Methane-limited methanotrophy in tidal freshwater swamps

J. Patrick Megonigal
Smithsonian Environmental Research Center, Edgewater, Maryland, USA

William H. Schlesinger
Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, USA

Received 5 September 2001; revised 2 May 2002; accepted 24 June 2002; published 16 November 2002.

[1] We investigated the relationship between CH4 production and oxidation in two tidal freshwater wetland forests in order to determine whether CH4 oxidation efficiency was limited by O2 or CH4. Methane oxidation was measured in situ over a 16-month period with bi-monthly applications of the inhibitor CH3F. Oxidation consumed 52 ± 10 and 81 ± 9% of diffusive CH4 emissions on the two sites. Methane oxidation rates were linearly related to gross CH4 emissions on both sites (r² = 0.96), demonstrating the process was CH4-limited. This interpretation is consistent with the fact that the apparent activation energies for the potential CH4 production and oxidation differed by <4 kJ mol⁻¹. Apparent activation energies calculated from field emissions data were also similar for the two processes. The high CH4 oxidation efficiency on these sites may be attributed to relatively low rates of methane production, a deep oxidizing zone (5–10 cm), and low cover of understory vegetation capable of CH4 transport. If our results are typical of forested wetlands, CH4 oxidation efficiency in forested wetlands will not change in response to soil warming. INDEX TERMS: 1890 Hydrology: Wetlands; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 4235 Oceanography: General: Estuarine processes; KEYWORDS: methane emissions, methane oxidation, temperature responses, forested wetland, global warming, methanogenesis

1. Introduction

[2] Methanotrophic bacteria substantially reduce methane emissions from natural and agricultural wetlands and thereby limit the global wetland source to ~175 Tg yr⁻¹ [Schlesinger, 1997]. The wetland methanotrophy sink has been estimated to consume between 40% [King, 1996] and 70% [Reeburgh et al., 1993] of gross CH4 production (100–400 Tg yr⁻¹). Because these estimates exceed the rate that CH4 is currently increasing in the atmosphere (40 Tg yr⁻¹), climate-induced changes in CH4 oxidation rates have the potential to influence the atmospheric burden of this greenhouse gas. The extent to which CH4 emissions will increase with future soil warming will be determined in part by changes in the efficiency of CH4 oxidation.

[3] There are at least two mechanisms by which soil warming could cause a larger increase in CH4 production than CH4 oxidation, and thereby increase net CH4 emissions proportionally more than gross CH4 production. If methanotrophy is limited by O2 availability and, provided that factors such as radial oxygen loss and water-table depth do not change, rising temperature will stimulate CH4 production but not oxidation. Root-associated methanotrophy is O2-limited in certain emergent aquatic macrophytes such as Phragmites australis [van der Nat and Middelburg, 1998], Sparganium eurycarpum [King, 1996], and Typha latifolia [Lombardi et al., 1997]. Because >75% of the diffusive CH4 efflux can pass through plants [Shannon and White, 1994; Chanton and Dacey, 1991; King, 1996], in many cases methane oxidation should also be O2-limited on an ecosystem basis.

[4] Alternatively, CH4 oxidation rates may be limited by CH4 concentration [e.g., Gilbert and Frenzel, 1998]. In such cases, both CH4 production and oxidation will increase, but not necessarily at the same rate. CH4 oxidation efficiency could decline if methanogenesis increased faster with temperature than methanotrophy. Indeed, methanotrophy is generally less sensitive to temperature than methanogenesis. Apparent activation energies for CH4 oxidation range from 20 to 80 kJ mol⁻¹ compared to the range 50–450 kJ mol⁻¹ for CH4 production [Dunfield et al., 1993]; Q10 values average 1.9 and 4.1, respectively [Segers, 1998]. A lower activation energy for CH4 oxidation versus production would produce temperature-induced changes in net emissions greater than those predicted from the activation energy of CH4 production alone [Dunfield et al., 1993]. These two mechanisms could occur simultaneously in different parts of an ecosystem (e.g., soil surface versus rhizosphere), and each would cause the proportion of CH4 production consumed by oxidation to decline with increasing temperature as observed in a temper-
The Upper site is drier than the lower site. Although few in situ measurements of CH$_4$ oxidation in relation to water-table depth have been reported [King, 1996], there is abundant indirect evidence of a relationship between these variables [Roulet and Moore, 1995; Sundh et al., 1995; Kettunen et al., 1999]. Tidal freshwater wetlands provide a unique environment for separating the effects of water-table depth and temperature. Unlike most temperate and tropical wetland ecosystems, seasonal variations in water-table depth are minor and regular flooding ensures that the maximum depth of the aerobic zone is fairly stable.

Our objectives were to: (1) quantify the size of the CH$_4$ oxidation sink in two temperate swamp forests, (2) quantify seasonal changes in CH$_4$ oxidation as a proportion of gross production (i.e., CH$_4$ oxidation efficiency), and (3) compare the temperature responses of CH$_4$ production and oxidation as an explanation for changes in CH$_4$ oxidation efficiency.

2. Methods
2.1. Study Sites

The White Oak is a low-gradient, blackwater, coastal plain river located in southeastern North Carolina [Megonigal, 1996]. Atlantic tides propagate upriver about 30 km causing floodplain soils to be alternately flooded and exposed twice daily, except during some neap tides. The upper reaches of the tidal zone are fresh water (salinity <0.5‰) and floodplain soils are dominated by methanogenic respiration [Kelley et al., 1990]. We established two sites in the tidal fresh-water zone of this river. The Upper site was farthest from the ocean and 6 km upstream of Goldhaber’s Island, the site of previous studies on CH$_4$ dynamics [Kelley et al., 1990, 1995]. Soils are mapped as Dysic, thermic Typic Medisaprists at the Upper site [Barnhill, 1992] and Eucic, thermic Typic Medisaprists at the Upper site [Barnhill, 1981]. They are characterized by 1–2 m thick accumulations of muck containing 20% organic carbon.

Freshwater tidal wetlands on the White Oak River are primarily forests mixed with patches of marsh. Fraxinus caroliniana dominates both sites, but Nyssa sylvatica var. biflora is also important at the Lower site where it contributes 52% of the wood production [Megonigal, 1996]. Both forests support scattered Taxodium distichum trees that are several meters taller than the forest canopy. The herbaceous layer at the Lower site is dominated by highly flood-tolerant species such as Orontium aquaticum and Peltandra virginica, while the Upper site is dominated by relatively less flood-tolerant species of Sorus and Aster. Basal area, leaf litterfall, and herbaceous production on the two sites are similar, but wood production is 116% greater at the Upper site [Megonigal, 1996]. In total, these features suggest that the Upper site is drier than the lower site [Christensen, 1988; Megonigal et al., 1997].

On each site, we established a single 100-m transect parallel to the river channel and 12 m inland. Twenty plots, separated by >1 m distance, were located in topographic depressions. A boardwalk and 2 m-long elevated ramps approaching each plot minimized soil disturbance during sampling.

2.2. Methane Emissions

Methane emissions were measured with static chambers made from polyethylene containers. The containers were modified by riveting a 33 × 47-cm frame of 2.5-cm aluminum angle stock to the mouth. Between the container and frame was a layer of 0.5-cm thick closed-cell neoprene foam gasket and silicone sealant. A second strip of foam outside the frame provided a temporary seal to permanently installed bases that extended 5 cm into the soil. A 2 kg-weight ensured good contact between the chamber and base. A set of 64-l chambers fit with 0.5-l s$^{-1}$ brushless fans (one per chamber) was used during the growing season to accommodate 75-cm high plants. Sets of 38 or 27-l chambers without fans were used in the winter. The duration of the flux measurements ranged from 1 hour in summer to 10 hours in winter, yet headspace [CH$_4$] rarely rose above 10 μl l$^{-1}$. The head-space was sampled five times per flux measurement through a rubber septum with plastic syringes. Rubber bands between the syringe barrel and plunger maintained positive pressure on the sample in case of a leak. All fluxes were measured during neap tides when the soil surface was exposed (i.e., at low tide).

In situ CH$_4$ oxidation rates were measured on eight dates over a 13-month period using the CH$_3$F-block technique [Oremland and Culbertson, 1992]. Each estimate began with a pre-treatment flux measurement made simultaneously on all the plots in a transect. Next, the soils and plants in 10 of the 20 chambers were exposed to 1.5% CH$_3$F for 12 hours. The chambers were usually vented for about 1 hour before measuring post-treatment emissions. However, the chambers were not vented twice during the winter when low CH$_4$ emission rates demanded long incubation periods. The other 10 plots were treated the same but received ambient air. A permanent, random assignment of the treatments was made at the beginning of the study, so that control plots were never exposed to CH$_3$F.

Net CH$_4$ emissions from the control plots were measured monthly. When this coincided with the CH$_4$ oxidation experiments, net emission rates were calculated as the mean of pre- and post-treatment measurements from control plots. On the final sampling date, CH$_4$ emissions on the control plots were measured before and after removing the vegetation. Plants were cut 2 cm below the soil surface and the exposed stem was buried by gently covering it with muck.

In field trials, CH$_3$F increased CH$_4$ fluxes after 6 hours of treatment. Post-treatment samples of plant stems contained 0.2 ± 0.1% CH$_3$F (mean ± SD) and soils contained 0.1 ± 0.1% CH$_3$F at 3 cm below the surface. In laboratory incubations (details are given subsequently), 0.15% CH$_3$F completely inhibited potential CH$_4$ oxidation, but CH$_4$ production was not inhibited at levels up to 1.5% CH$_3$F. These levels effectively inhibit CH$_4$ oxidation in other systems [Oremland and Culbertson, 1992; Epp and Chanton, 1993]. Although CH$_3$F often inhibits methanogenesis in laboratory incubations, it does not necessarily inhibit in situ CH$_4$ emissions, which depend more on pore
water \([\text{CH}_4]\) than instantaneous \(\text{CH}_4\) production [King, 1996; Lombardi et al., 1997]. Methane fluoride does not affect photosynthesis or stomatal conductance at the levels we used [Epp and Chanton, 1993; King, 1996], and its effects on methanotrophy are quickly reversible [Epp and Chanton, 1993; van der Nat and Middelburg, 1998].

Dissolved \(\text{CH}_4\) in pore water was determined on samples drawn from polyvinylchloride wells (2.5-cm diameter \(\times\) 20-cm deep) at seven locations on each site and on three samples drawn directly from the river. At low tide, the wells were emptied and allowed to refill twice before immediately taking a 5-ml sample by syringe. Dissolved \(\text{CH}_4\) was stripped into a 5-ml headspace of ambient air by vigorous shaking for 2 min.

Methane and \(\text{CH}_3\text{F}\) were analyzed on a Varian 3700 gas chromatograph with a flame ionization detector, a Porapak Q 80/100 mesh column at 50°C, and a He carrier at 30 ml min\(^{-1}\). Because of the remote field location, gas samples were stored for 3 to 5 days before they were analyzed. Recovery of \(\text{CH}_4\) standards stored in syringes during field measurements was 94 ± 4% (mean ± SD).

2.3. Environmental Measurements

Water-table depth, air temperature, and soil temperature at 10 and 50 cm were recorded at 30-min intervals on a Campbell data logger. Water-table depth was measured in one 60-cm well per transect with differential pressure transducers referenced to the atmosphere [Keel et al., 1997]. Air and soil temperatures were measured with thermocouples.

The depth at which the soil profile became reducing was determined on two occasions with steel rods placed adjacent to the plots for 8 weeks [Bridgham et al., 1991]. Redox potential profiles were measured monthly in a single plot on each transect as described by Faulkner et al. [1989].

2.4. Potential \(\text{CH}_4\) Production and Oxidation

Soil cores were collected in late October 1995 from 10 locations on each transect. Cores were extracted in 7.6-cm (i.d.) by 30-cm deep PVC sleeves with a piston corer. Compaction was generally <1 cm at the Lower site and <2 cm at the Upper site. The cores were flooded with river water and capped for transportation to Duke University.

Soils were processed in a glove box with an atmosphere of 95% \(\text{N}_2\) and 5% \(\text{H}_2\). The chamber atmosphere was circulated through columns of Drierite and molecular-sieve to remove humidity, and activated charcoal to remove organic toxins that may have been introduced with the purge gas. Molecular oxygen concentrations were always <1% and normally <0.2%.

To determine down core patterns of potential \(\text{CH}_4\) production, cores were cut into four depth intervals (0–5, 5–10, 10–20, and 20–30 cm), then randomly paired to give five composite samples per depth per site. We added 40 g of wet soil and 40 ml of degassed, deionized water to 250-ml canning jars, then removed most of the fine roots from the resulting slurry. The jars were sealed while inside the chamber using canning lids fit with a septum and flushed with 1 l of high-purity \(\text{N}_2\) to remove \(\text{H}_2\). Jars for \(\text{CH}_4\) oxidation potentials were prepared similarly outside the chamber.

Aerobic jars had an initial headspace \([\text{CH}_4]\) of 1200 \(\mu\)l l\(^{-1}\) and a final \([\text{CH}_4]\) of 500 \(\mu\)l l\(^{-1}\), which was above the level at which \(\text{CH}_4\) oxidation became concentration-dependent in these soils. The oxidation study was completed 4 days after the soil was collected. Potential rates of \(\text{CH}_4\) production were measured in separate anaerobic jars over a 3-day period beginning 8 days after collection. Before beginning the flux measurements, the headspace and soil solution were purged with 1 l of high-purity \(\text{N}_2\).

Jars in both experiments were continuously agitated on a linear shaker bath at 22°C. The headspace was sampled at least five times for each flux determination.

In November 1995, a second collection of 10 soil samples per site (surface 10 cm only) were returned to the glove box, sieved through a 2.4-mm screen, and combined into a single composite sample for each site. Our intent was to minimize variation between sub-samples in order to isolate the influence of temperature on microbial activity. The jars were prepared as previously described except that aerobic jars had an initial headspace \([\text{CH}_4]\) of 2000 \(\mu\)l l\(^{-1}\). Two replicate jars per site were randomly assigned to water baths at the following nominal temperatures: 0°C, 6°C, 12°C, 18°C, 24°C, 30°C, and 36°C. Aerobic jars were incubated on linear shakers, but not anaerobic jars because \(\text{CH}_4\) degassing was not diffusion-limited in comparisons of static and shaken-incubations. All incubations were completed within 16 days of soil collection.

The influence of \([\text{CH}_3\text{F}]\) on \(\text{CH}_4\) production and oxidation was assessed in the laboratory using methods similar to those described for the temperature response studies. Jars were amended with \(\text{CH}_3\text{F}\) at headspace concentrations of 0, 0.0015, 0.015, 0.15, and 1.5%. Methane production and consumption were measured in the presence of \(\text{CH}_3\text{F}\).

2.5. Methane Oxidation Calculations and Statistics

Methane fluxes were calculated using regression analysis [SAS Institute, 1987] applied to the linear portion of \(\text{CH}_4\) concentration versus time. Most fluxes were calculated from 5-points, but never fewer than 3 points. Net \(\text{CH}_4\) emissions were calculated using regression slopes with \(r^2\) values >0.90 (80% of measurements). Slopes with \(r^2 < 0.90\) and \(y\)-intercepts \(\leq 4 \mu\text{l l}^{-1}\) were assigned a value of one-half the detection limit, while slopes with higher intercepts and \(r^2 < 0.90\) were deleted on the assumption that chamber placement had caused ebullition. To increase the sample size in the \(\text{CH}_4\) oxidation experiments, we used a less conservative lower-limit for \(r^2\) of 0.60 (0.60 \(\leq r^2 < 0.90\) in 8% of observations). The detection limit ranged from 0.4 to 0.02 mg m\(^{-2}\) d\(^{-1}\) depending on chamber size and measurement interval.

Significant changes in pre-treatment versus post-treatment \(\text{CH}_4\) emissions were assessed with paired \(t\)-tests [SAS Institute, 1987]. The tests were one-sided because \(\text{CH}_3\text{F}\) was expected to either increase \(\text{CH}_4\) emissions or have no effect. We accounted for the increased probability of a significant difference due to repeated \(t\)-tests with Bonferroni’s correction [Day and Quinn, 1989]. For a one-tailed \(t\)-test the corrected \(p\)-values for a 0.05 significance level were 0.0063 for the Lower site and 0.0071 for the Upper site. A significant increase in flux from both the treated and control plots would suggest a cause other than \(\text{CH}_3\text{F}\), such as a temperature increase or soil disturbance. Two-sided paired \(t\)-tests were used to analyze the plant removal experiment.
Methane oxidation efficiency was calculated two ways. Plot-weighted oxidation used the pre-treatment and post-treatment fluxes on a per-plot basis:

\[
\text{Plot-wise methane oxidation} = 1 - \left(\frac{\text{pre - treatment flux}}{\text{post - treatment flux}} \right)
\]

Because CH\(_4\) oxidation was calculated for each plot separately, both low-flux and high-flux plots were weighted the same. In this case, CH\(_4\) oxidation efficiency was calculated as the average of equation (1) across all treated plots, regardless of the direction of the change. Plot-wise oxidation had either a normal or log\(_e\)-normal distribution as determined by the Shapiro-Wilk Statistic [SAS Institute, 1987].

Oxidation was also calculated using values of CH\(_4\) emissions averaged across the treated plots:

\[
\text{Flux-weighted Methane Oxidation} = 1 - \left(\frac{\text{Xpre - treatment flux}}{\text{Xpost - treatment flux}} \right)
\]

In this case, CH\(_4\) oxidation was weighted in favor of the plots with the largest absolute fluxes, yielding the best estimate of site-wide methane oxidation efficiency. The two equations were compared using a two-sided paired \(t\)-test of flux-weighted oxidation versus mean plot-wise oxidation.

Comparisons of potential CH\(_4\) production and oxidation across depths were made with a one-way analysis of variance [SAS Institute, 1987] and the Least-Significant-Difference test at \(\alpha = 0.05\). Values were log\(_e\)-normalized when necessary. Proc Reg in SAS was used to fit flux data to linear and Arrhenius temperature models.

3. Results

3.1. Hydrology and Dissolved Methane

The Lower site was typically inundated twice per day. The soil surface was exposed to the atmosphere for a few hours each day during spring tides and for periods of 1 or 2 days during neap tides, totaling about 40% of the year (Figure 1). The Upper site was inundated twice per day during spring tides, but had longer periods of subaerial exposure totaling 60% of the year. Water-table depth variation on these tidally flooded sites did not have a seasonal pattern (Figure 1). In contrast, soil temperature at 10 cm varied seasonally from 3° to 32°C with a maxima in July and minima in January [Megonigal, 1996].

Redox potential profiles in June indicated the soils were Fe-reducing below 10 cm (Figure 2). In January, the measurement interval was shortened, and the data suggested that the oxidizing/reducing interface was no deeper than 5 cm on the Upper site and perhaps at 10 cm at the Lower site. However, the depth of rust on steel rods was not significantly different between the sites. These data and detailed seasonal [CH\(_4\)] profiles from a nearby site [Kelley et al., 1995] suggest that aerobic CH\(_4\) oxidation begins at a depth of 5–10 cm.

Dissolved CH\(_4\) in shallow groundwater (10–20 cm deep) averaged 3 and 23 \(\mu\)M on the Lower and Upper sites, respectively. Concentrations varied seasonally from <1 to 224 \(\mu\)M.

3.2. Net Methane Emissions

There was considerable temporal and spatial variation in net CH\(_4\) emissions. The highest emissions occurred between June and October, reaching a peak mean flux of 17 mg CH\(_4\) m\(^{-2}\) d\(^{-1}\) on the Upper site in July (Figure 3). The distribution of fluxes on the Upper site was strongly skewed by a single control plot with consistently high emissions (maximum >200 mg CH\(_4\) m\(^{-2}\) d\(^{-1}\)) that contributed >50% of the annual emissions from all control plots. Thus the median is a better estimate of central tendency for net emissions (Figure 3). Unless stated otherwise, this plot was eliminated.
from the calculation of methane oxidation rates. Net emissions from the Lower site were generally greater than the Upper site. Net methane emissions on the control plots was measured with and without plants on one occasion at the end of the study. There was no significant effect of plants on CH4 emissions.

3.3. Methane Oxidation

[35] Methane emissions increased significantly following application of CH3F in 14 of 15 trials ($P < 0.007$; Appendix A). The exception occurred on a date when soil temperature was 7.5°C; there was no response to CH3F at the Lower site and a significant increase in control-plot emissions at the Upper site. Several control plots were net sinks of atmospheric CH4 in January, reaching subambient headspace concentrations (data not shown).

[36] On the Lower site, gross CH4 emissions (i.e., during CH3F inhibition) increased from 5.4 ± 6.2 mg CH4 m⁻² d⁻¹ during the period from October to May, to 18.5 ± 31.3 mg CH4 m⁻² d⁻¹ (mean ± SD, $n = 40$) during the summer (see also Appendix A). The seasonal variation in gross emissions on the Upper site was similar (5.6 ± 16.6 and 22.1 ± 54.0 mg CH4 m⁻² d⁻¹, respectively, $n = 48$). There were no significant differences between the sites for either period of the year.

[37] Methylfluoride treatment increased methane emissions by 52 ± 29% on the Lower site and 79 ± 24% on the Upper site (mean ± SD, $n = 70$, calculated plot-wise), a significant difference of 27% ($P < 0.0001$). When calculated on a flux-weighted basis, oxidation consumed 51 ± 15 and 76 ± 16% of gross CH4 emissions at the two sites, respectively ($n = 6–7$). There was no significant difference in CH4 oxidation efficiency calculated on a plot-wise or flux-weighted basis ($P = 0.12$). Because ebullition, hydrologic export, and emissions from trees were not measured, these figures may overestimate the proportion of total methane production consumed by oxidation. There was no clear relationship between ambient soil temperature and methane oxidation efficiency (Figure 4).

[38] Combining data from the two sites, CH4 oxidation increased linearly as a function of gross CH4 emissions ($r^2 = 0.96$, Figure 5). The regression intercept was not significantly different from zero. Based on the slope of this line, 73% of gross emissions were oxidized across a broad range of CH4 production rates, soil temperature and plant cover.

3.4. Potential CH4 Production and Oxidation

[39] Potential CH4 oxidation rates varied significantly across depths ($P = 0.001$), but not across sites (Table 1). Peak rates occurred at the soil surface. In comparison, CH4 production potential was lower and more variable (Table 1). Potential production peaked at 5–10 cm on the Lower site and at 10–20 cm at the Upper site, but there were no significant differences across depths or sites.

[40] Potential CH4 production increased monotonically with temperature from near 0°C to 36°C, but potential CH4 oxidation rates declined between 30°C and 36°C [Megonigal, 1996]. All the CH4 production jars incubated in the 18°C water bath ($n = 4$) deviated markedly from the temperature

Figure 2. Estimates of O2 penetration depth during summer and winter for two study sites. Redox potential is an instantaneous estimate of O2 penetration, while steel-rod oxidation depths are an integrated estimate (30-day periods). Data are means ± 1 SE.

Figure 3. Net CH4 emissions from two sites on the White Oak River, NC. Each point represents 7–20 observations in the absence of CH3F. Data are means ± 1 SE.
relationships fit to the remaining data (Figure 6), suggesting there was an unidentified problem with the water bath. Thus the 18°C/176 and 36°C/176°C samples were not used for regression modeling.

[41] The temperature-response curves fit both a linear and an Arhennius model in all cases (P < 0.03, adjusted- r² > 0.67). Potential CH₄ production was explained better by an Arhennius model (adjusted- r² ≥ 0.97) than a linear model (adjusted- r² ≤ 0.77) on both sites. For CH₄ oxidation, the two models produced nearly identical fits at the Upper site (adjusted- r² = 0.94), but the linear model fit best for the Lower site (adjusted- r² = 0.97 versus 0.87).

[42] Temperature-response curves for CH₄ production and oxidation were remarkably similar within a given site. At the Lower site, apparent activation energy (Eₐ) calculated from the Arhennius plots (Figure 6) was 73.9 kJ mol⁻¹ for production and 77.0 kJ mol⁻¹ for oxidation; values for the Upper site were 59.7 and 60.0 kJ mol⁻¹, respectively. To facilitate comparisons with other studies, we used the Arhennius equations to calculate apparent Q₁₀ values over the range 10⁰–20°C. At the Lower site, Q₁₀ was 2.4 for both oxidation and production; at the Upper site Q₁₀ was 2.9 for oxidation and 3.1 for production. Applying a linear model to the CH₄ oxidation data produced Q₁₀ values that were lower than those for production, but the difference was <0.8 units (linear model oxidation Q₁₀ = 1.9 and 2.4 on the Lower and Upper sites, respectively).

Temperature response functions were also fit to in situ CH₄ emissions data. The Arhennius model consistently explained field emissions better than the linear model, but the relationships were significant only at the Lower site (P ≤ 0.004, n = 7). The Eₐ for net emissions at the Lower site was 85 kJ mol⁻¹ (Q₁₀ = 3.4), a value similar to potential CH₄ oxidation and production as determined in laboratory soil incubations. The Eₐ for gross emissions and CH₄ oxidation were higher than laboratory incubations would suggest (120 and 141 kJ mol⁻¹, respectively; Q₁₀ = 5.6 and 7.7). Although the fit of the Arhennius model on the Upper site was not significant, there was a trend (P < 0.10) for Eₐ ≤ 80 (Q₁₀ ≤ 3), which is similar to those produced by the laboratory soil incubations.

4. Discussion

[44] Methanotrophic bacteria significantly reduced diffusive CH₄ emissions from two temperate wetland forests during all the seasons of the year. Emissions were reduced by 52% on the Lower site and 79% on the Upper site. These figures are lower than estimates made in the same general area by a different method (86–96%; Kelley et al., [1995]), and higher than estimates for two bottomland hardwood forests in Florida (46%; Hapbell and Chanton, [1993]). Our estimates fall within the range of previous estimates from forested wetland soils (Table 2). Although few direct in situ estimates of CH₄ oxidation exist, it seems that CH₄ oxidation efficiency is higher in wetland forests than marshes. Because herbaceous plants can tolerate wet sites better than woody

Figure 4. Quantile box plots of percent CH₄ oxidation in 14 experiments with a significant increase in CH₄ emissions following treatment with CH₃F. Horizontal lines inside each box are the median, box boundaries are the 25th and 75th percentiles, and points are minimum and maximum values.

Figure 5. Relationship between rates of gross CH₄ emission (post-CH₃F treatment) and CH₄ oxidation using data from experiments that yielded a significant increase in emissions. Each point is the mean of 8–10 replicates.
and previous studies that reported O$_2$-limited methanotrophy. The percent CH$_4$ oxidation was relatively constant (Figure 5). Temperature varied substantially over the study period, yet means with different superscripts are significantly different (P < 0.05) in comparisons across depths within a site.

It is useful to consider differences between this study and previous studies that reported O$_2$-limited methanotrophy. Lombardi et al. [1997] quantified CH$_4$ oxidation in the rhizosphere while we quantified the process in both the rhizosphere and soil surface simultaneously. It is possible that those systems were CH$_4$-limited on an ecosystem (i.e., ground-area) basis even though the rhizosphere was O$_2$-limited. This was not the case for sites studied by King [1996] and Popp et al. [2000] because they determined that 70–90% of CH$_4$ emissions passed through plants. Similarly, rhizosphere oxidation at our sites could have been O$_2$-limited even though the ecosystem was CH$_4$-limited overall. This would have required a large fraction of diffusive emissions to pass across a CH$_4$-limited soil surface versus an O$_2$-limited rhizosphere. In a single trial at the end of our study, there was no significant difference in CH$_4$ emissions in the presence or absence of plants. Although we do not consider one trial definitive, when considered in the context of sparse herbaceous plant cover and a 5–10-cm deep CH$_4$-oxidizing zone, it is possible that plants are not the dominant pathway for CH$_4$ ventilation at our sites.

Potential CH$_4$ Production, nmol g$^{-1}$ d$^{-1}$

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth</th>
<th>Mean</th>
<th>SE</th>
<th>Median</th>
<th>Mean</th>
<th>SE</th>
<th>Median</th>
<th>Mean</th>
<th>SE</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>5</td>
<td>43.14</td>
<td>b</td>
<td>23.50</td>
<td>8.74</td>
<td>1.0</td>
<td>3.41</td>
<td>0.45</td>
<td>3.28</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>33.20</td>
<td>b</td>
<td>13.95</td>
<td>26.95</td>
<td>1.2</td>
<td>2.75</td>
<td>0.07</td>
<td>2.74</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>12.74</td>
<td>b</td>
<td>3.50</td>
<td>11.92</td>
<td>1.9</td>
<td>1.63</td>
<td>0.35</td>
<td>2.00</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.85</td>
<td>b</td>
<td>0.92</td>
<td>3.69</td>
<td>1.0</td>
<td>1.01</td>
<td>0.35</td>
<td>1.09</td>
<td>0.3</td>
</tr>
<tr>
<td>Upper</td>
<td>5</td>
<td>13.61</td>
<td>b</td>
<td>4.71</td>
<td>8.75</td>
<td>1.0</td>
<td>3.45</td>
<td>0.26</td>
<td>3.66</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.19</td>
<td>b</td>
<td>1.21</td>
<td>3.64</td>
<td>0.5</td>
<td>2.83</td>
<td>0.18</td>
<td>2.68</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>37.81</td>
<td>b</td>
<td>28.03</td>
<td>14.65</td>
<td>2.7</td>
<td>1.85</td>
<td>0.18</td>
<td>1.90</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>18.51</td>
<td>b</td>
<td>10.72</td>
<td>16.28</td>
<td>1.5</td>
<td>0.72</td>
<td>0.20</td>
<td>0.62</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*Relative CH$_4$ production and oxidation were normalized to rates in the top 5 cm section of individual core-pairs; values are the mean of five ratios. Means with different superscripts are significantly different (P = 0.05) in comparisons across depths within a site.

Methanotrophy may be CH$_4$-limited at these sites because of low CH$_4$ production, high CH$_4$ oxidation, or a combination of these factors. Potential CH$_4$ production rates were lower than 80% of the values reported in the literature [Segers, 1998], while potential CH$_4$ oxidation was lower than 60% of the values. Median emissions at our sites peaked at about 6 mg CH$_4$ m$^{-2}$ d$^{-1}$ compared to a median of 72 mg CH$_4$ m$^{-2}$ d$^{-1}$ for swamps in the literature [Le Mer and Roger, 2001]. We did not determine K_m values for CH$_4$ oxidation, but [CH$_4$] drops rapidly within 5–10 cm of the soil surface to levels that may limit oxidation in the uppermost portion of the profile even during the summer [Kelley et al., 1995].

There are reasons to suggest that these soils have a higher capacity to oxidize CH$_4$ than many other sites that have been studied. Despite year-round tidal flooding, the soil surface is exposed 40% of the year at the Lower site and 60% of the year at the Upper site. This difference of 20% appears to be ecologically important because the Upper site had a 27% higher CH$_4$ oxidation capacity (P < 0.0001, Appendix A), a deeper peak depth of CH$_4$ production (Table 1), and fewer highly flood-tolerant plant species in the understory than the Lower site. The fact that the depth

![Figure 6](Image)
distribution of potential CH₄ oxidation rates was virtually the same on the two sites is expected because transient differences in water-table depth influence potential CH₄ production more strongly than oxidation [Roulet et al., 1993]. Previously studied sites were normally inundated or ponded for most of the year [King, 1996; Lombardi et al., 1997; Popp et al., 2000].

[50] Sparse understory plant cover in our forested sites may raise CH₄ oxidation efficiency by forcing CH₄ to diffuse through a relatively thick oxidizing zone, rather than through plants, before escaping to the atmosphere. Understory cover averaged 39% at the Lower site and 35% at the Upper site, whereas marshes can be expected to have 100% cover. A related consideration is that some understory species in forested wetlands may not efficiently transport gases [Dacey and Klug, 1979; Shannon et al., 1996], a property that is species specific [Calhoun and King, 1997]. Most understory species at the Upper site were not characteristic of extremely wet habitats. Species such as P. virginica that are known to efficiently conduct gases [Frye et al., 1994; Chanton et al., 1992] occurred in just 30% of plots at the Upper site compared to 90% of plots at the Lower site.

[51] Net consumption occurred on 3 of 10 plots at the Lower site and 4 of 10 plots at the Upper site ($r^2 > 0.95$) on a day when the mean soil temperature was 3°C at 10 cm, the coldest sampling day in the study. In each case, headspace [CH₄] began at ambient levels and fell to subambient levels. Other flux estimates between the months of November and May also produced negative fluxes, but the initial and final CH₄ concentrations in the headspace were slightly above ambient (>1.9 μl l$^{-1}$), and the possibility cannot be dismissed that the chambers had small leaks or were returning to a pre-disturbance equilibrium [Conrad, 1994]. Rates of net CH₄ oxidation were low (-2.3 to -0.9 mg CH₄ m$^{-2}$ d$^{-1}$), as would be expected in a soil with high moisture and low temperatures. Wetlands have been observed to switch from net sources to net sinks of atmospheric CH₄, but always in response to a deepening of the water table [Roulet et al., 1993; Happell and Chanton, 1993; Shannon and White, 1994; Pulliam, 1993; Harriss et al., 1982]. These sites apparently switched to net CH₄ sinks in response to changes in temperature.

5. Implications and Conclusions

[52] Natural and agricultural wetlands contribute 40% of CH₄ emissions to the atmosphere, yet this amount represents just 30–60% of the CH₄ they produce because of microbial CH₄ oxidation. Our results suggest that future soil warming will not change CH₄ oxidation efficiency on sites where the temperature-response characteristics of methanogens and methanotrophs are similar, and oxidation is CH₄-limited. It remains to be determined whether these characteristics are typical of certain classes of wetland ecosystems such as temperate and tropical swamps.

[53] We propose that CH₄ oxidation efficiency is generally higher in wetland forests than marshes because forests occupy drier positions on the landscape, and CH₄ limitation develops in response to a relatively deep aerobic zone. It follows that wetland forests are more likely than marshes to be CH₄-limited. About 60% of global wetlands are forested bogs or forested swamps [Matthews and Fung, 1987].

[54] Methanotrophy at these sites may be CH₄-limited in part because the soils are weak producers of CH₄. However, our data suggest that CH₄ limitation could also occur on sites that support high rates of CH₄ production. Estimates of flux-weighted and plot-wise CH₄ oxidation efficiency were statistically similar because the plots with high rates of CH₄ emission also had high rates of oxidation. Additional in situ studies in forested wetlands are needed to establish the generality of our observations. Projecting the effects of rising temperature on methane cycling in wetland soils will also require models that account for temperature-dependent changes in gas diffusion rates, gas transport through plants, methanotroph population sizes, and O₂ competition from microbes or chemical oxidation.

Table 2. Field Estimates of the CH₄ Oxidation Efficiency of Wetland Soils

<table>
<thead>
<tr>
<th>Environment</th>
<th>Method</th>
<th>Percent Oxidation</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater tidal swamp (Lower site)</td>
<td>CH₃F-block</td>
<td>52 ± 29</td>
<td>this study</td>
</tr>
<tr>
<td>Freshwater tidal swamp (Upper site)</td>
<td>CH₃F-block</td>
<td>79 ± 24</td>
<td>this study</td>
</tr>
<tr>
<td>Freshwater tidal swamp (UF-NB)</td>
<td>difference²</td>
<td>86 ± 21</td>
<td>Kelley et al. [1995]</td>
</tr>
<tr>
<td>Freshwater tidal swamp (UF-FB)</td>
<td>difference²</td>
<td>89 ± 16</td>
<td>Kelley et al. [1995]</td>
</tr>
<tr>
<td>Freshwater tidal swamp (GI-NB)</td>
<td>difference²</td>
<td>91 ± 7</td>
<td>Kelley et al. [1995]</td>
</tr>
<tr>
<td>Freshwater tidal swamp (GI-FB)</td>
<td>difference²</td>
<td>96 ± 6</td>
<td>Kelley et al. [1995]</td>
</tr>
<tr>
<td>Bottomland hardwood swamp</td>
<td>O₂/N₂, 2M picolinic acid²</td>
<td>46 ± 24</td>
<td>Happell and Chanton [1993]</td>
</tr>
<tr>
<td>Cypress-Tupelo Swamp, floodwater</td>
<td>bottle incubations</td>
<td>50</td>
<td>Pulliam [1993]</td>
</tr>
<tr>
<td>Freshwater Typha latifolia marsh</td>
<td>CH₃F-block</td>
<td>47 ± 17</td>
<td>Epp and Chanton [1993]</td>
</tr>
<tr>
<td>Freshwater marsh, peat surface</td>
<td>C₂H₂-block</td>
<td>43</td>
<td>King [1996]</td>
</tr>
<tr>
<td>Freshwater marsh, rhizosphere</td>
<td>C₂H₂-block</td>
<td>27 ± 6</td>
<td>King [1996]</td>
</tr>
<tr>
<td>Freshwater marsh, Sagittaria lancifolia rhizosphere</td>
<td>CH₃F-block</td>
<td>19 ± 8</td>
<td>Lombardi et al. [1997]</td>
</tr>
<tr>
<td>Freshwater marsh, Pontederia cordata rhizosphere</td>
<td>CH₃F-block</td>
<td>22 ± 22</td>
<td>Lombardi et al. [1997]</td>
</tr>
<tr>
<td>Freshwater marsh, Typha latifolia rhizosphere</td>
<td>CH₃F-block</td>
<td>55 ± 18</td>
<td>Lombardi et al. [1997]</td>
</tr>
<tr>
<td>Rice rhizosphere</td>
<td>CH₃F-block</td>
<td>0</td>
<td>Denier van der Gon and New [1996]</td>
</tr>
<tr>
<td>Temperate Sphagnum bog, July to Aug.</td>
<td>soil CH₄ profiles</td>
<td>89</td>
<td>Fechner and Hemond [1992]</td>
</tr>
<tr>
<td>Temperate Sphagnum bog, Oct. to Nov.</td>
<td>soil CH₄ profiles</td>
<td>24</td>
<td>Fechner and Hemond [1992]</td>
</tr>
<tr>
<td>Carex-dominated fen</td>
<td>isotope mass balance</td>
<td>20 ± 11</td>
<td>Popp and Chanton [1999]</td>
</tr>
<tr>
<td>Carex-dominated fen</td>
<td>CH₃F-block</td>
<td>15 ± 15</td>
<td>Popp et al. [2000]</td>
</tr>
<tr>
<td>Carex-dominated fen</td>
<td>difference²</td>
<td>78 ± 12</td>
<td>Popp et al. [2000]</td>
</tr>
</tbody>
</table>

²Errors are standard deviations.

²Calculated as the difference between potential CH₄ production and net CH₄ emissions.
Appendix A

Table A1. Paired t-Tests of In Situ Methane Emissions Before and After Exposure to Either Ambient Air (Control) or 1.5% CH₃F (Treated)

<table>
<thead>
<tr>
<th>Date</th>
<th>Treat</th>
<th>n</th>
<th>Pre-Treatment Flux, mg CH₄ m⁻² d⁻¹</th>
<th>Post-Treatment Flux, mg CH₄ m⁻² d⁻¹</th>
<th>P-value</th>
<th>Oxidation, %</th>
<th>Plot-Wise Oxidation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Site</td>
<td>Upper Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 3, 1994</td>
<td>Air 4</td>
<td>1.21 (1.33)</td>
<td>1.02 (1.39)</td>
<td>0.8202</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃F 10</td>
<td>1.53 (1.63)</td>
<td>2.89 (2.53)</td>
<td>0.0026</td>
<td>47.0</td>
<td>48.9 (30.8)</td>
<td></td>
</tr>
<tr>
<td>May 3, 1994</td>
<td>Air 10</td>
<td>1.48 (2.20)</td>
<td>3.19 (2.70)</td>
<td>0.0232</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>June 30, 1994</td>
<td>Air 10</td>
<td>5.89 (5.99)</td>
<td>4.67 (3.61)</td>
<td>0.0006</td>
<td>41.1</td>
<td>50.0 (30.4)</td>
<td></td>
</tr>
<tr>
<td>Aug. 27, 1994</td>
<td>Air 10</td>
<td>5.36 (6.13)</td>
<td>21.36 (29.97)</td>
<td>0.0001</td>
<td>75.6</td>
<td>72.3 (22.1)</td>
<td></td>
</tr>
<tr>
<td>Oct. 9, 1994</td>
<td>Air 10</td>
<td>6.72 (7.58)</td>
<td>5.83 (5.21)</td>
<td>0.8945</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Oct. 29, 1994</td>
<td>Air 10</td>
<td>6.92 (7.92)</td>
<td>24.66 (45.12)</td>
<td>0.0001</td>
<td>71.9</td>
<td>59.9 (24.7)</td>
<td></td>
</tr>
<tr>
<td>Jan. 10, 1995</td>
<td>Air 10</td>
<td>5.26 (4.86)</td>
<td>8.74 (7.44)</td>
<td>0.0011</td>
<td>39.8</td>
<td>46.5 (9.8)</td>
<td></td>
</tr>
<tr>
<td>March 9, 1995</td>
<td>Air 9</td>
<td>1.04 (0.97)</td>
<td>1.06 (0.92)</td>
<td>0.5710</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>May 5, 1995</td>
<td>Air 10</td>
<td>3.79 (3.83)</td>
<td>2.91 (2.85)</td>
<td>0.3827</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>May 1, 1994</td>
<td>Air 9</td>
<td>0.19 (0.19)</td>
<td>0.10 (0.00)</td>
<td>0.1878</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>June 30, 1994</td>
<td>Air 9</td>
<td>6.43 (7.50)</td>
<td>1.64 (1.67)</td>
<td>0.0167</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Aug. 27, 1994</td>
<td>Air 8</td>
<td>1.51 (2.01)</td>
<td>15.23 (11.95)</td>
<td>0.0001</td>
<td>90.1</td>
<td>91.5 (4.4)</td>
<td></td>
</tr>
<tr>
<td>Nov. 13, 1994</td>
<td>Air 9</td>
<td>3.17 (2.92)</td>
<td>5.70 (9.76)</td>
<td>0.2884</td>
<td>...</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Jan. 8, 1995</td>
<td>Air 8</td>
<td>0.18 (0.25)</td>
<td>0.50 (0.48)</td>
<td>0.0018</td>
<td>64.0</td>
<td>75.3 (28.1)</td>
<td></td>
</tr>
<tr>
<td>March 11, 1995</td>
<td>Air 9</td>
<td>3.57 (9.52)</td>
<td>13.65 (35.33)</td>
<td>0.0001</td>
<td>73.8</td>
<td>82.6 (14.1)</td>
<td></td>
</tr>
<tr>
<td>June 2, 1995</td>
<td>Air 9</td>
<td>1.96 (1.78)</td>
<td>5.65 (3.92)</td>
<td>0.0001</td>
<td>65.3</td>
<td>68.6 (11.6)</td>
<td></td>
</tr>
</tbody>
</table>

* Values are means (SD).

**Probability that the pre-treatment:post-treatment flux ratio was significantly different from zero in a paired t-test. Based on Bonferroni’s Correction, P-values <0.0063 at the Lower Site and <0.0071 at the Upper Site are significantly different at α = 0.05; ns = no significant difference.

References

[55] Acknowledgments. This work was supported by NSF Dissertation Improvement Grant DEB 93-11142 and a NASA Global Change Fellowship to J. P. M. We thank Dwight Billings, Jeff Chanton, Norm Christensen, Chris Martens, Scott Neubauer, and Curt Richardson for reviewing earlier drafts of the manuscript.

