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Highlights 

 A framework is proposed to study patterns & dynamics of epiphyte assemblages 

(VEAs) 

 VEAs offer unique research opportunities due to their inherent structural hierarchy 

 To promote standardization, the coresampling unit should be the host individual 

 The host individual can be connected to lower & higher ecological & spatial scales 

 Data sharing is highlighted as essential for comparative meta-studies 

 

*Highlights
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Abstract 17 

Despite their ecological importance, particularly in tropical rainforests, vascular epiphytes are 18 

amongst the least studied plant groups. Theoretical knowledge about the composition, structure 19 

and dynamics of epiphyte assemblages is strikingly scarce; in contrast to soil-rooted plants, for 20 

which major insights have been gained in the last decades. These insights cannot be simply 21 

transferred to epiphytes, because structurally-dependent vascular epiphytes are fundamentally 22 

different in several aspects from non-structurally-dependent plants, as well as from other 23 

epiphyte types (e.g. mosses). Apart from the difficulty of accessing the canopy, we largely 24 

attribute the lack of development in the field to terminological issues and the lack of 25 

standardized sampling, both of which stem from the lack of a conceptual framework. We 26 

develop such a framework for future studies and illustrate the potential of this suggested 27 

approach. Our analysis is based on a review of studies of vascular epiphyte assemblages that 28 

have data on abundance, since diversity comprises two aspects: species richness and relative 29 

abundance. We found 62 studies of very idiosyncratic character over the last 30 years, of which 30 

18% included a temporal component ranging from 4 months to 8 years. Surprisingly, over 80% 31 

of the studies collected data at the tree level, but few analysed the data at that level (34%) and 32 

none has made their data available for meta-analyses. We argue that this represents a problem in 33 

the development of the field and we urge researchers to make this wealth of data available. We 34 

suggest explicitly using the host individual as the sampling unit when studying vascular epiphyte 35 

assemblages. Moreover, the ecological scales (zone, tree and stand scales) i.e. relating to the 36 

three-dimensional nature of vascular epiphytes assemblages (VEAs), can be used to scale up or 37 

down from the host individual. The importance of scaling, and availability of data at the tree 38 

level, was assessed by comparing diversity patterns of vascular epiphytes at the tree and stand 39 
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scales, which revealed clear and consistently different patterns. More general questions on the 40 

diversity patterns of vascular epiphytes could be answered if the wealth of data already collected 41 

were made accessible and if future sampling were to be standardized. 42 

  43 



Page 5 of 55

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Introduction 44 

Vascular epiphytes comprise about 9% of vascular plant species globally (Zotz, 2013a). They 45 

are a main diversity component in the tropics (Kitching 2006), providing ecological services 46 

related to hydrology and nutrient cycling (e.g. water interception, water and nutrient retention, 47 

Jarvis 2000; Stanton et al. 2014; Bruijnzeel et al. 2011). Also, they contribute to diversity 48 

through their interactions with other biota (Benzing, 1983; Yanoviak et al., 2007). In montane 49 

forests they may account for a substantial portion of green biomass (e.g. Tanner 1980). In spite 50 

of all this, they are amongst the least studied biodiversity components in the tropics (Kitching 51 

2006).  52 

In tropical ―plant‖ communities, biodiversity research has mainly focused on trees. Although 53 

major insights have been gained into the mechanisms governing the composition, structure and 54 

dynamics of tropical tree communities (Condit et al., 1995; Feeley et al., 2011; Volkov et al., 55 

2003), other life forms have been largely ignored in this regard. This is particularly obvious for 56 

functionally important and hyper-diverse groups such as lianas (Schnitzer and Carson, 2000) or 57 

epiphytes, for which there is ―little theory‖ on the mechanisms behind their diversity in tropical 58 

forests (Kitching 2006). This neglect could be largely ignored, if conclusions from studies with 59 

trees were transferable to vascular epiphytes. However, this is arguably not the case. For 60 

example, while the structure and dynamics of tree communities are strongly influenced by biotic 61 

interactions (e.g. competition or pathogen/herbivore pressure), these processes seem to have 62 

hardly any influence on epiphyte communities (Zotz and Hietz, 2001). Moreover, since 63 

epiphytes are structurally dependent plants which use the three-dimensional matrix of 64 

colonizable substrate supplied by trees, their dynamics are affected by exogenous heterogeneity 65 

(Rees et al., 2001), not only caused by the host dynamics (Hietz, 1997), but also by climate and 66 
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topography (Rees et al., 2001). Hence, the processes shaping epiphyte assemblages are expected 67 

to be inherently different from those of trees (Watkins et al., 2006). Available results from 68 

studies with non-vascular epiphytes (i.e. mosses or lichens, Ellis 2012) may also be of limited 69 

applicability to vascular epiphytes. For example, lichens and mosses in temperate forests behave 70 

as ―patch-tracking‖ meta-populations (Snäll et al., 2005), which implies that local extinctions 71 

usually occur due to patch turnover (i.e. tree falls, Löbel et al. 2006). In contrast, the few data 72 

available for vascular epiphytes suggest very different dynamics, in which extinctions are 73 

frequent in the absence of tree or branch fall (Laube and Zotz, 2007). 74 

It is often argued that progress in epiphyte research has been rather slow because of logistical 75 

problems accessing the forest canopy (e.g. Flores-Palacios & García-Franco 2001). While partly 76 

true, we argue that terminological issues and the lack of standardized sampling play at least an 77 

equally important role. These issues are common in canopy ecology and can be found in all 78 

stages of research (e.g. sampling and data analysis), hindering future meta-analyses dependent on 79 

consistency of approach. First, terminological issues range from the misuse or ambiguous use of 80 

established terminology to the lack of established definitions for commonly used terms in canopy 81 

ecology. For instance, one of the most commonly misused terms in epiphyte research is 82 

―canopy‖. Moffett (2000) compiled a set of definitions of terms in canopy research, but 83 

subsequent studies still confuse ―canopy‖ with ―crown‖ (e.g. Kluge & Kessler 2011; Watkins et 84 

al. 2006; Zytynska et al. 2011); although the latter is defined as the aboveground parts of a tree 85 

or shrub, particularly its topmost limbs and leaves (Moffett, 2000), i.e. is a part of the canopy. 86 

This trivial example illustrates a deeply rooted issue that is widespread across epiphyte research.  87 

Another clear example of the lack of established definitions for commonly used terminology is 88 

the term ―epiphyte‖, since there are still arguments about the delimitation of vascular epiphytes 89 
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from other structurally dependent plants with divergent ecologies such as hemiepiphytes, 90 

parasites, or climbing plants (e.g. Zotz 2013a, 2013b). These issues are connected and contribute 91 

to a vicious circle. For instance, when a definition of epiphyte is not provided, it is likely to find 92 

epiphytes, hemiepiphytes and nomadic vines (sensu Zotz 2013b; Zotz 2013a) and sometimes 93 

even mistletoes lumped into the same category and analyzed together. This makes it difficult to 94 

obtain records on the incidence of epiphytism or hemiepiphytism, urgently needed for a better 95 

understanding of their taxonomical occurrence and biogeography. Furthermore, it prevents us 96 

from differentiating whether these ecologically different life forms may show different 97 

spatiotemporal patterns. Second, standardized sampling has still to be adopted across the field. 98 

Understandably, different objectives may require different sampling strategies, but it is possible 99 

to direct sampling towards standardized data collection. This lack of standardization is not due to 100 

a scarcity of methodological tools, since issues of data collection in vascular epiphyte 101 

assemblages have received considerable attention in the last decades (e.g. quantification of 102 

abundance and sampling effort, Wolf et al. 2009; Zotz & Bader 2011).  103 

We argue that the mentioned problems most likely derive from the lack of a conceptual 104 

framework to assess vascular epiphyte diversity, which combines terminology and 105 

methodological tools already in use. Therefore, we propose such a framework to advance our 106 

understanding of vascular epiphyte diversity. While there has been a previous attempt to develop 107 

an analytical framework by Burns & Zotz (2010), their approach was solely focused on the 108 

topology of the host-epiphyte network. Thus, its conceptualization is analysis-based and may be 109 

less useful to explore other aspects of the ecology of vascular epiphytes (e.g. colonization-110 

extinction dynamics and directional changes in species composition, Feeley et al., 2011).  111 
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To that aim, we review and summarize studies on vascular epiphyte assemblages, and unify 112 

terminology by formalizing concepts implicitly used. We formalize the vascular epiphyte 113 

assemblage (VEA) as the unit of study to address vascular epiphyte diversity, with the host 114 

individual being the most ―natural‖ sampling unit. We identify biologically relevant ecological 115 

scales along gradients of environmental heterogeneity, which are formalized as ―zone‖, ―tree‖ 116 

and ―stand‖ based assemblages (ZBA, TBA and SBA). Furthermore, we briefly illustrate the 117 

importance of scaling and the potential of this framework. We argue that exploring extrinsic 118 

factors of VEAs, using interacting spatial scales (Ellis, 2012), should allow real progress in the 119 

understanding of the mechanisms behind epiphyte diversity.  120 
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The conceptual framework: a proposal for standardization 121 

For over 100 years ecologists have been taking into account the two aspects of diversity: species 122 

richness or the number of species in a sample and the relative species abundance or the disparity 123 

in abundance (commonness and rarity, Bell 2000; Hubbell 2001). Species abundance data make 124 

it possible to answer questions related to demographics (i. e. mortality or growth), as well as to 125 

track populations or assemblages and their changes as a response to their environment or 126 

disturbance. For vascular epiphytes, species lists are available for a substantial number of 127 

localities (e.g. Sugden & Robins 1979; ter Steege & Cornelissen 1989). More recently, the study 128 

of species richness patterns has come into focus (Cardelús et al. 2006; Krömer et al. 2005). 129 

Although useful in several contexts (e.g. in the analysis of diversity changes along elevational 130 

gradients, or in a conservation context, by comparing epiphyte species richness in disturbed vs. 131 

undisturbed forest, Wolf & Flamenco-S 2003, Köster et al. 2009), their potential to help us 132 

understand the spatiotemporal changes in assemblage structure is limited. Therefore, we focus on 133 

studies considering both aspects of diversity (richness and abundance), to go beyond the 134 

description of the spatial and temporal variation in assemblage composition, and to push forward 135 

the understanding of the mechanisms and factors affecting vascular epiphyte diversity. 136 

 137 

Study unit: the vascular epiphyte assemblage (VEA) 138 

A thorough search (Table 1, details of the search) of studies providing both species richness 139 

and abundance data yielded only 62 studies in the last 30 years (Table 1). In most cases, the unit 140 

of study is not consistently named or defined. An ―assemblage‖ may either be 1) a set of species 141 

or 2) a set of species and their abundance. Moreover, ―assemblage‖ is used interchangeably with 142 



Page 10 of 55

Acc
ep

te
d 

M
an

us
cr

ip
t

 

―community‖. Since epiphytes seem not to fulfil the concept of ―community‖, which demands 143 

interaction among species (Benzing, 1990; Ricklefs, 2008), we prefer the term ―assemblage‖. 144 

Thus, we define a ―vascular epiphyte assemblage‖ (VEA) as a set of vascular epiphyte species 145 

(n>1) with or without information on their abundance (e. g. number of individuals, Fig. 2.1.a); 146 

which should be clearly specified in the methodology. We encourage the collection of abundance 147 

data and in this review we focus entirely on this type of research. Because of its broad 148 

application, the ―number of individuals‖ (following the ―stand‖ concept, Sanford 1968) can be 149 

used as a preferred measure of abundance; although we do not discourage the use of biomass 150 

(Wolf et al., 2009), especially in longitudinal research (where repeated measures of the same 151 

individual are taken in a span of time, e.g. growth rate). Ideally, both measures are provided, 152 

since the number of individuals can be obtained while assessing biomass (Benavides et al., 153 

2006). Moreover, the use of both measures could be complementary since species abundance 154 

distribution may vary according to the measure of abundance (Magurran & Henderson, 2010). 155 

Furthermore, a VEA is a non-dimensional unit of study, which can be limited by any spatial, 156 

temporal or ecological scale and in contrast to the definition of an ―epiphyte community‖ by 157 

Johansson (1974), the concept of VEA does not exclude natural systems with a very low number 158 

of epiphyte species (Vergara-Torres et al., 2010). 159 

 160 

Sampling unit: host individual 161 

The majority of methodological protocols explicitly recommend sampling of entire trees as 162 

the most representative approach (e.g. Gradstein et al. 2003; Wolf et al. 2009) and possibly as a 163 

result, the large majority (81%) of the studies compiled in Table 1 sampled entire tree 164 
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individuals. We argue that the shared host individual is the most natural and spatially explicit 165 

reference of a VEA, given that they act as islands and provide a unique set of microhabitats, as a 166 

result of intra intra-and inter-specific variability within the forest. Therefore, the host individual 167 

ought to be formalized as the standard sampling unit of VEAs (Fig. 2.1.b). Whenever possible, 168 

entire trees should be sampled and registering the most basic characteristics of the hosts is 169 

recommended (e.g. host species, diameter at breast height and height; for more details see Wolf 170 

et al., 2009). 171 

 172 

Ecological scales: Zone, tree and stand assemblages 173 

The three-dimensional distribution of vascular epiphytes comprises various gradients of 174 

environmental heterogeneity (Stein et al., 2014) and offers several scaling possibilities. As the 175 

scales partition this environmental heterogeneity, interacting or confounding effects among the 176 

ecological factors determining scales are prone to arise, highlighting the interacting nature of the 177 

scales (Ellis, 2012). The use of interacting scales and its progressive, yet informal, establishment 178 

has come along with the development of the field. Scale can be defined from a strictly spatial 179 

point of view or in an ecological sense (Gurevitch et al., 2006). The latter is usually implicitly 180 

done in vascular epiphyte research. In the compiled publications (Table 1), the used ecological 181 

scales are diverse (Fig. 1): 1) zones of the tree; either branches, the crown or the trunk (i.e. Hietz 182 

& Hietz-Seifert 1995; Irume et al. 2013; Mehltreter et al. 2005). 2) the tree individual (Irume et 183 

al., 2013; Nieder et al., 2000) and 3) the stand. These ecological scales are defined by different 184 

external factors (see below) or organizational scales, for example in studies of host specificity 185 

the stand scale is self-evident and used implicitly, given that the distribution of VEAs on 186 
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different host species is compared (e.g. Vergara-Torres et al. 2010). We formalize these 187 

interacting ecological scales as the ―zone based assemblage‖ (ZBA)
1
, which is part of a ―tree 188 

based assemblage‖ (TBA), which in turn can be scaled up to a ―stand based assemblage‖ (SBA), 189 

i.e. the sum of any number of tree-based assemblages (Fig 2.1.c). To simplify the usage of the 190 

terms, they can be referred to as ―zone, tree, and stand scales‖. Naturally, the term ―tree‖ does 191 

not preclude the study of other hosts (i.e. shrubs, cacti, or lianas).  192 

An advantage of clearly-defined ecological scales is the potential for the a posteriori use of 193 

data for integrated analyses, provided that the host individual is used as sampling unit and 194 

relevant ecological data have been collected. For example, if one were to scale up to SBAs 195 

delimited by host species, data on the host identity should be available. Conversely, if one were 196 

to scale down to particular ZBAs, such as trunks, data on the size (e.g. dbh/height) of the trunks 197 

are important. We argue that sampling units should be established by their ecological meaning 198 

and not merely by convenience, therefore the recommendation of adopting the host individual as 199 

the standard sampling unit. Using the proposed ecological scales (i.e. ZBA or SBA) as a 200 

posteriori scaling tools and not merely as haphazard sampling units will prevent us from 201 

producing more idiosyncratic studies with little utility for synthesis. This is true for sampling 202 

limited to the ZBA scale without accompanying ecological data, as for sampling at the SBA 203 

scale without information on the hosts.  Otherwise, comparisons are only possible between 204 

corresponding studies (e.g. Affeld et al. 2008), for which the spatial or ecological scale is known 205 

(Cardelús, 2007). Otherwise, comparisons among studies of diverse spatial or ecological scales 206 

(Fig. 1) are ambiguous to impossible (Krömer et al., 2013). Findings of studies focusing on 207 

 

1  ZBA: zone based assemblage, TBA: tree based assemblage and SBA: stand based assemblage 
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zones of a tree cannot be generalized to all co-occurring epiphytes, since species numbers and 208 

dynamics are bound to vary with position in a tree. For instance, the only two studies of 209 

dynamics of ZBAs in montane rainforest focused on the inner crowns and trunks of trees and 210 

indicated mostly low annual mortality rates of vascular epiphytes (2 and 7% on branches within 211 

the crown to 10% on trunks; Hietz 1997; Werner 2011); while three other studies, all in the 212 

lowlands, focusing on entire trees showed consistently higher mortality rates (> 50% mortality 213 

rates after 3 - 4 years; Schmit-Neuerburg, 2002, Mendieta and Zotz unpublished data). Whether 214 

this reflects a genuine difference across tree zones or forest types, or whether this is only a 215 

sampling artefact due to the comparison of branches in the inner crown, tree lower trunks and 216 

entire host tree individuals, is an open question. Moreover, mortality rates varied across taxa and 217 

size classes in assemblages (Hietz, 1997; Werner, 2011) and in studies explicitly focussing on 218 

populations of different taxa (Orchidaceae and Bromeliaceae, Hietz et al. 2002; Winkler et al. 219 

2007; Winkler et al. 2009)). Therefore, differences in composition and structure of assemblages 220 

are confounded by ecological scale (Küper et al., 2004). 221 

The use of different ecological scales to assess the diversity patterns and dynamics of vascular 222 

epiphytes is key to their understanding, because patterns, processes, and the effect of ecological 223 

drivers on biodiversity are scale-dependent (Chase and Knight, 2013; Levin, 1992). The 224 

ecological scales (zone, tree and stand scales) can be used to explore the patterns and dynamics 225 

of VEAs independently or from a multi-scale perspective. The latter requires that an ecological 226 

aspect is evaluated simultaneously at different scales (Wiens, 1989). This type of research is 227 

critical to complement more conventional studies (Levin, 1992), given that epiphytes are 228 

structurally dependent and distributed three-dimensionally across various gradients of 229 

environmental heterogeneity. Multi-scale research is rather common in non-vascular epiphytes 230 
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(e.g. Jüriado et al. 2008; Belinchón et al. 2009; Mota de Oliveira et al. 2009), but rare with 231 

vascular epiphytes. Among the compiled studies on VEAs only 16% may be considered at least 232 

in part of multi-scale nature. These studies addressed the spatial effect on demographic processes 233 

of TBAs and a SBA (Winkler et al., 2009), temporal changes in the structure of TBAs and SBAs 234 

(Laube and Zotz, 2007, 2006a) and by using different organizational levels to delimit single and 235 

multiple stands, they assessed the structural patterns of VEAs (Burns and Zotz, 2010), or their 236 

compositional differences (Larrea and Werner, 2010). This small number of studies already 237 

reflects the diversity of patterns and processes in which scaling may be applied. 238 

  239 
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Characterization of the external factors of VEAs 240 

Vascular epiphytes are associated with a suite of external factors arguably influencing the 241 

patterns and dynamics of VEAs. Among those we consider: architecture, bark characteristics, 242 

growth rate and size/age of the host; which are associated with host identity. Also important are 243 

disturbance and climate (Sarmento Cabral et al., 2015; Wagner et al., 2015). Although the 244 

former factors are intrinsic host characteristics and the latter are exogenous factors which also 245 

affect the host, from the vascular epiphyte point of view, all these factors and their variation 246 

create exogenous heterogeneity (Rees et al., 2001). 247 

 248 

External factors 249 

The effect of some of these factors on VEAs has already been studied (e.g. Aguirre et al. 250 

2010; Cardelús 2007; Goode & Allen 2008; Hietz & Hietz-Seifert 1995; Zotz 2007a; Zotz & 251 

Vollrath 2003), but their scale-dependence has seldom been addressed (for indirect or implicit 252 

examples see: Benavides et al. 2005; Benavides et al. 2011; Hietz & Hietz-Seifert 1995; Irume et 253 

al. 2013; Zimmerman & Olmsted 1992). We argue that by using the host individual as a standard 254 

sampling unit, the variation of the external factors, their effect on vascular epiphyte diversity and 255 

the scale dependence of this effect can be evaluated; scaling up from the zone to the stand scale 256 

(Fig. 2). Figure 3 outlines a framework which comprises the ecological scales (zone, tree and 257 

stand scales) distributed across gradients of environmental heterogeneity. At each ecological 258 

scale, natural organizational levels may be used to delimit the assemblages, as well as ecological 259 

or structural schemes delimited by the external factors. For example, at the zone scale, 260 

assemblages may be delimited by levels of organization pertaining to the host individual, such 261 
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as: branch, trunk and crown, or by schemes based on extrinsic factors: such as the vertical 262 

zonation of the tropical forest (e.g. understorey vs. crown) , structural groups (Zotz, 2007a) or 263 

leaf phenology (Einzmann et al., 2014). At the stand scale in the same fashion, for example at the 264 

host population level, the host species identity (Wagner et al., 2015) may be used to delimit a 265 

stand, while at the ―community‖ level and others of larger scale: ecological succession, forest 266 

age, forest type and altitude may be used to define a stand. 267 

The way that climate affects VEAs varies from the effect of microclimate at the zone scale, 268 

which can be evaluated by, e.g., comparing the inner and the outer crown or crowns with 269 

different microclimate (Cardelús, 2007), over the tree scale, where differences across the vertical 270 

gradient can be assessed using the tree individual, to the effect of climate at the stand scale, via 271 

the effect of elevation or other geographical gradients (Küper et al., 2004). Similarly, the effect 272 

of disturbance varies across ecological scales, from the zone scale, as instability of the substrate 273 

e.g. flaking bark (Zotz et al., 2005), to the tree scale, as branch fall events (Rosenberger and 274 

Williams, 1999; Sarmento Cabral et al., 2015), to the effect of large-scale catastrophic events 275 

such as hurricanes (Goode and Allen, 2008) at the stand scale (Fig. 3). For example, to test the 276 

intermediate disturbance hypothesis (Connell 1978) in epiphytes, the interacting ecological 277 

scales along ecological gradients noted here would provide an optimal set up. Likewise, the 278 

effect of substrate age or size on VEAs can be studied across an ecological gradient, evaluating 279 

the effect of ontogenetic changes at each ecological scale (Fig. 3).  280 

Finally, host architecture, bark characteristics (physical and chemical) and host growth 281 

rate are all bound to host identity and in the same way, their effect across ecological gradients 282 

(Fig. 3) can be studied independently or in combination at each ecological scale or across scales. 283 

For example, the effect of architecture can be scaled up from the zone scale to the tree and 284 
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stand scale by assessing e.g. the effect of different branching patterns among crowns, differences 285 

of VEAs in trees of different habits (Aguirre et al., 2010) and e.g. differences among VEAs of 286 

different forest types (Benavides et al. 2011), respectively.  287 

288 
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Importance of scaling in the analysis of VEAs 289 

In the assessment of biodiversity (here we focus on ―species diversity‖) and its spatial and 290 

temporal variation the use of a multi-scale approach is crucial (Levin, 1992). Diversity, which 291 

has two aspects; the number of species and the disparity in abundance (Bell, 2000), varies across 292 

spatiotemporal scales. Recent studies have found clear differences in species richness patterns 293 

between epiphytic and non-epiphytic groups (e.g. Kluge and Kessler, 2007). Still, the effect of 294 

scaling on vascular epiphyte diversity has seldom been addressed (for species richness see 295 

Krömer et al., 2005; Küper et al., 2004). However, temporal changes in the composition and 296 

structure of vascular epiphyte assemblages have been studied separately at two ecological scales 297 

(tree and stand scales). Changes at the tree scale suggested that, on average, TBAs became more 298 

similar to each other over time (i.e. increase of among TBA similarity, measured with the Chao-299 

Sørensen index), with only one of the studies reporting a significant difference. In contrast, at the 300 

stand scale vascular epiphyte assemblages seem to be quiet stable in time (Laube and Zotz, 2007, 301 

2006a). Here, we consider stability as the persistence and evenness in abundance of species and 302 

maintenance of the numbers of species in an assemblage (May and McLean, 2007). Thus, 303 

temporal changes in diversity may vary according to ecological or spatial scale. 304 

To detect possible differences in diversity across scales, we calculated and compared 305 

similarities using the stand and tree scales, for different scenarios and datasets. To be able to 306 

compare the aspects of diversity across scales, we make use of the ―Hill numbers‖ in the 307 

construction of multi-assemblage similarity profiles. Diversity profiles are a unifying tool for the 308 

analysis of diversity (Gotelli and Chao, 2013; Jost et al., 2010) and the ―Hill numbers‖ are 309 

arguably the most adequate way to quantify biological diversity (Ellison, 2010). We used multi-310 

assemblage similarity profiles, which reflect the average percentage of species overlap among 311 
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assemblages (Chao et al. 2012; Jost et al. 2010), obtained with the overlap measure (CqN). This 312 

measure assesses compositional differentiation and similarity and it ranges from 0, when 313 

assemblages are completely distinct, to 1, when they are identical. This measure (CqN) is a 314 

normalization of the between-group or ―beta‖ component of the ―Hill numbers‖, where q is a 315 

parameter that determines the measure’s sensitivity to species relative abundances and N is the 316 

number of assemblages being compared. The measure includes a continuum of multi-assemblage 317 

generalizations of known similarity indexes, differing in their sensitivity to relative species 318 

abundances (when q=0, this is equivalent to the classic two-assemblage Sorensen index where 319 

species abundances do not count at all, when q=1, equivalent to the Horn overlap index where 320 

species are weighed in proportion to their frequency and when q=2, equivalent to the Morisita-321 

Horn similarity index where abundant species weight more than rare species, Gotelli & Chao 322 

2013). The ―Hill numbers‖ provide a unified framework for measuring biodiversity, being 323 

recently extended to include genetic and functional diversity (Chao et al., 2012).  324 

First, to assess how the effect of forest alteration on epiphyte diversity varies across scales, we 325 

re-analysed data from Larrea & Werner (2010) and second, to assess the scale dependence of 326 

temporal changes in diversity we used partially published datasets (Laube & Zotz, 2006a, 327 

Mendieta-Leiva and Zotz, unpublished data); in both cases using the tree (TBA) and stand 328 

(SBA) scales. 329 

In the first study, the authors evaluated differences of VEAs on the tree species Erythrina 330 

edulis distributed across a land-use gradient; unmanaged forest, managed forest and isolated 331 

remmant trees (IRTs)
2
, for details see Larrea & Werner (2010). The expectation of the study was 332 

 

2  IRT: isolated remnant tree 
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a stronger response to massive alteration of the original vegetation (IRTs stand) than to moderate 333 

disturbance (managed forest stand). Their findings, however, supported this hypothesis for 334 

neither species richness nor abundance. Nevertheless, the number of species of particular taxa 335 

differed significantly between the unmanaged forest and IRTs, and significant compositional 336 

differences were detected based on pair-wise comparisons of TBAs (Larrea and Werner, 2010). 337 

We constructed multi-assemblage similarity profiles at both the tree and stand scales (Fig. 4B 338 

and A, respectively), i.e. we compared SBAs, defined by land use type and TBAs, within each 339 

stand per land use type. The profiles (Fig. 4) showed that when comparing land use types at the 340 

stand scale, assemblages of the different land use types had a rather high similarity (80%) in 341 

terms of species richness and structure (Fig. 4A). Using the tree scale revealed a somewhat 342 

different picture. Among-tree similarity decreased from the managed forest to IRTs to the 343 

unmanaged forest, suggesting significant differences in mean similarity between unmanaged and 344 

managed TBAs (confidence intervals did not overlap, Fig. 4B). This result contradicts the 345 

conclusion of Larrea & Werner (2010), indicating that moderate disturbance (managed forest) 346 

rather than massive alteration of the vegetation (IRTs), had the strongest effect on the floristic 347 

composition of VEAs (Fig. 4). In summary, the illustrated example showcases distinct outcomes 348 

at both scales. For instance, at the stand level, the land use type stands differed very little in any 349 

aspect of diversity; while at the tree scale, among-tree similarity revealed a difference between 350 

the unmanaged and managed assemblages for all orders of diversity (species richness to 351 

dominance). Surprisingly, the measure of similarity in terms of species richness (q=0), showed 352 

no difference between the stand and tree scale (i.e. mean similarity is comparable at both scales, 353 

Fig. 4A and B, q=0). 354 
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Second, to assess the scale-dependence of ecological heterogeneity and temporal changes in 355 

diversity, we used two data sets of concurrent and congruent quantitative data. The first set of 356 

two large censuses, spanned 10 years (2002 – 2012) and will be referred to as ―FOREST‖ 357 

(compare Zotz & Schultz 2008). This census includes 264 tree individuals, comprising 77 358 

species within 35 families. The second set consists of a series of short-span censuses carried out 359 

about every other year for 11 years (1999-2010) on 30 individuals of the host tree species 360 

Socratea exorrhiza, from now on referred to as ―SOCRATEA‖ (compare Laube & Zotz 2006a). 361 

Abundance values are based on the TBAs included in this paper, those which had abundance 362 

data at each census. Thus, data may sometimes differ from those found in Laube & Zotz (2006a) 363 

and Zotz & Schultz (2008b). We compared the relative compositional similarity in time, 364 

according to dataset and scales, by calculating similarity between censuses (stand scale, Fig. 5A) 365 

and within and among censuses (tree scale, Fig. 5B). The profiles of the censuses with different 366 

temporal grains at both scales (stand and tree scale) showed that indeed the stand scale generally 367 

depicts a fairly stable structure of VEAs in time (FOREST and SOCRATEA: Fig. 5A). In 368 

contrast, at the tree scale the patterns of similarity in time differed between stands (Fig. 5B). At 369 

the stand scale, changes in both censuses (SOCRATEA and FOREST) were rather similar in 370 

time, in spite of their varying temporal grains and characteristics (Mendieta-Leiva and Zotz, 371 

unpublished data). Average percentage overlap of species in time was relatively high, between 372 

80 - 92% for species richness, and for typical and dominant species in both stands (Fig. 5A); 373 

indicating a relatively stable structure of vascular epiphyte assemblages in time at this scale. 374 

Using the tree scale, we found differences in among-TBA similarity between stands, although in 375 

general there was a trend of increased compositional similarity with time (q=0 and 1, Fig. 5 B). 376 

Compositional similarity was considerably higher in the FOREST than in the SOCRATEA stand 377 
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(q=0, Fig. 5B). In the FOREST, the profiles crossed (q≈1.5, Fig. 5B), indicating that after 10 378 

years among-tree similarity increased in terms of species richness composition (by ca. 2%, 379 

between q=0 and 1), but decreased in terms of very abundant species (by 1% at q=2). In 380 

SOCRATEA, trees became increasingly similar in all aspects of diversity (species 381 

richnesscomposition, typical and very abundant species). 382 

When comparing both systems (Fig. 4 and 5), the need for a multi-scale approach in the 383 

analysis of epiphyte diversity becomes obvious. The stand scale seems to show VEAs as stably 384 

structured, independently of the grain of the spatial scale (e.g. number of TBAs) or length of the 385 

temporal scale, while the use of the tree scale reflects changes according to the organizational 386 

level or extrinsic factor used to delimit the assemblage. Clearly, stand and tree scales represent 387 

different facets of the spatio-temporal patterns of VEAs. As the choice of a scale may affect the 388 

results and comparability of analysis (Rahbek, 2004), it is important to understand the effect of 389 

ecological scales on the spatio-temporal patterns of VEAs. 390 

This degree of consistence consistency in the species composition and structure of VEAs at 391 

the stand scale has been observed in this and other forests (Mendieta-Leiva and Zotz, 392 

unpublished data). Here we show that the relatively small temporal variation shown by VEAs at 393 

the stand scale is not a sampling artifact due to short intervals between censuses, but instead a 394 

general characteristic of VEAs at this scale. This finding is highly relevant to identifying 395 

differences at larger spatial scales. These differences across scales indicate the importance of 396 

using several scales in the analysis of vascular epiphyte diversity. 397 

398 
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Discussion 399 

There are plenty of species lists of vascular epiphytes for a considerable number of locations 400 

and, to a lesser extent, publications specifying local or regional diversity. Recently, the floristic 401 

turnover across ecological gradients has received more attention (Cardelús et al. 2006; Kluge & 402 

Kessler 2011; Kreft et al. 2004; Krömer et al. 2005; Krömer et al. 2013; Küper et al. 2004). 403 

Unfortunately, these studies focus only on one aspect of diversity, ignoring species abundances. 404 

Data on species abundance provide information on commonness and rarity and demographics (i. 405 

e. mortality or growth). The ecological importance and validity of this type of data is 406 

indisputable. Admittedly, the collection of such data is labour intensive, along with  the use of 407 

the host individual as sampling unit, but the establishment of 50 ha forest plots and other long-408 

term vegetation monitoring (Rees et al., 2001) were equally arduous; nonetheless, those efforts 409 

have proven invaluable for our understanding of soil-rooted plant diversity. Moreover, the fact 410 

that 62 studies with epiphytes in the last 30 years have collected abundance data shows the 411 

feasibility of our approach. In addition, 81% of the studies compiled in Table 1 have already 412 

collected data at the tree level. While this is a very positive indication of advancement towards 413 

standardization, data have also to be analysed at this level or at least made available for post-hoc 414 

and meta-analyses. 415 

Compared to most other plant types, scaling in vascular epiphytes is more intuitive, 416 

biologically meaningful and not merely pragmatic, because in the former the sampling grain is 417 

mostly defined by the feasibility of transect or plot size. For vascular epiphytes, we can take 418 

advantage of their dependence on a host and their three-dimensional distribution patterns. For 419 

instance, vascular epiphytes are known to be non-randomly distributed (Burns and Zotz, 2010) 420 

and vertical segregation is commonly reported (Krömer et al., 2006; Zotz, 2007a). Recently, their 421 
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spatial segregation along the ―horizontal‖ axis of the forest has received more attention (e.g. 422 

Burns & Zotz 2010; Sáyago et al. 2013). Studies addressing this ecological dimension often refer 423 

to it as host specificity (Wagner et al., 2015). In these studies, for example, the use of the stand 424 

scale is self-evident. In summary, VEAs can be scaled up or down to ZBAs, TBAs and SBAs by 425 

means of organizational scales and extrinsic factors. These ecological scales may be used in 426 

combination (multi-scale approach) when assessing e.g. spatiotemporal patterns of diversity or to 427 

evaluate the scale dependency in the effect of extrinsic factors on diversity. According to the 428 

question, research can scale up or down from the zone to the stand scale and otherwise (Fig. 2).  429 

The inherent three-dimensional distribution of vascular epiphytes has been rarely used as a 430 

naturally structured framework, except for a typical subdivision of the host tree into so-called 431 

Johansson zones (JZ, Johansson, 1974). This scheme sections the host tree, making use of natural 432 

―zones‖ of environmental conditions and it has frequently been applied to capture the vertical 433 

stratification of VEAs (e.g. ter Steege & Cornelissen 1989).Although it became a common tool 434 

in the study of VEAs, it is of limited use for our understanding of patterns and dynamics. The 435 

scheme is not comparable across studies, as it is hard to apply equally to all trees within a forest 436 

or to different forest types (Bøgh, 1992; Zotz, 2007b). Additionally, its biological meaning may 437 

be doubtful, because the vertical stratification of epiphytes may be rather shaped by 438 

microclimatic gradients of the entire vegetation and not the individual tree (Zotz, 2007b). 439 

Moreover, it focuses on already established assemblages of large trees and excludes hosts with 440 

unusual architecture (e.g. palm trees). We do not disapprove of the use of Johansson zones in the 441 

context of our framework, but recommend a more thought-out application. Johansson (1974) 442 

conceived of these zones 40 years ago for large trees. Without information on the relative 443 

position of a tree in the vegetation, assigning epiphytes to the outer crown may actually result in 444 
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misleading comparisons of epiphyte distributions, when including, e.g. epiphytes on understory, 445 

mid-story and emergent trees. Here, simply using height above ground may provide more 446 

insights into underlying mechanisms of distributional differences (e.g. Petter et al., 2015). 447 

Similarly, varying abundances in different zones have often led to claims of preferences for 448 

particular zones, ignoring that the relative surface area per zone differs within and among host 449 

species (Krömer et al., 2006). Irrespective of how zones are delimited, additional measurements 450 

should be taken into consideration as a minimum requirement for later comparisons: a proxy of 451 

host size or age, host species, habit (sensu Zotz, 2013b), and substrate diameter (Wagner et al., 452 

2015; Wolf et al., 2009). For example, ZBAs delimited by crowns or trunks can be compared 453 

using surface area or size as covariable. The other two scales (tree and stand scales) are more 454 

intuitive in their use and especially the latter is commonly used for analyses in epiphyte research. 455 

Stands have been delimited according to: spatial proximity of tree individuals, soil characteristics 456 

and elevation (Benavides et al. 2011; Burns & Zotz 2010; Kluge & Kessler 2011; Laube & Zotz 457 

2006b; Laube & Zotz 2007),. this This small number of examples reflects already a wide array of 458 

possible organizational scales.  459 

Using available data from different studies for a cross-scale effort may be further impeded by 460 

the idiosyncratic character of the many epiphyte studies (Krömer et al., 2005). However, data 461 

accessibility is noticeably the most problematic aspect. The compiled studies (Table 1) provide 462 

aggregated data only as species lists and their abundance, irrespective of scale (e.g. Irume et al. 463 

2013), or in some cases according to host species (e.g. Brown 1990; Laube & Zotz 2006b). 464 

Within the studies which collected data at the tree level a majority (75%) provided summarized 465 

data but not a single one provided their data at the tree level. Hence, this wealth of information 466 

cannot be accessed, although it could potentially help us to reveal macro-ecological patterns of 467 
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VEAs. We urge researchers to make past and future data available (e.g. as electronic 468 

supplements); for this purpose we make our own datasets from published studies from the 469 

lowlands of Panama available upon request (Zotz and Schultz, 2008b; Zotz et al., 1999). 470 

Clearly defined VEAs would maximize gain in the pursuit of individual project goals, and 471 

provide the conceptual clarity for concurrent or subsequent comparisons across studies. 472 

Researchers would better fulfil the aims of their epiphyte studies by dividing or grouping VEAs 473 

for analytical purposes, as well as for a multi-scale approach (e.g. Laube & Zotz 2006a) using 474 

predefined ecological scales (Fig. 2.1.c) and secondly but more importantly, for the advancement 475 

of the field as a whole, they would produce comparable datasets. Certainly, the kind of analyses 476 

to be carried out are dependent on the specific question, although we are confident that several 477 

aspects related to the diversity of VEAs may be answered if standardized data were available, 478 

taking into account the appropriate considerations. This is supported by the fact that most of the 479 

compiled studies have collected data at the tree scale and still addressed a wide array of 480 

ecological aspects. Among these considerations, we suggest: 1. Unambiguous use of 481 

terminology, for example, habit differentiation between epiphyte, hemiepiphyte and nomadic 482 

vine (e.g. Boelter et al 2014), 2. Explicit specification of the unit of analyses, whether a VEA 483 

comprises abundance data or not, 3. Collection of supplementary ecological data, including host 484 

identity and a proxy of size (dbh, crown size, height and/or trunk or bark surface). Whenever 485 

spatial replication were possible, data on the geographic distance of host individuals as well as 486 

general characteristics of the forest stands may be helpful. Provided that intensive sampling is 487 

possible, data on the location of epiphyte individuals in relation the host individual, i.e. height 488 

and substrate diameter may be collected. 489 
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Clearly, there is no single, ―correct‖ scale for describing a system (Levin, 1992), nor a single 490 

organizational framework, much less for organisms with a patchy distribution (Talley, 2007) 491 

such as vascular epiphytes. Currently, we are not able to distinguish between the ecological 492 

scales at which mechanisms generating diversity are inhibited or promoted, and those scales in 493 

which stochasticity is dominant (Kitching 2006; Levin 1992). Therefore, the biological relevance 494 

of the ecological and organizational scales should be tested, using a multi-scale approach (e.g. 495 

Belinchón et al. 2009). Alternatively, the use of different frameworks may be more rewarding 496 

(e.g. Talley 2007). This can be executed with the outlined framework by combining the 497 

corresponding organizational and hierarchical scales, given its integrative character. For 498 

example, as indicated by Talley (2007), approaches such as the patch, gradient and hierarchical 499 

frameworks may be combined to identify patterns and underlying processes, as well as scale 500 

dependent-processes and interactions among scales. In vascular epiphyte assemblages, analysis 501 

combining these approaches to assess e.g. the variation in the distribution of VEAs, would 502 

identify tree individuals as patches (Laube and Zotz, 2007), branch classes (Zotz, 2007a) or host 503 

dbh classes as gradients, and crowns or trunks (ZBAs) of SBAs delimited by host tree species, as 504 

a hierarchical system. 505 

 506 
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Final remarks 507 

A considerable amount of work has gone into the compilation of local epiphyte inventories. 508 

We argue that in these studies data have not been collected, and reported, in the most useful way, 509 

leading to an odd situation that in spite of 62 published community studies, we still do not have 510 

sufficient data for meta-analyses to search for general patterns in the community structure and 511 

dynamics of vascular epiphytes. 512 

The future development of the entire field largely depends on standardization in the use of 513 

concepts, of sampling and of data availability, to produce comparable research. Therefore, 514 

throughout the text we have formalized terms already in use within the proposed framework and 515 

suggested a simple change that could lead to the standardization of sampling and analysis, which 516 

is using the host individual as the standard sampling unit when assessing vascular epiphyte 517 

assemblages. One cannot overemphasize the importance of making data available. Importantly, 518 

these could also be unpublished data sets from previous papers, we take the first step and hope 519 

for other researchers to join this initiative. 520 

In conclusion, we have summarized research efforts on the patterns and dynamics of vascular 521 

epiphytes in the last decades. In an effort to advance research, we suggest the use of a standard 522 

sampling unit and discuss the use of ecological and organizational scales; taking advantage of the 523 

inherent three-dimensional distribution of vascular epiphytes.   524 
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Footnote table 531 

1 
VEA: vascular epiphyte assemblage 

2
 ZBA: zone based assemblage, TBA: tree based assemblage and SBA: stand based 

assemblage 
3 

IRT: isolated remnant tree 

532 
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Figure 1 Summary of all studies dealing with vascular epiphyte assemblages across 870 

spatiotemporal scales (compare Table 1). The horizontal axis represents the temporal scale in 871 

years and the vertical axis represents different ecological scales, i.e. along ecological gradients of 872 

spatial complexity. The ecological scales comprise: 1. ZBA: when studies analyzed assemblies 873 

delimited by a zone of the host (i.e. a vertical and horizontal line indicates studies focused on the 874 

trunk and the crown, respectively). 2. TBA: studies which analyzed assemblies at the host scale 875 

(i.e. among TBA similarity or the vertical gradient), 3. SBA: studies delimiting assemblages as 876 

stands for analyses. These may use plots as sampling units and may involve more than one stand, 877 

grouped according to particular organizational scales, i.e. physical factors (e.g. altitude) or 878 

biological levels of organization (e.g. host tree species). We depict each study according to scale 879 

used in analyses. Each symbol represents a study. Closed symbols indicate studies with a 880 

temporal component, open symbols those without. On the left side, the bars distributed across 881 

more than one scale indicate one or more studies using more than one scale in analyses (i.e. all of 882 

them, SBA and TBA or SBA and ZBA); these studies used different scales to address different 883 

ecological aspects of vascular epiphytes. Those studies, which used a multi-scale approach, i.e. 884 

they assessed the same question at more than one scale are noted with a thicker border. 885 

 886 

Figure 2 Schematics diagrams illustrating the concept of vascular epiphyte assemblage, the 887 

proposed sampling unit and interacting spatial scales. Additionally, an example of how to 888 

explore the dynamics of VEAs and the use of organizational levels is shown. Tree species are 889 

indicated by different crown shapes, different symbols represent different epiphyte species. 890 

Given the dimensionality of vascular epiphytes the shared host tree (1.b) is the most intuitive and 891 



Page 43 of 55

Acc
ep

te
d 

M
an

us
cr

ip
t

 

spatially explicit reference of a vascular epiphyte assemblage (VEA 1.a). A VEA (1.a) is 892 

comprised of m individuals of n species. Interacting spatial scales (1.c) are the zone, tree and 893 

stand. The interacting spatial scales are dubbed ―zone based assemblage‖ (ZBA), "tree based 894 

assemblage" (TBA) and the "stand based assemblage" (SBA). (2) Example of an analyticalsis 895 

roadmap: Dynamics of VEAs may be analyzed across scales. (a) Changes in time at the stand 896 

level as the sum of all TBAs may be compared with (b) changes in time at the tree level (i.e. 897 

species turnover in each TBA in time, blue dotted lines). To detect directionality in the changes 898 

of the SBA, differences in among-TBA dissimilarity over time should be assessed (blue 899 

continuous line). (3) An example of how to use organizational levels (see text). 900 

 901 

Figure 3 Possible analytical framework of VEAs. In the left column the external factors of the 902 

patterns and dynamics of VEAs are shown. The other columns depict examples of how the effect 903 

of each external factor may be assessed according to ecological scale. The ecological scales are 904 

distributed across an ecological gradient and range from ZBA (zone based assemblage), TBA 905 

(tree based assemblage) to the SBA (stand based assemblage).We elaborate on examples of how 906 

to address the effect of external factor on the patterns and dynamics of VEAs in the text. 907 

 908 

Figure 4 Diversity aspects across ecological scales, scenario 1: Effect of forest alteration on 909 

epiphyte diversity. Multiple-assemblage similarity profiles (CqN) portraying average percentage 910 

species overlap of land use types at different scales and their confidence intervals (shaded 911 

polygons). The x-axis shows the orders of q (sensitivity parameter) and y-axis the values of the 912 
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overlap measure (CqN). The sensitivity parameter (q) weights the importance of abundance. 913 

Similarity profiles of land use types A. at the stand scale, compares the three land use types. B. at 914 

the tree scale depicts among-TBA similarity of VEAs defined by land-use in a montane forest as 915 

defined by Larrea & Werner (2010): unmanaged forest, managed forest and isolated remnant 916 

trees (IRT). 917 

 918 

Figure 5 Diversity aspects across ecological scales, scenario 2: Scale dependence of temporal 919 

changes. Multiple-assemblage similarity profiles (CqN) portraying average percentage species 920 

overlap of datasets at different spatiotemporal scales and their confidence intervals (shaded 921 

polygons). The x-axis shows the orders of q (sensitivity parameter) and y-axis the values of 922 

overlap measure (CqN). The sensitivity parameter (q) weights the importance of abundance. 923 

Similarity profiles of censuses A. at the stand scale, the comparison comprises two and five 924 

censuses (FOREST and SOCRATEA, respectively, upper lines). B. at the tree scale. Each line 925 

represents a census, line type indicates the dataset (FOREST: entire lines and SOCRATEA: 926 

dotted lines) and colour intensity (from grey to dark) indicates the temporal sequence of the 927 

censuses.  928 

 929 
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Figure 1

http://ees.elsevier.com/ppees/download.aspx?id=24454&guid=95562060-96ea-42e9-907b-b004a4999404&scheme=1


Page 46 of 55

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 2

http://ees.elsevier.com/ppees/download.aspx?id=24455&guid=e0ec51a4-5a94-406a-b330-9fdb7edbf42b&scheme=1
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Figure 3

http://ees.elsevier.com/ppees/download.aspx?id=24456&guid=f66ca2a6-3fb8-47a1-82f3-520e9a96c85b&scheme=1
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Figure 4

http://ees.elsevier.com/ppees/download.aspx?id=24467&guid=2c3337b0-091c-4bfb-9fdb-67fe91bd6219&scheme=1
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Figure 5

http://ees.elsevier.com/ppees/download.aspx?id=24465&guid=045c2b9a-2c79-4db6-a0f9-89d778de003e&scheme=1
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Table 1 Compilation of studies on vascular epiphytes assemblages, defined as a set of > 1 species with information on abundance, within a 

specified spatial unit. An asterisk (*) next to the publication details that although the total abundance is not explicitly mentioned in the paper, is 

hypothetically available. SDC: indicates the minimum scale at which data has been collected and SDA: indicates the scales used in data analysis 

(compare Fig. 1 and 2);sSBA: single stand and mSBA: multiple stands. Time: indicates the length of the study in months (in studies with a 

temporal component), Species and individuals: the number of species and individuals and Scope: indicates studies including the entire 

assemblage found in a defined spatial scale (AS) and others, which focused on particular epiphytic taxa (TS). Based on the available data as 

described in the MM section of each study, we provide examples of analytical tools that could be potentiallyapplied, i.e. DP.: diversity profile(s), 

SP.: similarity profile(s) (space: across ecological scales and time: in time), Direct: Directionality of species composition (Feeley et al., 2011). 

Publication 

Altitude 

(masl.) 

SDC SDA Time Species Individuals Scope DP 

SP 

space 

SP 

time 

Direct 

Adhikari et al. (2012a) 1248-1728 TBA SBAs  20 127 TS     

Adhikari et al. (2012b) 1248-1728 TBA SBAs  20 127 TS     

Aguirre et al. (2010) 10 TBA SBAs  11 345 AS x x   

Annaselvam and Parthasarathy (2001) 600-660 TBA SBAs  26 3392 AS x    

Arévalo and Betancur (2006) 250-350 TBA SBAs  182 2016 AS x x   

Table 1
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Barthlott et al. (2001)* 2200-2700 TBA SBAs  178/66 NA/1101 AS x    

Benavides et al. (2005) 800 TBA ZBAs,SBAs  213 6129 AS x x   

Benavides et al. (2011) 800 TBA SBAs  236 5826 AS x x   

Bennett (1986) <10 TBA SBA 10 18 3789 TS     

Boelter, et al. (2014) 30-180 TBA TBA,SBAs  122 21733 AS x x   

Bøgh (1992) 2900 TBA ZBAs  104 3379 AS x    

Brown (1990)* 900/1050 TBA ZBAs,SBAs  47 NA AS x x   

Burns and Zotz (2010) 130 TBA TBA,SBAs  77 3709 AS x    

Cardelus et al. (2007) 35-135 ZBA ZBAs  53 2415 AS     

Carlsen (2000) 120 TBA ZBAs  22 243 AS     

Cascante et al. (2006) 1050 TBA SBAs  9 630 TS     

Goode and Allen (2008)
+
 <10 TBA SBAs 4 22/18 3123/1429 AS x x x x 

Gottsberger and Morawetz (1993) 50 TBA SBA  7 118 AS x    

Hietz (1997) 1300 ZBA ZBAs 24 44 5124 AS     

Hietz et al. (2002) 1300 ZBA ZBAs 60 7 946 TS     

HietzandHietz-Seifert (1995b) 1350 ZBA ZBAs  39 1843 AS     



Page 52 of 55

Acc
ep

te
d 

M
an

us
cr

ip
t

HietzandHietz-Seifert (1995a)* 720-2370 TBA TBA,SBAs  22-53
a
 (1*) AS x x   

Hirata et al. (2009) 380-520 TBA TBA,SBAs  21 578 TS     

Irume et al. (2013) 60-70 TBA ZBAs,TBA,SBAs  164 3528 AS x x   

Isaza et al. (2004) 2900 TBA TBA,SBAs  6 4395 TS     

Jácome et al. (2004) 200 TBA TBA,SBAs  52 2957 TS     

Kluge and Kessler (2011)* 100-3400 TBA ZBAs,SBAs  336 NA TS     

Kreft et al. (2004) 230 TBA SBA  146 8762 AS x    

Larrea and Werner (2010) 2250 TBA TBA,SBAs  115 760 AS x    

Laube and Zotz (2006a) 130 TBA TBA,SBA 60 65 763/899/957 AS x  x x 

Laube and Zotz (2006b) 130 TBA TBA,SBAs  39/47/22 354/496/227 AS x    

Laube and Zotz (2007) 26 TBA TBA,SBA 96 59/67 15000/23700
b
 AS x  x x 

Linares et al. (2009) 900-1100 TBA SBAs  142 39735
b
 AS x x   

Liu et al. (2010) 680-800 TBA TBA,SBAs  27 769 AS x    

Martinez-Melendez et al. (2008) 2500 TBA TBA,SBAs  43 86387 AS x    

Mehltreter et al. (2005) 1500-1600 ZBA ZBAs  55 910 AS     

Nieder et al. (2000) 105 TBA TBA,SBA  53 778 AS x x   
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Pos and Sleegers (2010) 60 TBA ZBAs  60 476 AS x    

Quaresma and Jardim (2014) <10 TBA TBA,SBAs  11 477 AS x x   

Quaresma and Jardim (2012) <10 TBA SBA  8 1339 TS     

Reis and Fontoura (2009) 285-573 TBA TBA  19 526 AS x x   

Rosenberger and Williams (1999) 1500 ZBA ZBAs 12 35 379/408 AS     

Rudolph et al. (1998) 1780-2000 ZBA ZBAs  81 2677 AS     

Ruiz et al. (2014) 1495 ZBA ZBAs,SBAs  6 861 AS     

Sáyago et al. (2013) 500 TBA SBAs  12 1304 TS     

Schmit-Neuerburg (2002) 105 TBA SBA 48 62/80 980/1860 AS x  x x 

Valdivia (1977) 100-160 TBA TBA  153 13082 AS x    

Vergara-Torres et al. (2010) 1495 TBA SBAs  10 7501 AS x x   

Werneck and Do Espirito-Santo (2002) 1400 TBA ZBAs,SBA  6 712 AS x    

Werner, F. A. (2011) 2000 ZBA ZBAs 36 NA 802 AS     

Wester et al. (2011) 550 TBA SBA  147 8819 AS x    

Winkler and Hietz (2001) 1350 ZBA ZBAs (2*) 3 1167 TS     

Winkler, M. et al. (2007) 1350 ZBA ZBAs 36 5 1190 TS     
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Winkler, M. et al. (2009) 1350 TBA TBA,SBAs 48 3 NA TS     

Zimmerman and Olmsted (1992) <50 TBA TBA,SBA  15 473 AS x x   

Zotz (2007a) 130 TBA ZBAs  45 11387 AS x    

Zotz (2007b) 130 TBA SBA  70 13099 AS x    

Zotz et al. (1999) 26 TBA TBA,SBA  68 15000 AS x    

Zotz et al. (2014) 3300-3400 TBA SBA  15 5322 AS x x   

Zotz and Schultz (2008) 130 TBA TBA,SBA  103 13099 AS x    

Zotz and Vollrath (2003) 130 TBA TBA  66 701 AS x    

Zytynska et al. (2011) 300-600 ZBA ZBAs  63 2142 TS     

We searched in Web of Science
TM

the keywords: “vascular epiphyte”in combination with“assembly”, “community”, “structure”, 

“composition”and“diversity”, published until 2014. Publications in the specialized journal “Selbyana” were considered additionally, since the 

journal is not indexed in Web of Science
TM

. We restricted our search to studies with data on assemblage structure (abundance, sensustricto: 

number of individuals), since other metrics such as cover, biomass or frequency (e.g. Acebey et al., 2010) would not be comparable and may be 

dependent on species-specific characteristics (e.g. Affeld et al. 2008, Muñoz et al. 2003).We included studies conducted in natural forest and in 

those studies comparing natural forest with disturbed areas, only data from natural forest areas is shown (whenever possible).Methodological 

studies were not included either(e.g. Burns, 2010; Wolf et al., 2009).We found a total of 318 studies, from these, 74% were excluded mostly 
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because only a single aspect of diversity was considered (species composition or species richness). Within the remaining studies, although all 

contemplated the word “abundance” in their abstracts, many used currencies of abundance other than the number of individuals; thus weobtained 

a total of 55 62studies. In some cases, more than one number of species or individuals is shown, these belong to different ecological scales or 

censuses. (1*) indicates that biomass was based on count data and (2*) that temporal data was provided by a previous study, the data consisted 

on the substrate’s branch size of an additional set of individuals and their mortality. Based on these data the authors estimated age of fertility and 

average time to reach full size. Also, (
a
) indicates species per plot, (

b
) approximated values and NA, not available data. Finally a plus 

(+)
 sign next 

to the publication indicates that the sampling was spatially limited, the individuals or species distributed above 4 mwere not included.  




