Original Full Length Article

Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

B.L. Foster a,⁎, M. Ao a, C. Willoughby a, Y. Soenjaya b, E. Holm c, L. Lukashova d, A.B. Tran a, H.F. Wimer e, P.M. Zerfas f, F.H. Nociti Jr. a,g, K.R. Kantovitz a,h, B.D. Quan i, E.D. Sone j,k, H.A. Goldberg b,c,l, M.J. Somerman a

⁎ Corresponding author at: National Institutes of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Building 50 / Room 4120, Bethesda, MD 20892, USA

Article Info

Article history:
Received 11 February 2015
Revised 21 April 2015
Accepted 2 May 2015
Available online 9 May 2015

Edited by: J. Aubin

Keywords:
Extracellular matrix
Mineralization
Bone
Cementum
Dentin
Cartilage

Abstract

Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1–60 days postnatal; dpn) by histology, immunohistochemistry, undecalcified histochimistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2–5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp−/− mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp−/− molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.

Published by Elsevier Inc.

Introduction

Bone sialoprotein (BSP) is an anionic extracellular matrix (ECM) protein associated with mineralized tissues of the skeleton and dentition [15]. BSP is a member of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family of multifunctional proteins, also including osteopontin (OPN), dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), dentin phosphophorylin (DPP), and matrix extracellular phosphoglycoprotein (MEPE) [21,69,77]. Like other SIBLING proteins, BSP contains several highly conserved functional domains. These include an N-terminal collagen-binding domain, an integrin-binding arginine-glycine-aspartic acid (RGD) motif (involved in cell attachment, migration, and cell signaling), and two polyglutamic acid repeats capable of in vitro hydroxyapatite (HA) nucleation in coordination with several phosphorylated serine residues [1,2,3,3,34,85]. These functional domains have been confirmed using in vitro approaches, however, the physiological role(s) of BSP in mineralized tissue formation in vivo remain elusive and difficult to define.

The functional importance for BSP in the axial skeleton has been the focus of most published in vivo studies to date. Mouse null for the Bsp gene (Bsp−/−) feature delayed long bone growth and mineralization, as well as low bone turnover as a consequence of reduced osteostat formation and activity [11,58,59]. In a femur cortical bone defect model, Bsp−/− mice displayed delayed bone repair [80,63], and in a femur bone marrow ablation model, absence of BSP caused both reduced medullary trabecular bone formation and delayed osteoclastic resorption [83]. Investigations focusing on early stages of long bone development identified alterations in the growth plate, delayed initiation of mineralization, and a reduction in expression of some osteogenic markers in Bsp−/− vs. WT mice [12,40].

BSP has been identified in the ECM of tooth cementum and dentin as well as in cartilage and bone [15,16,19,26,28,43,57,74]. Previously we identified a developmental defect in cementum in teeth of Bsp−/− mice, resulting in the progressive loss of periodontal attachment, disorganization of the periodontal ligament (PDL), and alveolar bone loss at later ages [26]. However, the potential importance of BSP in dentin mineralization remains unclear. While the functional importance of BSP in endochondral bone formation and repair has been confirmed by analysis of long bones, examination of the craniofacial complex can provide insights into the importance of BSP in bone formed by endochondral ossification (e.g. portions of the neurocranium, including synchondroses of the cranial base that contribute to midfacial shape) versus intramembranous ossification (e.g. viscerocranium, including the mandible, alveolus, and frontal calvarial bone).

Our aim in these experiments was to define the functional importance of BSP in dental and craniofacial development, focusing on intramembranous versus endochondral processes of ossification, periodontal ligament (PDL) attachment to the alveolar bone and cementum, and dentin formation.

Materials and methods

Animals

Animal procedures were performed in accordance with guidelines of the Canadian Council on Animal Care and Animal Care and Veterinary Services, University of Western Ontario (London, ON, Canada) and National Institutes of Health (Bethesda, MD, USA). Preparation and genotyping of Bsp−/− and wild-type (WT) mice were described previously [26,58], and mice were maintained on a mixed 129/CD1 background. After weaning at three weeks of age, mice were provided both a standard pelleted mouse diet (2018 Tekland Global 18% protein diet, Harlan Laboratories, USA) as well as a soft gel diet (Diet Gel 31M, Clear H2O, Portland, ME) to reduce incisor malocclusion in homozygous Bsp−/− mice. Homozygous WT and Bsp−/− littermates were analyzed, with three to six mice analyzed per genotype at ages 1, 5, 14, 26–30, and 60 days postnatal (dpn).

Histology

Procedures for histology and immunohistochemistry (IHC) were described previously for Bouin’s fixed, decalcified, paraffin-embedded samples [23,24]. For undecalcified histology, tissues were processed and methylmethacrylate-embedded for automated microtome sectioning (6 μm) for Goldner’s trichrome and von Kossa staining [46].

IHC employed biotinylated secondary antibodies and peroxidase substrate. Primary antibodies included polyclonal rabbit anti-BSP (1:200; Renny Franceschi, University of Michigan, Ann Arbor) [26], monoclonal rat IgG anti-tissue nonspecific alkaline phosphatase (1:200; R&D Systems, Minneapolis, MN) [88], polyclonal LF-175 rabbit anti-osteopontin (1:200; Larry Fisher, NIDCR) [25], polyclonal rabbit IgG anti-osteix/SP7 (1:100; Abcam, Cambridge, MA), polyclonal rabbit anti-osteocalcin (1:1000; Contech Laboratories Inc., Mountain View, CA), and polyclonal goat IgG anti-RANKL (1:50; Santa Cruz Biotechnology, Santa Cruz, CA) [26]. Tartrate resistant acid phosphatase (TRAP) staining was performed on decalcified and deparaffinized tissues according to manufacturer’s instructions (Wako Chemical, Japan).

Transmission electron microscopy (TEM)

TEM was performed at two different facilities (14 dpn at NIH and 27–30 dpn at University of Toronto). For 14 dpn samples, mandibles were fixed in 2% paraformaldehyde, 0.5% glutaraldehyde in phosphate buffered saline (PBS) for 48 h, and washed in cacodylate buffer. Next, tissues were serially dehydrated in alcohol, embedded in LR white resin (Electron Microscopy Sciences, Hatfield, PA) and UV polymerized for 8 h. Thin sections (80 nm) were obtained from buccal and lingual aspects of the maxillary and mandibular molar susing a Leica Ultracut-UCT ultramicrotome (Leica Microsystems, Deerfield, IL), placed onto 300-mesh copper grids, and stained with saturated uranyl acetate in 50% methanol followed by lead citrate. Samples were viewed with a JEM-1200EXII electron microscope (JEOL, Tokyo, Japan) at 80 kV, and images were captured using a XR611M, mid-mounted, 10.5 mega-pixel CCD camera (Advanced Microscopy Techniques, Danvers, MA).

For 27–30 dpn samples, freshly dissected mandibles were fixed overnight at 4 °C in 0.8% formaldehyde and 0.2% glutaraldehyde in PBS. For both mineralized and demineralized tissues, sections were obtained from the lingual aspect of the first molar. For examination of natively mineralized tissues, samples from 27 dpn mice were washed with water, dehydrated in an ethanol gradient followed by propylene oxide, and embedded in Embed 812 resin (Electron Microscopy Sciences). Sections (~90 nm thick) were cut using a Leica Ultracut ultramicrotome, transferred to carbon-coated formvar Ni grids and examined unstained. For examination of demineralized tissues, fixed mandibles from 30 dpn mice were demineralized for 7 days in PBS containing 12.5% EDTA (pH 7.4), 0.2% paraformaldehyde, and 0.05% glutaraldehyde at 4 °C with rocking and daily solution change. The mandibles were then infiltrated with several changes of 2.3 M sucrose, frozen, and sectioned on a Leica EM UC6-NT ultracryomicrotome at −90 °C. Sections (~210 nm thick) were transferred to Ni grids supported by carbon-coated formvar and stained with 2% uranyl acetate in water for 5 min. and washed in water. For both mineralized and demineralized sections, grids were imaged on an FEI Technai 20 TEM operating at 200 kV with an AMT 16000-S CCD camera.

Microcomputed tomography (microCT)

For dentoalveolar imaging, dissected and formalin-fixed mandibles were scanned on a Scanco Medical microCT 50 (Scanco Medical AG, Brüttisellen, Switzerland) with parameters of 9 μm voxel size, 55 kVp, 145 mA, with 0.36 degree rotation step (180 degree angular range)
and a 400 ms exposure per view. Exported DICOM files were reoriented using ImageJ software (1.48r), with comparable coronal, sagittal, and transverse planes of section chosen for image comparison.

For craniofacial analysis, formalin-fixed crania (n = 5 per genotype per age for 5, 14, and 26 dpn) were scanned in 70% ethanol on a Scanco μCT 35 (Scanco Medical, Brüttschellen, Switzerland) with parameters: 15 μm voxel size, 55 kVp, 145 mA, with 0.36 degree rotation step (180 degree angular range), and 400 ms exposure per view. Scanco μCT software (HP, DE/Windows Motif 1.6) was used for 3D reconstruction and image viewing. After 3D reconstruction, volumes of parietal bone were contoured and segmented using a global threshold of 0.25 g HA/cm³. Directly measured tissue volume (TV), and bone volume (BV), as well as bone volume fraction (BV/TV), bone thickness and tissue mineral density (TMD) were calculated.

Craniofacial and suture measurements

Craniofacial linear measurements were made on 3D reconstructed microCT scans of Bsp−/− and WT mouse crania at 5, 14, and 26 dpn (n = 5 per genotype at all ages). Measurements were made using skeletal landmarks employed previously for craniofacial morphometry [53,71] and standard procedures employed by Jackson Laboratories for documenting craniofacial phenotypes; http://craniofacial.jax.org/new_standard_protocols.html. Measurements included: skull length (nasal to paro), skull width (measured between the right and left intersections between the squamosal body and the zygomatic process of the squamosal portion of the temporal bone), skull height (modified due to removal of the mandible), nose length (nasal to bregma), nasal bone length (measured from nasale to nasion), upper jaw length, lengths of frontal and parietal bones, width of the premaxilla, distance between lateral margins of right and left lacrimal bones (lacrimal width), and distance between lateral margins of right and left squamosal bones (squamosal width).

Suture widths were measured on 3D reconstructed microCT scans of Bsp−/− and WT mouse crania at 5, 14, and 26 dpn (n = 5 per genotype at all ages). Sutures measured included: Sagittal, frontal, lambdoid (right and left sides), and coronal (right and left sides). Additionally, widths of the anterior and posterior fontanelles were measured.

Quantitative polymerase chain reaction (QPCR)

Tissues were isolated from WT or Bsp−/− mice in order to isolate total RNA for gene expression analysis. For PDL, first mandibular molars were removed from mandibles at 5, 14, and 26 dpn (with care to exclude gingiva and bone) and RNA was harvested from attached soft tissues using a lysis buffer and purification kit, according to manufacturer’s directions (RNeasy, Qiagen, Valencia, CA). For mandibular bone, molar and incisor teeth were removed from jaws, and bone remaining was stored in RNAlater (Thermo Fisher Scientific, Waltham, MA) at −80 °C. For calvarial bone at 14 and 26 dpn, portions of the parietal and frontal bones and the intervening sutures were removed and stored in RNAlater at −80 °C. Bones were homogenized with a lysing matrix of zirconium spheres and garnet flakes using a high-speed bench top homogenizer (FastPrep-24, MP Biomedicals, Santa Ana, CA), at 3 cycles of 4000 rpm for 30 s, on dry ice. Total RNA was isolated from homogenates with TriPure isolation reagent, following manufacturer’s recommendations (Roche Applied Science, Indianapolis, IN). RNA was used for CDNA synthesis, and 1 μg of cDNA was used as template for quantitative PCR or PCR array on a Lightcycler 2.0 system (Roche Applied Science). PCR primers for mouse transcripts included Acp5 (NM_001102404.1): Forward—CACGCTAGTGGTGATCA CA and Reverse—CTGCTTACAGTGCTCTCC; Aplp (NM_007431.3): F—GAGGCAATGCAGTAATGTT and R—GGCTGCTATTGTTCCGAG; Csf1r (NM_007802.4): F—GCACCCTTACTGCTCCGTCTG and R—CCCCAATCTGCTTTGGCG; Fgfr3 (NM_001163215.2): F—CCGACAGGTTCTGCTGAAG and R—CGGACAGAAGCAGGCTCC; Gli1 (NM_0120962.1): F—CCGACAGG GTCTCTTTGTG and R—AACATGCGCTTCAGGAAG; Mxs2 (NM_013601.2): F—CCCTGCTCAATGCGGAAA and R—GCCTCATATGCTG GCCG; Sp7 (Osterix; NM_130458.3): F—TGCTTCCAACTCTATTTGC and R—AGCTACGGGGAATCGGAG; Spp1 (Dpn; NM_001204210.1): F—TTTACGCCTCCACCC and R—CTAGCATGGACGT; proprietary Tnfsf11 (Rankl; NM_011613.3) primers included in a PCR array (Qiagen); Tnfsf11a (Rank; NM_009399.3): F—AGTCTGTAGTGGAGG AAGG and R—CCGTATTTCTGAGCTGCC; and Twist1 (NM_011658.2): F—GCCGGAGAATGATACCTG and R—CCGACGCTGTATCTTGTGA.

Results

BSP localization in developing craniofacial bones and teeth

To inform the developmental analysis of loss of BSP in craniofacial tissues, localization of BSP protein was analyzed in craniofacial and dental tissues from ages 1 to 14 days postnatal (dpm). During both crown and root formation, little BSP protein was identified by immunohistochemistry (IHC) in odontoblasts or dentin ECM (Figs. 1A, B, D, E). During root formation, BSP was concentrated in the acellular cementum lining the tooth root surface (Fig. 1E). Bones forming through intramembranous ossification, e.g., alveolus, mandible, and calvaria, were positive for BSP (Figs. 1G–O). Endochondral bone of the sphenoccipital synchondrosis (SOS) of the midline cranial base exhibited BSP staining (Figs. 1P, Q), as did the pre-sphenoidal synchondrosis (PSS; data not shown). Absence of BSP immunostaining was confirmed in Bsp−/− mice for all tissues analyzed (Figs. 1C, I, F, L, O, and R).

Defective intramembranous bone mineralization in Bsp null mice

We examined mandibular, alveolar, and calvarial bones to determine the effect of loss of BSP on craniofacial bones formed by intramembranous ossification. At 1 dpm, the early mandible appeared similar in dimension and organization in Bsp−/− versus WT, as observed by picrosirus red staining for collagen, with and without polarized light microscopy (Figs. 2A–D). Histology and von Kossa staining of the alveolus surrounding the molar tooth bud, the basal bone of the mandible, and the coronal suture region between the frontal and parietal bones identified delays in mineralization at all of these sites in Bsp−/− mice, compared to controls (Figs. 2E–P). Alveolar and mandibular bone, in particular, featured extensive regions of unmineralized osteoid accumulation, typically more than 200–300 μm long by more than 100 μm wide. The delay in mineralization persisted at 14 dpm, where Goldner’s trichrome staining identified osteoid on the surfaces of bone of the alveolar crest and molar root fusion region, often 20–30 μm in thickness (Figs. 2Q–T). Osteoid was recognizable on alveolar bone surfaces at ages of 26 and 60 dpm by histology (data not shown).

Parietal bones of the cranium were analyzed further by microCT to determine whether loss of BSP affected mineralization of these bones. No significant differences were found in Bsp−/− versus WT mice for bone thickness, BV/TV, or TMD at 5 dpm (Supplementary Table 1), suggesting no major mineralization deficiency in the parietal bone proper at this early age. By 14 dpm, Bsp−/− parietal bone was significantly thicker (10%; p < 0.05), and BV/TV trended towards increase, while TMD trended towards decrease in Bsp−/− mice compared to controls. At 26 dpm, parietal bone thickness, BV/TV, and TMD were all significantly increased in Bsp−/− mice (by 27%, 8%, and 7%, respectively). The observations of increased thickness, BV/TV, and TMD in Bsp−/− mice parietal bones versus controls at 14 and 26 dpn indicate no lasting mineralization delay or defect, and are consistent with effects from reduced osteoclast activity documented in vivo and in vitro [58,83]. Because delayed mineralization was identified by histology at the coronal suture at 1 dpn, we measured cranial suture widths at 5, 14, 26 dpn by histology (data not shown).
and 26 dpn. At 5 dpn, the coronal suture was significantly larger by 65% (p < 0.01) and the lambdoidal suture was significantly increased by 20% (p < 0.05) in Bsp−/− mouse crania compared to WT (Table 1; Figs. 2U–V). Sagittal and frontal sutures trended towards increased mean widths in Bsp−/− versus WT mice as well. Additionally, the anterior fontanelle width was significantly increased by 40% in Bsp−/− versus WT mice, while the posterior fontanelle trended towards increased width in Bsp−/− mice. By 14 dpn, differences in sutures and fontanelles in Bsp−/− versus WT mice were no longer observed. Surprisingly, by 26 dpn, Bsp−/− mouse crania featured significantly reduced sagittal, coronal, and lambdoidal sutures, while anterior and posterior fontanelle widths trended towards reduction as well. This pattern suggests that early mineralization deficiencies reflected in suture widths normalized and then reversed at later ages.

Fig. 1. BSP localization in dentinogenesis and craniofacial osteogenesis. While BSP is localized in negligible concentrations by IHC in dentin (DE) during molar tooth crown (A, B) and root (D, E) formation, the protein is concentrated in the acellular cementum (AC). BSP is also detected during craniofacial intramembranous ossification of the (G, H) alveolar bone (AB), (J, K) mandibular bone (MB), and (M, N) calvarial bone, as well as (P, Q) both cortical and trabecular bones (CB and TB, respectively) arising from cartilage (CART) via endochondral ossification, as in the intersphenoid synchondrosis (ISS) of the cranial base. There is a lack of BSP immunostaining in all of these tissues in comparable sections from Bsp−/− mice, demonstrated in panels C, F, I, L, O, and R. Panels A–C and G–R are from 1 dpn mice, and panels D–F are from 14 dpn mice. Yellow boxes in first column panel indicate areas shown under higher magnification in panels in the second column.
While fusion of the sutures was not observed in Bsp−/− mice by 26 dpn, we nonetheless analyzed several genes associated with craniosynostosis to determine if these were dysregulated in cranial bones at 14 and 26 dpn. These included Fgfr1, Fgfr2, Fgfr3, Gli1, Msx2, and Twist1 [36,70,87]. While we found trends towards mild reduction in most of these genes in Bsp−/− vs. WT mouse calvaria, no significant differences were identified (Supplementary Fig. 1A). Osteoblast markers Alpl/TNAP and Spp1/OPN were significantly decreased in Bsp−/− versus WT samples at 14 dpn (with similar trends at 26 dpn) (Supplementary Fig. 1B), likely reflecting reduced expression of osteoblast markers reported previously in long bones [40,58]. Because Bsp−/− mice feature reduced long bone remodeling due to loss of osteoclast activation...
Table 1
Cranial suture measurements of Bsp−/− versus WT mice. Measurements of cranial sutures were made on 3D microCT reconstructions of WT and Bsp−/− mice at 5, 14, and 26 dpn (n = 4–5 for each genotype and age). Values are reported as mean ± SD.

<table>
<thead>
<tr>
<th></th>
<th>5 dpn</th>
<th>14 dpn</th>
<th>26 dpn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT Bsp−/−</td>
<td>WT Bsp−/−</td>
<td>WT Bsp−/−</td>
</tr>
<tr>
<td>Sagittal suture</td>
<td>0.49 ± 0.12</td>
<td>0.61 ± 0.20</td>
<td>0.18 ± 0.04</td>
</tr>
<tr>
<td>width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal suture</td>
<td>0.49 ± 0.06</td>
<td>0.67 ± 0.19</td>
<td>0.33 ± 0.08</td>
</tr>
<tr>
<td>width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambdoidal suture</td>
<td>0.42 ± 0.07</td>
<td>0.51 ± 0.04*</td>
<td>0.20 ± 0.06</td>
</tr>
<tr>
<td>width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronal suture</td>
<td>0.32 ± 0.05</td>
<td>0.53 ± 0.12**</td>
<td>0.41 ± 0.05</td>
</tr>
<tr>
<td>width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior fontanelle</td>
<td>0.38 ± 0.05</td>
<td>0.54 ± 0.09**</td>
<td>0.33 ± 0.06</td>
</tr>
<tr>
<td>width (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior fontanelle</td>
<td>0.71 ± 0.15</td>
<td>0.95 ± 0.21</td>
<td>0.30 ± 0.04</td>
</tr>
</tbody>
</table>

* p < 0.05 by independent samples t-test.
** p < 0.01 by independent samples t-test.

...transcripts for *Spp1* (gene for receptor activator of NF-κB, RANKL) by QPCR did not detect differences in transcripts for *Ctsk* (OSX), *Alpl* (TNAP), or *Sppl* (OPN) in Bsp−/− versus WT palate bone harvested at 5 dpn (Figs. 3Q–S), during the time period when these tissues were severely hypomineralized.

Periodontal defects in Bsp null mice

Alveolar bone is part of the periodontal attachment complex, functioning as a unit with the root cementum and PDL, to anchor the tooth. Embedding of Sharpey’s fibers of the PDL into both alveolar bone and cementum is critical for periodontal function, and we reported previously that reduced acellular cementum in Bsp−/− mice caused loss of PDL attachment [26]. To characterize this deficiency in more detail, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed. The acellular cementum defect is observed by SEM as the absence of a mineralized cementum layer surrounding root dentin in Bsp−/− mouse molars at 30 dpn (Figs. 4A–B), with resorption pits noted on the root surface (asterisk in Fig. 4B).

Using TEM, we examined tooth root surfaces at two stages of root formation including 14 dpn (early root formation) and 27–30 dpn (later root formation). At 14 dpn, the mineralized collagen fringe fibers that serve as the dental cementum matrix were apparent in molar root sections as a 0.5–1 μm thick layer at the interface of the PDL and root dentin, continuous with collagen fibrils extending into the PDL space (Fig. 4C). In unstained WT sections at 27 dpn, acellular cementum was observed as an approximately 2 μm layer adjacent to the mantle dentin layer (Fig. 4D). In Bsp−/− molars at both ages, dental cementum ultrastructure was absent, resulting in an abrupt transition from dentin to PDL (Figs. 4E–F). PDL detachment from the root was prevalent in Bsp−/− molars at both ages examined, however, in regions where the ligament remained attached, the PDL appeared relatively normal despite the aberrant root surface topology (Supplementary Fig. 2).

In contrast to the defects observed on the tooth root, insertion of Sharpey’s fibers into Bsp−/− mouse alveolar bone was evident by TEM and did not appear different from WT (Figs. 4G–H). Notably, tearing at the bone–PDL interface was generally not observed in Bsp−/− mice, while prevalent cementum–PDL interfacial tearing indicated a structural defect at the tooth root surface. Picrosirius red staining confirmed that the integrity of the collagen fibers entering the alveolar bone were similar in WT and Bsp−/− tissues at 14 dpn, though the PDL of the Bsp−/− tooth already was disrupted from lack of cementum formation and subsequent attachment (Fig. 4I vs. K). By 26 dpn, though the collagen fibers traveling through the alveolar bone were still apparent in Bsp−/− mouse, bone resorption had degraded the structure of the PDL–bone interface, and little collagen organization was apparent in the PDL space (Figs. 4J and L).

Increased bone resorption in Bsp null alveolar and mandibular bone

Bone turnover in Bsp−/− mouse long bones was reported to be low due to reduced osteoclast differentiation [11,58,83]. At advanced ages, Bsp−/− mice feature severe alveolar and mandibular bone loss (Supplementary Fig. 3 and [26]). To further define the mechanism of this underlying discrepancy and to understand how it corresponds to the observed mineralization defects in the Bsp−/− mouse craniofacial bone, we examined receptor activator of NF-κB ligand (RANKL) by immunostaining and QPCR, and tartrate resistant acid phosphatase (TRAP) staining in mandibles from 1 to 60 dpn. IHC revealed no obvious differences in RANKL at early ages (1 and 14 dpn), with increased RANKL staining in the periodontal region of Bsp−/− mice at 26 and 60 dpn (Figs. 5A–H), after the molar was erupted and in occlusion, and coincident with observations of PDL detachment from the root surface. QPCR data from PDL tissues showed that Bsp−/− mice featured significantly reduced Tnfsf11 (RANKL) at 5 dpn, equivalent expression to WT at 14 dpn, and more than 4-fold significantly increased Tnfsf11 at 26 dpn (Fig. 5M), matching the pattern of RANKL IHC.

TRAP staining was used to enumerate osteoclast-like cells in alveolar and mandibular bone (Figs. 5I–L). At 1 and 14 dpn, Bsp−/− mandibles in general, and alveolar bone in particular, featured similar or reduced numbers of osteoclasts compared to WT (Figs. 5N–O). However, by 26 dpn, Bsp−/− alveolar bone featured 2-fold significantly increased number of osteoclasts compared to WT tissues (p < 0.05). By 60 dpn, the number of osteoclasts in Bsp−/− mouse alveolar and alveolar/mandibular bone was significantly increased over WT, by 8-fold and 3-fold, respectively (p < 0.05 and p < 0.01, respectively).

Dentinogenesis is unaffected in Bsp null mouse molars

Odontoblasts that produce tooth dentin arise from cranial neural crest ectomesenchyme, and therefore have a common origin with...
osteoblasts and cementoblasts of the periodontia. To determine effects of loss of BSP on dentin, dentinogenesis in tooth crown and root of Bsp^{−/−} mice was examined. At 1 dpn, initiation of mineralization of the crown dentin matrix of the first mandibular molar was noted, indicated by differential von Kossa and Goldner’s trichrome stains (Figs. 6A–H). Initiation of crown dentin mineralization was comparable in Bsp^{−/−} and WT mouse molars. Ongoing dentinogenesis was analyzed in molar roots. Parameters measured included the width of predentin and dentin layers (in 14 and 26 dpn molars) and the lag in mineralization between predentin matrix secretion and its mineralization to dentin (at 14 dpn). No observational or statistical differences in dentinogenesis were observed between Bsp^{−/−} mice and WT controls in any histomorphometric parameters measured, suggesting no defects in processes of dentin secretion or mineralization (Figs. 6I–L, M, O, and R).

Molars were analyzed by TEM at 27 dpn to further explore the collagen-mineral ultrastructure of dentin. Imaging and diffraction of
Fig. 4. Defective cementum and periodontal ligament attachment in Bsp null mouse molars. Compared to the well-developed acellular cementum (AC) in the (A) WT mouse molar at 30 dpn, SEM in back-scattered mode reveals that (B) Bsp$^{-/-}$ mouse molars do not feature a recognizable cementum layer on the dentin (DE) root surface, and no attached periodontal ligament (PDL) is observed on these molars. Insets show high magnification images of WT and Bsp$^{-/-}$ molar root surfaces at equivalent magnification. Note a feature (*) consistent with a resorption pit on the Bsp$^{-/-}$ mouse root surface. TEM was applied to (C, E) 14 dpn and (D, F) 27 dpn natively mineralized sections of molar teeth. TEM of uranyl acetate stained sections at 14 dpn reveals the (C) progressive mineralization of Sharpey's fibers marking cementogenesis on the WT molar surface, and a well-aligned collagen fibers (CF) of the periodontal ligament (PDL), while (E) the Bsp$^{-/-}$ mouse displays a severely disrupted root surface topography, absence of Sharpey's fiber development, and disarray in the adjacent PDL collagen fibers. At 28 dpn, (D) unstained root surfaces in WT mice feature layers of dentin, outermost mantle dentin (MD), and acellular cementum (mantle dentin–cementum interface is indicated by red stippled line), whereas (F) Bsp$^{-/-}$ mouse molars feature no layer of acellular cementum adjacent to mantle dentin, resulting in a disrupted dentin–PDL interface. The normal insertion of Sharpey’s fibers into the alveolar bone surface in (G) WT control mice is not perturbed in (H) Bsp$^{-/-}$ mice. Picrosirius red (PR) staining under polarized light confirms dense insertion of large-sized collagen fibers from the PDL into the alveolar bone of (I, J) WT and (K, L) Bsp$^{-/-}$ mouse. Areas of bone loss (white stars in L) are apparent in Bsp$^{-/-}$ mouse alveolar bone by 26 dpn. The margin of the alveolar bone in I–L is indicated by a yellow stippled line.
dentin from natively mineralized tissue revealed no significant differences in collagen-mineral organization in Bsp^{−/−} compared to WT mice (Figs. 6N and P). In both cases, electron diffraction patterns showed arcs consistent with (002) plane of hydroxyapatite, showing preferential orientation along the long axis of the collagen fibrils. In addition, regions of banding are evident in both micrographs, indicative of preferential deposition of mineral into the gap region of the collagen fibrils, as is characteristic of mineralized connective tissues. Taken together, these results suggest that the mineralization of collagen fibrils in dentin is not significantly affected at the ultrastructural level by the deletion of BSP.

Odontoblast markers were assayed by IHC, including OSX, TNAP, osteocalcin (OCN), and dentin sialoprotein (DSP). No alterations in timing or localization of protein expression were noted during crown (1 dpn) or root (14 dpn) dentinogenesis (Supplementary Fig. 4).

Effect of loss of BSP on endochondral bone formation and craniofacial shape

Alterations in the epiphyseal growth plate of Bsp^{−/−} mice have been reported at early ages, as well as low bone formation rate [12,40]. However, neither frank osteomalacia nor accumulation of osteoid on cortical or trabecular bone surfaces have been identified (Figs. 7A–D).
We examined the effect of loss of BSP on cranial endochondral ossification by analyzing the growth plates of the spheno-occipital synchondrosis (SOS) and the pre-sphenoidal synchondrosis (PSS). The growth plates of the PSS and SOS were visible in WT and Bsp^{−/−} mice at 1 dpn (Figs. 7E–H). Alcian blue/nuclear fast red and safranin-O/fast green stains, differential for cartilage due to the high content of polyanionic proteoglycans, revealed normal overall structures for PSS and SOS in WT and Bsp^{−/−} mice (Figs. 7I–L). Further analyses using von Kossa and Goldner trichrome stains indicated mineralized cartilage in growth plates, and mineralized cortical and trabecular bone in both WT and Bsp^{−/−} mice (Figs. 7M–P). No differences were noted in growth plate morphology or onset of mineralization in Bsp^{−/−} versus WT mice.

Fig. 6. Loss of BSP does not affect molar dentin formation or mineralization. Compared to controls, initiation of dentin (DE) mineralization is not delayed in Bsp^{−/−} mouse molars by (A–D) Goldner’s trichrome staining or (E–H) von Kossa staining, of undecalciﬁed sections at 1 dpn. Yellow boxes in panels A, C, E, and G indicate areas shown under higher magniﬁcation in panels B, D, F, and H, respectively. The lag in mineralization between predentin (PD) matrix secretion (pale, whitish) and mineralization to dentin proper (light pink-purple) at the apical root tip is not delayed in Bsp^{−/−} mice compared to control (Figs. 7J–L, and Q). No differences in the widths of root dentin and predentin at (L, K) 14 dpn or (M, O) 26 dpn in Bsp^{−/−} vs. WT are observed, as confirmed by statistical analysis in panel R (n = 4–6 samples per genotype for all ages). (N, P) TEM micrographs of unstained, natively mineralized dentin sections from 27 dpn mice show normal characteristics in both WT and Bsp^{−/−} litter mates. In both micrographs, regions of collagen banding are evident (asterisk), indicating preferential gap zone mineral deposition. Electron diffraction (insets) in both WT and Bsp^{−/−} molars show oriented arcs indicating preferential alignment of the hydroxyapatite (002) plane with the collagen ﬁbril axis.

and [12,58]).
In long bones, while chondrocyte markers were not altered by loss of BSP, changes in several osteoblast markers were noted [12, 40]. Osteoblast markers were assayed in PSS and SOS bone by IHC, including OSX, TNAP, and OPN. Expression and localization of OSX was similar in WT and Bsp\(^{-/-}\) bone (Figs. 7Q–T). As with alveolar and mandibular bone (Fig. 3), TNAP appeared to be increased in Bsp\(^{-/-}\) versus WT mice around new bone of the cranial base (Figs. 7U and W). No differences were detected for OPN localization in cortical or endochondral bone matrix (Figs. 7V and X).

Growth plates of the cranial base contribute to elongation of the neurocranium and midfacial growth. Substantial alterations in endochondral ossification in the cranial base would thus be expected to have consequences in terms of midfacial growth, and this has been borne out in transgenic and knock-out mouse models ablating factors essential for regulating endochondral bone growth and mineralization [7, 53, 64, 84]. We performed a quantitative comparison of craniofacial parameters in WT and Bsp\(^{-/-}\) crania to determine if cranial morphology was altered by loss of BSP. Significant differences were not found between crania of WT and Bsp\(^{-/-}\) mice in skull length, nose length, nasal bone length, frontal bone length, parietal bone length, upper jaw length, premaxilla width, lacrimal width, squamosal width, skull width, or skull height (Supplementary Table 2). While Bsp\(^{-/-}\) mouse

Fig. 7. Effect of loss of BSP on endochondral ossification in the cranial base. (A, B) At 1 mo, femurs of Bsp\(^{-/-}\) mice have grossly normal morphology of the growth plate (GP), with increased trabecular bone (TB). High magnification of von Kossa stained sections shows no substantial accumulation of osteoid (OST) in the conversion to mineralized cortical bone (CB), a process in which osteocytes (Ocy) are embedded. Yellow boxes in panels A and C indicate areas shown under higher magnification in panels B and D, respectively. The remaining panels (E–V) feature the cranial base synchondrosis at 1 dpn, where yellow boxes in row E–H indicate areas shown under higher magnification in row I–L. Histological stains for cartilage, including alcian blue/nuclear fast red (E, I, G, K) and safranin-O (F, H, J, L) reveal no morphological differences in the cranial base cartilage between Bsp\(^{-/-}\) and WT mice. Stains for mineralization status, including von Kossa (M, O) and Goldner’s trichrome (N, P) do not reveal any substantial mineralization defects in Bsp\(^{-/-}\) versus WT mice. In cranial base, no differences in early (Q–T) osteoblast marker osterix (OSX) expression are observed in Bsp null versus WT. Yellow boxes in panels Q and S indicate areas shown under higher magnification in panels R and T, respectively. (U, W) Tissue nonspecific alkaline phosphatase (TNAP) localization appears increased in Bsp null endochondral bone compared to WT. (V, X) Osteopontin (OPN) is present in endochondral bone matrix in WT and Bsp\(^{-/-}\) mice.
cranial trends towards decreased size in several parameters at 5 dpn, this was not generally the case at 14 dpn, with skull width of \(Bsp^{-/-} \) mice being increased. By 26 dpn, all cranial measurements trended towards increase in \(Bsp^{-/-} \) versus WT mice (\(p > 0.05 \)), matching patterns of reversal observed in parietal bone microCT analysis and suture measurements (Supplemental Table 1 and Table 1), and consistent with effects from reduced osteoclast activity with the loss of BSP [58, 83]. The absence of large changes in craniofacial size and shape supports histological observations that the cranial base forms and mineralizes normally in \(Bsp^{-/-} \) mice.

Discussion

BSP is a multifunctional protein associated with the ECM of mineralized tissues, hypothesized to function in cell differentiation and mineralization. We analyzed how loss of BSP affected development, differentiation, and maturation of the craniofacial region in \(Bsp^{-/-} \) mice, focusing on bone, dental cementum, and dentin. Intramembranous bone at several sites in \(Bsp^{-/-} \) mouse crania exhibited delayed mineralization, with most severe effects observed in the alveolar bone and mandible. Tooth root acellular cementum failed to form in the absence of BSP, leading to poor anchorage of PDL Sharpey's fibers and structural defects at the root surface, though the PDL–bone interface appeared unaffected. Increasing RANKL expression and osteoclast numbers in \(Bsp^{-/-} \) mouse mandibles and alveolar bone were observed following molar tooth eruption, suggesting a role for tooth dysfunction and/or occlusal trauma in the bone loss and periodontal destruction with advanced ages. In contrast, dentin formation and mineralization was normal in \(Bsp \) null molar teeth. Unlike sites of intramembranous ossification, endochondral bone formation of the cranial base appeared normal and craniofacial morphology was unaffected in \(Bsp^{-/-} \) mice. Most significantly, these collected data show that functional importance for BSP is site-specific, with the most dramatic effects from loss of BSP on mineralization of cementum and alveolar bone, ultimately causing periodontal dysfunction and breakdown.

Functional importance of BSP in intramembranous osteogenesis and periodontal function

The mandible, alveolus, and some bones of the calvaria arise from neural crest and form by intramembranous ossification, where nodules of osteoprogenitor cells secrete collagenous extracellular matrix (osteoid) that is subsequently mineralized, with no cartilage anlage [14,65]. BSP is present at early time points in the matrices of these tissues [as in Fig. 1] [16,17,26,56,57,61]. At all sites of intramembranous ossification analyzed, including sutures of the cranium, and in mandibular and alveolar bone, \(Bsp^{-/-} \) mice featured delayed mineralization compared to WT. Extensive regions of osteoid accumulation were especially pronounced in \(Bsp^{-/-} \) mouse mandibular and alveolar bone at early ages, supporting an important role for BSP in early matrix mineralization. Alveolar and mandibular bone, as well as tooth root cementum, were analyzed to define the functional importance of BSP in those tissues.

Alveolar bone and cementum are components of the periodontal attachment apparatus, separated by the unmineralized PDL. BSP is present in the ECM of cementum and alveolar bone of the periodontal support apparatus [Fig. 1 and 10,26,28,56,57,61]. During development, collagen fibers of the PDL insert into both the cementum and bone surfaces. Upon entering occlusion, these embedded Sharpey's fibers provide attachment, while accommodating the loads that accompany tooth use [38,39]. Using SEM and TEM, we confirmed the absence of acellular cementum on tooth root surfaces of \(Bsp^{-/-} \) mice, as well as poorly embedded Sharpey's fibers, and detachment and disorganization of collagen fibrils (Fig. 4). In contrast, at the PDL–bone interface, Sharpey's fibers insertion appeared unaffected and detachment was not observed.

These observations provide insight into the role of BSP in these tissues, and likely reflect differences in their modes of formation. Intramembranous bone forms as a two-step process whereby osteoblasts secrete the ECM (osteoid), and then in a second step, the matrix becomes mineralized in a regulated process. In contrast, acellular cementum formation involves a directed mineralization of the collagen fibrils at the tooth root surface [9], a process that we and others have found to be heavily reliant on the physicochemical process of mineralization [4,5,22,24,45,47,62,66,88]. With lack of BSP, craniofacial intramembranous bone is delayed in the conversion from osteoid to mineralized bone. However, bone matrix formation appears normal, including insertion of Sharpey’s fibers at the PDL–alveolar bone interface, and we hypothesize that bone remodeling over time allows for adaptation and functionality despite early hypomineralization (though insertion into bone may be relatively weakened). Additionally, while some alterations in osteoblast marker genes have been identified in \(Bsp^{-/-} \) long bones [40,58] and calvarial bones (this paper), we did not identify significant differences in OSX, TNAP, or OPN in alveolar and mandibular bone by IHC or PCR (at 1 and 5 dpn, respectively). The increased TNAP immunostaining observed in craniofacial and alveolar bone mirrors increased circulating ALP activity reported previously [26], and we hypothesize this is a compensatory mechanism related to defects in skeletal formation and mineralization in \(Bsp^{-/-} \) mice.

These data support the concept that lack of BSP most severely affects the matrix mineralization phase in intramembranous bone, indicating a direct role for BSP in HA crystal formation or growth. Acellular cementum is inhibited from forming in \(Bsp^{-/-} \) mice, and we hypothesize that lack of matrix mineralization also underlies this defect. In the case of acellular cementum, the sensitivity to mineralization disturbances and lack of physiological remodeling create a scenario where there is a narrow developmental window for the cementum layer to form and subsequently, properly anchor Sharpey's fibers. In the absence of functional cementum, the PDL–tooth interface is compromised as soon as the tooth enters occlusion, and PDL attachment and tooth function are lost. Studies underway to define effects of \(Bsp \) knock-out on cementoblast differentiation and function will provide additional insights on role(s) of BSP in regulating mineralization versus potential roles in cell signaling. The importance of BSP for cementum and alveolar bone mineralization and periodontal function identify this as a molecule of interest for regenerative applications including periodontal disease, osteoporosis, and others.

A reduction in bone turnover in the postcranial skeleton has been documented in \(Bsp^{-/-} \) mice [58,83], and the role of BSP in supporting osteoclast differentiation has been shown [11,81]. There is a striking reversal in craniofacial parameters of \(Bsp^{-/-} \) mice versus controls, from younger to older ages. \(Bsp^{-/-} \) mice at 5 dpn feature decreased mineral properties of parietal bones, increased suture widths, and smaller cranial measurements (all suggesting delays in bone formation), whereas \(Bsp^{-/-} \) mice at 26 dpn exhibit increased mineral properties of parietal bones, decreased suture widths, and larger cranial measurements (all suggesting defects in bone remodeling, supported by decreased expression of osteostat factors \(Acp5/\)TRAP and \(Nfnsf11a/\)RANK in calvarial tissues). These observations are consistent with delayed bone formation, followed by defective osteoclast recruitment, as previously reported [11,58,82,83]. We analyzed mandibular and alveolar bone more closely. At early ages, we show low/normal numbers of osteoclasts in \(Bsp \) null mandibular and alveolar bone, compared to controls. However, increased numbers of osteoclasts were observed in \(Bsp^{-/-} \) mouse mandibles at later ages of 26 and 60 dpn, after the molar was erupted and in occlusion, and the lack of cementum has predisposed to PDL detachment. This temporal pattern suggests strongly that tooth and bone resorption and alveolar bone reduction, previously observed in \(Bsp^{-/-} \) mice at later ages [26], arise as a consequence of dysfunctional cementum and weakened ability to withstand mechanical forces arising from occlusion. We demonstrated that mRNA and protein for RANKL increases over time in the PDL of \(Bsp^{-/-} \) mice compared to
controls, providing a proximal mechanism for the increase in osteoclast numbers and incidence of bone and root resorption. In order to better understand the effect of occlusal forces on resorption observed in the mandibles of Bsp−/− mice, we are currently determining the effects of hard versus soft diet on tooth formation and function.

BSP in dentin formation and potential for compensation

BSP is part of the SIBLING protein family, also including mineralized tissue-associated phosphoproteins OPN, DMP1, DSP, DPP, and MEPE [21,69,77]. The SIBLING family is part of a larger secretary calcium-binding phosphoprotein (SCCP) family clustered on mouse chromosome 5 (and human chromosome 4), predicted be evolved from a common ancestor by gene duplication, and also including a group of enamel-selective proteins, and other secreted saliva and milk proteins [48–50]. These proteins have in common some genomic structural elements, as well as biochemical features considered critical for their functions as calcium-binding proteins, notably acidic amino acid motifs (e.g., glutamic acid and aspartic acid) and phosphorylated serine residues [69]. It has been speculated that because of biochemical similarities, some SCPP and SIBLING proteins may hold redundant functions or partially compensate in one another’s absence, though some evidence (including in this paper) also points to specific and non-redundant functions.

Functional analysis of SCPP and SIBLING proteins has involved evolutionary, bioinformatics, in vitro cell assay, and in vivo approaches. Knock-out mouse approaches, in particular, provide evidence for not only overall functional importance, but can also pinpoint affected tissues and help identify compensatory mechanisms. Ablation of SCPP and SIBLING proteins results in severe defects in amelogenesis and enamel mineralization, indicating distinct and non-redundant functions [18,42,73]. Knock-out of each SIBLING member has affected skeletal and/or dental mineralization. Spp1−/− mice featured increased skeletal bone mineral content and crystallinity, consistent the proposed function of OPN as a negative regulator of mineralization [8]. Knock-out of Mepe/OF4S resulted in increased bone formation and mass [35], while over-expression inhibited long bone growth plate mineralization [76]. Knock-out of Dmp1 revealed not only direct effects on dentin and bone [52,54], but a role in systemic phosphate homeostasis [20], while targeted ablation of in Dsp in Dpp primarily targets dentin and periodontal tissues [31,75].

We observed substantial mineralization defects in mandibular and alveolar bone and cementum stemming from loss of BSP, supporting an important and non-redundant role for BSP in those tissues. However, a detailed developmental study of dentinogenesis in the Bsp−/− mouse revealed no observable defects in dentin formation, organization, mineralization, collagen-mineral ultrastructure, or in odontoblast marker profile. The presence and relative quantity of BSP in the dentin ECM has been a source of disagreement. BSP expression has been reported in odontoblasts, though relatively low expression has been observed in some studies [13,15,16]. BSP concentration in dentin has been reported to be one tenth that in bone [27], while another study estimated similar BSP concentrations in the two tissues [68]. The lack of dentin phenotype in the absence of BSP supports the interpretation that BSP has no critical and non-redundant function in mouse dentin formation.

Notably, circumcusal dentin formation has been described as depending on other ECM proteins, including related SIBLING family members DMP1, DSP, and DPP [6,32,54,67,75,78,79,86]. Like BSP, these multifunctional SIBLINGSs can both directly and indirectly affect mineralization, and may also be involved in cell signaling and differentiation, and other local or systemic effects [29,30,37,44,72,80]. Mutations in Dsp (the gene encoding BSP and DPP) cause dentin dysplasia and dentinogenesis imperfecta in humans [41,53], where dentin is thin and hypomineralized. While BSP appears to function in bone and cementum mineralization, other proteins may perform equivalent roles for dentinogenesis.

BSP in craniofacial endochondral ossification

In the femur, which arises from paraxial mesoderm and undergoes endochondral ossification, alterations in the epiphyseal growth plate and low rates of bone formation have been reported at early ages in Bsp−/− mice [12,40]. Signs of osteomalacia have not been identified on cortical or trabecular bone surfaces (Figs. 7A–D and [12,58]). Portions of the neurocranium, the braincase that occupies the back portions of the skull, also arise from paraxial mesoderm and form through the process of endochondral ossification [65]. No defects were identified in bone forming by endochondral ossification in the cranial base due to the absence of BSP. The synchondroses examined appeared normal in structure and matrix content. There was no sign of frank delay in mineralization or osteoid accumulation in the associated bone, and bone markers appeared normally expressed. Moreover, craniofacial size and shape were not affected by loss of BSP (Supplementary Table 2), strongly suggesting no deleterious effects of loss of BSP on endochondral bone formation driving craniofacial growth.

While these differential effects are striking, it is difficult to say within the limitations of the study whether they arise from the method of ossification (intramembranous vs. endochondral), origin of bone cells (cranial neural crest ectomesenchyme or mesoderm), or whether the more severe mineralization defects are particular to the bone of the mandible and alveolus. We are currently generating an Bsp floxed allele in order to better understand contributions of BSP to individual tissue compartments.

Conclusions

In summary, we report that loss of BSP affects mineralized tissues of the dental−oral−craniofacial complex differently, with severe effects to cementum and bones of the alveolus and mandible, and little or no effect on dentin or endochondral bone of the cranial base. Where defects in formation were noted, loss of BSP appears to most severely affect the process of mineralization, supporting an important and direct in vivo role for BSP in HA crystal deposition and/or growth. Increased resorption in the mandible in the absence of BSP is opposite to the low bone turnover in long bones and calvaria, and is likely a secondary effect from the breakdown in periodontal structure and function.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bone.2015.05.007.

Acknowledgments

This research was supported by sources including grant AR 066110 to BLF from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)/NIH, the Intramural Research Program of NIAMS (MJS), the Canadian Institutes of Health Research (#130572, HAG), and the CIHR Institute of Musculoskeletal Health and Arthritis (#134216; EDS). We thank Kenn Holmbeck of the National Institute of Dental and Craniofacial Research (NIDCR) for assistance with microCT analysis and Nasrin Kalantari Pour (NIAMS) for assistance with histology.

References

Supplementary Table 1. MicroCT analysis of parietal bones. Parietal bone analyses were compared in WT and Bsp\(^{-/-}\) mice at 5, 14, and 26 dpn (n=4-5 for each genotype and age). After 3D reconstruction, volumes of parietal bone were contoured and segmented using a global threshold 0.25 g HA/cm\(^3\). Values are reported as mean ± SD.

<table>
<thead>
<tr>
<th></th>
<th>5 dpn</th>
<th>14 dpn</th>
<th>26 dpn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>Bsp(^{-/-})</td>
<td>WT</td>
</tr>
<tr>
<td>Bone Thickness (µm)</td>
<td>26 ± 2</td>
<td>26 ± 2</td>
<td>38 ± 2</td>
</tr>
<tr>
<td>BV/TV (%)</td>
<td>22.34 ± 5.71</td>
<td>22.97 ± 3.47</td>
<td>43.74 ± 5.25</td>
</tr>
<tr>
<td>TMD (mg HA/cm(^3))</td>
<td>461 ± 23</td>
<td>461 ± 6</td>
<td>490 ± 13</td>
</tr>
</tbody>
</table>

* p < 0.05 by independent samples t-test

** p < 0.01 by independent samples t-test
Supplementary Table 2. Craniofacial parameters of Bsp^/- versus WT mice. Craniofacial measurements were made on 3D microCT reconstructions of WT and Bsp^/- mice at 5, 14, and 26 dpn (n=4-5 for each genotype and age). Values are reported as mean ± SD.

<table>
<thead>
<tr>
<th></th>
<th>5 dpn</th>
<th>14 dpn</th>
<th>26 dpn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>Bsp^/-</td>
<td>WT</td>
</tr>
<tr>
<td>Skull length (mm)</td>
<td>13.12 ± 0.50</td>
<td>12.74 ± 1.16</td>
<td>17.33 ± 0.37</td>
</tr>
<tr>
<td>Nose length (mm)</td>
<td>7.79 ± 0.45</td>
<td>7.46 ± 1.02</td>
<td>10.30 ± 0.32</td>
</tr>
<tr>
<td>Nasal bone length (mm)</td>
<td>3.17 ± 0.21</td>
<td>2.89 ± 0.44</td>
<td>5.03 ± 0.31</td>
</tr>
<tr>
<td>Frontal bone length (mm)</td>
<td>4.60 ± 0.28</td>
<td>4.38 ± 0.54</td>
<td>5.25 ± 0.26</td>
</tr>
<tr>
<td>Parietal bone length (mm)</td>
<td>2.43 ± 0.25</td>
<td>2.26 ± 0.26</td>
<td>3.76 ± 0.10</td>
</tr>
<tr>
<td>Upper jaw length (mm)</td>
<td>6.85 ± 0.23</td>
<td>6.66 ± 0.41</td>
<td>9.55 ± 0.25</td>
</tr>
<tr>
<td>Premaxilla width (mm)</td>
<td>3.68 ± 0.13</td>
<td>3.89 ± 0.53</td>
<td>3.73 ± 0.04</td>
</tr>
<tr>
<td>Lacrymal width (mm)</td>
<td>3.38 ± 0.06</td>
<td>3.43 ± 0.12</td>
<td>3.38 ± 0.03</td>
</tr>
<tr>
<td>Squamosal width (mm)</td>
<td>8.21 ± 0.27</td>
<td>7.77 ± 0.25</td>
<td>10.11 ± 0.33</td>
</tr>
<tr>
<td>Skull width (mm)</td>
<td>8.02 ± 0.37</td>
<td>7.73 ± 0.51</td>
<td>9.95 ± 0.19</td>
</tr>
<tr>
<td>Skull height (mm)</td>
<td>5.10 ± 0.15</td>
<td>5.13 ± 0.61</td>
<td>6.06 ± 0.06</td>
</tr>
</tbody>
</table>

* p < 0.05 by independent samples t-test