Aggressive mimicry, where a predator deceives its victim by imitating something desirable, is a fascinating phenomenon that has been well documented in arthropods (e.g., fireflies—Lloyd 1981; jumping spiders—Jackson and Wilcox 1998). We do not know of any case of aggressive mimicry in frogs, but may have found such a system operating in the Gran Chaco of South America. Some frog predators use advertisement calls of the prey species to locate their prey (e.g., bats—Ryan 1985: Chapter 8), including frogs (Bufo marinus and Leptodactylus pentadactylus feeding on Physalaemus pustulosus—Rand 1983:414). We know of no instance where a frog uses its advertisement call as a lure to attract prey. We present data that are consistent with the hypothesis that male Leptodactylus laticeps not only use their advertisement calls to attract conspecific females, but also as an aural lure to attract Leptodactylus bufonius, upon which they have been shown to prey. Leptodactylus laticeps (Fig. 1A) is a species characteristic of the Gran Chaco of South America. The species produces toxic skin secretions and has bright coloration and aggressive behavior, presumably aposematic in function (Cei 1980; Scott and Aquino, in press). Leptodactylus laticeps often co-occurs with viscachas (Lagostomus maximus: Rodentia), and uses their burrow systems, including calling from the burrow entrances (Lavilla et al. 1995). To date, neither advertisement call nor larvae of L. laticeps have been described. Although Eterovick and Sazima (2000: Table 1) reported the call of L. laticeps as unpulsed, this is a mistake and refers to L. labyrinthicus instead (P. Eterovick, pers. comm.). Herein, we describe the advertisement call of L. laticeps.

Leptodactylus laticeps is a member of the L. pentadactylus species group (Heyer 1979), but its call has features similar in many respects to those of L. bufonius (Fig. 1B), a L. fuscus group member. We suggest that the advertisement call of L. laticeps acts as an aural lure to attract female L. bufonius as prey, in addition to attracting female L. laticeps. We further propose that the call of L. laticeps underwent selective pressure to be similar enough to the advertisement call of L. bufonius as to serve as an aural lure for female L. bufonius.

MATERIALS AND METHODS

The junior author recorded the calls of several sympatric species of Leptodactylus, including L. laticeps, at Filadelfia, Departamento Boquerón, Paraguay. For comparative purposes, we also analyze the advertisement calls of L. labyrinthicus and L. stenodema. The recording data are presented in the Appendix. Each recording represents a single individual. Recordings were made with an Uher
model 800 reel-to-reel tape recorder at a recording speed of 15/16 ips. Because of the low recording speed, the upper frequencies are truncated at about 3 kHz. As the call of L. latinasus, which occurs syntopically with L. laticeps, has fundamental frequencies above 3 kHz, we use a recording from a different locality that was made at a faster speed (Appendix).

Canary 1.2 software (Charif et al. 1995) was used to analyze the recordings. Calls were digitized at a sample rate of 22050 Hz, a sample size of 16 bits, and at an input speed of 1x. Call component terminology follows Duellman and Trueb (1986) and Heyer et al. (1990), unless specified otherwise. Call duration was measured from the wave form. Dominant frequency was determined using the spectrum analysis of Canary with settings of analysis resolution filter bandwidth 349.70 Hz, FFT size 256 points; window function hamming; amplitude logarithmic; clipping level –80 dB; display style smooth. Particularly for the calls of L. bufonius and L. laticeps the frequency display on the audiospectrogram is rather wide, making it difficult to measure any given maximum frequency throughout the call precisely. For these two species, a selection of 10 ms (or just greater) was made at the beginning and end of the calls. These 10 ms selections were analyzed with the power spectrum feature in Canary. Frequency sweep is the difference of the ending frequency and beginning frequency. Call amplitude modulation was evaluated from visual inspection of expanded wave form displays. Harmonics were determined using both expanded wave form displays and power spectrum displays.

The multidimensional scaling analysis was done with SYSTAT 10 using Kruskal’s loss function with the log option (Wilkinson 2000:119–127). The distance matrix used was standardized Euclidean distances based on mean parameter values for each species. The Euclidean distance matrix was produced using SYSTAT10 (Wilkinson et al. 2000). As we have six quantitative parameters in our study, we examined our data using two dimensions.

THE ADVERTISEMENT CALL OF LEPTODACTYLUS LATICEPS

The call (Fig. 2) consists of single notes given at a rate of 45-48 calls/min. Call duration is 0.18–0.21 s. The dominant frequency (= fundamental) range is 1015–1033 Hz. The beginning frequency range is 844–861 Hz; the ending frequency range is 1015–1033 Hz. The frequency sweep range is 159–184 Hz. The call is pulsatile and contains at least a second harmonic.

PREDATORY AURAL LURING?

WRH was struck by how similar the calls of L. laticeps were to those of L. bufonius in the field (Campo Grande, Salta, Argentina, December 1999; calls not recorded) and how different the call of L. laticeps was from its closest relative among the large species of the L. pentadactylus species group (Heyer 1979). However, when the calls of L. bufonius and L. laticeps are heard immediately after each other, they can be consistently distinguished by the human ear.
It was this initial field impression that led us to explore the possibility of predatory aural luring in L. laticeps. Two elements are required if L. laticeps is indeed an aural lurer of L. bufonius: (1) L. laticeps must feed on the presumed prey (L. bufonius) it would attract; and (2) the call of L. laticeps must be attractive to L. bufonius. If these two requirements are met, or at least not falsified, a corroborating piece of evidence would be that the calls of L. bufonius and L. laticeps are more similar to each other than L. laticeps is to other members of the L. pentadactylus species group. Each of these is discussed in turn.

Does Leptodactylus laticeps Feed on L. bufonius?

Adult L. laticeps (mean male SVL 98 mm) are much larger than adult L. bufonius (mean female SVL 54 mm). In addition to size differences, L. laticeps would have no difficulty visually distinguishing potential mates (mean female SVL 90 mm) from prey L. bufonius. Leptodactylus laticeps has the most visually distinctive color pattern in life of any Leptodactylus species (Fig. 1A), presumably an aposematic warning of its toxic skin secretions (Norman 1994:23, 157). Leptodactylus bufonius lacks any bright colors and is a gray or brown/tan frog in life (Fig. 1B). Based on visual acuity studies under low light conditions in other species of frogs (Straughan 1966), L. laticeps would be expected to easily distinguish L. bufonius from L. laticeps individuals at all size classes under nocturnal conditions. Leptodactylus bufonius and L. laticeps occur syntopically and both species can be heard calling at the same time. Leptodactylus bufonius was reported to be the most abundant item in the stomach contents of L. laticeps (Cei 1956:46), although Scott and Aquino (in press) found only two Bufo major and one unidentified frog in 19 stomachs. There are no data on whether female L. bufonius are over-represented in the stomach contents of male L. laticeps, however, which would corroborate the aural luring hypothesis.

Is the Call of Leptodactylus laticeps Attractive to L. bufonius?

We do not know whether the call of L. laticeps is attractive to female L. bufonius. It should be,
based on what is known about the features of calls that are attractive to female frogs. The only real difference between the calls of *L. bufonius* and *L. laticeps* is in the frequency range: they are very similar in terms of call duration, amplitude modulation, and harmonic structure (Table 1, Fig. 1). Experimental work has shown that female frogs actually prefer lower frequencies of calls than are produced by most conspecific males (see Sun et al. 2000, and the summary in Ryan and Keddy-Hector 1992).

In order to evaluate frequency data, calls should be standardized for temperature. The recorded calls of *L. bufonius* and *L. laticeps* were made on different nights. The *L. laticeps* call was recorded at 28°C. The temperature for the *L. bufonius* recording was not noted, but the call of *L. fuscus*, which was recorded after the call of *L. bufonius* on the same night was recorded at 30°C. It is safe to presume that the call of *L. bufonius* was recorded at 30°C or higher. Given the well-established relationship between frequency and temperature (Duellman and Trueb 1986:104), the data for our recordings would be more similar in frequencies to each other if the data were temperature standardized (we lack sufficient data to standardize for temperature).

There does appear to be a gap between the frequencies of the two calls that exceeds the window of neural frequency tuning for the basilar papilla based on other studies (e.g., the range of best frequencies in the basilar papilla of *L. albilabris* spans 300 Hz [Christensen-Dalsgaard and Narins 1993:656]). *Leptodactylus bufonius* should be able to process *L. laticeps* calls through the amphibian papilla (which is sensitive to frequencies lower than 1500 Hz), but we do not know if female *L. bufonius* would respond to signals processed by the amphibian papilla in terms of mate selection. However, loud intensities can stimulate anuran sound receptors and the basilar papilla of female *L. bufonius* could be activated if the calls of *L. laticeps* were loud enough. The call of *L. laticeps* is much louder than the call of *L. bufonius* (NJS, pers. obs.). Female *L. bufonius* may perceive the calls of *L. laticeps* to be super-attractive male *L. bufonius*. The available data neither robustly support nor falsify this particular element.

The most appropriate species of the *L. pentadactylus* group to compare call features with *L. laticeps* is *L. labyrinthicus*. The two species occur in open habitats with parapatric distributions. *Leptodactylus labyrinthicus* is considerably larger than *L. laticeps*, so a second member of the *L. pentadactylus* group is included that matches the size of *L. laticeps—L. stenodema* (maximum SVL for male *L. laticeps* 110 mm, for *L. stenodema* 100 mm; see Appendix, Table 1). One feature of the call of *L. laticeps* that is different from calls of *L. labyrinthicus* and *L. stenodema* and supports our hypothesis is the higher frequency of the call of *L. laticeps* (Table 1).

Leptodactylus laticeps has a restricted geographic range (Fig. 7 of Heyer [1979] is modestly expanded by new locality records). The following are the only other species of *Leptodactylus* that occur throughout all of the range of *L. laticeps* (they also have more extensive distributions): *L. bufonius*, *L. chaquensis*, *L. fuscus*, *L. latinasus*, and *L. mystacinus*. *Leptodactylus chaquensis* is a member of the *L. ocellatus* species group with a call very distinct from all others considered in this paper (Barrio 1966). There are no other frogs in the areas where *L. bufonius* and *L. laticeps* co-occur that have a call that is even remotely similar to the rising whistle calls found in *Leptodactylus*. *Leptodactylus bufonius*, *L. fuscus*, *L. latinasus*, and *L. mystacinus* are all members of the *L. fuscus* species group (Heyer 1978). As can be seen from the data (Table 1) and a multidimensional scaling analysis of the quantitative data (Fig. 3), the call of *L. laticeps* is more similar to the call of *L. bufonius* than it is to any other syntopic *fuscus* group species.

Alternative Explanations and Suggestions for Future Work

The call of *L. laticeps* may be under conflicting selective pressures: for lower frequencies by female *L. laticeps* and for higher frequencies for aural predation on female *L. bufonius*. This evolutionary conflict might prevent a really good match between predator and prey ever developing, analogous to the short- and long-distance call conflicts described by Sun et al. (2000).

There are two other aspects of the system that could argue against aggressive mimicry occurring between *L. laticeps* and *L. bufonius*. The similarity of the calls of *L. bufonius* and *L. laticeps* could be accounted for on the basis of selection for call transmission through the same habitat. Also, the call rate of *L. laticeps* is lower than that of *L. bufonius*; if females discriminate on the basis of call rate, male *L. laticeps* would not represent super-attractive stimuli for female *L. bufonius*. We have no data at this time to address these issues.
Although the present data are not as robust as desired to be absolutely confident in our assertion of predatory aural luring, the hypothesis is certainly falsifiable in ways that would be convincing. For predatory aural luring to work, one would predict that the lurer would have to be less abundant than the males of the lured species. This requirement is met based on personal observations by both authors, but actual abundance data should be gathered to confirm this point. Additional natural history observations would be informative, such as whether male *L. laticeps* feed most frequently underground or aboveground and whether most of their food is taken during the time they are actively calling. The most convincing test we can think of would be to determine whether gravid female *L. bufonius* respond positively to the advertisement calls of *L. laticeps* and whether, in fact, they actually prefer the calls of *L. laticeps* to the calls of *L. bufonius*. Performing this test is realistic, as the critical factor of obtaining gravid female *L. bufonius* for playback experiments is very possible.

ACKNOWLEDGMENTS

We thank A. Luz (Lucy) Aquino, World Wildlife Fund Paraguay, for help with the field work in Paraguay (NJS) and Esteban O. Lavilla, Fundación Miguel Lillo, Tucumán, for help with the field work in Argentina (WRH). Field work in Argentina was under the auspices of Guía de Transito No. 52 issued by the Dirección Provincial de Medio Ambiente y Recursos Naturales Renovables, Salta, Argentina and Certificado para Exportación No. 12572 issued by Dirección de Fauna y Flora Silvestres, Buenos Aires, Argentina. A. Stanley Rand critically reviewed early manuscripts. Reginald B. Cocroft provided a very useful review of a late draft. WRH received support from the Neotropical Lowlands Research Program, Smithsonian Institution (Richard P. Vari, Principal Investigator) and National Science Foundation (award 9815787 to Rafael de Sá and WRH).

LITERATURE CITED

APPENDIX

Recording data

Leptodactylus bufonius (n = 6 calls).— PARAGUAY: Boquerón, Filadelfia, USNM recording 327, cut 3, unvouched. No temperature, no time recorded. 28 November 1982. Recorded by N.J. Scott, Jr.

Leptodactylus fuscus (n = 10).— PARAGUAY: Boquerón, Filadelfia, USNM recording 327, cut 2, unvouched. No temperature, no time recorded. 28 November 1982. Recorded by N.J. Scott, Jr.

Leptodactylus mystacinus (n = 10).— PARAGUAY: Boquerón, Filadelfia, USNM recording 327, cut 6, unvouched. Air temperature 24°C, time 2206 h. 7 December 1982. Recorded by N.J. Scott, Jr.