David T. Tissue · J. Patrick Megonigal Richard B. Thomas

Nitrogenase activity and N₂ fixation are stimulated by elevated CO₂ in a tropical N₂-fixing tree

Received: 27 February 1996 / Accepted: 19 June 1996

Abstract Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67-71 days under ambient CO₂ (35 Pa) and elevated CO_2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N₂ fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO_2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N₂ fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO₂ plants indicating that more carbon was available for transport to nodules. A ¹⁴CO₂ pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO₂. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO₂, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO₂. These results suggest that Gliricidia, and possibly other N₂-fixing trees, may show an early and positive growth response to elevated CO₂, even in severely N-deficient soils, due to increased nitrogenase activity.

D.T. Tissue () Department of Biology, Texas Tech University, Lubbock, TX 79409-3131, USA fax: (806) 742-2963; e-mail: cmdtt@ttacs.ttu.edu

J.P. Megonigal Department of Biology, George Mason University, Fairfax, VA 22030-4444, USA

R.B. Thomas

Department of Biology, West Virginia University, Morgantown, WV 26506-6057, USA Key words Elevated $CO_2 \cdot Gliricidia \ septum \cdot N_2$ fixation \cdot Nitrogenase activity \cdot Tropical tree

Introduction

Current atmospheric partial pressures of CO₂ (35 Pa) have risen dramatically in the past 120 years since the industrial revolution, primarily due to the combustion of fossil fuels and deforestation, and are expected to double by the end of the next century (Keeling et al. 1989). Plants maintained at elevated CO₂ often exhibit enhanced growth and photosynthesis, especially when other environmental resources such as light, water and nutrients are not limiting (Bazzaz 1990; Ceulemans and Mousseau 1994; Gunderson and Wullschleger 1994). However, most terrestrial ecosystems are nitrogen limited (Vitousek and Howarth 1991) and may not respond to elevated CO₂ with increased plant growth unless there is a concomitant increase in nitrogen availability (Kramer 1981). Biological N₂-fixation currently accounts for 60% of the "new" nitrogen deposited on land annually (Schlesinger 1991) and symbiotic N₂-fixing trees may be expected to improve the fertility of N-deficient soils in a high CO₂ environment by gradually increasing soil N content (Boring et al. 1988; Chapin et al. 1994). Thus, N₂-fixing trees may stimulate photosynthesis and growth under elevated CO₂ conditions, inducing positive feedback on rates of carbon sequestration in forests.

The acquisition of carbon and nitrogen are tightly linked in N₂-fixing plants. For example, nitrogen is a primary component of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme that catalyzes photosynthetic reduction of CO_2 to carbohydrate, while photosynthesis supplies organic carbon to nodules, where it is used in the nitrogenase enzyme system as a source of energy and reducing power to fix N₂. Because of this coupling, nitrogenase activity in plants is regulated by aspects of both carbon and N processes (Vance and Heichel 1991; Hunt and Layzell 1993; Hartwig and Nosberger 1994), including photosynthesis (rate of carbon supply), nitrogen availability (N source strength), and nitrogen demand (N sink strength). It has been argued that the demand for symbiotically fixed N directly governs nitrogenase activity (Hartwig and Nosberger 1994) and the supply rate of carbon determines the degree to which the energy requirements of N₂-fixation are met (Vance and Heichel 1991; Hunt and Layzell 1993). In particular, it is the supply of current photosynthate rather than stored carbon that is most important, since stored carbohydrates are frequently in excess and do not generally affect rates of nitrogenase activity (Hartwig et al. 1990). Although elevated CO₂ has been shown to stimulate symbiotic N2-fixation in agricultural crops and herbs (Hardy and Havelka 1976; Phillips et al. 1976; Masterson and Sherwood 1978; Williams et al. 1981; Finn and Brun 1982; Allen et al. 1988; Ryle et al. 1992), it is not clear to what extent increased N2-fixation is accompanied by increased carbon consumption. Previous studies of the effects of elevated CO₂ on N₂-fixation in trees have quantified nodule activity based on the rate that molecular N₂ is converted to organic N, and assumed that higher rates of N₂-fixation were due to higher rates of photosynthate transport to nodules (Norby 1987; Arnone and Gordon 1990; Thomas et al. 1991).

Gliricidia sepium (Jacq.) Walp. is a fast-growing woody legume native to seasonal tropical forests of Central America that forms nodules in association with Rhizobium bacteria. In a previous study, Gliricidia grown in elevated CO₂, and supplied with exogenous N, increased the percentage of plant N provided by N2 fixation by increasing nodule mass and specific nitrogenase activity (Thomas et al. 1991); an increase in photosynthate transport to nodules was assumed, but not demonstrated. The primary objective of our study was to quantify the effect of CO₂ enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Plants were grown without soil N to maximize the demand for symbiotically fixed N. We used a ¹⁴CO₂ pulse-chase method to quantify the kinetics of carbon translocation from leaves to nodules.

Materials and methods

Plant material and growth conditions

Seeds of G. sepium were obtained from a single seed source in the municipality of Santa Cruz Guanacaste, Costa Rica from the Latin American Seed Bank of the Centro Agronomico Tropical de Investigacion y Ensenanza (CATIE), Turrialba, Costa Rica. Seedlings were grown in 3.3-1 pots in disinfected coarse sand. At the time of planting, all seeds were inoculated with Rhizobium by mixing seeds with a concentrated sucrose solution containing three strains of Rhizobium (NifTAL, Paia, Hawaii, USA). Nodulation was evident in all plants harvested at 67-71 days. All pots were watered to saturation with a N-free nutrient solution each morning and with distilled water each afternoon. The nutrient solution was adjusted to pH 6.1 and contained 1.0 mmol l-1 P, 3.0 mmol l-1 K, 3.5 mmol l-1 Ca, 1.5 mmol l-1 Mg, 3.0 mmol l-1 S, 0.14 mmol 1-1 Fe, 0.05 mmol 1-1 B, 0.01 mmol 1-1 Mn, 0.001 mmol l-1 Zn, 0.001 mmol l-1 Cu, 0.05 µmol l-1 Mo and 0.16 μmol l⁻¹ Co.

Plants were germinated and grown in two glasshouses in the Duke University Phytotron. Chamber CO₂ partial pressures were automatically monitored and controlled (Hellmers and Giles 1979) at 35 Pa or 70 Pa. Plants were exposed to natural light intensity and photoperiod in the glasshouses during the experimental period of June through August; photosynthetic photon flux density (PPFD) at mid-day was usually > 1500 μ mol m⁻² s⁻¹. Temperature was controlled in the glasshouses so that average day/night air temperatures were 30/24°C. Relative humidity was approximately 70% during the day and nearly 100% at night. Treatments were rotated every week between glasshouses to minimize possible glasshouse effects. Due to restrictions prohibiting the use of radioisotopes in the glasshouses, plants were moved from glasshouses to growth chambers in the Duke University Phytotron 3 days prior to labeling. Environmental conditions in the growth chambers were controlled to closely match those in the glasshouses: approximately 70/100% relative humidity (day/night), 30/24°C air temperature (day/night), 14/10 h photoperiod and thermoperiod, and PPFD of approximately 1000 µmol m-2 s-1 supplied by a combination of high pressure sodium vapor and metal halide high intensity discharge lamps. Glasshouses and growth chambers were closely monitored daily, and therefore environmental conditions were assumed to be similar between CO₂ treatments except for differences in atmospheric CO₂ partial pressures.

Gas exchange

One day prior to labeling plants with ${}^{14}\text{CO}_2$, gas exchange was measured on leaves of 15 plants per CO₂ treatment in the growth chambers using a LICOR 6200 portable photosynthesis system (LICOR Inc., Lincoln, Neb.). Net photosynthesis and night-time dark respiration rates of leaves were measured at the growth CO₂ partial pressure under ambient environmental conditions in the growth chambers.

Carbon supply to nodules

A carbon radiotracer was used to quantify the effect of growth CO_2 concentration on the kinetics of photosynthetically fixed carbon supplied to nodules from leaves. ${}^{14}CO_2$ was generated as described by Tissue and Nobel (1990) and was stored in a gas cylinder at 35 Pa CO₂. Plants were removed from the growth chambers and labeled in a flow-through hood under environmental conditions similar to those in the growth chambers. Attached leaves (approximately 12 cm² total leaf area) were placed into a clear acrylic cuvette and exposed to ${}^{14}CO_2$ at 35 Pa CO₂ for 5 min. Three plants from each CO₂ treatment were harvested immediately after labeling and analyzed for ${}^{14}C$; these data were used to normalize initial ${}^{14}CO_2$ was terminated by flushing the cuvette with ${}^{12}CO_2$ for 2 min and then removing the leaves from the cuvette. Plants were returned to the growth chambers immediately after labeling.

Plants were harvested and nodules collected at five time intervals: 0, 12, 24, 48 and 96 h after labeling. Nodules were dried at 70°C for 3 days, weighed and then ground to a powder in a Wiley mill. Duplicate 5–10 mg samples of nodules from each plant were solubilized for 2 days at 45°C with a tissue solubilizer (PROTO-SOL, New England Nuclear) before addition of the scintillation cocktail (BioSafe II, Research Products International, Mount Prospect, Ill.). Samples were counted in a Beckman LS 6000 scintillation counter (Beckman Instruments, Irvine, Calif.). Carbon supply to nodules was calculated as ¹⁴C specific activity (amount of ¹⁴C per unit dry weight of nodule). The initial rate at which ¹⁴C was supplied to nodules, termed "filling", was calculated as the slope of the best fit linear regression of points between 0 h and 24 h (peak ¹⁴C specific activity). The rate at which ¹⁴C decreased in nodules, termed "emptying", was calculated as the slope of the best fit linear regression of points between 24 h and 96 h. Total residence time of ¹⁴C in the nodules was estimated by extrapolating the "emptying" linear regression to its *x*-intercept.

Biomass and nitrogen fixation

Fifteen plants in each CO₂ treatment were harvested at 67–71 days after planting and the biomass of each plant part (leaf, stem, root and nodule) and the proportion of total biomass in each plant part was determined. Plant parts were dried at 70°C for at least 3 days before measuring their mass. Leaf surface area was determined using a LICOR 3100 leaf area meter (LICOR Inc., Lincoln, Neb.) and specific leaf mass (SLM; leaf mass per unit leaf area) was calculated and used as an indirect measure of starch accumulation.

Tissue nitrogen concentration was determined after digestion using a microKjeldahl technique and analyzed colorimetrically (Lowther 1980) using a Technicon TRAACS-800 autoanalyzer (Bran and Luebbe Inc., Elmsford, N.Y.). The average specific nitrogenase activity (SNA) was calculated as the total amount of N in the plant divided by the average mass of all of the nodules on that plant divided by the age of the plant when it was harvested [mg N (g DW nodule)⁻¹ day⁻¹]; the average mass of nodules was determined by dividing final nodule mass by two and assuming that nodule mass increased linearly during the experiment. Total nitrogenase activity (TNA) was determined to be equal to total plant N content because bacterial N₂ fixation was the only source of N available to the plant.

Statistical analyses

A one-way analysis of variance (ANOVA) was used to test for main effects of CO_2 treatment on gas exchange, biomass, leaf characteristics and nitrogen. A Scheffé post hoc multiple comparison test was used to determine whether means of the dependent variable were significantly different at the 0.05 probability level. An analysis of covariance (ANCOVA) was used to determine if slopes of lines representing "filling" and "emptying" of radioactive carbon in nodules were significantly different due to CO_2 treatment; significant differences were indicated by significant interactions with the covariate (time; Data Desk 4.0, Data Description Inc., Ithaca, N.Y.).

Results

Leaf photosynthetic rates were 49% higher in plants grown and measured at elevated CO_2 (P = 0.007) compared with plants grown and measured at ambient CO_2 (Table 1). However, there was no change in night-time dark respiration rates (P = 0.601; Table 1), indicating that total leaf carbon uptake was increased for plants grown at elevated CO_2 . Growth in elevated CO_2 increased total leaf area by 36% (P = 0.045) and SLM by 40% (P = 0.001), indicating that approximately 90% more carbon was stored in leaves of 70 Pa CO_2 plants

Table 1 Leaf net photosynthesis and night-time dark respiration rates were measured under growth conditions after 66 days of CO_2 treatment. Total leaf area and specific leaf mass (SLM) were measured on plants harvested after 67–71 days growth in ambient (35 Pa) or elevated (70 Pa) CO_2 . Values are means (±SE) for 15 plants per treatment. An *asterisk* within a row indicates a statistical difference at *P*<0.05

Measurement	Ambient CO ₂	Elevated CO ₂
Photosynthesis (µmol m ⁻² s ⁻¹)	7.6 (0.7)	11.3 (1.1) *
Respiration (µmol m ⁻² s ⁻¹)	-0.88 (0.06)	-0.84 (0.05)
Total leaf area (cm ²)	278 (27)	378 (52) *
Specific leaf mass (g m ⁻²)	48.5 (1.3)	67.8 (2.7) *

Fig. 1 Dry weight biomass of the whole plant and different plant parts (leaf, stem, root and nodule) and biomass partitioning between plant parts after 67–71 days growth in ambient or elevated CO₂. Values are means (+ SE) for 15 plants per treatment. An *asterisk* within a plant part indicates a statistical difference at P < 0.05

compared with 35 Pa CO_2 plants (Table 1). Total plant biomass increased 84% for plants grown in elevated CO_2 (P = 0.008), with significant increases observed in the biomass of leaves, stems and roots (Fig. 1). Because nodule biomass was unchanged by growth in elevated CO_2 , nodules represented a smaller percentage of total plant biomass for plants grown at 70 Pa CO_2 compared with 35 Pa CO_2 . Biomass partitioning to stems was also reduced at elevated CO_2 (Fig. 1).

The ¹⁴C specific activity of nodules [Bq (g DW nodule)-1] was significantly higher in plants grown at 70 Pa CO₂ compared with 35 Pa CO₂ at 12 h (86% higher), 24 h (61% higher) and 48 h (113% higher) after leaves were labeled with ¹⁴CO₂ (Fig. 2). After 96 h, ¹⁴C specific activities were not different between CO₂ treatments. The apparent peak of ¹⁴C specific activity occurred at 24 h in both CO_2 treatments. There was a significant increase in the rate of "filling" of nodules with ¹⁴C for plants grown at elevated CO₂ (P = 0.016), with plants at 70 Pa CO₂ exhibiting 61% higher rates than those at 35 Pa CO₂. "Filling" of nodules with ¹⁴C is described by the following linear regressions: ambient CO₂, y = 14.74x - 4.92, $r^2 = 0.854$ and elevated CO₂, $y = 23.79\bar{x} + 5.26$, $r^2 = 0.934$. There was also a significant difference in the rate of "emptying" of nodules due to CO_2 treatment (P = 0.027), with plants at elevated CO₂ exhibiting 148% higher rates than those at ambient CO₂ (Fig. 2). "Emptying" of nodules is described by the following linear regressions: ambient CO₂, y = -2.37x + 375.18, $r^2 = 0.444$ and elevated CO₂, y = -5.88x + 717.15, $r^2 = 0.828$). Total residence time of

Fig. 2 ¹⁴C specific activity of nodules collected at 0, 12, 24, 48 and 96 h after leaves were labeled with ¹⁴CO₂. Leaves were labeled after 67 days of growth in ambient (35 Pa) or elevated (70 Pa) CO₂. Values are means (\pm SEs) for three plants per treatment and time period

Fig. 3 Nitrogen concentration and nitrogen content of the whole plant and different plant parts (leaf, stem, root and nodule) after 67–71 days of growth in ambient or elevated CO₂. Values are means (+ SEs) for 15 plants per treatment. An *asterisk* within a plant part indicates a statistical difference at P < 0.05

¹⁴C in nodules was estimated to be 158 h in ambient CO_2 plants and 122 h in elevated CO_2 plants, indicating that photosynthetically fixed carbon supplied by leaves to nodules was consumed 23% more rapidly in plants grown in elevated CO_2 compared with plants grown in ambient CO_2 .

Total plant N concentration did not change with elevated CO₂, but there was a decrease of 16% in leaf N concentration (P = 0.048), apparently due to dilution of N caused by increased SLM, and an increase of 13% in nodule N concentration (P = 0.049) at 70 Pa CO₂ compared with 35 Pa CO₂ (Fig. 3). However, due to increased total plant biomass, total plant N content increased 58% in plants grown in elevated CO_2 (P = 0.037) with individual plant parts exhibiting 48-94% increases in N content (Fig. 3). Average SNA [mg N (g nodule)-1 day⁻¹] was 8.70 + 0.40 (mean \pm SE, n = 15) in 70 Pa CO₂ plants and 7.08 \pm 0.50 (mean \pm SE, n = 15) in 35 Pa CO₂ plants, a significant increase of 23% (P = 0.005) that indicated a stimulation in the nitrogenase enzyme system in plants grown in enriched atmospheric CO₂.

Discussion

In biological N₂ fixation, the host plant supplies carbohydrate to the microsymbiont to support the N_2 fixation reaction in root nodules and the microsymbiont supplies organic nitrogen compounds to the host plant. Factors that stimulate photosynthate production in the host plant generally enhance N₂ fixation, if the demand for symbiotically fixed nitrogen is high, because the supply rate of photosynthate to the nodule is one of the primary factors limiting N₂ fixation (Vance and Heichel 1991; Hunt and Layzell 1993). A doubling of atmospheric CO₂ increased leaf carbon assimilation in Gliricidia by stimulating leaf photosynthesis, as has been observed in other N₂-fixing species (Arnone and Gordon 1990; Ryle et al. 1992; Vogel and Curtis 1995). Concomitant increases in total leaf area and SLM indicated that approximately 90% more carbon was stored in leaves of plants grown at 70 Pa CO₂ compared with 35 Pa CO₂. Clearly, exposure to elevated CO₂ stimulated photosynthate production and increased the amount of carbon available for export to root nodules.

Although it has often been presumed that elevated CO_2 increased carbon supply to nodules (Wilson et al. 1933; Hardy and Havelka 1976; Phillips et al. 1976; Norby 1987; Arnone and Gordon 1990; Ryle et al. 1992; Vogel and Curtis 1995), this study was the first to directly demonstrate that the rate of carbon supplied to nodules was increased by plant growth in enriched atmospheric CO₂. The increased rate of photosynthetically fixed carbon supplied to nodules in Gliricidia supports the hypothesis that growth in elevated CO₂ will produce greater rates of carbon assimilation and, therefore, greater rates of carbon export to active carbon sinks, such as nodules. More rapid consumption of labeled carbon in nodules of elevated CO₂ plants indicated that nodules were a greater sink for carbon when grown under elevated CO_2 conditions.

Carbon was supplied at a greater rate to nodules of *Gliricidia* grown in elevated CO_2 , but this did not affect nodule mass per plant, in contrast to the more frequent

observation of increased nodule mass in N₂-fixing trees exposed to elevated CO₂ (Norby 1987; Arnone and Gordon 1990). In a previous study of Gliricidia, it was shown that nodule mass did not increase with exposure to elevated CO₂ unless exogenous N was added to the soil (Thomas et al. 1991), suggesting that nodule development is reduced under initial, severe N deficiency. Despite no change in nodule mass, increased carbon supply to nodules of Gliricidia did stimulate TNA and resulted in greater total N₂ fixation. Because all N accreted in the plant was supplied by N₂ fixation, and final nodule biomass did not change, the significant increase in total plant N content indicated a substantial increase in SNA in plants grown at elevated CO2. SNA increased 23% in plants grown at elevated CO₂, compared with plants grown at ambient CO_2 , indicating that the increase in TNA was most likely due to increased SNA. Alternatively, it is possible that nodule mass increased more rapidly in elevated CO₂ plants than in ambient CO₂ plants, despite similar nodule mass at the final harvest. In that case, greater average nodule mass during the experiment could have increased total plant N accretion in elevated CO₂ without an increase in SNA. However, CO₂-mediated differences in nodule mass over time are unlikely given that other plant parts (leaves and roots) of Gliricidia showed similar responses to CO₂ after 31 days and 71 days (Thomas et al. 1991).

Studies with an actinorhizal N2-fixing tree, Alnus glutinosa, have shown that elevated CO₂ increased TNA, but that the effect of elevated CO₂ on SNA has been variable, with effects either positive (Arnone and Gordon 1990; Vogel and Curtis 1995) or non-existent (Norby 1987). Regardless of the mechanism, higher TNA in an elevated CO₂ atmosphere should increase nitrogen availability in ecosystems where N₂-fixing plants are present. For example, if we apply our observed increase in nitrogenase activity of 23% to an estimate of global symbiotic N₂-fixation on land (96 Tg year⁻¹; Schlesinger 1991), a doubling of the CO₂ partial pressure from present-day levels would increase nitrogen inputs by 22 Tg year-1 or 1.5 kg ha⁻¹ year⁻¹. Such a perturbation is equivalent to 25% of the present-day increase in N_2 fixation caused by human activities such as fertilizer manufacturing (Schlesinger 1991), and is likely to promote an increase in the net primary production of ecosystems exposed to future levels of atmospheric CO₂.

In conclusion, we demonstrated that growth in elevated CO_2 directly increased the supply of photosynthetically fixed carbon from leaves to nodules. Increased carbon supply to nodules in plants grown in elevated CO_2 stimulated SNA and TNA. Indeed, a 23% faster rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants in elevated CO_2 , suggesting a direct correlation between carbon supply and nitrogenase activity. The stimulation of SNA and TNA increased whole plant N accretion. The improvement in plant N status produced much larger plants when grown in enriched CO_2 atmospheres even without exogenous soil N. These results suggest that *Gliricidia*, and possibly other N₂-fixing trees, may show an early and positive growth response to elevated CO₂, even in severely N-deficient soils, due to increased nitrogenase activity.

Acknowledgements We would like to thank Tina deCruz, Heather Hemric, Beth Guy, Larry Giles, Dr. David Tremmel and the Duke Phytotron staff for excellent technical assistance. We would also like to thank John King, Joy Ward, Brian Bovard and Dr. Rowan Sage for reviewing an earlier version of this manuscript. This research was supported by NRI Competitive Grants Program/USDA (92-37100-7535; Plant Response to the Environment), Department of Energy CO₂ Research Division grant DE-FG05-87ER60575 and by National Science Foundation grant DEB-9112571 for support of the Duke University Phytotron.

References

- Allen LH Jr, Vu JCV, Valle RR, Boote KJ (1988) Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci 28:84–94
- Arnone JA III, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO_2 enrichment on the physiology, growth and dry mass allocation of seedlings of *Alnus rubra* Bong. New Phytol 116:55–66
- Bazzaz FA (1990) The response of natural ecosystems to the rising global CO₂ levels. Annu Rev Ecol Syst 21:167–196
- Boring LR, Swank WT, Waide JB, Henderson GS (1988) Sources, fates and impacts of nitrogen inputs to terrestrial ecosystemsreview and synthesis. Biogeochemistry 6:119–159
- Ceulemans R, Mousseau M (1994) Effects of elevated atmospheric CO₂ on woody plants. New Phytol 127:425–446
- Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175
- Finn GA, Brun WA (1982) Effect of atmospheric CO₂ enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol 69:327–331
- Gunderson CA, Wullschleger SD (1994) Photosynthetic acclimation in trees to rising atmospheric CO₂: a broader perspective. Photosyn Res 39:369–388
- Hardy RWF, Havelka UD (1976) Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 421–439
- Hartwig UA, Nosberger J (1994) What triggers the regulation of nitrogenase activity in forage legume nodules after defoliation? Plant Soil 161:109–114
- Hartwig UA, Boller BC, Baur-Hoch B, Nosberger J (1990) The influence of carbohydrate reserves on the response of nodulated white clover to defoliation. Ann Bot 65:97–105
- Hellmers H, Giles LJ (1979) Carbon dioxide: critique I. In: Tibbitts TW, Kozlowski TT (eds) Controlled environment guidelines for plant research. Academic Press, New York, pp 229–234
- Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511
- Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H (1989) A 3-dimensional model of atmospheric CO₂ transport based on observed winds.
 1. Analysis of observational data. In: Peterson DH (ed) Aspects of climate variability in the Pacific and the western Americas. Geophys Monogr 55:165–235
- Kramer PJ (1981) Carbon dioxide concentration, photosynthesis and dry matter production. Bioscience 31:29–33
- Lowther JR (1980) Use of a single sulfuric acid-hydrogen peroxide digest for the analysis of *Pinus radiata* needles. Comm Soil Sci Plant Anal 11:175–188
- Masterson CL, Sherwood MT (1978) Some effects of increased atmospheric carbon dioxide on white clover (*Trifolium repens*) and pea (*Pisum sativum*). Plant Soil 49:421–426

- Norby RJ (1987) Nodulation and nitrogenase activity in nitrogenfixing woody plants stimulated by CO₂ enrichment of the atmosphere. Physiol Plant 71:77-82
- Phillips DA, Newell KD, Hassell SA, Felling CE (1976) The effect of CO2 enrichment on root nodule development and symbiotic N₂ reduction in Pisum sativum L. Am J Bot 63:356-362
- Ryle GJA, Powell CE, Davidson IA (1992) Growth of white clover, dependent on N_2 fixation, in elevated CO_2 and temperature. Ann Bot 70:221–228
- Schlesinger WH (1991) Biogeochemistry: An analysis of global change. Academic Press, San Diego
- Thomas RB, Richter DD, Ye H, Heine PR, Strain BR (1991) Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88:415-421

- Tissue DT, Nobel PS (1990) Carbon translocation between parents and ramets of a desert perennial. Ann Bot 66:551-557
- Vance CP, Heichel GH (1991) Carbon in N₂ fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373-392
- Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115
- Vogel CS, Curtis PS (1995) Leaf gas exchange and nitrogen dynamics of N2-fixing, field-grown Alnus glutinosa under elevated atmospheric CO₂. Global Change Biol 1:55-61
- Williams LE, DeJong TM, Phillips DA (1981) Carbon and nitrogen limitations on soybean seedling development. Plant Physiol 68: 1206-1209
- Wilson PW, Fred EB, Salmon MR (1933) Relation between carbon dioxide and elemental nitrogen assimilation in leguminous plants. Soil Sci 35:145-165