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INTRODUCTION

Shallow waters in estuaries and coastal zones tradi-
tionally are considered a refuge from deep-water
benthic hypoxia (Bartol et al. 1999, Eby & Crowder
2002, Bell & Eggleston 2005) and often are targeted
for species restoration (Lenihan et al. 2001, Byers et
al. 2006); however, shallow waters are characterized
by their own set of stressors. Diel cycles occur natu-
rally in shallow waters, including those minimally
affected by human activities, and are driven by daily
or tidal cycles of respiration, photosynthesis, and
other environmental factors (Nixon & Oviatt 1973,
Kemp & Boynton 1980, Tyler et al. 2009). The magni-

tude of these cycles can vary from day to day, and
may result in periods of hypoxia (dissolved oxygen
[DO] concentrations below saturation) and environ-
mental hypercapnia (elevated pCO2 resulting in
reduced pH) (Fig. 1) (Burnett & Stickle 2001, Tyler et
al. 2009). The magnitude of DO and pH cycles are
exacerbated by eutrophication (Boynton et al. 1996,
Diaz & Rosenberg 2008) and are expected to worsen
with increasing atmospheric CO2 and consequent
increases in global temperatures (Boynton et al.
1996, Diaz & Rosenberg 2008, Rabalais et al. 2010).
Cycling DO/pH has the potential to create local vari-
ation in conditions available throughout a system,
and may have sub-lethal effects upon individuals with
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negative consequences for populations (Sagasti et al.
2001, Eby et al. 2005, Tanner et al. 2006, Breitburg
et al. 2015).

Acidification caused by elevated atmospheric CO2,
nutrient enrichment, and other sources is predicted
to decrease the relatively stable pH of open ocean
systems but the impacts on shallow water coastal
 systems are less predictable (Anthony et al. 2008,
Yamamoto-Kawai 2009, Cai 2012). In shallow waters,
the magnitude of daily fluctuations in pCO2 ranges
widely, from minimal fluctuations as in the Gironde
estuary in France (Frankignoulle et al. 1998) to a fac-
tor of 10 or more in systems such as the Thames estu-
ary in the United Kingdom (Frankignoulle et al. 1998)
or the Anacostia River in the USA (Bala Krishna
Prasad et al. 2013). These systems also experience
large daily fluctuations in pH, although the relation-
ship between pCO2 and pH is controlled by the car-
bonate chemistry of the system (Doney et al. 2009). In
the eutrophic Chesapeake Bay, a network of near-
bottom shallow-water sensors has shown pH values

can cycle one full unit or more per day (Breitburg et
al. 2015). These meters also record large amplitude
cycles of hypoxia, in some cases as large as 10 mg l−1

or more in a single day. Although diel-cycling DO
and pH are common and mechanistically linked
(Portner 2008, Levin et al. 2009), most laboratory
research has focused on continuous hypoxia or cycli-
cal DO without manipulating pH (e.g. Baker & Mann
1992, Dwyer & Burnett 1996, Lenihan & Peterson
1998, Burnett & Stickle 2001). Similarly, open-ocean
constant pH has been a major focus of acidification
research, with far less research replicating cyclical
conditions (e.g. Bamber 1987, Burnett 1997, Wald-
busser et al. 2011).

Exposure to hypoxia can negatively affect survival,
growth, and reproduction of organisms (Boyd & Bur-
nett 1999, Burnett & Stickle 2001, Breitburg et al.
2009, Vaquer-Sunyer & Duarte 2010), and has the
potential to increase susceptibility to pathogens
(Smolarz et al. 2006). Exposure to acidified water has
also been associated with a wide range of biological
effects, including increased mortality, altered pro-
duction of reactive oxygen intermediates, decreased
growth, reduced tissue energy stores, and decreased
calcification rates (Boyd & Burnett 1999, Ringwood &
Keppler 2002, Gazeau et al. 2007, Dickinson et al.
2012). For example, Dickinson et al. (2012) found
increased mortality, reduced tissue energy stores,
and negative soft tissue growth in the eastern oyster
Crassostrea virginica (Gmelin, 1791) exposed to a
pCO2 of 800 ppm for 11 wk when compared to a
pCO2 of 400 ppm.

Invertebrate immune systems are affected by
hypoxia and acidification, sometimes positively and
sometimes negatively (Boyd & Burnett 1999, Burnett
& Stickle 2001). Studies have also shown that higher
bacterial loads can be found in organisms exposed to
hypoxia and acidified water, including the blue crab
Callinectes sapidus (Holman et al. 2004) and eastern
oyster C. virginica (Macey et al. 2008). Predicted
end-of-century ocean acidification levels increased
Vibrio tubiashii infections in the blue mussel M.
edulis (Asplund et al. 2014), and Vibrio paraehaemo -
lyticus infections in the Norway lobster Nephrops
norvegicus, and, when combined with hypoxia, re -
duced hemocyte counts in the Norway lobster (Hern-
roth et al. 2015).

The eastern oyster C. virginica is an important fish-
ery species and ecosystem engineer throughout its
range in the western Atlantic from Brazil to Canada’s
St. Lawrence River (Hargis & Haven 1999, Mann &
Evans 2004). In Chesapeake Bay, stocks are esti-
mated to be at or below 1% of historic levels (Newell
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Fig. 1. DO and pH measured every 15 min in (A) the St.
Mary’s River showing diel-cycles during ca. 1 week in 2008
and (B) the Harris Creek Downstream continuous monitor-
ing station during 1 week in 2014. Data from MD-DNR
 Shallow Water Monitoring Program available at www.

eyesonthebay.net
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1988, Wilberg et al. 2011). Post-settlement oysters
cannot move to avoid hypoxic events, and, in spite of
tolerance to low DO, constant hypoxia reduces feed-
ing, metabolism, and growth (Widdows et al. 1989,
Baker & Mann 1992, Burnett & Stickle 2001) and
delays and reduces larval settlement (Widdows et al.
1989). Early post-settlement C. virginica are suscep-
tible to exposure to episodic hypoxia that does not
cause mortality in older juveniles or adults (Osman
1994).

Reactive oxygen species (ROS) produced by hemo-
cytes are an important part of the immune response
in C. virginica. ROS production following pathogen
or proxy challenge is commonly measured as a deter-
minant of immune capacity. Unstimulated ROS pro-
duction measures the innate levels of ROS produced
by cell metabolism, whereas measurement of stimu-
lated ROS production can indicate the ability of the
cell to kill pathogens. High unstimulated production
of ROS is an indicator of stress, and may be energet-
ically costly and physically damaging to the organ-
ism. Anderson et al. (1998) found no effect of hypoxia
on unstimulated ROS production in C. virginica, al -
though an increase in unstimulated ROS production
has been seen in other invertebrates (Moss & Allam
2006). Boyd & Burnett (1999) found that both hypoxia
and hypercapnia reduced stimulated production of
reactive oxygen intermediates by oyster hemocytes
indicating that hypoxia exposure may reduce the
ability of oysters to respond to a challenge.

Dermo and MSX are 2 diseases that are particu-
larly damaging to oysters in the Chesapeake Bay
region. Perkinsus marinus, a protistan parasite that
causes Dermo disease in oysters, was initially identi-
fied in the Gulf of Mexico and first observed in
Chesapeake Bay in the 1940’s although it is thought
to be endemic to the Chesapeake Bay region. P. mar-
inus is one member of a genus of parasites that affect
mollusks worldwide (Goggin & Lester 1987, Goggin
& Barker 1993, Pecher 2007). Along with over-
harvesting, loss of hard bottom substrate, and water
quality declines, Perkinsus infection is one of the
major factors limiting eastern oyster populations and
restoration efforts today (Ford & Tripp 1996, Harvell
et al. 1999, Reece et al. 2001, Carnegie & Burreson
2009, Beck et al. 2011).

Previous laboratory and field studies indicate that
diel-cycling DO increases the acquisition and pro-
gression of P. marinus infections in eastern oysters
(Breitburg et al. 2015). Stronger effects of DO on P.
marinus infection in the field than in the lab sug-
gested the possibility that a co-occurring stressor
increased the effect of DO. We postulated that the

stressor unaccounted for in laboratory experiments
was pH, which shows a tight correlation with DO in
the field (Burnett 1997) and has been shown to
reduce production of stimulated ROS in C. virginica,
but which was not controlled in the study by Breit-
burg et al. (2015). In the present study, we examined
whether repeated, short term, co-occurring stressors
affected immune responses and acquisition and pro-
gression of protist infections by exposing oysters to
diel-cycling DO and pH, as well as to each stressor
individually, along with water containing Perkinsus
for 3 mo. Our expectation was that exposure to
repeated, brief periods of hypoxia and low pH would
increase Perkinsus acquisition and progression and
disturb the immune response more severely than
either stressor independently.

MATERIALS AND METHODS 

We tested the effects of diel-cycling DO and pH on
Perkinsus infection acquisition and progression, as
well as hemocyte status, in 1 yr-old eastern oysters
(35−70 mm initial length) at the Smithsonian Envi-
ronmental Research Center (SERC), in Edgewater,
MD, USA, during July−September 2012, and the 
carryover effects of cycling conditions during a field
deployment in the Rhode River, MD, USA, during
September 2012 to July 2013. Older oysters (4−5 yr)
were used as a source of Perkinsus in the laboratory
portion of the experiment. All oysters were pur-
chased from an aquaculture facility (Marinetics) on
the Choptank River, MD, USA in April−May 2012,
and held on flow-through Rhode River water at SERC
until the experiment commenced. Salinity and tem-
perature at the Marinetics facility were within 2 PSU
and 1°C, respectively, of Rhode River ambient condi-
tions at the time oysters were purchased.

Initial Perkinsus infection prevalence and intensi-
ties were determined in 100 individuals of each age
class using Ray’s Fluid Thioglycollate Medium
(RFTM) assay (Ray 1952, Ray 1954) on rectal tissue.
Intensity of infections was scored on the modified
Mackin scale which ranges from 0 to 5 (Mackin
1962). A score of 0 indicates no detectable Perkinsus
in the tissue sample, 0.5 or 1 represent light infec-
tions, with few cells in the tissue sample, 2 is a mod-
erate infection, a 3 or 4 is a heavy infection, while a 5
represents a lethal level of infection with all sample
tissue full of Perkinsus cells. Scores of 2 or higher are
considered to reflect moderate-to-heavy infections
and represent levels of infection which result in an
energetic cost to the oyster.
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RTFM assay is not capable of distinguishing P. mar-
inus from other species of Perkinsus, and previous
research has shown other species of Perkinsus infect-
ing C. virginica (namely, P. chesapeaki) (Coss et al.
2001, Reece et al. 2008); therefore, it is possible that
multiple species of Perkinsus were present in these
experiments. However, Reece et al. 2008 found very
low prevalence of other species of Perkinsus in C. vir-
ginica and no infections of other species without a co-
infection of P. marinus. Coss et al. (2001) found 1 in 3
infected oysters harbored both P. chesapeaki and P.
marinus, while a third of the population was infected
with solely P. marinus and another third with solely
P. chesapeaki.

Although RFTM assay may fail to detect very light
infections (Robledo et al. 1998), it allows for a rapid
and cost-effective analysis of infection in a large
number of individuals. We define prevalence as the
proportion of individuals with detectable infections
out of the entire population analyzed; the change in
prevalence over the course of the experiment was
used as an index of infection acquisition. Mean infec-
tion intensity was the average Mackin score among
only those oysters with detectable levels of infection
(Mackin 1962). One year-old oysters were chosen for
this study because they tend to have very low levels
of infection due to their relatively short cumulative
lifetime exposure and small volume of water filtered
during the time of peak transmission in their first
summer. Infections in older oysters can range widely
depending on exposure but infections tend to in -
crease with age (Paynter et al. 2010).

We ran 6 replicates each of 5 experimental treat-
ments, for a total of 30 experimental units (75 l aquar-
ium). Ninety 1 year-old oysters were assigned to each
replicate aquarium, for a total of 2700 individual oys-
ters. Aquaria were arranged in a randomized block
design, with 1 replicate from each treatment clus-
tered together, in case laboratory position affected
results. Older oysters serving as the infection source
were held in an air-bubbled 400 l tank. Experimental
oysters were acclimated to aquaria, feeding regime,
and light availability at normoxia/normocapnia for
5 d prior to commencing treatment conditions.

Treatments

A factorial design was used crossing 2 pH treat-
ments: constant normocapnia pH (pH 7.8) and cycling
pH (between pH 7.0 and 7.8), with 2 DO treatments:
constant normoxia (7.0 mg l−1) and severe cycling hy-
poxia ranging from 0.5 mg l−1 to a supersaturated

value of 10.0 mg l−1 (Fig. 2). A fifth ‘moderate hypoxia’
treatment was also used, with DO cycling from a low
of 1.7 mg l−1 to a supersaturated value of 10.0 mg l−1

along with cycling pH. For the purpose of these exper-
iments, we defined normocapnia as a pH of approx.
pH 7.8, which is a typical near-maximum pH at shal-
low-water field sites that do not experience severe cy-
cling and have salinity similar to those in the Rhode
River (e.g. Fig. 1b). The factorial structure of this de-
sign allowed for an estimate of the combined effects of
cycling pH and severe cycling hypoxia, as well as the
individual main effects. The additional moderate cy-
cling treatment allowed for an estimate of the effects
of a more moderate cycling hypoxia when compared
to the ‘normoxia-cycling pH’ treatment. Our experi-
mental facility precluded our ability to run additional
treatments to test a full factorial design.
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One year-old oysters were exposed to cycling con-
ditions 4−5 days per week from 5 July through 27
September 2012 (54 total cycles over 12 weeks).
In the cycling treatments, DO and/or pH were
decreased over 3h (ramp-down), held at continuous
low values for 4h (low-plateau), brought back to nor-
moxia/normocapnia over 3h (ramp-up), held for 2 h
(normoxia), taken to supersaturated DO/normocap-
nia values over 2h (up-to-supersat), held at high
 values for 2h (supersat-plateau), brought back to
 normoxia over 2h (down-to-normoxia) and held at
normoxia/normocapnia (normoxia) until the next
day’s cycle commenced (Fig. 2). Photoperiod regime
was maintained in a 14 h light:10 h dark cycle, 7 days
per week, using incandescent 5V rope-lighting.
Light conditions in the tanks simulated those at 2 m
depth in the Rhode River on a sunny day as meas-
ured with an LI-190 Quantum Sensor (Li-Cor). On the
2−3 days per week on which DO/pH cycling condi-
tions were not applied, treatments were bubbled
with air and CO2 stripped air to maintain target val-
ues equivalent to those of the control (constant nor-
moxia/normocapnia) treatment: this resulted in a DO
of 7.44 ± 0.00 mg l−1 and pH of 7.83 ± 0.00. Water from
infected 4−5 yr-old oysters was not transmitted to
experimental oysters on these days.

Experimental conditions were monitored and
manipulated using a custom-developed LabVIEW
(National Instruments) program that used input from
Standard DO probes (Oxyguard) and Durafet III pH
sensors (Honeywell) and controlled ratios of 5 gases
(air, CO2-stripped air, oxygen, nitrogen, and carbon
dioxide) through mass flow controllers (Dakota
Instruments). Soda lime CO2 scrubbers were used to
create CO2-stripped air. DO and pH sensors were
checked at least once daily, calibrated weekly, and
recalibrated if they were outside of published accu-
racy ranges. pH probes were 2-point calibrated (NBS
scale, Thermo Fisher Scientific) and DO probes were
calibrated in water-saturated air. One DO probe and
one pH probe were placed in 1 replicate of each
treatment and used to control all 6 replicates. One
gas mix (30 l min−1) was created per treatment and
then split via gas manifolds to deliver 5 l min−1 of
mixed gas to each replicate aquarium through 2
glass-bonded silica air diffusers (3.75 × 1.25 cm) rest-
ing on the bottom at the middle of the aquarium. For
details on operation and performance of this system
see Burrell et al. (in press).

In addition to continuous monitoring of DO and pH
in one replicate, DO, temperature, salinity, and pH
were measured 3 to 4 times per day in all aquaria
using a YSI ProfessionalPlus (Yellow Springs Instru-

ments), and an Acorn pH 5 meter (Oakton Instru-
ments). This ensured that treatment variables were
similar among replicates and that non-controlled
variables (temperature and salinity) did not vary
among treatments (authors unpubl. data). In-tank
partial pressure of carbon dioxide (pCO2) was meas-
ured 3−4 days per week via equilibration in 1 repli-
cate of the control treatment and 1 day per week in 1
replicate of each of the other 4 treatments during the
low-plateau part of the cycle using an 840A CO2/H2O
gas analyzer (Li-Cor). pCO2 could not be measured
more frequently due to the changing pH targets
inherent in cycling treatments, requiring individual
equilibrators and gas analyzers for each treatment.
Alkalinity was determined by titration 3 times per
week in 1 replicate of the control treatment using a
Tazo Schott-Gerate piston burette titrator and a
Corning pH Analyzer 350 according to Standard
Method 2320 (APHA 1992). Variation in alkalinity
was tightly linked to variation in salinity (see ‘Results’
section), as is common in estuarine systems. We mon-
itored salinity continuously and were prepared to
take additional alkalinity samples if a salinity fluctu-
ation was observed during the experiment, but salin-
ity did not fluctuate widely enough during our ex -
periment to require more frequent measurements of
alkalinity. Measurements of pCO2, alkalinity, and pH
provide 3 of the 4 parameters of the carbonate system
commonly considered in acidification studies, and
were used in pairs to confirm the third measurement
using CO2SYS (Pelletier et al. 2007).

Each aquarium received 1 l min−1 of flow-through,
unfiltered, Rhode River water supplemented with
0.093 mL of stock algal diet (DT’s Reef Blend) mixed
into the inflow water every 8 minutes, 24 hours per
day throughout the experiment, with the exception of
a 10 day period in August when the timer controlling
the algae system was under repair. While this would
have reduced food availability, there was ambient
phytoplankton in the SERC raw sea water system,
and all treatments experienced the same reduction in
phytoplankton availability during this period. Each
aquarium also received 75 ml min−1 of water from the
tank containing infected adult oysters. Both water
inputs were located just above the air diffusers in the
aquaria to promote mixing. The infected oyster tank
was provided a constant 5 l min−1 of flow-through
Rhode River water. All effluent water from the
infected oyster tank and treatment aquaria was UV-
sterilized before release to the Rhode River. Oysters
were removed from aquaria and washed gently each
week to remove mud, feces, pseudofeces, and poly-
chaetes. Aquaria were drained and scrubbed bi-
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weekly on a day when conditions were not cycled to
remove waste products and bio-fouling.

Infection and growth metrics were measured half-
way through the experiment and at the end of the
experiment. At the midpoint (8−9 August 2012), 30
oysters were removed haphazardly from each aquar-
ium and infection prevalence and intensity (deter-
mined using the RFTM assay), shell length, and wet
tissue weight were measured.

Just before the end of the experiment, 2 oysters
were removed from each replicate of each of the 5
treatments at the end of the low-plateau phase on 25
September 2012. Oysters were measured and
hemolymph was removed from the adductor-muscle
sinus of each oyster using a 1 ml syringe fitted with a
23-gauge needle inserted through a small notch cut
into the ventral shell edge. Following hemolymph
extraction, oysters were shucked, and a sample of
rectal tissue was taken for infection analysis by
RFTM assay. The hemolymph from each oyster was
held on ice in an Eppendorf tube until being distrib-
uted into Falcon flow-cytometer tubes for analyses.
In one Falcon tube, counts, mean sizes, and percent-
ages of granular and agranular dead hemocytes were
determined with an Accuri C6 flow cytometer (BD
BioSciences) using the methods of Hégaret et al.
(2003a). In another tube, percentages of total and
granular phagocytic hemocytes were determined
using 2-µm, plastic microbeads (Hégaret et al.
2003b). In a third tube, reactive-oxygen species
(ROS) production by hemocytes was determined
using the oxidation of non-fluorescent DCFH-DA to
green-fluorescent DCFH (Hégaret et al. 2003b). For
this analysis, cells were not stimulated with chemical
or particulate inducers of oxidative burst, so values
reported (in relative, dimensionless detector units)
represented constitutive oxidative activity. Finally, in
a fourth tube, percentages of live or dead apoptotic
hemocytes were determined using the green-fluores-
cent probe Annexin V and propidium iodide follow-
ing the manufacturer’s instructions (Product V13241,
Life Technologies).

At the end of the experiment on 26−27 September
2012, an additional 28 oysters were removed from
each replicate. For each oyster, shell length was
measured, tissue assayed for Dermo infection, and
wet tissue weight was determined gravimetrically.
All remaining oysters were removed from the exper-
iment, measured, and any mortality was recorded.

To examine carryover effects of cycling conditions
on infection acquisition and intensity, 17 oysters from
each aquarium were placed in 3000 cm3 cages con-
structed of 2 cm square mesh and suspended from

SERC piers in the Rhode River approx. 0.5 m above
the bottom. Cages were deployed 2 m apart at each
site to minimize Perkinsus transmission, and in such
a way that they were unlikely to be exposed to
hypoxia as severe as that seen in the lab and that all
treatments would experience similar field conditions.
Approximately 9 months later, these cages were
 collected from the field sites on 18 and 19 July 2013.
All oysters were measured and weighed, and infec-
tion was assayed.

Statistics

All data were tested for homogeneity of variance
using an F-max test and normality using a Shapiro-
Wilks test. Percentage data were logit transformed.
Unless otherwise noted, data are presented as means
± SE.

The Proc Mixed procedure (SAS v. 9.2) was used to
compare salinity, temperature, DO, and pH among
the 5 treatments with nested ANOVAs during 2 time
points: the end of low plateau and just prior to the
ramp-down phase (see Fig 2). For these analyses we
used values measured in all 30 experimental aquaria.
Effects of DO and pH on Perkinsus prevalence and
intensity from the laboratory experiment were ana-
lyzed using randomized complete block design
ANOVAs. Perkinsus prevalence and intensity from
the field deployment were analyzed using replicated
block design ANOVAs with deployed field site as the
blocking factor. Least square means comparisons
were used to test a priori hypotheses that severe
cycling DO and cycling pH would increase disease
metrics, in combination and independently, and that
moderate cycling DO would increase disease metrics
in comparison to constant, normoxic treatments. The
Proc Mixed procedure was also used to reveal main
effects and interactions of the 2 independent vari-
ables (cycling DO and pH) upon each hemocyte
 variable.

RESULTS

Severe cycling hypoxia increased Perkinsus infec-
tion prevalence and intensity and also affected some
metrics of the cellular immune status in C. virginica
over the course of the 3-month laboratory exposure
to cycling conditions. Moderate cy cling hypoxia did
not significantly affect infection prevalence or inten-
sity; however there was a trend towards increased
prevalence of more intense infections under these
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conditions. Cycling pH did not affect infection preva-
lence or intensity significantly. After a 9-month field
deployment and respite from severe cycling condi-
tions, the prevalence of infection in oysters previ-
ously ex posed to severe cycling hypoxia was still ele-
vated over the infection prevalence in oysters
exposed to normoxia during the laboratory portion of
the experiment.

Water quality

Experimental conditions were within the environ-
mental ranges for Perkinsus transmission and prolif-
eration (salinities above 8 and maximal summer tem-
peratures) (McCollough et al. 2007) as well as the
native range of C. virginica (Hargis &
Haven 1999); see Table 1 for DO and pH
and Figs. 2 & 3 for salinity, temperature,
and alkalinity measurements in experi-
mental aquaria. Over the course of the
experiment, salinity averaged 11.3 ± 0.0
PSU, with a range from 9.3−12.6 PSU;
salinity did not differ among treatments
(df = 4, F = 0.004, p = 1.0). Temperature
averaged 27.1 ± 0.1°C, ranging from
21.0°C to 30.5°C over the course of the
experiment, and did not differ among
treatments (df = 4, F = 0.038, p = 0.997).
Alkalinity averaged 1622 ± 15 µmol kg−1

sw, and, following the trend of increas-
ing salinity over the course of the exper-
iment, ranged from 1449 µmol kg−1 sw
on June 29, at the start of the experi-
ment, to 1744 µmol kg−1 sw on 24 Sep-
tember at the experiment’s conclusion.

DO did not differ among treatments
during the normoxic period prior to the
ramp-down phase (df = 4, F = 0.31, p =

0.874) (Table 1). pH varied among treatments during
that experiment phase (df = 4, F = 4.98, p < 0.001), but
the variation was only a 0.02 unit range among treat-
ments (Table 1), which is within the error range of
the sensor. The statistical significance of the differ-
ence in pH values reflected the very large sample
size (6 replicates per treatment measured daily for
51 d), and is very small when compared to the
0.80 pH unit cycle of the applied treatment.

DO varied significantly among treatments at the
end of the low-plateau phase (Table 1) (df = 4, F =
48708.5, p < 0.001). Severe DO cycles averaged
within 0.07 mg l−1 of target values, and moderate DO
cycles averaged within 0.03 mg l−1 of target values
during the low plateau period. Treatments also dif-
fered with regards to pH (df = 4, F = 12855.2, p <
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Treatment DO (mg l−1) pH pCO2 (ppm)
Normoxia Low-plateau Supersat Normoxia Low-plateau Supersat Low-Plateau

Control (Normoxia-Normocapnia) 7.25 ± 0.02 7.36 ± 0.02 7.71 ± 0.11 7.81 ± 0.00 7.82 ± 0.01 7.93 ± 0.02 1043.2 ± 36.7
Normoxia - Cycling pH 7.24 ± 0.02 7.32 ± 0.02 7.68 ± 0.10 7.79 ± 0.01 6.98 ± 0.00 7.98 ± 0.02 7343.8 ± 606.1
Moderate cycling hypoxia - Cycling pH 7.25 ± 0.02 1.69 ± 0.01 10.20 ± 0.07 7.80 ± 0.00 7.02 ± 0.01 7.98 ± 0.02 6542.1 ± 380.6
Severe cycling hypoxia - Cycling pH 7.27 ± 0.02 0.57 ± 0.01 10.24 ± 0.07 7.81 ± 0.00 7.01 ± 0.00 7.97 ± 0.02 6583.8 ± 199.3
Severe cycling hypoxia - Normocapnia 7.20 ± 0.02 0.56 ± 0.01 10.41 ± 0.02 7.79 ± 0.00 7.83 ± 0.00 7.92 ± 0.03 955.5 ± 49.3

Table 1. Mean ± SE daily dissolved oxygen (DO), pH, and pCO2 conditions in treatments at normoxia, at the end of the low-plateau phase, 
and at the end of the supersaturated plateau (Supersat) phase. DO and pH were measured towards the end of the normoxia and low
plateau phases on 51 d in all replicates of each treatment, and at the supersaturated-plateau phase on 6 d only, due to logistical constraints,
in all 6 replicates of each treatment. pCO2 was measured during the low plateau by equilibration every minute for 2 h, 1 day per week for 
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0.001), with cycling pH treatment values within 0.02
of the low target value on average, and normocapnic
treatments within 0.03 of target values on average.

During the low-plateau phase, there was a signifi-
cant difference in measured pCO2 between the 5
treatments (df = 4, F = 128.6, p < 0.001), with a Tukey
HSD test indicating differences between all cycling
pH treatments and all normocapnic treatments, and
no differences within these treatments.

Perkinsus infection patterns

At the start of the experiment, 1 year-old oysters
had no detectable Perkinsus infections, and 4 and 5
year-olds had a prevalence of 0.72 with an infection
intensity averaging 1.35 ± 1.00. Infection parameters
at the other time points of the experiment are sum-
marized in Table 2.

Prevalence

Severe diel-cycling hypoxia increased overall
prevalence of Perkinsus infections compared to nor-
moxia at both the midpoint (df = 20, F = 3.41, p =
0.003) and endpoint (df = 20, F = 6.99, p < 0.001) of

the laboratory portion of the experiment. After 12 wk
of exposure to cycling treatments, prevalence of
Perkinsus infections in oyster populations exposed to
periods of severe hypoxia (0.5 mg l−1) over 4−5 days
per week was nearly twice that of controls (0.51 vs.
0.26). The main-effect of cycling pH was not signifi-
cant at either the midpoint (df = 20, F = 0.45, p =
0.660) or endpoint (df = 20, F = 0.62, p = 0.539), nor
was the interaction of DO and pH at the midpoint
(df = 20, F = 0.58, p = 0.572) and endpoint (df = 20,
F = 0.77, p = 0.449). Moderate cycling DO did not
increase Perkinsus prevalence over that of the con-
trol at either the midpoint (df = 20, F = 0.004, p =
0.967) or endpoint (df = 20, F = 0.53, p = 0.602).

When prevalence of just those infections scoring 2
or higher was examined, no difference was observed
among treatments at the midpoint (very few oysters
were this heavily infected) (df = 4, F = 0.65, p =
0.633). By the end of the laboratory exposure, how-
ever, nearly 20% of oysters that had been exposed to
severe hypoxia had a score of 2 or higher, signifi-
cantly more than the 5% of oysters held at constant
normoxia (df = 20, F = 7.55, p < 0.001). There was also
a trend towards higher prevalence of severe infec-
tions under moderate cycling hypoxia when com-
pared to normoxic conditions (df = 20, F = 0.84, p =
0.081).
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Treatment Midpoint Endpoint Recovery

(A) Prevalence
Control (Normoxia - Hypocapnia) 0.089 ± 0.025 0.262 ± 0.017 0.210 ± 0.036
Normoxia - Cycling pH 0.078 ± 0.022 0.228 ± 0.020 0.279 ± 0.062
Moderate cycling hypoxia - Cycling pH 0.100 ± 0.028 0.264 ± 0.055 0.169 ± 0.051
Severe cycling hypoxia - Cycling pH 0.194 ± 0.043 0.507 ± 0.049 0.041 ± 0.080
Severe cycling hypoxia - Normocapnia 0.235 ± 0.023 0.567 ± 0.023 0.277 ± 0.058

(B) Prevalence of 2+
Control (Normoxia - Hypocapnia) 0.033 ± 0.000 0.065 ± 0.015 0.043 ± 0.031
Normoxia-Cycling pH 0.033 ± 0.000 0.047 ± 0.013 0.083 ± 0.041
Moderate cycling hypoxia - Cycling pH 0 0.103 ± 0.004 0.027 ± 0.016
Severe cycling hypoxia - Cycling pH 0.033 ± 0.000 0.209 ± 0.027 0.067 ± 0.035
Severe cycling hypoxia - Normocapnia 0.034 ± 0.001 0.185 ± 0.022 0.066 ± 0.030

(C) Infection intensity
Control (Normoxia - Hypocapnia) 0.567 ± 0.049 1.265 ± 0.135 1.118 ± 0.283
Normoxia - Cycling pH 0.604 ± 0.166 1.009 ± 0.130 1.158 ± 0.258
Moderate cycling hypoxia - Cycling pH 0.554 ± 0.041 1.182 ± 0.097 0.979 ± 0.086
Severe cycling hypoxia - Cycling pH 0.727 ± 0.070 1.514 ± 0.084 1.185 ± 0.167
Severe cycling hypoxia - Normocapnia 0.688 ± 0.076 1.482 ± 0.095 1.217 ± 0.260

Table 2. Mean ± SE of (A) infection prevalence (proportion of total population assayed), (B) prevalence of infections scoring
2 or higher on the Mackin scale (proportion of population assayed), and (C) Mackin scale intensity of all individuals
with detectable infections, after 6 wk (Midpoint), 12 wk (Endpoint), and after 9 mo field deployment (Recovery).
Prevalence and mean intensity of disease were calculated from the 30 individuals assayed for disease from each replicate
aquarium at each time-point. Measures reported here are means and SE of the prevalence or mean intensity in the 6 repli-

cates of each treatment
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After a period of field deployment during which
all treatments experienced similar conditions, and
which would not have included repeated exposure to
hypoxia as severe as that seen in the lab (Hondorp
unpubl. data), Perkinsus prevalence in oysters
exposed to severe cycling hypoxia the previous sum-
mer was nearly double the prevalence found in oys-
ters exposed to continuous normoxia in the lab (df =
19, F = 2.5, p = 0.022). The prevalence of infections
scoring 2 or higher on the modified Mackin scale,
however, did not differ among treatments (df = 4, F =
0.54, p = 0.708). There was no difference in preva-
lence between oysters exposed previously to moder-
ate cycling DO and oysters exposed to normoxia at
the end of the field deployment (df = 19, F = 0.26, p =
0.794).

Infection intensity

Neither cycling DO, nor cycling pH, nor the inter-
action between DO and pH affected infection inten-
sity after 6 wk of exposure to laboratory conditions.
However, after 12 wk of exposure to cycling condi-
tions, severe-cycling DO significantly increased
infection intensity as compared with normoxia (df =
20, F = 3.28, p = 0.004) with modified Mackin score
infection intensities of 1.50 ± 0.06 and 1.14 ± 0.10 (n =
12), respectively. As with prevalence, there was no
significant effect of cycling pH on infection intensity
(df = 20, F = 1.02, p = 0.322), no interaction between
cycling DO and pH (df = 20, F = 1.65, p = 0.116), and
no difference between constant normoxia and oys-
ters exposed to 1.5 mg l−1 DO daily (df = 20, F = 1.11,
p = 0.281).

There was no effect of laboratory treatments on
infection intensity at the end of the 9-mo field
deployment (df = 4, F = 0.17, p = 0.708). Intensity
among infected oysters was lower at the time of field
collection than at the end of the experiment.

Hemocytes

Hematology and immune function variables for
oysters were all within ranges that can be considered
‘normal’, as these variables tend to have wide ranges
related to seasonal cycles and environmental condi-
tions (Table 3) (Duchemin et al. 2007, Lambert et al.
2007). Severe cycling hypoxia significantly increased
the percentage of phagocytic hemocytes by nearly
100%, from 7.08% in the controls to 13.37% in the
severe cycling hypoxia-normocapnia treatment (df =
54, F = 4.81, p < 0.001) and significantly decreased
apoptosis by >50% compared to normoxic controls
(live apoptotic cells: df = 54, F = 3.11, p = 0.001; dead
apoptotic cells: df = 54, F = 5.05, p < 0.001). Severe
cycling hypoxia with cycling pH increased unstimu-
lated ROS (df = 54, F = 3.01, p = 0.004). Cycling pH
increased hemocyte phagocytosis (df = 54, F = 4.73,
p < 0.001) comparably to the increase under severe
diel-cycling hypoxia (100% compared to normocap-
nic controls). Cycling pH also increased levels of ROS
(df = 54, F = 2.31, p = 0.025) and decreased the rate of
apoptosis (live: df = 54, F = 2.01, p = 0.050; dead: df =
54, F = 2.37, p = 0.022) and the percentage of dead
agranular hemocytes by 40% (df = 54, F = 2.39, p =
0.021). Significant interactive effects of DO and pH
treatment were found for percent dead hemocytes
(df = 54, F = 2.33, p = 0.023), phagocytosis (df = 54, F =
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Control Normoxia - Moderate cycling Severe cycling Severe cycling
(Normoxia - Cycling pH hypoxia - hypoxia - hypoxia - 

Normocapnia) Cycling pH Cycling pH Normocapnia

Shell height (mm) 58.6 ± 1.2 58.8 ± 1.8 57.83 ± 1.3 62.8 ± 2.6 61.9 ± 2.5
Infection intensity 0.96 ± 0.39 0.25 ± 0.17 0.71 ± 0.35 0.64 ± 0.23 0.54 ± 0.11
Granular hemocytes (%) 14.8 ± 3.2 17.3 ± 3.4 15.1 ± 3.6 13.4 ± 2.3 21.7 ± 3.2
Dead granular hemocytes (%) 16.2 ± 3.4 10.12 ± 1.3 11.8 ± 2.3 14.5 ± 1.0 9.6 ± 1.7
Agranular hemocytes (%) 71.7 ± 3.3 70.7 ± 3.4 74.3 ± 4.3 74.8 ± 2.8 69.0 ± 4.0
Dead agranular hemocytes (%) 4.9 ± 0.7 3.0 ± 0.3 3.2 ± 0.5 3.8 ± 0.5 3.0 ± 0.6
Phagocytic granular hemocytes (%) 14.1 ± 1.8 24.4 ± 2.1 17.8 ± 2.3 25.3 ± 1.7 27.5 ± 2.6
Phagocytic hemocytes (%) 7.1 ± 0.7 13.3 ± 1.2 8.8 ± 0.8 11.7 ± 1.0 13.4 ± 1.2
ROS production - granular population 1 7901 ± 489 9357 ± 785 8929 ± 946 8506 ± 708 9269 ± 1315
ROS production - granular population 2 343 ± 21 278 ± 12 319 ± 26 365 ± 21 359 ± 18
Apoptotic dead cells 0.10 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.05 ± 0.00 0.04 ± 0.01
Apoptotic live cells 0.07 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

Table 3. Mean ± SE immune response parameters as measured by flow-cytometry (n = 12 samples per treatment). ROS = reactive oxygen 
species
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4.85, p < 0.001), and apoptosis (live: df = 54, F = 2.71,
p = 0.009; dead: df = 54, F = 2.11, p = 0.040). Infection
intensity was not a significant covariate in prelimi-
nary ANCOVA analyses of hemocyte measures and
was removed from all final models (all p > 0.05).

DISCUSSION

Results of this study indicated that exposure to
diel-cycling hypoxia, which is common in shallow-
water systems globally, and particularly in eutrophic
systems, may increase acquisition and progression
of parasite infections and affect immune status.
These effects were seen at water quality levels that
did not increase mortality during the 3 mo duration
of our laboratory experiment; overall mortality in
our experiments was <3.5% in all treatments.
Severe diel-cycling hypoxia increased the acquisi-
tion and subsequent progression of Perkinsus infec-
tions in eastern oysters over the course of just one
season, and prevalence remained elevated in the
following year. Although diel-cycling pH (which
accompanies diel-cycling hypoxia in the field) stim-
ulated several measures of immune function, it did
not have significant effects on acquisition or pro-
gression of Perkinsus infections. These results indi-
cate that, within the range of pH values and infec-
tion pressure tested in this experiment, hypoxia is a
better predictor of infection in oyster populations
than pH. Results of our laboratory manipulations
therefore agree with those based on statistical
analyses of environmental factors at sites where
oysters were deployed in the field in Chesapeake
Bay (Breitburg et al. 2015).

Hypoxia increased infection prevalence and inten-
sity when DO cycled to 0.5 mg l−1 4−5 days per week,
but not when DO minima averaged 1.7 mg l−1;
although there was a trend for moderate cycling
hypoxia to slightly increase the number of moderate-
to-lethal infections. These findings, in conjunction
with those of 2 lab experiments reported in Breitburg
et al. (2015), may indicate a hypoxia threshold
around 1.5 mg l−1 below which susceptibility to infec-
tion increases. Between the 2 studies, mean exposure
levels of 1.46−1.70 mg l−1 4−5 days per week
increased prevalence or intensity of infections signif-
icantly in 1 of 3 experiments. In contrast, repeated
exposure to 0.5 mg l−1 consistently increased infec-
tion prevalence or intensity in all 3 experiments.
Inter-annual variation in results of the diel-cycling
moderate hypoxia treatment may have reflected
slight differences in actual oxygen concentrations

achieved or factors that were not controlled by our
experimental apparatus (e.g. temperature, salinity,
calcite saturation, Perkinsus dosage, etc.).

Monitoring data suggest that only a few sites in the
Chesapeake Bay currently experience daily periods
of 0.5 mg DO l−1 (Breitburg et al. 2015). However,
monitors now in use are deployed 0.3−0.5 m off -
bottom and may, therefore, underestimate the sever-
ity of bottom water conditions experienced by
 oysters. Other habitats not typically inhabited by oys-
ters in Maryland waters, such as saltmarsh creeks,
may also commonly experience DO concentrations
≤0.5 mg l−1 (Burrell et al. unpubl.). Furthermore, if
eutrophication-driven phytoplankton blooms are not
curbed, severe cycling conditions may become more
prevalent in shallow water areas during the summer
months.

In this study, all experimental units received simi-
lar doses of waterborne Perkinsus from a single tank
of moderately diseased adult oysters. This design
allowed us to clearly relate variation in infection
acquisition and progression to experimental treat-
ments. If the experiment had continued for a longer
period of time, or disease inoculation had been
higher, it is possible that disease prevalence in all
treatments would have converged near 100%. How-
ever, cycling conditions could have meaningful
impacts on acquisition and progression of infections
in locations such as restoration sites where bar clean-
ing has removed older, diseased oysters, locations
where oyster populations are low, and also those sites
where ambient infection levels are not extreme.

Contrary to expectations based on work showing
a decreased immune response in C. virginica under
both hypoxia and acidification (Boyd & Burnett
1999), and higher rates of disease acquisition and
progression in the field than in laboratory studies
where only dissolved oxygen cycled (Breitburg et al.
2015), the combination of co-varying diel-cycling DO
and pH did not increase infection acquisition or pro-
gression beyond that of diel-cycling DO alone. In
fact, although differences were not statistically sig-
nificant, the normoxia-cycling pH treatment tended
to have the lowest total prevalence, lowest preva-
lence of moderate-to-lethal infections, and lowest
mean infection intensity of all treatments (Table 2).
Thus, cycling pH may have some slight protective
effect against infection in oysters by stimulating the
immune response.

Diel-cycling hypoxia and diel-cycling pH, as well
as the 2 factors combined, stimulated phagocytosis
and the production of ROS by unstimulated hemo-
cytes, and reduced apoptosis. Our experiment cannot
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distinguish whether effects of diel-cycling conditions
on host versus pathogen were responsible for in -
creased prevalence and intensity of infections we
found. However, the effects of cycling DO and pH on
measures of hemocyte function indicate that the
altered infection dynamics are a product of the effects
of these cycling conditions on oysters. Perkinsus in -
fections can stimulate phagocytic hemocytes (Ander-
son et al. 1992, Anderson et al. 1995, Samain et al.
2007), potentially confounding effects of treatments
on infections and hemocyte function. In our study,
however, individual disease scores did not correlate
with hemocyte variables suggesting that the effects
seen here are a product of exposure to experimental
treatments rather than to Perkinsus infection.

The rapid changes in conditions associated with
the fluctuating nature of cycling conditions may also
result in additional stress. The restoration of oxygen
after periods of hypoxia/anoxia results in the majority
of tissue damage because ROS production spikes and
the anti-oxidants necessary to control harmful effects
of ROS on the host do not return as quickly (Ander-
son et al. 1992, Pannunzio & Storey 1998). Under
cycling oxygen conditions this may occur daily, as
evidenced by the higher innate ROS levels in oysters
from severe hypoxic treatments, resulting in more
oxidative stress to the individual and possibly also in
higher infection (Moss & Allam 2006). These nega-
tive effects may overwhelm positive effects of the
stimulated immune functions. This mechanism
potentially also explains the slight trend toward
lower infection levels in oysters in the normoxic/
cycling pH treatment, which may benefit from the
stimulated immune activity (e.g. increased phagocy-
tosis) caused by exposure to fluctuating environmen-
tal conditions without experiencing the harmful
effects of sudden oxygen restoration. A caveat is that
hemocyte variables were only examined on one day
during the 3-mo experiment, and only during the
most severe part of the cycle on that day, while in -
fection prevalence and intensity may integrate
responses to conditions over the entire experiment.

Cycling hypoxia and/or pH stimulated cellular
functions are commonly considered to constitute the
oyster immune response, but individuals exposed to
cycling hypoxia also had higher infection prevalence
and intensity. The up-regulation of immune functions
may be an indication that environmental variation
and stressful conditions stimulate immune activity,
especially in granular hemocytes, as a precaution
against opportunistic infection under challenging
environmental conditions. The response may not be
particularly or consistently effective against P. mari-

nus (Chu et al. 1993), and P. marinus may instead
benefit from this stimulated response by using the
increased proportion of phagocytic granulocytes and
reduced apoptosis as opportunities for infection
(Sunila & LaBanca 2003, Goedken et al. 2005). It is
possible that P. marinus has been such a successful
parasite because of its ability to use the oyster’s
innate immune response as a means of infection and
proliferation (Chu et al. 1993). The stimulated
immune response still may be effective against other
infectious agents that are not adapted to use the
immune cells of the oyster as sites of infection.

Field deployment of oysters that had been exposed
previously to cycling conditions for a summer season
allowed an estimate of how exposure to cycling con-
ditions might continue to affect oysters after a period
of respite from severe cycling conditions, and
whether infections might return to these oysters with
the same intensity. During the winter months, cycling
conditions subside as primary production decreases
and water temperatures cool. During this period,
Perkinsus infections become more difficult to detect,
and infections may go into remission (Oliver et al.
1998). Prior exposure to severe cycling hypoxia had a
legacy effect with higher prevalence of infection in
oysters previously exposed to severe hypoxia. Given
the low salinity (~6.5 PSU), the transmission of
Perkinsus before collection was unlikely. Neverthe-
less, there was still a difference in infection preva-
lence between DO treatments. After a complete sea-
son of exposure to conditions conducive to Perkinsus,
the carryover effects of severe hypoxia might be
even more serious. In prior laboratory experiments,
salinities as low as 3 did not eliminate infections, but
did prevent intensification of pre-existing infections
and reduced transmission (Chu 1996). Salinities
below 10−14 were shown to delay Perkinsus devel-
opment (Chu 1996) such that Perkinsus epizootics do
not occur below salinities of 10−12. If an oyster were
to be exposed to cycling hypoxia during a second
year, the infection increases might be cumulative,
but this remains to be determined.

Most previous work on hypoxia and disease in oys-
ters has focused on the effects of constant exposure.
For example, Anderson et al. (1998) found that pre -
viously-diseased oysters continuously exposed to
2.86 mg l−1 DO experienced increased Dermo-related
mortality. Lack of disease effects in the present study
until more severe hypoxic values were reached may
be an indication that oysters are more tolerant of
hypoxia when it is interspersed with significant peri-
ods of normoxia, which may provide periods of
recovery from the harmful effects of hypoxia.
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Cycling conditions may also modify oyster filtra-
tion, potentially altering rates of encounter with
infective particles. At low oxygen, oyster filtration is
reduced; but this reduction in filtration under
hypoxia may be at least partially compensated for by
increased filtration at high oxygen (Clark 2014,
authors unpubl. data). Low pH on the other hand,
may increase filtration (Clark 2014, authors unpubl.
data). While reduced filtration may reduce rates of
encounter with new infective particles, compensa-
tory feeding at high oxygen may result in similar
temporally averaged exposure to infective particles.
Slowed filtration might also result in higher residence
times in the gut, giving any previously filtered infec-
tive particle more chance to establish an infection.

Our pH cycles, although environmentally relevant,
may not have increased acquisition and progression
of infections in oysters because of the innate self-
buffering ability of bivalves (Dwyer & Burnett 1996,
Berge et al. 2006, Lannig et al. 2010) as well as the
low natural pH of oyster hemolymph (Boyd & Burnett
1999). Periods of hypercapnia/ low pH in the environ-
ment may require less energy for internal pH regula-
tion because external pH is closer to the internal
pH of oysters (Boyd & Burnett 1999). This could
allow more energy to be allocated to immune re -
sponses resulting in an overall slightly more infec-
tion-resistant condition. However, environmental pH
lower than normal internal values could require
energy for pH regulation and hypercapnic or low
pH conditions also negatively affect other aspects of
oyster physiology and ecology (Ringwood & Keppler
2002, Miller et al. 2009, Lannig et al. 2010). Condi-
tions more extreme than those tested here, in terms
of both instantaneous values and magnitude of
cycles, do occur (Boynton et al. 1996, Breitburg 2002,
MDNR 2013), and might cause negative effects not
observed in this study.

Periodic relief from stressors provided by the high
DO/high pH phase of cycles may allow organisms to
utilize habitat with relatively brief periods of severe
environmental conditions that would negatively
affect them if those conditions were continuous.
Cycling conditions may also stimulate protective
responses; however, our results suggest that these
defenses may not always be effective. In spite of
increased hemocyte activity, severe cycling hypoxia
increased acquisition and progression of Perkinsus
infections in oysters. Constant mild hypoxia has also
been shown to increase mortality from P. marinus
infections (Anderson et al. 1998). These results both
suggest that even small areas of hypoxia may have
ramifications on disease dynamics at larger spatial

scales; heavily infected oysters in one area may act as
a disease source for surrounding areas, potentially
contributing to larger scale epizootics. It is important,
therefore, to consider both the temporal and spatial
scales at which hypoxia occurs when setting water
quality standards in order to protect the health of
aquatic organisms. Current water quality standards
often average conditions over time, or permit a lim-
ited proportion of space to violate criteria without
assessing the entire water body as being in violation.
Requirements based on temporal averages will not
protect for the negative effects of severe cycling con-
ditions. Furthermore, standards that permit failure in
some areas may result in small pockets of individuals
with high disease levels that could increase disease
loads for the entire system, including those areas that
meet water quality standards. Additionally, restora-
tion siting should consider environmental conditions
and their sub-lethal consequences beyond the actual
restoration sites as these conditions could indirectly
influence disease dynamics and restoration success.
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