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INTRODUCTION

Globally increasing frequency, magnitude, and im-
pacts of harmful algal blooms (HABs) (Hallegraeff 1993)

have stimulated considerable interest in biological
methods to control bloom-forming species (Anderson
1997). Algal viruses (Bratbak et al. 1993, 1995, Milligan
& Cosper 1994, Nagasaki et al. 1994a, b, 1999, Na-
gasaki & Yamaguchi 1997, Brussaard et al. 1999, Taru-
tani et al. 2000), algicidal bacteria (Fukami et al. 1991,
1992, Imai et al. 1993, Doucette 1995, Lovejoy et al.
1998, Doucette et al. 1999), protozoan grazers (Naka-
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ABSTRACT: Eukaryotic parasites are believed to play important roles in bloom dynamics of red-tide
dinoflagellates; however, little is known about their impact on host physiology and behavior. To
address those issues, we examined the influence of parasitic dinoflagelates, Amoebophrya spp., on
growth, photosynthesis, light absorption, and quantum yield of the bloom-forming dinoflagellates
Akashiwo sanguinea and Gymnodinium instriatum. Parasites of the 2 host species differed in their
site of infection, developing in the nucleus of A. sanguinea but in the cytoplasm of G. instriatum, and
had divergent effects on host photophysiology. Neither host species appeared competent to repro-
duce once infected, as growth of fully infected populations was negligible and cell division of infected
hosts was never observed. Uninfected populations of both host species exhibited strong diel period-
icity in photosynthesis, with parasitized cultures showing distinctly different patterns. Infected A.
sanguinea displayed little or no photosynthetic periodicity, whereas diel periodicity continued in par-
asitized G. instriatum but was less pronounced than that of uninfected host. Chlorophyll a (chl a) con-
tent of A. sanguinea declined steadily over the infection cycle, while per cell and per chl a photo-
synthetic rates decreased sharply until 16 h and then stabilized at ~50 pgC cell–1 h–1 and ~1 mgC
(mgchla)–1 h–1, respectively. By comparison, chl a content of infected G. instriatum was comparable
with that of uninfected cells, with photosynthetic performance remaining high (~80% of uninfected
hosts) until very late in the infection cycle. Light absorption by hosts increased in the blue region and
decreased in the red region of the spectrum during the infection cycle, consequently enhancing chl a-
specific absorption coefficients relative to uninfected cells by as much as 22 to 56% for A. sanguinea
and 59% for G. instriatum. Furthermore, parasitism lowered maximum quantum yields in photosyn-
thesis of both hosts by a factor of ~2, particularly in late infection stages. The contrasting effects of
intranuclear and intracytoplasmic strains of Amoebophrya on photosynthetic performances and photo-
physiological properties of host cells suggest that these parasites may exert somewhat different influ-
ences on primary production and microbial activities during epidemic outbreaks in natural systems.
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mura et al. 1995, Kamiyama 1997, Jeong et al. 1999a,b,
Matsuyama et al. 1999), and eukaryotic parasites in-
cluding fungi and certain flagellates (Taylor 1968,
Bruning et al. 1992, Coats 1999, Norén et al. 1999, Erard-
Le Denn et al. 2000) all have the potential to exert con-
trolling influences on HAB species.

Algal viruses, including those infecting HAB and
non-HAB species, have received more attention from
the standpoint of their ecophysiological impacts and
biogeochemical roles than have other microparasites.
For example, algal photosynthetic rates can be reduced
by as much as 78% during viral infection; however, in
some cases, photosynthesis is not strongly inhibited or
not affected until near the onset of cell lysis (Suttle et al.
1990, Suttle 1992, Suttle & Chan 1993). Further, algal
virus can contribute significantly to the flux of energy
and matter, influencing biogeochemical cycling of car-
bon, nitrogen, and sulfur (Gobler et al. 1997, Hill et al.
1998). Similar data are not available for algicidal bac-
teria or eukaryotic parasites of algae.

Parasitic dinoflagellates have long been thought to
have a significant influence on the ecology of bloom-
forming dinoflagellates (for review, see Coats 1999).
Species of Amoebophrya are particularly noteworthy,
as they are widely distributed in coastal environments
and have been reported from numerous host species
(Cachon 1964, Taylor 1968, Elbrächter 1973, Nishitani
et al. 1985, Cachon & Cachon 1987, Fritz & Nass 1992,
Coats & Bockstahler 1994, Coats et al. 1996). Amoe-
bophrya spp. prevent reproduction of their hosts (El-
brächter 1973), have relatively short generation times
(Coats & Bockstahler 1994), and have a simple life
cycle that culminates in death of the host (Cachon
1964), all of which make these parasites likely candi-
dates for controlling host populations. The life cycle of
Amoebophrya spp. includes a free-swimming infective
stage (the dinospore) that attaches to the host and pen-
etrates through the host cell membrane, a growth
phase (trophont) inside the host cell, and a multi-
nucleate, multiflagellate stage (the vermiform) that is
released upon death of the host and undergoes cytoki-
nesis to yield hundreds to thousands of dinospores.

Amoebophrya spp. appear well adapted to exploit
host populations in enriched coastal settings (Yih &
Coats 2000); however, infection levels are highly vari-
able, ranging from <1 to 80% (Taylor 1968, Elbrächter
1973, Nishitani & Chew 1984, Nishitani et al. 1984,
1985, Fritz & Nass 1992, Coats & Bockstahler 1994,
Coats et al. 1996). Furthermore, estimates of host mor-
tality resulting from Amoebophrya infections range
from a maximum of 8% daily in the mainstem of
Chesapeake Bay (Coats & Bockstahler 1994) to 54%
daily in a shallow subestuary of the bay (Coats et al.
1996). Parasitism may also alter host physiology in
ways that influence rates of primary production or

release of dissolved organic compounds, but those pro-
cesses have not been addressed previously.

The current study was undertaken to test the
hypothesis that parasitism by Amoebophrya spp. alters
host photosynthetic performance and photophysiologi-
cal properities. To test this hypothesis, we determined
photosynthetic rates, photosynthesis-irradiance (P-E)
parameters, light absorption coefficient, and maximum
quantum yield of photosynthesis for infected and un-
infected cultures of 2 different host-parasite systems.
Both systems were isolated from Chesapeake Bay, with
one being Amoebophrya sp. ex Akashiwo sanguinea
(= Gymnodinium sanguineum) and the other Amoe-
bophrya sp. ex Gymnodinum instriatum (previously
Gyrodinium instriatum). The former is the same para-
site referred to as A. ceratii (Coats & Bockstahler 1994),
A. ceratii ex Gymnodinium sanguineum (Coats et al.
1996), and Amoebophrya sp. ex Gymnodinium san-
guineum (Gunderson et al. 1999, Yih & Coats 2000),
while the latter is a new strain isolated from the Rhode
River subestuary of Chesapeake Bay.

MATERIALS AND METHODS

Cultures. Chesapeake Bay isolates of Akashiwo san-
guinea, Gymnodinium instriatum, and their corre-
sponding strains of Amoebophrya spp. were main-
tained as stock cultures in f/2-Si medium (Guillard &
Ryther 1962) formulated using 15‰ Chesapeake Bay
water plus soil extract (5% v/v). Parasites were propa-
gated by sequentially transferring aliquots of infected
A. sanguinea and G. instriatum into uninfected host
cultures at 2 to 3 d intervals. Stock and experimental
cultures were not axenic and were maintained at 20°C
under a 14:10 light:dark cycle of cool-white fluorescent
light at an irradiance of 175 µmol photons m–2 s–1 for
A. sanguinea and 95 µmol photons m–2 s–1 for G. in-
striatum.

Experiments were conducted in duplicate using
stock cultures of Akashiwo sanguinea and Gymno-
dinium instriatum in exponential growth. Infected
treatments consisted of host stocks inoculated with
recently formed (≤6 h old) dinospores of Amoebophrya
spp. to yield near 100% infection levels. To accomplish
this, recently formed dinospores were harvested by
gravity filtration of stock host-parasite cultures using
Nuclepore filters with a pore size of 12 µm for A. san-
guinea and 8 µm for G. instriatum. Subsamples were
fixed with CaCO3-buffered formalin (1% final conc.)
and dinospore abundance was determined using a
hemocytometer and a Zeiss Axioscope (×200) equipped
with epifluorescence microscopy (450 to 490 nm exci-
tation; 520 nm barrier filter) for distinguishing the
green autofluorescence of the parasites (Coats & Bock-
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stahler 1994). Aliquots of harvested dinospores were
then added to host cultures to give a dinospore:host
ratio of 20:1 for A. sanguinea and 80:1 or 100:1 for G.
instriatum. Uninfected controls consisted of host cul-
tures inoculated with equivalent volumes of harvested
dinospore filtrate (Whatman GF/F).

Growth, chlorophyll a content, and photosynthesis
over diel cycle. Four flasks containing 300 to 400 ml of
culture at ~1 × 103 cells ml–1 were established for each
host species. At CT 4 (circadian time: time correspond-
ing to hour after the onset of the light period), 2 flasks
of Akashiwo sanguinea and 2 flasks of Gymnodinium
instriatum were inoculated with dinospores of the
corresponding parasite, while the remaining flasks
received equivalent volumes of dinospore filtrate. Sub-
samples for measuring host density, parasite preva-
lence, chlorophyll a (chl a) concentration, and host
photosynthetic rate were taken from treatments and
controls following inoculation and at 8 h intervals over
the following 72 h for A. sanguinea and 56 h for G.
instriatum.

At each sampling period, a 7.5 ml aliquot from each
flask was preserved with modified Bouin’s solution
(Coats & Heinbokel 1982) for estimating host abun-
dance, and a set of 1 ml subsamples was preserved
with CaCO3-buffered formalin (1% final conc.) for
determining parasite prevalence. Estimates of host
abundance were obtained by enumerating cells pre-
sent in microscope transects (×10) of triplicate Sedg-
wick-Rafter chambers. For each chamber, successive
transects were examined until 100 cells had been
counted or 5 transects (half the chamber area) had
been scanned. Parasite prevalence was determined by
scoring 100 cells as uninfected or infected hosts using
epifluorescence microscopy to detect the green-fluo-
rescing trophonts of Amoebophrya spp.

To determine chl a concentration, 5 ml samples were
concentrated onto 25 mm Whatman GF/C filters and
the chl a was extracted for 24 h in the dark using 90%
acetone at 4°C. Chl a concentration was determined
fluorometrically using a Turner Designs 10-AU fluoro-
meter and normalized to host density to give cellular
chl a content.

For measurement of photosynthesis, 1 ml aliquots
from each flask were distributed to five 7 ml scintilla-
tion vials, two of which were wrapped with aluminum
foil to serve as dark controls. Vials were spiked with
NaH14CO3 (ICN Chemicals) to a final activity of
0.25 µCi ml–1 (= 9.3 kBq ml–1) and incubated for 1 h at
growth irradiance (see above). Incubations were termi-
nated by adding 0.25 ml of 10% HCl to each vial, and
the vials were then placed on an orbital shaker
(150 rpm) for ca 8 h at room temperature to remove
inorganic 14C. Ecolume scintillation cocktail (5 ml) was
added to each vial and radioactivity determined using

a liquid scintillation counter (Packard Instrument Tri-
Carb model 1600TR). Total dissolved CO2 in the media
was measured by a Capni-Con (Cameron Instrument)
5 total carbon dioxide analyzer. Total activity of the
NaH14CO3 was determined from 20 µl aliquots of
working 14C-stock solution placed directly into tripli-
cate vials containing 200 µl phenethylamine plus 5 ml
scintillation cocktail. The 14C activity of dark controls
was subtracted from that of the light bottles, and pho-
tosynthetic rate was calculated according to Parsons et
al (1984). Photosynthetic rate (P) was then normalized
to chl a concentration and cell number to yield chl a-
specific (Pchl; mgC mgchla–1 h–1) and cell-specific (Pcell;
pgC cell–1 h–1) rates.

Parameters of the P-E curve. P-E curves were
obtained in a separate experiment that was set up fol-
lowing the protocol described above. Experimental
and control flasks were inoculated with dinospores and
dinospore filtrate, respectively, at CT 3.5 for Akashiwo
sanguinea and CT 5.5 for Gymnodinium instriatum.
Subsamples were taken for determination of P-E
curves after 1 h (CT 4.5), 24.5 h (CT 4) and 50.5 h
(CT 6) for A. sanguinea and after 1 h (CT 6.5), 25 h
(CT 6.5) and 46.5 h (CT 4) for G. instriatum.

Data for P-E curves were obtained from tempera-
ture-controlled photosynthetron incubations using a
modification of the protocol described by Lewis &
Smith (1983). At each sampling period, a 14 ml sub-
sample from each flask was spiked with NaH14CO3 to
give a final activity of 0.25 µCi ml–1 and then distrib-
uted as 1 ml aliquots to 12 scintillation vials (7 ml
capacity). One vial from each flask received 1 of 12 dif-
ferent light levels, ranging from ~20 to ~1800 µmol
photons m–2 s–1. The different light levels were pro-
duced by reducing irradiance from a 250 W halogen
lamp using neutral density screens. Light was mea-
sured with a quantum scalar sensor (Biospherical
Instruments QSL-100) mounted inside a scintillation
vial. The experiment included 2 dark controls per
replicate. Total dissolved CO2 in the media, total activ-
ity of NaH14CO3, host cell density, chl a concentration,
and parasite prevalence were determined as above.
Incubations were terminated after 1 h and rates of pho-
tosynthesis were determined following procedures
described above. Pchl and Pcell were fitted to a hyper-
bolic tangent function (Jassby & Platt 1976) using
TableCurve 2D 5.0 (SPSS Inc, Chicago, IL, USA) and
used to determine photosynthetic efficiency (i.e., initial
slope of the P-E curve; αchl and αcell) and photosyn-
thetic capacity (Pchl

max and Pcell
max).

Light absorption. During the P-E curve experiment,
20 ml subsamples from each flask were filtered
through 25 mm Whatman GF/C filters. The filters were
then scanned from 400 to 750 nm with a Cary 4 (Varian
Australia Pty) dual beam spectrophotometer, using a
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blank filter wetted with GF/C filtrate as a control. Opti-
cal density of the filtered sample [ODf(λ)] at 750 nm
was subtracted from the entire spectrum to correct for
scattering (Bricaud & Stramski 1990). The ODf(λ) was
then corrected for pathlength-amplification factor
using the quadratic equation proposed by Tassan &
Ferrari (1995) for optical density of cells in suspension
[ODs(λ)]. The ODs(λ) values were then converted to
biomass (B; chl a concentration or cell number)-nor-
malized absorption coefficients, a*B(λ), as follows:

where 2.3 is a conversion factor from log10 to ln, X is
the geometrical path length (volume filtered divided
by clearance area of the filter), and B is as defined
above. In this study, a*chl and a*cell are presented in
units of m2 (mg chl a)–1 and m2 cell–1, respectively.

Maximum quantum yield. Maximum quantum yield
of photosynthesis [φm; mol C (mol photons)–1] was cal-
culated from the ratio of αchl to mean a*chl (spectrally
non-weighted, average specific absorption coefficient
over the range 400 to 700 nm), scaled by a constant of
0.02315 to convert grams of carbon to moles of carbon
and hours to seconds.

Statistical analysis. Data are reported as mean ± SE
of the mean from duplicate incubation bottles unless
otherwise stated. Data for uninfected controls and
infected treatments were compared by Student’s t-test
using SigmaStat 2.0 (SPSS).

RESULTS

Growth and cellular chl a content in infected 
and uninfected hosts

Uninfected Akashiwo sanguinea and Gymnodinium
instriatum showed steady growth during the experi-
ment at rates of 0.12 ± 0.001 and 0.28 ± 0.019 d–1,
respectively, when calculated from linear regression of
ln-transformed cell abundance versus elapsed time
(Fig. 1A,C). By contrast, abundance of A. sanguinea
and G. instriatum in parasitized cultures remained rel-
atively constant until 48 and 40 h, respectively, and
then declined dramatically. Parasite prevalence in
those cultures averaged 100% for A. sanguinea and
97% for G. instriatum. Site of infection differed be-
tween the 2 host species, with the parasites always
developing in the nucleus of A. sanguinea but only in
the cytoplasm of G. instriatum.

Chl a content of uninfected Akashiwo sanguinea
was relatively constant at 54.3 ± 0.89 pg chl a cell–1, al-
though there was some diel variation during the exper-
iment, whereas chl a content of infected A. sanguinea
gradually decreased at a rate of –0.60 ± 0.097 h–1 after
16 h (Fig. 1B). By comparison, chl a content (121.5 ±
4.19 pg chl a cell–1) of infected Gymnodinium instria-
tum was not significantly different (t-test, p > 0.05)
from that of uninfected G. instriatum (122.5 ± 7.31 pg
chl a cell–1) through the first 32 h of the experiment
(Fig. 1D). After 32 h, however, chl a content of infected
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B
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Fig. 1. Diel variations in (A,C)
cell density and (B,D) cellu-
lar content of chlorophyll
(chl) a in infected and unin-
fected cultures of (A,B) Aka-
shiwo sanguinea and (C,D)
Gymnodinium instriatum.
Open and closed circles rep-
resent uninfected and in-
fected cultures, respectively.
Phaeopigment concentra-
tions in infected cultures are
represented by closed trian-
gles. Dark bars on abscissa
indicate the dark period.
Data points represent mean 

± SE of the mean



Park et al.: Ecophysiological impacts of parasites on dinoflagellates

G. instriatum declined dramatically. At 56 h, chl a con-
tent in parasitized G. instriatum culture again in-
creased to 143.5 ± 17.66 pgchla cell–1, probably due to
the persistence of some uninfected or very recently
infected hosts cells following the mortality of hosts in
late stages of infection.

Phaeopigment content of infected Akashiwo san-
guinea culture remained constant (~3 mg m–3) until 16 h
and then gradually increased to 10.3 mg m–3 by 64 h,
with corresponding decreases in cellular chl a contents
(Fig. 1B). By comparison, phaeopigment concentration
in parasitized Gymnodinium instriatum cultures was
undetectable through 40 h and then abruptly in-
creased to 2.6 mg m–3 by 48 h (Fig. 1D).

Photosynthetic performance in infected 
and uninfected hosts

Uninfected Akashiwo sanguinea and Gymnodinium
instriatum showed strong diel periodicity in photosyn-
thesis, with amplitude of the diel rhythms on a cellular
basis (Pcell) averaging 1.7 (1.8 for Pchl) and 2.5 (2.8 for Pchl),
respectively (Fig. 2). Maximum photosynthetic rate oc-
curred in the morning for A. sanguinea and in the after-

noon for G. instriatum, when based
on the measurements made at 8 h
intervals. Photosynthetic patterns
of parasitized A. sanguinea and G.
instriatum were distinctly different
from those of uninfected cultures.
Infected A. sanguinea showed no
obvious diel rhythm in photosynthe-
sis. Rather, phtosynthetic rate de-
creased during the first 16 h of in-
fection and then remained constant
throughout the rest of the infection
cycle (Fig. 2A,B). By contrast, in-
fected G. instriatum continued to
show a periodicity until 40 h after in-
fection, with the diel amplitude more
or less dampened relative to con-
trols, averaging 2.1 and 1.9 for Pcell

and Pchl, respectively (Fig. 2C,D).
Photosynthetic performance of in-

fected Akashiwo sanguinea, on a per
cell and per chl a bases, was as high as
~90% of that in uninfected controls at
8 h but decreased sharply after 16 h
(Fig. 3). After 24 h, Pcell ratio (i.e., ratio
of infected Pcell relative to uninfected
Pcell) varied between 0.15 and 0.47,
whereas Pchl ratio (i.e. ratio of in-
fected Pchl relative to uninfected Pchl)
varied between 0.29 and 0.56. By

comparison, infected Gymnodinium instriatum contin-
ued to maintain photosynthetic performance as high as
~80% of that in uninfected cultures until 40 h. After 48 h,
however, the photosynthetic performance of infected
G. instriatum showed different patterns depending on
the variables to which photosynthetic rates were nor-
malized: Pcell ratio decreased sharply to 0.32 at 48 h and
then increased to 0.56 at 56 h (Fig. 3A), whereas Pchl

ratio decreased to 0.60 at 48 h and then continued to
decrease to 0.46 by 56 h (Fig. 3B).

P-E parameters in infected and uninfected hosts

Parasite prevalence averaged 98 and 96% for Aka-
shiwo sanguinea and Gymnodinium instriatum, re-
spectively, during the P-E curve study. As in the pre-
ceding experiment, cell densities in parasitized
cultures of both host species remained stable until
the end of the infection cycle, while cell abundance
steadily increased in uninfected controls (data not
shown).

Pchl
max and Pcell

max for infected and uninfected cultures of
Akashiwo sanguinea were comparable 1 h after inocu-
lation; however, values for parasitized cultures were
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Fig. 2. Diel variations in (A,C) cell-specific (Pcell) and (B,D) chl a-specific (Pchl) rates
of photosynthesis in infected and uninfected cultures of (A,B) Akashiwo sanguinea
and (C,D) Gymnodinium instriatum. Open and closed circles represent uninfected
and infected cultures, respectively. Dark bars on abscissa indicate the dark period. 

Data points represent mean ± SE of the mean
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Fig. 3. Ratio of photosynthesis on (A) per cell and (B) per chl a
bases between infected and uninfected cultures of Akashiwo

sanguinea (d) and Gymnodinium instriatum (■ )

Fig. 4. Photosynthesis-irradiance (Pchl-E) curves on a per chl a basis
in infected (d) and uninfected (s) cultures of (A to C) Akashiwo san-
guinea and (D to F) Gymnodinium instriatum. Pchl-E curves were fit-
ted with hyperbolic tangent equation. n = 2. PFD: photon flux densityT
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significantly lower (t-test, p < 0.05) than those of unin-
fected controls at subsequent sampling times (Table 1).
Similarly, Pchl

max and Pcell
max for infected and uninfected

cultures of Gymnodinium instriatum were comparable
1 h after inoculation, but diverged thereafter, with
infected cultures having a significantly lower (t-test,
p < 0.05) Pchl

max than controls by 25 h and a significantly
lower Pcell

max by 46.5 (Table 1). Pchl
max and Pcell

max of unin-
fected A. sanguinea and G. instriatum increased with
successive samplings, perhaps reflecting diel oscilla-
tions in photosynthetic parameters. By contrast, values
for infected A. sanguinea decreased after 1 h and then
remained constant at ~3.5 mg C (mg chl a)–1 h–1 and
~126 pg C cell–1 h–1 (Figs 4A,B,C & 5A,B,C). Unlike
that of infected A. sanguinea, Pchl

max and Pcell
max of infected

G. instriatum gradually decreased during the experi-
ment (Figs 4D,E,F & 5D,E,F).

Chl a-specific photosynthetic efficiency (αchl) was
similar for infected and uninfected cultures of both
species, with a significant difference (t-test, p < 0.05)
detected only between treatment and control cultures
of Akashiwo sanguinea at 24.5 h (Table 1 & Fig. 4).
However, significant decreases (46 to 53%) in αcell of

infected relative to uninfected controls were ob-
served for A. sanguinea and Gymnodinium in-
striatum at 50.5 and 46.5 h, respectively (Table 1
& Fig. 5).

Light absorption spectra and coefficients

To examine difference in spectral absorption
between uninfected and infected hosts, spectra
for Akashiwo sanguinea were normalized to
600 nm and those for Gymnodinium instriatum
normalized to 550 nm (Fig. 6), as parasitism had
almost no affect at those wavelengths. Relative to
uninfected controls, parasitized A. sanguinea
showed no difference 1 h after inoculation but en-
hanced absorption in the blue region after 24.5 h,
with no difference in the red region (676 nm) of
the spectrum (Fig. 6B). At 50.5 h, infected A. san-
guinea had even greater absorption in the blue
region but reduced absorption in the red region
compared with uninfected cells (Fig. 6C). By con-
trast, no difference in the shape of a*chl(λ) was ob-
served between uninfected and infected G. ins-
triatum 1 h and 25 h after infection (Fig. 6D,E), but
reduced absorption in the red region (676 nm),
without change in the blue region was evident in
parasitized hosts at 46 h (Fig. 6F).

Mean a*chl for uninfected Akashiwo sanguinea
and Gymnodinium instriatum ranged from 0.016
to 0.020 m2 (mgchla)–1 and from 0.009 to 0.011 m2

(mgchla)–1, respectively (Fig. 7B,D). Values for
a*chl in parasitized A. sanguinea at 24.5 and 50.5 h
were significantly greater (t-test, p < 0.001) than those
in uninfected cells. In G. instriatum, a significant dif-
ference (t-test, p < 0.001) in a*chl between uninfected
and infected hosts was found only at 46.5 h (Fig. 7D).
The only significant differences between a*cell values
for uninfected and infected cells of either species was
evident for A. sanguinea at 24.5 h (Fig. 7A,C).

Maximum quantum yield

Estimates for quantum yield of photosynthesis (φm)
were comparable when expressed on per chl a and per
cell bases. Values for φm in uninfected hosts ranged
from 0.014 to 0.022 mol C (mol photons)–1 for Akashiwo
sanguinea and from 0.019 to 0.023 mol C (mol pho-
tons)–1 for Gymnodinium instriatum (Table 1). The
quantum yield of infected A. sanguinea was signifi-
cantly different (t-test, p < 0.05) from that of uninfected
A. sanguinea at 24.5 and 50.5 h, with the means φm of
uninfected host being 1.5- and 2.2-fold greater than
those of infected host. A significant difference (t-test,
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Fig. 5. Photosynthesis-irradiance (Pcell-E) curves on a per cell basis
in infected (d) and uninfected (s) cultures of (A to C) Akashiwo
sanguinea and (D to F) Gymnodinium instriatum. Pchl-E curves 

were fitted with hyperbolic tangent equation. n = 2



Mar Ecol Prog Ser 227: 281–292, 2002

p < 0.05) in quantum yield of G. instriatum was
only observed between uninfected and infected
cultures at 46.5 h, with uninfected controls being
2.0-fold higher than parasitized cultures.

DISCUSSION

Our data clearly show that photosynthetic per-
formance and photophysiological properties of
the bloom-forming dinoflagellates Akashiwo san-
guinea and Gymnodinium instriatum are signifi-
cantly altered following infection by parasitic
dinoflagellates of the genus Amoebophrya. Fur-
thermore, the magnitude of these effects and the
manner in which they are manifested differ be-
tween the 2 host species. Possible causes for ob-
served differences and their ecological and photo-
physiological implications are discussed below.

Parasitic impact on photosynthesis and 
its ecological implication

Uninfected Akashiwo sanguinea and Gymno-
dinium instriatum showed strong diel periodicity
in photosynthesis similar to that reported for
other dinoflagellates (Prézelin et al. 1977, Préze-
lin & Sweeney 1977, Samuelsson et al. 1983; for
review, see Prézelin 1992); however, infected
hosts exhibited distinctly different patterns.

Specifically, parasitized A. sanguinea lost
diel periodicity shortly after infection,
whereas infected G. instriatum continued
to show a diel rhythm that was less pro-
nounced than that of uninfected cells.
Observed differences in photosynthetic
periodicity of infected A. sanguinea and
G. instriatum suggest that the 2 host-par-
asite systems behave in very different
ways. Interestingly, Amoebophrya sp. ex
A. sanguinea always invades the host’s
nucleus (Coats & Bockstahler 1994),
while Amoebophrya sp. ex G. instriatum
grows within the host’s cytoplasm. The
difference in photosynthetic periodicity
between the 2 host species may be due to
the different sites of parasite infection.
For example, intranuclear growth of the
parasite might knock out RNA-protein
systems like ‘Per’, a nuclear protein
required for circadian rhythmicity (Taka-
hashi 1992). Furthermore, intranuclear
growth of the parasite might inhibit pro-
duction of certain proteins essential for
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Fig. 6. Average absorption spectra for infected (—) and uninfected
(· · · ·) cultures of (A to C) Akashiwo sanguinea and (D to F) Gymno-
dinium instriatum normalized to 1 at 600 nm (A. sanguinea) and 

550 nm (G. instriatum). n = 2

Fig. 7. (A,C) Cell-specific and (B,D) chl a-specific absorption coefficients for
infected (dark bars) and uninfected (white bars) cultures of (A,B) Akashiwo
sanguinea and (C,D) Gymnodinium instriatum. Error bars indicate SE of 

mean (n = 2). **p < 0.01, ***p < 0.001
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photosynthesis (e.g. light-harvesting chlorophyll pro-
teins and components of Cytochrome b6/f complex
encoded in the nucleus; Falkowski & Raven 1997). An
abrupt deficiency in such proteins might explain the
sharp drop in photosynthetic performance observed
shortly after infection in A. sanguinea. By comparison,
intracytoplasmic infection of G. instriatum caused a
steady reduction in photosynthetic capacity that may
reflect a gradual decrease in number or turnover rate
of photosynthetic units (Prézelin 1981, 1987,
Falkowski & Raven 1997), reduced ribulose 1,5-bis-
phosphate carboxylase/oxygenase (Rubisco) concen-
tration per cell (Orellano & Perry 1992) or a lower
Rubisco/Electron Transport Chain (ETC) ratio
(Sukenik et al. 1987).

Infected Gymnodinium instriatum continued to main-
tain high photosynthetic performance (~80% of unin-
fected cell) and had a cellular chl a content equivalent
to that of uninfected cells until very late in the infection
cycle, suggesting that the photosynthetic apparatus of
this host species continued to function normally for a
considerable time following infection. In spite of this,
infected G. instriatum failed to reproduce. There are at
least 3 possible explanations for this apparent discrep-
ancy: (1) photosynthetic products might be shunted to
recovery of the cell structures (e.g., photosynthetic ap-
paratus) damaged by the endoparasite; (2) the parasite
may rely heavily on host photosynthate for growth; and
(3) infected G. instriatum cells may become ‘leaky’ and
lose much of their photosynthate as dissolved organic
matter. Resolution of the possibilities will require addi-
tional study. However, it is interesting that phaeo-
pigments increased over the infection cycle of Aka-
shiwo sanguinea, suggesting extensive chlorophyll
degradation. By contrast, phaeopigments did not ac-
cumulate in G. instriatum, suggesting that (1) para-
sitism does not damage chloroplasts of G. instriatum;
(2) G. instriatum recycles phaeopigments to repair par-
asite-induced damage of the photosynthetic machin-
ery; or (3) the parasite completely digests chloroplasts
of G. instriatum, with new structures being synthe-
sized de novo.

The prevalence of Amoebophrya spp. in phytoplank-
ton communities is highly variable, ranging from <1 to
80% for particular host species (Taylor 1968, Elb-
rächter 1973, Nishitani & Chew 1984, Nishitani et al.
1984, 1985, Fritz & Nass 1992, Coats & Bockstahler
1994, Coats et al. 1996; for recent review see Coats
1999), with the epidemic outbreaks usually associated
with periodic or seasonal maxima in host abundance
(Coats et al. 1996). Thus, parasite-induced mortality of
host populations fluctuates considerably in time and
space. Our results indicate that parasitism may also
have varying impacts on primary production, and per-
haps trophodynamics, of plankton assemblages, de-

pending on the nature of the particular host-parasite
system. Epidemic outbreaks of endonuclear species of
Amoebophrya in blooms of Akashiwo sanguinea, or
similar host species, should significantly reduce pri-
mary productivity before host mortality. By contrast,
epidemics of intracytoplasmic an Amoebophrya sp. in
blooms of Gymnodinium instriatum, or similar hosts,
should have much less effect on primary production
before host mortality, but might increase the release of
dissolved organic compounds from algal cells and in
turn enhance bacterial production and microbial food
web processes.

Parasitism and its photophysiological implications

Chl a-specific absorption coefficient (a*chl) and quan-
tum yield of photosynthesis (φm) are key photophysio-
logical parameters in many bio-optical models that
provide estimates of phytoplankton biomass and pro-
ductivity over a variety of temporal and spatial scales
(Bidigare et al. 1992). Further, light absorption spectra
furnish information about major pigment groups of
phytoplankton (Hoepffner & Sathyendranath 1993) and
are useful in distinguishing phytoplankton taxa (John-
sen et al. 1994). Spectral absorption data have even
been used to detect and quantify HAB species in
mixed phytoplankton populations (Millie et al. 1997,
Lohrenz et al. 1999). For example, Millie et al. (1997)
recently applied this approach to determine the rela-
tive abundance of the toxic dinoflagelate Gymnodi-
nium breve in cultures of mixed algae.

The magnitude and the spectral shape of a*chl(λ) are
known to vary greatly in response to differences in
species composition, cell size, light history, and nutri-
ent conditions in the field, and can even vary within
species due to pigmentation and package effects asso-
ciated with photoacclimation and physiological status
(Sathyendranath et al. 1987, Mitchell & Kiefer 1988,
Sosik & Mitchell 1991, 1994, Kirk 1994, Bricaud et al.
1995, Culver & Perry 1999, Stuart et al. 2000). In addi-
tion, our results suggest that endoparasites may con-
tribute significantly to variations in the magnitude and
the shape of a*chl(λ) within species, particularly in mid-
to late stages of infection. Growth of Amoebophrya
spp. within host cells caused light absorption to in-
crease in the blue region and decrease in the red
region of the spectrum Thus, deriving dinoflagellate
biomass, in terms of cell density rather than chl a con-
centration, using the absorption spectrum alone (in
particular, the red region) would significantly underes-
timate population size during epidemic infections. Val-
ues for a*chl of infected hosts increased relative to un-
infected cells by as much as 22 to 56% in Akashiwo
sanguinea and 59% in Gymnodinium instriatum. Inter-
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estingly, enhanced light absorption in the blue region
following infection only occurred in A. sanguinea and
was apparently associated with increased phaeopig-
ment concentration. Thus, the parasite and associated
phaeopigments are nonphotosynthetic particles (Cleve-
land et al. 1989) that contribute significantly to en-
hanced absorption at blue wavelengths and thereby
lower φm even in the middle of the infection cycle.

Laboratory and field studies have shown that φm can
vary in response to a variety of environmental and bio-
logical variables, including nutrient limitation and
stress (Welschmeyer & Lorenzen 1981, Cleveland &
Perry 1987, Kolber et al. 1988, Cleveland et al. 1989,
Sosik & Mitchell 1991), light quantity and quality (Bidi-
gare et al. 1989, Schofield et al. 1996), photoprotective
pigments (Bidigare et al. 1989, Prézelin et al. 1990,
1991, Babin et al. 1996, Stuart et al. 2000), temperature
(Tilzer et al. 1985, Sosik & Mitchell 1994), and diurnal
periodicity in algal biology (Prézelin 1992). Our results
indicate that parasitism may also contribute to natural
variations in quantum yield, as infection by Amoebo-
phrya spp. lowered φm of Akashiwo sanguinea and
Gymnodinium instriatum by a factor of ca 2. Reduced
φm following infection of these 2 dinoflagellates re-
sulted from parasite-induced enhancement of a*chl

rather than changes in αchl, except in late stage infec-
tions when both factors (i.e., higher a*chl and lower αchl)
became important. Thus, endoparasites like Amoebo-
phrya spp. apparently act like nonphotosynthetic or
photoprotective pigments that absorb light but do not
transfer excitation energy to photosynhetic reaction
centers.
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