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Abstract. Modeling population dynamics while accounting for imperfect detection is
essential to monitoring programs. Distance sampling allows estimating population size while
accounting for imperfect detection, but existing methods do not allow for estimation of
demographic parameters. We develop a model that uses temporal correlation in abundance
arising from underlying population dynamics to estimate demographic parameters from
repeated distance sampling surveys. Using a simulation study motivated by designing a
monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power
of this model to detect population trends. We generated temporally autocorrelated abundance
and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90.
We fit the data generating Markovian model and a mis-specified model with a log-linear time
effect on abundance, and derived post hoc trend estimates from a model estimating abundance
for each survey separately. We performed these analyses for varying numbers of survey points.
Power to detect population changes was consistently greater under the Markov model than
under the alternatives, particularly for reduced numbers of survey points. The model can
readily be extended to more complex demographic processes than considered in our
simulations. This novel framework can be widely adopted for wildlife population monitoring.

Key words: Aphelocoma insularis; demography; distance sampling; Island Scrub-Jay; Markov model;
population trend estimation; power analysis; Santa Cruz Island, California, USA; temporal autocorrelation.

INTRODUCTION

Monitoring population dynamics is a key component

of wildlife conservation and management (Nichols and

Williams 2006). One of the most common methods for

estimating the demographic parameters governing

population dynamics is through the use of open-

population capture–recapture models (see Pollock et

al. 1990). These models, however, require the identifi-

cation of individuals over the course of the study. This

usually requires expensive and often logistically chal-

lenging methodologies like live-capture or genetic

sampling.

An alternative to estimating demographic parame-

ters directly is to estimate abundance and monitor its

trends. Distance sampling (Buckland 2001) is widely

used to estimate population size because it only

requires recording the perpendicular distance of an

animal to the observer (or transect), rather than

individual identification. Repeated visits to sites are

not necessary as the probability of detecting an

individual ( p) is assumed to be a decreasing function

of distance, with p assumed to equal 1 on the transect.

Further assumptions include that animals are distrib-

uted uniformly with respect to the transect, distance is

recorded accurately, animals are recorded at their

initial location, and animals are not double counted

(Buckland 2001).

The distance sampling framework has been expanded

to allow for modeling spatial variation in abundance as

a function of site-specific covariates (e.g., Hedley and

Buckland 2004, Royle et al. 2004). The hierarchical

model developed by Royle et al. (2004) for distance

sampling is analogous to that applied in N-mixture

models (Royle 2004), where repeated visits to a

collection of survey sites are used to make inference

about detection probability and abundance. We employ

this model structure in the present paper and refer to it

as hierarchical distance sampling (HDS).

Traditional distance sampling models, including

HDS, limit our ability to model population dynamics

because they assume that the sampled populations are

closed to additions or losses during the course of the

study. Thomas et al. (2004) present a framework for

inference about population dynamics from distance

sampling repeated over time, allowing for losses or

gains between sampling periods, by modeling estimates

of N (e.g., Buckland et al. 2004, 2007). Their approach,
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however, relies on post hoc analyses of abundance

estimates, rather than integrating distance sampling with

a model describing population dynamics. Such an

integrated approach is suggested by Thomas et al.

(2004), but not implemented. A second option is to

integrate distance sampling counts with a model of

population dynamics to formulate a HDS model

including a time effect in the log-linear predictor of

site-specific abundance (e.g., Moore and Barlow 2011).

An alternative approach is to acknowledge that number

of individuals in a given replicate (e.g., year) is typically

a function of the number in the previous replicate, and

that this function is governed by demographic param-

eters. Dail and Madsen (2011) presented such an

extension for N-mixture models, where abundance in

the initial time period is estimated as in the standard N-

mixture model; but, in subsequent surveys, it is modeled

as the sum of survivors from the previous survey and

new individuals recruited into the site-specific popula-

tion. This model has become increasingly applied in

ecological studies (e.g., Chandler and King 2011, Zipkin

et al. 2013), because of its ability to estimate demo-

graphic parameters from unmarked populations.

In this paper, we combine the Dail and Madsen

(2011) process model with a distance sampling

observation model to provide a coherent framework

for studying spatial and temporal variation in

abundance from multiple-survey distance sampling

data. This integrated approach further opens an

avenue for ecologists to combine large scale distance

sampling surveys with high-intensity, smaller scale

surveys that yield direct information on some demo-

graphic parameters (for example, mark-resighting

surveys) in the framework of integrated population

models (e.g., Schaub and Abadi 2011). The study was

motivated by the challenge of developing a long-term

monitoring plan for the Island Scrub-Jay (Aphelocoma

insularis, see Plate 1). This bird species is endemic to

Santa Cruz Island, California, USA, and is of

conservation concern due to its restricted range, small

population size, and susceptibility to emerging threats,

such as climate change and disease (Morrison et al.

2011, Sillett et al. 2012). Our work was motivated by

the need to determine more efficient methods for

detecting population trends due to the logistic and

financial difficulty in sampling the entire island. We

show, with a simulation study, that our model returns

unbiased estimates of population trends. We further

explore whether explicitly modeling temporal autocor-

relation in counts caused by demographic processes

increases power to detect population trends compared

to a log-linear trend model (as in Moore and Barlow

PLATE 1. Island Scrub-Jay (Aphelocoma insularis) harvesting acorn from an island scrub oak (Quercus pacifica) on Santa Cruz
Island, California, USA. Photo credit: Colin Woolley.
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2011), and a post hoc calculation of population trends

based on independent abundance estimates. Given the

broad applicability of distance sampling in abundance

estimation, the open-population HDS model devel-

oped here should be useful for studying and monitor-

ing wildlife population dynamics.

METHODS

Open-population hierarchical distance sampling model

In hierarchical distance sampling (HDS; Royle et al.

2004), abundance at spatially independent survey

locations is assumed to come from a discrete-positive

distribution. We present a hierarchical distance sam-

pling model development using the Poisson distribution,

but note that the model is conceptually equivalent for

other distributions, such as the negative binomial (which

we use in the simulation study). Variation in the

expected value of abundance (k) can be modeled on

the log scale as a function of site-specific covariates, X:

Nj ; PoissonðkjÞ

logðkjÞ ¼ aþ b
0
Xj

where Nj is the latent abundance at site j, a is the

intercept, and b are the coefficients related to the site-

specific habitat covariates Xj. The detection probability

of an individual ( p) is a function of the individual’s

distance to the observer (d ). For example, using a half-

normal detection function, the observation model is

p ¼ exp � d2

2r2

� �

The scale parameter r can be modeled, on the log

scale, as a function of site-specific covariates (e.g.,

Marques and Buckland 2003, Sillett et al. 2012):

logðrjÞ ¼ ar þ b 0
rXj:

Observations are often binned into discrete distance

classes, because of inaccuracy in estimating distance to

the observer, with some maximum detection distance,

generally defined a priori. Let the vector b be the break

points of the K distance categories. Then, for sampling

points (as opposed to transects), detection probability in

k, pk, is the integral of the detection function over k,

divided by the area of k, Ak:

pk ¼
2p

Z bkþ1

bk

exp � x2
k

2r2

� �
dx

Ak
: ð1Þ

Assuming that animals are distributed uniformly

around a sampling point, the distribution of distances

is triangular rather than uniform because area increases

with distance. Specifically, the probability of an indi-

vidual being in a particular distance band, Wk,

corresponds to Ak divided by the total sampled circle.

Then, the number of observed individuals in each

distance band follow a multinomial distribution with

cell probabilities p, where pk¼ pkWk, and pkþ1¼ 1� Rpk,
i.e., the probability of not being detected at all. The

multinomial sample size at site j is the (latent)

population size Nj.

To extend this model to an open population, consider

that distance sampling surveys are repeated over T

primary occasions. Site specific abundances are assumed

to be static within each occasion, but we expect changes

in Nj between occasions. Abundance at time t ¼ 1 is

described by the static abundance model used in the

single-survey distance sampling model. To describe

abundance in subsequent years, we parameterize explicit

dynamics to allow for survival and recruitment.

Specifically, N at t . 1 is composed of (apparent)

survivors (Sj,t) from t � 1, with (apparent) survival

probability /; and of recruits (Rj,t). We cannot

differentiate between recruitment from birth or immi-

gration without additional information. Here, we

approximate recruitment with a process that also

depends on t� 1 and a per capita recruitment rate, m:

Sj;t ; BinomialðNj;t�1;/Þ

Rj;t ; PoissonðNj;t�1mÞ

Nj;t ¼ Sj;t þ Rj;t 0 :

The dependency of R on N at t � 1 implies that

animals reproduce, then survive, which is a standard

assumption in matrix population models (e.g., Caswell

2001). A very similar model can be expressed in terms of

a population rate of change (c), which can be thought of

as the sum of / and m. Under this formulation

Nj;t ; PoissonðNj;t�1cÞ: ð2Þ

This formulation is more parsimonious and yields

adequate results when the monitoring focus is on

population trend. It does, however, assume a different

variance for Nj,t. Note that, for the sake of model

development, we chose a simple model of population

dynamics, which may not be adequate for many

biological situations. Specifically, demographic param-

eters are unlikely to be constant in space and time, and

the present framework allows for the modeling of

these parameters as functions of covariates, or in the

form of factors or random effects. We consider

alternative models in Discussion. The distance sam-

pling observation model remains as described for the

single-survey model, conditional on Nj,t. The detection

parameter (r) can either remain constant or be

allowed to vary with time (linearly, categorically, or

randomly).

Dail and Madsen (2011) implement the open-

population N-mixture model in a likelihood frame-

work. With its Markovian structure on latent variables,

however, the model is readily implemented in a

Bayesian framework and can easily be described using

the BUGS language (Gilks et al. 1994). We adopt a
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Bayesian implementation of the open-population dis-

tance sampling model using appropriate uniform (i.e.,

uninformative) prior distributions for all model pa-

rameters (see Supplement 1 for model code). Note,

however, that knowledge of demographic parameters

could be incorporated directly in the form of informa-

tive priors to improve estimates of abundance. Because

the integral in Eq. 1 has no closed form, we

approximated it using the rectangular rule. We

evaluated the detection function at the distance

category midpoints and multiplied by the distance

width in order to calculate category-specific detection

probabilities. For implementation, we opted for a

relatively coarse approximation (wide intervals) in

order to improve computational efficiency. This,

however, will produce a numerically less precise

evaluation of the integral. See Supplement 2 for a

simulation-based evaluation of the approximation, as

well as alternative implementations of the detection

function.

SIMULATION STUDY

Our simulation study builds upon surveys of inten-

sive, island-wide surveys of Island Scrub-Jays conducted

in 2008 and 2009 (Sillett et al. 2012). These surveys

required helicopter transport of observers to sampling

locations due to the rugged terrain on Santa Cruz

Island. The Nature Conservancy and Channel Islands

National Park, joint owners and managers of the island,

seek a cost-effective monitoring protocol for the Island

Scrub-Jay population, estimated at less than 2500

individuals, that involves a subset of the 307 survey

points used by Sillett et al. (2012). Thus, we used a

simulation study to evaluate the power of different

monitoring designs.

We based data generation on the fall-season distance

sampling model for Island Scrub-Jays by Sillett et al.

(2012). We simulated abundance for six hypothetical

years for each of the 307 sampling points. Point

abundance at t ¼ 1 at survey location j was generated

from

Nj1 ; Negative Binomial ðkj; rÞ

logðkjÞ ¼ aþ b1 3 Chapj þ b2 3 Elevationj þ b3 3 Chap2
j

where Chap is percent cover that is chaparral (an oak-

dominated, shrubland plant community), and r is the

dispersion parameter of the negative binomial distribu-

tion. Input values were a ¼ 0.83, b1 ¼ 1.43, b2 ¼�0.23,
and b3¼�0.38. Each generated N refers to a circle with

a 300 m radius surrounding a survey location. This

model generates an expected number of 889.66 individ-

uals in the area covered by all point count circles.

We generated data from the model parameterized in

terms of survival (/) and recruitment (m). To reflect

population declines of 5% and 10%, we set / to be

constant at 0.6, and m at either 0.35 or 0.30, which

corresponds to c¼ 0.95 and 0.90, respectively. We stress

that this is an unlikely description of the Island Scrub-

Jay population, but we chose this parameterization for

ease of presentation. We generated distance sampling

data from the simulated point abundances by placing

individuals (i ) at random distances (di ) between 0 and

300 m from the survey point, assuming a uniform

distribution of individuals. We generated individual

observations, yi, j, using the fall observation model from

Sillett et al. (2012):

pj ¼ exp � d2

2r2
j

 !

logðrjÞ ¼ ar þ br 3 Chapj:

Individual observations were aggregated into counts

per k ¼ 3 100-m distance class. Input values were ar ¼
4.68 and br ¼�0.20.
We analyzed these data using the model parameter-

ization in terms of c (Eq. 2), rather than / and m, to
make results comparable with those from a log-linear

and a post hoc trend model. We refer to this model as

the Markov model. We performed these simulations

using all 307 sampling points, as well as random subsets

of 200 and 100 points.

To assess the gain in power of detecting a downward

population trend of this novel model, we analyzed the

data generated under the Markov model with a log-

linear trend model:

logðkj;tÞ ¼ aþ b1 3 Chapþ b2 3 Elevation

þb3 3 Chap2 þ b4ðt � 1Þ: ð3Þ

Here, b4 is a log-linear time effect, corresponding to

log(c) from the Markov model. We assessed the baseline

performance of the log-linear trend model when

specified correctly with a simulation study analogous

to the one described for the Markov model (Appendix

A). Finally, we compare performance of the Markov

model to the performance of post hoc trend estimates,

obtained by estimating abundance separately for each

year, and deriving a population trends as the average

over Rj Nj,t/Rj Nj,t�1. We included this last scenario

because it represents the approach commonly used in

practice (e.g., Norvell et al. 2003, Friday et al. 2013). To

perform a fair comparison, however, we maintained log-

linear coefficients on abundance constant across years,

so that the abundance model becomes:

logðkj;tÞ ¼ at þ b1 3 Chapþ b2 3 Elevation þ b3 3 Chap2:

We further generated data with the log-linear trend

model and analyzed it with the Markov model to

evaluate sensitivity to mis-specification. Details and

results can be found in Appendix B.

For all scenarios, we generated and analyzed 100 data

sets using R version 2.15.2 (R Core Team 2012). We

implemented the models using the software JAGS

version 3.2.0 (Plummer 2003), accessed through R with

the package rjags version 3-5 (Plummer 2011). We ran
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three parallel Markov chains with 30 000 iterations and

a burn-in of 10 000, thinning chains by 10. We assessed

model convergence using the Gelman-Rubin statistic

(Gelman et al. 2004). A value close to 1 indicates

convergence of parallel chains; the Gelman-Rubin

statistic was ,1.1 for all parameters in all models. We

report the average parameter estimates with root mean

square error (RMSE), average relative bias, 95%
Bayesian credible interval (BCI) coverage of the true

(input) value, and, for population rate of change, c
(Markov model) and the equivalent exp(b4) (log-linear
time effect in trend model) and the number of times the

downward population trend was deemed significant,

defined as the 95% BCI not overlapping 1. We interpret

this significance rate as an index of power to detect

population trends. Results for estimates of abundance

and detection parameters are given in Appendix C.

RESULTS

The open-population HDS model with a Markovian

structure of abundance returned unbiased and precise

estimates of the population rates of change (c) under
all simulated scenarios, and consistently outperformed

the other models (Table 1). When using all 307

sampling points in the Markov model, c was

significantly below 1 in more than 50% of the

simulations for c ¼ 0.95, and in almost 100% of the

simulations for c ¼ 0.90. The post hoc calculated

trends had comparable significance rates (94% and

45% for c¼ 0.90 and 0.95, respectively). The log-linear

model only produced significant outcomes for the

same rates of population decline in 25% and 89% of

the simulations, respectively (Table 1). These rates are

comparable to the performance of the log-linear trend

model with log-linear trend data (Appendix A: Table

A1). The Markov model estimated population trends

with high precision, with relative RMSE (RMSE/

mean estimate) of 0.023 and 0.024 for c ¼ 0.95 and

0.90, respectively (Table 1). Both the log-linear trend

model and the post hoc trend estimates were similarly

precise (Appendix A: Table A1). Bias in estimates of

population rate of change under the Markov and the

log-linear trend model was consistently below 1%.

With a bias of 1–3%, the post hoc trend estimates

were still very accurate. Power to detect downward

population trends declined with reduced number of

sampling points, to 21% and 60% under the Markov

model, to 9% and 39% under the log-linear trend

model, and to 6% and 33% under the post hoc model,

for 100 survey points and c ¼ 0.95 and 0.9,

respectively. Bias of c remained ,1% with decreasing

survey points for the Markov and the log-linear trend

model, while bias increased to 4% in the post hoc

trend estimates (Table 1).

The Markov model produced estimates of the

parameters related to abundance and detection that

TABLE 1. Simulation results for estimating population rate of change (c) from temporally
correlated (Markov) data, analyzed with different models and using different numbers of
sampling points.

Model and number of points True value Mean RMSE Bias CI coverage Sig. (%)

Markov model

307 points 0.90 0.897 0.022 �0.003 95 98
0.95 0.949 0.022 �0.001 97 54

200 points 0.90 0.898 0.028 �0.002 97 93
0.95 0.950 0.022 ,0.001 100 35

100 points 0.90 0.903 0.040 0.003 97 60
0.95 0.948 0.038 �0.002 98 21

Log-linear trend model

307 points 0.90 0.900 0.027 ,0.001 99 89
0.95 0.952 0.025 0.002 99 25

200 points 0.90 0.902 0.031 0.002 100 70
0.95 0.946 0.028 �0.004 99 15

100 points 0.90 0.902 0.040 0.002 100 39
0.95 0.945 0.041 �0.005 100 9

Post hoc trend model

307 points 0.90 0.909 0.026 0.010 91 94
0.95 0.959 0.027 0.009 87 45

200 points 0.90 0.913 0.036 0.015 90 79
0.95 0.965 0.031 0.016 91 24

100 points 0.90 0.938 0.069 0.042 86 33
0.95 0.984 0.061 0.036 87 6

Notes: Results of 100 simulations are given in the form of the mean parameter estimate (mean),
root mean square error (RMSE), relative bias (Bias), 95% Bayesian confidence interval coverage
(BCI coverage) of the true (input) parameter, and percentage of simulations where population rate
of change was significant (Sig(%), defined as the 95% BCI not overlapping 1). The 100- and 200-
point scenarios use a random subset of the full set of 307 points. The log-linear trend model is
parameterized in terms of a log-linear time effect on abundance; we exponentiated estimates of b4

so that it is on the same scale as the population rate of change estimated in the other two models.
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were mostly unbiased (relative bias , 5%; Appendix

C: Tables C1–C3). Bias in parameters increased with

decreasing number of sampling points. Parameter

estimates from the log-linear trend model had

comparable or stronger bias (Appendix C: Tables

C4–C6).

DISCUSSION

We developed a hierarchical distance sampling model

of spatial and temporal variation in abundance that

allows practitioners to make use of a well-developed

survey technique for population monitoring. By taking

into account the Markovian nature of populations over

time, our HDS model greatly improves the power of

monitoring programs to detect population trends,

especially when survey points are limited. For most

long-lived species, a correlation structure where abun-

dance at year t depends on abundance the previous year,

t� 1, is biologically realistic. Such a model should have

more power to detect population declines, because

abundance estimates at any given year are also informed

by the data from the previous year. Indeed, we found

that, using a Markov model, distance sampling had

higher power to detect population declines, as compared

to a log-linear trend model, or post hoc calculation of

trends based on independent annual abundance esti-

mates (Table 1). This was not caused by model mis-

specification, as the log-linear trend model showed

similar power when used with data generated from the

log-linear trend model (Appendix A). Because the

underlying model of point abundances was a negative

binomial, the number of birds varied substantially at

any given site across years, which likely led to the low

level of precision in estimates of population decline.

All models had higher power to detect larger

population declines, but the gain in power from using

the Markov over the other approaches was stronger for

a smaller population decline. The same pattern emerged

for changing numbers of survey points; power decreased

for all models, but more strongly for the log-linear trend

and the post hoc approach (Table 1). The post hoc

model uses data from all years to estimate constant

habitat parameters, and we expect the power to detect

trends, as well as accuracy and precision of estimates, to

decrease, if all parameters were estimated separately.

Using the correlation in abundance, thus, becomes

particularly important for smaller surveys, or when

detecting small population declines is a priority.

We used a fairly restrictive model of recruitment in the

simulation; once N at a site j reached 0, it remained 0

because of the sole dependence of Nt on Nt�1 (Eq. 2).

Biologically, this is equivalent to no immigration.

Consequently, the Markov model performed poorly

when used with log-linear trend data; estimates of

population rate of change showed a negative bias of

3.3% and 3.8% (c ¼ 0.9 and 0.95, respectively), and

parameters associated with abundance and detection

were heavily biased and had low credible interval

coverage (Appendix B: Table B1). In the data generated

under the log-linear trend model, recolonizations of sites

with many individuals were common (Appendix A), so

that the Markov model overestimates abundance at t¼1

(Appendix B: Table B1) to reconcile the model structure

with high local abundances observed at t . 1. Dail and

Madsen (2011) suggest a less restrictive formulation of

the recruitment process:

Rj;t ; Poissonðcj;tÞ

logðcj;tÞ ¼ x0 þ x1logðNj;t�1Þ

where Rj,t is the number of recruits at j and t (for t . 1),

x0 is the recruitment component not linked to Nj at t�
1, and x1 is the recruitment component linked to Nj at t

� 1. Although this formulation seems ecologically more

adequate, mathematically, cj,t will still be undefined

when Nj,t�1¼ 0. This might not pose a problem for data

sets where site-specific populations are larger than in the

present example, but we frequently realize N¼ 0 for our

analysis with small local population sizes. One option to

avoid this absorbing state is to include a time-specific,

log-normal error term, et, in the Markov model

(Appendix B), which allows sites to be recolonized after

extinction. This simple approach represents a random

immigration model and greatly improved performance

of the (generalized) Markov model when used to analyze

log-linear time trend data (Appendix B: Table B2).

Given the sensitivity of the Markov model to mis-

specification, we suggest employing Bayesian measures

of model fit (e.g., Bayesian P value; Gelman et al. 1996)

when analyzing data with this model.

The model of population dynamics used in the present

simulation study is overly simplistic for real, natural

systems. In addition to modeling demographic param-

eters as functions of covariates, the model is readily

extended to more complex demographic processes.

Recruitment, for example, could be modeled as a

function of previous year’s abundance at site j and

neighboring locations. Parameters can be estimated for

different life stages (age, sex), or the model could

contain sub-processes of survival (e.g., harvest; Buck-

land et al. 2004, 2007). Additional information may be

required to fit more complex models. Our study focused

on the power to detect downward population trends, but

other studies might be more concerned with false

detections of trends or population increases. Exploring

the performance of the open-population HDS model in

other circumstances was beyond the scope of this report.

In our simulation study, we opted for an open-

population distance sampling model parameterized in

terms of the population rate of change c. Survival and
recruitment parameters generated by the Dail and

Madsen (2011) model can be confounded in cases where

data do not conform to the model’s parametric

assumptions. Ongoing mark–recapture and telemetry

studies of Island Scrub-Jays could inform stage-struc-

tured survival parameters and dispersal, allowing for
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estimation of both the Markovian and the immigration

component of recruitment with an open-population

HDS model. This approach would be applicable to

many other monitoring programs, where marking

animals and distance sampling can be combined, and

warrants further exploration.
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