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Abstract. Quantifying animals’ home ranges is a key problem in ecology and has
important conservation and wildlife management applications. Kernel density estimation
(KDE) is a workhorse technique for range delineation problems that is both statistically
efficient and nonparametric. KDE assumes that the data are independent and identically
distributed (IID). However, animal tracking data, which are routinely used as inputs to KDEs,
are inherently autocorrelated and violate this key assumption. As we demonstrate, using
realistically autocorrelated data in conventional KDEs results in grossly underestimated home
ranges. We further show that the performance of conventional KDEs actually degrades as
data quality improves, because autocorrelation strength increases as movement paths become
more finely resolved. To remedy these flaws with the traditional KDE method, we derive an
autocorrelated KDE (AKDE) from first principles to use autocorrelated data, making it
perfectly suited for movement data sets. We illustrate the vastly improved performance of
AKDE using analytical arguments, relocation data from Mongolian gazelles, and simulations
based upon the gazelle’s observed movement process. By yielding better minimum area
estimates for threatened wildlife populations, we believe that future widespread use of AKDE
will have significant impact on ecology and conservation biology.

Key words: autocorrelation; Brownian bridge; home range; kernel density; minimum convex polygon;
Mongolian gazelle, Procapra gutturosa; tracking data; utilization distribution.

INTRODUCTION

Home range estimation, a critical statistical challenge,
applies to areas of ecology ranging from theoretical
ecology to wildlife management. Whether quantifying
space use or designing conservation strategies, ecologists
need to know what habitats an animal uses in terms of
both location and extent. Animal tracking data increas-
ingly constitute the key inputs into home range
estimation procedures. Conventional methods of home
range estimation largely fall into two camps: geometric
techniques, such as the minimum convex polygon
(MCP; Bekoff and Mech 1984, Fieberg and Börger
2012), that lack an underlying probabilistic model, and
statistical techniques that were not developed for use
with animal tracking data, such as kernel density
estimators (KDEs; Worton 1989). While KDEs are the
most efficient nonparametric estimators of probability
density functions (PDFs), they are derived under the
assumption of independent and identically distributed
(IID) data, an assumption violated by autocorrelation

and nonstationarity (Silverman 1986). When faced with
realistic, autocorrelated movement data, KDEs have
been observed (Swihart and Slade 1985, Hansteen et al.
1997) and proven (Fleming et al. 2014a) to underesti-
mate home range area, often dramatically (Fig. 1).
Common suggestions for dealing with autocorrelated
location data include coarsening the sampling rate
(Swihart and Slade 1985) and stratification across
individuals (Otis and White 1999), but these types of
adjustments are generally inefficient.
Autocorrelation means that an individual’s position,

velocity, or acceleration measured at one point in time
are statistically correlated with the same measurements
in the past, and also implies that these correlations will
carry on into the future. Autocorrelation is the rule, not
the exception, in animal movement data. Autocorrela-
tion can arise from diverse sources and may occur over
multiple timescales in a single individual’s movement
path. First, and most fundamentally, autocorrelation is
an ineluctable consequence of the fact that animal
movement is a continuous process. Uncorrelated loca-
tion data would lack any degree of continuity, whereas
real animals trace continuous paths through the
environment and have continuous velocity and acceler-
ation. Second, autocorrelation arises when individuals
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continue a particular movement behavior for an
extended period of time or repeat certain behaviors
such as revisiting the same foraging areas, dens, or
nesting sites. Typically, correlations diminish as obser-
vations grow farther apart in time, but autocorrelations
in movement data often persist over long time periods,
e.g., months or years (McNay et al. 1994, Rooney et al.
1998, Boyce et al. 2010, Fleming et al. 2014a, b).
The conceptual definition of home range given by

Burt (1943) lacks an objective, mathematical description
that can be statistically estimated from data. We view
relocation data as a sample of a much longer,
continuous trajectory that is only one of many possible
movement-path realizations of a continuous-time sto-
chastic process. In this formalism, movement-path
realizations that exhibit realistic behaviors and result
in heavy use of the observed animal’s core areas are
assigned higher probabilities than those that stray off
into little-used regions. This definition thus operation-
alizes Burt’s intuition that rare excursions should not be
included in the home range by down-weighting such

excursions. We therefore define the home range area as a
percent coverage region, usually taken to be 95%, of the
probability distribution of all possible locations, as
determined from the distribution of all possible paths
(hereafter, range distribution). This is the same distri-
bution that the conventional KDE approach estimates
when its input data are independent. The range
distribution addresses the lifetime space requirements
of an animal and provides a metric that can be
compared across individuals. Unfortunately, the range
distribution is frequently conflated with the occurrence
distribution, which does not quantify the home range
but instead estimates where an animal was located
during the observation period (see Appendix A for a
detailed discussion of these two distributions, their
differences, and their estimators). While both of these
distributions are sometimes referred to as the utilization
distribution, in what follows, we focus only on the range
distribution, as it is closest to Burt’s original definition.

Natural statistical intuitions often fail in the presence
of autocorrelation. In a random sample of n indepen-

FIG. 1. (A) A simulation of location data points (red dots) drawn from a spatial point process that unrealistically lacks
autocorrelation between points. (B) More realistic data drawn from a continuous, stochastic process fit to tracking data for
Mongolian gazelle, Procapra gutturosa (Fleming et al. 2014a). The true home ranges (95% confidence regions) for the stochastic
processes underlying the plots in (A) and (B) are identical (black circles) and in both cases there is an identical number of data
points, but in (B) the observation period is only long enough to observe a few home range crossings. (C) The home range area of
(B) is estimated using conventional kernel density estimation (KDE; dashed blue line) and our new autocorrelated KDE (AKDE;
dotted aqua line). The conventional KDE approach draws tight boundaries around the observed data, while AKDE can project
future space use from limited data. (D) The stochastic process from (B) is run 10 times further into the future, demonstrating that
AKDE was correct and KDE was incorrect in (C), even though KDE might have seemed reasonable based on visual inspection.
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dent observations from an individual’s position distri-
bution, on average, we expect 0.95 n observations to fall
inside the estimated distribution’s 95% contour and 5%
to fall outside. However, this is not the case for
autocorrelated data, which contain less positional
information than an equivalently sized sample of
independent data (Fig. 1). For autocorrelated data, the
proportion of sampled points that falls within a given
contour of the range distribution depends entirely on the
timespan and the strength of the autocorrelation.
Consequently, to match the position information
contained in an independent sample of a particular size,
a larger and longer-term sample is needed for autocor-
related movement data. This explains why the conven-
tional KDE will tend to yield underestimates on
autocorrelated data and also why, when using such
data, an individual’s estimated home range area tends to
initially increase with sampling duration even if their
movement process remains stationary (Girard et al.
2002). In this latter scenario, the underlying range
distribution being estimated, and thus the true home
range, has not necessarily changed, but it becomes more
completely sampled and thus better resolved as the
observation time increases.
What then are ecologists to do when faced with

autocorrelated movement data of short duration, for
which conventional KDE always underestimates the
animal’s ultimate space use? Fortunately, the other side
of the autocorrelation coin offers a solution. Autocor-
relation implies relationships between past and future
movements and can therefore be harnessed to make
statistically rigorous predictions of future movement.
Most current space-use estimators discard this informa-
tion, but an estimator purpose-built for autocorrelated
data could, in a mechanistic way, leverage the informa-
tion to make better home range predictions (Börger et
al. 2008). Previous home range estimators that account
for autocorrelation have been extremely limited. Auto-
correlated bivariate Gaussian density estimation
(AGDE; Dunn and Gipson 1977, Fleming et al.
2014b) can incorporate realistic movement behaviors
featuring strong, multiscale autocorrelations; however,
AGDE typically estimates Gaussian range distributions,
which will not work for many species. Mechanistic home
range analysis (MHRA; Moorcroft and Lewis 2006,
Moorcroft 2012, Potts and Lewis 2014) can provide
more detailed range distributions, however current
modeling efforts are limited to Markov processes
(Appendix A: A.2), which cannot describe the contin-
uous velocity motion revealed by modern ARGOS and
GPS telemetry data (Johnson et al. 2008, Fleming et al.
2014a). Moreover, while Moorcroft and Barnett (2008)
provide a fitting method that can account for Marko-
vian autocorrelation, the traditional method of assum-
ing independent observations remains in use (Bateman
et al. 2014). Finally, while Brownian bridge density
estimation (BBDE; Horne et al. 2007) is sometimes
mistakenly employed as a home range estimator, its

estimation target is actually the occurrence distribution,
which does not quantify the home range (Appendix A:
A.3).
We develop a new home range estimator that

combines KDE’s flexibility and efficiency with AGDE’s
ability to account for and leverage the information
content of highly autocorrelated movement data. We
formally re-derive the KDE explicitly assuming the data
represent a sample from a nonstationary, autocorre-
lated, continuous movement process. The resulting
autocorrelated KDE (hereafter AKDE) incorporates
movement effects through the autocorrelation function
(ACF), which can either be derived from a fitted
movement model (as in Fleming et al. 2014a) or directly
estimated from the data (Appendix C). We illustrate
AKDE’s improved performance with both simulated
data where the true home range area is known and an
empirical example featuring Mongolian gazelles (Pro-
capra gutturosa), which previous analyses have shown to
exhibit highly autocorrelated movement. We outline the
conditions under which the AKDE will outperform the
classical KDE and show that our AKDE reduces to the
standard KDE in the limit where autocorrelation
vanishes and samples are truly independent. The AKDE
is therefore a generalization of KDE.

Kernel density estimation

KDE proceeds by placing small kernels of smoothing
bandwidth or covariance rB at each sampled location
(Silverman 1986). The average of these kernels provides
the estimate, p̂, of the PDF p. The kernel’s shape matters
little, but the bandwidth selection is paramount (Silver-
man 1986, Izenman 1991, Turlach 1993). The optimal
bandwidth minimizes the mean integrated squared error
(MISE) between p and its estimate p̂. The optimal rB
will vary among data sets, but its calculation can be
automated. KDE bandwidth optimization poses more
problems than ordinary regression analysis. Several
methods have been developed; plug-in and cross-
validation approaches are the two most common
(Silverman 1986, Turlach 1993). In general, plug-in
methods tend to over-smooth the estimate, while cross-
validation methods tend to under-smooth the estimate;
adaptive-bandwidth methods tend to produce more
detail in areas of high frequency compared to fixed-
bandwidth methods (Silverman 1986, Izenman 1991,
Turlach 1993).
To make our approach explicit, we first derive the

bandwidth relations for the conventional KDE in
Appendix B: Eq. B.1, using a Gaussian kernel and
reference function. The MISE is

eðrBÞ ¼
1
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in terms of the covariance of the locations r0, number of
spatial dimensions q, and number of data points n, and
where rB is the bandwidth. For uncorrelated data, this
relation provides an asymptotically consistent estimate
and an asymptotically optimal order of error. We
choose to base our generalization to autocorrelated
data on Eq. 1, and our AKDE derivation in Appendix
B: Eq. B.2 follows the same sequence of steps while
relaxing the assumption of IID data. We avoided the
least-squares cross-validation approach, because cross-
validation itself assumes independence, whereas the
generalization of MISE Eq. 1 is conceptually straight-
forward. Moreover, the leave-one-out cross-validation
method that is conventionally used in KDE-based home
range estimation (Seaman and Powell 1996, Gitzen and
Millspaugh 2003) is particularly vulnerable to autocor-
relation. Because any single data point will be strongly
correlated with adjacent data points, leaving only one
data point out of an estimate will not yield any
substantial change, which will then be falsely attributed
to fit quality (also, see Hemson et al. 2005, for other
issues).
The new material in Appendix B: Eq. B.2 is highly

technical, but it allows us to derive a closed form
expression for the MISE, whose minimum occurs at the
optimal bandwidth. Given an estimate of the movement
process’ mean and ACF, the optimal bandwidth can be
calculated numerically. The AKDE converges to the
conventional KDE when autocorrelation is absent, but
outperforms it by a wide margin as autocorrelation
increases (Appendix B: Eq. B.3). Subsequently, we
consider the corresponding MISE for the special case
of a stationary stochastic process, where temporal
variation is absent from both the mean and the ACF
governing animal movement, in which case the auto-
correlated MISE is given by

eðrBÞ ¼
1
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q
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where c(s) is the semi-variance function (SVF: Appendix
B: Eq. B.36) and n(s) is the number of location pairs
with time lag s between them. To compare the
uncorrelated and autocorrelated MISEs, the above
sum over lags can be expressed as
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and so the second term here generalizes the second term
of Eq. 1. In the limit of uncorrelated data, the SVF limits
to the covariance, c(s) ! r0, for s 6¼ 0, and the
autocorrelated MISE reduces to the uncorrelated MISE.
Therefore, there is no reason to prefer the uncorrelated
MISE over the autocorrelated MISE, even if the
autocorrelation is weak.

Application

In Fig. 2, we plot KDEs for the ranging behavior of
one Mongolian gazelle monitored over a 1-yr period. We
obtained a total of n¼ 866 relocations for this individual
using an hourly sampling schedule with 5-h gaps every
20 h and 11-d gaps after every 5 d of sequential data.
Fig. 2A uses the conventional bandwidth, which only
applies to uncorrelated data, while Fig. 2B uses Eq. B.35
(in Appendix B), along with the ACF estimate
calculated in Fleming et al. (2014b). The AKDE predicts
a home range area of 50 000–94 000 km2, with confi-
dence intervals calculated according to data in Appendix
B: Eq. B.3, while the conventional KDE estimate is only
19 000–20 000 km2. Next, we restrict our analysis to the
first half of the data to test how the two methods predict
future space use, using conventional KDE in Fig. 2C
and the AKDE in Fig. 2D. With half the data, AKDE
predicts a home range area of 47 000–96 000 km2, which
is consistent with its better estimate derived from the full
data, though the confidence intervals are slightly wider.
In contrast, conventional KDE predicts a home range
area of 9000–10 000 km2, which differs substantially
from its better estimate. Because of the quantity and
resolution of the data, the range estimate using the
conventional KDE approach falls tightly around the
sampled data. Increasing the sampling frequency will
further degrade the conventional estimate, causing the
home range to split into numerous isolated areas of high
utilization.

This behavior typifies the conventional KDE and
leads some researchers (e.g., Swihart and Slade 1985) to
advocate for nonstatistical measures (i.e., MCP) that at
least appear visually reasonable. However, note that in
both cases (Fig. 2A, C) the 95% home range area of the
AKDE is much larger than the MCP would be.
Mongolian gazelles are nomadic wanderers whose
movements may involve gross displacements exceeding
1000 km/yr with little concordance among years (Olson
et al. 2010, Mueller et al. 2011, Fleming et al. 2014b)
Consequently, longer observation periods tend to show
the gazelles using larger amounts of space, up to an
asymptote set by the ACF’s details (Fleming et al.
2014a). The AKDE captures this important behavior,
whereas conventional space-use estimates will miss it
because they discard the information encoded in the
ACF on the movement process’ long-run behavior.

Visually, AKDE estimates often look too large
because they contain substantial areas where the focal
individual was not directly observed (e.g., Figs. 1 and 2;
Appendix B: Eq. B.3). However, as previously men-

May 2015 1185RIGOROUS HOME RANGE ESTIMATION
R

ep
orts



tioned, statistical intuition derived from experience

with independent data often fails to transfer to

situations where data are autocorrelated. In particular,

as we have demonstrated with simulation (Fig. 1;

Appendix B: B.3) and shown mathematically (Appen-

dix B: Eq. B.35), the home range area cannot be

determined from the locations alone, so the intuitive

expectation that a home range area should conform

closely to the observed locations is often inappropriate.

Instead, accurately characterizing the individual’s long-

term space use requires leveraging the information that

exists in the transitions between spatial locations (i.e.,

in the ACF). Because the data points are linked

together by the animal’s movements, it is the time

dependence in the data that ultimately provides insight

into space usage.

DISCUSSION

We have introduced AKDE, a new kernel density
estimator that properly takes autocorrelation into
account so that it accurately estimates home ranges
from animal movement data. Among KDE techniques,
only our estimator is asymptotically consistent, with an
asymptotically optimal order of error, when data are
autocorrelated. As we have shown, the conventional
KDE only provides a lower bound for the estimate of
home range area (Appendix B: B.2.1), and it is only valid
when the relocation data are sampled so coarsely that
they appear uncorrelated in time and the data are
recorded for a far longer time than the timescale over
which autocorrelations persist. When the sampling
interval is much shorter than the autocorrelation
timescales, which is inevitably the case for finely sampled
(e.g., hourly) movement data in ungulates and other

FIG. 2. (A) KDE and (B) AKDE are compared against the distribution of locations (red dots) for a Mongolian gazelle,
observed over a period of 361 d. In all cases, the density estimate is shown as blue shading, a black contour line delineates the point
estimate of the 95% home range area, and two gray contour lines express the 95% confidence range of the home range area. For
AKDE, there is significant uncertainty in delineating how much area the gazelle will use 95% of the time, which is estimated to fall
between the two gray contours, while for conventional KDE, the estimated uncertainty is hardly visible. The wide confidence
intervals of the AKDE are appropriate for this data set, as will be demonstrated in the final two panels, while KDE massively
underestimates the real uncertainty associated with home range estimation. In panels (C) for KDE and (D) for AKDE, the data set
is segmented into its first half (red dots) and second half (orange stars), and only the first half is used for both autocorrelation
parameter estimation and kernel density estimation. This subsetting has a large effect on the home range predictions from the KDE
method, but only a very minor change for the AKDE predictions, given that there is already enough information in the first half of
the data to fully represent the movement behavior (but not necessarily the space use). The KDE method fails to anticipate the
possibility of the long sojourns that the gazelle undertook during the second half of the monitoring period. This possibility was
already accounted for by the AKDE method, which was well informed by the autocorrelation structure present in the first half of
the data. Traditional leave-one-out cross-validation assumes independence and does not cross-validate the data in such a
temporally meaningful way.
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large animals, then the conventional KDE of home
range area is too small. What is worse, using KDE with
more continuously sampled locations will more severely
underestimate an animals’ area requirements (see
Appendix B: B.4 and Fleming et al. 2014a), which runs
counter to the intuition that more tracking data will
reveal more space-use detail. Moreover, if autocorrela-
tions persist over timescales comparable to the observa-
tion period, then all conventional methods will
underestimate space use.
Because of the aforementioned limits on easy visual

assessment of autocorrelated movement data, ordinary
intuitions are significantly biased when applied to
animal tracking data, and, unfortunately, these biases
only increase with increasing sampling frequency. In the
limit of continuously sampled data, the conventional
KDE home range area vanishes, while the AKDE
asymptotes to a well-defined estimate (Appendix B:
B.4). Unless the sampling interval is much larger than
the autocorrelation timescales, an increase in the
sampling rate does not result in a proportional increase
in the effective sample size (i.e., the information
content). Importantly, the period of data needs to be
at least as long as the home range crossing time, if not
many times longer, for any home range estimation
(Appendix C).
Conventional estimates of an individual’s home range

size often increase as the observation period increases
(Girard et al. 2002). In this case, the underlying range
distribution can be the same, but some of the bias
inherent in conventional home range estimates decreases
as the observation period increases. Conventional
estimators assume that locations are sampled indepen-
dently from the animal’s range distribution; however, it
can take a significant amount of time for an animal to
journey through its home range, and a brief observation
window will not yield a representative sample. Moreover,
in the conventional perspective it can be difficult to
ascertain if the home range has stopped increasing, as
there are no reliable confidence intervals to compare
growth with, and the home range estimates themselves
are temporally autocorrelated, making trends difficult to
distinguish from errors. Bootstrap and cross-validation
techniques may seem useful for this purpose, but they
also generally assume a lack of autocorrelation in the
data. Because our approach is rigorously built from first
principles to account for autocorrelation, it provides
accurate confidence intervals that can diagnose situations
where the data are insufficient to provide a reasonable
home range estimate. For our gazelle example with short
observation periods (Fig. 2), instead of yielding a grossly
underestimated home range with deceptively narrow
confidence intervals, the AKDE returns a reasonable
estimate with wide confidence intervals that appropri-
ately reflect the estimate’s limited precision.
In contrast with Swihart and Slade (1985) and

Hansteen et al. (1997), several simulation studies have
demonstrated situations where autocorrelation is not

problematic for conventional KDE (De Solla et al.
1999 and references in Fieberg 2007). In particular, De
Solla et al. (1999) simulated a situation in which
velocities were discontinuous and even the shortest
sampling interval was comparable to the home range
crossing time. As a result, De Solla et al. (1999) drew
the premature conclusion that including more auto-
correlated data was generally better than coarsening
the data to avoid autocorrelation. However, real
movement data sampled with modern GPS technology
will tend to feature much stronger and possibly much
longer-lasting autocorrelations, as well as much finer
sampling relative to the home range crossing time.
Under these conditions autocorrelation’s negative
effects on conventional home range estimates must be
considered (McNay et al. 1994, Hansteen et al. 1997,
Rooney et al. 1998, Boyce et al. 2010, Fleming et al.
2014a, b). Our results demonstrate how badly the
conventional KDE will fail for different movement
processes and different sampling schedules. Important-
ly, AKDE obviates the need for brute-force strategies
to avoid autocorrelation, such as thinning the data or
sampling in an intentionally coarse way. There is no
need to try and separate home range problems into
situations that need AKDE and those for which a
standard KDE is appropriate, because when there is no
autocorrelation, AKDE returns the same result as
KDE.

As animal tracking technology improves and reloca-
tion data sets continue to increase in sampling frequen-
cy, both the highly autocorrelated nature of movement
data and the need for techniques that can leverage
autocorrelation will become more apparent. While our
AKDE is asymptotically consistent and has an asymp-
totically optimal order of error as a nonparametric
estimator, there is a vast program of conventional KDE
research focused on important statistical goals such as
reducing the proportionality constant of the asymptotic
error’s leading-order term, reducing bias (Silverman
1986, Izenman 1991, Turlach 1993) and correcting for
hard boundaries (Silverman 1986). Undoubtedly, some
of these techniques could be translated to AKDE. Even
in its current form, however, AKDE provides a rigorous
and flexible solution for estimating animal space use
from autocorrelated movement data. Finally, future
parametric estimators derived from consideration of the
biological mechanisms governing space use, such as
MHRA (Appendix A: A.2), but developed for autocor-
related data have the potential for even more statistical
efficiency. The advantage of nonparametric estimators
like AKDE lies in their broader applicability and lack of
requirement for a detailed understanding of the
focal species.
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