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Comparative studies of populations occupying different environments can provide insights into the ecological conditions 
affecting differences in parental strategies, including the relative contributions of males and females. Male and female 
parental strategies reflect the interplay between ecological conditions, the contributions of the social mate, and the needs 
of offspring. Climate is expected to underlie geographic variation in incubation and brooding behavior, and can thereby 
affect both the absolute and relative contributions of each sex to other aspects of parental care such as offspring provision-
ing. However, geographic variation in brooding behavior has received much less attention than variation in incubation 
attentiveness or provisioning rates. We compared parental behavior during the nestling period in populations of orange-
crowned warblers Oreothlypis celata near the northern (64 N) and southern (33 N) boundaries of the breeding range. In 
Alaska, we found that males were responsible for the majority of food delivery whereas the sexes contributed equally to 
provisioning in California. Higher male provisioning in Alaska appeared to facilitate a higher proportion of time females 
spent brooding the nestlings. Surprisingly, differences in brooding between populations could not be explained by variation 
in ambient temperature, which was similar between populations during the nestling period. While these results represent 
a single population contrast, they suggest additional hypotheses for the ecological correlates and evolutionary drivers of 
geographic variation in brooding behavior, and the factors that shape the contributions of each sex.

A central tenet of life-history theory is that investment in 
current reproduction comes at the expense of future repro-
duction and survival (Williams 1966, Stearns 1992, Roff 
2002). In organisms that provide parental care for their 
offspring, the optimal level of parental investment should 
therefore reflect the trade-offs between the fitness benefits 
and costs associated with parental care over the lifetime 
of the adults (Trivers 1972, Clutton-Brock 1991, Royle 
et al. 2012). However, such trade-offs are complicated 
in organisms that exhibit biparental care because of the 
inherent conflicts over how much each sex should invest in 
offspring care versus other activities (Houston et al. 2005). 
For example, a parent may adjust the amount of care they 
provide depending on the perceived quality of his or her 
social mate or the level of investment by their mate (Emlen 
and Oring 1977, Burley 1988, Westneat and Sargent 
1996, Sheldon 2000, Chapman et al. 2003, Magrath 
and Komdeur 2003). Indeed, most studies assessing the 
sexual roles have focused on how such conflicts play out 
by evaluating the changes in parental effort of one sex in 
response to changes in parental effort of the opposite sex 

(reviewed by Harrison et al. 2009). Yet, across populations 
and species substantial variation also exists in the amount 
and type of parental care provided by each sex, but the 
evolutionary, ecological, and social factors responsible for 
the amount of variation in how much care is provided by 
each sex still remain unclear (Silver et al. 1985, Møller and 
Birkhead 1993, Reynolds and Székely 1997, Schwagmeyer 
et al. 1999, Møller and Cuervo 2000, Cockburn 2006, 
Olson et al. 2009).

Climatic factors such as ambient temperature or precipi-
tation during the breeding season are thought to influence 
the amount and form of parental care provided by each 
sex. However, most latitudinal and altitudinal compari-
sons have focused on variation in clutch size, despite there 
being much greater differences in behavioral traits such as 
nestling provisioning, post-fledging care, or the degree of 
cooperative breeding (Shaw et al. 2015). Generally, harsh 
or unpredictable weather conditions coupled with short 
periods of limited food availability, such as at high altitudes 
or latitudes, may favor higher overall investment in repro-
duction to facilitate the survival of offspring (reviewed by 
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Hille and Cooper 2015). Temperature in particular is often 
thought to be the most important determinant of male and 
female behavior during incubation because of the thermal 
requirements of the eggs and the energetic costs imposed on 
parents (Martin and Ghalambor 1999, Conway and Martin 
2000). However, colder temperatures may also be impor-
tant during the early nestling period, when young nestlings 
are ectothermic and dependent on their brooding parent for 
heat (Lyon and Montgomerie 1985, Lyon et al. 1987, Webb 
1993, Badyaev and Ghalambor 2001, Dawson et al. 2005). 
Later in the nestling period, colder temperatures may result 
in higher nestling provisioning rates to offset higher ther-
moregulatory demands of endothermic chicks (Lyon et al. 
1987, Hoset et al. 2004). At the same time, low tempera-
ture may reduce insect activity and in turn increase foraging 
time and reduce overall prey delivery to offspring (Avery 
and Krebs 1984, Low et al. 2008). Collectively, variation 
in climate along latitudinal or altitudinal gradients could 
lead to differences in the contributions of each sex between 
populations, particularly if suboptimal temperatures (i.e. 
either extremes in cold or heat) force parents to allocate 
more time to buffering nestlings from environmental tem-
peratures (Johnson and Best 1982, Wiebe and Elchuk 2003, 
Lobato et al. 2008).

In most passerines, buffering behavior falls on females 
who are responsible for brooding their nestlings, particu-
larly in the early stages of development when the young are 
unable to thermoregulate (Dawson and Evans 1960, Olson 
1992, Konarzewski 1995). Higher levels of female brood-
ing could in turn require males to compensate by assuming 
a greater proportion of offspring provisioning (Lyon and 
Montgomerie 1985, Briskie 1995, Martin and Ghalambor 
1999, Badyaev and Ghalambor 2001, Johnson et al. 2007). 
For example, a global comparative study of songbird popu-
lations showed that male help could be indispensable for 
increasing total nest attentiveness either directly through 
shared incubation by both sexes or indirectly via male 
feeding of incubating females (Matysioková and Remeš 
2014). However, relatively few comparative studies have 
specifically investigated how variation in climatic condi-
tions drives differences in patterns of parental care between 
populations, and the focus of most research has been on 
the incubation period, rather than on the nestling period 
when parents must both provision and brood their young 
(Briskie 1995, Badyaev and Ghalambor 2001, Johnson 
et al. 2007).

Here, we examine variation in paternal and maternal 
behavior during the early and late nestling period in two 
populations of an oscine passerine, the orange-crowned war-
bler Oreothlypis celata. We compare populations at the north-
ern and southern edges of the breeding range, which differ 
in their life histories and in the ecological conditions they 
experience. The main goal of this study was to assess patterns 
of nestling provisioning and brooding behaviors during the 
nestling stage, and to evaluate how interpopulation variation 
in parental care was linked with variation in temperature. 
We predicted that in the high latitude population, lower 
ambient temperatures would be associated with increased 
female brooding and a correspondingly higher proportion of 
male provisioning compared with the population breeding 
at lower latitude.

Methods

Studied species and areas

The orange-crowned warbler is a small insectivorous passer-
ine with a broad geographic range that spans western and 
northern North America (Gilbert et al. 2010). We studied 
the parental behavior of two populations at the northern and 
southern ends of the breeding distribution. The northern 
study site was located near Fairbanks, Alaska (64 47 41 N, 
147 53 45 W). The Alaska population was studied from 
2006 to 2008 and is a long distance migrant that winters 
along the Gulf Coast of the United States and belongs to 
the O. c. celata subspecies, whose breeding range extends 
from central Alaska throughout boreal Canada and into the 
northeastern United States (Gilbert et al. 2010). The south-
ern study site was located on Santa Catalina Island, off the 
coast of southern California (33 20 56 N, 118 26 59 W). 
The California population was studied from 2003–2009 
and is a resident or short distant migrant to the mainland 
and belongs to the O. c. sordida subspecies, whose breeding 
distribution is largely confined to the California Channel 
Islands (Gilbert et al. 2010).

The two populations and habitats that they occupy differ 
in several important respects. The 88 ha study site for the 
Alaska population was a spruce Picea–birch Betula–willow 
Salix dominated habitat, characterized by a short breed-
ing season (50–60 d). In contrast, the 14 ha study site for 
the California population was an oak Quercus and scrub 
dominated habitat, with a relatively long breeding season 
(100–120 d). The two populations also exhibited significant 
life-history differences (Horton et al. 2010, Yoon et al. 2012, 
2013, Sofaer et al. 2013). The Alaska population exhibited 
lower annual adult survival rates (40%) and larger clutch 
sizes (5–7 eggs), relative to the California population that 
had a higher annual adult survival (males: 68%, females: 
56%; Sofaer et al. 2014) and smaller clutch sizes (2–4 eggs). 
Breeding density was an order of magnitude lower in Alaska 
(0.48 territories ha–1 in 2007–2008), compared to California 
(4.11 territories ha–1 in 2003–2009; Yoon et al. 2012). Both 
populations were socially monogamous, with female-only 
incubation for 11–12 d in both populations; males rarely fed 
their incubating females. After hatching, females brooded 
altricial nestlings, and both parents contributed to nestling 
provisioning by delivering insect prey items that consisted 
largely of lepidopteran larvae (Gilbert et al. 2010). Nestling 
growth rates were faster in Alaska (Sofaer et al. 2013), and the 
length of the nestling period was shorter in the Alaska (9.5 d) 
compared to in California (12.3 d; Sofaer et al. 2013).

We used standardized methods for field data collec-
tion at both study sites. Briefly, individual warblers were 
captured by mist-netting and banded with a unique com-
bination of color bands and a numbered, aluminum U.S. 
Geological Survey band to identify each individual. At 
the time of capture, their sex and age were determined 
based on plumage and morphological traits (Pyle 1997). 
We found nests and monitored them approximately once 
every two days to determine their stage and fate. Nests for 
approximately 30 territorial pairs per site were found and 
monitored during each breeding season (late February to 
mid-May in California; mid-May to early July in Alaska). 
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However, data for only a subset of these monitored pairs 
are presented here because this study required video data 
collection. Only those nests that had at least one color-
banded parent (for differentiation between the sexes in vid-
eos) that survived to the target nestling age, and that had 
dry weather conditions during that day were used in this 
study (Table 1). Video recording equipment was also lim-
ited, and we prioritized recordings of the late nestling stage 
over the early nestling stage (see below). Parental behav-
ior data at the nest were collected in Alaska from 2006 to 
2008 and in California from 2005 to 2009, except 2007 
when birds failed to breed during a severe drought (Langin 
et al. 2009). Video data were not collected on days with 
heavy rains; the differences we observed may therefore be 
conservative because females are expected to brood more 
in rainy weather, and rainy weather occurred more often 
in Alaska (the number of precipitation days was 37% of  
90 d in Alaska in June of 2006–2008 and 10% of 120 d in 
California in April of 2005–2009 except 2007).

The contributions of each sex to nestling 
provisioning

To quantify paternal and maternal provisioning behavior 
during the nestling stage, we filmed parental activities at 
the nest using a small bullet camera (Swann, USA) that was 
remotely connected to a digital camcorder (DCR-TRV900, 
Sony, Japan) or video recorder (Archos, USA) for the first 
three hours after sunrise (approximately 03:30–06:30 AKDT 
in Alaska; approximately 06:30–09:30 PDT in California). 
Filming occurred 3 d after nestlings hatched (hereafter, the 
‘early’ nestling stage) in both populations, and also during 
the ‘late’ nestling period. The ‘late’ nestling stage videos were 
collected on the day the primary feathers broke their sheaths, 
which was also the last day nestlings could be handled with-
out a risk of force fledging; this corresponded to day 6 in 
Alaska and day 7 in California. Comparisons of early versus 
late nestling stages allowed for comparisons of how parental 
roles changed with the increasing energetic demands of the 
nestlings as they acquired the ability to thermoregulate.

We transcribed nest videos to quantify the following pro-
visioning behaviors for males and females: 1) hourly feed-
ing rate (the number of individual feeding trips h–1) and 2) 
per-trip food load size, and 3) hourly food delivery rate (the 
number of individual feeding trips  food load h–1). Orange-
crowned warblers can bring either single or multiple prey 
items in their beaks while feeding nestlings. Per-trip food 
load size was estimated as the total area of visible prey items 

relative to the parent’s beak size in still frames from nest vid-
eos; the mean was calculated for each sex during each video. 
For example, if the visible area of food was equal to the beak 
size, the load was scored as 1.0; 0.5 if the load was half the 
size of the beak; 2.0 if the load was twice the size of the beak. 
The same criterion was applied for all individuals, and food 
load scores ranged from 0.5 to 6.5 in our video data.

Female brooding behavior and climatic variation 
between sites

We quantified the proportion of female brooding time based 
on the number of minutes spent on the nest during each 3 h 
video. Brooding time was recorded only when we observed 
direct contact between the female and nestlings (e.g. time 
spent perching on the nest rim was excluded). To understand 
the ecological correlates of variation in female brooding 
behavior, we tested for differences in temperature and precip-
itation between populations because colder and wetter con-
ditions should favor increased female brooding of nestlings. 
We compared ten years of weather data at each site, ending 
in the last year we had collected behavioral observations (AK: 
2008; CA: 2009). For Alaska, we obtained hourly ambient 
temperature data (i.e. the whole 24-h day) from the Histori-
cal Weather Data Archives, NOAA National Severe Storms 
Laboratory (  http://data.nssl.noaa.gov ) and monthly pre-
cipitation data from the Alaska Climate Research Center 
(  http://climate.gi.alaska.edu ). For California, tempera-
ture and precipitation data were obtained from the Catalina 
Island Conservancy (  http://catalinaconservancy.org ). 
Weather stations in Alaska and California were located 3.4 
and 11.4 km away from our study sites, respectively.

Statistical analyses

We analyzed food load, hourly feeding rate, and food deliv-
ery rate in relation to site (Alaska vs California), sex (male 
vs female) and the two-way interaction (sex  site) for each 
nestling stage (early and late), using a linear mixed model 
with restricted maximum likelihood (REML). Nest ID was 
included as a random effect to control for observations of 
males and females recorded from the same nests. We tested 
for differences in the proportional time that females spent 
brooding their offspring using a linear mixed model as a 
function of site, nestling stage, and the two-way interaction 
(nestling stage  site); this model included a random effect 
of nest to account for observations at multiple nestling stages. 
The proportional time for female brooding in each nestling 
stage was also re-examined in association with site, ambi-
ent temperature during the video recording and the two-way 
interaction using a general linear model (GLM) without a 
random effect (because there was one observation per nest 
in each model). We used a two-sample t-test to compare 
ambient temperature and precipitation in each population 
for the dates and times during which videos were collected 
as well as for the month corresponding to the peak of the 
nestling period (April in CA and June in AK). All statistical 
analyses were performed in SPSS ver. 16.0 (SPSS, Chicago, 
IL, USA). We did not need to transform any variables to 
meet model assumptions. Behavioral measures are presented 
as means  1 SE.

Table 1. The number of orange-crowned warblers’ nests that were 
filmed during the early and late nestling stage to investigate sex roles 
in parental provisioning and brooding behaviors in Alaska and 
California.

Alaska population California population

Year Early stage Late stage Early stage Late stage

2005 – – – 8
2006 – 9 – 12
2007 2 9 – –
2008 7 14 8 12
2009 – – 8 6
Total 9 32 16 38



223

total food delivery rates, but in Alaska, males provided the 
vast majority of provisioning by each of these three measures 
(Fig. 1).

Per-trip food loads
We found significant differences in per-trip food loads (i.e. 
beak-equivalents per trip) between populations and sexes, 
as well as an interaction between sex and site during both 
the early (site F1,9.5  52.28, p  0.001; sex F1,9.1  26.62, 
p  0.01; sex  site F1,9.1  30.45, p  0.001) and late (site 
F1,59.2  14.71, p  0.001; sex F1,57.7  13.42, p  0.01; sex 

 site F1,57.7  21.66, p  0.001) nestling stages (Fig. 1a, 
b). During the early nestling stage (Fig. 1a), per-trip food 

Data available from the Dryad Digital Repository: 
 http://dx.doi.org/10.5061/dryad.f89h2  (Yoon et al. 

2016).

Results

The contributions of each sex to nestling 
provisioning

The populations showed striking differences in the division 
of provisioning effort between the sexes. In California, males 
and females had similar food load sizes, feeding rates, and 

Figure 1. Measures of parental provisioning effort by the sexes of orange-crowned warblers breeding in Fairbanks, Alaska (Oreothlypis celata 
celata; AK) and on Santa Catalina Island, California (O. c. sordida; CA) in the early (day 3 after hatching) and late (day 6 in Alaska; day 7 
in California) nestling stages: (a–b) per-trip food loads scored as one if the volume of food load was equal to the beak size (see Methods), 
(c–d) hourly feeding trips, (e–f ) hourly food delivery rate (the number of feeding trips  food load h–1). Error bars represent means  1 SE 
(n  numbers of nests).
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Alaska whereas this food delivery rate did not differ between 
sexes in California. This was true during both the early  
(Fig. 1e; site F1,20  0.16, p  0.69; sex F1,20  16.97, 
p  0.01; sex  site F1,20  14.58, p  0.01) and late (Fig. 1f; 
site F1,58.1  5.60, p  0.02; sex F1,57.1  8.65, p  0.01; sex 

 site F1,57.1  17.46, p  0.001) nestling stages. The overall 
food delivery rate did not differ between the two populations 
during the early nestling stage, but was higher in California 
during the late nestling stage. At both stages, females deliv-
ered significantly less food than either Alaska males or either 
sex in California, resulting in significant differences between 
the sexes and the two-way interaction.

Female brooding behavior and climatic variation 
between sites

Female brooding behavior
The proportion of time females spent brooding was 
significantly higher in Alaska than in California, and it sig-
nificantly decreased from the early to late nestling stage in 
both populations, with no significant interaction between 
stage and population (site F1,71.9  38.53, p  0.001; stage 
F1,12.3  126.00, p  0.001; stage  site F1,12.3  1.40 
p  0.26; Fig. 2a). That is, the magnitude of the decline 
from the early to late nestling stage was similar between 
populations. There was no relationship between ambi-
ent temperature and brooding behavior. During the early 
nestling stage, when sample sizes were smaller, the pro-
portion of time females spent brooding was not explained 
by site, ambient temperature, or the two-way interaction 
(site F1,12  1.77, p  0.21; temperature F1,12  0.15, 
p  0.71; site  temperature F1,12  0.09, p  0.77). 
During the late nestling stage, variation in female brood-
ing behavior was explained only by site (site F1,57  8.66, 
p  0.01; temperature F1,57  3.27, p  0.08; site  tem-
perature F1,57  2.74, p  0.10). Furthermore, the ambi-
ent temperature during videos did not significantly differ 
between the Alaska and California sites during the early  
(t test: t7.8  –0.62, p  0.56) or late (t58  –0.13, p  0.90) 
nestling stages.

loads were significantly larger in the population in Alaska 
than in the population in California; males in Alaska deliv-
ered larger food loads per trip than their females, whereas 
males and females delivered similar-sized food loads in 
California. Similarly, during the late nestling stage (Fig. 1b), 
per-trip food loads were significantly larger in the popula-
tion in Alaska than in the population in California; males in 
Alaska delivered larger food loads per trip than their females, 
whereas males and females delivered similar-sized food loads 
in California.

Hourly feeding trips
The hourly feeding rate (the number of feeding trips h–1) 
differed between the two populations and marginally dif-
fered between the sexes during the early nestling stage (site 
F1,15  22.04, p  0.001; sex F1,15  4.23, p  0.05; sex  
site F1,15  0.68, p  0.42; Fig. 1c). That is, the higher feed-
ing rate in California was driven by both sexes feeding more 
frequently than their counterparts in Alaska; the marginally 
significant difference between the sexes was largely driven by 
Alaska females feeding young at a lower rate than their males 
although a two-way interaction was not significant. The 
same general patterns were observed during the late nest-
ling stage (Fig. 1d). California parents provisioned late-stage 
nestlings at a higher feeding rate than did Alaska parents, 
without a significant difference between the sexes, but there 
was a significant two-way interaction driven by a difference 
in male and female feeding rate in Alaska (mixed model: site 
F1,128  81.40 p  0.001; sex F1,128  0.86, p  0.36; sex 

 site F1,128  6.99, p  0.01; Fig. 1d). In Alaska, females 
made fewer feeding trips per hour to the nest than did males 
during the late nestling stage, whereas the sexes did not differ 
in their feeding rate in California.

Hourly food delivery rate
When food load was incorporated into hourly food delivery 
rate (the number of feeding trips  food load h–1), the 
contribution of males in Alaska to nestling provision-
ing was further enhanced (Fig. 1e, f ). Each hour, males 
delivered more food to the nest than did their females in 

Figure 2. Nestling brooding behavior of female orange-crowned warblers and climate variation between Fairbanks, Alaska (AK) and Santa 
Catalina Island, California (CA): (a) proportional female brooding time (brooding min/videotaped min) in the early (day 3 after hatching) 
and late (day 6 in Alaska; day 7 in California) nestling stages from the 3 h nest videos in Alaska and California and (b) hourly means of 
ambient temperature ( C) for 10 yr in Fairbanks, Alaska (June in 1999–2008) and Santa Catalina Island, California (April in 2000–2009). 
Error bars represent means  1 SE.



225

condition and fitness. Conflict between the sexes arises 
because each parent benefits from a high total investment 
in offspring, while simultaneously trying to minimize their 
personal expenditure (Houston et al. 2005). Within popu-
lations, studies manipulating the contributions of one sex 
have tested the ability and willingness of the other sex to 
compensate (Wright and Cuthill 1989). In addition, many 
studies have asked how male contributions can be shaped 
by the opportunities for extra-pair copulations and by 
confidence in paternity, and have often explored how hor-
monal variation may underlie observed behavioral variation 
(reviewed by Ketterson and Nolan 1994, Schwagmeyer et al. 
1999, Møller and Cuervo 2000). The conflict between the 
sexes becomes even more nuanced when multiple dimen-
sions of parental care are considered and sex-specific con-
tributions differ among these dimensions. For example, in 
socially monogamous passerines, females may do most of 
the incubation while males provide more territorial defense 
(Clutton-Brock 1991). In species where biparental care is 
maintained but males do more incubation and brooding, 
there may be a general reversal of sex roles, such that the 
male also provides more feeding (Rossmanith et al. 2009). 
Our Alaska study population provides an example where 
one sex provides most of the feeding while the other is solely 
responsible for brooding; the contrast with California sup-
ports work showing how the relative contributions to feed-
ing depend on the ecological context (Wittenberger 1982). 
Although studies have investigated male and female con-
tributions to feeding in species in which only the female 
broods (Conrad and Robertson 1993) and in species in 
which both sexes brood (Carere and Alleva 1998), these 
studies have not been synthesized to evaluate whether there 
are general patterns in how the sexes divide their time and 
energy to different components of parental care.

The different types of care that parents provide make it 
difficult to summarize the relative contributions of each sex 
because the energetic expenditure associated with each type 
of care is difficult to determine. In particular, the costs of 
brooding young are poorly understood, making it challeng-
ing to compare contributions to brooding and feeding. Some 
work has suggested brooding young may create a sufficient 
energetic and time constraint to cause declines in female con-
dition (Chastel and Kersten 2002), while other studies have 
found no evidence for such costs (Sanz and Moreno 1995). 
The relative costs of brooding and feeding affect patterns 
of energetic expenditure with nestling age and brood size, 
because brooding declines with these factors (Clark 1985), 
while feeding rates increase. In our California study popula-
tion, feeding rates of females and males were approximately 
equal both early and late in the nestling period, but females 
also brooded young nestlings. This suggests that females’ 
relative contribution was higher early in the nestling period. 
It is more difficult to summarize the relative contributions 
and costs of care in Alaska, when females brooded much of 
the time but males provided more food. These costs will also 
vary with factors that affect the costs of brooding (e.g. nest-
ling age, brood size, and temperature), as well as with food 
availability and the costs of provisioning.

The most striking results of our study are the high brood-
ing rates in Alaska compared with California despite no dif-
ferences in ambient temperature (Fig. 2). Previous studies 

Climatic variables
Ambient temperatures during the nestling period (June 
in 1999–2008 for Alaska and April in 2000–2009 for 
California; Fig. 2b) were on average higher in Alaska 
(16.36  0.18 C, n  294) than in California (12.94   
0.26 C, n  255). These results are consistent with the 
interior continental climate of Fairbanks and the moderate 
marine climate of Santa Catalina Island. In the comparison 
of ten-year ambient temperatures between two study areas, 
the average of daily mean temperature was approximately 
3.43 C higher in Alaska than in California (t462  10.81, 
p  0.001), the average of daily minimum temperatures was 
approximately 0.80 C higher in Alaska (t test: t547  2.95, 
p  0.01), and the average of daily maximum tempera-
tures was also approximately 4.94 C higher in Alaska 
(t472  12.77, p  0.001). Precipitation during the month 
containing the peak of the nestling period was significantly 
higher in Alaska (27.45  5.11 mm) than in California 
(0.95  0.48 mm; t test: t19  5.17, p  0.01).

Discussion

Our study documented clear differences in the parental 
contributions of male and female O. celata breeding in cen-
tral Alaska and southern California, but these differences 
were not explained by temperature. In California, males 
and females provisioned their nestlings at similar rates and 
brought similar sized food loads. In contrast, males in Alaska 
both fed more frequently and brought more food per feeding 
trip, resulting in substantially higher food delivery by males 
than by females. This pattern of high provisioning by males 
in Alaska appeared to compensate for and facilitate the high 
brooding rates by females, who spent approximately 80 and 
50% of the early and late nestling stages brooding their off-
spring, respectively. This result is in line with other studies 
documenting the positive relationship between males’ direct 
or indirect help (i.e. shared incubation or incubation feed-
ing) and total nest attentiveness during incubation (Lyon 
and Montgomerie 1985, Badyaev and Ghalambor 2001, 
Matysioková and Remeš 2014). In previous studies, cold, 
unpredictable, and extreme environments have been invoked 
as explanations for altitudinal and latitudinal variation in 
patterns of avian parental care (Briskie 1995, Badyaev and 
Ghalambor 2001, Summers and Nicoll 2004, Johnson et al. 
2007, Matysioková and Remeš 2010, 2014). However, the 
expectation that colder temperatures account for the higher 
rates of brooding in Alaska compared with California was 
not supported. Indeed, temperatures were warmer during the 
nestling period in Alaska compared to California (Fig. 2b),  
and did not differ between sites during video recordings. 
This result challenges the assumption that ambient tempera-
ture is the primary ecological driver of geographic variation 
in brooding behavior and suggests that studies of parental 
contributions should consider other ecological drivers and 
the consequences time spent brooding has on male and 
female provisioning.

Understanding male and female contributions to paren-
tal care is a major area of research because both social and 
ecological contexts affect the relationship between paren-
tal expenditure and parental and offspring physiological 
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variation between populations. For example, within popula-
tions, parents often spend less time brooding larger broods 
because of their greater capacity for homeothermy (Clark 
1985), but we documented the opposite pattern between 
populations. Like incubation attentiveness, brooding behav-
ior may vary along the life history continuum and may be 
associated with high parental investment more generally. 
Growth rates also vary along the life history continuum, 
so comparative studies of brooding, growth, and male and 
female feeding rates may provide a better understanding 
of both the correlates and drivers of variation in parental 
contributions.  
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