10

11

12

13

14

15

16

17

18

19

20

Title: Deep rooting and global change facilitate spread of invasive grass
Running head: Deep rooting facilitates plant invasion
Authors:

Thomas J. Mozdzer'”, J. Adam Langley?, Peter Mueller®, and J. Patrick Megonigal®

Affiliations:

'Department of Biology, Bryn Mawr College, 101 N. Merion Ave, Bryn Mawr, PA, 19010,

USA. tmozdzer@brynmawr.edu

2Villanova University, Department of Biology, 800 E. Lancaster, Ave, Villanova, PA 19085,

USA. adam.langley@yvillanova.edu

3University of Hamburg, Applied Plant Ecology, Biocenter Klein Flottbek, Ohnhorststr. 18,

22609, Hamburg, Germany. peter.mueller@uni-hamburg.de

“Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037,

USA. megonigalp@si.edu

Corresponding author contact information*: Thomas J. Mozdzer, Department of Biology,
Bryn Mawr College, 101 N. Merion Ave, Bryn Mawr, PA, 19010, USA. Phone: 610-526-5098,

Fax: 610-526-5086, email: tmozdzer@brynmawr.edu

Keywords: Invasive, elevated carbon dioxide, priming, rooting depth, nitrogen, marsh organ,
Phragmites, Schoenoplectus americanus, Spartina patens

Type of paper: Original research



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Abstract

Abiotic global change factors such as rising atmospheric CO2, and biotic factors such as exotic
plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the
common reed, Phragmites australis, was introduced to the North America over a century ago,
but the belowground mechanisms underlying Phragmites invasion and persistence in natural
systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than
native plant communities in many of the ecosystems it invades, but the source of the additional N
is not clear. We exposed introduced Phragmites and native plant assemblages, containing
Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300
ppm), N (0 or 25 g m? y"), and hydroperiod (4 levels), and focused our analysis on changes in
root productivity as a function of depth and evaluated the effects of introduced Phragmites on
soil organic matter mineralization We report that non-native invasive Phragmites exhibits a
deeper rooting profile than native marsh species under all experimental treatments, and also
enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2
induces a sharp increase in deep root production in the invasive plant. We propose that niche
separation accomplished through deeper rooting profiles circumvents nutrient competition where
native species have relatively shallow root depth distributions; deep roots provide access to
nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil
organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-
rooting invasive plants that compete using a tree-like strategy against native herbaceous plants,

promoting establishment and invasion through niche separation.



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Introduction

Human-induced global change is known to facilitate biological invasions while
threatening ecosystem services (Vitousek et al. 1997, Dukes and Mooney 1999, Sorte et al.
2013). The economic impacts of invasive species and threats to biodiversity have resulted in
losses exceeding $120 billion per year in the United States alone (Pimentel et al. 2005). Global
change factors including rising atmospheric CO2 concentrations, increased nitrogen (N)
availability, and changes in precipitation have been demonstrated to favor introduced plant
species (reviewed in Sorte et al. 2013). Invasion studies often provide insights into our
understanding of landscape spread of the invader (Theoharides and Dukes 2007). In contrast,
little is known about the effects of global change factors on the processes that lead to the
establishment of self-sustaining plant populations and to expansion and invasion at the landscape
level. Without such information, it is difficult to determine the extent to which global changes

promote plant invasions in a rapidly changing world.

The ecosystem effects of changes in resource availability are more dramatic when
expressed through changes in plant species composition than solely through physiological
changes (Langley and Megonigal 2010, Hooper et al. 2012). Nowhere are biological-physical
ecosystem feedbacks more important than in tidal wetlands, where plants produce organic matter
and trap sediments that allow the soil surface to maintain a constant elevation relative to sea level
(Kirwan & Megonigal 2013). Therefore, the introduction of new species or genetic lineages,
such as introduced Phragmites australis in North America (Saltonstall 2002), Spartina
alterniflora and S. densiflora on_the Pacific Coast of North America (Dachler and Strong 1996),
S. anglica in Europe (Nehring and Hesse 2008) and S. alterniflora in China (Qin and Zong 1992,

Wang et al. 2006), that exhibit unique suites of physiological traits (Mozdzer and Zieman 2010,
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Mozdzer and Megonigal 2012, Mozdzer et al. 2013, Caplan et al. 2014, Koop-Jakobsen and
Wenzhofer 2015), could have dramatic consequences for the geomorphology of coastal
wetlands. Successful invasion ultimately represents the ability of an invasive species to establish
among and outcompete native species. Two dominant factors that govern plant establishment and
competition in tidal wetlands are flooding tolerance and nutrient supply. Spatial variation in
nutrient availability and soil elevation (relative to flooding water) results in distinct plant
community zonation that reflects the combined effects of flood stress-tolerance and nutrient
competition in tidal marshes (Bertness and Ellison 1987, Ewanchuk and Bertness 2004). The
stress gradient hypothesis suggests that competition for nutrients is most intense in low flood-
stress areas of tidal marshes such as high elevation zones (Bertness and Callaway 1994).
Anthropogenic N pollution has been shown to favor invasive Phragmites by ameliorating
competitive effects (Bertness et al. 2002), but the success of this invasive species cannot solely
be attributed to N pollution because Phragmites also invades and dominates relatively pristine
tidal marsh habitats (McCormick et al. 2010) where Phragmites N demand exceeds the N supply
of the native ecosystem (Windham and Ehrenfeld 2003, Mozdzer and Zieman 2010). Moreover,
Phragmites expansion has accelerated in areas that have experienced decadal-scale declines in
nutrient loading (McCormick et al. 2010, Ruhl and Rybicki 2010). Thus, understanding the
mechanisms by which Phragmites acquires N to promote establishment and growth is a

significant challenge to advancing research on invasive species.

Important insights on how plants satisfy nutrient limitation have come from studies of
plant responses to elevated COz. Elevated COz creates plant demand for soil nutrients — often N -
- that lead to progressive N limitation in the absence of either an external N source (van

Groenigen et al. 2011), or biogeochemical feedbacks that increase the N supply (Carney et al.
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2007). Elevated COz2 is known to stimulate deep root production in trees (Iversen 2010), where
promotion of root growth at depth is thought to serve as a nutrient foraging strategy to sustain
plant productivity in the face of enhanced nutrient demand (McKinley et al. 2009, Norby et al.
2010). However, an increase in deep root growth has not been observed in natural grasslands in
ecosystem-scale CO2 experiments (Arnone et al. 2000, Iversen 2010). In contrast to CO: effects,
N typically reduces belowground biomass allocation and favors aboveground production
(Langley et al. 2009, Deegan et al. 2012). To understand the effects of several interacting global
change factors on plant invasion, we subjected two plant community types--native grass-sedge
and introduced Phragmites--to manipulations of atmospheric COz, soil N availability, and soil
surface elevation (a proxy for water table depth) in a factorial experiment. We focused on the
depth distribution of roots as a primary response for three reasons. First, a deeper rooting
distribution may reduce the importance of nutrient competition in the typical rooting zone.
Second, the introduction of oxygen or carbon-rich exudates in deep, largely root-free soil may
stimulate nutrient mineralization. Third, deeper rooting may influence the rate of soil organic
matter accumulation, which we propose initiates a positive feedback loop stimulating plant
invasion. We present a conceptual model of plant invasion that can be applied broadly to
wetland and grassland ecosystems, and couples biological invasions to changes in plant-mediated

biogeochemical cycles.

Methods

To evaluate how rooting depth varied between native and introduced plant communities,
a mesocosm experiment was performed in a brackish tidal creek within the Rhode River
(Kirkpatrick marsh: 38.8742°N, 76.5474°W), a sub-estuary of Chesapeake Bay. The facility is

part of the Smithsonian Global Change Research Wetland (GCREW) of the Smithsonian
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Environmental Research Center in Edgewater Maryland. The site experiences a 44cm mean tidal
range, with a mean salinity of 10ppt (4-15 ppt range). The experimental design consisted of six
replicated “marsh organs”, each enclosed by an open-top chamber, the design of which was
previously described in detail (Langley et al. 2013). Atmospheric CO2 was maintained at either
ambient concentrations, or increased to ambient +300 ppm CO:2 (n=3) through the addition of
pure CO:z2 into air blown into the floating chamber. Within each marsh organ, there were six
elevations or water table depths (+37 cm, +17cm, +2 cm, -8 cm, -18 cm, & -28 cm relative to
mean higher high water (MHHW) measured by a tidal gauge at our site. Elevations were chosen
to span the current range of marsh elevation (+37cm to +2cm) and simulating future sea levels (-
8 to -28). At each elevation, there were eight mesocosms, four containing Phragmites and four
containing the native mixed plant community of Schoenoplectus americanus and Spartina patens
(~1:1 at initial planting) (N=288). Half the mesocosms in each treatment received N addition
(NH4C]) equivalent to 25 g N m? y! (1.78 moles N m? y'). Mesocosms were 72 c¢m tall, 10 cm
in diameter, and filled with reed-sedge peat (Baccto ® Peat, Michigan Peat Company, Houston,
TX) with free vertical drainage. Reed-sedge peat is a similar approximation to the organic soils
in our wetland that are > 80% organic. Phragmites plants were grown from seed to mimic the
process of establishment and invasion. Our goal in using seedlings was to assess how
Phragmites establishment can vary as a function of water level, CO2, and nitrogen. Seeds were
germinated using standard techniques (Kettenring and Whigham 2009) in March, and transferred
to mesocosm pots in May with four seedlings per mesocosm and acclimated to 8 ppt salinity
water over the course of two weeks before deployment. Seeds were collected from four spatially
distinct populations at GRCEW, and one seedling from each population (n=4) was planted in

each mesocosm. The native plant community consisted of Schoenoplectus americanus and



136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Spartina patens, which were grown from rhizome fragments and plugs in the same year and
acclimated similarly (Langley et al. 2013). After one growing season in the Phragmites
experiment and two growing seasons in the native plant community experiment, total
belowground biomass was determined by destructively harvesting the belowground portion of
each Phragmites mesocosm (n=144) and in two of three replicates in the native- plant
assemblage mesocosms (N=98). Plants did not survive in the lowest two elevations (-18 cm and
-28 cm) in any of the experimental plant communities, so these mesocosms were excluded from
the analysis. Additionally, two intact soil columns per treatment group were randomly selected
and were cut into 10-cm segments to evaluate the distribution of belowground biomass. The soils
were carefully washed away to recover roots and rhizomes, which were separated and oven-dried
to constant mass. Plant rooting depth distributions were fit to the B-distribution model of Gale
and Grigal (1987) in SAS (version 9.3) using proc NLIN. To evaluate the fixed effects of plant
community, CO2, N, and water table depth on rooting depth distribution (the B parameter) we
first performed a 4 way ANOVA in SAS (proc GLM). Given the overwhelming effects of plant
community on rooting depth (Table 1), we performed subsequent three-way ANOV As within
each plant community to better understand how each plant community and changes in resources
affect belowground biomass allocation (Table 2). To determine the effects of plant community,
CO2, N, and water table depth on belowground biomass, data were analyzed using replicate
means within chamber using proc MIXED, with chamber as the random effect by plant

community.

We also examined how Phragmites affected decomposition of soil organic matter from
deep (below 50 cm) soil horizons that are relatively unexploited by shallow-rooting native plants.

To do so, a second mesocosm experiment was conducted in the same “marsh organ” facility in
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2012. In this case, mesocosms were filled with homogenized soil collected from the study site at
a 50-100 cm depth with a 8'°C of -14.4%o, reflecting inputs from dominant Cs4 grasses. As such,
it was possible to distinguish CO2 generated by respiration of recent Phragmites photosynthate
(Cs-plant respiration and microbial respiration of recent Cs-plant litter and rhizodeposits) from
microbial respiration of Cs-derived soil organic matter using a stable carbon isotope partitioning
model (Wolf et al. 2007). In this experiment, mesocosms were placed at +17 cm, +2 cm and -18
cm relative to MHHW. At each elevation, 5 planted (treatment) and 5 unplanted (control)
mesocosms were deployed. There was poor survival at the -18 cm elevation, and these data were
excluded from analysis. Quantification of soil organic matter decomposition followed Mueller et
al (2015). Briefly, static opaque PVC chambers were placed on the mesocosms and sealed. The
headspace was flushed with COx"free air to remove atmospheric CO2 and sampled through a
rubber septum after 4 h of incubation to reach [CO2] > 1000 ppmv. Gas samples were transferred
into evacuated Labco exetainers (Labco Ltd, High Wycombe, UK) and analyzed for §'3*CO2 and
[COz] at the UC Davis Stable Isotope Facility. The contributions of plant and soil organic matter
derived COzto total COz2 flux were calculated after equations in Fu and Cheng (2002) using the
813C of the CO2 emitted from control mesocosms as the soil end member (-16.8%o) and the §'°C
of dried plant tissue as the plant end member (-26.5%o0), and data were analyzed by ANOVA in

STATISTICA 10 (StatSoft Inc).

We also assessed mineral N concentration throughout the depth profile to determine how
N availability varies with depth in the native marsh at the GCREW. These data were collected
from a native plant community exposed to a full cross of two manipulations, two levels of CO2
(ambient and 700 ppm) and two levels of N (ambient and ambient+25 g m™ yr'!). Each of the

four treatments had five replicates for a total of 20 chambers as described in Langley et al.
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(2009). Porewater was sampled from triplicate sampling wells at each of three depths: 15, 30 and
75 cm, Porewater was sampled every 1 to 3 months throughout the growing season and analyzed
for ammonium concentration (Keller et al. 2009). In these anaerobic soils, porewater nitrate is
typically below detection limits and does not contribute substantially to total mineral N
availability. We analyzed porewater NH4" availability averaged over three growing seasons
(2006-2008) using a three-way ANOVA (CO2 x N x depth, n=5) in JMP (Version 11.0, SAS

Institute).

Results

Belowground productivity

Both water table depth and plant community significantly affected root depth distribution
(B distribution sensu Gale & Grigal 1987) (four-way ANOVA, elevation & type effects; Table
1), with elevated COz2 causing root distribution to shift deeper in the invasive plant community at
high elevations (plant assemblage x CO2 x elevation effect; P=0.040) (Figure 1 & Table 1). At
all elevations, Phragmites had deeper root depth distributions than the native plant community
(Figure 1 & Table 1), and N had no effect on root depth distribution (Table 1), but there was a
non-significant trend toward a shallower rooting profile (Figure 2a). In the native plant
community, more than 90% of the biomass was found in the top 30 cm, regardless of elevation;

whereas this was only the case for the lowest elevation in Phragmites (Figure 1).

Elevated CO: affected root depth distribution only in Phragmites (COz effect, p=0.0127,
Table 2), but had no effect in the native plant community (COz effect, p=0.2325, Table 2). In the
Phragmites community, elevated CO2 had the greatest effects at the highest and lowest

elevations in (CO2 x elevation effect, p=0.046, Figure 1, Table 2). Phragmites had the deepest
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root depth distribution at the highest elevation (+37cm), distribution with more than 50% of its
biomass below 20 cm in depth, in contrast to the native plant community that had < 30% of its
biomass below 20 cm in depth. These COz-induced effects on rooting distribution persisted in
elevations two (+17 cm) and three (+2 cm), with the invasive plant rooting significantly deeper

in all but the lowest elevation (i.e. wettest) treatments (Figure 1, Table 1).

Carbon dioxide increased belowground biomass in the invasive Phragmites community
(CO2 effect, p=0.030 Tables 4 & 5), with no effect of COz2 in the native plant community (COz,
p=0.83), (Fig 2a, Table 4 & 5). Nitrogen increased total belowground biomass in both the native
and Phragmites plant communities (N effect, p=0.006 & p<0.001, respectively, Table 4), but
increased flooding experienced as lower relative elevation significantly decreased belowground
biomass in both plant communities (elevation effect, p<0.001,Table 4), with the native plant
community exhibiting greater belowground biomass given the extra year of growth than

Phragmites (Table 3).
Soil organic matter decomposition

813C of emitted CO: differed significantly between planted (high elevation: mean + SD =
-18.4 + 1.0%o0; mid elevation: -20.08 + 1.4%o) and unplanted mesocosms (high elevation: mean +
SD =-16.8 + 0.4%o; mid elevation: -16.8 £ 0.17%o; p<0.001), reflecting the fact that CO2 from
respiration of recent photosynthate (plant respiration or microbial respiration of recent plant litter
or rhizodeposits) was '*C-depleted compared to CO2 from microbial respiration of soil organic
matter. Soil organic matter decomposition rate was significantly enhanced in the presence of
Phragmites (p<0.0001), but decomposition rates did not vary by elevation (p=0.58). At the

highest elevation in the second experiment (+17 cm), the decomposition rate was far more rapid
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in the presence of Phragmites (mean + SD = 2.84 + 0.59 g C m™ d!) than in plant-free
mesocosms (1.03 +£0.19 g C m?2 d™) (post hoc Tukey HSD, p<0.001), and the same pattern
occurred at the mid (+2 cm) elevation (2.70 £ 0.57 g C m2 d™! vs 0.93 £ 0.05 g C m2 d'!) (post
hoc Tukey HSD, p<0.001) (Figure 3). Due to post-photosynthetic fractionation processes, the
813C of plant tissue can diverge from the §'3C of the respired CO2 (Bowling et al. 2008, Zhu and
Cheng 2011). However, the magnitude of this effect in Phragmites is <1%o as determined in
plants from the adjacent marsh platform (compare Mueller et al. 2016 for methodological detail),
and therefore too small to change the conclusion that plants greatly enhanced soil organic

matter decomposition rate.

Porewater nutrient analysis

Porewater ammonium availability in plots dominated by native plants at the Smithsonian
GCREW increased sharply with depth (three-way ANOVA, depth, p<0.0001), with
concentrations over ten times greater at 80 cm in depth than at 20 cm depth. Nitrogen
fertilization increased porewater [NH4 ] by 9-72% at 40 and 80 c¢m (three-way ANOVA, depth x
N, p=0.0257) (Figure 2B). Porewater ammonium availability decreased with elevated CO2
(three-way ANOVA, CO2, p =0.0220) and increased with N treatment at the 20 cm depth (post

hoc Student’s t, p<0.005).

Discussion

Previous studies have noted that the high N demand of invasive Phragmites exceeds N
supply based on nutrient budgets (Meyerson et al. 2000, Windham and Meyerson 2003).
However, these studies have not considered the possibility that Phragmites can access N in pools

below the rooting depth of native plants. In this system, native plants have a relatively shallow
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rooting depth distribution regardless of their zonation, with > 90% of the mass in the top 20 cm
(Saunders et al 2006, Figure 1), while porewater N concentrations increase dramatically with
depth below the rooting zone of the native plant community (Figure 2). This pattern suggests that
deep-rooting plants, such as Phragmites, have access to a large N pool, free of competition with
native plants. Indeed, data from our research group has demonstrated that Phragmites exceeds
our reported rooting depths (>3 meters) and actively takes up N at depths exceeding 70 cm,
whereas active N uptake by the native plant community occurs within the top 20 cm of the soil
profile (Meschter 2015). Invasive Phragmites also exceeds the rooting depth of many native salt
marsh plants in New England (Moore et al. 2012), suggesting that our observations can be

generalized to other tidal marshes invaded by Phragmites.

In addition to accessing unexploited plant-available soil nutrients, deep rooting may also
increase the soil N supply by enhancing N mineralization from soil organic matter. We found
that the decomposition of relatively old soils recovered from below the native community
rooting zone (50-100 cm) increased by approximately three-fold in the presence of Phragmites
roots as compared to plant-free soils. Recent work of our lab group demonstrated that priming
effects in tidal wetland systems are largely driven by aboveground biomass (Mueller et al. 2016).
We acknowledge, that mesocosms may have affected biomass production and thus indirectly
also affected the magnitude of observed priming effects. However, Phragmites biomass in this
experiment was relatively poorly developed with total belowground biomass <6 g DW
mesocosm™ and aboveground biomass <5 g DW mesocosm™ at both elevations. Therefore, we
expect priming effects to be even larger under mature clones in a field setting. The presence of
roots can greatly accelerate decomposition of recalcitrant soil organic (Fig 3) matter by

“priming” the microbial community with energy-rich carbon sources (Cheng 2009) or by
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introducing oxygen into anoxic soil layers (Wolf et al. 2007). Because N, P and other nutrients
are also released in the mineralization process, we propose that deep roots increase the nutrient
supply through enhanced mineralization of soil organic matter, which would otherwise remain
highly inert. Thus, enhanced rates of microbial activity may mineralize buried nutrients, making
them available for plant uptake and transport to the soil surface, where they recycle internally to
further increase productivity. The net effect of these changes may be a positive feedback to
future Phragmites growth and invasion. Although we demonstrated that Phragmites has the
potential to strongly accelerate the decomposition of old, recalcitrant organic matter in the
present study, future research will have to investigate the magnitude of priming effects at

different soil depths in order to demonstrate deep-root priming.

Our results suggest differences in rooting depth are likely ontogenic, and will likely be
magnified in a field setting. In our experiment, we used Phragmites seedlings, and found that
from the onset, Phragmites rooted deeper than the native plant community under nearly every
treatment combination. Although the native plant community had greater absolute belowground
biomass than the Phragmites community, this was likely due to the additional season of growth
(1 year — Phragmites vs. 2 years — native), and this additional biomass in the native community
was always in the top 20 cm of the soil profile. It is likely that the rooting patterns observed in
Phragmites would strengthen when left to mature in the field and increase its stature several-fold
in both height and mass (Windham and Lathrop 1999, Mozdzer et al. 2013, Caplan et al. 2015).
In contrast, the native mesocosms already reflected plant densities and biomass dimensions that
are similar to those found in the field (Langley et al. 2013). As such, our data suggest inherent

developmental differences in rooting depth that promote early establishment of Phragmites.
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Deep rooting may have other important consequences for invasion biology. Deep rooting
may allow invasive plants with unusually high N demand, such as Phragmites (Windham and
Meyerson 2003), to become established in undisturbed natural ecosystems. In the present study,
Phragmites seedlings grown in the absence of interspecific competition developed root systems
that were deeper than native species in one growing season. Because Phragmites often
establishes by seed (McCormick et al. 2010), we suggest that new Phragmites seedlings may be
able to escape intense nutrient competition through niche separation in a relatively short period
of time following establishment. Once the plant becomes established, clonal integration may
facilitate expansion (Amsberry et al. 2000) into lower elevation areas by subsidizing clones with
soil nutrients derived from deep sources. Indeed, Phragmites populations at the Smithsonian
GCREW (our study site) established at relatively high elevation creek banks, and are presently
invading marshes of lower elevation (Mozdzer personal observation). This hypothesis is also
supported by literature from other sites that describe Phragmites establishing at higher
elevations, and then spread vegetatively into lower elevations of the marsh (Windham and
Lathrop 1999, Bertness et al. 2002). Once Phragmites becomes established at higher elevations
through niche separation, invasion may progress through competitive exclusion because of
Phragmites’ tall stature (>3 m in height), which effectively excludes native competitors by
intercepting light both in the growing plant canopy and the thick understory litter layer
(Holdredge and Bertness 2011). We acknowledge that N fixation by invaders can also influence
invasion (Ehrenfeld 2003), however, there is limited evidence of N fixation by Phragmites and in

this instance, N-fixation activity is lower than native competitors (Burke et al. 2002)

We propose that establishment and subsequent invasion of Phragmites is aided by

inherent species-level differences in access to deep soil nutrients and escape from nutrient

14



316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

competition, which can occur at the seedling stage. Our data further suggest that these
differences in rooting depth will be enhanced by elevated CO2, which significantly deepened the
root depth distribution in invasive Phragmites, but not the native plant community. Although a
deepening of the root zone under elevated CO2 has been well-documented for woody plants
(Arnone et al. 2000, Iversen 2010) given higher water and/or nutrient demands in forested
ecosystems, our findings are novel for non-woody plants. Our data also suggest that rising CO2
concentrations possibly have played a role in the spread of Phragmites in the past few decades,
and that rising CO:2 concentrations will also enhance future invasions. Indeed NPP is 2-3 times
greater in Phragmites dominated ecosystems at GCREW when exposed to near future
concentrations of CO2 (700 ppmv) or N pollution, in contrast to the native mixed plant
community (C3-C4) where the effects of global change on NPP are minimal (Caplan et al 2015).
To the extent that deep rooting response enhances nutrient supply, deep rooting may also help to
maintain the growth response of Phragmites to elevated CO:2 over long periods of time, avoiding
the tendency of COz-driven growth responses to diminish over time because of progressive N
limitation (Luo et al. 2004). We acknowledge that N competition was not directly assessed in
this study, but differences in rooting depth may alleviate nutrient competition in the shallow
rhizosphere. We also have no evidence of root zone deepening in the native C3-Cs plant

community in our mesocosms (Fig 2), suggesting that these mechanisms exhibited are plausible.

Enhanced root productivity at lower elevations with elevated CO2 may also enhance the
ecological range where Phragmites establishes in the near future. Currently, Phragmites
establishes in the high elevations of a tidal marsh (Bertness et al. 2002), which we hypothesize is
facilitated by deep rooting and access to untapped nutrients, in a zone typified by intense nutrient

competition (Bertness et al. 2002). Our data also suggest that elevated COz can alleviate abiotic
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flooding stress, potentially changing plant community zonation as predicted by the stress
gradient hypothesis (Bertness and Ellison 1987, Ewanchuk and Bertness 2004). Specifically,
elevated CO:z enhanced root productivity in Phragmites at our lowest elevation, presumably
increasing its competitive ability (Fig 1c-d). Therefore, changes in CO2 may increase the
frequency and location of Phragmites invasion as it become more competitive at lower
elevations, where it is currently excluded due to abiotic flooding stresses including salinity and

sulfide (Chambers et al. 1998, Chambers et al. 2003).

Changes to root depth distributions may also influence patterns of vertical elevation gain.
Elevation gain in tidal wetlands is highly dependent on root growth (Kirwan and Megonigal
2013), particularly in sediment-poor environments (Langley et al. 2009). The combination of
high rates of root production and deep, anoxic soils where decomposition is slow may help
explain limited evidence that Phragmites—dominated ecosystems exhibit greater surface
elevation gain than those dominated by native species (Rooth et al. 2003). As an ecosystem
engineer, the ability to build soils vertically at greater rates than native plants provides a
mechanism for the invasive plant to keep pace with rising seas. Elevated COz significantly
increased belowground growth in Phragmites (Fig 2), most likely in response to a large increase
in photosynthesis (Caplan et al 2015). Previous studies have demonstrated a correlation between
increases in root growth and elevation gain (Langley et al. 2009), suggesting that Phragmites-
dominated marshes may also be better adapted to rising sea levels than native plant-dominated
marshes given the potential for greater belowground growth. However, this must be interpreted
cautiously without data on accretion rates, subsidence, and mineral inputs into the ecosystem.

Finally, it is possible that root zone deepening may also be a mechanism by which Phragmites
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may access less saline ground waters, thereby also allowing Phragmites to invade more saline

habitats, that are typically resistant to invasion (Chambers et al. 1998, Chambers et al. 2003).

A conceptual model of plant invasion

We propose that invasion by species with deep root-depth distributions fundamentally
alters biogeochemical processes, creating a positive feedback that intensifies plant invasion, and
that these feedbacks are enhanced by elevated CO2. We put forward a conceptual model that
illustrates how deep rooting causes a positive feedback that further promotes invasion, and
accounts for how these feedbacks are intensified by rising CO2 (Figure 4). Initially, niche
separation via deep rooting during establishment provides Phragmites access to an untapped pool
of nutrients, thereby promoting establishment. Next, priming microbial decomposition processes
in the rhizosphere further enhances nutrient availability, alleviating nutrient limitation of plant
growth and facilitating invasion into less hospitable, low-elevation areas by clonal expansion.
The success of the invading plant is furthered by competitive exclusion via competition for light.
As Phragmites invades the ecosystem, we propose that the combination of greater root
productivity and deep root production promotes soil elevation gain by adding soil volume, which
further improves the growth of Phragmites (Figures 1, 2). In addition, by bringing formerly
buried and inaccessible N to the soil surface where it can be recycled through uptake, senescence
and decomposition (Megonigal and Neubauer 2009), Phragmites is self-fertilizing the ecosystem

and amplifying its own growth.

We suggest that rooting depth is a key factor that drives plant invasion but has eluded
scientists due to the difficulty in accurately assessing belowground growth, particularly in

sensitive, experimental research plots. Most studies rely solely on aboveground responses;
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however perennial invasive grasses such as Phragmites have below- to aboveground biomass
ratios that exceed 3:1. It is not known how common deeper rooting profiles are among other
invasive grasses, but invasive Phragmites rooting profiles are more similar to woody functional
types such as shrubs and trees (Jackson et al. 1996), which commonly out-compete grasses as
they invade into grasslands (Rundel et al. 2014). Root zone deepening by shrubs similarly fills an
open niche or provides access to water. In contrast to grasslands, deep rooting in wetlands
requires specialized architecture to deal with anoxic soils. Phragmites is one of the few wetland
plants that employs pressurized gas flow to enhance oxygen transport to the rhizosphere and
simultaneously remove rhizospheric CO2, methane, and toxic sulfides. Thus deep rooting may
prove to be a diagnostic trait of invasive wetland plant species, and may be associated with other
prominent invasive plants including Agrypyron cristatum, Arundo donax, Phalaris arundinacea,
and Typha spp. We put forward our conceptual model to be tested broadly in genetically diverse
ecosystems in wetland ecosystems and in grasslands where both deep-rooting grasses and shrubs

can alter biogeochemical pathways to promote species shifts.
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551  Table 1. Results of 4-way ANOVA to evaluate the effects of plant assemblage, nitrogen
552 pollution (N), elevated CO2 (CO2), and elevation (elevation) on the rooting depth distribution ()
553  (sensu Gale & Grigal 1987). Significant effects on of type, elevation, and CO: on [ distribution

554  are in bold font.

555
Source DF F Value Pr>F
Plant assemblage 1 30.30 <0.0001
Elevation 3 16.30 <0.0001
CO2 1 6.50 0.014
N 1 0.01 0.915
Elevation x CO2 3 0.54 0.658
Elevation X N 3 0.80 0.503
CO2x N 1 0.20 0.654
Elevation x CO2x N 3 1.20 0.324
Plant assemblage x CO2 1 0.39 0.534
Plant assemblage x N 1 1.06 0.310
Plant assemblage x Elevation 3 0.45 0.712
Plant assemblage x Elevation x CO2 3 3.05 0.040
556
557
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558  Table 2. Results of two-way ANOVA to evaluate the effects of elevated COz, and elevation
559  (water table depth) within each plant assemblage on the rooting depth distribution () (sensu
560  Gale & Grigal 1987). Significant effects on of elevation and CO2 on [3 distribution are in bold

561  font.

562

Source DF Value Pr>F
Native assemblage
Elevation 3 7.37 0.0011
CO2 1 1.5 0.2325
Elevation X CO2 1 1.16 0.346
Phragmites
Elevation 3 11.03 <.0001
CO2 1 726 0.0127
Elevation X CO2 1 3.11 0.0454
563
564
565
566
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567 Table 3. Effects of Elevated CO: and elevation (water table depth) relative to MHHW on mean

568  belowground biomass (g) + (SE) in the native plant and Phragmites assemblages.
569

Native assemblage Phragmites

Elevation Ambient CO; Elevated CO, Ambient CO; Elevated CO,

Mean SE Mean SE Mean SE Mean SE

+37 47.5 2.2 33.9 7.4 26.0 2.1 32.5 3.1

+17 32.6 2.2 32.4 5.4 20.1 1.8 23.9 1.8

42 13.7 7.9 25.0 6.1 11.1 14 154 24

-8 5.9 3.0 14.8 5.0 6.8 1.8 7.5 2.0
570
571
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572  Table 4. Results of 3-way ANOVA to evaluate the effects of elevated COz, N, and elevation
573  (water table depth) on belowground biomass in the native and Phragmites plant assemblage

574  mesocosms. Significant effects are highlighted in bold font.

575
576
Source DF F Pr>F
Value
Native Community
elevation 3 18.28 <0.0001
CO2 1 0.04 0.838
N 1 10.64 0.006
Phragmites
elevation 3 148.1 <0.0001
CO» 1 5.22 0.0304
N 1 83.69 <.0001
577
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Figure Legends:

Figure 1. Effects of elevated CO2 on the mean proportion of belowground biomass of invasive
introduced Phragmites australis and the native plant assemblage (Schoenoplectus americanus &
Spartina patens) at elevations (A) +37 ¢cm, (B) +17 cm, (C) +2 cm, and (D) -8 cm relative to
mean higher high water (MHHW) exposed to ambient or elevated CO2. Seasonal mean water
table depth is indicated by the dashed line. B distribution values (sensu Gale & Grigal 1987) are
presented in each panel for each species and treatment. Significant effects of vegetation type

(Type) or elevated COz on B are indicated in each panel.

Figure 2. (A) Effects of elevated CO2 and nitrogen addition on belowground biomass
distribution of invasive Phragmites australis at an above MHHW where invasive Phragmites
australis typically establishes at the Smithsonian Global Change Research Wetland (our high
elevation scenario). Elevated CO2 and CO2+N cause root distribution to shift deeper in the soil
profile. (B) Mean porewater NH4" (uM) availability at the Smithsonian Global Change Research
Wetland, demonstrating decreased porewater [NH4"] with elevated CO2, but increasing [NH4 "]

with depth.

Figure 3. The influence of Phragmites plants on soil organic matter decomposition at high (+17
cm to relative to MHHW) and mid (+2 cm to relative to MHHW) water table depths. Presence
of Phragmites significantly increased decomposition rate (p<0.0001), and elevation had no effect

on decomposition rate (p>0.05). Post-hoc tests indicated Phragmites plants significantly
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609

increased soil organic matter decomposition at both the high- (p=0.0003) and mid-water table

(p=0.0003) depths relative to unplanted controls.

Figure 4. Conceptual diagram illustrating our interpretation on how deep-rooting invasive plants
gain access to nutrients below the rooting depth of native plants. Priming of the microbial
community deep within the soil profile further increases nutrient availability, thereby increasing
plant growth and facilitating invasion into the ecosystem via competitive exclusion.
Belowground growth builds soils, engineering the ecosystem to be drier and more suitable for
Phragmites than the native plant community as Phragmites invades into lower elevations. Once
deep nutrients are brought to the surface, Phragmites self-fertilizes the ecosystem resulting in a

positive feedback loop of high productivity stimulating further invasion.
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616  Figure 3.
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