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Abstract 

Full and effective participation of indigenous peoples and local communities, and high 

accuracy estimates are two current requirements for the purposes of monitoring forests at 

international level. We produced two land cover maps, both of which were based on digital 

image processing (decision trees) using Rapideye imagery, and a land cover participatory 

map, for indigenous territories of eastern Panama. Accuracy of the three maps was evaluated 

using field data. Classification that was based on participatory mapping gave best overall 

accuracy of 83.7 % ( = 0.783), followed by the decision tree that included textural variables 

(DT2 - overall accuracy of 79.9 %,  = 0.757). We have demonstrated for the first time that 

local knowledge can improve land cover classification and facilitate the identification of 

forest degradation. The plea of the UNFCC for the full and effective participation of local and 

indigenous people could, therefore, improve the accuracy of monitoring.  

 

 

 

Introduction 

Reducing Emissions from Deforestation and Forest Degradation in developing countries 

(REDD+) is a mitigation mechanism that has now been agreed upon under the United 

Nations Framework Convention on Climate Change (UNFCCC). For the first time, 

developing countries might be compensated for their efforts in either reducing carbon dioxide 

emissions from the forestry sector or increasing forest carbon stocks. The integrity of such 

forest-based carbon-trading schemes will strongly depend upon the accuracy/precision of 

forest measuring/monitoring systems (Herold and Skutsch 2009). In the context of REDD+, 

the accuracy of actual carbon stock change estimates will be especially important for 

countries that are interested in claiming credits for their efforts in reducing deforestation.  
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Identifying, delineating and mapping land cover is the first critical task that is required for 

evaluating and monitoring changes in forest carbon stocks. While there are multiple 

approaches to classifying land cover, the mapping of land cover categories is never 

considered to be a perfect representation of the landscape (Lowry et al. 2007). Despite the 

evolution of remote sensing technologies over the last few decades, interpretation is still 

plagued by difficulties when the time comes to identifying specific land cover categories, in 

particular with medium to low resolution satellite imagery. For instance, Pelletier et al. 

(2011) identified the lack of understanding of fallow land dynamics as a significant source of 

uncertainty for Panama, given that fallows occupy a substantial fraction of the national 

territory. In many parts of the world, fallows and other successional stages of forest lands can 

cover large areas. Thus, methods for improving the classification success of areas that are in 

various forest successional stages, together with logging activities having reduced impacts, 

would contribute to reducing the uncertainties surrounding changes in forest carbon stocks. 

Classification of primary forest, selectively logged forest, and degraded forest is likewise 

prone to error (Herold et al. 2011, Bucki et al. 2012, GOFC-GOLD 2013). 

 

The UNFCCC has repeatedly called for the full and effective participation of indigenous 

peoples and local communities in carbon measuring and monitoring, as described in 

paragraph 3 of Decision 4/CP.15, paragraph 72 of Decision 1/CP.16, paragraph 2 of 

Appendix I, and paragraph 71(d). The specific guidelines on how to engage indigenous 

peoples and local communities has been left to the discretion of the individual countries that 

are implementing REDD+ (SBSTA 2009; Skutsch and Trines 2011). Alternatively, it has 

been also highlighted that the evaluation of accuracy of locally based forest monitoring is a 

key task for monitoring REDD+ systems, for instance,  Danielsen et al. 2011 have 
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emphasized that “further quantitative assessments of the ability of locally based forest 

monitoring methods to detect changes in forest condition are needed”.  

 

This paper examines the extent to which local knowledge, through participatory mapping, 

could improve the accuracy of land cover classification. Participatory mapping is a powerful 

tool that allows the inclusion of key local knowledge about location, land cover and land use 

history of the landscape and serves to help communities make land use decisions (NOAA 

2009; Coomes et al. 2011; Danielsen et al. 2013). During the past decade, participatory 

mapping has become widely popular in both developing and developed countries (Corbett 

2009). While there are several variants, ranging from low-resource and low-cost to high –

resource and high-cost approaches, the selection of the participatory method will depend on 

how the final product will be utilized, the expected impact of the tools to be utilized, the 

expected accuracy of the final product, and the resources available  (Chambers 2006; Corbett 

2009). Different forms of technological support have been utilized in its implementation, 

including satellite images, aerial photographs, global positioning systems (GPS), and 

geographic information systems (GIS), among others (Corbett 2009). We used here a 

combination of local knowledge, and training of landowners in image interpretation and use 

of technological tools (satellite images and GPS devices) as a way to increase accuracy of 

land cover classification. We chose to use scale maps drawn on existing, scaled satellite maps 

as the selected method in this research. 

 

In Tanzania and Nepal, Skutsch et al. (2011) have demonstrated that participatory carbon 

measurements can be reliable, given that they observed no more than a 5% difference in the 

estimates of mean carbon stocks between professionals and the community. We are not aware 

of similar evaluations for participatory mapping that employs digital image processing 
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techniques. Here, we compare the accuracy of two land cover maps in this article: one that 

uses participatory methods and another that uses a digital image classification, which is based 

upon a decision tree. This research is part of a broader participatory initiative started in 2010, 

in which indigenous peoples of Panama were both a project partner and proponent (Appendix 

S1).  Our objective was to determine if locally produced maps could provide reliable 

information in the context of REDD+. The study took place in the complex landscape of the 

Emberá people in the Bayano area of eastern Panama, where multiple successional forest 

stages and forest structures are present.  

 

 

Methods 

Study area 

The study took place in indigenous territories that are located in the Province of Panama, 

close to the Pan-American Highway and Bayano Lake (78°30’ - 78°49’ W,  8°54’- 9°05’ N). 

These territories are under the authority of the General Congress of the Collective Lands of 

Alto Bayano (CLAB), and include the collective lands of Ipeti (3285 ha), Piriati (3869 ha) 

and Majé Emberá-Drua (18920 ha) (Figure 1). Elevations in the CLAB territories range from 

60 to 1080 m above sea level, with the highest areas in Majé. The territories are covered by 

"tropical moist" and “premontane wet” forest, according to the Holdridge Life Zone system 

(Smithsonian Tropical Research Institute 2013). Average annual precipitation ranges between 

2000 to 3000 mm at high altitude. Annual temperature averages 26 
o
C in the lowlands and 22 

o
C in highlands, with a pronounced dry season from December to April (Autoridad Nacional 

del Ambiente 2010). CLAB is inhabited by ~1,500 Emberá people, who constitute one of 

three indigenous groups in eastern Panama that migrated from Colombia to the Bayano 

region in the 1950s. Indigenous territories in Panama are constituted as legally recognized 
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areas (comarcas) and as areas being claimed by indigenous groups who wish to obtain legal 

recognition (claimed lands).  Claimed lands in Panama are based on customary ownership.  

CLAB correspond to a claimed land and is currently in the process of legalization under the 

country's Law 72 (Gaceta Oficial, 2008) and Decree 223 (Gaceta Oficial, 2010). Due to the 

collective nature of tenure in the CLAB, families do not have individual legal rights to their 

parcels; however, land use decisions are taken at the household level. Primary economic 

activities include subsistence cultivation, cattle ranching, day laboring, and handicraft 

production (Tschakert, Coomes & Potvin 2007) (Additional information in Appendix S2).  

Land cover classification 

The mapping was based on two preprocessed 5-meter resolution multi-spectral Rapideye® 

images (Appendix S3) that were taken on February 5
th

, 2012, where terrain images containing 

clouds and cloud shadows were excluded. This yielded total areas of 2685 ha, 14723 ha and 

3083 ha, respectively, for Ipeti, Maje, and Piriati. These net areas were used as a reference for 

all subsequent analyses. Our methodology evaluates the accuracy of participatory mapping in 

terms of land cover classification in relation to satellite image classification that was based on 

a decision tree.  

 

Land cover participatory mapping 

The first step in this project was to obtain authorization to determine the land cover in the 

CLAB in a participatory manner. Therefore, we held meetings with local traditional 

indigenous authorities of each local congress of the CLAB to explain the purpose and 

objectives of the mapping and to request the necessary authorization. During these meetings 

participants agreed to use a combination of local knowledge, image interpretation and 

satellite imagery to increase the accuracy of the land cover maps in the CLAB.  After 

receiving a written authorization for every local congress of the authorities of the CLAB, we 
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also informed the Coordinadora Nacional de los Pueblos Indígenas de Panamá 

(COONAPIP, National Assembly of Indigenous Chiefs of Panama). We then carried out 

participatory land cover workshops in Ipeti, Piriati, and Maje in February 2012. The 

workshops were jointly coordinated with the local traditional authorities. A total of 95 

participants attended the workshops (27 in Ipeti, 45 Piriati, and 22 in Maje). During the 

workshops, a printed Rapideye® satellite image of the territory, including borders and other 

geographic landmarks such as villages, roads and rivers, served as a base map.  

We also brought a blank map where the satellite image had been extracted, but the 

aforementioned land-marks were included. At the onset of the workshop, the attendees 

(including local traditional authorities and landowners) discussed how to reach a consensus 

for the land cover classes in their territories. For all territories, the land cover classes that 

were adopted included primary forests, intervened forests (logged forests), tall fallows, short 

fallows, plantations, pastures, cultivation, bare soil, communities (villages), and water bodies. 

During the second part of the workshop, landowners were invited to identify their parcels and 

they assign the corresponding land cover categories that had been previously defined for that 

portion of territory. The satellite image was used to guide the classification; meanwhile, the 

blank map was used for drawing the interpreted areas of the satellite image. To complete the 

mapping exercise, we visited the landowners who were unable to attend the workshops. The 

exercise was explained and they then classified their plots using the same classes that had 

been adopted during the workshop. In addition to the workshop participants, over 80 

landowners were visited and consulted at this stage: 48 in Ipeti, 21 in Arimae, and 14 in 

Maje. The final map was presented and validated by the attendants at a later meeting 

(Appendix S4). 

 

Land cover mapping using remote sensing 
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Decision tree classification (DT) was used to create a second set of land cover maps that were 

based on the spectral and textural attributes of the Rapideye images. DT is a hierarchical, 

method that involves recursive partitioning of a training data set, which is separated into 

increasingly homogeneous subsets on the basis of tests that are applied to one or more of the 

feature values or attributes (Pal and Mather 2003) (Appendix S5). In this method, binary 

splits are performed according to maximum likelihood tests that are based on one (univariate) 

or several predictor variables (multivariate) or, in the case of other methods, are based on 

formal t-, F- or chi-square tests. DT belongs to the larger family of machine-learning 

approaches that include vector support machines, artificial neural networks, classification, 

and regression tree analysis.  

 

Two variants of the DT method were employed in our analyses, with one correcting for 

reflectance values of the five bands in the Rapideye images (DT1) and the other (DT2) 

adding eight textural features to the input data (Appendix S6). Training areas (subset of the 

data) were selected in the Rapideye images using ENVI-5.0
®
 software 

(https://www.exelisvis.com/envi-5/) for the same land cover categories that had been defined 

in the participatory maps to make the classifications comparable. All training areas were 

selected from “pure” spectral and homogenous areas so as to choose the most appropriate 

categories and, thereby improve classification (Lillesand and Kiefer 2009). The training areas 

are based on a priori knowledge of the region, including field knowledge and scientific 

sources. Training areas represented 4 % of the total study area.  

 

Training areas were also used to define threshold values for the nodes and branches of the 

decision tree. Decision tree classification was performed using the Waikato Environment for 

Knowledge Analysis (WEKA; http://www.cs.waikato.ac.nz/~ml/weka/), which is an open-

https://www.exelisvis.com/envi-5/
http://www.cs.waikato.ac.nz/%20~ml/weka/
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source data mining software suite that includes machine-learning algorithms for data mining 

tasks. The J48 decision tree algorithm of Quinlan (1993), which is available within WEKA, 

was used for training the Rapideye image dataset (Appendix S7). The resulting rules that 

were generated were implemented on the Rapideye satellite image data for classification. 

This work was also carried out in ENVI 5.0 software.  

Ground Truthing and Accuracy Assessments 

As defined by Foody (2002), classification accuracy is the degree of “correctness” of a map 

or classification. Field assessment of accuracy was carried out using two sets of validation 

data. The first data set consists of 56 randomly selected GPS points in the areas of Ipeti (20) 

and Piriati (36). These points were selected in ArcGIS 10.1
®
 and visited on the ground in July 

2013 by trained indigenous technicians, who identified the associated land cover. The second 

set of independent data consisted of 38 forest carbon plots that had been measured in the 

areas of Maje (16) and Ipeti (22) from July to August 2012 (Figure 1). These 25 m-radius 

plots were measured by local indigenous technicians, who had been trained in forest 

mensuration, and which were established in areas that covered a full range of elevational and 

human intervention gradients, where land cover of these points had also been registered 

(Appendix S8). The accuracy classification of the three final maps was then evaluated using a 

confusion matrix (Congalton and Green 2002), which estimates a classification error 

indicating a discrepancy between the situation that is depicted on the map and the reality that 

was observed in the field (Foody 2002).  

Kappa () inter-rater reliability assessments that compared results of the three classifications 

were carried out (Cohen 1960), where a theoretical maximum value of 1 represents complete 

agreement between a given classification method and the field data. In addition, two tests 

were used to identify significant differences among methods, i.e., Cochran’s Q (among all 

classification methods) and McNemar tests (McNemar 1947) (Appendix S9).  
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Results and Discussion 

Our analysis revealed substantial variation in the classification of land cover among the 

methods that were considered (Figure 2). Participatory mapping maximizes the areas of 

forests (4878 ha) and of grasslands (4667 ha) in which intervention had taken place, while 

DT1 maximizes primary forests (11771 ha) (Figure 3). DT1 further yields the lowest 

coverage of tall fallows (981 ha) of all methods. Significant differences were found in the 

number of correct cover categories that were produced by the three classification methods 

(Cochran’s Q test: χ
2
 (2) = 20.26, P < 0.05), while pairwise comparisons using McNemar’s 

test revealed significant differences between DT1 and DT2 (P < 0.001), and between DT1 

and the participatory mapping (P < 0.005). Participatory mapping had the greatest overall 

accuracy (83.7 %,  = 0.783), followed by DT2 (79.9 %,  = 0.757).  

 

Participatory mapping accuracy varies from 20 % for bare soils to 100 % for primary forests, 

grasslands, and waters (Table 1). The bare soil category has the lowest accuracy, given that 

this category was apparently confounded with grasslands and short fallows. In forested areas, 

participatory classification was respectively 100 % and 97 % for primary and intervened 

forests, which was significantly higher than classification that was based on digital image 

processing.The two classification methods that were based on decision trees apparently 

overestimated primary forests while underestimating forests in which there had been 

intervention. Classification that was based only on remote sensing, however, had high 

accuracy for tall and short fallows (Table 1).  

 

Indigenous peoples who participated in this study demonstrated a high degree of knowledge 

regarding the land cover and historical land use of their territories, which we validated on the 
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ground. We assume that the higher accuracy of the participatory approach -in identifying 

primary and intervened forest- is a result of this local knowledge that allows increased 

detection of land cover and forest degradation. A similar observation was made by Danielsen 

et al. (2013) for identifying forest strata in Indonesia, China, Laos, and Vietnam. In tropical 

countries where slash-and-burn agriculture is practiced, the development of vegetation from 

recently cleared forests to short fallows, then to tall fallows and more advanced second-

growth forests makes the implementation of land cover classifications a challenging task 

(Pelletier et al. 2011). This is particularly relevant in areas where indigenous forms of 

agriculture produce a complex landscape mosaic of grasslands and annual crops that are 

interspersed with areas in different regrowth stages, as well as older forests in more 

inaccessible areas (Tschakert et al. 2007). Such a complex and highly dynamic land cover 

makes it difficult to achieve high accuracy solely through digital image classification that is 

based on decision trees. Our results show that in digital image processing, intervened forests 

are easily confounded with primary forest and that local knowledge could more efficiently 

contribute to differentiating these otherwise relatively similar forest types. According to 

GOFC-GOLD (2013), digital image processing is of limited use in identifying logged areas 

and human interventions that result in forest degradation. With gradual losses of biomass and 

the creation of small clearings in the canopy, forest degradation cannot be effectively 

measured using standard optical remote sensing methods, since their resolution is too coarse 

or the effects of logging too well-hidden to be detected either visually or by computer 

analysis (DeFries et al. 2007). The complexity that is involved in identifying more subtle 

changes in vegetation has triggered the identification of proxies (i.e., road proximity) for 

determining these potential impacts on the forest and simplifying the identification of forest 

degradation (Bucki et al. 2012). We have demonstrated for the first time that local knowledge 

can improve land cover classification and facilitate the identification of forest degradation. 
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The plea of the UNFCC for the full and effective participation of local and indigenous people 

could indeed improve the accuracy of monitoring.  

 

One caveat needs to be kept in mind. Our results show that the accuracy of participatory 

maps varied according to the three territories in the CLAB, the Ipetí map had the highest 

level of accuracy (0.925, = 0.87) and the lowest one (0.67,  =0.58) in Piriati. We have 

identified two main reasons behind these differences. Firstly, the areas with lower accuracies 

in the three territories have a greater extent of grassland and short fallows. Most landowners 

in these territories labeled both bare soils and short fallows as grasslands, suggesting that 

landowners in these areas tend to classify the parcels according to their land use instead of 

their land cover. Secondly, high accuracy in the Ipeti area is not surprising because many 

leaders and local dwellers have had an extensive experience in working with other land cover 

classification and carbon projects for more than ten years (Kirby and Potvin 2007, Potvin et 

al. 2007). While Danielsen et al. (2013) argued that even local stakeholders with limited 

education can measure forests with acceptable standards, the differences that they observed 

among villages suggest that prior training can help improve the detailed spatial knowledge of 

territories. If participatory mapping is to be successfully incorporated into the REDD+ tool-

box, we propose that the preparation and training of local dwellers in interpreting basic 

aspects of aerial or satellite images becomes a fundamental step before any participatory 

mapping exercise takes place (Rambaldi 2010). In doing this, the trainers should avoid 

complex aspects and terminologies of conventional scientific methods, and keep the training 

stage as simple as possible (Fry 2011).  

 

Finally, we must concur with Danielsen et al. (2013) in that involvement of local 

communities could improve the capacity of many developing countries for monitoring forest 
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emissions at a reasonable cost and within a short time-frame. It has shown that local 

knowledge is a valid option that complements satellite imagery, but participatory mapping 

could also be helpful in resolving issues that are related to cloudiness, a pervasive problem 

for many countries in the humid tropics. Complementarity between locally –based data and 

remote sensing data can also be valuable in identifying land cover areas with similar spectral 

properties (training areas) for other indigenous territories in the country, or for areas that are 

not under the control of local communities but where national governments can have satellite 

coverage to generate land cover maps.   Meanwhile, different communities can propose 

different land cover classifications making it difficult to manage in a REDD+ national 

context like Measuring, Reporting and Verifying (MRV) systems, such local classification 

systems could be translated to a more general or standardized system to be utilized in a 

national context. Given the importance of indigenous people as forest custodians in Panama 

and many other Latin American countries (Vergara-Asenjo and Potvin, 2014), engaging them 

in forest monitoring under REDD+ appears to be a win-win opportunity for improving 

mapping accuracy, while also unlocking the sometimes complex relationship between 

indigenous people and national REDD+ strategies. In moving away from the fear of REDD+ 

(Potvin and Mateo-Vega, 2013), indigenous peoples and local community participation in 

forest carbon assessment or in national forest inventories could establish a new starting point 

that is based on real collaboration and mutual benefits.  
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Figure 1. Bayano area showing the three indigenous territories that were included in the 

study. Datasets that were used for validation, including randomly selected points (circles) and 

forest inventory plots (squares), are also shown in the map. 
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Figure 2. Satellite image and land cover classification maps for a section of the Ipeti territory 

(a) Rapideye image standard false-colour composite. (b) Participatory classification. (c) DT1 

classification with the five spectral bands. (d) DT2 with five spectral bands and textural 

features. 
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Figure 3. Area distribution using three different classification methods in the CLAB.   
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Table 1. Accuracies (%) of predicting land cover categories and classification methods, 

relative to field observations. Classification methods include: participatory = participatory 

method, DT1= decision tree using regular Rapideye bands, DT2 = DT1 plus textural features. 

Land class Participatory DT1 DT2 

Water 100 99.9 100 

Grasslands 100 86.3 88.4 

Bare Soils 20 49.7 61.3 

Short Fallows 53.8 98.0 97.8 

Tall Fallows 83.3 97.8 97.6 

Intervened 96.8 55.9 72.0 

Primary 100 39.8 56.2 

 

 

 


