boreum returns having a higher SNR and more subsurface reflection interfaces, including a distinct basal reflection event. The interior reflectivity of Planum Australe is more sparse and obscured by relatively high-power background noise informally referred to as “fog” (Campbell, Morgan, et al. 2015). One particular subsurface feature (circled in red) is a wedge-shaped CO₂ deposit characterized by three layers having no internal reflectivity, so-called “reflection free zones” (RFZs), and separated by distinct bright reflectors (Phillips, Davis, et al. 2011). This feature is rather obscured in this 2-D pre-processed radargram by radar returns that have not been properly handled by the 2-D pre-processing outlined above (thus it appears as

\[v_0 = c_0 \sqrt{1 - \frac{\omega_p^2}{\omega^2}}. \]

SHARAD operates above the plasma frequency, for otherwise it would be a ionospheric topside sounder. The story is more complicated if a magnetic field is present.
“clutter” in the radargram). We’ll see later that this feature is clarified quite remarkably after 3-D processing.

3-D Processing and Analysis of SHARAD Data

We have developed and applied 3-D processing and analysis workflows to more than 4400 SHARAD radargrams initially processed as those shown in Figure 2, about 2300 covering Planum Boruem in the north and about 2100 covering Planum Australe in the south. This effort has resulted in the first fully 3-D processed orbital radar volumes in history, and the revelations and lessons learned from examining and analyzing the data used to produce these volumes have been and continue to be fed forward to produce better radargrams and thus better 3-D volumes in ever shorter turn-around times. In order to produce these 3-D volumes, the rather large respective collections of radargrams covering each pole were assigned map coordinates in an appropriate polar projection system, rectilinearly binned, and 3-D processed and imaged. To manage these large 3-D datasets and to leverage existing technology, we used Landmark Graphics Corporation’s ProMAX/SeisSpace for the 3-D processing and SeisWare’s interpretation software. This crossover of terrestrial seismic exploration technology into the realm of extraterrestrial orbital radar is novel and has proven to be very successful.

While the 2-D pre-processing previously described is more or less standard in the realm of orbital radar, the resulting radargrams are not entirely suitable for immediate use in 3-D processing. Specifically, the range migration step is undesirable prior to 3-D processing since it is essentially a 2-D migration along the
ground track of each observation. This is only a partial migration in a 3-D structural setting, and since all of the ground tracks over the poles have a full range of azimuths, the only practical way to accommodate this step is to reverse it to the extent possible with the application of a 2-D demigration of each radargram followed by a full 3-D migration of the 3-D volume of demigrated data. Also, processing radargrams whose radar return samples are power-valued rather than amplitude-valued is not ideal, but for a variety of reasons, unwinding this step from the other SAR processing steps is complicated and we chose not to attempt it for these initial projects. For Planum Boreum data, we simply used the radar return power while for Planum Australe data, we took the square root of the power-valued samples to convert them to so-called *reflection strength* (Taner, Koehler and Sheriff 1979) as doing so better accommodated the lower SNR, debiasing each frame prior to subsequent 3-D processing.

In preparation for 3-D processing, the following 2-D processing workflow was applied to every 2-D pre-processed radargram:

1. **Redatuming**: use the spacecraft and areoid radii to reverse the range delay windowing and areoid reference datuming imposed during SAR processing and thereby restore the radar signal timing to its original orbit datum range delay timing.

2. **Demigration**: approximately reverse the along-track range migration performed during SAR processing.
3. *Common reference datuming:* remove the intra- and inter-orbital variation in spacecraft altitude, thereby referencing to a common constant orbit radius datum derived as the average spacecraft orbit radius taken over a representative subset of the radargrams used for 3-D processing.

4. *Bulk shift:* strip away most of the travel time above the first returns for storage efficiency by applying a constant negative time shift and truncating every frame commensurately.

Figure 3 shows a single radargram as it progresses through this 2-D processing workflow. Beginning with the radargram as delivered after 2-D pre-processing as input (top left), it is first redatumed to its orbit delay time reference (bottom left), which renders the data almost undetectable at the bottom of the display panel (even with a 7:1 vertical exaggeration, reappearing in the top right display panel with a 272:1 vertical exaggeration), then demigrated (bottom right). Careful scrutiny and comparison of these two right display panels shows that the range migration focusing has been removed after demigration. Then, after the relatively minor redatuming and bulk shifting described in Steps 3 and 4, the radargram is ready for inclusion in the 3-D processing workflow.

After completion of the 2-D processing of all radargrams included in the 3-D volumes, the respective collections of radargrams for each of the poles were 3-D processed using the following relatively simple (by terrestrial seismic standards) workflow:

1. *3-D binning:* define 3-D rectilinear binning grid and bin space.
2. **3-D interpolation and regularization:** for each time slice, bi-linearly interpolate input samples using a Delaunay triangulation of their spatial locations and output the interpolated and regularized samples at the binning grid locations.

3. **3-D downward continuation** (Biondi 2006) from the common orbit radius datum to the maximum areoid radius datum using free space velocity.

4. **3-D Stolt migration** (Stolt 1978) using free space velocity.

5. **Depth conversion** using free space-ice cap interval velocity model.

But for the sheer size of the bin grids and spaces, the binning of the Mars polar 3-D volumes was routine by terrestrial seismic processing standards. Figure 4 shows the 3-D coverage and bin fold (fold being defined as the number of radar frames in a bin) maps for Planum Boreum and Planum Australe. The 3-D coverages are densest nearest the poles, becoming sparser with decreasing latitude. The vast majority of bins within both 3-D bin spaces contain at most two frames, with the higher fold bins being concentrated nearest the coverage holes around the poles where the density of ground track intersections is highest, the maximum folds reaching 51 resp. 64 frames per bin for only a few bins. The binning grids span 5401 x 5401 and 5475 x 5475 inlines x crosslines in the north and south, respectively. Each bin is 475 m x 475 m, yielding total space dimensions of 2565 km x 2565 and 2600 km x 2600 km, respectively.

Due to the latitude-dependent sparseness and irregularity of the SHARAD coverage, it was necessary to interpolate and regularize the 3-D volumes prior to the
downward continuation and migration steps. Figure 5 shows time slices taken from both the Planum Boreum and Planum Australe 3-D volumes before and after 3-D interpolation and regularization, with corresponding inline and crossline profiles through the latter volume shown in Figure 6. As expected, after infilling and regularizing the data over the bin space, feature enhancement is immediately evident, especially for the shorter wavelength features and at lower latitudes.

The decision to include the 3-D downward continuation step in the processing workflow was driven mainly by necessity. The vast majority of SHARAD’s two-way travel time takes place in free space and the thin Martian atmosphere, fully 98% for Planum Boreum and 97% for Planum Australe observations. This results in rather long frames at the common orbit radius reference datum (exactly 21,952.875 resp. 18,016.875 “ms” or 58,542 resp. 48,046 samples), these percentages of which are non-signal. Together with the large spatial dimensions, directly 3-D migrating the resulting massively large volumes, even piecewise using a relatively fast Stolt implementation, on the projects’ primary computing resource (essentially a desktop workstation) proved to be completely infeasible.

Besides the practical reason for downward continuing the 3-D volumes, one potential technical advantage provides further motivation. Because the vast majority of the travel time occurs above the surface, the RMS velocity is almost unchanged by propagation through the ice caps even though the increase in the dielectric constant within the ice caps over that of free space significantly lowers their interval velocities. After downward continuation, the interval velocity changes
at the surface of, and within, the ice caps become far more significant in terms of their contribution to the travel times, providing the prospect of direct measurement of the interval velocity fields within the ice caps through image vs. velocity sensitivity analysis (a component of our latest advanced processing project recently selected for funding by NASA). Since direct detection and measurement of material properties is one of the primary objectives of all Mars missions, the significance of successfully performing velocity analysis using 3-D imaging cannot be overstated. It is our intention to fully investigate the imaging sensitivity to velocity variations in future work, using these initial free space velocity results as references.

For the 3-D downward continuation task, a very fast phase shift implementation was developed specifically for these Mars projects (Levin and Foss 2014). The downward continuation of the entire Planum Boreum volume was performed piecewise (due to software licensing restrictions and computing resource limitations), one such 237.5 km x 237.5 km piece overlapping the coverage hole centered at the pole shown in Figure 7 before and after downward continuation. As expected, the downward continuation has focused the structural features in the volume in a manner consistent with moving the acquisition datum from orbit to within a few kilometers of the polar surface.

Zooming out, the left panel of Figure 8 shows a time slice through the entire (piecewise) downward continued Planum Boreum ice cap (compare with the interpolated and regularized input in the top right panel of Figure 5). Note that
while the downward continuation operator edge effects‡ are obvious in the no-
signal (low power) areas of the display, they are subsumed when signal is present.
The right panel shows the same time slice after (piecewise) 3-D Stolt migrating the
volume with the benchmark (retarded) free space velocity. At the displayed scale,
there are no discernable differences in the two results, indicating that virtually all of
the focusing happens with downward continuation.

Figure 9 shows inline and crossline profiles proximal to the coverage hole around
the pole taken from the downward continued Planum Boreum 3-D volume. The
structural focusing across the surface of the ice cap is striking, the deep troughs in
the ice clearly defined. These images also show the significant impact that this
surface topography has on the deeper time image, essentially imparting a mirror
image of the topography on the ice cap’s interior and basal units. This not only
necessitates depth conversion of the volume, but also suggests the need for
migration with an algorithm that supports “buried” velocity topography.

Finally, clockwise from the left, Figure 10 resp. Figure 11 shows an inline profile,
time slice, and crossline profile from the Planum Australe 3-D volume before resp.
after (piecewise) downward continuation. Comparing the like panels between the
two figures, it is evident, as expected, that the downward continuation has
significantly clarified and sharpened the structural features within the ice cap. In so
doing, the internal layering within the ice cap has been revealed. Note that the

‡ Parameter testing revealed these can be eliminated by increasing the inline and crossline overlap
between adjacent pieces by a factor of 3, but at a rather significant premium of 5-6 times more
compute time.
inline profile passes through the same tri-layered CO₂ deposit (bracketed between the two thin dashed lines) mentioned in the Introduction and present in the Planum Australe radargram shown there. Before 3-D downward continuation, this feature is substantially obscured by “clutter”, while afterward the three layers of CO₂ are plainly evident in profile and the areal outline of the deposit in the time slice is sharp (the “serpent”-shaped feature just to the left of the no-coverage hole). As a final note, it is obvious that the downward continuation operator edge effects are more pronounced within the signal regions of the Planum Australe volume compared with their footprint in the Planum Boreum volume, another consequence of the lower SNR in the former. As mentioned before, at the expense of substantially more compute time, these operator edge effects can be completely eliminated by increasing the overlap between the downward continued pieces.

With the 3-D downward continued volume complete, the last step in the 3-D processing workflow is 3-D Stolt migration, pending as of the time of this writing. As with Planum Boreum (see Figure 8), at a macro scale, we expect only subtle changes after migrating the downward continued volume. After migration, the resulting volume will be depth converted for interpretation.

3-D Interpretation Results

Geometric corrections and improved SNR afforded by the 3-D volume provide a substantial contribution to understanding the interior structure and stratigraphy of Planum Boreum (Putzig, Foss II, et al. in prep.). Using hundreds of 2-D profiles, it took many months of effort to map out interior structures—e.g., trough-bounding
surfaces (Smith and Holt 2010), a buried chasma (Holt, Fishbaugh, et al. 2010), and the boundary of the basal unit (Putzig, Phillips, et al. 2009); (Brothers, Holt and Spiga 2015). In the 3-D volume, these structures are immediately apparent and seen in greater detail (Figure 12). Features that were hidden by clutter or mis-positioning in the 2-D data set—such as structures in trough-dense regions (Smith, Putzig, et al. 2016); Figure 13 and Figure 14 and what appear to be buried impact craters (Figure 12)—are newly revealed in the 3-D volume. In particular, the 3-D volume assisted (Smith, Putzig, et al. 2016) in fully mapping the extent of a shallow unconformity that they linked to a recent change in climate (see Introduction).

Partially buried impact craters exhibit a distinctive signature that is repeated elsewhere in the volume but without surface expression. These features may be fully buried impact craters. For Earth’s moon, cratering statistics have been tied to radiometrically dated samples returned by the Apollo program, and the derived cratering rates have been extrapolated and used for dating surfaces on Mars and other bodies in the Solar System. Thus, to the extent that a statistically significant number of the suspected buried craters can be demonstrated to be true impact craters, they will provide an important measure of the age of the icy layered deposits that is independent of climate models.

Despite the discovery and removal of residual ionospheric time delays in the data, some residual time delays remain in the data that cannot be identified as variations in ionospheric phase distortion, as they are not correlated with solar zenith angle or the computed ionospheric phase distortion parameter modeled in the range compression step. These residual delay offsets remaining in the data limited the
effectiveness of 3-D processing and reduced the vertical resolution by a factor of ~2 (Figure 14). Most notably, finer shallow layering and structures evident in the input 2-D observations are not resolved in the 3-D volume, hampering the ability (1) to improve upon prior efforts to correlate radar layering with that seen in visible imagery, e.g. (Christian, et al. 2013), (2) to map minor troughs and near-surface undulations linked to climate signals, e.g. (Smith and Holt 2015); (Campbell, Morgan, et al. 2015) and (3) to visualize finer structures. In addition, coverage is still incomplete at the 475-m bin size, further limiting the resolution of finer features. A renewed effort by members of this team will further reduce the residual delays, and SHARAD data acquisition is continuing in the fourth extended mission of MRO, with one goal being to infill coverage in areas targeted for 3-D processing.

As a final remark, an exhaustive project report was written documenting the details of the entire Planum Boreum 3-D processing project, including discussion of signal enhancement and noise reduction methodologies tested and sources of error in the processed datasets. This report can be made available upon request.

Conclusions and Next Steps

The scientific discoveries made over the past 10 years using the data collected from orbit with the instruments aboard NASA’s MRO have greatly expanded our understanding of Mars. The relatively recent and ongoing contribution of the first polar SHARAD 3-D volumes to the scientific research toolbox has already had a significant impact on both our understanding of the SHARAD data itself as well as
the physical features it has imaged. The SHARAD 3-D volumes have led to a better understanding of the effects of the ionosphere on the 3-D consistency of the data, thereby leading to improved modeling of the ionosphere. Additionally, through proper 3-D imaging, the SHARAD 3-D volumes have provided structural clarity in the data, thereby enhancing its interpretability and utility for performing scientific research. The 3-D workflows and tools used to produce the initial 3-D volumes and images shown herein will continue to be used and improved to produce better 3-D volumes and images of Mars’ polar ice caps as well as new 3-D volumes and images of other targets of interest on the planet. As of the time of this writing, the first properly imaged SHARAD 3-D volume of Planum Boreum has been completed, with the first such volume of Planum Australe almost complete and to be followed by other volumes imaging smaller targets at lower latitudes. Efforts are underway to archive the SHARAD 3-D processing methodology and the resulting 3-D data volumes in NASA’s Planetary Data System, thereby making them available to the broader scientific community. Additionally, because of the diagnostic power of 3-D data analysis, there is an effort underway to detect and winnow out lingering ionospheric time delays and other timing inconsistencies between the individual radargrams that, if successful, will improve the resolution and thus interpretability of the SHARAD 3-D volumes. Finally, through iterative sensitivity analysis and refinement of the 3-D image provided by the SHARAD volumes, we hope to extract velocity and corresponding dielectric constant information for the polar ice caps directly from the SHARAD data, thus further leveraging its information content for scientific discovery.
Acknowledgments

We would like to offer our thanks to TLE’s Editorial Board, in particular Ms. Julie Shemeta, and to the Guest Editors for TLE’s 2017 Special Section on Remote Sensing, Dr. Craig Beasley and Dr. William Barnhart, for extending an invitation to publish our work. We offer our special thanks to our manuscript’s reviewers, in particular Prof. William Barnhart, for insightful and helpful suggestions during the submission process. Finally, we would like to thank an ever-growing list of people and organizations that have contributed to these projects, to include:

- NASA’s Mars Data Analysis Program (MDAP), for support of grants NNX10AQ32G, NNX13AK77G, and NNX17AC62G.
- The MRO Project, for support of SHARAD and the 3-D processing efforts.
- The SHARAD Science Team, for support and interest in the 3-D projects.
- Landmark Graphics Corporation, in particular Mr. Paul Heuermann, for assistance with licensing ProMAX/SeisSpace and for providing processing hardware and software resources and staff, in particular Mr. Dan Grygier, to assist in fully migrating one of the interim Planum Boreum 3-D volumes on their computing cluster.
- SeisWare, Inc., for providing their interpretation software resources and staff in the on-going interpretation of the SHARAD 3-D volumes.
- Dr. Stewart Levin of Stanford University, for his work and collaboration implementing a fast and accurate ProMAX/SeisSpace 3-D downward continuation tool used to 3-D downward continue the SHARAD 3-D volumes.
References

Seu, Roberto, et al. "SHARAD sounding radar on the Mars Reconnaissance Orbiter."

Figure 1. SHARAD ground track coverage (lines) colored by elevation above the Martian geoid (areoid) as computed using altimetry from Mars Orbiter Laser Altimeter (MOLA) across Planum Boreum (left) and Planum Australe (right). Elevation scales are offset between the north and south regions, the latter higher standing. Polar-projection maps extend to 69° latitude in each hemisphere (2520 km diameter). Spacecraft orbits are offset from the pole, leaving a no-coverage zone poleward of ~87.4° latitude. Blue lines are ground tracks corresponding to the radargrams shown in Fig. 2.

Figure 2. Segments of Planum Boreum SHARAD radargram from observation 11301-01 (top) and Planum Australe SHARAD radargram from observation 27199-01 (bottom) after pre-processing. Grayscale represents radar return power (light high, dark low). The differences in the reflectivity character evident between these two radargrams are typical throughout the two polar ice caps. The feature circled in red, and partially obscured by discordant radar returns (“clutter”), is one of the CO2 ice deposits characterized by so-called “reflection free zones” (RFZs) separated by distinct reflectors thought to be water ice.

Figure 3. Results from the initial steps in the 2-D processing workflow used to prepare the radargrams for 3-D processing. The radargram from observation 11301-01 across Planum Boreum immediately after SAR processing (top left, vertical exaggeration 242:1), immediately after redatuming to the observation’s original orbit datum (bottom left, vertical exaggeration 7:1 and top right, vertical exaggeration 272:1), and immediately after demigration at at this same datum (bottom right, vertical exaggeration 272:1). Color indicates radar return power (blue high, red low). After redatuming the input radargram back to its orbit datum, the radar returns are barely visible at the bottom of the lower left panel (even with a 7:1 vertical exaggeration). Scrutinizing and comparing the two right panels, the range migration focusing has been removed by the demigration as desired.

Figure 5. Time slices through the Planum Boreum (top) and Planum Australe (bottom) SHARAD 3-D volumes before (left) and after (right) 3-D interpolation and regularization. As shown, the Planum Boreum resp. Planum Australe time slices span 1241.0 km x 1050.0 km resp. 1272.0 km x 1075.4 km. Color indicates radar return power (top) or reflection strength (bottom), blue high, red low. Red lines on bottom left time slice mark locations of inline (vertical) and crossline (horizontal) profiles shown in Fig. 6. The interpolation and regularization has improved the sampling and thereby enhanced the visibility of the radar return features within the ice caps, especially those of relatively shorter wavelengths.

Figure 7. One of the 144 3-D interpolated and regularized (left) and 3-D downward continued (right) pieces from the Planum Boreum SHARAD 3-D volume overlapping the 3rd quadrant of the coverage hole. Each such piece spans 237.5 km². Color indicates radar return power (blue high, red low). As expected, the focusing performed by the downward continuation has significantly clarified the image, revealing previously blurred and/or obscured reflection features. Artifacts of the interpolation and regularization are visible inside the coverage hole, which get “smeared” by the downward continuation operator to create more artifacts inside the coverage hole.

Figure 8. Time slice through the Planum Boreum SHARAD 3-D volume after (piecewise) 3-D downward continuation (left) and (piecewise) 3-D Stolt migration (right). As shown, the time slices span 1152.4 km x 974.7 km. Color indicates radar return power (blue high, red low). Red lines on the left time slice mark locations of inline (vertical) and crossline (horizontal) profiles shown in Fig. 9. The imaging processes have focused the surface and subsurface radar returns, clarifying the structural features (most visibly the pervasive spiral troughs) throughout the ice cap. Note that these time slice images are visibly identical, indicating that the downward continuation has accomplished virtually all of the image focusing. Note also that the faint “cross hatching” in the time slices, made especially visible by the color scheme used for display (reds are low power), is due to truncation artifacts from the adjacent downward continued pieces.
Figure 9. Inline (top) and crossline (bottom) profiles through the Planum Boruem SHARAD 3-D volume after (piecewise) 3-D downward continuation. Color indicates radar return power (blue high, red low). Red lines mark location of time slice shown in the left panel of Fig. 8. The troughs cut into the surface of the ice cap are clearly resolved after the focusing accomplished by 3-D downward continuation. Note that the downward continuation operator artifacts above the surface are especially visible because of the color scheme used for display (reds are low power).

Figure 10. Inline profile (upper left), time slice (upper right), and crossline profile (lower right) through the Planum Australe SHARAD 3-D volume before 3-D downward continuation. Color indicates radar return reflection strength (blue high, red low). Thin red lines mark locations of adjacent views. Surface and subsurface radar returns are unfocused, leaving structure unresolved and an image “cluttered” by these unfocused returns. In particular, a feature (bracketed by the two thin dashed lines on the inline and time slice panels) characterized by so-called “reflection free zones” (RFZs) separated by distinct bright reflectors located between the two dashed lines on the inline and time slice panels is clearly revealed after downward continuation (compare with Fig. 11). This same feature appears in the near-by radargram segment from observation 27199-01 shown in the bottom panel of Fig. 2.

Figure 11. Inline profile (upper left), time slice (upper right), and crossline profile (lower right) through the Planum Australe SHARAD 3-D volume after (piecewise) 3-D downward continuation. Color indicates radar return reflection strength (blue high, red low). Thin red lines mark locations of adjacent views. Surface and subsurface features are resolved and no longer obscured by unfocused radar returns (“clutter”). In particular, a feature characterized by so-called “reflection free zones” (RFZs) separated by distinct bright reflectors located between the two dashed lines on the inline and time slice panels is clearly revealed after downward continuation (compare with Fig. 10). Note that the faint “cross hatching” visible in the time slice is due to lingering truncation artifacts from the adjacent downward continued pieces (see text for additional discussion).

Figure 12. Cut-away views into the depth-converted 3-D volume of SHARAD data, showing radar return power (blue high, red low) from features within Planum Boreum. (a) Perspective view encompassing all of Planum Boreum. For scale, the no-data zone is 310 km across and the stack of NPLD layers to the right of the buried chasma is 2 km thick. Labeled features are discussed in the text. (b, c) Zoomed-in views with enhanced contrast at the constant-depth slice in (a), showing possible buried craters within the circles.

Figure 13. Comparison of radargram segment from SHARAD observation 17187-01 (top) with results extracted from the Planum Boreum 3-D volume along the same ground track in delay time (middle) and depth (bottom), assuming a water-ice subsurface. Green line is delay time or depth to the nadir ground track predicted from MOLA data. Clutter and distorted geometries in the 2-D are largely corrected in the 3-D volume.

Figure 14. Detailed views of upper-left quadrants of panels in Fig. 13 showing improvements to clutter interference and geometries afforded by the 3-D processing. Segment where the surface is poorly sampled by MOLA laser altimetry data (“MOLA “hole””) is corrected in the 3-D views using the SHARAD data itself.
Figure 1. SHARAD ground track coverage (lines) colored by elevation above the Martian geoid (areoid) as computed using altimetry from Mars Orbiter Laser Altimeter (MOLA) across Planum Boreum (left) and Planum Australe (right). Elevation scales are offset between the north and south regions, the latter higher standing. Polar-projection maps extend to 69° latitude in each hemisphere (2520 km diameter). Spacecraft orbits are offset from the pole, leaving a no-coverage zone poleward of ~87.4° latitude. Blue lines are ground tracks corresponding to the radargrams shown in Figure 2.
Figure 2. Segments of Planum Boreum SHARAD radargram from observation 11301-01 (top) and Planum Australe SHARAD radargram from observation 27199-01 (bottom) after pre-processing. Grayscale represents radar return power (light high, dark low). The differences in the reflectivity character evident between these two radargrams are typical throughout the two polar ice caps. The feature circled in red, and partially obscured by discordant radar returns (“clutter”), is one of the CO₂ ice deposits characterized by so-called “reflection free zones” (RFZs) separated by distinct reflectors thought to be water ice.
Figure 3. Results from the initial steps in the 2-D processing workflow used to prepare the radargrams for 3-D processing. The radargram from observation 11301-01 across Planum Boreum immediately after SAR processing (top left, vertical exaggeration 242:1), immediately after redatuming to the observation’s original orbit datum (bottom left, vertical exaggeration 7:1 and top right, vertical exaggeration 272:1), and immediately after demigration at this same datum (bottom right, vertical exaggeration 272:1). Color indicates radar return power (blue high, red low). After redatuming the input radargram back to its orbit datum, the radar returns are barely visible at the bottom of the lower left panel (even with a 7:1 vertical exaggeration). Scrutinizing and comparing the two right panels, the range migration focusing has been removed by the demigration as desired.
Figure 4. SHARAD 3-D coverage and bin fold maps for Planum Boreum (left) and Planum Australe (right). Lines are SHARAD observation ground tracks within the 3-D bin space, each bin colored by the number of radar frames contained in the bin (“fold”). The bin space dimensions are 5401 inlines x 5401 crosslines spanning 2565 km2 for the Planum Boreum 3-D volume and 5475 inlines x 5475 crosslines spanning 2600 km2 for the Planum Australe 3-D volume. It is evident from these maps that the 3-D coverage is densest nearest the poles, becoming sparser with decreasing latitude, and the 3-D volumes are overwhelmingly single and double fold, with higher fold bins concentrated nearest the coverage holes around the poles. Note that inline resp. crossline bins are oriented S-N resp. E-W in these map views.
Figure 5. Time slices through the Planum Boreum (top) and Planum Australe (bottom) SHARAD 3-D volumes before (left) and after (right) 3-D interpolation and regularization. As shown, the Planum Boreum resp. Planum Australe time slices span 1241.0 km x 1050.0 km resp. 1272.0 km x 1075.4 km. Color indicates radar return power (top) or reflection strength (bottom), blue high, red low. Red lines on bottom left time slice mark locations of inline (vertical) and crossline (horizontal) profiles shown in Figure 6. The interpolation and regularization has improved the sampling and thereby enhanced the visibility of the radar return features within the ice caps, especially those of relatively shorter wavelengths.
Figure 6. Inline (top pair) and crossline (bottom pair) profiles, transecting the Planum Australe 3-D volume just inside the polar coverage hole in map view, before (upper panel in pair) and after (lower panel in pair) 3-D interpolation and regularization. Color indicates radar return reflection strength (blue high, red low). Red lines on the profiles mark the location of the time slice shown in Figure 5. Comparison of the paired profiles shows that the coverage gaps across the ice caps have been mostly filled in by the interpolation and regularization.
Figure 7. One of the 144 3-D interpolated and regularized (left) and 3-D downward continued (right) pieces from the Planum Boreum SHARAD 3-D volume overlapping the 3rd quadrant of the coverage hole. Each such piece spans 237.5 km2. Color indicates radar return power (blue high, red low). As expected, the focusing performed by the downward continuation has significantly clarified the image, revealing previously blurred and/or obscured reflection features. Artifacts of the interpolation and regularization are visible inside the coverage hole, which get “smeared” by the downward continuation operator to create more artifacts inside the coverage hole.
Figure 8. Time slice through the Planum Boreum SHARAD 3-D volume after (piecewise) 3-D downward continuation (left) and (piecewise) 3-D Stolt migration (right). As shown, the time slices span 1152.4 km x 974.7 km. Color indicates radar return power (blue high, red low). Red lines on the left time slice mark locations of inline (vertical) and crossline (horizontal) profiles shown in Figure 9. The imaging processes have focused the surface and subsurface radar returns, clarifying the structural features (most visibly the pervasive spiral troughs) throughout the ice cap. Note that these time slice images are visibly identical, indicating that the downward continuation has accomplished virtually all of the image focusing. Note also that the faint “cross hatching” in the time slices, made especially visible by the color scheme used for display (reds are low power), is due to truncation artifacts from the adjacent downward continued pieces.
Figure 9. Inline (top) and crossline (bottom) profiles through the Planum Boruem SHARAD 3-D volume after (piecewise) 3-D downward continuation. Color indicates radar return power (blue high, red low). Red lines mark location of time slice shown in the left panel of Figure 8. The troughs cut into the surface of the ice cap are clearly resolved after the focusing accomplished by 3-D downward continuation. Note that the downward continuation operator artifacts above the surface are especially visible because of the color scheme used for display (reds are low power).
Figure 10. Inline profile (upper left), time slice (upper right), and crossline profile (lower right) through the Planum Australe SHARAD 3-D volume before 3-D downward continuation. Color indicates radar return reflection strength (blue high, red low). Thin red lines mark locations of adjacent views. Surface and subsurface radar returns are unfocused, leaving structure unresolved and an image “cluttered” by these unfocused returns. In particular, a feature (bracketed by the two thin dashed lines on the inline and time slice panels) characterized by so-called “reflection free zones” (RFZs) separated by distinct bright reflectors is mostly obscured by clutter prior to downward continuation (compare with Figure 11). This same feature appears in the near-by radargram segment from observation 27199-01 shown in the bottom panel of Figure 2.
Figure 11. Inline profile (upper left), time slice (upper right), and crossline profile (lower right) through the Planum Australe SHARAD 3-D volume after (piecewise) 3-D downward continuation. Color indicates radar return reflection strength (blue high, red low). Thin red lines mark locations of adjacent views. Surface and subsurface features are resolved and no longer obscured by unfocused radar returns ("clutter"). In particular, a feature characterized by so-called “reflection free zones” (RFZs) separated by distinct bright reflectors located between the two dashed lines on the inline and time slice panels is clearly revealed after downward continuation (compare with Figure 10). Note that the faint “cross hatching” visible in the time slice is due to lingering truncation artifacts from the adjacent downward continued pieces (see text for additional discussion).
Figure 12. Cut-away views into the depth-converted 3-D volume of SHARAD data, showing radar return power (blue high, red low) from features within Planum Boreum. (a) Perspective view encompassing all of Planum Boreum. For scale, the no-data zone is 310 km across and the stack of NPLD layers to the right of the buried chasma is 2 km thick. Labeled features are discussed in the text. (b, c) Zoomed-in views with enhanced contrast at the constant-depth slice in (a), showing possible buried craters within the circles.
Figure 13. Comparison of radagram segment from SHARAD observation 17187-01 (top) with results extracted from the Planum Boreum 3-D volume along the same ground track in delay time (middle) and depth (bottom), assuming a water-ice subsurface. Green line is delay time or depth to the nadir ground track predicted from MOLA data. Clutter and distorted geometries in the 2-D are largely corrected in the 3-D volume.
Figure 14. Detailed views of upper-left quadrants of panels in Figure 13 showing improvements to clutter interference and geometries afforded by the 3-D processing. Segment where the surface is poorly sampled by MOLA laser altimetry data ('MOLA “hole”') is corrected in the 3-D views using the SHARAD data itself.