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Abstract. The -3/2 power rule of self-thinning, which describes the course of growth 
and mortality in crowded, even-aged plant stands, predicts that average mass is related to 
plant density by a power equation with exponent - 312. The rule is widely accepted as an 
empirical generalization and quantitative rule or law. Simple geometric models of space 
occupation by growing plants yield a power equation, but the exponent can differ from 
-3/2 when realistic assumptions about the allometric growth of plants are considered. 
Because such deviations conflict with the empirical evidence for the - 3/2 value as a law- 
like constant, the geometric models have not produced an accepted explanation and the 
thinning rule remains poorly understood. 

Recent studies have concluded that thinning exponents can deviate more widely from 
- 3/2 than previously thought, motivating the present re-evaluation of the geometric ex- 
planation. I extend the simple models to predict the relationships of the thinning exponent 
to allometric exponents derived from commonly measured stand dimensions, such as 
height, average mass, average bole diameter at breast height (DBH), and average bole basal 
area. If the form and exponent of the thinning equation arise from the geometry of space 
filling, then thinning exponents should be systematically related to the exponents of allo- 
metric equations relating average height to average mass, average height to average DBH, 
and average height to average basal area. I also predict some values for the slopes and 
intercepts of regression lines relating thinning exponents to the allometric exponents. 

The predictions are verified by statistically comparing the thinning exponents and 
allometric exponents of self-thinning populations. The expected negative correlations are 
present and statistically significant (P 5 .05), and the slopes and intercepts of linear regres- 
sions relating thinning exponents to allometric exponents are near the predicted values. 
These results support the hypothesis that the thinning equation arises from the geometry 
of space filling, but recognition that thinning exponents differ from -3/2 as predicted by 
simple geometric considerations weakens the case for a quantitative rule or law. 

Key words: mass-density relationship; plant allometry; plant competition; plant geometry; plant 
population dynamics; self-thinning rule; -3/2 power law; Yoda S law. 

The -3/2 power rule of self-thinning for crowded 
but actively growing even-aged plant populations pre- 
dicts that average mass (a) and the number of plants 
per unit area (N) are related by a simple power equation 

= KN?, where y = -3/2 and K is a population 
constant (Yoda et al. 1963). This relationship is ac- 
cepted as a rule or law applying across the plant king- 
dom (Yoda et al. 1963, White and Harper 1970, Furnas 
198 1, Hutchings and Budd 198 1, Westoby 198 1, 1984, 
White 198 1) and has been called the only law of plant 
ecology (Harper, as cited in Hutchings 1983). If fully 
substantiated, the self-thinning rule could be the first 
basic law in the science of ecology (McIntosh 1980). 
As a quantitative law, the thinning rule would have 
important scientific implications (Westoby 198 1, 1984) 
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and potential applications as a research and manage- 
ment tool for plant populations (Yoda et al. 1963, Drew 
and Flewelling 1977, 1979, Westoby 198 1, 1984). 

Proposed explanations of the self-thinning rule have 
primarily been attempts to derive the power equation 
and -3/2 exponent from the geometry of space oc- 
cupation by growing plants. Two basic geometric models 
that both yield power equations have been proposed. 
The isometric model (Yoda et al. 1963) directly gives 
the -3/2 exponent by assuming that growing plants 
do not change shape (isometric growth). The allometric 
model (Westoby 1976, Mohler et al. 1978, Miyanishi 
et al. 1979, White 1981) recognizes that plants can 
change shape with increasing size (allometric growth), 
but predicts that thinning exponents will deviate from 
- 3/2. The isometric model is unacceptable as a general 
explanation of the thinning rule because many species 
do not grow isometrically (Furnas 198 1, White 198 I), 
while the allometric model has been criticized because 
it predicts significant departures from the -3/2 ex- 
ponent that seem at odds with the empirical constancy 



814 DONALD E. WELLER Ecology, Vol. 68, No. 4 

of the - 3/2 value (White 198 1). With the apparent 
inadequacies of both geometric models, the underlying 
rationale of the self-thinning rule remains unclear 
(Hutchings and Budd 198 1, Westoby 198 1, 1984, 
Hutchings 1983). 

Weller (1985, 1987) re-examined the evidence for 
the self-thinning rule and found that many data sets 
do support a power relationship of the form A = KN?, 
but the exponent y can differ from the accepted value 
of - 3/2 (also see Sprugel 1984, Zeide 1985). This result 
revives the allometric model as a possible explanation 
for the self-thinning equation. I here review the deri- 
vation of the isometric and allometric models and ex- 
tend the allometric model to predict how the thinning 
exponent should vary with the exponents of allometric 
equations relating frequently measured plant popula- 
tion parameters, such as average mass, height, bole 
diameter at breast height (DBH), and bole basal area 
(BA). I test the predictions of the allometric model by 
statistically evaluating the relationships between thin- 
ning and allometric exponents as estimated from pub- 
lished data for many populations of different plant 
species. 

Isometrzc model 

Yoda et al. (1963) originally derived a geometric 
explanation of the self-thinning rule from two as- 
sumptions: plants of a given species maintain the same 
shape regardless of habitat, size, or age; and mortality 
occurs only when the total coverage of a plant stand 
exceeds the available area, then acts to maintain 100% 
cover. The first assumption allows the ground area 
covered by a plant (a )  to be expressed mathematically 
as a power function of plant mass, a m", while the 
second assumption implies that the average area cov- 
ered is inversely proportional to density, that is, ii rn 

l/N. Combining these equations with a constant of 
proportionality, K, gives the thinning rule equation. 
White and Harper (1 970) and Whittington (1 984) pres- 
ent alternative derivations based on isometric models. 
In time-dynamic mathematical models of population 
growth and mortality, the assumption of isometric 
growth yields population trajectories in accordance with 
the - 3/2 thinning rule (Aikman and Watkinson 1980, 
Slatkin and Anderson 1984, Weller 1985). 

Allometric model 

Unfortunately, the assumption of invariant plant 
shape is not generally valid, so the simple explanation 
of Yoda et al. is unsatisfactory as a general explanation 
of the thinning rule (Westoby 1976, Furnas 198 1, White 
198 1). Miyanishi et al. (1979) proposed a more general 
explanation in their "generalized self-thinning law," 
which states that the thinning exponent depends on the 
proportionality between plant mass and ground area 
covered. This proposal can be stated mathematically 
by setting the area covered by a plant proportional to 
m2\ where 4 can vary from '/3 to reflect changes in 

shape with size (allometric growth). The thinning equa- 
tion then becomes A = KN-11(26), and the thinning 
exponent 

equals - 3/2 only if shape is truly invariant (isometric 
growth, 4 = Y3). Westoby (1976), Mohler et al. (1978), 
and White (198 1) present alternative allometric models. 
Dynamic simulation models confirm that allometric 
growth should yield thinning exponents different from 
- 3/2 (Firbank and Watkinson 1985, Weller 1985, Ja- 
cob Weiner, personal communication). 

Extensions of the allometric model 

Ideally, the allometric model might be tested by 
comparing measured thinning exponents to values pre- 
dicted from the area-mass allometric exponent by Eq. 
1. However, it is difficult to measure the areas occupied 
by plants, so direct data for the area-mass allometric 
relationship are rarely available. I found no published 
studies in which both the thinning exponent and the 
area-mass allometric exponent of a given population 
could be estimated independently. One way to over- 
come this limitation is to estimate indirectly the area- 
mass allometric exponent from data that are readily 
available in the literature. For example, height is com- 
monly measured, and the height-mass allometric ex- 
ponent can be estimated. However, to use such esti- 
mates in testing the allometric model, one needs to 
know how the height-mass allometric exponent is re- 
lated to the area-mass allometric exponent. 

The required relationship between the height-mass 
and area-mass allometric exponents can be derived 
from basic biological principles. First, recognize that 
a plant can add mass in three basic ways: growing in 
height, expanding the area occupied, or packing more 
biomass within the volume already occupied. Now as- 
sume that height, area occupied, and density of bio- 
mass in occupied space (4, all vary with plant mass 
according to allometric power relationships h rn m8, 
d a m6,  and R a m*, where R is the radius of the 
occupied area. Extensive work in forestry and ecology 
(e.g., Reinke 1933, Whittaker and Woodwell 1968, 
Curtis 197 1, Hutchings 1975) has verified that the re- 
lationships among plant measurements are well de- 
scribed by power functions. If the volume of space 
occupied by a plant (v) is approximately cylindrical, 
then v = aR2h and plant mass is m = vd = aR2hd. The 
equations combine to give m rn m2*mhm6,  so that the 
allometric powers are constrained by 24 + 0 + 6 = 1. 
Rearranging gives 

Eq. 2 is heuristically useful for its linearity, simple 
geometric derivation, and clear representation of the 
biological compromises inherent in plant growth-al- 
location of resources to height growth (higher 0) or to 
packing more biomass in the space already occupied 
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(higher 6) leaves fewer resources for radial expansion 
(lower 4). Less radial expansion means less conflict 
with neighbors, so a given amount of biomass can be 
added with less attendant mortality. This would imply 
a steeper (more negative) thinning exponent. Thus, the 
intuitive implications of Eq. 2 agree with the quanti- 
tative predictions of Eq. 1. 

Eqs. 1 and 2 can now be combined to yield a linear 
equation relating the thinning exponent to the allo- 
metric exponents relating height and biomass per unit 
of occupied volume to mass. If the allometric model 
is true, then the area-mass allometric exponent can be 
calculated from a measured thinning exponent by the 
inverse transformation 4' = - 1/(2y), where the prime 
in 4' emphasizes that 4 is calculated from the thinning 
exponent, not directly measured. Substituting into Eq. 
2 yields 

4' = - 1/(2y) = 0.5 - 0.58 - 0.56. (3) 

Eq. 3 could be used to compare measured thinning 
exponents to predictions calculated from measured 
values of the allometric exponents relating height and 
biomass per unit volume to mass. Unfortunately, bio- 
mass per unit volume is seldom directly measured, and 
I found no published studies of self-thinning popula- 
tions where y, 8, and 6 could be independently esti- 
mated. This obstacle to testing the allometric model 
can be avoided by assuming that biomass per unit 
volume remains constant as a population develops (6 = 

0). This assumption simplifies Eq. 3 to give a relation- 
ship among exponents calculated from the commonly 
reported stand measurements biomass, density, and 
height: 

4' = -1/(2y) = 0.5 - 0.58. (4) 

Thus, the allometric model can be tested by determin- 
ing if measured thinning exponents and height-mass 
allometric exponents from many populations obey a 
hypothesized relationship (Eq. 4) predicted by the al- 
lometric model. Linear statistics can be used to test if 
4' and 8 show a negative linear association, and if the 
slope and intercept of the linear relationship between 
them agree with the values predicted by Eq. 4. 

However, the assumption that biomass per unit vol- 
ume is constant with growth (6 = 0) requires some 
further discussion. The few available data indicate that 
biomass per unit volume can change as the average 
mass of a population increases (Lonsdale and Watkin- 
son 1983), so 6 is not necessarily 0. Because the as- 
sumption of 6 = 0 is not generally valid, we need to 
know how nonzero values of 6 will disrupt attempts to 
compare data to Eq. 4. A multiple regression analysis 
of the full linear model including 6 (Eq. 3) would ap- 
portion the variance among transformed thinning ex- 
ponents into two categories: variance explained by the 
regression on 8 and 6, and unexplained variance or 
error. If the variable 6 is removed from the statistical 
model (i.e., data is fit to Eq. 4 rather than Eq. 3), then 

the variance among thinning exponents that could be 
uniquely explained by 6 will remain unexplained and 
will add to the error term in the regression model. 
Ignoring variations in 6 then reduces the explanatory 
power of the regression model and reduces the chances 
of observing a statistically significant relationship be- 
tween the transformed thinning exponent and the 
height-mass allometric exponent. However, if the re- 
lationship between the two exponents is strong enough, 
it could still be detected despite the loss in resolving 
power incurred by ignoring variations in 6. Therefore, 
it is useful to proceed with fitting data to Eq. 4 as a 
test of the allometric model. Failure to obtain a sta- 
tistically significant regression would be inconclusive; 
it might reflect a failure of the allometric model or the 
confounding effects of ignoring 6. However, statistical 
agreement of the data with Eq. 4 would be encouraging 
because the analysis ignoring 6 is a very conservative 
test of the allometric model. Such agreement would 
suggest that the relationship between the transformed 
thinning exponent and the height-mass allometric ex- 
ponent is indeed robust. 

The height-mass allometric exponent is not the only 
commonly measured parameter that might serve as a 
surrogate for the area-mass allometric exponent in test- 
ing the allometric model. For forest stands, average 
bole diameter at breast height (DBH) or average bole 
basal area (BA) can also be used to fit allometric re- 
lationships. However, these bole measurements are less 
sensitive to trade-offs between radial or height growth 
because bole size must increase to support any addi- 
tional mass, regardless of the direction of growth. 
Therefore, the exponents of the m - m  or BA-m al- 
lometric equations will not necessarily obey simple 
equations of mutual constraint with the area-mass al- 
lometric exponent 4 nor correlate strongly with it. In- 
terpretation of the allometric relationship between av- 
erage height and average DBH (I? rn DBH") is similarly 
confounded; but because h is a measure of vertical 
growth, some aspects of the +A relationship can be 
deduced. If individuals grow only radially, Eq. 4 gives 
4 = 0.5 and 8 = 0, so A will be zero since height is 
constant. If growth is both radial and upward, Eq. 4 
gives 4 < 0.5, and A must be positive because DBH 
increases to support added mass. The expected +A 
relationship would pass through the point (A,@) = (0,0.5), 
and 4 and A would be negatively correlated. Since basal 
area is proportional to DBH" the same expectations 
apply to the relationship between 4 and +, the exponent 
in = m+, and + should equal 2A. The predicted 
relationships of 4 to A and + should again apply to the 
transformed thinning exponent 4' (through Eq. 1)  if 
the allometric model is valid. 

In summary, the extensions of the allometric model 
suggest several testable hypotheses. The transformed 
thinning exponent should be negatively correlated with 
three measures of the way plants change shape with 
growth: the average height-average mass allometric ex- 
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TABLE 1. Descriptive statistics for self-thinning and allometric exponents. 

Min. Median Max. 
Exponent n Mean Std. dev. 0 5 50 9 5 100 

Experimental and natural populations 

Y 75 - 1.847 0.742 -4.808 -3.838 -1.622 - 1.220 -1.146 
4' 7 5 0.298 0.075 0.104 0.130 0.308 0.410 0.436 
0 28 0.317 0.068 0.184 0.189 0.321 0.425 0.446 
X 6 1.070 0.134 0.860 1.078 1.215 
$ 24 0.401 0.118 0.229 0.229 0.399 0.609 0.6 15 

Forestry yield tables 

ponent, the average height-average DBH allometric 
exponent, and the average height-average BA allo- 
metric exponent. The linear relationship of the trans- 
formed thinning exponent to the average height-av- 
erage mass allometric exponent is further specified to 
have a slope of -0.5 and an intercept of 0.5. The slopes 
of lines relating the transformed thinning exponent to 
the average height-average DBH and average height- 
average BA allometric exponents are not specified, but 
the intercepts of both lines should be near 0.5. The 
slope of the line relating the transformed thinning ex- 
ponent to the average height-average BA allometry 
should be approximately twice the slope of the line 
relating the transformed thinning exponent to the av- 
erage height-average DBH allometry. These predic- 
tions have a clear biological interpretation: plants can 
be more massive at a given density and can grow with 
less attendant mortality (i.e., have a steeper, more neg- 
ative thinning exponent) if they allocate more resources 
to height growth than to radial growth. The derivations 
presented here provide quantitative mathematical re- 
lationships to test this intuition. 

I tested the predictions of the allometric model with 
self-thinning and allometric exponents estimated from 
published studies of experimental and natural popu- 
lations and from forestry yield tables (see Appendix). 
Thinning exponents were estimated as the principal 
axis (Jolicoeur and Heusner 197 1, Jolicoeur 1973, 1975, 
Mohler et al. 1978) of logarithmically transformed 
measurements o fB  (stand biomass in grams per square 
metre) and N (in plants per square metre), which yields 
the exponent p in B = KN? (Weller 1985, 1987) Since 
Ir? = B/N by definition, y is calculated from P by y = 

p - 1. Log f i  was not directly related to log N because 
of the statistical and interpretive problems associated 
with that analysis (Westoby and Brown 1980, Westoby 
1984, Weller 1985, 1987). Where dimensional mea- 
surements were available for the stands used to esti- 

mate thinning exponents, the log-log principal axis 
method was used to fit allometric relationships relating 
average height (in metres) to average mass (in grams), 
average height to average DBH (in metres), and average 
height to average BA (in square metres per tree). In 
fitting thinning and allometric exponents, only data 
from stands that fell along a linear thinning trajectory 
in a log B-log N plot were included. See Weller (1985, 
1987) for further details on the sources and analyses 
of these data. 

Data sets from experimental or natural populations 
that did not show a significant (P  5 .05) negative linear 
association between log B and log N were removed 
from consideration as possible self-thinning relation- 
ships and omitted from all further analyses. Similarly, 
allometric exponents from relationships that were not 
statistically significant (P 5 .05) were discarded. 

Unfortunately, these statistical tests could not be used 
to screen the information from forestry yield tables. 
Yield tables are predictions (model output) from 
regression or regression-like models, not data, and can- 
not be subjected to the same statistical tests that would 
be applied to data. The biological variability and mea- 
surement errors in the original forestry data are absent 
in a yield table, so statistical inferences drawn from a 
single thinning or allometric relationship fitted to such 
information would be meaningless (Weller 1985, 1987). 
Despite this limitation, it is still useful to review yield 
table information because the tables are distilled from 
vast amounts of data that are not readily available in 
original form and because evidence from yield tables 
has been important in establishing the self-thinning 
rule (White 1980, 198 1). Furthermore, a large sample 
of thinning or allometric exponents from many differ- 
ent yield tables can be examined to look at the ranges 
of variability in these exponents or to test statistically 
for relationships between thinning and allometric ex- 
ponents. Such comparisons are legitimate because they 
rely on model output from many different yield table 
models parameterized for different sets of real data. 



August 1987 SELF-THINNING AND PLANT ALLOMETRY 

TABLE 2. Regressions of transformed thinning exponent $' against three allometric exponents. 

Allome- 
tric 95% confidence Inter- 95% confidence 

exponent n r r2 P Slope limits cept limits 

Experimental and natural populations 
0 28 -0.55 0.30 .0026* -0.7 1 -1.14, -0.26 0.50 0.36, 0.64 
X 6 0.15 0.02 .78 0.06 -0.45, 0.56 0.18 -0.36, 0.72 + 24 -0.44 0.19 .032* -0.35 -0.67, -0.03 0.41 0.28, 0.55 

Forestry yield tables 
6' 325 -0.46 0.21 <.0001* -0.54 -0.65, -0.43 0.45 0.41, 0.48 
h 323 -0.67 0.45 <.0001* -0.20 -0.23, -0.18 0.45 0.43, 0.47 + 309 -0.71 0.50 <.0001* -0.36 -0.40, -0.32 0.44 0.42, 0.45 

* Correlation significant at the 95% confidence level (P 5 .05). 

Therefore, the variability among exponents from dif- 
ferent yield tables is preserved, even though the vari- 
ability among stands within a given yield table is lost 
in preparing the yield table. All the yield tables used 
here claimed to predict the course of growth and mor- 
tality in crowded even-aged forests, and all predicted 
that increasing yields would be accompanied by mor- 
tality (i.e., self-thinning). However, my results for yield 
table information are presented separately from results 
for experimental and natural populations because of 
the different levels of statistical testing possible. 

The fitted thinning exponents were not all close to 
the idealized value y = -3/2 (Table 1). The reasons 
why important deviations from y = -3/2 have long 
been overlooked are reported and interpreted else- 
where (Weller 1985, 1987). The central question here 
is: Does the transformed thinning exponent $' show 
the predicted systematic relationships with the allo- 
metric exponents I!?, X, and $? Among the forestry yield 
tables, all three predicted negative correlations were 
present and significant (P 5 .05), as were two of three 
correlations among the experimental and natural pop- 
ulations (Table 2, Fig. 1). The failure of the average 
height-average DBH allometric exponent X to correlate 
significantly with $' in the experimental and natural 
data is inconclusive because of the small sample size 
(n = 6). The regression equation relating the trans- 
formed thinning exponent $' to the average height- 
average mass allometric exponent I!? in experimental 
and natural data does not differ significantly from the 
predicted form of Eq. 4 in either slope or intercept. For 
the same relationship among the forestry yield tables, 
the difference between the regression intercept of 0.45 
and the expected 0.5 was statistically significant, but 
numerically small. 

Among the experimental and natural populations, 
the intercept of the 4'-$ relationship (0.41) was not 
significantly different from the predicted 0.5. Among 
the forestry yield tables the intercepts of the 4'-$ re- 
lationship (0.44) and the $'-A relationship (0.45) were 
significantly different from 0.5, but the differences from 
the predicted value were again numerically small. The 

slope of the 4'-$ among the forestry yield tables (-0.36) 
was approximately twice the slope of the $'-A rela- 
tionship (-0.20), as predicted. 

The results verify the predictions of the allometric 
model, and thus support the geometric factors embod- 
ied in that model as explanations of the thinning re- 
lationship. However, the best regression relating the 
thinning exponent to an allometric exponent explained 
only 50% of the variation among thinning exponents. 
In addition to the routine problems of measurement 
errors and biological variability, four sources of error 
particular to the analyses of Table 2 added to the un- 
certainties: errors from inappropriate choices of data 
points for estimating the thinning exponent (Mohler et 
al. 1978, Westoby 1984, Weller 1985, 1987), major 
differences in the criteria for counting plants and mea- 
suring biomass or stand height among the studies from 
which the data were taken, and errors from incorrectly 
assuming that the density of biomass per unit of oc- 
cupied volume (d) is constant. As explained previ- 
ously, this assumption is not generally true, but pro- 
vides a way to test the allometric model despite the 
lack of data to define the relationship of d to plant size 
for any of the populations considered here. This as- 
sumption reduces the explanatory power of the regres- 
sions, so that the significant relationships seen here had 
to be robust to remain detectable. 

There are several reasons why I found evidence sup- 
porting the allometric model while previous studies 
(Westoby 1976, Mohler et al. 1978, White 198 1) have 
not. My analysis showed that thinning exponents vary 
from y = -3/2, so I looked for relationships between 
thinning exponents and allometric powers, rather than 
for mechanisms by which y would always be -3/2 in 
spite ofgeometric differences among plants. I had more 
data to test the hypothesis because I analyzed the models 
to predict the relationship of the thinning exponent 
with allometric exponents fit to frequently measured 
plant dimensions. Others (Mohler et al. 1978, White 
198 1) had fewer data because they tried to relate the 
thinning exponent y directly to crown area, which is 
difficult to measure and infrequently reported. There 
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FIG. 1. The relationship of the transformed self-thinning exponent to three allometric exponents. (A), (B): Data from 
experimental and natural populations. (C), (D), (E): Information from forestry yield tables. Solid lines are regressions (Table 
2) and dashed lines show the expected 4'4 relationship (Eq. 4). 
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are such large variations around the regressions of the 
thinning exponent against an allometric exponent (Fig. 
1) that small samples would be useless in detecting the 
trends. 

My method of estimating allometric exponents also 
increased the chances of detecting relationships be- 
tween plant allometry and the thinning exponent. I fit 
allometric exponents to aggregate stand measurements, 
such as average mass or average height, as reported for 
the same stands from which biomass and density data 
were used to fit the thinning exponents. The resulting 
allometric exponents directly measure the dynamics of 
shape change with stand growth. Typical allometric 
exponents relate two variables measured for a sample 
of individuals (Hutchings 1975, Mohler et al. 1978) so 
the allometric equation more directly describes the static 
size structure within that sample. The whole-stand ap- 
proach gives allometric exponents more commensu- 
rate with thinning exponents, because thinning is also 
a dynamic, whole-stand process, not a static relation- 
ship among individuals. My method also permits al- 
lometric exponents to be estimated from the same 
stands of plants used to estimate the thinning exponent 
y, rather than from small subsamples of individuals 
(Mohler et al. 1978) or from different sources (White 
1981). It is crucial to estimate the thinning and allo- 
metric exponents from the same stands because allo- 
metric relationships (Hutchings 1975) and thinning ex- 
ponents (Weller 1985, 1987) can vary among 
populations with site, time, and environmental factors. 

Controlled experiments with plants of contrasting 
patterns of allometric growth will be required to verify 
completely the causal link implied by the correlations 
in Table 2. The significant proportion of unexplained 
variance in the regression models admits the possibility 
that other factors may also affect the thinning exponent, 
such as the physiological parameters considered in re- 
cent models (Pickard 1983, Perry 1984). Also, mean- 
ingful experiments will need to consider many popu- 
lations, since the relationships of Fig. 1 could not be 
detected from just a few data points. 

Weller (1 985, 1987) presented several lines of evi- 
dence to show that the exponent of the self-thinning 
equation was not always near the idealized value of 
- 3/2. The deviations of thinning exponents from - 3/2 
are now shown to be systematically related to differ- 
ences in plant allometric exponents. These systematic 
relationships confirm that the observed deviations from 
- 3/2 are real, not errors or artifacts. More happily, the 
present results put those deviations in a more positive 
light. Although the recognition of important departures 
of the thinning exponent from -3/2 dissipates the 
strength of the self-thinning rule (White 198 1, Westoby 
1984) and forces a re-evaluation of its scientific im- 
portance (Weller 1985, 1987, Zeide 1985), the rela- 
tionship of the thinning exponent to allometric expo- 
nents helps to explain the self-thinning relationship and 
to suggest directions for further research. Even though 

thinning exponents vary according to plant geometry, 
the self-thinning equation may continue to be a concise 
and useful representation of competition within even- 
aged populations. 
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APPENDIX 
Sources of information. For each source, the species studied and the numbers of fitted exponents used here are given. 

Number of Number of 
exponents used? exponents used? 

Source* Species y 0 h $ Source* Species y o h $  

Experimental and natural populations 35 Trifolium subterra- 1 
Herbaceous monocots neum 

86 Festuca pratensis 
38 Loliurn perenne 
9 1 Lolium perenne 
92 Lolium perenne 

7 Triticum 

Herbaceous dicots 
87 Agrostemma githago 
17 Amaranthus retro- 

frexus 
18 Ambrosia artimisii- 

folia 
33 Betavulgaris 
34 Beta vulgaris 
43 Beta vulgaris 
53 Brassica napus and 

Raphanus sativus 
89 Capsella bursa-pasto- 

r is 
20 Chenopodium album 
88 Chicoriurn endivium 
15 Erigeron canadensis 
2 1 Erigeron canadensis 
29 Fagopyrum esculen- 

turn 
44 Helianthus annuus 
56 Medicago sativa 
57 Medicago sativa and 

Trifoliurn pratense 
16 Plantago asiatica 
28 Trifolium pratense 
10 Trifolium subterra- 

neum 

Temperate angiosperm trees 
106 Acer spicatum 1 1  
13 1 Alnus rubra 2 2 
26 Betula 1 

121 Betula 1 1  
123 Castanea sativa 1 1  
48 Corylus avellana 1 1  

1 12 Cyclobalanopsis 1 
104 Fagus syhatica 1 1  
14 Liquidambar styraci- 1 

Pua 
133 Populus deltoides 1 1  

5 Populus tremuloides 1 
22 Prunus pensylvanica 1 

126 Quercus pubescens 1 1  
4 1 Quecus robur 1 

Temperate gymnosperm trees 
23 Abies balsamea 1 
19 Abies sachalinensis 1 
24 dbies sachalinensis 1 

1 19 Abies sacha/inensis 1 1  1 
1 14 Abies veitchii 2 2 2 
122 Cryptomeria japonica 1 1 1 
54 Larix occidentalis and 1 

Pinus monticola 
137 Piceaabies 2 2 2 
45 Picea rnariana 1 

135 Pinus banksiana and 1 
mixed hardwoods 

84 Pinus densijlora 1 
8 Pinus strobus 2 2 2 2  
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Appendix. Continued. 

Number o f  
exponents usedt 

Source* Species ? l o x $  

93 Pinus strobus 
82 Pinus taeda 

102 Pinus taeda 
80 Taxodium distichum 

Eucalyptus trees 
99 Eucalyptus deglupta 

1 16 Eucalyptus obliqua 
98 Eucalyptus regnans 

Tropical angiosperm trees 
1 1  1 Shorea robusta 
1 13 Tectona grandis 

Forestry yield 
Temperate angiosperm trees 

202 Alnus rubra 
242 Alnus rubra 
243 Alnus rubra 
207 Carya 
204 Castanea dentata 
205 Castanea dentata and 

Quercus 
250 Fraxinus 
265 Fraxinus americana 
277 Liquidambar styraci- 

flus 
249 Liriodendron tulipi- 

fera 
Northern mixed hard- 

woods 
Northern mixed hard- 

woods 
Northern mixed hard- 

woods 
Populus 
Populus (aspen) 
Populus deltoides 
Populus tremuloides 
Quercus 
Quercus 
Quercus (red oaks) 
Quercus (upland oaks) 
Southern mixed hard- 

woods 

Temperate gymnosperm trees 
238 Abiesbalsamea 
203 Abies concolor 
224 Cedar (USSR)  
2 1 1 Chamaecyparis 

thyoides 
215 Picea 
24 1 Picea and Abies 
237 Picea glauca 
239 Picea glauca 
263 Picea mariana 
2 13 Picea rubrens 
255 Picea sitchensis 
2 12 Picea sitchensis and 

Tsuga heterophylla 
262 Picea sitchensis and 

Tsuga heterophylla 
214 Pinus 
223 Pinus 
256 Pinus banksiana 
257 Pinus banksiana 

tables 

Number o f  
exponents used? 

Source* Species Y O A $  

Pinus banksiana 
Pinus echinata 
Pinus echinata 
Pinus echinata 
Pinus echinata 
Pinus elliottii 
Pinus elliottii 
Pinus monticola 
Pinus palustris 
Pinus palustris 
Pinus palustris 
Pinus ponderosa 
Pinus ponderosa 
Pinus ponderosa 
Pinus resinosa 
Pinus resinosa 
Pinus serotina 
Pinus strobus 
Pinus strobus 
Pinus strobus 
Pinus taeda 
Pinus taeda 
Pinus taeda 
Pseudotsuga menziesii 
Pseudotsuga menziesii 
Pseudotsuga menziesii 
Sequoia sempervirens 
Sequoia sempervirens 
Thuja occidentalis 
Tsuga heterophylla 
Tsuga heterophylla 
Tsuga heterophylla 
Tsuga heterophylla 

Eucalyptus trees 
279 Eucalyptus delegaten- 

sis 
247 Eucalyptus globus 
248 Eucalyptus microtheca 
280 Eucalyptus regnans 
28 1 Eucalyptus sieberi 

* T h e  source column provides a unique study identification 
number that can be cross-referenced to published tables (Well- 
er 1985, 1987) to obtain further biological and bibliographic 
information. Weller (1985, 1987) details the methods o f  se- 
lecting data and fitting self-thinning exponents. 

Jy Column y is the number o f  self-thinning exponents, while 
column 0 is the number o f  average height-average mass al- 
lometric exponents. For trees, average DBH-average height 
(column A) and average basal area-average height (column $) 
allometric exponents were calculated where measurements 
were available. For experimental and natural populations, 
only thinning or allometric exponents that were statistically 
significant (P  5 .05) were used, but similar statistical screening 
o f  the forestry yield tables was not possible (see Methods). 




