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Summary

1. Species occurrence is influenced by environmental conditions and the presence of other species. Current

approaches for multispecies occupancy modelling are practically limited to two interacting species and often

require the assumption of asymmetric interactions.We propose amultispecies occupancymodel that can accom-

modate two ormore interacting species.

2. We generalize the single-species occupancy model to two or more interacting species by assuming the latent

occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each

potential latent occupancy state with both a multinomial logit and a multinomial probit model and present

details of aGibbs sampler for the latter.

3. As an example, we model co-occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox

(Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout

6Mid-Atlantic states in the easternUnited States. We found evidence for pairwise interactions among most spe-

cies, and the probability of some pairs of species occupying the same site varied along environmental gradients;

for example, occupancy probabilities of coyote and grey fox were independent at sites with little human distur-

bance, but these two species weremore likely to occur together at sites with high human disturbance.

4. Ecological communities are composed of multiple interacting species. Our proposed method improves our

ability to draw inference from such communities by permitting modelling of detection/non-detection data from

an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method

permits modelling the probability two or more species occur together as a function of environmental variables.

These advancements represent an important improvement in our ability to draw community-level inference from

multiple interacting species that are subject to imperfect detection.

Key-words: community, competition, eMammal, interspecific interactions, multinomial logit,

multinomial probit, multivariate Bernoulli, occupancymodelling, predation

Introduction

Understanding factors that influence the distribution of species

is of fundamental interest in wildlife conservation andmanage-

ment. A common sampling design when studying factors that

influence where species occur is to repeatedly survey a selection

of sample units and record detection/non-detection of that spe-

cies. Failure to detect a species may occur because the species is

absent from the sample unit or because the species was present

within the sample unit but remained undetected (MacKenzie

et al. 2002). A class of zero-inflated binomial models (hereafter

occupancy models, MacKenzie et al. 2002, 2006) have proven

useful for modelling factors influencing species occupancy

probabilities in the face of imperfect detection.

Species occupancy probabilities are often influenced by envi-

ronmental factors and the presence or absence of interacting

species; for example, habitat selection in prey species can be

influenced by the presence of predators (Willems & Hill 2009;

Coleman&Hill 2014), competitive exclusionmay prevent infe-

rior competitors from occupying habitat (Sherry & Holmes

1988; Wang et al. 2015a), or habitat use may be facilitated by

the presence of another species (Veblen 2012). Failure to

account for interspecific interactions may lead to biased infer-

ence when modelling habitat associations (McLoughlin et al.

2010) and has been suggested as a primary cause for poor per-

formance of some species distribution models at large geo-

graphic scales (Byholm et al. 2012). Several methods that

account for dependence between two or more interacting spe-

cies have been proposed (e.g. Latimer et al. 2009; Ovaskainen,

Hottola & Siitonen 2010; Pollock et al. 2014) though none of*Correspondence author. E-mail: christopher.rota@mail.wvu.edu
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these methods account for imperfect detection. Additionally,

several multispecies occupancy models that account for imper-

fect detection have been proposed (e.g. MacKenzie, Bailey &

Nichols 2004; Richmond, Hines & Beissinger 2010; Waddle

et al. 2010; Rota et al. 2016b), but these methods have been

limited to two interacting species.

The first approach for modelling occupancy probabilities

of two interacting species while accounting for imperfect

detection was proposed by MacKenzie, Bailey & Nichols

(2004). While this model has proven useful for modelling

co-occurrence probabilities of a variety of species (e.g.

Bailey et al. 2009; Steen et al. 2014), it nonetheless has sev-

eral limitations. In particular, their parameterization

included a ‘species interaction factor’ (SIF) term that, while

attempting to quantify the degree of dependence in occur-

rence probability between two species, can also lead to

numerical difficulties (MacKenzie, Bailey & Nichols 2004).

In fact, MacKenzie, Bailey & Nichols (2004) were unable to

achieve convergence when fitting a covariate model of co-

occurrence between two salamander species. In response,

both Waddle et al. (2010) and Richmond, Hines & Beis-

singer (2010) proposed alternative two-species occupancy

models that are numerically stable, but which assume asym-

metric interactions between two species (e.g. one species is

dominant over the other). Interspecific interactions occur

between numerous species within a community, and as the

size and scope of many ecological monitoring programmes

increase, there is a clear need to simultaneously model occu-

pancy dynamics for numerous species; for example, recent

studies by Steen et al. (2014), Lesmeister et al. (2015), and

Wang, Allen & Wilmers (2015b) all investigate occupancy

dynamics of more than two interacting species. Although

these investigators used state-of-the art techniques, they

were nonetheless constrained to fit multiple two-species

models, when a single model would have been able to

simultaneously accommodate interactions among all species.

We propose a generalization of single-season occupancy

models that can accommodate two or more interacting

species. Our model assumes the latent occupancy state is a

multivariate Bernoulli random variable (Dai, Ding &

Wahba 2013), which allows construction of numerically

stable covariate models of species co-occurrence that do not

require a priori assumptions of asymmetric interactions.

Furthermore, assuming a latent multivariate Bernoulli occu-

pancy state provides explicit conditions for interspecific

independence without the need to include additional param-

eters (i.e. MacKenzie, Bailey & Nichols [2004]’s SIF) and

pairwise covariance/correlation can be obtained using

results from basic probability theory. Finally, our model

permits ecologists to model the probability that two or

more species occupy the same site as a function of covari-

ates, a novel development among occupancy models and

joint species distribution models. As an example, we model

co-occurrence probability of bobcat (Lynx rufus), coyote

(Canis latrans), grey fox (Urocyon cinereoargenteus) and red

fox (Vulpes vulpes) using camera trap data from 6 Mid-

Atlantic states in the eastern United States.

Materials andmethods

SAMPLING PROTOCOL

The basic sampling protocol and assumptions for a multispecies occu-

pancy model are identical to the single-species case (MacKenzie et al.

2006). Briefly, a set of n sites is randomly selected from a population

of interest, and each site i is surveyed Ji times. During each survey,

detection/non-detection of S focal species is recorded. Detection/non-

detection data are partial observations of the underlying occupancy

state, which we assume can be modelled as a multivariate Bernoulli

random variable.

MULTISPECIES OCCUPANCY MODEL

The multispecies occupancy model we propose generalizes MacKen-

zie et al.’s (2002) single-species model to 2 or more species. As with

the single-species case, we link a detection model with a partially

observed, latent process model. We model detections (ysit ¼ 1) and

non-detections (ysit ¼ 0) of species s at site i during survey t, condi-

tional on the presence of species s (zs ¼ 1), as a Bernoulli random

variable:

ysitjzsi �BernoulliðzsipsitÞ:

The conditional detection probability psit can be modelled as a func-

tion of covariates with a variety of link functions, for example,

psit ¼ logit�1ðw0
sitasÞ, wherewsit is aD-dimensional vector of covariates

thought to influence detection probability and as isD-dimensional vec-

tor of slope parameters.Wemodel the latent occupancy state of species

s at site i as amultivariate Bernoulli random variable:

Zi �MVBðWiÞ;
where Zi ¼ fz1i; z2i; :::; zSig is an S-dimensional vector of 1’s and

0’s denoting the latent occupancy state of all S species and Wi is a

2S-dimensional vector denoting the probability of all possible

sequences of 1’s and 0’s Zi can attain, such that
P2S

a¼1 wai ¼ 1.

Note that conditional detection probabilities can be allowed to vary

both as a function of the presence/absence of other species, as in

MacKenzie, Bailey & Nichols (2004) and Waddle et al. (2010) or as

a function of detection/non-detection of other species as in Rich-

mond, Hines & Beissinger (2010).

THE MULTIVARIATE BERNOULLI D ISTRIBUTION

The multivariate Bernoulli distribution is a generalization of the

well-known Bernoulli distribution to >1 dimension (Dai, Ding &

Wahba 2013). We begin by describing the univariate Bernoulli dis-

tribution. Then, for ease of exposition, we present results from the

bivariate Bernoulli distribution, though this model readily general-

izes to 3 or more dimensions. When S = 1 (i.e. single-species occu-

pancy models),

z�BernoulliðwÞ;
with corresponding probabilitymass function

fðzjwÞ ¼ wzð1� wÞ1�z

¼ exp
�
z logð w

1�wÞ þ logð1� wÞ�:
The quantity f ¼ logð w

1�wÞ is the log odds a species occupies a site

and is often referred to as the ‘natural parameter’ (Schabenberger &

Pierce 2002, p. 305). In applications assuming a logit link, the natural

parameter is modelled as a function of covariates:
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f ¼ log
� w
1� w

�
¼ x0b;

where x is a vector of covariates and b is a conformable vector of

parameters. When modelling the natural parameter as a linear func-

tion, slope parameters are interpreted as the log odds ratio of occu-

pancy probability resulting from a 1-unit change in their associated

variables.When S = 2,

Z�MVBðw11;w10;w01;w00Þ;
with corresponding probabilitymass function

fðZjw11;w10;w01;w00Þ¼wz1z2
11 wz1ð1�z2Þ

10 wð1�z1Þz2
01 wð1�z1Þð1�z2Þ

00

¼ exp

�
logðw00Þþ z1 log

�
w10

w00

�
þz2 log

�
w01

w00

�

þz1z2 log
�
w11w00

w01w10

��
:

Wenowdefine the natural parameters f1; f2; f12 as

f1 ¼ log
�

w10

w00

�
f2 ¼ log

�
w01

w00

�
f12 ¼ log

�
w11w00

w01w10

�
:

Covariate information can be included by modelling the natural

parameters as linear functions:

f1 ¼ x0aa
f2 ¼ x0bb
f12 ¼ x0cc;

eqn 1

where xa;xb; and xc are vectors of covariates (of possibly different

dimensions) and a, b, and c are conformable vectors of slope parame-

ters. Note that pairwise independence between z1 and z2 occurs if

f12 ¼ 0. Finally, the natural parameters can be used to obtain the

probability of each combination of 1’s and 0’s via themultinomial logit

link:

w11 ¼ expðf1þf2þf12Þ
1þexpðf1Þþexpðf2Þþexpðf1þf2þf12Þ ;

w10 ¼ expðf1Þ
1þexpðf1Þþexpðf2Þþexpðf1þf2þf12Þ ;

w01 ¼ expðf2Þ
1þexpðf1Þþexpðf2Þþexpðf1þf2þf12Þ ;

w00 ¼ 1

1þexpðf1Þþexpðf2Þþexpðf1þf2þf12Þ :

eqn 2

Quantities of interest, such as the marginal probability of occurrence

for species s; pairwise covariance; or the probability of occurrence of

one species, conditional on the presence or absence of another species,

can be obtained using results from basic probability theory; for

example, when S = 2, the marginal probability of occurrence for

species 1 is:

Pðz1 ¼ 1Þ ¼ w11 þ w10; eqn 3

the covariance between species 1 and 2 is:

covðz1; z2Þ ¼ w11w00 � w10w01;

and the probability of occurrence for species 1, conditional on the

presence or absence of species 2, is:

Pðz1 ¼ 1jz2Þ ¼
w1z2

w1z2 þ w0z2

: eqn 4

Slope parameters of linear models from eqn 1 have direct

interpretations in terms of conditional occupancy probabilities. To see

this, assume the natural parameters are linear functions of 1 covariate

each:

f1 ¼ a0 þ a1x;
f2 ¼ b0 þ b1x;
f12 ¼ c0 þ c1x:

From eqn 4, and subsequent algebraic manipulation of probabili-

ties presented in eqn 2, we obtain all possible conditional probabilities

of occurrence:

Pðz1 ¼ 1jz2 ¼ 0Þ ¼ w10

w10 þw00
¼ logit�1ða0 þ a1xÞ;

Pðz1 ¼ 1jz2 ¼ 1Þ ¼ w11

w11 þw01
¼ logit�1

�ða0 þ c0Þ þ ða1 þ c1Þx
�
;

Pðz2 ¼ 1jz1 ¼ 0Þ ¼ w01

w01 þw00
¼ logit�1ðb0 þ b1xÞ;

Pðz2 ¼ 1jz1 ¼ 1Þ ¼ w11

w11 þw10
¼ logit�1

�ðb0 þ c0Þ þ ðb1 þ c1Þx
�
:

Writing the conditional occupancy probabilities in this manner

demonstrates that slope parameters associated with f1 and f2 (i.e. a1
and b1 in our example) can be interpreted as log odds ratios of occu-

pancy probabilities of each species, conditional on the absence of the

other species, resulting from a 1-unit change in x. Additionally, it can

be seen that slope parameters associatedwith f12 (i.e. c1 in our example)

modify the relationship between x and the occupancy probability of

one species in the presence of the other species. More formally, c1 can
be interpreted as the difference in log odds ratios of occupancy prob-

ability of one species resulting from a 1-unit change in xwhen the other

species is present and absent (Appendix S1).

Different hypotheses regarding the influence of environmental vari-

ables and species interactions can be explored by assuming different

functional forms for the natural parameters; for example, there may

be interest in exploring evidence for species interactions while account-

ing for the effects of environmental variables. This may be accom-

plished by comparing a model assuming species occur independently

(e.g. assuming f1 ¼ a0 þ a1x; f2 ¼ b0 þ b1x; and f12 ¼ 0) with a

model that assumes conditional probabilities of occurrence of one spe-

cies are different in the presence or absence of the other species (e.g.

assuming f1 ¼ a0 þ a1x; f2 ¼ b0 þ b1x; and f12 ¼ c0). An advantage

of the multivariate Bernoulli model relative to other joint species dis-

tribution models is that it allows the influence of environmental vari-

ables on one species to differ in the presence and absence of another

species; for example, there may be interest in evaluating evidence that

the probability two species occur together varies along an environ-

mental gradient. This may be accomplished by comparing a model

assuming the probability of one species, conditional on the presence

of the other, is also function of x (e.g. assuming f1 ¼ a0 þ a1x;
f2 ¼ b0 þ b1x; and f12 ¼ c0 þ c1x).

There may also be interest in quantifying the relative importance of

environmental variables vs. interspecific interactions in influencing the

probability of occurrence for individual species. This can be accom-

plished by calculating odds ratios of predicted probability of use of spe-

cies 1 conditional on the presence and absence of species 2, which gives

an interpretation identical to slope parameters of linear predictors in

occupancy and detection models. If q denotes the probability an event

will happen, the odds of that event is defined as q/(1�q). The odds ratio

is then defined as the odds of one event occurring divided by the odds

of another event occurring; for example, if covariate h takes baseline

value x, we can calculate the odds ratio associated with the presence or

absence of species 2:

ORsp ¼ oddsðz1 ¼ 1jz2 ¼ 1; h ¼ xÞ
oddsðz1 ¼ 1jz2 ¼ 0; h ¼ xÞ ;

and the odds ratio associatedwith a change in covariate h ofDx units:

ORh ¼ oddsðz1 ¼ 1jz2 ¼ 0; h ¼ xþ DxÞ
oddsðz1 ¼ 1jz2 ¼ 0; h ¼ xÞ :

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 1164–1173
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If desired, logarithms of odds ratios can be obtained, which produces

a quantity with an interpretation similar to that of slope parameters of

linear predictors. Insight into the relative strength of interspecific inter-

actions vs. environmental variables can then be gained by comparing

the absolutemagnitude of logðORspÞ relative to logðORhÞ, for example

by calculating the probability j logðORhÞj[ j logðORspÞj from poste-

rior samples in a Bayesian analysis. Note that care must be taken in

selection of ameaningfulDx when h is a continuous variable.

The multispecies occupancy model developed above assumes detec-

tion and occurrence probabilities are modelled as a function of covari-

ates via a multinomial logit link function. Alternatively, this model can

be specified asmultinomial probit regression, which allows exploitation

of data-augmentation techniques and Gibbs sampling (Albert & Chib

1993; Dorazio & Rodr�ıguez 2012; Johnson et al. 2013; Rota et al.

2016b). See Appendix S2 for a description of a multivariate probit

regressionmodel and details for constructing aGibbs sampler.

EXAMPLE: CO-OCCURRENCE OF MESOCARNIVORES IN

THE MID-ATLANTIC , USA

As an example, we fit the multispecies occupancy model to detection/

non-detection data of bobcat, coyotes, grey fox and red fox obtained

from camera traps deployed as part of the eMammal citizen science

project (McShea et al. 2016; Rota et al. 2016a). These species are

common throughout the south-eastern United States, are of similar

body size and compete directly for small prey. Camera traps with

motion detectors and infrared flash (Reconyx models RC55, PC800

and PC900; Reconyx, Inc. Holmen, WI, USA; and Bushnell Trophy

Cam HD, Bushnell Outdoor Products, Overland Park, KS, USA)

were deployed in 32 parks and protected areas across 6 Mid-Atlantic

States and the District of Columbia. Between 27 and 80 camera traps

were deployed within each park or protected area, generally in groups

of 3. Within each group of 3, one camera was placed on a trail,

another camera was placed 50 m from a trail, and the third was

placed 100–200 m from a trail. Camera clusters in urban parks were

spaced at least 100 m apart, while camera clusters in larger non-urban

parks and protected areas were spaced at least 200 m apart. The

assumption of independence between sites is unlikely to hold exactly

for this data set (Rota et al. 2016b), though accounting for spatial

dependence when modelling >2 species is still an open research prob-

lem. Cameras were attached to trees 40 cm above the ground and

were deployed for 1–71 (mean = 22) consecutive days between August

2012 and December 2013. Data from cameras that were inadvertently

placed too high or too low were discarded. At each camera site, the

maximum distance the camera would trigger on a person (detection

distance) was recorded. Citizen science volunteers set all cameras and

identified animals in pictures, which were later confirmed by expert

reviewers. A species was then considered detected at a camera trap

during a given date if at least 1 photograph was obtained on that date,

and was considered undetected otherwise. See Kays et al. (2015) and

McShea et al. (2016) for additional details.

We fit a small set of candidate models meant to reflect hypotheses

regarding the effects of interspecific interactions on occupancy and

detection processes. For this example, we were primarily interested in

the influence of human disturbance in occupancy probability as each

of these species differ in their ability to infiltrate human-dominated

landscapes (Lesmeister et al. 2015). We included three measures of

human disturbance as covariates: the average daily number of hikers

photographed at each camera trapping site; housing density in the sur-

rounding 5 km (Stewart & Radeloff 2012); and the proportion of area

disturbed or modified within a 5-km radius between 2001 and 2006

(Fry et al. 2011). We controlled for geographic variation in occupancy

probability by including latitude and longitude of camera trap sites,

and their interaction, as covariates. Our first set of models (models

M1, M2, and M3) all assume species-specific detection probabilities

are a function of whether a camera was on or off a trail and the total

detection distance of the camera. Model M1 reflects the hypothesis

that all four species occur independently and that marginal occupancy

probabilities for each species are a function of geographic coordinates

and a single human disturbance covariate (Table 1). We modelled

coyote and grey fox marginal occupancy probabilities as a function of

housing density in the surrounding 5 km because Lesmeister et al.

(2015) found marginal occupancy probabilities were related to density

of urban patches and distance to the nearest human structure, respec-

tively. We modelled bobcat and red fox marginal occupancy probabil-

ities as a function of hiker density because Wang, Allen & Wilmers

(2015b) found bobcat activity was related to intensity of human trail

use and Rota et al. (2016b) found red fox marginal occupancy proba-

bility was related to the number of hikers. Model M2 still assumes

occupancy probabilities are a function of geographic coordinates and

human disturbance, but additionally reflects the hypothesis that spe-

cies exhibited constant pairwise dependence. Model M3 reflects the

hypothesis that the relationship between human disturbance and

occupancy probabilities for each species varies in the presence and

absence of each of the other species. We modelled the probability that

bobcats and coyote, coyote and grey fox, and grey fox and red fox

occur together as a function of the proportion of recently disturbed

habitat within 5 km; we modelled the probability that bobcat and

grey fox, bobcat and red fox, and coyote and red fox occur together

as a function of housing density within 5 km. There is little to guide

decisions of what variables to use when modelling the probability that

two or more of these species occur together, as this is one of the

unique features of our model. Although we were interested in evaluat-

ing how the probability two species occupy the same site varies as a

function of human disturbance, we were also interested in building

parsimonious models for the purpose of this example. A more com-

plete analysis could include more variables thought to influence the

probability two or more species occur together. Our second set of

models (models M4, M5 and M6) reflect the same set of hypotheses

regarding the occupancy process outlined for models M1, M2 and

M3, respectively, but now assume that detection probabilities of bob-

cat, grey fox and red fox are also a function of the latent presence/

absence of coyotes. Coyotes are larger and potentially competitively

superior to the other species considered and may alter detectability of

interacting species when present. Note that we did not include higher-

order interactions in any of our models (i.e. we assumed

f123 ¼ f124 ¼ f134 ¼ f234 ¼ f1234 ¼ 0), meaning we assumed the condi-

tional probability 3 or more species occurred together was purely a

function of species-specific (f1, f2, f3, f4) and pairwise interaction

(f12, f13, f14, f23, f24, f34) parameters. We assumed logistic (0, 1) prior

distributions for all parameters. We selected this prior distribution for

slope parameters because it effectively induces a uniform distribution

on the probability scale when assuming a logit link; that is, if h� logis-

tic(0,1), logit�1ðhÞ� uniformð0; 1Þ.
We compared our candidate models with Watanabe–Akaike Infor-

mation Criterion (WAIC), a fully Bayesian information criterion anal-

ogous to Akaike Information Criterion (AIC) (Gelman et al. 2014;

Hooten & Hobbs 2015). We fit models in STAN v. 2.8.0 (Stan Develop-

ment Team 2015b) via the RSTAN v. 2.8.0 interface (Stan Development

Team 2015a) in R v. 3.2.2. (R Core Team 2015). We ran 2 chains for

each model, using trace plots to determine an adequate burn-in phase

and subsequently running chains until the Brooks–Gelman–Rubin

convergence diagnostic indicated adequate convergence (R̂� 1�1,
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Gelman et al. 2014). All models achieved adequate convergence by

running for 1000 iterations following a burn-in phase of 1000

iterations.

Results

The entire data set consisted of 1906 camera trap sites and

42 556 trap days. We obtained 429, 1237, 176 and 590 detec-

tion of bobcats, coyotes, grey fox and red fox, respectively, at

264, 540, 102 and 218 sites, respectively. Model selection pro-

vided clear evidence for interspecific dependence among the

four species considered. The two top models (M3 and M2),

ranked approximately 1 WAIC unit apart (Table 2), both

assumed pairwise dependence between species. The only differ-

ences between these models were that M3 assumed the proba-

bilities of two species occupying the same site varied as a

function of human disturbance, while M2 assumed constant

probabilities of two species of occupying the same site. The

remaining models were ranked ≥10 WAIC units from models

M3 andM2, indicating there was no strong evidence that occu-

pancy probabilities were independent between species (model

M1) or detection probabilities of bobcat, grey fox and red fox

varied as a function of latent presence/absence of coyotes

(models M4, M5 and M6). Hereafter, we report results from

our top ranked model,M3, while acknowledging the presence

ofmodel selection uncertainty betweenmodelsM3 andM2.

Daily detection probability of all species was higher on-trail

than off-trail and varied as a function of camera detection dis-

tance for coyote and grey fox (Fig. 1). Marginal occupancy

probabilities of all species in parks and protected areas varied

across the study region. Bobcat and coyote were the two most

widespread species: occupancy probability of bobcat was

greatest in parks and protected areas in the north-western por-

tion of the study area (Virgina and Tennessee), and occupancy

probability of coyote was greatest in parks and protected areas

in the western portion of the study area (Tennessee; Fig. 2).

While grey fox and red fox were both detected throughout the

study area, occupancy probability of grey fox in parks and pro-

tected areas was greatest in the southern portion of the study

area (North Carolina and South Carolina), occupancy proba-

bility of red fox in parks and protected areas was greatest in

the north-eastern portion of the study area (Maryland and

Virginia), and these two species exhibited limited geographic

overlap.

Bobcat, grey fox and red fox exhibited consistent, though

modest, relationships betweenmarginal occupancy probability

and anthropogenic disturbance variables. Bobcat mean mar-

ginal occupancy probability consistently declined with increas-

ing levels of anthropogenic disturbance, with the strongest

Table 1. Specification of natural parameters and conditional probabilities for the 6 candidatemodels considered in this study

Species

Natural parameter /

Conditional probability

Models1

M1 &M4 M2 &M5 M3 &M6

Bobcat f1 ¼ a1 þ b1hikeþ x0c1 a1 þ b1hikeþ x0c1 a1 þ b1hikeþ x0c1
Pðz1 ¼ 1jZ�1 ¼ 0Þ ¼ logit�1ðf1Þ logit�1ðf1Þ logit�1ðf1Þ

Coyote f2 ¼ a2 þ b2hdenþ x0c2 a2 þ b2hdenþ x0c2 a2 þ b2hdenþ x0c2
Pðz2 ¼ 1jZ�2 ¼ 0Þ ¼ logit�1ðf2Þ logit�1ðf2Þ logit�1ðf2Þ

Grey fox f3 ¼ a3 þ b3hdenþ x0c3 a3 þ b3hdenþ x0c3 a3 þ b3hdenþ x0c3
Pðz3 ¼ 1jZ�3 ¼ 0Þ ¼ logit�1ðf3Þ logit�1ðf3Þ logit�1ðf3Þ

Red fox f4 ¼ a4 þ b4hikeþ x0c4 a4 þ b4hikeþ x0c4 a4 þ b4hikeþ x0c4
Pðz4 ¼ 1jZ�4 ¼ 0Þ ¼ logit�1ðf4Þ logit�1ðf4Þ logit�1ðf4Þ

Bobcat &Coyote f12 ¼ 0 d12 d12 þ g12dist

PðZ1;2 ¼ 1jZ3;4 ¼ 0Þ ¼ logit�1ðf1 þ f2Þ logit�1ðf1 þ f2 þ f12Þ logit�1ðf1 þ f2 þ f12Þ
Bobcat &Grey fox f13 ¼ 0 d13 d13 þ g13hden

PðZ1;3 ¼ 1jZ2;4 ¼ 0Þ ¼ logit�1ðf1 þ f3Þ logit�1ðf1 þ f3 þ f13Þ logit�1ðf1 þ f3 þ f13Þ
Bobcat &Red fox f14 ¼ 0 d14 d14 þ g14hden

PðZ1;4 ¼ 1jZ2;3 ¼ 0Þ ¼ logit�1ðf1 þ f4Þ logit�1ðf1 þ f4 þ f14Þ logit�1ðf1 þ f4 þ f14Þ
Coyote &Grey fox f23 ¼ 0 d23 d23 þ g23dist

PðZ2;3 ¼ 1jZ1;4 ¼ 0Þ ¼ logit�1ðf2 þ f3Þ logit�1ðf2 þ f3 þ f23Þ logit�1ðf2 þ f3 þ f23Þ
Coyote &Red fox f24 ¼ 0 d24 d24 þ g24hden

PðZ2;4 ¼ 1jZ1;3 ¼ 0Þ ¼ logit�1ðf2 þ f4Þ logit�1ðf2 þ f4 þ f24Þ logit�1ðf2 þ f4 þ f24Þ
Grey fox&Red fox f34 ¼ 0 d34 d34 þ g34dist

PðZ3;4 ¼ 1jZ1;2 ¼ 0Þ ¼ logit�1ðf3 þ f4Þ logit�1ðf3 þ f4 þ f34Þ logit�1ðf3 þ f4 þ f34Þ

1x is a vector of length 3 corresponding to latitude, longitude and their interaction, and c is a conformable vector of slope parameters.

hike represents the average daily number of hikers photographed at a camera trap site.

hden represents housing density in the surrounding 5 km.

dist represents the proportion of recently disturbed habitat in the surrounding 5 km.

Table 2. WAICmodel ranks

Model

No. occupancy

parameters

No. detection

parameters WAIC

M3 32 12 20 065

M2 26 12 20 066

M4 20 15 20 076

M5 26 15 20 093

M1 20 12 20 106

M6 32 15 20 119
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relationship between marginal occupancy probability and the

proportion of area recently disturbed within 5 km (Fig. 3).

Grey fox and red fox mean marginal occupancy probability

consistently increased with increasing levels of anthropogenic

disturbance. Grey fox exhibited the strongest relationship

between marginal occupancy probability and proportion of

area recently disturbed, and red fox exhibited the strongest

relationship between marginal occupancy probability and

hiker density. Coyotes exhibited no strong relationships

between marginal occupancy probability and any of the

anthropogenic disturbance variables we examined.

We found evidence for interspecific interactions amongmost

species pairs.We found evidence that occupancy probability of

1 species varied only in the presence and absence of another

species for three species pairs: bobcat and red fox, coyote and

red fox, and grey fox and red fox (i.e. credible intervals of inter-

cept parameters in the linear models for f14, f24 and f34 did not

overlap 0). These constant pairwise interspecific interactions

are evident from the approximately parallel slopes presented in

Fig. 4; for example, bobcats were less likely to occur at sites

where red foxes were also present, regardless of the amount of

disturbance within 5 km. We also found evidence that the

probability two species occurred together varied as a function

of the proportion of area recently disturbed within 5 km for

two species pairs: coyote and bobcat, and coyote and grey fox

(Fig. 4). The relationship between the probability of coyote

occurrence and the proportion of area recently disturbed

within 5 km varied markedly depending on whether bobcats

and grey fox were present. At low levels of recent disturbance,

coyotes were more likely to occupy sites if bobcats were pre-

sent, and occurred largely independently of grey fox. At high

levels of recent disturbance within 5 km, however, coyotes

were more likely to occur at sites where grey fox were also pre-

sent, and occurred largely independently of bobcats. The prob-

ability that any of the two species occurred together did not

vary appreciably as a function of housing density (i.e. credible

Fig. 1. Daily detection probability of bobcat

(Lynx rufus), coyote (Canis latrans), grey fox

(Urocyon cinereoargenteus) and red fox

(Vulpes vulpes) across six states and the Dis-

trict of Columbia in the Mid-Atlantic, USA.

Lines represents the mean posterior distribu-

tions and ribbons envelop 95% credible

intervals.
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Fig. 2. Posterior mean marginal occupancy

probability of bobcat (Lynx rufus), coyote

(Canis latrans), grey fox (Urocyon cinereoar-

genteus) and red fox (Vulpes vulpes) in parks

and protected areas across six states and the

District of Columbia in the Mid-Atlantic,

USA. Black dots represent camera trap sites,

and polygons outline the six states within

which camera traps were located (Maryland,

North Carolina, South Carolina, Tennessee,

Virginia and West Virginia). All other vari-

ables are assumed fixed at their observed

mean.
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intervals of slope parameters for the housing density variables

in linear models for f13, f14 and f24 overlapped 0; see Table 1)

or hiker density.

Our ability to model the probability two species occupy

the same site as a function of covariates provided insight

into factors driving marginal occupancy probabilities that

might not have been evident otherwise; for example, we

assumed bobcat occupancy probability only varied as a

function of the proportion of area recently disturbed within

5 km when coyotes were also present (i.e. we assumed the

0·00

0·25

0·50

0·75

1·00

0·00

0·25

0·50

0·75

1·00

0·00

0·25

0·50

0·75

1·00

0·00

0·25

0·50

0·75

1·00

B
obcat

C
oyote

G
ray

fox
R

ed fox

0 50 100 150 200

Hiker Density
(hikers/day)

Housing density
(houses/7,854 ha)

Proportion recently
disturbed

0 50 100 150 0·00 0·05 0·10

M
ar

gi
na

l o
cc

up
an

cy
 p

ro
ba

bi
lit

y

Fig. 3. Marginal occupancy probability of

bobcat (Lynx rufus, row 1), coyote (Canis

latrans, row 2), grey fox (Urocyon cinereoar-

genteus, row 3) and red fox (Vulpes vulpes, row

4) in the Mid-Atlantic USA as a function of

the average number of hikers photographed

per day (column 1), housing density within a

5 km radius (column 2) and the proportion of

area recently disturbed within 5 km (column

3). Solid lines represents the mean posterior

distributions, and grey ribbons envelop 95%

credible intervals. All variables not included in

a plot are assumed fixed at their observed

mean.

Fig. 4. Occupancy probability of bobcat

(Lynx rufus), coyote (Canis latrans), grey fox

(Urocyon cinereoargenteus) and red fox

(Vulpes vulpes) conditional on the presence

and absence of each of the other species. The

occupancy probability of the species in each

column is conditional on the presence and

absence of the species in each row; for exam-

ple, the plot in column 1, row 2 represents bob-

cat occupancy probability, conditional on the

presence and absence of coyote. Lines repre-

sent posterior means, and ribbons envelop

95% credible intervals. All variables not

included in a plot are assumed fixed at their

observed mean. Additionally, conditional

plots are marginalized over the 2 species that

do not occur in a plot; for example, the plot in

column 1, row 2 sums over all combinations

of grey fox and red fox presence and absence.
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natural parameter f12 was a function of the proportion of

area recently disturbed within 5 km, while f1 was not a

function of this variable). The observed relationship

between marginal occupancy probability of bobcats and

disturbance within 5 km (Fig. 3) is therefore strongly linked

to interspecific interactions with coyotes. Additionally, the

observed relationship between coyote marginal occupancy

probability and recent disturbance within 5 km (Fig. 3)

masks the underlying interactions with bobcat and grey fox

along this gradient (Fig. 4). This ability to model interspeci-

fic interactions as a function of covariates is a novel

advancement of our proposed model and allows deeper

insights into factors driving marginal occupancy probabili-

ties that are not possible with other joint species distribu-

tion models.

Our results demonstrate that occupancy probabilities of

individual species were related both to environmental variables

and the presence or absence of other interacting species. The

relative importance of environmental variables vs. interspecific

interactions in shaping occupancy probabilities varied

strongly, however, depending on the nature of interspecific

interactions; for example, at low proportions (0�015) of recent
disturbance within 5 km coyote and grey fox occurred largely

independently of each other. Therefore, at this level of recent

disturbance, moving west from a reference location of

f37�2�N;�79�7�Wg (mean geographic coordinates of study

sites) to a new location at f37�2�N;�82�0�Wg (approximately

200 km, equivalent to 1 standard deviation of longitude vari-

ables) had a stronger influence on coyote occupancy probabil-

ity than the presence or absence of grey fox

(P½j logðORhÞj[ j logðORspÞj� ¼ 0�97). At high proportions

(0�12) of recent disturbance within 5 km, however, coyote are

much more likely to occur at sites where grey fox are also pre-

sent. At this level of recent disturbance, moving west as before

from the same reference location has a weaker influence on

coyote occupancy probability than the presence or absence of

grey fox (P½j logðORhÞj[ j logðORspÞj� ¼ 0�01). Though there
are many more relationships we could report, this example

demonstrates the additional insights that can be gained by

quantifying the relative strength of environmental variables vs.

interspecific interactions in shaping occupancy probabilities

when both processes are acting simultaneously.

Discussion

The distribution of species in space is simultaneously influ-

enced by environmental variables and interactions with other

species. Recent statistical advances have allowed ecologists to

model detection/non-detection data for two species while

accounting for imperfect detection (MacKenzie, Bailey &

Nichols 2004; Richmond, Hines & Beissinger 2010; Waddle

et al. 2010; Rota et al. 2016b) or for >2 species without

accounting for imperfect detection (Pollock et al. 2014). Our

proposed method overcomes the limitations of these recent

advances and permits simultaneous modelling of detection/

non-detection data for an arbitrary number of species while

accommodating imperfect detection. The utility of our pro-

posed model is highlighted in our example, where we found

strong evidence for interactions among multiple species pairs

that varied along environmental gradients. The ability of our

proposedmethod tomodel the probability two ormore species

occur together as a function of covariates is an additional

advancement relative to current approaches, which have either

proved numerically unstable when modelling co-occurrence

probabilities as a function of covariates (MacKenzie, Bailey &

Nichols 2004) or can only model constant pairwise covariance

between species pairs (Pollock et al. 2014). Although we can-

not directly infer mechanisms that lead to observed patterns of

co-occurrence, the ability to model the probability that two or

more species occur together does allow greater insight into pro-

cesses that shape these patterns and represents an important

improvement in our ability to model species interactions.

Finally, even though we develop this model in the context of

interspecific interactions, it could potentially be used to evalu-

ate intraspecific interactions, such as between individuals of

different sexes or age classes.

The dimension of the probability vector Ψ, which describes

the probability of all possible combinations species of pres-

ence/absence, grows exponentially as the number of species

increases. While the total number of possible combinations of

species presence/absence can be large when modelling many

species simultaneously, the number of parameters required to

fit such a model need not be large; for example, modelling

detection/non-detection data for 10 species would result in a

210 ¼ 1024-dimensional probability vector Ψ. Nonetheless, a

model for the latent occupancy state could be fit with as few as

10 parameters by assuming independence between all species

and constant occupancy probabilities. A more complex model

could continue to assume independence between species, but

also assume marginal occupancy probabilities of each species

are a function of covariates. Such amodel would be equivalent

to fitting 10 independent occupancy models. Adding yet more

complexity, a model assuming constant pairwise covariance

between all species pairs adds

�
10
2

�
¼ 45 additional parame-

ters and produces a model of the latent occupancy state that

would require as many covariance parameters as Pollock

et al. (2014). Our proposed model has the flexibility to add

yet more complexity, as appropriate, by assuming that the

probability two or more species occupy the same site is a

function of covariates. This level of complexity can also

quickly increase the number of parameters because of the

high number of pairwise (and higher-order) interactions.

Finding a parsimonious model in such situations can prove

challenging, but can be aided with model-based variable selec-

tion techniques such as indicator variable selection and rever-

sible jump MCMC (reviewed in O’Hara & Sillanp€a€a 2009

and Hooten & Hobbs 2015).

We developed our proposed method as a multispecies

‘occupancy model’ because we believe that detection/non-

detection data are subject to imperfect detection in general.

While accounting for imperfect detection is appropriate in
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many settings, Welsh, Lindenmayer & Donnelly (2013 see

also Guillera-Arroita et al. 2014) describe situations where

the mean squared error of estimated occupancy probability

is lower when assuming perfect detection. If there is reason

to assume perfect detection, the multivariate Bernoulli

model can still be used to model detection/non-detection

data of multiple species simultaneously. Indeed, the ‘MVB’

package (Dai 2013) within R (R Core Team 2015) can be

used to fit loglinear multivariate Bernoulli models that

implicitly assume perfect detection.

Ecologists have long recognized the role of interspecific

interactions in structuring ecological communities (e.g.

MacArthur 1972). Interspecific interactions may often be as

important as biotic and abiotic conditions in determining

where species occur in space and ecologists are increasingly rec-

ognizing the need to accommodate such interactions when

modelling habitat selection (McLoughlin et al. 2010) and spe-

cies distributions (Godsoe & Harmon 2012). Accounting for

interspecific interactions will be important when predicting

future distributions, particularly in response to global climate

change, as rates of range expansion and contraction are likely

to be influenced by co-occurring species within a community

(Svenning et al. 2014). By modelling occupancy probability of

multiple co-occurring species, all of which are imperfectly

detected, this model represents a step towards a better under-

standing of how interspecific interactions shape habitat

selection and species distributions.
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