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Organic carbon burial plays a critical role in Earth systems, influenc-
ing atmospheric O2 and CO2 concentrations and, thereby, climate.
The Carboniferous Period of the Paleozoic is so named for massive,
widespread coal deposits. A widely accepted explanation for this
peak in coal production is a temporal lag between the evolution of
abundant lignin production in woody plants and the subsequent
evolution of lignin-degrading Agaricomycetes fungi, resulting in a
periodwhen vast amounts of lignin-rich plant material accumulated.
Here, we reject this evolutionary lag hypothesis, based on assess-
ment of phylogenomic, geochemical, paleontological, and strati-
graphic evidence. Lignin-degrading Agaricomycetes may have
been present before the Carboniferous, and lignin degradation
was likely never restricted to them and their class II peroxidases,
because lignin modification is known to occur via other enzymatic
mechanisms in other fungal and bacterial lineages. Furthermore, a
large proportion of Carboniferous coal horizons are dominated by
unlignified lycopsid periderm with equivalent coal accumulation
rates continuing through several transitions between floral domi-
nance by lignin-poor lycopsids and lignin-rich tree ferns and seed
plants. Thus, biochemical composition had little relevance to coal
accumulation. Throughout the fossil record, evidence of decay is
pervasive in all organic matter exposed subaerially during deposi-
tion, and high coal accumulation rates have continued to the pre-
sent wherever environmental conditions permit. Rather than a
consequence of a temporal decoupling of evolutionary innovations
between fungi and plants, Paleozoic coal abundance was likely the
result of a unique combination of everwet tropical conditions and
extensive depositional systems during the assembly of Pangea.
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Coal has been part of human civilization for thousands of
years; it fueled the Industrial Revolution, ushered in our

hydrocarbon dependence, and remains an important energy
source (1, 2). Coal is largely derived from plant matter accu-
mulated as peat in wetland ecosystems and subsequently com-
pacted and converted to an organic-rich, combustible rock (3, 4).
Land plants possess cell walls composed primarily of polysac-
charides, such as cellulose; in vascular plants, the polyaromatic
biopolymer lignin is deposited secondarily in some cell walls,
notably those associated with biomechanical support and hy-
draulic transport. Cellulose and lignin are the two most abundant
organic compounds on Earth, accounting for most modern ter-
restrial biomass; polysaccharides, however, are prone to greater
rates of degradation, leading to lignin enrichment during dia-
genesis. Thus, coal is often thought to be composed largely of
lignin derived from woody tissue (5). Coal deposits occur by the
Early Devonian (6), but the most abundant, geographically ex-
tensive, and economically important are of late Paleozoic (Car-
boniferous−Permian) age (7, 8). Organic matter burial is an
important feedback to the Earth system influencing atmospheric
O2 and CO2, as well as global climate via its impact on CO2. In
particular, the peak in organic carbon sequestration during the
late Paleozoic is linked to extensive glaciation and the highest

concentrations of atmospheric O2 in Earth history, with broad
evolutionary ramifications (8).
Why is coal so abundant in late Paleozoic rocks? It has been

speculated that plant decomposers, especially the saprotrophic
fungi critical to modern ecosystems (9), were absent or in-
efficient during the Carboniferous, resulting in massive accu-
mulations of organic matter (10). A subsequent argument further
suggested Carboniferous plants possessed high lignin content,
and fungal metabolism for lignin degradation was inefficient or
had not yet evolved (11, 12). More recently, the evolution of
lignin degradation in basidiomycete fungi was traced via phylo-
genomic methods and relaxed molecular clock estimates to the
Permian (13, 14), offering support for a fungi-mediated decrease
in coal formation following the Carboniferous (13). The whole-
sale or partial attribution of the Carboniferous−Permian peak in
coal production to this evolutionary lag between lignin synthesis
and fungal degradation of lignin has been widely promulgated (8,
15–22), reflecting the growing interest in life−Earth feedbacks
over geological timescales (23–28). Such geobiological hypoth-
eses sometimes persist based largely on the strength of their
novelty, without sufficient predictive testing. Here, we compile
data on the distribution of organic-rich sediments in the Phan-
erozoic of North America and synthesize arguments demon-
strating that an evolutionary lag explanation for the waxing and
waning of coal deposition (8, 10–13) is inconsistent with geo-
chemistry, sedimentology, paleontology, and biology. Instead,
the Carboniferous−Permian peak and subsequent decline in coal
production most likely reflects a unique combination of tectonics
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and climate with the particular details of the evolution of plant
and fungal community composition bearing no direct relevance.

Results and Discussion
Central to the evolutionary lag model is the assumption that lignin
is the dominant biochemical constituent of coal, following taph-
onomic enrichment (5, 8); alternative, nonlignitic sources of re-
sistant organic matter include waxes from leaf cuticle, suberin
from bark, or sporopollenin from reproductive propagules (2, 5,
29), but such sources are less abundant and more patchy in space
and time. However, even where lignin is presumed to be the pri-
mary source, only ∼70% of the coal organic matter is consistent
with the possibility of a lignin origin, the rest being broadly at-
tributed to microbes or algae (30). Furthermore, this understanding
was based on analyses of visually identified wood fragments in coal,
from which progressive molecular transformations of lignin-derived
organic matter were examined in coals of increasing thermal ma-
turity (5, 31, 32); thus, these studies focused solely on lignin dia-
genesis, not on overall biochemical composition. Finally, such work
has focused on Cenozoic coals, ensuring continuity and compara-
bility with the modern flora (33); however, the wood-rich conifer
and angiosperm-dominated source floras of these coals differ rad-
ically from the mostly nonwoody floras of the Carboniferous. Thus,
certain assumptions undergirding lignin-based explanations for
Paleozoic coal abundance are founded on studies of coals derived
from plants with little meaningful overlap with the Paleozoic flora
and with divergent research objectives not easily transferable to
plants of that earlier time.
Carboniferous peat-forming environments were most frequently

dominated by arborescent lycopsids: trees that were woody, but
scantly so, with up to 80% of their peat biomass derived from
secondary cortical tissues (i.e., periderm or “bark”), which lack
extant homologs (34). Some bulk geochemical analyses of this
tissue suggested periderm lignification (35), whereas others em-
phasized a greater abundance of aliphatics relative to aromatics
(36), inconsistent with lignin but perhaps supporting suberin-like
chemistry as in modern seed plant bark (37). This discrepancy may
reflect the mixing of tissues during bulk analyses (36, 38) or sta-
bilization of labile original biochemistry by the secondary pro-
duction of more stable geopolymers during diagenesis (39, 40).
Synchrotron-based analyses of individual cell walls has ensured
sampling accuracy and demonstrated that periderm does indeed
possess reduced aromaticity relative to, and contain aliphatics ab-
sent from, wood of the same fossil—together suggesting lycopsid
periderm was not lignified and may well have been suberized (38).
Thus, lignin would have been of secondary importance in many
Carboniferous peats where lycopsid periderm was the single most
abundant component and could represent a straight majority of the
preserved biomass (41–43). In these materials, lags of largely intact
lycopsid periderm often can be found amid a matrix of highly de-
graded plant debris (44). The preferential preservation of these
nonlignified tissues—in contrast to lignified tissues of other taxa
and, indeed, the lignified wood of the same lycopsids—sharply
conflicts with and argues against elevated lignin content and the
temporal absence of efficient lignin-degrading fungi as the prime
factors responsible for Late Paleozoic coal formation.
In contrast to what would be expected if coal deposition were

driven by evolution of lignin metabolisms, there is no clear impact
of the distinctly different biochemical signatures that successive
Carboniferous swamp assemblages would have generated. Woody
cordaitalean gymnosperms were secondary to equal elements with
lycopsids in some peat-forming swamps, primarily during the early
Middle Pennsylvanian (34). Such cordaitalean abundance would
have elevated the lignin input to peat in these horizons; however,
the derived coals are not thicker or more widespread than the
earlier or later lycopsid-dominated coals. Furthermore, during the
Kasimovian/Gzhelian transition of the Pennsylvanian, Eurameri-
can communities lost most arborescent lycopsids and transitioned

to dominance by nonwoody, Psaronius marattialean ferns (34, 45–
47). Stems of these trees had multiple primary xylem cylinders in a
parenchyma matrix with a peripheral sclerenchyma zone. The bulk
of the aerial biomass was invested in a thick mantle of aeren-
chymatous roots, each with a small xylem strand and peripheral
sclerenchyma sheath (48–50). Thus, this stratigraphic boundary
also represents a major change in the biochemical inputs to Eur-
american peats. Consequently, clear manifestations in the overall
sedimentary and geochemical records of coal would be expected if
an imbalance between lignin synthesis and degradation were the
primary driver of Carboniferous coal accumulation. Instead, North
American data from the Carboniferous demonstrate comparable
levels of accumulation across each of these transitions, regardless
of biochemical inputs (Fig. 1), as is consistent with global compi-
lations (8, 51). Furthermore, coals are abundant and widespread in
China, then at paleoequatorial latitudes, until the late Permian
(52), with floral composition similar to that of Middle Pennsyl-
vanian Euramerican coals (53, 54). These Permian coals occur
after the supposed appearance of lignolytic fungi, and challenge
the attribution of earlier deposits to the absence of fungal decay.
Whereas a post-Paleozoic increase in fungal abundance has

been suggested (21, 55), Carboniferous fossils provide direct
evidence that fungi were taxonomically and ecologically diverse
(56–68). This is despite the recent recognition that fungal di-
versity and abundance is likely to be underestimated due to the
selective loss of fungal fossils with standard fossil preparation
techniques (68). Fossil wood and macrodetritus often exhibit
signs of decay (61, 69–72), even specifically fungal decay, al-
though the synapomorphies needed to link the fungi to specific
lineages are not preserved (73–75). For example, basidiomycete
white rot fungi are the most efficient modern lignin degraders,
and their evolution is directly implicated in the decline of coal
deposition (13). Although the earliest definitive fossil record of
basidiomycete white rot is from Triassic conifer wood (76), an
earlier evolution of fungal-mediated lignin degradation is in-
dicated by Devonian-to-Permian woods infiltrated with fungi and
possessing damage consistent with white rot decay or other forms
of fungal degradation of lignified tissue (61, 76–79) (Fig. 2).
Inconsistencies between the fossil record and lignin/fungal-based

explanations for Paleozoic coal abundance extend more broadly
than documented fossil specimens of fungal rots. Carboniferous
peat permineralizations (coal balls) generally contain low shoot:root
ratios, suggesting decay of massive amounts of aerial plant tissue
(34, 44, 80). This decay includes all tissue and organ types (61, 69–
71), many decayed nearly to the point of unrecognizability, including
wood. Also, in contravention to the evolutionary lag model, which is
rooted in the synthesis and degradation of lignin, the tissue most
resistant to decay was the unlignified periderm of arborescent
lycopsids, which often built up in thick lag concentrations. In addi-
tion, there is strong contrast among barely compacted roots, often of
multiple generations, penetrating highly degraded, aerially derived
material—an indication of early and extensive decay of material
above the water table during the accumulation process. Preservation
of delicate aerial tissues, such as leaves, often in isolated concen-
trations, is consistent with deposition directly into local depressions,
such as tree throws, where standing water would have been exposed
at the surface (81). Thus, decomposition of all plant tissues was an
integral part of Carboniferous ecosystems, and situations in which
organic matter accumulated appear to reflect local environmental
conditions, not the lignin content of the plant material.
In general, absence of lignin decay would be impossible by

virtue of simple mass balance: Even if terrestrial productivity
were only 25% of the modern levels (82, 83) of ∼55–60 gigatons
per year (84) and lignin accounted for 20% of that production
[lignin content generally ranges from 5% to 35% in most extant
tracheophytes (85–87)], carbon deposition in the form of lignin
would have amounted to ∼3 gigatons per year. The extremity of
this number is placed in perspective by considering that modern
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global coal reserves spanning the entire 420-million-year history
of lignified vascular plants are only on the order of a few thou-
sand gigatons (88). Actual rates of organic accumulation are
thought to be at least two orders of magnitude lower, even in the
Carboniferous (89). Despite feedbacks with weathering rates,
much smaller imbalances would have resulted in the complete
removal of atmospheric CO2 in less than a million years (90).

Without evidence of such dire consequences, lignin production in
the absence of lignin decay for more than 100 million years into
the early Permian is untenable. Most organic matter decays, re-
gardless of composition, and only accumulates where local stag-
nant waterlogging results in substrate anoxia (55, 81). Even if
lignin were relatively less prone to decay in the Paleozoic, that
would not impact the geographic extent of environments in which
preservation could occur and, thus, should not be expected to have
increased coal abundance. The evolution of trees and forested
ecosystems over the Devonian and Carboniferous fundamentally
altered sedimentary environments (91), but this environmental
transition had no direct relationship with lignin because, as out-
lined above, lignin content of arborescent lineages varied consid-
erably. Furthermore, this environmental restructuring was permanent
and, thus, cannot account for a Paleozoic peak in coal production.
Without question, decay is slower in certain biochemical constituents,
such as lignin, cuticle, and sporopollenin; however, their accumula-
tion is nonetheless confined to the subset of sedimentary environ-
ments that prevent their eventual degradation. Thus, reduced
Paleozoic rates of lignin decay might, at most, have resulted in a
greater fraction of the same amount of coal being sourced from
lignin, not more coal overall.
Genomic evidence used to support delayed fungal lignin deg-

radation can be readily reconciled with the direct evidence of pre-
Permian lignin decay. The evolutionary origin of lignin-degrading
fungal class II peroxidases (PODs) involved in white rot has been
traced to the most recent common ancestor (MRCA) of Auric-
ulariales and all other Agaricomycetes (excluding Cantharellales
and Sebacinales) in the Early Permian, thus conforming to the
evolutionary lag model (13). However, lignin modification is not
restricted to lignin-degrading PODs; alternate enzymes, such as
dye-decolorizing PODs, H2O2-generating oxidases, and certain
laccase-like multicopper oxidases, also are used by basidiomycetes
for lignin modification (92–94). Furthermore, Agaricomycotina
lineages outside of this clade, such as Cantharellales and Dacry-
mycetes, are capable of degrading lignin and/or producing mac-
roscopic decay patterns similar to white rot (93, 95–97). The
presence of gene families and/or enzymes associated with lignin
degradation has also been suggested from these lineages (14, 93,
98, 99), although lignin-degrading POD genes have not been de-
tected in genome-sequencing studies of Dacrymycetes thus far (13,
14). Additionally, reconciliation analyses suggest the presence of
some gene families associated with lignin modification, albeit in
low abundance, before the evolution of the white rot decay mode

Fig. 1. Terrestrial, North American organic sediment (coal, peat, lignite, an-
thracite, and tar) accumulation through time. Data are from the Macrostrat
database, and age estimates are derived from a continuous time age model.
Sedimentation metrics include (A) total packages, i.e., the number of organic-
rich sedimentary successions per million years, and (B) organic-rich sediment
volume burial flux measured in cubic kilometers per million years (derived
from stratigraphic thickness, depositional area, and deposition duration). The
light-colored section under the curve indicates the time interval over which
lycopsids played a dominant role in North American wetlands. Thus, lignin
would have been of secondary importance during this period, aside from in a
few interspersed floral assemblages in which woody cordaitalean seed plants
with higher lignin contents were codominant. Consequently, lignin is expected
to have been a greater contribution to coal formation both before and after
this interval of lycopsid dominance. Coal production being the result of a
temporal lag between the evolution of lignin synthesis by plants and lignin
decay by fungi is inconsistent with (i) the lack of correspondence between coal
production rates and transitions in biochemical inputs, (ii) the sharp, short-
lived peaks in Carboniferous coal production, and (iii) the return to high levels
of coal production in the last 100 million years.

Fig. 2. Modern white rot, and Upper Devonian fossil specimens of Callixylon
newberryi wood containing fungal hyphae or exhibiting patterns consistent
with fungal decay. (A) Modern wood exhibiting macroscopic white rot decay
pattern with patches of degraded tissue. (Scale bar, 5 mm.) (B) Acetate peel of
C. newberryi illustrating extensive macroscopic decay consistent with fungal
decay to the left of the arrow. Specimen from Kettle Point, Ontario, United
States National Museum number 618400. (Scale bar, 1 cm.) (C) Longitudinal
thin section of C. newberryi wood and associated fungal hyphae previously
described and recognized as consistent with white rot decay, although
without documentation of clamp connections necessary for placement in
Basidiomycota (77, 138). Specimen is from the New Albany Shale of Indiana,
University of Michigan Museum of Paleontology Paleobotany number 13834.
(Scale bar, 25 μm.)
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in Agaricomycotina (14). Thus, although it has been suggested
that the white rot type of lignin decay evolved in the MRCA of
Auriculariales and more derived Agaricomycetes in the Permian,
alternate mechanisms of lignin degradation may well have evolved
deeper in the phylogeny. Furthermore, although white rot Agar-
icomycetes are the most studied group of wood decay fungi, other
fungal (100–107) and bacterial (101, 102, 108–114) lineages are
either known lignin degraders or show some enzymatic capability
for lignin decay, although the phylogenetic breadth, evolutionary
origins, and degradative capacities of these lineages are far less
understood. Taken together, there appears to have been no
shortage of options available for the decomposition of lignified
tissue in the pre-Permian world. Finally, an earlier evolution of
POD-mediated lignin degradation in the Agaricomycetes them-
selves is still consistent with taking the molecular dating analysis at
face value: Although a Permian mean age is recovered for this
node, evolution as early as the Devonian is directly indicated by
the 95% highest posterior density, and perhaps earlier if the stem
lineage is included (13). Although a ∼120-Ma gap between Silu-
rian lignin synthesis and Permian lignin degradation had been
deemed most likely with genomic data taken in isolation, age
range estimates encompass the possibility of closer temporal as-
sociation between the evolutionary origin of lignin (∼420 Ma) and
POD-mediated lignin decay—suggesting a more rapid evolution-
ary response by fungi to the evolution of this recalcitrant, de-
fensive compound and highlighting the adaptive capacity of fungi.
If the waxing and waning of the massive coal deposits of the Late

Paleozoic was not a consequence of delayed fungal evolution, then
what was responsible for their abundance? An alternative expla-
nation for Paleozoic coal production is indicated by two aspects of
the North American history of organic accumulation rates (Fig. 1):
(i) the sharp Carboniferous peaks in depositional rates and (ii)
Paleogene rates of accumulation approximating Carboniferous
rates. Neither is consistent with the evolution of novel fungal me-
tabolisms permanently slowing peat accumulation rates, but both
are instead consistent with physical, abiotic drivers (115–118).
Organic matter can accumulate only where productivity outstrips
decay (119, 120). Productivity is maximized in the wet tropics, and
decay is reduced in the anoxic environments accompanying a
stagnantly waterlogged substrate (4, 121, 122). During the Car-
boniferous, a massive amount of organic debris accumulated in
warm, humid−perhumid equatorial wetlands formed during glacial
periods, which was subsequently buried during interglacial phases
(47). However, long-term preservation further requires crustal
subsidence to ensure continued deposition instead of erosion (119,
123). Continental flexures formed in response to crustal thickening
in active orogens (i.e., foreland basins) provide such a setting and
are commonly associated with coal-bearing deposits, as their rates
of subsidence and coal accumulation can be roughly comparable,
permitting the formation and preservation of thick peats (124–
126). Extensive foreland and cratonic basins, formed in association
with the Pennsylvanian−Permian coalescence of Pangea and were
positioned in the humid−perhumid, equatorial zone, ensuring the
cooccurrence of both the subsidence requisite for long-term pres-
ervation of organic deposits and the climate necessary for pro-
moting high water tables and biological productivity.
Through the later Permian and the Mesozoic, seasonally dry,

savannah-like conditions pervaded most—although not all (e.g.,
China)—of the tropics (118, 127). Equatorial rainforests have been
common in the Cenozoic, but the passive continental margins of
the post-Pangean tropics led to more localized accumulations, such
as in Southeast Asia and at higher latitudes in North America
during the super greenhouse conditions of the earlier Cenozoic.
These warm wet conditions during the Cretaceous−Paleogene
permitted the formation of woody seed plant-dominated mire
ecosystems in tectonic basins along the Western Interior Seaway of
North America formed in association with the Laramide Orogeny,
which ultimately gave rise to the thick coal beds of western North

America (80, 124, 125, 128–131). Regional coal accumulation rates
during this time approximated those of the Carboniferous (Fig. 1),
albeit those coal accumulation rates were not integrated over so
extensive a geographic area globally as in the Carboniferous. The
occurrence of these substantial coal deposits 200 million years after
the undisputed evolution of wood-rotting fungi sharply conflicts
with the evolutionary lag model (132). Although at least some coal
has accumulated at nearly all times since the evolution of vascular
plants (133), the only time a wet tropics has coincided with globally
extensive low-latitude foreland basin-like depositional systems over
the last 400 million years has been during the Carboniferous as-
sembly of Pangea. The magnitude of Carboniferous−Permian coal
production was not a product of increased plant lignin content
coupled with the delayed evolution of lignin-degrading fungi but
rather a unique confluence of climate and tectonics.
Feedbacks between life and the Earth’s surface over geological

timescales are a growing scientific focus. The coupling of geno-
mics and phylogenetics is a tremendously useful tool to expand
geobiology to lineages and physiological capacities that might
otherwise be invisible in deep time, as long as it is considered in
the full geological context. In the present case, coal can be the
most fossiliferous of fossil fuels, and, thus, the Carboniferous can
speak for itself in demonstrating the role of decomposition and
other environmental factors in the terrestrial carbon cycle. A
variety of organisms and genomic pathways could have been
involved in Paleozoic lignin degradation before the evolution of
POD-mediated lignin decay by agaricomycete white rot fungi.
Even if agaricomycete white rot fungi are considered exclusively,
genomic data are directly consistent with the evolution of lignin
degradation between the Devonian and Jurassic (13). Just as the
original molecular clock calibrations of the phylogeny were
based on different fossil constraints, the fossil record can then be
used in an iterative process to determine what proportion of that
temporal range is actually viable. Thus, the geobiological utility
of phylogenetics and genomics is strongly supported here as long
as they are treated as being among several equal constraints along-
side the geochemical, sedimentological, and fossil records.

Methods
Data on organic-rich Phanerozoic sediments (peat, lignite, anthracite, coal, and
tar) were extracted from the Macrostrat database (https://macrostrat.org) for
continental North America [consisting of 23,813 mostly lithostratigraphic geo-
logical units representing 949 geographic subregions (134)]. Ages of all organic-
rich sediments were estimated on the basis of general chronostratigraphic
correlations to Phanerozoic time intervals (e.g., international stages) and
stratigraphic superposition of geological units within those time intervals.
Two metrics for organic-rich sediments were derived: (i) the total number of
packages (Fig. 1A), which corresponds to the total number of sedimentary
successions containing organic-rich sediment in each region in each 1-My
time increment, and (ii) organic-rich sediment volume burial flux measured
in cubic kilometers per million years (Fig. 1B). Volumes of organic-rich sed-
iments required for volume flux calculations were based on sediment cov-
erage area, unit thickness, and proportional abundance of organic-rich
sediment within each unit (i.e., proportional lithological abundance was
used to determine the thickness of the organic-rich component of a single
Macrostrat unit). Our overall approach to volume flux calculation is com-
parable to that of Halevy et al. (135). Raw data are available at the fol-
lowing Macrostrat application program interface (API): https://macrostrat.org/
api/v2/units?lith_type=organic&project_id=1&format=csv. Summarized data
were plotted using the geoscale package (136) in R (137), and are available
in Dataset S1.
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