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Abstract 28 

Agricultural origins and dispersals are subjects of fundamental importance to archaeology as 29 

well as many other scholarly disciplines. These investigations are world-wide in scope and 30 

require significant amounts of paleobotanical data attesting to the exploitation of wild 31 

progenitors of crop plants and subsequent domestication and spread. Accordingly, for the past 32 

few decades the development of methods for identifying the remains of wild and domesticated 33 

plant species has been a focus of paleo-ethnobotany. Phytolith analysis has increasingly taken its 34 

place as an important independent contributor of data in all areas of the globe, and the volume of 35 

literature on the subject is now both very substantial and disseminated in a range of international 36 

journals. In this paper, experts who have carried out the hands-on work review the utility and 37 

importance of phytolith analysis in documenting the domestication and dispersals of crop plants 38 

around the world. It will serve as an important resource both to paleo-ethnobotanists and other 39 

scholars interested in the development and spread of agriculture. 40 

Keywords: Phytoliths, Crop Plants, Diagnostic Criteria 41 

1. Introduction 42 

 The domestication of plants and development and spread of agriculture were transformative 43 

events in human and ecological history. Present records show that beginning around 11,000 to 44 

10,000 years ago plant cultivation and domestication developed independently in at least seven 45 

to eight regions of the world, shortly after spreading into others (Larson et al., 2014).  46 
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Understanding agricultural origins through archaeological enquiry is of fundamental importance 47 

for a diversity of scholarly disciplines in addition to anthropology, including genetics, 48 

environmental history, and agronomy. Accordingly, developing methods for identifying the 49 

remains of crop plants and their wild progenitors has been a focus of paleoethnobotany during 50 

the past 25 years. Phytoliths have increasingly taken their place in these endeavors alongside 51 

macro-remains, pollen, and starch grains in all regions of the world (for reviews see Pearsall, 52 

2000, 2015a; Piperno, 2006, 2009; Hart, 2014; Marsten et al., 2014). Standardization of 53 

identification criteria for various crops and wild ancestors is now accomplished, and on-line 54 

resources along with monographs and books containing numerous phytolith images for wide 55 

dissemination of criteria used to discriminate taxa are already substantial and growing. Among 56 

the web resources are: 1) the Pearsall Neotropical phytolith data base-- 57 

http://phytolith.missouri.edu, 2) the PhytCore International Data base housed by GEPEG, 58 

University of Barcelona and co-ordinated by Rosa Albert and colleagues, which will be a single 59 

source with phytolith data bases and images from many scholars around the world—access is 60 

through www.archeoscience.com, 3) the Institute of Archaeology, London’s web page on Old 61 

World phytoliths-- www.homepages.ucl.ac.uk/~tcrndfu/phytoliths.html, and 4) the Department 62 

of Archaeology, University of Sheffield (UK) Wiki online tutorial-- 63 

http://archaeobotany.dept.shef.ac.uk/wiki/index.php/Main_Page. For monographs and books 64 

with numerous phytolith images for various world regions also see Piperno and Pearsall, 1998a, 65 

Piperno, 1988, 2006, and Kealhofer and Piperno, 1998.  66 

The volume of phytolith-related work on prehistoric agriculture along with its appearance in 67 

numerous journals published in different countries is such that few archaeologists and other 68 

interested scholars may have the time or expertise to keep up with the literature. This paper 69 
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addresses this issue by reviewing the state-of-the-art of phytolith analysis for documenting the 70 

origin and spread of crop plants around the world. Since the last review of the subject (Piperno, 71 

2006) new crops have been investigated, refinements of identification techniques for others have 72 

taken place, and archaeological applications have expanded. Investigations also now routinely 73 

incorporate analysis of numerous wild species related to crop plants, including their wild 74 

ancestors when known, as well as constructions of large modern reference collections of regional 75 

flora. Table 1 contains a summary of findings from crops and wild progenitors that have been 76 

examined in detail (it also contains information on little understood crops not discussed in the 77 

text). More information on the phytoliths follows. 78 

2. Crops of the Americas 79 

    A number of major and now-minor New World crops contribute phytoliths diagnostic at either 80 

the genus or species level, while others contribute forms identifiable at higher taxonomic levels 81 

such as the family, sub-family, or tribe.  82 

2.1 Zea mays L. (Maize)  83 

     Maize is the pre-eminent cereal crop of the Americas and is now known to be native to the 84 

Central Balsas River region of tropical southwest Mexico (e.g., van Heerwaarden et al., 2011). 85 

The ability to isolate plant remains and identify maize and teosinte (wild Zea) in environments 86 

inimical to the preservation of macroremains, which includes maize’s homeland, is fundamental 87 

to understanding the domestication and early history and spread of this crop. More than three 88 

decades of research has demonstrated that maize leaf and cob phytoliths are diagnostic and 89 

distinguishable from those of its wild ancestor, the teosinte Zea mays ssp. parviglumis, and wild 90 

non-Zea grasses native to North, Central, and South America. Phytoliths will be of high utility in 91 

investigations of wild maize use, early stages of domestication, and subsequent spread. Present 92 
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phytolith and starch grain evidence from the Central Balsas region in Mexico indicates maize 93 

was domesticated by 8700 cal BP (Piperno et al., 2009; Ranere et al., 2009), and phytolith 94 

research has contributed greatly to documenting maize spread and usage throughout the 95 

Americas (e.g., Piperno et al., 1985; Pearsall, 2000, et al., 2004; Bozarth, 1993, et al., 2009; 96 

Mulholland, 1993; Hart et al., 2003, 2007; Iriarte et al., 2004; Thompson et al., 2004; Piperno, 97 

2006:140-153; Zarillo et al., 2008; Boyd and Surette, 2010; Dickau et al., 2012; Iriarte et al., 98 

2012; Logan et al., 2012; Hart and Lovis 2013; Hart 2014; Biwar and VanDerwarker, 2015; 99 

Corteletti et al., 2015).  100 

Identification criteria employ size and morphology, and as with phytoliths from other crop 101 

plants (below), deposition of vegetative and inflorescence structures can be distinguished (leaf, 102 

stalk, seed chaff), making the phytoliths potential tools also for examining hypotheses related to 103 

teosinte and maize usage in different periods and regions (e.g., whether early cultivation was for 104 

alcohol from stalk sugar) (Piperno et al., 2009; Logan et al., 2012; Biwar and VanDerwarker, 105 

2015). Size and three-dimensional morphologies of cross-shaped phytoliths from maize 106 

distinguish maize from wild grasses other than Zea and Tripsacum (Pearsall, 1978; Piperno, 107 

1984; Piperno and Pearsall, 1993; Iriarte, 2003; Piperno, 2006:52-60) (Fig. 1). Cross-shaped 108 

phytoliths also distinguish maize from Tripsacum and wild Zea if representation of these taxa in 109 

phytolith assemblages is ruled out using other phytolith types found in their fruitcases that are 110 

diagnostic to genus (below) (Piperno and Pearsall, 1993; Piperno, 2006:60-65).  111 

    With respect to inflorescence phytoliths, a number of phytolith types in teosinte fruitcases (the 112 

hard structure composed of a glume and rachid that encloses the teosinte kernel) and maize cobs 113 

separate teosinte from maize (e.g., Piperno and Pearsall, 1993; Pearsall, et al., 2003; Piperno, 114 

2006:60-65), and both maize and teosinte from non-Zea wild grasses native to the Americas 115 
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(e.g., Bozarth, 1993; Mulholland, 1993; Pearsall et al., 2003; Hart et al., 2003, 2007, 2011; 116 

Thompson, 2006; Logan et al., 2012). The formation of these phytoliths is genetically controlled 117 

by the major maize domestication gene teosinte glume architecture 1 (tga1), which also 118 

underwrites fruitcase hardness (lignification) and the degree to which the kernel is enveloped by 119 

the glume (Dorweiler and Doebley 1997; Piperno, 2006:61, 63). The fruitcase and cob phytolith 120 

types were formalized by Pearsall et al. (2003), who compared maize and teosinte phytoliths 121 

with those from numerous wild grasses common in the lowland Neotropics. They showed that 122 

previously described phytoliths produced in cobs and fruitcases (Bozarth, 1993; Mulholland, 123 

1993; Piperno and Pearsall, 1993), called wavy-topped and ruffle-topped rondels (rondels are 124 

often circular to oval or square) are diagnostic of maize and Zea (maize/teosinte), respectively, in 125 

the Neotropical lowlands (Fig. 2). Blind-testing of their protocol showed that there was little 126 

chance of mis-identifying wild grass phytoliths as maize cob bodies, although wavy-top rondels 127 

may be under-identified (Pearsall et al, 2003). Logan et al. 2012 subsequently examined 128 

phytolith production in leaf and inflorescence material of numerous species from all grass genera 129 

native to the Andes above 3000 m. and found considerable overlap occurs between some rondel 130 

types produced in maize cobs and those produced in grasses of this high elevation region. Two 131 

phytolith morphotypes were found to be unique in maize glumes and cupules in this setting; the 132 

ruffle top rondel, and a new diagnostic, the narrow elongate rondel.  133 

A number of other types of fruitcase phytoliths are diagnostic of teosinte (Piperno and 134 

Pearsall, 1993; Pearsall et al., 2003, Piperno, 2006:60-65) (Fig. 3). Tripsacum species produce 135 

their own set of unique fruitcase phytoliths diagnostic to the genus (Fig. 4) (Piperno and Pearsall, 136 

1993; Piperno, 2006:61). A recent study using multiple discriminant analyses of rondel 137 

phytoliths also showed that the different species and sub-species of teosinte can be discriminated, 138 
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which will potentially enhance understanding of teosinte use before domestication when 139 

appropriately-aged sites are found (Hart et al., 2011).  140 

2.2 Squashes and gourds of Cucurbita and other Cucurbitaceae 141 

     As with maize, squashes and gourds of the genus Cucurbita and other  142 

Cucurbitaceae genera were major early cultivars and domesticates of the Americas, were spread 143 

considerably outside their areas of origin, and produce phytoliths of high utility in archaeological 144 

documentation of their history. Six different species ranging from eastern North America to 145 

southern South America were domesticated in prehistory, and phytolith research points to an 146 

early Holocene domestication of species native to the lowland Neotropics of Mesoamerica (C. 147 

argyrosperma) and northern South America (C. moschata and C. ecuadorensis; the latter was 148 

probably semi-domesticated) (Piperno and Stothert, 2003; Piperno et al., 2009, Piperno, 2011). 149 

Many parts of the plants make high amounts of phytoliths; those derived from fruit rinds are the 150 

most diagnostic and are well-preserved over long periods of time. Intensive studies of different 151 

regional floras of the Americas including the Cucurbitaceae show that Cucurbita fruit rinds 152 

produce genus and, probably in some cases, species-specific phytoliths (see Piperno, 2006:65-153 

66). They are spherical, aspherical, or elliptical forms with deeply and contiguously scalloped 154 

surfaces (Fig. 5) (Bozarth, 1987, 1992; Piperno, 2006:65-71, Piperno et al., 2000, 2002; Pearsall, 155 

2015b). As with maize and teosinte, the formation of these fruit phytoliths is genetically 156 

controlled by a gene called hard rind (Hr) that also underwrites fruit lignification (Piperno et al., 157 

2002).  158 

 Size and/or morphology are used to discriminate between wild and domesticated Cucurbita 159 

species. Domesticated fruits often have much larger and thicker phytoliths than their wild 160 

ancestors and other wild squashes and there is a significant relationship between fruit size and 161 
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phytolith length (Piperno, 2006: 68-69 and Figs. 3.7 a-c therein). Thus, as with macro-remain 162 

analysis phytolith size can be a straightforward discriminator between wild and domesticated 163 

Cucurbita. Studies of modern fruits undertaken to date also suggest that species-specific 164 

identifications will sometimes be possible based on morphological attributes. Examples are C. 165 

maxima, another South American domesticate, and its wild progenitor C. maxima subsp. 166 

andreana, and varieties of C. moschata (Piperno, 2006:67 and Figs. 3.6 d-f therein, Piperno et 167 

al., 2000).      168 

 A potentially complicating factor in searching for Cucurbita phytoliths in ancient contexts is 169 

that because prehistoric farmers sometimes selected for softer fruits over time, and the Hr gene 170 

controls both hardness (lignification) and phytolith formation, soft-rinded fruits will have left a 171 

slim or no phytolith record. This particularly appears to be the case for deposits dating to the last 172 

4000 to 5000 years of prehistory or so (Piperno, 2006:143-144). On the other hand, all wild 173 

Cucurbita species, possessing the dominant Hr gene for lignification/silicification, have very 174 

hard rinds with high amounts of scalloped phytoliths, and should be visible if they were 175 

exploited. As with maize, numerous archaeological phytolith records exist for early domesticated 176 

Cucurbita spp. and their spread throughout the Americas (e.g., Piperno and Pearsall, 1998b; 177 

Piperno et al., 2000; Hart et al., 2003, 2007; Iriarte et al., 2004; Pearsall, 2003; Piperno and 178 

Stothert, 2003; Pohl et al., 2006; Bozarth et al., 2009; Piperno et al., 2009; Dickau et al., 2012; 179 

Corteletti et al., 2015).  180 

     Bottle gourd (Lagenaria siceraria) is indigenous to Africa from whence it spread to other 181 

continents by the early Holocene. Its large, scalloped phytoliths from fruit rinds can be identified 182 

through morphological attributes to species in the Americas (Fig. 6) (Piperno, 2006:71; Pearsall 183 
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et al. 2015b) and have been recovered from early Holocene-aged and later deposits in Central 184 

and South America (e.g., Piperno and Stothert, 2003, Piperno et al., 2009; Piperno, 2011).  185 

2.3 The Tropical Root Crops: Maranta and Calathea (arrowroot and llerén, Marantaceae); 186 

Canna (achira, Cannaceae); manioc (Manihot esculenta, Euphorbiaceae) 187 

 These crops, grown for their underground roots, rhizomes, tubers, and corms, are, with the 188 

exception of manioc, minor root crops today. However, phytolith evidence has shown they had 189 

greater importance in prehistory (below). The Zingiberales (Marantaceae and Cannaceae) overall 190 

are abundant phytolith producers, and order, family, genus, and species level diagnostics are 191 

present (Piperno 1989, 2006; Chen and Smith, 2013; Chandler-Ezell et al. 2006; Pearsall, 192 

2015b). An important class of silicified epidermal cells are complex cylindrical phytoliths 193 

produced in seed and root epidermis of the Marantaceae. Calathea allouia seeds produce one 194 

type of diagnostic cylinder, other diagnostic forms are produced in Maranta arundinacea seeds 195 

and Calathea rhizomes (Figs. 7, 8). While not as abundantly produced as Marantaceae leaf 196 

phytoliths, seed and root phytoliths of this family are fairly robust and have been recovered 197 

archaeologically. Canna produces the type of sphere characteristic of the Zingiberales as a 198 

whole--a robust form with an irregularly angled/folded surface--while large (> 12 µM), well-199 

silicified spheres with smooth to slightly roughened surfaces (not rugose) have only been 200 

observed in Canna (Pearsall, 2015b). 201 

 Manioc, one of the major root crops of the Americas, has long been known to be a low silica 202 

accumulator (Piperno, 1988). By processing large quantities of tissues, Chandler-Ezell et al. 203 

(2006) were able to document the presence of silicified secretory bodies (resembling pores or 204 

nectaries) in manioc root rind, leaf, stem, and fruit. These occurred rarely in one wild species 205 

tested, M. hunzikerii. Manioc secretory phytoliths were subsequently recovered from 206 
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pounding/grinding stones from the Real Alto site (ca. 6000 to 5000 cal BP), in association with 207 

silicified transport tissues of roots and fruits, maize starch and phytoliths, and microfossils of 208 

arrowroot, Calathea, and Canna (Chandler-Ezell et al., 2006). A phytolith matching the 209 

description of a manioc secretory cell was recovered from the raised fields of Campo España, 210 

western Llanos de Moxos, Bolivia (R. Dickau, pers. comm.). Ecuadorean and Panamanian pre-211 

ceramic deposits dating from ca. 9000 to 7000 BP frequently contain phytoliths from arrowroot 212 

and llerén, indicating these now-minor root crops were significant components of early 213 

horticultural systems in the Neotropics (Piperno, 2011). 214 

3. Crops of Southwest Asia 215 

3.1 Triticum and Hordeum spp. (Wheat and Barley) 216 

Wheat and barley species are heavy silica accumulators that produce many phytolith 217 

morphotypes.  Morphotypes produced by silicification of epidermal cells such as short cells, long 218 

cells, cork cells, papillae, trichomes, and trichome bases are the most characteristic and 219 

diagnostic for the taxa, as well as the most often observed in archaeological samples (Figs. 9-11). 220 

Both morphotypic and morphometric studies have been conducted to name, describe and 221 

discriminate among the phytoliths produced by wheat and barley taxa. Morphotypic studies 222 

include Kaplan et al. (1992), Mulholland and Rapp (1992), Rosen (1992), Tubb et al. (1993), and 223 

Ball et al. (1993, 1999, 2001, 2009). Morphometric studies include Tubb et al. (1993) and Ball et 224 

al. (1993, 1999, 2001, 2009). Some studies report good success at discriminating among wheat 225 

and barley species at the genus level, and some success at the species level, primarily based on 226 

the morphotypic and/or morphometric differences observed in the short cell (rondel), dendritic, 227 

and/or papilla phytoliths produced by the taxa (e.g. Ball et al., 1999; Rosen, 1992; Tubb et al., 228 

1993). 229 
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 Moreover, some features of the anatomy displayed in the medial section of the glume, 230 

lemma, and palea epidermal tissue differ between genera of cereals and small-grained grasses. 231 

Thus, there is the potential to identify wheat or barley phytoliths and to distinguish them from 232 

wild weed grasses by examining the features of multi-cell phytoliths that are produced in the 233 

Triticeae. Distinguishing features include a combination of the wave height, amplitude and 234 

frequency of the joined dendritic long-cell walls, the size and configuration of the papillae, and 235 

the shape of the cork cells (Figs. 9-11). Confidence in these determinations varies by the 236 

numbers of characteristics visible on an individual multi-cell phytolith (Rosen, 1992).  237 

 Phytoliths produced by wheat or barley are regularly found in archaeological contexts and 238 

have been used to make inferences about plant and site use (e.g. Albert et al., 2008; Cabanes et 239 

al., 2009; Ishida et.al., 2003; Madella et al. 2014; Portillo et al., 2012; Power et al., 2014; Rosen, 240 

2010; ; Shillito, 2011a; Zhang et al., 2013), about tool and vessel use (e.g. Anderson et al., 2000; 241 

Berlin et al., 2003; Hart, 2011; Ma et al., 2014), about  irrigation (e.g. Jenkins et al., 2011; 242 

Madella et al., 2009; Rosen and Weiner, 1994) and about taphonomy (e.g. Cabanes et al., 2012; 243 

Shillito, 2011b). 244 

4. Crops of East Asia 245 

4.1 Setaria and Panicum Millets (Foxtail and Broomcorn millets) 246 

Phytoliths from the genus Setaria and Panicum are highly useful for identifying Setaria 247 

italica (foxtail millet), Setaria viridis (green foxtail) and Panicum miliaceum (common or 248 

broomcorn millet) and documenting the earliest history of domesticated millets in Eurasia 249 

(García-Granero, et al., 2015; Lu, et al., 2009a, b; Zhang, et al., 2011, 2013). Research carried 250 

out by Lu et al. published recently has established five key, efficient diagnostic characteristics 251 

for distinguishing phytoliths from S. italica and P. miliaceum (Table 2) (Lu et al., 2009a). They 252 
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include: silica body shape, papillae characteristics including presence/absence, epidermal long 253 

cell patterns, and glume surface sculpture.  254 

Cross-shaped silica body phytoliths are formed in the lower lemma and glumes of S. italica, 255 

whereas bilobate shapes are formed in those of P. miliaceum. However, bilobates are not 256 

diagnostic to P. miliaceum. Regularly arranged papillae on the surface of the upper lemma and 257 

palea are diagnostic of S. italica. However, it should be cautioned that the identification of P. 258 

miliaceum cannot be confirmed based solely on the absence of papillae, because papillae may 259 

sometimes not be visible on the smooth surfaces of upper lemmas and paleas in S. italica.  260 

With respect to epidermal long cells, the epidermal long cell walls are Ω-undulated (Ω-I, II, III) 261 

in S. italica, andȞ- undulated (Ȟ-I, II, III) in P. miliaceum (Figs. 12 a, b). The different 262 

undulated patterns occur at different parts through gradual change from base and top (Ω/Ȟ-I), to 263 

side (Ω/Ȟ-II), and to center (Ω/Ȟ-III) of the silicified structure. The ends of epidermal long 264 

cells can also be divided into a wavy type in S. italica and a finger type in P. miliaceum (Fig. 12 265 

c, d). The former is significantly shorter than the latter (W=4.37±0.89 µM (N= 2774) vs. 266 

W=8.95±2.02 µM (N=3303)).  Therefore, the R value (ratio of the width of endings to the 267 

amplitude of undulations) is lower in S. italica (0.33±0.11, N = 2774) than in P. miliaceum 268 

(0.79±0.12, N = 3303). With respect to surface sculpture, a ridgy line sculpture type of the 269 

upper lemma of the glume is diagnostic of S. italica, which is characterized by having an adnate 270 

silicon extracellular sheet and outer epidermis, forming a very heavy silicon layer that is a 271 

reliable feature in distinguishing them from P. miliaceum. In contrast, P. miliaceum has a unique 272 

smooth, spotted sculpture with an adnate silica extracellular sheet and outer epidermis, or a saw-273 

toothed sculpture with an adnate silicon outer epidermis and hypodermal fibres.  274 
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In practical terms, the ideal archaeological sampling contexts for these and other cereal husks 275 

are storage and other pits, where phytoliths are more abundant than in other contexts. In order to 276 

obtain a clear outline of phytolith patterns, phase-contrast and microscopic interferometer at 277 

400× magnification are highly recommended. For identification, the undulated patterns and 278 

epidermal-ending characteristics are the most effective features for identification, because they 279 

are clearly present in almost every glume sample examined. Indeed, epidermal endings are easily 280 

divided into wavy and finger types and these combined with undulated patterns permit accurate 281 

identification without the measurement of the W and R value in most cases.  282 

Differentiating crop phytoliths from their Panicoid weedy wild relatives in archaeological 283 

contexts can present challenges due to similarities of identifiable Panicoid husk morphotypes, 284 

and large pristine sheets of identifiable multicellular aggregations that identification criteria 285 

listed above are, in part, based on are sometimes rare. Having strict identification criteria as 286 

described here is essential.  287 

Moving to the discrimination of S. italica and its wild ancestor, S. viridis, using phytoliths, 288 

the focus shifts to the size of phytoliths in the upper lemma and palea. It is established through a 289 

study carried out by Zhang et al. (2011) that the size of the ΩIII type of S. italica is larger than 290 

that from S. viridis. This means the difference between the two species is predicated on the 291 

width/expansion of the lemma and palea, also resulting in a visible difference of phytolith 292 

morphology at the center of lemma and palea, where silicified epidermal long cells are most 293 

complex, but can be differentiated. The discriminant function analysis accurately classifies a 294 

significant majority of the plants, 78.4% of foxtail millets and 76.9% of green foxtails. However, 295 

about 25% data are incorrectly classified. More samples should be analyzed to detect the 296 

presence of other potentially diagnostic features. Morphological and basic morphometric studies 297 
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of glumes of other minor millets also show the potential of phytoliths for differentiating these 298 

important crops in the prehistory of Eurasia and Africa (below) (Madella et al., 2014). 299 

4.2 Oryza sativa (Rice) 300 

Phytoliths have played a very important role in the identification of rice remains recovered 301 

from archaeological sites. In the past two decades, a number of identification criteria have been 302 

used. To date, three distinct phytolith morphotypes have been identified: double-peaked glume 303 

cells from the rice husk, bulliform (fan-shaped or motor cell) phytoliths from bulliform cells in 304 

leaves, and articulated bilobate phytoliths from stems and leaves (Fujiwara, 1976, 1993; Lu et 305 

al., 1997; Pearsall et al., 1995; Piperno, 2006; Wang and Lu, 1993; Zhao et al., 1998; Zheng, et 306 

al., 2003; Gu et al., 2013).  307 

Double-peaked glume cell phytoliths (Fig. 13) are unique to the genus Oryza and can 308 

separate domesticated rice from the nine wild rice species of South and Southeast Asia based on 309 

linear discriminant function analysis of three glume cell measurements (Pearsall, et al., 1995, 310 

Zhao and Piperno, 2000, Zhao, 1998, Zhao, et al., 1998). A recent study carried out by Gu et al. 311 

showed that three-dimensional measurements of double-peaked glume cells can also successfully 312 

distinguish cultivated from wild Oryza species (Gu, et al., 2013). 313 

Bulliform cell phytoliths are produced in high quantity in stems and leaves, and like glume 314 

phytoliths may be common in sites (Wang and Lu, 1993). Their morphological features appear to 315 

be under genetic control and therefore directly reflect taxonomical significance (Gu, et al., 2013, 316 

Zheng, et al., 2003). In the past two decades, morphological features including surface 317 

ornamentations have been employed to distinguish domesticated from wild rice using these 318 

phytoliths (Fig. 14) (Lu et al., 2002; Ma and Fang, 2007; Huan et al., 2014). Pearsall, et al., 319 

(1995) found that bulliform size alone could not distinguish rice from related species. Lu et al. 320 
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(2002) studied the number of scale-like ornamentations at the edge of bulliform phytoliths from 321 

seven species of wild rice and six species of domesticated rice and found the number of scale-322 

like decorations in wild species is less than 9, while 8 to 14 are present in domesticated rice. This 323 

feature as a distinctive characteristic of cultivated rice needs further validation (Qin, 2012; Wang 324 

and Lu 2012); however, to date, phytoliths with greater than 9 scale-like decorations are widely 325 

used signatures of domestication (Lu et al., 2002;Wu et al., 2014) (Fig. 14). According to this 326 

criterion, recent studies indicate that rice domestication began around 10,000 BP in the Lower 327 

Yangtze, China (Wu et al., 2014). 328 

Bilobates with scooped ends and a parallel arrangement in leaf tissue are typical of the 329 

genera in the Oryzeae tribe, in contrast to the characteristic features of Oryza plants (Pearsall et 330 

al., 1995; Lu, et al., 1997; Xiujia et al., 2014). Pearsall et al. (1995) and Gu et al. (2013) showed 331 

that this bilobate was produced by all members of the tribe, and cannot be used to distinguish any 332 

one genus, including Oryza.  333 

Phytoliths can also be used as a tool for understanding the development and spread of rice 334 

(Oryza sp.) arable systems using arable weed ecologies. Different proportions of crop weeds 335 

appear in different field systems and the ratios of phytolith morphotypes in soils from these 336 

fields reflect this. Modern analogues were created from sediment samples from traditionally 337 

farmed fields using correspondence analysis (Canoco) to demonstrate the constituents of the 338 

samples, groups of phytolith morphotypes, from different field types reflect their arable system. 339 

When applied to archaeological samples the results demonstrate changing farming practices over 340 

time (Fuller and Weisskopf, 2011; Weisskopf et al., 2014).  341 

The development of water management in rice farming can be seen using ratios of specific 342 

phytoliths from grass weeds in rice fields (Weisskopf et al., in press). Ratios of phytolith 343 
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morphotypes that are genetically predisposed to take up silica in grasses (short cells) to those that 344 

take up water under circumstances of greater transvaporation (long cells and stomata) (Madella 345 

et al, 2009, Jenkins et al 2011) were used to develop a wet versus dry index on samples from 346 

traditionally farmed modern rice fields. This method was applied to phytoliths assemblages 347 

collected from palaeosols and the corresponding archaeological sites in the Lower Yangtze 348 

Valley. The results show a change from probable decrue farming on the river’s edge at 349 

Tianluoshan (4800-4300BC) to small drier dugout fields at Caoxieshan (3950-3700BC) to large 350 

managed irrigated fields at Maoshan (3000-2300BC) (Weisskopf, et al. in press). 351 

5. Crops of Southern and Southeast Asia  352 

5.1 Musa spp. (true bananas)  353 

 The domestication and spread of true bananas belonging to the genus Musa is a complicated 354 

issue. Domesticated bananas derive from the Eumusa (Musa acuminata [AA] and M. balbisiana 355 

[BB]) and Australimusa (M. maclayi) sections of Musaceae. Domestication appears to have 356 

involved intra and interspecific hybridization, polyploidization and somaclonal mutations, 357 

ending in seed sterility and parthenocarpy (De Langhe et al., 2009). Accordingly, phytoliths 358 

produced by the Musaceae sections Eumusa and Australimusa have great relevance in 359 

archaeological research. Humans likely spread domesticated Eumusa throughout the tropics. 360 

Archaeological evidence for bananas helps researchers make inferences about crop diffusion and 361 

how people in antiquity managed plant resources in tropical rainforests. Outside Asia, any 362 

evidences for Musa phytoliths are indicative of cultivation (Vrydaghs and De Langhe, 2003). 363 

Phytoliths can be produced in various plant tissues and organs of bananas (e.g., Lentfer, 2009a; 364 

Chen and Smith, 2013) with seed and leaf phytoliths being the most studied to date. In 365 

archaeological contexts, finding both seed and leaf phytoliths together may indicate an early 366 
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phase of domestication, while finding only leaf phytoliths could indicate a latter phase. Lentfer 367 

(2009) and Perrier et al. (2011) discuss and illustrate several seed phytolith morphotypes and 368 

conclude that they are diagnostic at the genus, section, and sometimes seed levels for Musaceae 369 

(Figs. 15, 16). Lentfer (2009a) further discusses other globular and polygonal morphotypes 370 

produced in various plant parts and uses morphometric analysis to separate those produced in 371 

seeds from those produced in other plant organs and tissues.  372 

In leaves, silicification of cells surrounding the vascular tissue of Musa and Ensete species 373 

produces volcaniform (volcano shaped) phytoliths (Ball et al., 2006) (Fig. 17). Both morphotypic 374 

(Ball et al., 2006; Lentfer and Green, 2004; Mbida et al., 2001; Vrydaghs et. al., 2009; Wilson, 375 

1985)  and morphometric studies (Ball et al., 2006; Lentfer, 2009a; Vrydaghs et. al., 2009) have 376 

been conducted to distinguish among the volcaniform phytoliths produced by different Musa and 377 

Ensete species. These phytoliths can be discriminated at the genus level allowing bananas to be 378 

distinguished from the ensets in archaeological records (Lentfer, 2009a; Mbida et al., 2001), but 379 

reliable identification at the species level is still wanting. 380 

Archaeological evidences for Musa phytoliths have been recently summarized by Donohue 381 

and Denham (2009), with the earliest evidence for banana cultivation at Kuk Swamp in highland 382 

New Guinea, dated at 7000-6500 years ago (Denham et al., 2003). This suggests an early and 383 

long process of domestication of M. acuminata ssp. banksii in the area. Archaeological evidence 384 

of Musaceae in Melanesia (Horrocks et al., 2009; Lentfer et al., 2010), in Polynesia (Khan et al., 385 

2014), and early evidence (from 5000 BP) in Southeast Asia falls within the natural range of 386 

several wild banana species (Kealhofer, 2003) making it difficult to disentangle cultivation 387 

versus exploitation of wild plants, but later evidence in east Asia seems to suggest human agency 388 

(Zhao and Piperno, 2000).  The earliest findings in South Asia are from sites of the greater Indus 389 
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Valley at Loteshwar (3681 to 2243 cal BC)  in North Gujarat, India (García-Granero et al., 2015) 390 

and the Mature Harappan levels (2500-1900 BC) of Kot Diji, Pakistan (Fuller and Madella, 391 

2002). The evidence is scant and may actually highlight contacts (trade) with the Western Ghats 392 

to the south more than local cultivation. Cameroon Nkang evidence represents, with all 393 

probability, the dispersal of cultivars to West Africa by at least 2500 years ago (Mbida et al., 394 

2001).  395 

6. Crops of Africa 396 

6.1 Ensete ventricosum (Ethiopian banana, Abyssinian banana), Lagenaria siceraria (bottle 397 

gourd), Sorghum bicolor (sorghum), Penniseum glaucum (pearl millet) 398 

Crop plants native to Africa have seen the smallest amount of focused research. Ensete 399 

ventricosum was domesticated in antiquity in the eastern highlands of Africa for its starchy stem 400 

and is an important crop today. The genus has a pantropical distribution. Its phytoliths have been 401 

studied largely as parts of analyses to compare and distinguish them from those of Musa spp. 402 

(see above), and it indeed appears that Ensete can be identified to at least the genus (Figs. 15, 403 

17). Work is needed to determine if wild and domesticated species can be distinguished. Another 404 

crop of African origin is the bottle gourd. It can be identified to species in American contexts, 405 

where wild varieties are not native (see above under New World). Work is needed on wild 406 

Lagenaria in Africa and Asia to determine if wild and domesticated varieties can be 407 

discriminated.  408 

A handful of recent studies has outlined phytolith production in inflorescences of African 409 

domesticated grains and their wild progenitors (Logan 2012; Madella et al., 2013; Novello and 410 

Barboni 2015; Radomski and Neumann 2011). However, with only one study on phytolith 411 

production in the inflorescences of wild grasses (Novello and Barboni 2015), there is still 412 
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considerable work to do vis-à-vis isolating specific morphotypes diagnostic to the genus or 413 

species level. Consequently, most Africanist phytolith researchers favor quantitative or semi-414 

quantitative methodologies that take into account multiple phytolith forms for strong positive 415 

identifications. 416 

The most promising potential for identification using phytoliths appears to be Sorghum 417 

bicolor, likely domesticated relatively late (c. 2000 years ago), but probably used in a wild but 418 

cultivated form many millennia earlier. Of special diagnostic interest is heavily silicified 419 

elongate dendritic cell forms described by several authors (Novello and Barboni 2015; Radomski 420 

and Neumann 2011; Logan and D’Andrea 2008 in Logan 2012: 96-100; Madella et al., in press). 421 

These forms appear to be quite distinctive, occur in some quantity in domesticated sorghum 422 

inflorescence (36.9% of all phytoliths), but are uncommon in wild sorghum or other grasses 423 

studied to date (Radomski and Neumann 2011:157). In addition, one complex short cell form, 424 

with a bilobate to rondel base and saddle-like top may be distinctive to Sorghum bicolor 425 

(Radomski and Neumann 2011). Since very little comparative work on wild African grass 426 

inflorescences has been completed, it is difficult to establish at what level these forms are 427 

diagnostic, but early results look very promising. 428 

Pearl millet (Penniseum glaucum) is the oldest domesticated crop on the continent (~4500 429 

bp; Manning et al., 2011), yet little is known about phytolith production in this important crop 430 

(see Radomski and Neumann, 2011 for a discussion).  431 

7. Discussion 432 

 Phytolith analysis has substantially contributed to study and understanding of agricultural 433 

origins and dispersals around the world. Genus- or species-level identifications are routinely 434 

achieved for crop plants, and when a crop is found outside of the natural distribution of it and its 435 
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closest wild relatives (as, for example, maize in South America and eastern North America and 436 

bananas in Africa), genus-level identification alone serves the purpose of securely identifying it. 437 

Research by numerous investigators over decades summarized here has, therefore, made it 438 

possible to develop consensus identification criteria for archaeobotanists to employ and for other 439 

scholars to bring to bear in formulating broad conceptual and synthetic works. A recent paper, in 440 

fact, that reviews potential starting dates for the onset of the proposed new geologic epoch, the 441 

Anthropocene, defines phytoliths as one of two primary stratigraphic markers and one of a few 442 

potential auxiliary stratotypes for the origin and expansion of farming globally (Lewis and 443 

Maslin, 2015). Phytoliths are also named as a stratotype marker for Lewis and Maslin’s (2015) 444 

suggested choice of the event that would mark the Anthropocene beginning, the “New-Old 445 

World Collision” at the date of 1610.  446 

     Phytoliths can and have served a number of different roles in agricultural origin and dispersal 447 

research: 1) as stand-alone markers of cultivation and domestication, 2) complementary avenues 448 

of plant identification in multi-proxy research, 3) identifiers at more refined taxonomic levels 449 

than possible with other fossil markers, or of taxa and plant structures often not visible with other 450 

fossils, 4) markers of crop presence and human environmental modification in paleo-ecological 451 

records, 5) markers of range expansions of crops and other plant taxa. Increasingly, phytolith and 452 

starch grain analyses are being used in tandem in many regions of the world, significantly 453 

increasing the recoverability of  a number of New and Old World crop species, including major 454 

root crops, that leave slim or no phytolith records, and allowing finer discrimination of others, 455 

along with identifications of different structures of the same crop (a few examples are Chandler 456 

et al., 2006; Zarillo et al., 2008; Duncan et al., 2009; Lentfer, 2009b; Piperno, 2009, et al., 2009; 457 

Boyd and Surette, 2010; Dickau et al., 2007, 2012; Yang et al., 2012a, b, 2014; Liu et al., 2011; 458 
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Iriarte et al., 2012; Madella et al., 2014; Barton and Torrence, 2015; Corteletti et al., 2015; 459 

García-Granero et al., 2015) (see Table 1 for crop plants and wild progenitors known to have 460 

diagnostic starch grains). As with other fossil indicators of plant exploitation and agriculture 461 

such as macro-remains of seeds and their chaffs (e.g., Wilcox, 2007; Fritz and Nesbitt, 2014), the 462 

taxonomic levels to which phytolith identification can be made will differ from species to 463 

species, and at times the separation of important taxa will not be possible. There are also many 464 

crops and wild progenitors for which phytolith analysis may not turn out to be of significant 465 

utility, although further work is needed on many.  466 

      Issues such as phytolith formation, taphonomy, and preservation, encompassing initial 467 

phytolith production in plants and their subsequent depositional and post-depositional histories 468 

are not the foci of this paper. These aspects have been well-considered elsewhere and the reader 469 

can consult a number of reviews summarizing information accumulated from numerous studies 470 

on crop and other plants from around the world (e.g., Pearsall, 2000, 2014, 2015a; Piperno, 1985, 471 

1988, 2006; Madella, et al., 2009; Madella and Lancelotti 2012). Briefly, the following points 472 

can be made. With regard to phytolith formation, genetic control of phytolith formation is 473 

demonstrated in a number of crops and their wild ancestors, including Cucurbita (fruit rinds), 474 

Zea (fruitcases and cobs), Oryza (leaves and probably glumes), and also wheat awns (Dorweiler 475 

and Doebley, 1997; Piperno et al., 2002; Zheng et al., 2003; Ma et al., 2006, 2007; Peleg et al., 476 

2010; Gu et al., 2013). This means that the visibility of these phytoliths in archaeological sites 477 

should not have been biased by environmental variability. In other crop/wild ancestor pairs 478 

where production of individual phytoliths has not to this point been linked to specific genetic 479 

loci, studies of different populations from different environmental regions demonstrate that 480 

phytoliths used in identification are both consistently produced in modern flora and commonly 481 
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recovered from archaeological sites. In sum, these and other studies indicate a considerable 482 

degree of genetic and metabolic control over the mechanisms and patterns of silica deposition 483 

(e.g., Hodson et al., 2005; Piperno, 2006; Madella et al., 2009; Tsartsidou et al., 2007; Pearsall, 484 

2014). 485 

Investigations of infraspecific variability in phytolith formation also document which 486 

phytolith types do appear to be significantly affected by environmental factors such as water 487 

availability and bedrock chemistry, such that particular morphotypes are/are not produced in 488 

certain environments, or formed in such low amounts that they would be difficult to recover 489 

(e.g., Piperno, 2006; Madella et al., 2009; Tsartsidou et al., 2007). Phytoliths involved (e.g., from 490 

jigsaw-shaped epidermal phytoliths of woody taxa; long epidermal cells of grass leaves) are not 491 

usually among the corpus of silicified forms used in crop identification and discussed herein. As 492 

discussed above, in wheat, barley, and rice an increased silicification of long epidermal cells in 493 

their husks in well-watered conditions provide a means to investigate ancient irrigation and water 494 

regimes.  495 

Other issues such as depositional and post-depositional histories, including preservation and 496 

downward phytolith movement in soils and sediments, have seen detailed investigation, in part 497 

by crop plant researchers who have taken into account and controlled for these factors (a few 498 

studies and reviews include Harvey and Fuller, 2005; Piperno, 1985, 1988, 2006; Fishkis et al., 499 

2009, 2010; Madella, et al., 2009, Madella and Lancelotti 2012; Devos et al., 2013; Pearsall 500 

2014, 2015a; Cabanes et al., 2015). It is well-understood, for example, that phytoliths follow the 501 

biogenic silica curve for erosion and dissolution, so that when the pH exceeds a value above 502 

about 9--an unusual circumstance in archaeological contexts that did not influence records 503 

discussed here--some phytolith corrosion and dissolution may at times be expected (see reviews 504 
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in Piperno, 1988:46-47 and Piperno, 2006:22, 108, and recent experimental work by Cabanes et 505 

al., 2015). Other recent efforts combining phytolith analysis with micromorphology also serve to 506 

address the various issues outlined (Vrydaghs et al., this issue).  507 

The utility of phytoliths for investigating agricultural origins and dispersals around the world 508 

is clear and despite the considerable range of crop examples and geographic regions heretofore 509 

investigated, possibilities for future expansions of research are many. Moreover, micro-fossil 510 

assemblage composition and distribution can provide information about currently under-511 

investigated domestication processes related to crop improvement in prehistory, such as the 512 

development of parthenocarpy (seedless fruits) and of new crop varieties in general. Phytolith 513 

(and starch) studies are complementary to all aspects of archaeological investigation aimed at 514 

understanding agricultural origins, and given well-proven and potential outcomes we should now 515 

be at a stage where such studies are incorporated into broader archaeological framework as a 516 

matter of routine research.  517 
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Figure Captions 929 

Fig. 1. Typical cross-shaped phytolith three-dimensional structures from maize, teosinte, and 930 

non-Zea grasses.  Maize produces high proportions of Variant 1 (mirror-image) cross-shapes 931 

while many wild grasses produce high proportions of other types unlike maize. Balsas teosinte, 932 

maize’s wild progenitor, produces many Variant 2 cross-shapes in its leaves unlike maize. From 933 

Piperno, 2006. 934 

Fig. 2. Wavy-top (top, bottom left) and ruffle-top rondels (bottom, right) from maize. Ruffle-935 

top rondels occur much more frequently in teosinte than maize. From Piperno, 2006. 936 

Fig. 3. The various kinds of non-rondel phytoliths found in teosinte fruitcases. Those 937 

diagnostic of teosinte are in the center (a, oblong, one-half decorated; b, elongated spiney; c, 938 

elongated with one wavy and one serrated edge). Phytoliths a-f occur in some non-Zea grasses, 939 

but they like the others are always produced in teosinte and can be used to rule out its presence if 940 

absent from samples. The phytoliths range in size from about 10 (phytolith f) to 35 µM in 941 

diameter (phytolith b). From Piperno, 2006. 942 

Fig. 4. Tripsacum fruitcase phytoliths. Unlike those of teosinte or maize, they have serrated 943 

edges and ridges across the top. From Piperno, 2006. 944 

Fig. 5. Scalloped phytoliths from the domesticated species Cucurbita moschata. Wild squash 945 

phytoliths have the same morphology but are often much smaller than in domesticates. From 946 

Piperno, 2006. 947 

Fig. 6. Scalloped phytoliths from bottle gourd. Unlike in Cucurbita, scallops are irregularly-948 

shaped and one hemisphere of the phytolith is flat and undecorated. Size ranges from 64 to 112 949 

µM. From Piperno, 2006. 950 

Fig. 7. Seed phytoliths from arrowroot. From Piperno, 2006. 951 
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Fig. 8. Seed phytolith from llerén. It is 40 µM long. From Piperno, 2006. 952 

Fig. 9. An articulated aggregation of inflorescence bract phytoliths from Triticum 953 

aestivum showing the long cell wave patterns and papillae characteristic of Triticum sp. Photo by 954 

Arlene M. Rosen from modern plant phytolith reference collection at ICREA, University of 955 

Barcelona, courtesy of Rosa M. Albert. 956 

Fig. 10. An articulated aggregation of inflorescence bract phytoliths from Hordeum 957 

vulgare showing the long cell wave patterns and papillae characteristic of Hordeum sp. Photo by 958 

Arlene M. Rosen from modern plant phytolith reference collection at ICREA, University of 959 

Barcelona, courtesy of Rosa M. Albert. 960 

Fig. 11. Drawing of a papilla. Domesticated grasses have a consistent papilla diameter found 961 

throughout the multi-cell, as measured by the outer ring of the papillae, while wild ‘weed’ grass 962 

will exhibit a range of papillae diameters. From Piperno, 2006; originally reprinted from Tubb et 963 

al. (1993). 964 

Fig. 12. Undulated patterns and ending structures of epidermal long cells in the upper lemma 965 

and palea for the two millet species. Ω-undulated pattern (A) and wavy type (C) of ending 966 

structure in S. italic; η-undulated pattern (B) and finger type (D) of ending structure in P. 967 

miliaceum. 968 

Fig. 13. Double-peaked glume cell phytoliths from Oryza. From Piperno, 2006. Originally 969 

re-printed from Zhao et al., 1998. 970 

Fig. 14. Comparison of the scale-like decorations on bulliform phytoliths in domesticated and 971 

wild rice. Modified from Fujiwara (1976). 972 

Fig. 15. Seed phytoliths from Musa acuminata subsp. banksii (left) and Ensete, right. From 973 

Piperno, 2006; originally courtesy of Carol Lentfer. 974 
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Fig. 16. Seed phytoliths from Musa ingens. From Piperno, 2006; originally courtesy of Carol 975 

Lentfer.  976 

Fig. 17. A comparison of leaf phytoliths from Ensete and Musa. From Piperno, 2006. The 977 

schematic drawings were originally from Mbida Mindzie et al., 2001 and the photographs were 978 

courtesy of Carol Lentfer.  979 
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Table 1. Crop Plant Phytolith Production and Levels of Taxonomic Specificity 

 

Plant Phytolith 
Production 

Taxonomic  
Specificity 

Plant Part 

The Americas    

Zea mays (maize) WA, SG-S 
Zea mays (maize) 
Zea mays (maize) 

Very high 
High 
Low to moderate 

Species 
Species 
Species 

Cob (glume/cupule) 
Leaf  
Husk 

Cucurbita spp.WA, SG-G and S (squashes and gourds) Very high 
High 

Genus and Species  
Family (Genus?) 

Fruit rind 
Leaf 

Lagenaria siceraria WA?, SG-G (bottle gourd) Moderate 
High 

Species 
Family 

Fruit rind 
Leaf 

Sicana odorifera WA?(cassabanana) High Genus Fruit rind 

Manihot esculenta SG-S  (manioc or yuca) Very low Genus Most plant parts   

Maranta arundinacea SG-G (arrowroot) Very high Species Seed 

Calathea allouia  (llerén) SG-G Very high 
Moderate 

Species 
Species 

Seed 
Rhizome 

Ananas comosus (pineapple)  Very high Family Leaf and seed 

Canna edulis (achira) Very high Genus (?) Leaf 

Phaseolus vulgaris SG-G (common bean) Moderate Genus Pod 

Phaseolus lunatus SG-G (lima bean) Moderate Genus Pod 

Helianthus annuus  High Family (Genus?) Achene 

Arecaceae (palms) Very high 
Family or 
subfamily 

All parts 

Southwest Asia    

Triticum spp. SG-T (Einkorn, other wheats) Very high Genus?* 
Inflorescence bracts 
(glumes, lemmas, and 
paleae) 

Triticum spp. SG-T (Emmer, other wheats) Very high Genus?* 
Inflorescence bracts 
(glumes, etc.) 

Hordeum spp. SG-T (Barley, other wheats) Very high Genus?* 
Inflorescence bracts 
(glumes, etc.) 

East Asia    

Oryza sativa (rice) Very high 
Very high 

Species 
Species (?) 

Glume 
Leaf (bulliform cells) 

Setaria spp. SG-G (Foxtail millets) Very high Genus** Glume 

Panicum spp. SG-G  (Broomcorn millets) Very high Genus** Glume 
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Southern and Southeast Asia    

*** Musa spp.SG-G (bananas) 
High 
High 

Genus 
Genus, Section, 
Species 

Leaf 
Seed 

Benincasa hispida (wax gourd) Very high Genus (?) Fruit rind 

Cocus nucifera (coconut) Very high 
Family or sub-
family 

All plant parts 

Africa    

Lagenaria siceraria (bottle gourd) Moderate Genus?****  Fruit rind 

Ensete ventricosum (Abyssinian or Ethiopian bananas) High Genus Leaf and seed 

Sorghum bicolor (sorghum) High ?see text Glume 

 

WA= phytoliths are diagnostic in the wild ancestor. WA? = wild ancestor is unknown, or known but not yet studied for 

phytoliths. SG = starch grains diagnostic of genus (SG-G), species (SG-S), or tribe (SG-T) occur in the same or other parts 

of the plants as listed for phytoliths (e.g., Maize kernels; Cucurbita fruit flesh; Phaseolus seeds; arrowroot roots; llerén 

roots; wheat, barley, and millet grains; banana fruit flesh). SG? = potentially diagnostic starch but further study is 

needed. Hordeum starch grains have been identified to genus in SW Asia and China. Setaria and Panicum domesticated 

millet starch grains may be identifiable to species in some cases. Starch grains from other Old World crops may have 

considerable promise (e.g., various legumes and root crops). For starch grain references, see Chandler et al., 2006; 

Zarillo et al., 2008; Duncan et al., 2009; Piperno, 2009, Piperno and Dillehay, 2008, Piperno et al., 2009; Boyd and 

Surette, 2010; Dickau et al., 2007, 2012; Lentfer, 2009b; Yang et al., 2012a, b, 2014; Liu et al., 2011; Iriarte et al., 2012; 

Madella et al., 2014; Barton and Torrence, 2015; Corteletti et al., 2015; García-Granero et al., 2015.  

*Wild/domesticated wheat and barley phytoliths can be distinguished from each other at the genus level and from 

common weed genera expected in archaeological contexts in certain regions of southwestern Asia. More work is needed 

with other wild taxa outside of Triticum and Hordeum to more broadly apply phytolith identification schemes when con-

generic non-cultigens may be present. Certain kinds of domesticated wheats can currently be distinguished from others 

and from barley using specific types of phytoliths (e.g., papillae) or combinations of them.  

**Foxtail and broomcorn millet phytoliths can be distinguished from each other. Further work is needed to develop 

distinguishing criteria for them and their weedy wild Panicoid relatives.  ***There is a new revision for Musa proposed 

by Häkkinen (2013) on the basis of new molecular data, which has not been used in this review so that the taxonomic 

names used here are consistent with the published phytolith work cited. In the new revision, the Rhodochlamys section 

was merged into the Eumusa section and renamed Musa. The Australimusa and Ingentimusa sections were merged into 

the Callimusa section The new section kept the name Callimusa (Häkkinen, 2013).****Bottle gourd has been studied 

with relation to regional flora in the New World only. African and other Old World research is needed to establish its 

diagnostic potential there.  

See Bozarth, 1990, Piperno, 2006 and Pearsall, 2015b for information on Phaseolus pod phytoliths, and Piperno, 2006 

for discussions of various palm phytoliths. Cassabanana (Sicana odorifera) is a little understood Neotropical domesticate 

of possible Amazonian origin. Its genus-diagnostic scalloped phytoliths (Piperno, 2006:71 and Fig. 3.7e therein) have not 

as yet been isolated from archaeological deposits, but further work may elucidate its origins and history. Benincasa 

hispida (the wax gourd) phytoliths appear promising compared to New World Cucurbitaceae but Asian study is needed. 
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Table 2. Discrimination of S. italica and P. miliaceum 

No Parts of Spikelet Diagnostic Criteria Setaria italica 
(Foxtail millet) 

Panicum miliaceum 
(Common millet) 

1 Lower lemma and glume Shape of silica bodies Cross-shaped type Bilobate-shaped type 

2 Upper lemma and palea 
Presence or absence of 
papillae 

Regularly arranged 
papillae 

Smooth surface without 
papillae 

3  
The undulated patterns 
of epidermal long cells 

Ω-undulated (Ω-I, II, 
III) 

η-undulated (η-I, II, III) 

4  
The ending structures 
of epidermal long cells 

Cross wavy type Cross finger type 

   W = 4.37±0.89 µm W = 8.95±2.02 µm 

   R = 0.33±0.11 R = 0.79±0.12 

5  Surface sculpture 
Surface ridgy line 
sculpture 

Smooth, spotted sculpture 
or saw-toothed sculpture 
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Experts from around the world who have carried the hands-on work reviewed the utility and 
importance of phytolith analysis in investigating agricultural origins and dispersals. 

Phytoliths have been and will continue to be of significant, often unique, importance for this 
fundamental topic.  

 




