12.3 APPLICATION OF A SEAGRASS
MANAGEMENT MODEL
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MANY LARGE SEAGRASS systems, such as Florida Bay in south Florida, are
undergoing severe degradation, with controversy raging as to the possible causes
(e.g., water-quality issues of hypersalinity versus eutrophication). To date, no one
has considered the possible implication of destructive fishing (e.g., overharvesting
of large herbivorous conch [Strombus spp.]) as well as the trapping of herbivorous
pinfish (Atlantic, Sparidae) and the netting of rabbitfish (Pacific, Siganidae) and
mullet (pantropical, Mugilidae) for seagrass fitness. The protection of beneficial
herbivores could present a serious conservation and management issue that is
presently receiving little attention.

Aside from catastrophic events such as hurricanes, the major direct source of
seagrass mortality and degradation is excessive overgrowth by filamentous and
frondose (fleshy) forms of epiphytic algae. Epiphyte loading has been documented
to decrease the productivity of seagrasses (e.g., Gacia et al. 1999), as well as to in-
hibit both subterranean (e.g., Tomasko and Lapointe 1991) and emergent (e.g.,
Howard and Short 1986) growth. Since epiphytes diminish the light energy and nu-
trients reaching the host plant, they may indirectly influence seagrass abundance,
distribution, and productivity, as well as both sexual and vegetative reproduction
(Orth and Montfrans 1984). This phenomenon is especially pronounced in south
Florida and the Florida Keys on grass flats impacted by humans where filamentous
and frondose algae overgrow and smother the rooted seagrasses (Tomasko and La-
pointe 1991). The result is reduced seagrass cover, biomass, habitat diversity, and
biological diversity. Although the problem is controversial, most scientists agree
that it is largely related to anthropogenic effects on an interactive complex of fac-
tors that threatens the pristine conditions under which seagrass systems flourish.

A corollary of the relative dominance model (RDM) for biotic reefs (see section
12.2; Littler and Littler 1984a) is proposed here as a testable paradigm for the major
structuring components of tropical seagrass ecosystems (fig. 12.2). These vast grass
beds represent the shallow, sedimentary-bottom biological equivalent of coral
reefs. Healthy seagrass ecosystems, where marine vascular plants provide more
than 50% of the cover, occur where nutrient pollution and destructive fishing (by
hand-collecting conch and poisoning, netting, trapping, or dynamiting fish) are
either low or absent.
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Figure12.2 Predicted changes in the relative dominance of seagrasses, rhizophytic algae, and epiphytesasa
result of the predominant forcing functions of declining water-column quality (eutrophication) and her-
bivory. All four functional indicator groups of primary producers are present all the time in seagrass beds,
but dominate most often under the interacting conditions indicated. The complex interacting vectors of
long-term water-column eutrophication and declining herbivory (either naturally or anthropogenically de-
rived) are postulated to produce competitive shifts away from seagrass/rhizophytic algae domination on
healthy grass beds toward various phases of epiphytic algal dominance. Hypothetically, one vector can par-
tially offset the other (e.g., high herbivory may delay the impact of elevated water-column nutrients, or low
water-column nutrients may offset the impact of reduced herbivory). Latent trajectories are most often cat-
alyzed or accelerated by large-scale stochastic disturbances such as tropical storms, salinity fluctuations,
diseases, and global-warming phenomena. Degree of desirability, from a management perspective, is
shown by light to dark shading. '

NATURAL HISTORY OF THE SEAGRASS ECOSYSTEM

Seagrasses (Magnoliophyta) are the only submerged marine plants having true
roots, stems, and leaves, and contain an abundance of vascular tissues as well as in-
conspicuous flowers. Seagrasses are derived from two monocot plant families, the
Hydrocharitaceae and the Potamogetonaceae, and are the only flowering plants to
have colonized (presumably from terrestrial estuaries) the depths of the oceans, oc-
curring down to 40 m deep. Seagrasses have a coarse, fibrous, grasslike texture and
are apple green or grass green. Like all higher-plant groups, they contain many of
the same pigments as their relatives, the Chlorophyta (green algae). Species of the
strap-shaped forms are often distinguished by the number of veins running length-
wise in the blades. In oval-bladed species, the numbers and angles of lateral veinlets
branching from the main vein or midrib are diagnostic. Most species have a well-
developed runner (rhizome) system that binds and consolidates sedimentary bot-
toms, thereby adding protection and a sheltered environment for the many organ-
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isms that live in the stabilized sand, thick foliage, or extensive root systems. There
are only about 48 species in 12 genera worldwide; nevertheless, seagrasses play
major roles in relatively calm, tropical marine environments. Areas of high seagrass
endemism are not known for the tropics, and Halophila decipiens is the only
pantropical seagrass.

Like mangrove forest trees, seagrass species themselves are not diverse; however,
these relatively large marine plants cover vast areas, forming grass flats with tremen-
dous biomass and primary productivity. Most of the considerable seagrass com-
munity diversity resides in the epiphytic biota, particularly algal epiphytes but in-
cluding invertebrates. The blades of the strap-shaped seagrasses are literally
conveyor belts of various stages in early to late succession, owing to their basal
growth by intercalary meristemns (like terrestrial grasses). In the healthiest of sys-
tems, sediment-dwelling, siphonaceous (lacking cellular cross walls), rhizomatous
forms (= rhizophytes) of Bryopsidales (green seaweeds), such as Halimeda, Avrain-
villea, Udotea, Penicillus, Rhipocephalus, and Caulerpa, are ubiquitously present,
scattered among the grass blades. Conspicuously abundant and often dominant,
seagrasses form vast meadows in sandy or silty shallows, and certain species, such
as Thalassodendron ciliatum, can even overgrow hard carbonate substrates. The
most luxurious and spatially complex seagrass beds occur in clear shallow waters
and serve as habitats and nursery grounds for juvenile and adult stages of a myriad
of epiphytes, fishes, and invertebrates. They are the feeding grounds of some of the
most sought-after sport fishes (e.g., tarpon, bonefish, and permit), and this high-
dollar catch-and-release fishery provides an attractive tourism incentive to mana-
gers of tropical marine resources worldwide. Tropical seagrasses also serve as im-
portant food sources for “charismatic” large animals, such as sea turtles, parrot fish,
manatees, and dugongs (sea cows). The seeds of Enhalus species are gathered and
eaten by South Pacific islanders.

ECOLOGY OF THE SEAGRASS ECOSYSTEM

Plant communities are regulated by a combination of top-down controls, involv-
ing the activities of predators (herbivores and carnivores), and bottom-up factors,
related to resource availability (McQueen et al. 1989). Changes in herbivore popu-
lations can cascade through the entire food web (Carpenter et al. 1985), triggering
complex interactions depending on the strength (Levitan 1987) and frequency
(Threlkeld 1988) of the disturbances (physical removal). In the case of terrestrial
plants, Grime (1979) proposed that communities are regulated by the interactions
of (1) physical forces that remove biomass and (2) limiting resources that control
productivity, in conjunction with (3) competitive interactions. The Grime model
was adapted to marine plant communities (Littler and Littler 1984b; Steneck and
Dethier 1994) by adding a component for (4) physiological stress. In the manage-
ment model proposed in figure 12.2, bottom-up nutrient levels enhance plant pro-
ductivity, whereas the grazing activities of predatory herbivores physically remove
plant biomass. These two primary factors hypothetically interact over long time
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spans to maintain stable states or to cause phase shifts in tropical seagrass ecosys-
tems. It is postulated that low water-column nutrient levels coupled with high
abundances of epiphyte grazers, such as mullet, pinfish, rabbitfish (Pacific only),
sea urchins, and gastropods, maintain low standing stocks of competitively supe-
rior fleshy epiphytic algae and lead to the relative dominance of seagrasses, such as
the turtle grass Thalassia testudinum.

Small-scale human perturbations such as anchor and propeller damage or
larger-scale activities such as salinity changes and sedimentation also tend to elim-
inate the slower-growing deeply rooted seagrasses in favor of more ephemeral mi-
croscopic or opportunistic macrophytic forms of algae. Aside from uncontrollable
catastrophic events such as tropical storms, salinity fluctuations due to drought
and flooding, diseases, or global-warming trends, the major reason for seagrass
degradation and mortality, from a management perspective, would appear to be ex-
cessive overgrowth by fleshy epiphytic algae. Given an overabundance of water-
column nutrients (bottom-up), a reduction in grazing (top-down) resulting from
destructive fishing or natural causes (e.g., diseases) could potentially shift the rela-
tive dominance within seagrass beds to a condition dominated by large masses of
microscopic filamentous algae or ultimately to complete inundation by larger fron-
dose macroalgae (fig. 12.2).

MANAGEMENT MODEL

The proposed management model (fig. 12.2) uses the four groups of indicator
plants reviewed above to predict the health of a given seagrass ecosystem. Themost
desirable condition is indicated by clean seagrass stands such as Thalassia with
diverse green algal rhizophytes (rooted forms) contributing dense cover and bio-
mass in clear waters and anchored in aerobic sediments. Less healthy would be thin-
ner seagrass beds with increased epiphytic loads of small filamentous algal forms.
Massive inundation by long filamentous algal forms along with large coarse fleshy
epiphytes (or even free-lying unattached fleshy forms) and sparseness of both sea-
grass and rhizophytic green algal populations would characterize seagrass systems
possibly on the verge of collapse, leading ultimately to anoxia and to sedimentary
barren grounds.

Large mobile herbivorous fishes such as parrot fish (Scaridae), surgeonfish
(Acanthuridae), and rudderfish (Kyphosidae), while beneficial to coral-reef sys-
tems, are deadly to palatable seagrasses, as evidenced by ubiquitous “halo effects”
(Ogden et al. 1973; see also Littler et al. 1983a for fish-preference ranking). In one
study, experimentally elevated nutrient levels increased the palatability and attrac-
tiveness of enriched seagrass plots to large herbivorous parrot fish (McGlathery
1995). Fortunately, in healthy systems these fishes are prevented by predatory birds
(e.g., osprey, pelicans, herons, cormorants) and carnivorous fish (e.g., barracuda,
snapper, grouper, jacks) from straying far from protective reef cover into the rela-
tively open waters over shallow seagrass beds. Thus, seagrass flats with natural car-
nivore populations are not subject to devastation by powerful grazers. Pristine
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seagrass beds are, as mentioned earlier, home to large schools of herbivorous rab-
bitfish, mullet, and pinfish, which feed extensively on epiphytic and filamentous
periphyton algae (Odum 1970; Darcy 198s; Gilmore 1988). Numerous gastropods,
including the large conchs in the genus Strombus, also share this periphyton re-
source (Stoner and Waite 1991). Herbivorous sea urchins and smaller mesofauna
also have the potential to ameliorate the detrimental impact of elevated water-
column nutrients associated with epiphyte overgrowth on seagrass communities
(Orth and Montfrans 1984; Brawley 1992). The importance of such mesograzer/
periphyton interactions seems clear; however, further tests of their impact are
needed because of the complexity of food-web interactions in general. Therefore,
certain herbivorous fishes and invertebrates lacking powerful biting apparatuses
(Orth and Montfrans 1984; Klumpp et al. 1992) have the potential to regulate the
more delicate, but harmful, epiphytic algal overgrowth, which should increase sea-
grass productivity, growth, and reproduction.

The important role of herbivory in eliminating harmful blooms of epiphytes
from plant hosts has been demonstrated for frondose algae (e.g., Brawley1992) and
reef-building calcareous algae (Littler et al. 1995), as well as seagrasses (Howard
and Short 1986; Sand-Jensen and Borum 1991; Gacia et al. 1999). Under increasing
eutrophication (fig. 12.2), a reduction in grazing from overfishing or natural causes
(e.g., diseases) could potentially shift the relative dominance within healthy sea-
grass ecosystems to a condition dominated by microscopic filamentous algae or ul-
timately to complete inundation by larger frondose macroalgae. Filamentous spe-
cies are always present naturally but, hypothetically, are cropped to low levels by
herbivorous fishes, sea urchins, and gastropods. Severe reductions in grazing could
allow the algal biomass to accumulate to an upper limit determined by the second
major factor, water-column water quality.

The remarkable feature of seagrasses that allows them to thrive under such
nutrient-impoverished water-column conditions is their rooted subterranean sys-
tem, which gives them access to the relatively nutrient-rich sediment pore waters
and which confers a competitive advantage over epiphytic fleshy algae. In seagrass
systems, an increase in nutrient supply to the water column leads to increased epi-
phyte loads on the blades (Sand-Jensen 1977; Cambridge and McComb 1984; Twil-
ley et al. 198s; Silberstein et al. 1986; Tomasko and Lapointe 1991), causing a shift in
patterns of primary productivity. Overgrowth by epiphytes reduces light and in-
creases boundary-layer diffusion gradients, inhibiting nutrient and gaseous ex-
change as well as limiting light energy available for photosynthesis. This effect dra-
matically reduces both seagrass growth (Kiorboe 1980; Kemp et al. 1983; Short and
Short 1984; Gacia et al. 1999) and reproduction (Orth and Montfrans 1984). Thus,
low water-column nutrient levels coupled with high levels of periphyton feeders,
mostly conch, sea urchins, rabbitfish, mullet, and pinfish, maintain low standing
stocks of competitively superior fleshy epiphytic algae and lead to the relative
dominance of robust seagrasses such as the turtle grass Thalassia testudinum.

Herbivory could also represent an important natural route for the export of
nutrients from seagrass beds. Herbivore excretions are exported to surrounding
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waters by currents. Because the intrinsic production rate of filamentous and frond-
ose algae is much greater than the lower-producing seagrasses (Littler 1980), the
algae can theoretically overgrow and outcompete seagrasses as the dominant space-
occupying organisms. Since algae can withstand anoxic conditions that prevail at
night during bloom conditions, seagrasses and sessile animals often undergo
higher mortality than the algae (Tomascik and Sander 1987; Bell 1991).

CASE STUDY

The interactions between groups of producers (seagrasses and epiphytes) in a
nutrient-rich estuarine system were investigated to assess the potential alleviating
effects of macroherbivores (this case study is from Gacia et al. 1999). The concept
that herbivorous fish can regulate epiphytic algal overgrowth, thereby enhancing
primary production and growth of the dominant seagrass (Thalassia), was tested.
An exclosure experiment was carried out within a monospecific T. testudinum
meadow in the Indian River Lagoon (IRL), Florida. The Gacia et al. study involved
multifaceted approaches including characterization of environmental parameters,
particularly those that might be conducive to enhanced epiphytic algal growth;
documentation of the abundances of the two predominant herbivorous fish spe-
cies; assessment of the indirect role of grazers on seagrass primary production and
biomass accumulation; and experimental tests of the direct effects of fish grazing
on epiphyte biomass, species composition, and relative abundance. The last in-
volved four 2.0-m? exclusion cages (fences) of 2-cm? plastic-coated wire mesh, four
open 2.0-m? plots (controls), and four 2.0-m’ two-sided cages (cage controls) to
control for cage artifacts such as current and light (see fig. 12.3).

It was estimated by Gacia et al. (1999) that within the IRL study area there is an
annual load of epiphytic algae of 0.022 g organic dry mass (ODM) per Thalassia
shoot (blade). Given a mean annual shoot density of 616 shoots per square meter
and a shoot turnover rate of 4.1 per year, the minimum annual production of
macrophytic epiphytes was estimated at 55 g ODM per square meter per year. These
values represent a significant macroepiphyte biomass that falls within the range of
total epiphyte production for seagrass beds in Florida Bay (Frankovich and Zieman
1994), while being 40% lower than comparable data provided for Thalassia
hemprichiibeds in Papua New Guinea (Heijs 1987).

The pinfish Logodon rhomboides is a ubiquitous omnivorous species in Florida
seagrass beds and has a relatively homogeneous distribution in both space and time
(Gilmore 1988). Darcy (1985) estimated that L. rhomboides has a subsistence feed-
ing rate of 5.75% of body mass per day, and at least 65% of this consumption is algae
for the fish sizes excluded from the cages (body mass >90 g per individual). From
these data, it was estimated that the potential algal demand needed to sustain the
population of pinfish at the IRL study site would be 0.1 g ODM per square meter
per day, or about 36 g ODM per square meter per year, which is about 60% of the
conservative estimate of epiphyte turnover (55 g ODM per square meter per year).
Large schools of herbivorous/detritivorous mullet commonly reside and graze
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Figure12.3 Epiphyte growth (mean grams of organic dry mass [weight] per Thalassia shoot) from 4 January
to 13 March 1995 in the different treatment plots (modified from Gacia et al. 1999). Asterisk indicates signifi-
cantly higher values for the epiphytic community inside the cage treatments compared to controls (ANOVA,
P < 0.005).

within seagrass beds throughout the world. The estimated daily algal consumption
by striped mullet (Mugil cephalus) individuals longer than 20 cm is 9.8% of the
body mass (Odum 1970), with a gut-content turnover rate for this size class of five
times per day. The estimated algal demand by striped mullet in the immediate IRL
study area would be about 6.4 g ODM per square meter per day. Therefore, the total
algal biomass required to support the combined demands of the two predominant
fish grazers in the seagrass bed studied by Gacia et al. would be about 6.5 g ODM of
algal epiphytes per square meter per day.

Sudden blooms in biomass of epiphytic algaé correlated (Gacia et al. 1999) with
seasonal spikes in dissolved inorganic nitrogen and soluble reactive phosphorus.
The nutrient concentrations consistently recorded in the IRL far exceeded the
threshold levels conducive to macroalgal proliferation in other tropical seagrass
and coral-reef ecosystems (i.e., 0.2 pM soluble reactive phosphorus and 1.0 pM dis-
solved inorganic nitrogen; Bell 1992; Lapointe et al. 1997). Crossland et al. (1984)
also correlated dissolved inorganic nitrogen above the almost undetectable thresh-
old levels of 1.2 pM and soluble reactive phosphorus of 0.22 uM for macroalgal-
dominated high-latitude communities of Western Australia. During the early
spring, blooms of ephemeral green algal species, mostly of the genera Cladophora
and Enteromorpha, reached peak abundances, with their maximum epiphytic bio-
mass occurring inside the fish-exclusion cages (fig. 12.3). Herbivore pressure on
these delicate chlorophytes was critical during the early spring bloom when the epi-
phyte assemblage was dominated by fleshy forms. These ephemeral forms are deli-
cate, filamentous and thin-tubular species that bloom under eutrophic conditions
(Littler and Arnold 1982) and are easily grazed (Littler et al. 1983a). The fish-
exclusion experiment (fig. 12.3) strongly supported the hypothesis that epiphytic
biomass on seagrass blades would be significantly reduced in the presence of graz-
ers. As predicted, the increased epiphyte loads in the grazer-exclusion cages had an
inhibitory effect on leaf growth of Thalassia (fig. 12.4A); leaf initiation also was sig-
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Figure 12.4 Seagrass growth (new Thalassia leaves and biomass) from 4 January to 13 March 1995 in the dif-
ferent treatment plots (key same as for fig. 12.3; modified from Gacia et al. 1999). Asterisks indicate signifi-
cantly lower production of new leaves and new biomass for the plants growing inside the fish exclosure cages
(ANOVA, P < 0.005) than for accessible plants in the controls.

nificantly reduced (fig. 12.4B) for the nongrazed plants compared to that in the
treatments exposed to grazers.

Eutrophication of coastal waters is now seen as one of the most pervasive, world-
wide anthropogenic impacts (National Research Council 1994; Vitousek et al.
19972, 1997b; Jackson et al. 2000; Tilman et al. 2001). Unless major social, economic,
and political measures are taken, the escalation of the problem is forecast to worsen
in the next decades (Nixon 1995). In light of the growing recognition of the conse-
quences of destructive fishing and increasing pollution on seagrass ecosystems
globally (National Research Council 1994), management approaches should
include (1) monitoring of herbivore, algal, and seagrass stocks, (2) inventories and
assays of the health of herbivore stocks (see section 12.2), (3) characterization of
water-column nutrient concentrations and epiphyte tissue analyses for C:N:P ra-
tios, and (4) bioassays using epiphyte physiological responses (i.e., productivity,
growth rate, biomass) to experimental nutrient pulses (methods referenced in
Lapointe et al. 2004).
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