A new species of *Tethocyathus* (Cnidaria: Anthozoa: Scleractinia: Caryophylliidae), a trans-isthmian azooxanthellate species

Patricia Lattig and Stephen D. Cairns

(PL) Instituto de Investigaciones Marinas y Costeras, A.A. 10–16, Cerro Punta de Betín, Santa Marta, Colombia; (SDC) Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, U.S.A.

Abstract.—A new species of *Tethocyathus* is described, *T. prahlii*, characterized by having a tympaniform corallum shape and no fossa. Specimens were found living at 310 m in the Colombian Caribbean, 303–333 m at Cocos Island (Pacific Costa Rica), and from the early Pleistocene of Pacific Panama, suggesting a relictual distribution of a previously more widespread species. *Tethocyathus prahlii* is probably unique among the Scleractinia in having a non-cosmopolitan trans-isthmian distribution. The diagnosis of the genus *Tethocyathus* is emended to conform more closely to that of the type species.

The discovery of an undescribed species of *Tethocyathus* from the Colombian Caribbean and the same species from the Pleistocene of Pacific Panama raised interesting zoogeographic questions. In the course of writing the paper, several more specimens were discovered from the Recent of Cocos Island, reinforcing our zoogeographic interpretation. i.e., that living *T. prahlii* represent a trans-isthmian relictual distribution of a moderately shallow-water azooxanthellate species that was more widely and continuously distributed in the early Pliocene of both ocean realms. It is one of the very few scleractinian corals to have an trans-isthmian distribution in relatively shallow water.

Abbreviations

BID: Banco Interamericano de Desarrollo.
COLCIENCIAS: Instituto Colombiano para el desarrollo de la Ciencia y la Tecnología, Francisco José de Caldas.
H:D: Ratio of height to maximum calicular diameter of a corallum.
INVEMAR: Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis” (Santa Marta, Colombia).
SEM: Scanning Electron Microscope.
STRI: Smithsonian Tropical Research Institute, Panama.

Sₙ, Cₙ, Pₙ: cycle of septa, costae or pali, respectively, designated by numerical subscript.

Sₙ > Sₚ: in the context of a septal formula, septa of cycle x are wider than those of cycle y.

Methods

Colombian specimens were collected using a bottom trawl of 9 by 1 m in aperture and 16 m length during INVEMAR Macro Fauna cruise 2 (Dec 1998). Pleistocene corals were collected as part of the Panama Paleontology Project. The Cocos Island specimens were collected on the *Johnson-Sea-Link* Galápagos/Cocos Islands Expedition of 1986, sponsored by the Harbor Branch Oceanographic Institute.

The holotype is deposited at INVEMAR,
paratypes at the USNM and INVEMAR. Paratype images were taken at the USNM using SEM; other images were obtained and processed using methods described by Reyes and Navas (in press).

Systematics

Order Scleractinia Bourne, 1900
Suborder Caryophylliina Vaughan and Wells, 1943
Family Caryophylliidae Dana, 1846
Genus *Tethocytathus* Kühn, 1933

Diagnosis (emended).—Corallum solitary, tympaniform to subcylindrical; attached through a polycyclic base. Septotheca costate, but covered with tectura. Paliform lobes before first cycle of septa; discrete pali before all but first and last cycle of septa. Columella papillose.

Type species.—*Thecocytathus microphyllus* Reuss, 1871, by original designation.

Remarks.—The emended diagnosis of *Tethocytathus* is narrower than that given by Cairns (1979) in that it requires a polycyclic base and a thecal tectura (sensu Stolarski 1995 and Roniewicz & Stolarski 1999), both characters found in the type species. Of the three Recent western Atlantic species placed in this genus by Cairns (1979), only one fulfills these requirements: *T. cylindraceus* (Pourtalès, 1868). The other two species, *T. recurvatus* (Pourtalès, 1878) and *T. variabilis* Cairns, 1979, have monocyclic bases. Two additional species exist in the western Pacific: *T. virgatus* (Alcock, 1902) and *T. minor* (Gardiner, 1899). The genus is very similar to *Trochocytathus*, differing in having a polycyclic base, a relatively squat corallum, and tectura-covered theca.

The first cycle of entosepta (i.e., *S*) of *Tethocytathus* may give off one or two crowns of paliform lobes, pali being found before the succeeding entoseptum. The diagnostic character for *Trochocytathus* and *Tethocytathus* “pali before all but the last cycle of septa” (Vaughan & Wells 1943: 205–206, Wells 1956: F423) does not distinguish pali from paliform lobes; therefore, we propose the diagnostic character be changed to: paliform lobes before first cycle of septa and pali before all but first and last cycles of septa.

Tethocytathus prahl, new species

Fig. 1

Description.—Corallum tympaniform (H:D usually < 0.5) and firmly attached by an expanded base. Polycyclic base contains up to 5 visible concentric thecal rings: counting from the center of the holotype, rings 2, 3, 4 and 5 measure 1.12 mm, 1.92 mm, 2.42 mm and 2.97 mm in diameter, respectively. Initial ring can not be seen from above because it is covered by the columella; however, in other coralla the first ring is about 0.7 mm in diameter. Calice round to elliptical; calicular edge slightly serrate. Holotype measures 8.1 by 7.7 mm in calcular diameter and 2.5–3.7 mm in height (H:D = 0.46). Theca (tectura) smooth and bears scalloped growth lines. Inner costae (i.e., those not yet encircled by a thecal ring) thin, ridged, and not granular; outer costae (i.e., those occurring on surface of outermost thecal ring) broader and granular. C1–3 equal in size; C4 thinner.

Septa hexamernally arranged in 4 cycles according to the formula: S1–S2 > S4 ≈ S3. One paratype (i.e., the complete fossil and largest specimen, calcular diameter 13.8 by 12.0 mm, height 4.5 mm, H:D = 0.33: Fig. 1d) has 54 septa due to the presence of an extra half-system. S1 and S2 equal in size and extend 0.75 to columella; each S1 bears a small paliform lobe and each S2 bears a small palus. P1–2 small (0.34 mm wide) and occur closest to the columella; only one P3 is wider (0.55 mm) than the others. S3 slightly smaller or equal in width to S4, extend 2/3 width of S1–2, and bear a large pali. P3 3 times wider (0.9 mm) than P1–2, and are recessed from columella. Therefore, two palar crowns are formed: the inner crown formed by 6 paliform lobes (P1) and 6 pali (P2), and an outer crown of 12 P3. S4 fuse by their axial edges to adja-
Fig. 1. a–d. *Tethycyathus prahlii*. a, c. Recent paratype from Colombia, USNM 100469: a, stereo view of calice; c, oblique calicular view. b, stereo calicular view of holotype. d, Large paratype, Panama Paleontology Project site 148, USNM 95547, calicular view.
cent S₃ or P₃. Inner edges of S₁, S₂, and S₄ slightly sinuous; axial edges of S₁ more sinuous. Septal granules numerous, large, and blunt.

Fossa very shallow to non extant. Columella formed of fused papillae: massive and granular, appearing to incorporate part of the P₁. Each P₁₋₂ of fossil corallum have 2 or 3 lobes that extend and fuse to columella.

Discussion.—Tethycyathus prahli is quite similar to the type species, T. microphyllus, differing from it primarily in shape. Tethycyathus prahli has a lower, tympaniform corallum (the H:D ratio of T. prahli being between 0.3–0.5), whereas that of T. microphyllus is often above 2 and up to 3, i.e., subcylindrical. T. prahli also appears to have a larger corallum. Tethycyathus microphyllus was most recently described and illustrated by Stolarski (1991). It is known from the Middle Miocene (Badenian) of Poland, Moravia, France, and Morocco. Several voucher specimens from Poland are deposited at the NMNH (USNM 86810 and 96496).

Tethycyathus prahli also differs from T. cylindraceus (Pourtalès, 1868) in shape, the latter species being ceratoid to subcylindrical, with a H:D usually over 1. Tethycyathus cylindraceus also differs in having a shallow fossa and in having a very thick theca. It is known from the Caribbean (Straits of Florida, Jamaica, Barbados) at 183–649 m (Cairns 2000) and from northeastern New Zealand (Cairns 1995).

The presence of purportedly the same species in two ocean systems (i.e., the Pleistocene of the eastern Pacific and the Recent of the Caribbean) that have been separated for 3.6–3.5 million years (Coates et al. 1992, Collins 1993), suggests both an evolutionary stasis of that species and the existence of that species in both oceanic realms (i.e., the Gaturinan Province) before the closure of the isthmus. Indeed, Collins et al. (1996) logically argue that a deepwater species, such as T. prahli, would have been restricted from a trans-isthmin distribution since at least 5.3 Ma. Petuch (1981, 1988:156), based on Neogene and Recent mollusk distributions, has shown there to be several relict pockets within the Caribbean, these faunas containing genera or species surviving from an earlier widespread Late Miocene to Pliocene Gatunian distribution that covered the eastern Pacific and Caribbean regions. One of these relict refugia, which he calls the “Venezuelan Secondary Relict Pocket”, contains several mollusk taxa previously thought to be extinct, and appearing “to be most strongly under the influence of temporal stasis”. The type locality of T. prahli lies within this region. We therefore suggest that T. prahli existed in the Gatunian Province in both the eastern Pacific and Caribbean in the early Pliocene about 5.3 Ma, freely communicating across the future land bridge when there was still a channel of 150–200 m (Collins et al. 1996). Between 5.3 and 3.5 Ma the genetic exchange was terminated due to the shallowing of the sill depth between the oceans. Tethycyathus prahli persisted to the Recent (at Cocos Island) and is documented from the early Pleistocene on the continental margin of the eastern Pacific (Panama), as well as surviving to the Recent in a relictual pocket off Colombia. However, based on so few specimens and the apparent lengthy isolation of the Atlantic and Pacific populations of this purported trans-isthmin species, it is not unreasonable to assume that the type material might represent a cognate species pair or components of a subspecies pair.

No reef corals are known to have a trans-isthmin distribution; however, at least seven azooxanthellate species occur in the Caribbean and eastern Pacific (Cairns et al. 1999). But, all of these species are cosmopolitan in distribution and occur at much greater depths than T. prahli. Another two azooxanthellate species appear to have a trans-isthmin distribution: Madracis phar-ensis and M. asperula. Both species are well known from both sides of the North Atlantic, and have been tentatively reported
from relatively shallow water (i.e., 16–343 m) from the eastern Pacific (i.e., Nazca Ridge, Chile; Galápagos, Colombia; Rocas Alijos; and Baja California), these occurrences reviewed by Bonilla et al. (1995). However, there is doubt about the identity of these two species with the Atlantic forms, the Pacific specimens always being reported as Madracis sp. cf. M. pharensis. Thus, T. prahlí and perhaps two species of Madracis constitute the only records of non-cosmopolitan Scleractinia with a trans-isthmian distribution.

Etymology.—This species is named in honor of Henry Von Prah (1949–1989), who made significant contributions to the knowledge of Colombian corals (Ramos & Lemaitre 1991).

Types.—Holotype: INVEMAR Macro Fauna cruise 2, sta. 49, INVEMAR-COR 241. Paratypes: INVEMAR Macro Fauna cruise 2, sta. 49, 1 SEM stub, USNM 10046, and one corallum deposited at INVEMAR-COR 242. Johnson-Sea-Link I-1943 (5°26′04″N, 87°07′59″W), Cocos Island, Costa Rica, 303–333 m, 2 Dec 1986, USNM 8486. Panama Paleontology Project site 047, 3 fragments, USNM 95546: eastern coast of Punta Burica, Pacific Panama (8°11′24.0″N, 82°52′34.1″W), 1 km south of supertanker dock, 16 Jan 1986 (Charco Azul Group, Armuelles Formation, early Pleistocene). Panama Paleontology Project site 148, 1 complete specimen, USNM 95547: eastern coast of Punta Burica, Pacific Panama (8°11′20.4″N, 82°52′33.5″W), near Q. Melliza, 21 Feb 1987 (Charco Azul Group, Armuelles Formation, early Pleistocene).

Type locality: INVEMAR Macro Fauna project, sta. 49: 11°05.26′–11°05.12′N; 75°15.33′–75°15.74′W, off Bocas de Ceniza, Magdalena, Colombian Caribbean, 310 m.

Distribution and age.—Recent: known only from type locality off Colombia and Cocos Island (Costa Rica); 303–333 m. Fossil: early Pleistocene (Armuelles Formation, 1.7–1.5 Ma) of Punta Burica, Pacific Panama.

Acknowledgments

We thank INVEMAR, and the Colombian Ministry of the Environment for support of project number 2105-13-079-97, in collaboration with COLCIENCIAS and BID. The fossil corals were collected by the Panama Paleontology Project, funded by the National Science Foundation, STRI, the National Geographic Society, and the Kugler Fund, Basel. We also thank J. Stolarski (Instytut Paleobiologii PAN, Warsaw) for taking the SEM images and for helpful discussions. Javier Reyes (INVEMAR, Colombia) produced the figures. This paper is Contribution No. 641 of the Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis” (Santa Marta, Colombia).

Literature Cited

———, A. G. Coates, W. A. Berggren, M.-P. Aubry.
Reyes, J. O., & G. R. Navas. 2000. El escaner convencional, una herramienta útil para la catalo-
gación de organismos marinos.—Boletín de Investigaciones Marinas y Costeras (in press).