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Oribatidmites (Acari: Oribatida) are very diverse and important detritivorous and fungivorousmicro-arthropods
inmodern forest ecosystems. Although the fossil record of oribatidmites can be traced to the Early Devonian, the
paleoecology of oribatid mites during the deep geological past remains poorly understood. Remarkably good
preservation of tunnel networks in a permineralized conifer wood specimen is described from the Early Permian
of Germany. This fossil provides evidence for four aspects of oribatid mite feeding habits. First, there is preferred
consumption of the more indurated tissues from growth-ring cycles. Second, tracheids were targeted for
consumption. Third, feeding on tissues resulted in fecal pellet accumulations at the bottoms of tunnels. And
fourth, the absence of feeding on ambient decomposing fungi such as necroses and rots, but rather the processing
of pristine plant tissues, indicate the presence of a self-contained, microorganismic gut biota. These rather
specialized feeding habits allowed oribatidmites a prominent role in the decomposition of digestively refractory
plant tissues in Early Permian ecosystems.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Oribatid mites (Acari: Oribatida) are a very diverse group of small,
detritivorous and fungivorous arthropods (Schatz and Behan-Pelletier,
2008; Walter and Proctor, 2013). They are a dominant component of
the microarthropod fauna in most forest ecosystems (Behan-Pelletier
et al., 2008), and are speciose and numerically dominant in temperate
forest canopies (Behan-Pelletier andWalter, 2000). Body-fossil records
indicate that oribatid mites were present during the expansion of Early
Devonian terrestrial ecosystems some 410 million years ago (Norton
et al., 1988), but little is known of their paleoecological history
(Labandeira, 1998, 2007). Oribatid mite borings and their typically co-
occurring coprolites are observed worldwide in Late Paleozoic silica
permineralized or petrified woods, as well as in plant tissues preserved
in chert or carbonate permineralized coal balls (Labandeira et al., 1997;
Rößler, 2000), and consequently provide a basis for understanding their
relationships to their abiotic and biotic environments. Although copro-
lite dimensions within tunneled tissues have been used to determine
fossil oribatid mite morphotypes (Feng et al., 2010, 2012), their feeding
habits, including detritivory, are poorly understood.
y for Palaeobiology, Yunnan
365.
Here, we describe distinctive oribatid mite borings contained in a
specimen of exceptionally well-preserved conifer wood from the Early
Permian Manebach Formation near Crock village, in Thuringia State,
Germany. The borings are rectangular or sub-rectangular in transverse
section, with smooth interior walls filled with small, ovoidal to sub-
spheroidal coprolites. The borings occur amid tracheid elements and
are bordered by rays, indicating that the mites preferred to feed on lig-
nified cells and avoided fleshier parenchymatous cells.

2. Material and methods

A permineralized wood specimen containing three-dimensional
networks of borings with infilled coprolites was obtained from the
Early Permian Manebach Formation of Crock, a small village located
ca. 10 km southeast of Schleusingen, in the south of the Thuringia
State, Germany.

Historically, there were several coal mines in Early Permian strata
producing anthracite coal near Crock. Crock is the only known locality
within the Thuringian Forest Basin providing lower ranked coals that
would allow for maceration (Kerp and Barthel, 1993). Although there
is a long history of fossil collection and paleobotanical research in the
Thuringian Forest Basin (Barthel, 2009), formally mentioned fossil
woods have been only occasionally reported. Recently, Witter et al.
(2011) described in detail several new finds of fossil woods from Crock.
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The wood described from Crock is found in coarse-grained alluvial
fan deposits that crop out on the surfaces of slopes of Irmelsberg
Hill. These sediments from the southwestern part of the so-called
Schleusingen marginal zone belong to the southernmost occurrence of
the RotliegendGroup, consisting of Early toMiddle Permian stratawith-
in the Thuringian Forest Basin. These wood-containing basal, alluvial-
fan strata were overlain by coal-bearing, fine-grained clastic sequences
that were assigned to the Manebach Formation. The stratigraphic level
for the fossil wood locality is comparable with basal Rotliegend strata
of Asselian age, and is locatedwithin theManebach Formation sequence
of the Thuringian Forest Basin (Lützner et al., 2012).

The Late Paleozoic continental succession of the Thuringian Forest
Basin is 5–6 km thick and consists of eleven formations from the lower-
most Stephanian C representing the Late Pennsylvanian, to the Upper
Rotliegend of the Middle Permian (Lützner et al., 2012). Chert and
fossil wood fragments commonly are encountered in the Early
Permian Manebach Formation, which consists of gray conglomerates,
Fig. 1. Oribatid mite borings and coprolites preserved in gymnospermous wood from the Ea
concentrically arranged bands of borings in secondary xylem, scale bar = 3 mm. (B) — TS,
bar = 1 mm. (C) — TS, rectangular or sub-rectangular outlines of borings with effaced margi
effaced inner-wall surfaces and truncated bottoms of the borings, scale bar = 200 μm. (E)
bar = 1 mm. (F) — TS, borings bordered by ray cells; arrows indicate ray cells, scale bar = 1
200 μm. (H) — TS, discontinuous rays (arrow) locally projecting into an excavated area, scale b
edge and the succeeding undamaged tracheid elements with intact cell walls, scale bar = 25 μ
sandstones, mudstones and locally intercalated coal seams (Barthel
et al., 2010).

Permineralized woods containing borings and coprolites collected
from Crock were sectioned for detailed examination. Thin sections
from transverse, tangential and radial planes of wood were prepared
as follows. First, a specimen was sectioned to an appropriately
thin wafer with a diamond saw, of which the upper surface was ground
using a grinding wheel with carborundum grit in a decreasing series
of #240, #400 and #800 grade sizes. The smooth upper surface
was attached to a glass slide with Buehler EpoThin™ Epoxy Resin
(20-8140-032) and EpoThin™ Epoxy Hardener (20-8142-016), and
the exposed surface was subsequently ground to a thickness of
30–50 μm.

Photographs were taken with a Nikon Eclipse ME 600 transmitted
light microscope and a Nikon SMZ 1500 stereoscopic light microscope.
Images were taken on both microscopes, which were equipped with a
Nikon DS-5M-L1 digital camera. Composite images were stitched
rly Permian Manebach Formation, Germany. (A) — Transverse section (TS) showing the
borings restricted to growth rings, occasionally intersecting several growth rings, scale
ns and right-angle wall junctures, scale bar = 200 μm. (D) — Longitudinal radial section,
— Longitudinal tangential section, borings vertically extend along the wood axis, scale
00 μm. (G) — TS, long borings bordered by single rows of ray cells (arrows), scale bar =
ar = 200 μm. (I) — TS, displaying incompletely attacked tracheid elements at the tunnel

m.
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using Adobe Photoshop CS5 Extended program software. The specimen
and thin sections are stored at the Museum für Naturkunde Chemnitz,
in Germany, labeled as K6024 Crock001.

3. Results

3.1. Borings and coprolites

The wedge-shaped wood fragment is ca. 25 mm in diameter and
55 mm long, and represents a portion of the secondary xylem cylinder.
Ten bands of borings were observed in transverse section (Fig. 1A). The
borings are concentrically arranged and are oriented parallel to the
growth rings that are typically separate from one another and restricted
to distinctive bands. A few large borings radially intersect with up to
four growth rings (Fig. 1B). The borings generally are very close to
growth boundaries or rarely occur in the central region of the growth
rings (Fig. 1B). In transverse section, the pronounced outlines of the
borings are rectangular or sub-rectangular with smooth inner-margin
surfaces and squared-off corners (Fig. 1C). In longitudinal section, tun-
nel bottoms are truncated (Fig. 1D). Borings are 0.11–0.53 mm wide
(tangential) and 0.21–1.6 mm long (radial) in transverse sections.
Fig. 2. Oribatid mite borings and coprolites preserved in gymnospermous wood from the Early
within borings, commonly characterized by a continuous outer shell and compressed central co
bar=25 μm. (C)— Transverse section (TS), coprolites lying at the bottomsof borings, scale bar=
host wood consisting only of tracheids and rays, scale bar = 100 μm. (F)— Longitudinal radial
(G)— LRS, brick-like rays, scale bar= 100 μm. (H)— Longitudinal tangential section, uniseriate
Longitudinal sections of borings extend vertically for more than 3 mm
along the direction of the stem axis to form long, tubular tunnels
(Fig. 1E).

The borings predominantly occur among tracheid elements and are
bordered by ray cells (Fig. 1F, arrows). Even for radially extended
borings in transverse section, the tunnels are continuously constrained
by single rows of ray cells (Fig. 1G, arrows). Parenchymatous rays
occur commonly between adjacent borings. However, in extensively
bored regions, discontinuous rays locally project into the excavated
area to varying degrees (Fig. 1H, arrow),whichmay be caused by lateral
damage. Both incompletely consumed tracheid elements at the tunnel
edge and the succeeding undamaged tracheid elements show intact
cell-wall structures, including a middle lamella and a primary and a
secondary wall that include the S1 to S3 layers (Fig. 1I). No evidence
of fungal saprophytism has been recognized, such as cell wall separa-
tion, apposition features or conspicuously thickened wall corners.

Often filled to capacity, the borings contain dark ovoidal to sub-
spheroidal coprolites (Fig. 2A). Only digested material is contained
within the coprolites, as they lack recognizable plant tissue (Fig. 2B).
Coprolites are 23–64 μm long× 19–55 μmwide. Cross sections of copro-
lites commonly reveal a continuous outer rind and a compressed central
Permian Manebach Formation, Germany. (A)— Ovoidal to sub-spheroidal dark coprolites
re, scale bar= 50 μm. (B)— Close-up of coprolites, note no recognizable plant tissue, scale
500 μm. (D)— TS, coprolites lying at the bottoms of borings, scale bar=200 μm. (E)— TS,

section (LRS), unseriate bordered pits on the radial walls of tracheids, scale bar = 50 μm.
rays, scale bar = 100 μm. (I)— LRS, cupressoid type pits in cross-fields, scale bar= 25 μm.

image of Fig.�2
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core (Figs. 2A and 2B), perhaps resulting from desiccation. The copro-
lites conspicuously lie at the tunnel bottoms, providing a top-down
orientation of the borings (Figs. 2C and 2D).

3.2. Host plant

The host plant is well-preserved with anatomical detail, revealed in
the secondary xylem, although the pith and the primary xylem are not
preserved. Growth rings with considerably narrow latewood are clearly
present (Fig. 1B). The transition from earlywood to latewood is more or
less gradual. Structurally uniform secondary xylem consists only of
thick-walled tracheids and parenchymatous rays (Fig. 2E). Circular
pits with small round apertures are uniseriate, rarely biseriate, and are
contiguously arranged on the radial walls of the tracheid elements
(Fig. 2F). Rays are composed of brick-like, thin-walled cells (Fig. 2G),
which are arranged in uniseriate or partially biseriate rows (Fig. 2H).
Cross-fields display one to four cupressoid-type pits (Fig. 2I). The host
plant is identified as Araucaria-like wood, a common gymnospermous
fossil-genus in the Late Paleozoic of Euramerica (Röβler et al., 2014).

4. Discussion

Among modern detritivorous, terrestrial invertebrates, oribatid
mites are very common wood-borers. Oribatid mites typically produce
excavations less than 1 mm in diameter and deposit small fecal pellets
(Wallwork, 1976; Labandeira et al., 1997), that are nearly identical to
those from the Early Permian Manebach Formation. No evidence of
body fossils was found in the specimen, although tunnel geometry
and coprolite dimension suggest that oribatid mites were the most
probable culprit.

Fossil borings in woody stems attributed to an oribatid mite origin
generally are round in their transverse sections and typically are distrib-
uted irregularly along woody axes (Zhou and Zhang, 1989; Goth and
Wilde, 1992; Labandeira et al., 1997; Kellogg and Taylor, 2004; Feng
et al., 2010; Slater et al., 2012). In addition to a distinctive rectangular
shape anddistributional pattern in ourmaterial, the borings are restrict-
ed to areas possessing highly lignified tracheids; parenchymatous rays
are avoided. The specimen indicates a preferential feeding habit that
was confined and channeled by parenchyma cells and other impedi-
ments such as growth rings. In extensively excavated areas, the borings
are connected but partially separated by rays.

The distribution pattern of borings is uniform and largely con-
strained by the boundaries of growth rings. Superficially similar distri-
bution patterns of borings have been documented in Araucarioxylon-
type wood from the Middle Triassic and Middle Permian of Antarctica
(Stubblefield and Taylor, 1986; Slater et al., 2012) and the Late Permian
of Australia (McLoughlin, 1992). In these occurrences, fungal hyphae
displayed infective external signs that were recognized in the host
plants. These borings in fossil woods from Gondwana are interpreted
as a result of pocket rot from various fungi (Labandeira and Prevec,
2014). However, saprophytic features such as cell-wall delamination
and apposition features were not recognized in our material. Likewise,
there is no evidence of broader fungal infection in the tissue, eliminating
the possibility that the oribatid mites were feeding on fungi in rotting
wood.

The density of tracheid elements in latewood is much higher than
that in earlywood. Consequently a more effective feeding strategy for
themite would be to preferentially attack the higher lignified latewood
rather than earlywood. The distinct distribution of the banded borings
likely represents a specialized feeding habit in this particular lineage
of Permian mites.

Spindle-shaped borings containing coprolites have been reported
in Late Permian woods of Australoxylon mondii from the Antarctic
Bainmedart Coal Measures (Weaver et al., 1997). These wood borings
regularly occur as bands and are restricted to latewood. Although
our borings also occur as bands that parallel growth rings, they can be
present either adjacent to growth boundaries or rarely in a central
region between adjacent dormant tissues. The larger diameter of the
Antarctic borings suggests that they were made by small beetles
(Weaver et al., 1997; Slater et al., 2012).

Recently, a gymnospermouswood, Septomedullopitys szei, possessing
spindle-shaped cavities in the secondary xylem, has been reported from
the Late Permian of eastern Xinjiang, northwestern China (Wan et al.,
2014). These cavities are free of cellular debris and, irregularly
distributed, and were interpreted as white-rot fungal damage (Wan
et al., 2014). Notably, both oribatid mite coprolites and fungal hyphae
were found in some branched borings in S. szei wood (Wan et al.,
2014). It appears that the damage in S. szei wood represent a complex
tritrophic association among the host plant, invasive fungi and trophi-
cally connected arthropods.

Information pertaining to the specific feeding habits of arthropods is
critical for a thoroughunderstanding of biotic interrelationships in these
Late Paleozoic terrestrial ecosystems (Scott, 1980; Scott and Taylor,
1983; Shear andKukalová-Peck, 1990; Scott et al., 1992). Also important
for characterizing early arthropod–plant relationships (Labandeira,
2007) are features such as top-down indicators from coprolites in tun-
nels, reported in Shenoxylon mirabile, from a Late Permian conifer
(Feng et al., 2010, 2011). A similar coprolite distribution pattern in our
study indicates that the dead tissues of horizontally positioned, fallen
trunks housed a decomposer community consisted largely of oribatid
mites with very specific feeding habits.

5. Conclusion

Borings and coprolites in an Araucaria-like wood from the Early
Permian Manebach Formation of Germany suggest an arthropod–plant
association that previously has not been documented. The principal ar-
thropod food source consisted of lignified tracheid elements. Recogni-
tion of this specialized detritivore relationship contributes to a better
understanding of the importance of Paleozoic, oribatid mites life-habits.
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