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Optimal search in interacting populations: Gaussian jumps versus Lévy flights
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We investigated the relationships between search efficiency, movement strategy, and nonlocal communication in
the biological context of animal foraging. We considered situations where the members of a population of foragers
perform either Gaussian jumps or Lévy flights, and show that the search time is minimized when communication
among individuals occurs at intermediate ranges, independently of the type of movement. Additionally, while
Brownian strategies are more strongly influenced by the communication mechanism, Lévy flights still result in
shorter overall search durations.
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I. INTRODUCTION

Situations where a single individual or a group of searchers
must find an object (target) appear in many different fields
including chemistry [1], information theory [2], and animal
foraging [3,4]. The study of these searching problems has
generated an increasing number of studies in recent years,
many of them oriented towards the identification of efficient
strategies [1,4–6]. Many remarkable examples can be found in
the context of biological encounters, such as proteins searching
for targets on DNA [7], or animals searching for a mate, shelter,
or food [1,8–16]. In these cases, the search time is generally
limiting and minimizing it can increase individual fitness or
reaction rates.

The optimality of a search strategy depends strongly on
the nature of both the targets and the searchers [17,18]. In the
context of animal foraging, which is our focus here, searchers
may move randomly, may use memory and experience to locate
dispersed targets, or they may also combine random search
with memory-based search. In highly social species, groups
of searchers may share information when no single individual
is sufficiently knowledgeable. This is based on the “many
wrongs hypothesis” [19,20] that states that error in sensing of
individuals can be reduced by interacting with the rest of the
group, where all individuals can act as sensors.

It is well known that individual movement plays a central
role in search efficiency, and many studies have focused on
the comparative efficiency of Lévy and Brownian movement
strategies [1,14,17,18]. Lévy flights are more efficient in some
random search scenarios [9,21], but whether or not they
are used in real animal search strategies is still an open
and contentious topic [11,22]. Much less effort, however,
has been spent on trying to understand the long-range (i.e.,
nonlocal) interaction mechanisms among social searchers.
While diverse observations suggest that such interactions occur
in many taxa, including bacteria [23], insects, and mammals
[24,25], previous studies have focused almost exclusively on
how the collective movements of a group of animals can
emerge from local interactions among individuals [26–28].
To our knowledge, only two recent studies have explored
the effects of long-range communication mechanisms on a
searching strategy [12,29]. In particular, [29] showed that
when the communication range is intermediate, individuals

tend to receive the optimal amount of information on the lo-
cations of targets, and search time is consequently minimized.
Longer communication ranges overwhelm the searchers as
they are simultaneously called from all directions, while
shorter ranges do not provide enough information. However,
many open questions remain about the relationship between
communication and search efficiency, especially concerning
the role that the landscape plays in determining the optimal
communication range, and on the robustness of the behavior of
the model when different random movements are considered.
Here we compare the effects of nonlocal communication
on the search efficiency of groups of individuals employing
either Lévy flight or Brownian random search strategies. We
also investigate how the distance between targets influences
the optimal communication range for both strategies. For
tractability, we consider a simplified, one-dimensional version
of the model and compute analytically the search time for both
Brownian and Lévy flights as a function of the communication
length scale. This simplified model allows us to unveil the
dependence of search time on both the parameters governing
individual mobility, and on the distance between targets.

The paper is organized as follows. The general model is
presented in Sec. II. Sections III and IV present analytical and
numerical results for Brownian and Lévy strategies, respec-
tively. In Sec. V, the role of the communication mechanisms
in the different searching strategies is discussed, and the paper
ends with Sec. VI, where a summary and conclusions are
presented.

II. THE MODEL

General. We consider a population of N interacting indi-
viduals that move randomly, searching for spatially distributed
targets. Every individual is provided with information about
the location of the targets coming from two different sources:
its own perception (local information), and the knowledge on
the quality of far away areas coming from a communication
mechanism with the rest of the population (nonlocal infor-
mation). The Langevin equation describing this dynamics is

ṙi(t) = Bg∇g(ri) + BC∇S(ri) + ηi(t), i = 1, . . . ,N,

(1)
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where ηi(t) is a stochastic function of time, which we specify
below, whose statistical properties define the random motion
performed by the searchers. The term Bg∇g(ri) refers to the
local search, where g(r) is an environmental quality function
(amount of grass, prey, etc.). g takes values between 0 (low
quality areas) and 1 (high quality areas), and thus allows us
to define the targets of the search as those regions where the
environmental quality is higher than a given threshold κ . Bg

is the local search bias parameter. BC∇S(ri) is the nonlocal
search term, where BC is the nonlocal search bias parameter
and S(ri) is the nonlocal information function of the particle
i. It represents the information arriving at the position of the
individual i as a result of communication with the rest of
the population. The net effect of these two terms is to drift
the movement of the searcher towards high quality areas of the
environment. The model thus becomes an Ornstein-Uhlenbeck
process, with individuals drifting randomly, but with an
attraction to the location of the targets [30–32].

Following previous efforts [29,33], the interaction among
individuals is given in terms of a nonlocal function defined
as the superposition of the pairwise interaction between
one individual and each one of the other members of the
population,

S(ri) =
⎛
⎝ N∑

j=1,j �=i

A[g(rj )]V (ri ,rj )

⎞
⎠ , (2)

where V (ri ,rj ) is the two-body interaction between the
receptor i at ri and the emitting particle fixed at rj . A[g(rj )]
is an activation function (typically a Heaviside function) that
turns on when the individual at rj has found a target and starts
communicating.

A study of the behavior of this model in two dimensions
(2D) based on Monte Carlo simulations, and using a Gaussian
white noise for the function η(t), i.e., Brownian motion, has
been shown in [29]. To gain clearer insight and provide
analytical arguments, we study a minimalistic version of the
model.

Specific considerations. Consider a single individual in a
one-dimensional (1D) space of length L, so that the highest
quality areas are located beyond the limits of the system, i.e.,
at x = −1 and x = L + 1 (see Fig. 1). Note that this would
correspond to the ideal situation where all the members of the
population but one—the searcher—have already reached one
of the targets. A landscape quality function g(x) must also
be defined. Provided it is a smooth, well-behaved function,
its particular shape is not relevant. We therefore assume a
Gaussian-like quality landscape,

g(x) = e− (x+1)2

σr + e− (x−L−1)2

σr , (3)

where σr gives the characteristic width of a high quality region.
Notice that g(x) is defined so that highest quality areas are
located, as mentioned, at x = −1 and x = L + 1. This ensures
that the gradient of the function does not vanish at the extremes
of the system (Fig. 1), and it is equivalent to setting the value of
the threshold κ such that the targets start at x = 0 and x = L.
We assume that a foraging area is good enough when its quality
is higher than 80% of the ideal environment, which means κ =
0.8. As we center the patches of resources at x = −1 and x =

τ+(i)

0 1 i... L...

Caller

Searcher
ResourcesResources

Caller
τ−(i)

FIG. 1. (Color online) Scheme of the simple version of the model.

L + 1, fixing a good quality threshold at κ = 0.8 is equivalent
to fixing the width of the environmental quality function at
σr = 4.5, to ensure that g(0) = g(L) ≈ 0.80. However, the
qualitative behavior of the model is independent of this choice.

Finally, the pairwise communication function needs to be
specified, and we choose a family of functions given by

V (xi,xj ) = exp

(
−|xi − xj |p

σ

)
, (4)

where σ 1/p gives the typical communication scale. For
simplicity, and without loss of generality, we will consider
only the case p = 2. Indeed, the choice of the function V is
not relevant for the behavior of the model, provided that it
defines an interaction length scale through the parameter σ .
This scale must tend to zero in the limit σ → 0 and to infinity in
the limit σ → ∞. This assures that the gradient of the calling
function vanishes in these limits. The combination of local and
nonlocal information gives the total available information for
the searcher R(x) = Bgg(x) + BcS(x).

To obtain analytical results, we work in the following on a
discrete space. The stochastic particle dynamics equivalent to
Eq. (1) considers left and right jumping rates which are defined
for every individual using the total information function,

τ±(x) = max

(
τ0 + R(x ± h) − R(x)

h
,α

)
, (5)

where α is a small positive constant to avoid negative rates
that has been given an arbitrary value (α = 10−4), and h is the
spatial discretization (h = 1). Finally, τ0 is the jumping rate
of an individual in absence of information, and it is related to
the diffusion component of the dynamics of Eq. (1). Given the
transition rates of Eq. (5), the movement with a higher gain of
information has a higher rate, and therefore a larger probability
of taking place.

The simplest situation, which allows an analytical treatment
of the problem, is to consider only N = 3 individuals. Two
of them are located in the top quality areas just beyond
the frontiers of the system limit, x = −1 and x = L + 1,
and the other one is still searching for a target. Under
these considerations, using the environmental quality function
defined in Eq. (3), and the pairwise potential of Eq. (4), the
total available information for the searcher is

R(x; σ,L) = Bg

(
e− (x+1)2

σr + e− (x−L−1)2

σr

)
+BC

(
e− (x−L−1)2

σ + e− (x+1)2

σ

)
. (6)

Following [29], the efficiency of the search process is
measured in terms of the first arrival time at one of the
high quality areas, either at x = 0 or x = L, starting from
x0 = L/2. From the definition of the transition rates in Eq. (5),
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τ+(L − 1) � τ−(L), and equivalently τ−(1) � τ+(0). This
means that at both extremes of the system, the rate at which
particles arrive is much higher than the rate at which they
leave, so particles do not move when they arrive in the top
quality areas. This allows us to consider both extremes x = 0
and x = L of the system as absorbing, and the first arrival time
may be obtained from the flux of presence probability of the
searcher there [34]

〈T (σ )〉 =
∫ ∞

0
t

(
∂P (0,t)

∂t
+ ∂P (L,t)

∂t

)
dt. (7)

This definition will be used in the following sections to investi-
gate the influence of sharing information (i.e., of the interaction
mechanism) on search times. The results will be compared
with those obtained using a deterministic approximation of
the movement of the searcher. We study two different random
strategies—Brownian and Lévy.

III. BROWNIAN JUMPS

In this case the searcher only jumps—with a given rate—to
its nearest neighbors, so the coupling of the set of differential
equations describing the occupancy probability of every site
of the system is (notice that lattice spacing h = 1)

∂P (0,t)

∂t
= −τ+(0)P (0,t) + τ−(1)P (1,t),

∂P (i,t)

∂t
= −[τ+(i) + τ−(i)]P (i,t) + τ+(i − 1)P (i − 1,t)

+ τ−(i + 1)P (i + 1,t),

∂P (L,t)

∂t
= −τ−(L)P (L,t) + τ+(L − 1)P (L − 1,t). (8)

with i = 1, . . . ,L − 1. If the initial position of the particle
is known, it is possible to solve Eq. (8) using the Laplace
transform. Once the probability distribution of each point has
been obtained, it is possible to obtain the mean first arrival
time using Eq. (7). The thick line in Fig. 2 shows this result,
indicating that the searching process is optimal (minimal time
to arrive to one of the good quality areas) for intermediate
values of σ . A particularly simple limit in Eq. (8) appears
when τ+ � τ− when x > L/2 (and the contrary on the other
half of the system). The search time is T (σ ) = L

2τ+
. This is the

expected result since the movement is mainly in one direction
and at a constant rate.

In biological terms this means that the optimal situation
for the individuals is to deal with intermediate amounts of
information. Extreme situations, where too much (σ → ∞) or
too little (σ → 0) information is provided by the population,
have the same effect on the mean first arrival time, which tends
to the same asymptotic value in both limits. In both cases, the
search is driven only by the local perception of the environment
[29].

This calculation gives exact results, but it implies fixing the
system size, solving a set of equations of dimension L, and
finally obtaining the inverse Laplace transform of the solutions.
The main disadvantage of this approach is that it is not possible
to study the influence of the distance between targets on the
optimal communication length. To circumvent this we use
a deterministic approach in the continuum limit h → 0 and
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FIG. 2. (Color online) First arrival time solving Eq. (8) for the
Brownian jumps and Eq. (17) in the case of Lévy flights for different
values of μ. Lines are interpolations. Inset: First arrival time using its
definition Eq. (7) (full line) and Eq. (11) with ε = 2 (dashed line) and
ε = 0 (dotted dashed line) for a Brownian searcher. In both panels:
L = 9, σr = 4.5, Bg = 1, and Bc = 1.

define, using the symmetry of the system, a mean drift velocity
towards one of the high quality areas, x = L,

〈vd (σ,L)〉 =
∫ L

L/2
[τ+(x) − τ−(x)]dx, (9)

Substituting the definition of the transition rates Eq. (5), the
drift velocity is

〈vd (σ,L)〉 = 2

[
R (L) − R

(
L

2

)]
, (10)

and therefore the search time is

〈T (σ,L)〉 = N/2

〈vd (σ,L)〉 . (11)

We compute the searching time using Eq. (11) with the
same values of the parameters used before (σr = 4.5, Bg = 1,
and Bc = 1, L = 9) to compare it with the results given
by Eq. (7) (inset of Fig. 2). The approach in Eq. (11)
(dotted-dashed line) reproduces the qualitative behavior of
the searching time although underestimates the value of
the optimal communication range (σopt = 7.2, while Eq. (7)
produces σopt = 12.5). This can be fixed excluding from the
average in Eq. (9) the boundary of the system introducing
a parameter ε in the limits of the integration. Results for
ε = 2 correspond to the dashed line in the inset of Fig. 2
(see Appendix B for details). However, regardless of the value
of ε used in the average, this approximation underestimates
the temporal scale of the problem (the absolute values of the
times). This is because it is assumed that the searcher follows a
deterministic movement to the target neglecting any fluctuation
that may slow the process.

Finally, increasing σ beyond its optimal value, there is
a maximum for the search time for any of the approaches.
For these values of the communication range, the nonlocal
information at the middle of the system coming from both
targets is higher than in the extremes and thus there is a bias to
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FIG. 3. (Color online) Scaling of the optimal communication
range parameter with the distance between targets (system size in
the 1D simple model).

the middle in the movement of the searcher. This small effect
that vanishes when σ increases and the information tends to
be constant in the whole system, seems to be an artifact of
the particular arrangement of the simplified 1D system, and
does not seem relevant for any real-world consideration of this
kind of model. In addition, it does not substantially affect the
dynamics because local perception of the environment pushes
the individual towards one of the targets.

Finally, within this deterministic approximation, besides
studying larger systems with no additional computational cost,
it is possible to obtain the optimal value of the interaction range
parameter σopt: (

∂T

∂σ

)
σ=σopt

= 0, (12)

which has to be solved numerically for different sizes of the
system. The typical optimal communication scale defined by
σ 1/p (i.e., by σ 1/2 since p = 2) grows approximately linearly
with the distance between targets in the asymptotic limit. Using
a regression of the results obtained from the integration of
Eq. (12) yields an exponent σ

1/2
opt ∝ L0.93 for L � 1 (Fig. 3).

IV. LÉVY FLIGHTS

So far the model has been studied assuming that the
searchers employ Brownian motion. Alternatively, Lévy flights
have been shown as a good searching strategy that may be used
by some species. However, empirical studies have generated
controversy, since many of the statistical methods used to
support the presence of Lévy flights in nature have been
questioned, and the issue remains unresolved [11,22,35]. In
this section the case of Lévy searchers is considered. The
results will show that neither the behavior of the model, nor
the existence of an intermediate optimal communication scale,
depend on the characteristics of the motion of the individuals.

Lévy flights do not have a typical length scale and thus the
searcher can, in principle, make jumps as large as the size of
the system. The lengths of the jumps l > 0 are sorted from a
probability distribution with a long tail [36,37]

Pμ(l) ≈ l̃μl−(μ+1), l → ∞, (13)

with l � l̃, and 0 < μ < 2, where l̃ is a characteristic length
scale of the system. This distribution is not defined for μ < 0,
its mean and variance are unbounded for 0 < μ � 1, and it
has a mean but no variance for 1 < μ < 2. Finally, for μ � 2,

the two first moments exist and thus it obeys the central limit
theorem. The Brownian motion limit is recovered in this latter
case, while very long jumps are more frequent when μ →
0. This is usually referred as the ballistic limit, with a high
abundance of straight-line long displacements [3,4]:

	μ(l) ≈ μ−1

(
l

l̃

)−μ

, l → ∞. (14)

As a simple normalizable cumulative distribution function,
with the asymptotic behavior of Eq. (14), we will use [38]

	μ(l) = 1

l̃
(
1 + l

l̃
b1/μ

)μ , (15)

whose probability distribution Pμ(l) = 	 ′
μ(l) is given by

Pμ(l) = μb1/μ

l̃
(
1 + l

l̃
b1/μ

)μ+1 , (16)

with 0 < μ < 2, and b = [
(1 − μ/2)
(μ/2)]/
(μ). We fix
l̃ = h = 1, and the transition rate as defined in Eq. (5).

Results in one dimension. Proceeding similarly to the
previous section, the set of equations for the probability of
occupancy is

∂P (0,t)

∂t
=

L∑
j=1

τ−(j )BjP (j,t) − τ+(0)P (0,t)

×
⎛
⎝BL +

L−1∑
j=1

Aj

⎞
⎠ ,

∂P (i,t)

∂t
=

i−1∑
j=0

τ+(j )Ai−jP (j,t) +
L∑

j=i+1

τ−(j )Aj−iP (j,t)

− τ−(i)P (i,t)

⎛
⎝Bi +

i−1∑
j=1

Aj

⎞
⎠

− τ+(i)P (i,t)

⎛
⎝BL−i +

L−i−1∑
j=1

Aj

⎞
⎠ ,

i = 1, . . . ,L − 1,

∂P (L,t)

∂t
=

L−1∑
j=0

τ+(j )BL−jP (j,t) − τ−(L)P (L,t)

×
⎛
⎝BL +

L−1∑
j=1

Aj

⎞
⎠ . (17)

We assume that if a jump of length in between j − 1 and j

takes place, the individual gets the position j . To this aim, the
coefficients Aj enter in the set of equations (17) and are defined

as Aj = ∫ j

j−1 	μ(l)dl. They give the probability of a jump of
length between j − 1 and j to happen. The coefficients Bj

are defined as Bj = ∫ ∞
j−1 	μ(l)dl, to take into account that the

searcher stops if it arrives at a target. This introduces a cutoff
in the jumping length distribution Eq. (16).

Given the size of the system L, which fixes the dimension
of the system of equations (17), it is possible to obtain an
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FIG. 4. (Color online) Mean first arrival time for Lévy flights
with different exponent μ in the 2D model. Bg = 1, Bc = 1, τ0 = 50.
Inset: Mean searching time at the optimal communication range as a
function of the Lévy exponent μ. Lines are interpolations.

analytical solution for the occupancy probabilities and the
mean arrival time to the targets using Eq. (7). This is shown in
Fig. 2, where the Brownian limit is recovered when μ → 2. It
is also observed that when long jumps are frequent the search
is much faster, although the gain in search efficiency due to
the communication mechanisms is lower close to the ballistic
limit (i.e., μ → 0). This will be explained later in Sec. V.

Similarly to the Brownian case, a particularly simple limit in
Eq. (17) appears when τ+ � τ− for x > L/2 (and the contrary
on the other half of the system). The search time is

T (x = L,σ ) ∝ 1

τ+
,

where the proportionality constant is a combination of the
coefficients Ai that depends on the size of the system.

Results in two dimensions. We now present some results in
2D using Monte Carlo simulations, as was done in the case
of Brownian particles in [29]. The individuals are moving
on a discrete regular square lattice (Lx = Ly = 1) of mesh
h = 0.01, where the targets are randomly distributed. Similarly
to the 1D case, the searchers stop if they find a target during
a displacement of length l. This naturally introduces a cutoff
in the length of the jumps, which becomes more important
as target density increases [4]. However, as we will focus
on a situation where target density is low, we introduce an
exponential cutoff of the order of the system size in the jump
length probability distribution to ensure that very long jumps
without physical meaning (they imply very high velocities) do
not occur:

ϕμ(l) = C
exp(−l/L)μb1/μ

l̃
(
1 + l

l̃
b1/μ

)μ+1 , (18)

where C = ∫ ∞
0 ϕμ(l)dl is the normalization constant, and

l̃ = h. We did not need to introduce such a cutoff in the study of
the 1D model because the boundaries of the system introduced
a natural truncation in the jump length distribution, and
jumps longer than the system size never occurred. Generally,
the search is faster when long displacements occur more
frequently. Figure 4 shows search time for different values of
μ and the mean searching time at the optimal communication

0 0.5 1 1.5 2
μ

1

1.2

1.4

1.6

1.8

2

Q

1-D

2-D

FIG. 5. (Color online) Improvement of the searching process
because of the communication mechanism. Circles correspond to
the 2D model and squares to 1D. Lines are interpolations.

range as a function of the Lévy exponent. As the frequency
of long displacements decreases (increasing μ) the search is
slower. Again, the effect of the communication mechanism
is more important when we approach the Brownian limit
(μ → 2), as will be explained next.

V. INFLUENCE OF THE SEARCHING STRATEGY:
LÉVY VS BROWNIAN

As a general result of the model, searching is faster
when individuals have intermediate amounts of information,
regardless of the kind of movement strategy followed by the
population (Brownian or Lévy). However, communication has
a larger impact on Brownian motion, i.e., the depth of the well
at σopt is larger (Figs. 2 and 4).

A measure of the improvement in search performance
at the optimal communication range is given by the ratio
between the search time without communication and that at the
optimal communication range Q = Tσ→0/Tσopt . This quantity
is plotted in Fig. 5 for different Lévy exponents. As previously
mentioned, Brownian searchers that are not able to perform
long displacements benefit more from communication than
Lévy searchers. This is because introducing an additional
source of information increases the directionality of the
random motion and prevents the searcher from revisiting
the same place many times, which is the key problem with
Brownian search strategies [4]. A Brownian walker has no
directionality in the movement, so provided with sources of
information (communication together with the local quality
of the landscape) it can search much more efficiently. This
effect is less important for Lévy searchers due to the presence
of long, straight-line moves that, by themselves, decrease the
number of times that a particular area is revisited. Additionally,
the return probability to a given point is much higher in 1D
than in 2D. This is because in the 1D case the walker can only
move either to the right or to the left at each step. Therefore
the directionality introduced by communication has a stronger
effect in this simpler scenario.

In summary, the communication mechanism is less impor-
tant in Lévy strategies, so that its effect is less noticeable as
shown in Fig. 5 both in 1D and 2D.
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MARTÍNEZ-GARCÍA, CALABRESE, AND LÓPEZ PHYSICAL REVIEW E 89, 032718 (2014)

0 0.5 1 1.5 2
μ

0.01

0.02

0.03

σ
opt

FIG. 6. Optimal communication range as a function of the Lévy
exponent.

However, the value of the optimal interaction range changes
with the kind of motion. This is shown in the 2D model by the
dependence of the mean search time on the communication
range for different Lévy exponents (Fig. 4). The value of
σopt increases with the Lévy exponent, so Brownian searchers
(μ → 2) need to spread the information farther (a larger value
of σopt) than Lévy (μ = 1) walkers to obtain the maximum ben-
efit. In Fig. 6 we show this tendency for the 2D model. In Fig. 6
we show the value of the optimal communication range σopt as a
function of the Lévy exponent. Lévy trajectories show clusters
of short displacements with frequent turns occasionally broken
up by long linear displacements, which account for most of the
target encounters. However, because these steps are often much
longer than the average distance between targets they are not
positively influenced by communication, so any benefit a Lévy
strategy gains from communication occurs during the series of
short displacements. The time that an individual spends doing
short movements is limited by the interarrival time of the large
steps, so unless an individual is already relatively close to a
target, it will not have time to reach a target before the next
big step comes and moves it far away from that original target.
Therefore, the optimal communication range decreases with
decreasing Lévy exponent μ as longer displacements become
more frequent at lower μ values.

In addition, the value of σopt depends on both the number of
targets and their spatial distribution, as was shown at the end
of Sec. III for a simple 1D situation where σopt ∼ L.

VI. SUMMARY AND CONCLUSIONS

In this paper we compared Brownian and Lévy search
strategies using a population of individuals that exchange
information about the location of spatially distributed tar-
gets. Using a simple 1D model we have provided an-
alytical results on both cases, concluding that frequent
long jumps (μ → 0, ballistic limit) minimize the searching
times.

However, the effect of a communication mechanism is
more pronounced in the limit of short jumps, i.e., Brownian
motion. This means that a population of individuals em-
ploying Brownian motion gains proportionally more benefit
from communicating and sharing information than does a
population of Lévy walkers, where long jumps are more or
less frequent depending on the value of the Lévy exponent
μ. When messages are exchanged in a range that minimizes
search duration, communication is the driving force in the
Brownian limit, but occasional long jumps are still responsible

for most of the encounters with targets in the case of long-tailed
step-length distributions.

The main result of this work is rather general: Independently
of the kind of communication performed by the population,
and of the spatial distribution of the targets, a population of
individuals with the ability to communicate will find the targets
in a shorter time if the information is spread at intermediate
ranges. Both an excess and a lack of information increase the
search time. However, the communication mechanism does
not have the same quantitative effect on the different moving
strategies (i.e., ballistic, Lévy, or Brownian). Uninformed
Brownian individuals perform a random movement revisiting
the same position many times, so having an external source
of information introduces directionality in the movement,
decreasing the number of times that a point in the space is
visited. In the case of Lévy and ballistic strategies (μ → 0),
communication is less noticeable because individuals are able
to do long jumps. This is already a source of directionality that
prevents individuals from revisiting the same points in space
many times, and thus weakens the effect of the directionality
introduced by communication.
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APPENDIX A: VORONOI DIAGRAMS OF THE MODEL

The behavior of the model, resulting in optimal searches at
intermediate communication ranges, can be explained in terms
of Voronoi diagrams [39]. Consider every target as a seed that
has associated a Voronoi cell formed by those points whose
distance to that seed is less than or equal to its distance to any
other one [see Fig. 7 (top) for a distribution of the space in
five Voronoi cells for an initial distribution of particles with
five targets (crosses)]. The searching time will be minimized
when the information coming from the individuals located on
one target covers the full associated Voronoi cell, but only
that cell. In this situation, the searchers within that cell will
receive information coming only from that target and move
towards it. σopt is the communication range that maximizes
the gradient (approximately the smallest value of σ that makes
the calling function not vanishing) of the calling function at the
frontiers of the Voronoi cells. Increasing the communication
range provides individuals with information coming from
different targets, and makes them get overwhelmed in the
limit σ → ∞. This Voronoi construction may also help to
explain the improvement of the searching strategies because
of sharing information. The difference between Brownian and
Lévy strategies can be seen in Fig. 7 (bottom). They show
the origin of the individuals that are at each target at the
end of a Lévy (left) and a Brownian search (right) (i.e.,
in which Voronoi cell they were at the beginning). In the
case of Brownian individuals most of the particles at every
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FIG. 7. (Color online) Top: Initial random distribution of individ-
uals, the symbol refers to the Voronoi cell at which every individual
belongs initially. Bottom left: Number of individuals coming from
each cell at each target at the end of the search using Lévy flights.
Right: Number of individuals coming from each cell at each target at
the end of the search using Brownian motion. Parameters: σ = 0.01
(optimal communication range), Bg = 1, Bc = 1, τ0 = 50. The black
crosses represent the location of the five targets.

target were initially in its Voronoi cell. For Lévy flights
the long displacements mix the population in the stationary

state (i.e., individuals at a target come from different cells).
The communication mechanism is less important in Lévy
strategies, so that its effect is less noticeable and the encounters
of individuals with targets are caused mainly by the long
displacements.

APPENDIX B: DETERMINISTIC APPROACH TO THE
SEARCHING TIMES

It is possible to improve the results given by the determinis-
tic approach if the region close to the target, i.e., the boundary
of the system, is neglected in the average given by Eq. (9). At
that point, one of the rates is much higher than the other and
thus would contribute to the drift velocity making its value
much higher, mainly in the limit σ → 0. To this aim one can
include a parameter ε, so that the integration limits in Eq. (9)
are L/2 and L − ε.

To estimate the value of ε it is useful to plot τ+(x) − τ−(x)
versus x (not shown). The difference between rates, although
depending on σ , starts increasing quickly when x � L − 2, so
one can estimate ε = 2. The inset of Fig. 2 shows the exit time
as a function of the communication range computed with this
approach (dashed line). Its optimal value is in good agreement
with the result obtained using the definition of the search time
(thick line), with σopt ≈ 12.5 for both approaches. However,
the temporal scale of the problem (the absolute values of the
times), although higher than with ε = 0, is still lower in this
calculation.
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MARTÍNEZ-GARCÍA, CALABRESE, AND LÓPEZ PHYSICAL REVIEW E 89, 032718 (2014)

[29] R. Martı́nez-Garcı́a, J. M. Calabrese, T. Mueller, K. A. Olson,
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