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ABSTRACT  41 
The conservation of tropical forest carbon stocks offers the opportunity to curb climate 42 

change by reducing greenhouse gas emissions from deforestation and simultaneously conserve 43 
biodiversity. However, there has been considerable debate about the extent to which carbon 44 
storage will provide benefits to biodiversity in part because whether forests that contain high 45 
carbon density in their aboveground biomass also contain high animal diversity is unknown. 46 
Here, we empirically examined medium to large bodied ground-dwelling mammal and bird 47 
(hereafter “ground-dwelling endotherm”) diversity and carbon stock levels within the tropics 48 
using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested 49 
whether tropical forests that stored more carbon contained higher ground-dwelling endotherm 50 
species richness, taxonomic diversity and trait diversity. We found that carbon storage was not a 51 
significant predictor for any of these three measures of diversity, which suggests that benefits for 52 
ground-dwelling endotherm diversity will not be maximized unless endotherm diversity is 53 
explicitly taken into account; prioritizing carbon storage alone will not necessarily meet 54 
biodiversity conservation goals. We recommend conservation planning that considers both 55 
objectives because there is the potential for more terrestrial endotherm diversity and carbon 56 
storage to be achieved for the same total budget if both objectives are pursued in tandem rather 57 
than independently. Tropical forests with low elevation variability and low tree density 58 
supported significantly higher ground-dwelling endotherm diversity. These tropical forest 59 
characteristics may provide more affordable proxies of ground-dwelling endotherm diversity for 60 
future multi-objective conservation planning when fine scale data on wildlife are lacking.   61 
 62 
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 65 
INTRODUCTION 66 

Biodiversity loss and climate change are two of the most significant environmental 67 
problems of the 21st century (Cardinale et al. 2012, IPCC 2014). Major initiatives to conserve 68 
biodiversity include international commitments to expand the extent of protected areas globally 69 
and halt the loss of threatened species (Aichi Targets; http://www.cbd.int/sp/targets). Programs 70 
such as Reducing Emissions from Deforestation and Degradation (REDD+) offer financial 71 
incentives for developing countries to reduce their emissions by conserving carbon stocks 72 
(FAO/UNDP/UNEP 2010). In practice, however, both biodiversity conservation initiatives and 73 
carbon storage programs face limited budgets that are insufficient to achieve their objectives 74 
(Eliasch 2008, McCarthy et al. 2012).  75 

Multi-objective planning, where, for example, both biodiversity and carbon are 76 
considered within the framework of a single analysis, is one way to increase the efficiency of 77 
available funds (Venter et al. 2009, Thomas et al. 2013). REDD+ has been identified as having 78 
the potential to simultaneously mitigate climate change and conserve biodiversity (e.g. 79 
Strassburg et al. 2012). However, REDD+ has yet to be implemented at large geographic scales 80 
or with significant budgets in part because a lack of detailed information on site-level carbon and 81 
diversity hampers the ability to select REDD+ sites that optimize for both objectives (Anderson 82 
et al. 2009, Siikamaki and Newbold 2012). Even though the need to provide deliberate guidance 83 
to countries attempting to achieve both objectives has been recognized (Gardner et al. 2012), 84 
plans either remain in the developing stage or lack specificity in their definition of biodiversity 85 
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goals and monitoring indicators (Panfil and Harvey 2014). Site-specific measures of wildlife 86 
diversity and carbon are therefore needed to understand to what extent tropical forests with high 87 
carbon density also contain high wildlife diversity (Siikamaki and Newbold 2012).  88 

Based on ecological theory, a positive correlation between carbon and the abundance and 89 
diversity of animals may exist, as both could be related to primary productivity (Wright 1983). 90 
One possible mechanism is that high productivity may lead to increased consumer abundances, 91 
which may translate into higher species richness because a larger number of species can attain 92 
viable population sizes that allow their persistence in the community (Srivastava and Lawton 93 
1998). Recent studies have evaluated the relationship between carbon storage and tropical tree 94 
diversity and found support for a positive relationship (Cavanaugh et al. 2014, Imai et al. 2014), 95 
but information on the fine-grained relationship between carbon storage and tropical wildlife is 96 
lacking.  97 

The Tropical Ecology Assessment and Monitoring (TEAM) Network was established in 98 
2002 and is a partnership between Conservation International, the Smithsonian and the Wildlife 99 
Conservation Society. The network includes research sites in 17 tropical forest protected areas 100 
that simultaneously monitor plants, animals and climate. TEAM data are uniquely suited for 101 
examining relationships between carbon storage and animal diversity for two key reasons. First, 102 
ground-dwelling mammals and birds are monitored with camera traps according to a highly 103 
standardized protocol (TEAM Network 2011c), forming the largest camera trap network in the 104 
world (Jansen et al. 2014). Unlike distribution data extracted from geographic ranges (e.g. 105 
Strassburg et al. 2010), which overestimate the occurrence of species (Hurlbert and Jetz 2007), 106 
TEAM data capture the real-time co-occurrence of species at the fine-grained local scale at 107 
which biotic interactions take place. Moreover, replication of the standardized TEAM protocol 108 
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throughout the tropics provides fine-grained data collected over a large spatial extent, which is 109 
rare but particularly important for understanding diversity (Beck et al. 2012).  110 
 Secondly, TEAM monitors vegetation plots that overlap spatially with the camera traps 111 
and yield ground measurements of carbon storage, which are more accurate than remotely sensed 112 
carbon estimates (Mitchard et al. 2014, Rejou-Mechain et al. 2014). The sampling design of the 113 
TEAM vegetation plots is optimal for estimating carbon density for two reasons. TEAM 114 
vegetation plots are a suitable size (1 ha) for estimating carbon density because this is the plot 115 
size at which error rates stabilize (Rejou-Mechain et al. 2014) and the sampling design captures 116 
variation in elevation (TEAM Network 2011b, a), which captures heterogeneity in aboveground 117 
biomass estimates (Rejou-Mechain et al. 2014). 118 

We empirically investigate the relationship between carbon storage, ground-dwelling 119 
endotherm diversity and environmental characteristics at a site-level scale throughout the tropics. 120 
We use modeling approaches to improve our understanding of predictors of ground-dwelling 121 
endotherm diversity. Specifically, we ask 1) to what extent does carbon density predict ground-122 
dwelling endotherm diversity in the tropics and 2) given that the collection of fine-grained 123 
endotherm data (i.e., site specific rather than from coarse gridded range maps) at all locations is 124 
cost prohibitive (Gardner et al. 2012), what site-level characteristics can be used to predict 125 
tropical ground-dwelling endotherm diversity in the absence of high-quality site-specific data? 126 
Our goal is to provide quantitative biological results from a pantropical network of sites for 127 
consideration in future conservation planning. 128 
 129 
 130 
METHODS 131 
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TEAM Network Study Sites 132 
Data on carbon stocks and wildlife were collected at 14 forest sites that are part of the 133 

Tropical Ecology Assessment and Monitoring (TEAM) Network, a stratified random selection of 134 
active field sites in tropical forests (TEAM Network 2011a) in Latin America, Africa, 135 
Madagascar and Southeast Asia (Fig. 1). Sites included Barro Colorado (BCI) in Panama, 136 
Caxiuanã (CAX) in Brazil, Cocha Cashu (COU) in Peru, Manaus (MAS) in Brazil, Volcán Barva 137 
(VB) in Costa Rica, Yanachaga (YAN) in Peru and Yasuni (YAS) in Ecuador in the Americas; 138 
Bwindi (BIF) in Uganda, Korup (KRP) in Cameroon, Nouabalé Ndoki (NNN) in the Republic of 139 
the Congo, and Udzungwa (UDZ) in Tanzania in Africa; Bukit Barisan (BBS) in Indonesia and 140 
Pasoh Forest (PSH) in Malaysia in Asia and Ranomafana (RNF) in Madagascar (Table 1). 141 

 142 
TEAM Data Collection   143 
TERRESTRIAL ENDOTHERM DATA 144 

We restrict our sampling to ground-dwelling and semi- ground-dwelling mammals and 145 
birds because these species tend to be a component of vertebrate diversity that (1) is managed 146 
locally in protected areas, (2) is important for shaping forest structure through seed dispersal and 147 
its effects on tree demography, and (3) constitutes important aspects of ecotourism. 148 

Ground-dwelling mammals and birds were surveyed annually at each site, using camera 149 
traps, following a standardized protocol (TEAM Network 2011c). Sixty camera traps were 150 
deployed per site at a density of 1 camera trap per 2 sq km. The camera traps arrays did not cover 151 
the entire protected areas, but provided a core sampling area at each site (Ahumada et al. 2011). 152 
Each camera trap was set 30-40 cm from the ground and was active continuously for 30 days 153 
during the dry season. While TEAM monitors ground-dwelling endotherms annually at each site, 154 
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the number of years of camera trap data varies between sites. We therefore used one year of data 155 
from each site to control for variation in sampling effort that might otherwise affect diversity 156 
estimates. 157 

Of the species detected by the camera traps, only those species meeting the following 158 
criteria for reliable detection were included: 1) species with average adult body size of 100 159 
grams or more (Dunning 2008, Jones et al. 2009) and 2) predominantly ground-dwelling species 160 
that spend a large proportion of their time on or near the ground according to species descriptions 161 
(IUCN 2014, Myers et al. 2014, Schulenberg 2014). If descriptive data suggested that a species 162 
is arboreal, a species was included if there was at least one TEAM site at which the species was 163 
detected in five or more events for each year that camera trap data have been collected based on 164 
the rationale that TEAM data can be used to increase our understanding of poorly known species. 165 
Observed species lists are available in Appendix S1. A single taxonomic authority was used for 166 
all sites (IUCN 2014). 167 

We used trait data on body mass and guild (carnivore, herbivore, insectivore, or 168 
omnivore) (Dunning 2008, Jones et al. 2009, Myers et al. 2014, Schulenberg 2014) for all 169 
species, and activity cycle, geographic range size and litter size for mammals (Jones et al. 2009). 170 
These traits were selected because they provide information on feeding ecology, life history and 171 
behavioral characteristics of the community. Missing trait values were assigned the family mean 172 
for continuous traits and family mode for categorical traits. For the 253 mammal species 173 
included in the study, family level values were applied to missing values of body mass for 2 174 
species (<1%), litter size for 60 species (23.7%), geographic area for 20 species (7.9%), activity 175 
cycle for 53 species (20.9%) and guild for 6 species (2.3%). For the 144 bird species included in 176 
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the study, family level values were applied to missing values of body mass for 2 species (1.3%) 177 
and guild for 27 species (18.75%). 178 
 179 
VEGETATION DATA  180 

Each TEAM site monitors vegetation in six or more 1-hectare plots in the core study area 181 
established following specific guidelines regarding elevation gradients, terrain, soil type and 182 
water bodies (TEAM Network 2011a). Trees with diameter at breast height (DBH) of 10 cm or 183 
greater were monitored during the dry season following standardized TEAM vegetation 184 
protocols (TEAM Network 2011b). We included all TEAM plots for which at least 80% of stems 185 
have been identified to the Family level (79 plots total; N=6 plots for each site except NNN 186 
(N=4), RNF (N=4), YAN (N=1) and VB (N=10)). All vegetation calculations were conducted at 187 
the genus level because this was the highest taxonomic resolution available for some of the stems 188 
due to constraints including lack of vouchered specimens for rare tropical species. Site-level 189 
values for each variable using vegetation data were calculated as the mean of plots at a site. Data 190 
from 2012 were used for four sites (BIF, CAX, PSH, and YAS) and data from 2011 were used 191 
for the other ten sites to ensure concurrent camera trap and vegetation data.   192 
 193 
Model Inputs 194 

For each site, we calculated three measures of ground-dwelling endotherm diversity to 195 
use as response variables: species richness, taxonomic diversity and trait diversity. While species 196 
richness is a commonly used diversity metric we also used a taxonomic diversity index to 197 
account for species commonness or rarity and a trait diversity index to measure variation in 198 
species characteristics.  199 
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We quantified site-level environmental variables to use as predictors of the three 200 
measures of ground-dwelling endotherm diversity: 1) carbon density 2) tree density 3) tree 201 
diversity 4) protected area size 5) forest loss 6) elevation variability 7) latitude and 8) mean 202 
annual rainfall. We used the mean values of all vegetation plots at a TEAM site as site-level 203 
predictors. We also examined continent effects. 204 
 205 
RESPONSE VARIABLES: TERRESTRIAL ENDOTHERM DIVERSITY 206 
Species Richness 207 
 We estimated ground-dwelling endotherm species richness using a single-season 208 
Bayesian model of species richness that accounts for imperfect detection (Dorazio et al. 2006). 209 
Each camera trap was a sampling location and each 24-hour period of the 30-day sampling 210 
period was a sampling occasion. We executed the models in R version 3.0.1 (R Development 211 
Core Team 2014) with the package “rjags”, which implements MCMC methods using the Gibbs 212 
sampler JAGS (Plummer and Stukalov 2014). We fit one model for each site using 4 chains with 213 
250,000 iterations, a burn-in period of 125,000 iterations and retained every third iteration. 214 
Outputs were examined for convergence. Due to the strong positive skew (Appendix S2), we 215 
modeled median estimates of terrestrial endotherm species richness. 216 
 217 
Taxonomic Diversity 218 
 We estimated an index of taxonomic diversity based on the occupancy probabilities of 219 
observed species. We estimated species and site-specific occupancy using a Bayesian model 220 
(Ahumada et al. 2013). The last 1000 iterations from the fully converged single species models 221 
formed the posterior distribution of occupancy values for each species. We then computed a 222 
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distribution of the Shannon index of diversity for each site (Magurran 1988) that consisted of 223 
1000 Shannon index values. For each calculation of a site’s Shannon index, we used the 224 
occupancy values from the corresponding iteration (i.e. i in 1:1000) for the species at the site as 225 
the community composition data with the “diversity” function from the vegan package in R 226 
(Oksanen et al. 2013) and modeled the median from this distribution as the taxonomic diversity 227 
response variable. The Shannon index increases as species richness and evenness increase 228 
(Magurran 1988). 229 
 230 
Trait Diversity 231 
 Trait diversity refers to the values, ranges and abundances of the traits found in a 232 
community. We calculated the functional dispersion index (FDis), which is the mean distance in 233 
multivariate trait space of individuals to the centroid of all species (Laliberte and Legendre 234 
2010). We used the FD package in R (Laliberte and Shipley 2011) and weighted the distances by 235 
the posterior distributions of the species-specific occupancy. We modeled the median value from 236 
the FDis distribution as the trait diversity response variable. FDis increases as the diversity of 237 
traits in the community increases.   238 
 239 
PREDICTOR VARIABLES: SITE-LEVEL ENVIRONMENTAL CHARACTERISTICS 240 
Carbon Storage 241 
 We estimated aboveground carbon density for each 1-hectare vegetation plot and used the 242 
mean carbon density of all plots a TEAM site as a site-level predictor variable. Specifically, we 243 
first estimated aboveground biomass for each plot using the following equation (Chave et al. 244 
2014):  245 
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AGBest = exp[-1.803 – 0.976E + 0.976 ln(W)+ 2.673 ln(D) – 0.0299(ln(D))2] 246 
where W is the genus wood density (g cm-3), E is a measure of site-level environmental stress 247 
and D is the individual stem DBH (Chave et al. 2014). All wood density values were extracted 248 
from a publically available database (Zanne et al. 2009). Missing genus values were replaced 249 
with the mean family value when available and otherwise were replaced with the plot mean 250 
wood density. Genus level wood density values were available for 76% of stems and Family 251 
level values were available for 97% of stems. We extracted environmental stress values for the 252 
mean latitude and longitude of each site from the E layer provided by Chave et al. (2014), which 253 
combines three bioclimatic variables: temperature seasonality, climatic water deficit and 254 
precipitation seasonality. We then estimated carbon density per hectare by scaling the 255 
aboveground biomass estimate by a factor of 0.5 (Chave et al. 2005) and summing the estimates 256 
for all stems in a plot. 257 
 258 
Tree Stem Density and Genus Diversity 259 

We calculated the stem density of trees (≥ 10 cm DBH) per hectare and quantified tree 260 
genus diversity with the Shannon diversity index (Magurran 1988) using the vegan package in R 261 
(Oksanen et al. 2013). All vegetation calculations were at the plot-level.  262 
 263 
Protected Area Size 264 
 We extracted the polygon of each TEAM site protected area from the World Database on 265 
Protected Areas (WDPA) dataset (UNEP-WCMC 2014), and verified each polygon with the 266 
appropriate local site manager. We calculated the area in hectares of each protected area after re-267 
projecting the polygons to the appropriate local (UTM) coordinate system.  268 
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 269 
Forest Loss 270 
 TEAM monitors land use and cover change outside of the protected area boundaries of 271 
each site using the zone of interaction (ZOI), which is the area that has the potential to strongly 272 
influence biodiversity at the site based on systematic quantification of surrounding watersheds, 273 
migration corridors and human settlements (DeFries et al. 2010).  274 
 We estimated the percent of forest area lost within each ZOI using the Global Forest 275 
Change (GFC) product (Hansen et al. 2013). The GFC map is a 30m resolution global map of 276 
forest change for the 2000-2012 period. To map forest cover in the year 2000, we calculated and 277 
applied a 75% canopy cover forest/non-forest threshold to the 2000 percent cover map included 278 
in the GFC. The 75% forest cover threshold was selected as a conservative threshold for 279 
delineating forested areas. A sensitivity analysis found estimated deforestation rates to be 280 
insensitive to variation of this threshold within a range of +/- 10-15%. We used the loss layer 281 
included in the GFC to calculate percent forest area lost relative to 2000 forest cover. 282 
   283 
Elevation, Latitude & Rainfall 284 
 Geographic coordinates for each camera trap were collected as GPS waypoints (TEAM 285 
Network 2011a). Elevation data were extracted from the NASA STRM digital elevation data 286 
(Jarvis et al. 2008). We calculated the coefficient of variation of the elevation and the mean 287 
latitude of the camera traps at a site. Mean annual precipitation was extracted at a 2.5 arc-288 
minutes resolution from the Worldclim database (Hijmans et al. 2005) with ArcGIS using the 289 
site mean camera trap latitude and longitude. 290 
 291 
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 292 
Modeling 293 

We began by examining bivariate relationships between ground-dwelling endotherm 294 
diversity and carbon using TEAM site-level data. We estimated simple linear regressions with 295 
each of the three measures of ground-dwelling endotherm diversity as a dependent variable and 296 
mean carbon density per hectare as the independent variable.  297 

Next we explored the relationship between ground-dwelling endotherm diversity, 298 
vegetation and environmental characteristics in addition to carbon storage by conducting model 299 
selection and model averaging (Burnham and Anderson 2002) using the vegetation and 300 
environmental variables as potential explanatory variables. We used one of three measures of 301 
ground-dwelling endotherm diversity as the response variable and estimated three global linear 302 
regression models using ordinary least squares.  303 
 All three global models included the eight standardized environmental predictor 304 
variables, which we selected based on our understanding of tropical vertebrate ecology. For 305 
example, we included elevation variability (CV) rather than elevation mean because elevation 306 
gradients strongly influence vertebrate species richness and abundance (Gaston 2000). We log 307 
transformed protected area size and forest loss because species area relationships are typically 308 
linear on a log scale. Because species richness declines with distance from the equator, we used 309 
absolute latitude. The global models also included continent fixed effects to account for 310 
unmeasured variation between continents.  311 
 We inspected pairwise correlations between predictor variables (Appendix S3) to ensure 312 
there were no excessively correlated predictors. We inspected residuals of the global models for 313 
homoscedasticity and normality prior to model selection and averaging. We compared all 314 



 15

possible models for each of the three global models using an information theoretic approach 315 
based on AICc (Akaike’s Information Criterion, corrected for small sample sizes). Models were 316 
ranked according to AICc and the confidence set of models was limited to the models that 317 
contributed to the top 95% of model weight. The parameter estimates from the models in the 318 
confidence set were used to produce estimates of predictors in an averaged model in which 319 
model estimates were weighted by their AICc weights. The relative importance of each predictor 320 
variable was defined by the sum of the AICc weights over all models in the confidence set in 321 
which the variable appeared (Burnham and Anderson 2002). We considered a predictor 322 
significant if the 95% confidence interval did not include zero. We conducted all model selection 323 
and averaging using the MuMIn package in R (Barton 2013). As a robustness check we repeated 324 
the regressions with heteroskedasticity robust standard errors (White, 1980). The robust standard 325 
errors did not change our conclusions with regard to which variables were significant in 326 
predicting biodiversity. 327 
 328 
RESULTS 329 
 The TEAM Network sites varied considerably in all measured characteristics. Ground-330 
dwelling endotherm species richness estimates ranged widely across sites, from 17 species in 331 
Ranomafana to 46 species in Cocha Cashu. Ground-dwelling endotherm taxonomic diversity 332 
(Shannon Index) ranged from 2.44 in Ranomafana to 3.30 in Yasuni (Table 1). Functional 333 
diversity (FDis Index) ranged from 0.26 in Korup to 0.32 in Pasoh Forest. The network also 334 
included large variation in estimated carbon storage, ranging more than two-fold between Barro 335 
Colorado (104 Mg C ha-1) and Caxiuanã (233 Mg C ha-1) (Table 1). Stem density ranged from 336 
341 stems per hectare in Nouabalé Ndoki to 1169 stems per hectare in Ranomafana. Tree genus 337 
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richness ranged from 31 genera in Bwindi to 129 genera in Yasuni. Tree genus diversity 338 
(Shannon Index) ranged from 2.34 in Udzungwa to 4.15 in Yasuni. Annual rainfall varied from 339 
1166 mm/year in Korup to 4368 mm/year in Volcán Barva. Elevation variability of the camera 340 
traps ranged from essentially none in Cocha Cashu (0.04 CV) to a linear elevation transect in 341 
Volcán Barva (1.01 CV). All sites except Ranomafana were within 12° latitude from the equator. 342 
The percent of forest lost in the ZOI between 2000-2012 varied from very little in Nouabalé 343 
Ndoki (0.01%) to considerable deforestation near Pasoh Forest (37.9%). Protected area size also 344 
varied considerably between Pasoh Forest, the smallest (13,610 ha) and Cocha Cashu (1,704,506 345 
ha), the largest protected area (Table 1). 346 
 Bivariate linear regressions, however, did not yield significant relationships (α = 0.05) 347 
between carbon storage and three measures of ground-dwelling endotherm diversity at the 348 
TEAM sites when examining all sites in a single regression model (Fig. 2). These results were 349 
consistent when separated by continent.  350 
 We also examined the relationship between ground-dwelling endotherm diversity, 351 
vegetation and environmental characteristics, as well as carbon. Specifically, we evaluated the 352 
significance of the eight predictor variables and continent effects using the model averaged 353 
coefficient estimates from the confidence set of models. The AICc comparisons attributed 32% 354 
of model weight to the top model of species richness, 10% to the top model of taxonomic 355 
diversity and 10% to the top model of trait diversity. A consistent lack of a clear top model (i.e. > 356 
90% of model weight) indicated that model averaging was appropriate (Burnham and Anderson 357 
2002). Parameter estimates, AICc values and model weights of the confidence sets are available 358 
(Appendix S4).  359 



 17

 In the context of this larger model, we again evaluated the relationship between ground-360 
dwelling endotherm diversity and carbon storage. After controlling for site-specific vegetation 361 
and environmental attributes, carbon density was not a significant predictor of any measure of 362 
terrestrial endotherm diversity (Fig. 3.).  363 

We used the more general model to explore the relationship between ground-dwelling 364 
endotherm diversity, vegetation and environmental variables. Elevation variability had 365 
significant negative effects for both terrestrial endotherm species richness and taxonomic 366 
diversity. Sites with more elevation variability had lower species richness and taxonomic 367 
diversity, which suggests that relatively flat areas support more ground-dwelling endotherm 368 
diversity. Stem density had a significantly negative effect on species richness and taxonomic 369 
diversity. Sites with higher stem densities had lower ground-dwelling endotherm diversity, 370 
which suggests that areas with relatively open forest floors support more ground-dwelling 371 
endotherm diversity. Additionally, Madagascar had significantly lower species richness than the 372 
other regions. None of the environmental predictors produced significant effects on trait 373 
diversity, but sites in Africa had significantly lower trait diversity than other continents (Fig. 3).  374 
 Lastly, we assessed the relative importance of each predictor variable in the confidence 375 
set of models. Relative importance is higher for variables in models that have strong support and 376 
lower for variables that are only included in models with weak support. In our analysis, the 377 
relative importance of all predictor variables was greater than zero (Fig. 4), which indicates that 378 
all variables were included in some models in the confidence set and therefore contributed to 379 
model averaged predictions. However, carbon consistently had low relative variable importance 380 
in comparison with the other predictors of animal diversity (Fig. 4). Elevation variability had 381 
high relative importance for the species richness and taxonomic diversity models. The continent 382 
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effect for Madagascar also had high relative importance for species richness, whereas the 383 
continent effect for Africa had high relative importance for trait diversity. Tree diversity, stem 384 
density and forest loss had moderate relative importance for taxonomic diversity and trait 385 
diversity. The continent effect for Asia, protected area size, latitude and rainfall had low relative 386 
importance for all three measures of terrestrial endotherm diversity (Fig. 4). 387 
 388 
 389 
DISCUSSION 390 

We evaluated whether tropical conservation stocks that store the greatest carbon 391 
simultaneously support the greatest ground-dwelling endotherm diversity in an effort to 392 
understand whether conserving carbon rich forests will simultaneously conserve the greatest 393 
ground-dwelling mammal and bird diversity. If carbon storage and ground-dwelling endotherm 394 
diversity are strongly correlated, then a win-win scenario for climate change and biodiversity 395 
conservation would occur by conserving forests with the greatest carbon stocks. Using data from 396 
the TEAM Network, the largest combined network of tropical camera traps and vegetation plots 397 
in the world, we did not find significant relationships between carbon density and three measures 398 
of ground-dwelling endotherm diversity: species richness, taxonomic diversity and trait diversity. 399 
Thus, high carbon density and high ground-dwelling endotherm diversity do not necessarily 400 
coincide in tropical forests and biodiversity conservation will not necessarily be maximized 401 
when only carbon stocks are considered. However, in the absence of a positive relationship 402 
between carbon storage and endotherm diversity, win-win scenarios for climate change and 403 
biodiversity conservation can be achieved through multi-objective conservation planning in 404 
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which both carbon and biodiversity are optimized simultaneously. We therefore recommend the 405 
explicit inclusion of biodiversity in the planning and implementation of carbon storage programs. 406 
 We found that elevation variability and the density of trees were significantly related to 407 
ground-dwelling endotherm diversity. Sites with less elevation variability had significantly 408 
higher species richness and taxonomic diversity than sites with more elevation variability. Sites 409 
with fewer trees (≥ 10 cm dbh) had significantly higher ground-dwelling endotherm diversity 410 
than sites with more trees. These results broadly suggest that mature tropical forests with 411 
relatively even terrain support high diversity of ground-dwelling mammals and birds. Site 412 
characteristics such as these may provide useful information in future multi-objective 413 
conservation planning by providing affordable proxies of ground-dwelling endotherm diversity 414 
when high quality fine-scale data are lacking.   415 
 416 
Elevation variability 417 

TEAM sites with greater elevation variability had lower estimated richness and 418 
taxonomic diversity of ground-dwelling vertebrate species. The opposite result may have been 419 
predicted– that sites with more elevation variability might support greater habitat diversity and 420 
thus support a higher diversity of species. For example, North American mammal species 421 
richness increases with greater elevation variability (Kerr and Packer 1997). Nevertheless, we 422 
found that the diversity of tropical ground-dwelling mammals and birds declined as elevation 423 
variability increased.   424 

One possible explanation is that species richness and diversity are higher at lower and/or 425 
mid elevations and decline with increasing elevation, thus a site with more elevation variability 426 
may include more sampling of high elevation areas with lower diversity. Given that relatively 427 
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few mammals and birds specialize on high elevations (Laurance et al. 2011), TEAM sites with 428 
more variation in elevation may support fewer species overall because they contain high 429 
elevation areas that lack specialist species. In a number of cases, the species richness and 430 
abundances of tropical birds and mammals are greatest at low elevations and decline at higher 431 
elevations (Terborgh 1977, Marshall et al. 2014), but declining richness with increasing 432 
elevation is not a consistent biodiversity pattern (Rahbek 1995). For example, small mammal 433 
species richness peaks at intermediate elevations (McCain 2005). Due to the sparseness of 434 
tropical endotherm camera trap detections, the data from all camera traps at a TEAM site were 435 
utilized to estimate a single measure of species richness per site rather than permitting richness 436 
estimates at each camera trap. As a consequence, our analysis does not assess the elevations at 437 
which diversity is the greatest, but does suggest that terrestrial vertebrate diversity declines as 438 
higher elevation sampling is included. 439 
 440 
Stem density 441 

We found a significant negative relationship between the density of trees (≥10 cm DBH) 442 
and both endotherm species richness and taxonomic diversity, which suggests that the diversity 443 
of tropical ground-dwelling mammals and birds is higher in forests that have fewer trees. Forests 444 
that have fewer trees may have more mature trees. Disturbance in tropical forests typically leads 445 
to the growth of many young stems, which thin over time as they reach the canopy. Stem density 446 
therefore typically declines as disturbed forests age (Wright 2005). We did not examine mean 447 
DBH as a predictor variable because DBH was used in the carbon density calculations. In a post-448 
hoc test, however, mean DBH declined significantly with increasing stem density, which 449 
illustrates that TEAM sites with fewer trees contain larger trees (Fig. 5).  450 



 21

 451 
Continent effects 452 

Ground-dwelling endotherm diversity varied significantly among continents. Species 453 
richness was significantly low in Madagascar and trait diversity was significantly low in Africa. 454 
The low species richness for the Madagascar TEAM site, Ranomafana, is unsurprising. Because 455 
the site is the farthest site from equator, low species richness is expected based on latitudinal 456 
gradient of species richness. In addition, Madagascar is unique compared to the other regions in 457 
that it is an island with a small geographic area, which supports a smaller regional species pool 458 
based on species-area relationships (Gaston 2000). The significantly low trait diversity at African 459 
sites may relate to the extinction of many forest specialists over the last thirty million years 460 
(Ghazoul and Sheil 2010). The continent effects also include unmeasured variation among 461 
regions, such as additional variation in environmental conditions, evolutionary history and 462 
anthropogenic impacts, which may have contributed to the low African trait diversity. 463 
 464 
Tree diversity 465 

The effect of tree diversity on both taxonomic diversity and trait diversity was generally 466 
positive with moderately high relative importance for predicting taxonomic and trait diversity. 467 
This suggests that tropical forests with more tree genera generally support a greater diversity of 468 
ground-dwelling endotherm taxa and traits. The question of whether diversity begets diversity – 469 
whether plant diversity is a causal agent of diversity at higher trophic levels – has been of 470 
interest to ecologists for decades (Hutchinson 1959). A number of hypotheses have been put 471 
forth to explain positive relationships between plant and animal diversity, which have been 472 
detected from local to global scales (Jetz et al. 2009). For example, higher plant diversity may 473 
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supply more resources or more complex vegetation structure and therefore result in niche 474 
differentiation and diversification at higher trophic levels. Alternatively, underlying abiotic 475 
factors driving overall productivity may enable greater diversity of both plants and animals.  476 
 477 
Implications for conservation policies  478 

This work demonstrates the value of fine-grain ground-dwelling endotherm data, which 479 
are becoming increasingly available as camera trap technology advances and costs decline, 480 
because the extent to which carbon storage programs will provide benefits to biodiversity 481 
without explicit formalization in REDD+ implementation necessitates understanding 482 
relationships between biodiversity and carbon storage (Phelps et al. 2012). While previous 483 
studies have found positive relationships between carbon storage and some aspects of tropical 484 
diversity, such as trees (Cavanaugh et al. 2014, Imai et al. 2014), we synthesized fine-grained 485 
spatial data on vertebrates and vegetation to improve understanding of the spatial congruencies 486 
between carbon and tropical terrestrial endotherm diversity, including numerous threatened 487 
species (IUCN 2014). 488 

The fact that we did not find a significant relationship between carbon storage and 489 
ground-dwelling endotherm diversity supports calls for mechanisms that consider both objectives 490 
(i.e. carbon storage and diversity) during REDD+ planning and implementation. Specifically, a 491 
lack of a significant relationship suggests the potential for more endotherm diversity and carbon 492 
storage to be achieved for the same total budget if both objectives are pursued in tandem rather 493 
than independently. This finding is in line with prior empirical analyses that anticipate gains 494 
from multiple objective planning (as opposed to separate budgets and planning for biodiversity v. 495 
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carbon storage) that explicitly incorporate biodiversity into carbon storage programs (Venter et 496 
al. 2009, Thomas et al. 2013).  497 

More broadly, our work provides an example of how fine-scale data can generate inputs 498 
to models that inform policy. For example, elevation variability calculated from publically 499 
available global elevation data might be used as a proxy for tropical ground-dwelling endotherm 500 
diversity in the absence of fine-scale data. Future multiple conservation planning efforts using 501 
elevation and stem density as proxies could include reserve site selection approaches used to 502 
maximize conservation benefits given a limited budget (e.g. Naidoo et al. 2006) or evaluations 503 
and maximization of ecosystem services (e.g. Wendland et al. 2010). 504 

 505 
Limitations and further research 506 

This study utilized data from the most extensive network of tropical camera traps and 507 
vegetation plots available, but we recognize that our sample size of 14 sites is nevertheless small. 508 
Expanding the number of sites with comparable data collection could further our understanding 509 
of the relationship between carbon storage and ground-dwelling endotherm diversity and would 510 
allow for detailed regional analyses (sensu Slik et al. 2013) that were not possible in this study.  511 

While carbon density was not found to significantly predict ground-dwelling endotherm 512 
diversity in this study, the absence of evidence is not necessarily evidence of absence. As with 513 
any null result, the finding may be due to sampling design. In addition, our study has focused on 514 
only a subset of tropical animal diversity, but carbon density may predict other components of 515 
biodiversity. For example, the height of trees in a forest positively predicts the species richness 516 
of primates, which are a largely arboreal order. Taller forests may support more primate species 517 
through vertical niche stratification (Gouveia et al. 2014). In addition, tree height is an important 518 
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component of carbon storage estimation (Chave et al. 2014) and differences in tree height among 519 
biogeographic regions have been linked to variation in carbon storage (Banin et al. 2014). 520 
Additional research is needed to evaluate the relationship between carbon storage and other 521 
components of tropical diversity, such as arboreal vertebrate diversity.  522 
 The measure of carbon density we used considered only the aboveground contributions to 523 
carbon storage despite the fact that below ground carbon storage can be both significant and 524 
variable across forests (Paoli et al. 2010). Nevertheless, the data necessary for aboveground 525 
carbon storage estimates are more readily available and therefore aboveground estimates are 526 
more broadly applicable for conservation planning.  527 

The TEAM Network sites are uniquely suited for addressing the relationship between 528 
terrestrial vertebrate diversity and aboveground carbon storage in the tropics because the sites 529 
include vegetation plots that overlap spatially with the camera traps. Nevertheless, the camera 530 
traps are deployed across a larger spatial extent than the vegetation plots (TEAM Network 531 
2011a). Additional variation in unmeasured vegetation characteristics may influence ground-532 
dwelling endotherm diversity. Lastly, our analysis did not take hunting into account due to a lack 533 
of quantitative data, yet hunting can strongly affect wildlife in tropical forests (Wright 2003). 534 
The impacts of hunting likely vary among TEAM sites and warrant consideration in future 535 
studies.  536 
   537 
Conclusions 538 

Understanding site-level relationships between carbon storage and aspects of tropical 539 
biodiversity has important policy applications because best practices for protecting biodiversity 540 
through carbon storage programs have not yet been determined (Panfil and Harvey 2014). The 541 
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results of our fine-grained, site-level pantropical analysis provide quantitative biological results 542 
that suggest a lack of a significant relationship between carbon storage and ground-dwelling 543 
mammal and bird diversity. This result is robust to the use of the three diversity metrics: species 544 
richness, taxonomic diversity and trait diversity. This finding supports earlier work that suggests 545 
the need to develop conservation planning approaches that jointly optimize for carbon storage 546 
and biodiversity (Naidoo et al. 2008, Anderson et al. 2009, Siikamaki and Newbold 2012).  547 

Collecting fine-grained data at all locations will likely be cost prohibitive (Gardner et al. 548 
2012). We therefore examined the relationship between ground-dwelling endotherm diversity 549 
and other site characteristics for which data collection may be cheaper. Both elevation variability 550 
and stem density were important predictors of terrestrial endotherm diversity. Site characteristics 551 
such as terrain and forest maturity can potentially function as proxies of ground-dwelling  552 
tropical endotherm diversity in future conservation planning so long as hunting is accounted for. 553 
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Figure Legends 1 
 2 
Fig. 1. TEAM sites included in this study.  3 
 4 
Fig. 2. Carbon storage density and three terrestrial vertebrate diversity metrics at 14 TEAM sites. 5 
Linear regression failed to detect significant relationships (α = 0.05) among all sites or within 6 
continents. 7 
 8 
Fig. 3. Coefficient plots for averaged models of terrestrial vertebrate diversity based on the 9 
confidence set of model for three diversity measures. Standardized coefficients are shown. The 10 
filled circles represent the coefficient estimates and the bars represent the 95% confidence 11 
intervals around each estimate. Predictor variables are considered to have significant effects if 12 
the 95% CI did not contain zero. Continent effects are relative to the Americas.  13 
 14 
Fig. 4. Relative importance of the eight predictor variables and continent effects in the averaged 15 
models of three measures of tropical terrestrial vertebrate diversity.  16 
 17 
Fig. 5. Relationship between stem density and mean dbh at the 14 TEAM sites 18 
 19 
  20 
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Figure 1 21 
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Figure 2 28 
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Figure 3 32 
 33 
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Figure 4 38 
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Figure 5  41 
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