
oxidation. Translation of taxonomic informa-
tion into phenotype profiles based on experi-
mental evidence can thus facilitate the ecological
interpretation of metagenomes. The full poten-
tial of phenotype profiling remains underused
because of our current inability to associate
many known taxa with any function. For exam-
ple, a large fraction of the ubiquitous but poorly
studied phylum Thaumarchaeota is potentially
involved in ammonia oxidation (24) but had to be
excluded from our functional annotations (11).
Similarly, microeukaryotes likely contribute to
several metabolic functions, such as photosyn-
thesis or cellulolysis. Future functional profiling
should thus include eukaryotic microorganisms
and incorporate putative metabolic potential
for uncultured clades revealed by single-cell
genomics (25).
The bulk of global biogeochemical fluxes is

driven by a core set of metabolic pathways that
evolved in response to past geochemical condi-
tions (1). Through time, these pathways have
spread across microbial clades that compete
withinmetabolic niches, resulting in an enormous
microbial diversity characterized by high func-
tional redundancy. As shownhere, splitting varia-
tion of microbial community composition into
variation of functional structure and taxonomic
variation within functional groups reveals an
intriguing pattern: The functional component
in itself captures most of the variation predicted
by environmental conditions,whereas the residual
component (i.e., variationwithin functional groups)
only weakly relates to environmental conditions.
This has implications for the interpretation of
differences in community structure across envi-
ronments and time. Differences in taxonomic
composition that do not affect functional com-
position may have little relevance to ecosystem
biochemistry; conversely, physicochemically sim-
ilar environments could host taxonomically dis-
tinct communities (26). Functional (rather than
purely taxonomic) descriptions of microbial com-
munities should therefore constitute the baseline
for microbial biogeography, particularly across
transects where geochemical gradients shape
microbial niche distribution (27). The residual
variation within functional groups can then be
analyzed separately to elucidate additional com-
munity assembly mechanisms such as biotic in-
teractions, dispersal limitation, or demographic
drift. An incorporation of global microbial func-
tional profiles, and their response to potentially
changing environmental conditions, into future
biogeochemical models will greatly benefit re-
constructive and predictive modeling of Earth’s
elemental cycles.
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SENSORY BIOLOGY

Bats perceptually weight prey cues
across sensory systems when hunting
in noise
D. G. E. Gomes,1,2 R. A. Page,1 I. Geipel,1 R. C. Taylor,1,3 M. J. Ryan,1,4 W. Halfwerk1,5*

Anthropogenic noise can interfere with environmental information processing and thereby
reduce survival and reproduction. Receivers of signals and cues in particulardepend onperceptual
strategies to adjust to noisy conditions.We found that predators that hunt using prey sounds
can reduce the negative impact of noise bymaking use of prey cues conveyed through additional
sensory systems. In the presence of masking noise, but not in its absence, frog-eating bats
preferred andwere faster in attackinga robotic frogemittingmultiple sensorycues.Thebehavioral
changes induced by masking noise were accompanied by an increase in active localization
through echolocation.Our findings help to reveal howanimals can adapt to anthropogenic noise
and have implications for the role of sensory ecology in driving species interactions.

A
nthropogenic noise is a globally rising envi-
ronmental pollutant that has been linked
to lower survival and reduced reproductive
success of many animal taxa (1–3). Noise
can mask environmental cues, making it

difficult to hearmoving prey or approaching pred-
ators, and can interfere with the perception of
acoustic communication signals (3–6). Signal
producers may be able to reduce the masking

impact—for example, by calling louder (7–9)—but
such signaling strategy is unavailable to receivers.
Some receivers candepend onperceptual strategies
to maintain cue detection and thereby adapt to
noisy environments (10, 11).
Predators such as bats and owls are highly spe-

cialized to hunt prey by ear (12); thus, noise that
masks prey sounds severely hampers their forag-
ing success (4, 5). However, predatorsmay be able
to adapt to masking levels of anthropogenic noise
by actively shifting their attention or emphasis
placed on processing cues from different sensory
modalities from the same prey (13–16). We refer
to this as cross-modal perceptual weighting (17).
We studied the effect of masking noise on the

attack behavior of the fringe-lipped bat (Trachops
cirrhosus), a neotropical species that is specialized
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to find frogs by eavesdropping on their mating
displays (18, 19). Bats can passively locate their
prey using only prey-generated sounds, but their
performance is severely hamperedwhen exposed

to noise (20). A male frog, however, provides
additional, multimodal cues to hunting bats, as
it inflates and deflates a vocal sac while calling
(14, 16). Bats can detect the frog’s vocal sac with

their echolocation (i.e., processing the ultrasonic
echoes that return from their prey), but only
when the sac is dynamically inflated; bats do
not detect a static vocal sac (21). Echolocation
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Fig. 1. Perceptual strategies to deal with prey signal masking. (A) Graphic
representation of our experimental design. Bats can passively listen to frog
sounds (channel 1) broadcast from speakers underneath the robofrogmodels;
they can also actively use their echolocation (channel 2) to detect the dynamic
vocal sac. (B) Bats were tested under nonmasking noise, masking noise, and
control conditions (no noise) broadcast from a speaker placed above the frog
models. Shown are two spectrograms of a frog call with frequency regions of
noise treatments superimposed on it (4.0 to 8.0 kHz, 0.1 to 4.0 kHz). (C) Bats

can rely on passive listening to their prey’s mating sound (channel 1) as well as
on active listening by processing multiple echoes returning from the frog’s
moving vocal sac (channel 2). Shown are the typical frog call amplitude profile
(channel 1), the inflation and deflation of the frog’s vocal sac (channel 2, gray
symbol), and bat calls (red symbols) and echoes (blue symbols) overlapping as
well as nonoverlapping in timewith the vocal sac cue. (D) When noisemasks the
prey call, bats may increase their echolocation effort (scenario 1) or alter call
design (scenario 2) to maintain target localization.
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can provide highly accurate spatial informa-
tion about target stimuli, and we therefore ex-
pected that these bats are capable of adapting
to masking interference through a change in
their perceptual weighting of sonic cues versus
ultrasonic cues (22).
We used robotic frogs that emitted eithermulti-

modal cues (sound plus moving vocal sac) or con-
trol cues (sound plus static vocal sac) (Fig. 1A).
Individual bats were given a choice to attack one
of two models under three different noise treat-
ments: (i) a masking noise overlapping the main
frequency range of the frog call, (ii) a nonmasking
noise, and (iii) an ambient control noise condition
(Fig. 1B and supplementarymaterials). Although
the signal-to-noise ratio of the frog callwas strongly
reduced during masking noise, the signal re-
mained audible to the perched bat (Fig. 1B). We
predicted that bats rely more on echolocation
when presented withmasking noise and would
consequently make more attacks on the multi-
modal frog model and alter their echolocation
behavior [see scenarios in Fig. 1, C andD, or (23)].
Objects surrounding a target also return echoes,
and this so-called background clutter is known to
interfere with detection and processing of echo-
location target cues (4, 24). We thus tested bats
additionally on their attack behavior when dried
leaveswere added around the frogmodels (clutter
treatment; fig. S1).
We trained 12 wild-caught bats to attack our

roboticmodels in an outdoor flightcage (21). Bats
always started their attack flight toward one of
the frog models from their perch and only in
response to stimulus playback. Attack latency
was strongly influenced by our noise treatment
(generalized linear mixed models, Nbats = 12,
Ntrials = 432, c2 = 22.07, P < 0.001; Fig. 2A and
table S1). Post hoc independent contrasts revealed
that bats were slower in making their attacks

under masking noise relative to nonmasking
noise (z value = 5.57, P < 0.001) and ambient
conditions (z value = 7.56, P < 0.001). We did not
find a significant effect of the clutter treatment
on attack latencies (c2 = 0.09, P = 0.76). On the
other hand, the time between leaving the perch
and attack on the model (hereafter, flight dura-
tion) increased during the clutter treatment (c2 =
17.04, P < 0.001; Fig. 2B) but was not affected by
the noise treatment (c2 = 0.24, P = 0.89). The
number of attacks on the multimodal frogmodel
relative to the control frogmodelwas significantly
affected by the noise treatment (c2 = 7.63, P =
0.022; Fig. 2C). Post hoc binomial tests revealed
that bats had a clear preference for the frogmodel
displaying multimodal cues under masking noise
(z value = 2.34, P = 0.019), but not under non-
masking noise (z value = –0.94, P = 0.35) or
ambient conditions (z value= 1.17,P=0.24). Clutter
treatment had no significant effect on the prob-
ability of bat attack on eithermodel (c2 = 0.60,P=
0.43; Fig. 2C), nor did we find any significant
interaction effects betweennoise and clutter treat-
ment (all response variables P > 0.5).
We obtained ultrasonic recordings for a subset

of six individuals and analyzed all calls made on
the perch between stimulus onset and start of
the attack flight. Batsmade on average 7.69 ± 2.78
calls on their perch, themajority (77%) during the
last second. We selected three calls from a 1-s por-
tion of the recording (shortly before bats had taken
flight) to test for an effect of experimental treat-
ment on echolocation behavior. We found the
number of calls produced at the perch, as well as
the call rate, to be significantly affected by noise
treatment (number of perch calls,Nbats = 6,Ntrials =
146, c2 = 6.44, P = 0.039; call rate during last sec-
ond, c2 = 7.78, P = 0.022; Fig. 2D). Bats increased
their use of echolocation during masking noise
relative to nonmasking noise (5 of 6 bats on aver-
age increased call rate; z value = 2.34, P = 0.032)
and relative to ambient noise conditions (6 of 6
bats increased call rate; z value = 3.46, P < 0.001).
We did not find any differences in call peak fre-
quency (c2 = 0.27, P = 0.87) or call duration (c2 =
2.85, P = 0.24) between noise treatment groups.
Clutter treatment had no significant effect on the
number of calls emitted from the perch (c2 = 1.53,
P = 0.22) or on call rate (c2 = 1.26, P = 0.26), call
peak frequency (c2 = 1.53, P = 0.22), or call
duration (c2 = 0.84, P = 0.36).
Masking noise increased attack latencies during

our experiment, but bats could reduce this ef-
fect when using multimodal cues. We reanalyzed
the attack latency data and added robofrog
choice (control or multimodal) to our statistical
model as an additional factor. We found a sig-
nificant interaction effect between noise treat-
ment and robofrog choice (Nbats = 12, Ntrials =
432, df = 2, c2 = 11.82, P = 0.003; Fig. 3 and table
S1). Bats were faster in attacking the multimodal
model relative to the control model, but only un-
der masking noise levels (z value = –3.78, P <
0.001). Robofrog choice had no effect on attack
latencies under nonmasking noise (z value =
0.86, P = 0.78) and ambient noise conditions (z
value = –0.26, P = 0.99).

Anthropogenic noise can affect predator-prey
dynamics throughmasking of acoustic cues or by
distracting or disturbing individuals (2, 25, 26).
Our results confirm a masking impact of noise
on bat attack latencies, thereby giving frogsmore
time to escape predation. More important, the
results show that bats can actively compensate
the masking impact by making more use of cues
available to them in an additional, less noisy
sensory channel. We also found a factor of 2
increase in attack preferences on themultimodal
versus the unimodal model, which suggests that
noise can drive selection pressures acting on
sexual signals.
A previous study on a bat species that echo-

locates silent prey showed that the negative impact
of noise on hunting success is enhanced when
individuals are tested in a highly cluttered envi-
ronment (4). Clutter treatment in our experi-
ment affected flight duration but surprisingly
had no effect on attack choice or latency. Fringe-
lipped bats can detect and localize the frog’s
vocal sac at distances up to 6 m from their perch
(21, 22), and it is likely that its movement al-
lows bats to discriminate target echoes from
the stationary background (27), such as the
dried leaves we placed around ourmodels during
clutter treatment.
In conclusion, we showed that bats preferred

multimodal displays to unimodal displays, but
only under masking noise conditions. Such cross-
modal perceptual weighting reduces the masking
impact of noise and could be a general receiver
strategy (11, 28). A shift in the use of signals and
cues across sensory systems will also alter selec-
tion pressures acting on sexual displays (29, 30).
Thus, in noisy human-impacted areas such as in
cities or along highways, we would expect to
find a change in the multimodal content of
communication signals (11). Wemay also expect
a shift in species composition in noisier areas
based on perceptual as well as communicative
traits. Species that can rapidly alter their percep-
tual mechanisms will likely do better in noise-
impacted areas, and this in turn has consequences
for their predator and prey species that emit dif-
ferent signals and cues. Human-induced changes
to the sensory ecology of particular habitats can
thus be an important factor in driving species
interactions and ultimately determining com-
munity assemblages.
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BRAIN MICROCIRCUITS

Awake hippocampal reactivations
project onto orthogonal
neuronal assemblies
Arnaud Malvache,* Susanne Reichinnek,* Vincent Villette,*
Caroline Haimerl, Rosa Cossart†

The chained activation of neuronal assemblies is thought to supportmajor cognitive processes,
including memory. In the hippocampus, this is observed during population bursts often
associated with sharp-wave ripples, in the form of an ordered reactivation of neurons. However,
the organization and lifetime of these assemblies remain unknown.We used calcium imaging
tomappatterns of synchronous neuronal activation in theCA1 region of awakemice during runs
on a treadmill.The patterns were composed of the recurring activation of anatomically
intermingled, but functionally orthogonal, assemblies.These assemblies reactivated discrete
temporal segments of neuronal sequences observed during runs and could be stable across
consecutive days. A binding of these assemblies into longer chains revealed temporally
ordered replay.These modules may represent the default building blocks for encoding
or retrieving experience.

T
he concept of “cell assembly” refers to a
group of neurons that are coactivated re-
peatedly for a given brain operation (1). Cell
assemblies thus represent a distinct cogni-
tive entity embedded within neuronal net-

works (2). However, both their basic structural
and functional organization, when outside world
influences are minimal, as well as their long-
term dynamics, remain unknown owing to the
experimental difficulty of circumscribing them.
In principle, the chained coordinated activation
of such neuronal assemblies combines into se-
quences of neuronal activation supporting com-
plex cognitive processes (3). Therefore, sequences
of neuronal activation can represent a remarkable
motif for revealing the activation of underlying
neuronal assemblies. In the hippocampus, se-
quences occur at multiple time scales in the CA1

region—e.g., at the time frame of behavior—or
compressed within the period of fast network
oscillations (2, 4). They can integrate time and/or
distance, as well as any contextual information.
Of particular interest are the coordinated patterns
of neuronal activation that occur during awake
immobility and that are related to sharp wave–
associated ripples (SWRs), because these are pro-
duced when bodily or environmental control
over hippocampal dynamics is minimal. Even
though these coherent population events include
sequential place cell reactivation representing
past or future spatial experience, they are in-
deed also critically shaped by the internal func-
tional organization of local circuits (5–7). Sequential
neuronal reactivation can be split into separate
chunks of current or remote experience (8–11),
but their spatiotemporal organization into dif-
ferent cell assemblies remains unknown. So far,
the dissection of hippocampal sequences into
discrete reactivation patterns has been achieved
by mapping them onto an external spatiotem-
poral template, such as an experienced behavior

(8–12). It is important to minimize external sen-
sory inputs to reveal the default organization of
hippocampal dynamics into cell assemblies be-
cause local inputs are known to bias the content
of both local and remote replay (10).We recently
described a paradigm for revealing internally
driven spatiotemporal sequences that occur dur-
ing run behavior, which is particularlywell suited
to address this issue (13). However, monitoring
large-scale multineuronal activity at high cellu-
lar density to identify cell assemblies represents
a major technical challenge. This is particularly
critical in the case of hippocampal population
bursts, as they involve local microcircuits within
the densely packed pyramidal layer (7, 14). In vivo
imaging of hippocampal dynamics is ideally suited
to circumvent this limitation.
We used chronic two-photon calcium imaging

of awake head-restrained mice allowed to self-
regulate their motion in the dark on a nonmo-
torized treadmill (13). To map neuronal activity
across consecutive days, we used a viral vector
(AAV2/1.syn-GCaMP5G, -6m, and -6f; see table S1)
(15) that allows for the detection of sparse firing
through a glass window on the hippocampus
(16), as described in (17). Additionally, micewere
chronically implanted with an extracellular field
electrode placed in the CA1 stratum pyramidale
on the contralateral side to monitor the occur-
rence of network oscillations in the contralateral
local field potential (LFP) during awake immo-
bility periods. Particular attention was given to
fast frequency domains (100 to 200 Hz) because
most, but not all, CA1 population bursts that oc-
cur bilaterally during immobility are associated
with SWRs. Because a fraction of awake SWRs is
coherently observed in both hippocampi, sup-
ported by their anatomical interconnections (18),
the contralateral LFP can be used as a reference
to identify whether specific calcium transients are
associated with the occurrence of SWRs. During
each daily imaging session, mice spontaneously
alternated between run and immobility epochs
(Fig. 1A). Sequences of neuronal activation in-
tegrating spatiotemporal information (13) recurred
during spontaneous runperiods (RUNsequences)
(Fig. 1A) (n = 3 out of 4 mice, table S1). During
immobility periods, significant peaks of synchro-
nous neuronal activity were observed (Fig. 1A)
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