SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 78, NUMBER 4

SOLAR ACTIVITY AND LONG-PERIOD WEATHER CHANGES

BY HENRY HELM CLAYTON

(PUBLICATION 2875)

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 30, 1926 The Lord Gaftimore (press BALTIMORE, MD., U. S. A.

SOLAR ACTIVITY AND LONG-PERIOD WEATHER CHANGES

BY HENRY HELM CLAYTON

CONTENTS

	P	AGE
Ι.	High and low solar radiation and associated temperatures. Monthly	
	values	I
2.	The geographical distribution of weather effects of solar variation:	
	(a) As derived from solar radiation data	4
	(b) As derived from sun-spot data	13
	(c) The findings of the two investigations compared	22
3.	The geographical march of weather effects depending on the intensity	
	of solar activity	25
4.	The annual march of weather effects depending on solar variations	35
5.	Summary of preceding results	38
6.	The eleven year sun-spot period and other periods in weather phenomena	38
7.	Forecasts of New York temperature for five days in advance	47
	Reply to criticism:	-17
	(a) Tests of the reality of solar radiation variation based on	
	numerical analysis	50
	(b) Other confirmations of the probable reality of the solar radia-	5-
	tion variations reported by the Smithsonian Institution	54
	(c) Solar variability and weather: The reality of their correlation	
	(d) Revision of a former evidential result	55 56
	(e) Do the solar variation and weather correlations have permanency?	58
9.	A partial summary of the evidential results in this paper	61

PREFACE

The results presented in this paper are a continuation of those presented in a previous paper, No. 6, Vol. 77, of the Smithsonian Miscellaneous Collections. This investigation of the relation of weather to changes in solar radiation was made possible by a grant for that purpose to the Smithsonian Institution by Mr. John A. Roebling.

In the preparation of the data I have been assisted by Mr. Eliot C. French, Miss Hazel V. Miller and Miss M. Isabel Robinson.

1. HIGH AND LOW SOLAR RADIATION AND ASSOCIATED TEMPERATURES. MONTHLY VALUES

In the preceding papers of this series, the discussion of the relation of solar radiation to weather has been confined largely to short period solar changes, shown by the day to day values. It was only in these short period changes that there was a sufficient mass of data for statistical handling. In the case of a few very large and very small individual values of the monthly means of solar radiation, it was shown ' that there was a distinct relation to world-wide meteorological conditions, but it was considered desirable to ascertain to what extent the average result of many smaller monthly departures from the mean showed a systematic response to variations in solar output.

Monthly mean values of solar radiation between 1.910 and 1.930 gram calories per square centimeter were taken as low values, and monthly mean values above 1.950 (all but two of which lay between 1.950 and 1.960) were taken as high values. The mean monthly departures of temperature from the normal were then obtained for a number of widely separated stations in North America, for the interval from two months before the occurrence of the solar values to twelve months following. This was done separately for high solar values and for low solar values, and for the winter half-year and the summer half-year. A correction for the influence of changes of longer period was then made by getting the average of the 15 monthly mean temperature departures in each case, and deducting this average from the individual means. The final results are given in table 1.

The departures given in table I are not large, and do not show a sharply marked effect of the solar radiation differences on the temperature for any single month. That there is an effect, however, is indicated by a high negative correlation between the averages of temperature, for the interval o to 4 months accompanying and following high values of solar radiation, and for the interval o to 4 months accompanying and following low solar radiation. These averages are entirely independent of each other, and there is no obvious reason why they should be correlated with each other, except through their relation to solar values.

The correlation for the five months (o to 4 months) for the opposing solar conditions are as follows: Nome, -0.72 ± 0.16 ; Juneau, -0.80 ± 0.12 ; Edmonton, -0.81 ± 0.12 ; St. Johns, N. F., -0.52 ± 0.24 ; Hatteras, -0.89 ± 0.07 ; Key West, -0.64 ± 0.20 .

Furthermore, it will be noted that the oscillations at northern stations are opposite in phase to those at southern stations, as is shown by the plots in figure 1.

¹ Smithsonian Mise. Coll., Vol. 77, No. 6, 1925, pp. 31-37.

	C-1-2		Months	Months before							Month	Months after					
Station Nome, Alaska	Solar radiaticn 1.911-1.930 1.951-1.960 Diff.	Cases 26 17	0.4		0 1.0 0.5 1.5	1 -1.5 -2.6	2 -0.6 -2.6	3 0.2 0.2	4 1.3 -0.7 2.0	5 -0.3 -0.2	6 1.0 2.6	7 0.6 1.4	8 0.5 1.5	9 0.3 0.3	10 1.4 0.0	11 	12 0.3 1.4 1.4
Juneau, Alaska	1.911-1.930 1.951-1.960 Diff.	27 17	0 5 0.9 4	-0.1 -0.6 0.5	0.2 0.4 0.6	-0.2 0.0	0.4 0.6 1.0	0.0 	-0.1 0.3 -0.4	0.0 1.0 0.7	0.3 0.2 0.5	0.1 0.4 0.3	0.0 0.0	0.5 0.0	0 5 	1.0 1.0	0.5 0.6
Edmonton, Canada	1.911-1.930 1.951-1.960 Diff.	27 17	0.5 0 9 1.4	-0.1 2.0 1.9	0.4 1.4 1.8		0.7 0.6 1.3	0.6 - 0.4 I.0	0.6	0.7 0.6	-0.1 -0.4 0.3	0.1 0.6 0.6	0.0 0.4 0.4	-0.2 1.4 -1.6	0.4 0.0 -0.5	0.1 -02 03	0.9 0.6
St. Johns, N. F	1.911-1.930 1.951-1.960 Diff.	16 17	0.7 0.7 1.4	1.6 0.9 2.5	0.2 1.6 1.8	1 3 0.8 0.5	-0.6 -0.2 -0.4	06 02 04	-1.2 0.7 1.9	-0.4 0.4 -0.8	0.0 0.3 0.3	0.7 0.6 0.1	0 3 1.4 -1.1	0 2 0,0	0.5	0.0	1.2 -04 1.6
San Diego, Calif	1.911-1.930 1.951-1.960 Diff.	27 71	0.3 0.1 0 2	0.1 0 2 0.3	0.2 0.0 0.2	0.5 0.5	0.5 0.3 0.2	0.0 0.0	0.0 0.0	0.1 	0.0 0.2 -0.2	0.1 -0.4 0.5	-0.5 -0.2 -0.3	0.1 0.1 0.9	-0.2 0.6 -0.8	0.2 0.2 0.4	0.7 -0.7 1.4
Fort Smith, Ark	1.911-1.930 1.951-1.960 Diff.	41 42	0.5 0 I 0.4	0.2 -0.4 0.6	-0.4 0.4 -0.8	0.6 0.3 0.9	0.6 0.4 I.0	0.3 1 0 1.3	-0.7 -0.0	0.6 0.3 0.3	0.6 	0.1 0.5 0.6	0.2 0.0 0.2	0.5 0.1 0.4	-0.5 1.2 -1.7	-0.8 0.7 -1.5	0.0 0.0
Hatteras, N. C	1.911-1.930 1 951-1.960 Diff.	27 17	0.4 0.3 0.1	0.2 0.3 -0.1	-0.3 0.3	0.4 0.5 0.9	-0.1 -0.3 0.2	-0 3 0.2 -0 5	-0.5 -0.3 -0.8	0.3 0.6	0.4 -0.4 0.8	0.4 -0.8 1.2	0.1 	-0.5	1.0	-0.2 0.9 1.1	-0.6 0.2 -0.8
Key West, Fla	1.911-1.930 1.951-1.960 Diff.	27 71	0.2 0.6 0.8	0.2 0.3	-0.1 0.4	0.0 0.4 -0 4	-0.1 02 -0.3	0.2 0.2 0.4	0.2 0.0	0.3 0.0 0.3	0.3 -0.2 0.5	0.2	-0.1 0.3 0.2	0.4 0.1	0,0 1,0 0,1	0.0	0 6 0.2 0 8
Merida, Mexico	1.911-1.930 1.951-1.960 Diff.	21 50	0.2 0.2 0.0	0.0 0.3 -0.3	-0.1 0.7 -0.8	0.0	-0.1 0.3 -0.4	0 0 0 0 0 0	0.0 0.2 -0.2	0.1 0.2 0.3	0.3	0.0 	0.2 0.4 0.2	0.8 0.2 0.6	0.0 0.4 0.4	0.0	0.6 0.2 0.4
* The temperature departures in each instance, as here given, are cleared of long-period changes by deducting from them the average departure of the 15 months represented.	ure departur ted.	res in e	each inst	tance, as	here giv	ren, are	cleared	of long.	period o	changes	by dedu	cting fr	om them	the ave	erage de	parture	of the

3

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 78

Figure 1 indicates that there are two pulses accompanying and following each high and low solar value, (1) a rise or a depression of temperature accompanying the high or low solar value, and (2) a similar departure about three months later. The cause for this second delayed departure from the mean is not evident, and is a

FIG. I.—Mean departures of monthly temperatures from the average with high and with low monthly means of solar radiation.

matter for future research. The fact of its existence indicates that there can be no simple correlation between the mean monthly temperatures and mean monthly solar radiation variations.

2. THE GEOGRAPHICAL DISTRIBUTION OF WEATHER EFFECTS OF SOLAR VARIATION

(a) As derived from solar radiation data.—In order to study the geographical distribution of the differences in the weather conditions accompanying high solar radiation from those accompany-

F1G. 2.

ing low solar radiation, the solar values were divided into low, medium, and high values. All values between 1.911 and 1.930 were called low values, and all above 1.950 were called high values. There were only two above 1.960, so that most of the high values were between 1.950 and 1.960.

The results are given in table 2, and plotted in the charts in figure 2. These charts show the distribution in weather changes accompanying a change in solar radiation equivalent to 1.3 per cent increase of the mean value. The pressure departures given in table 2 are mean departures from the normal in thousandths of an inch, the mean temperature departures from normal are in degrees and tenths Fahrenheit, and the mean precipitation is given in percentages of the normal for each station. The pressure lines in figure 2 are drawn for each .03 inch, which is the equivalent of one millibar; and temperature lines are drawn for each 1.8° F., or half that value, which make them equivalent to degrees or half degrees Centigrade.

The charts in figure 2 show that, with increased solar radiation, the pressure during the winter half-year rises in high latitudes over the continental mass of North America, and falls along the southern coast of Alaska, and probably over the ocean to the south, as well as over the central and western United States, and southward at Colon. The temperature falls over Alaska, Canada, and the northern United States, and rises south of about latitude 38° down to at least 10° south. The percentage of rainfall is greater with high solar radiation over nearly the whole of North America, down to about latitude 35° N. South of that latitude the rainfall is less, the most marked deficiency being in southern Texas and northern Mexico, while the greatest excess is in central Canada.

NO. 4 SOLAR ACTIVITY AND WEATHER CHANGES-CLAYTON

			values	of solar	radiatio			
Solar		Winter h	alf-year			Summer	half-year	
radiation. Calories	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., °F.	Precip.,
		Alas	κα, Υέλ	RS 1905 '	то 1925			
	E	utch Ha	rbor, 53°	54' N.,	166° 32'	W.		
1.911-30	16	008	0.2	107	26	056	I.0	55
1.931-50	19	060	0.2	86	32	032	-0.2	91
1.951-72		.053	-0.4	22	20	.057	0.I	112
High-low	• •	.061	0.6	85		.113	-0.9	57
		Eagle	, 64° 46′	N., 141°	12' W.			
1.911-30	15	042	1.6	116	20	.025	0.7	108
1.931-50		.004	-1.0	78	30	010	1.5	93
1.951-72		.041	-0.3	51	21	020	0.6	91
High-low	••	.083	I.9	65		095	1.3	-17
			u, 58° 18					
1.911-30		009	I.2	107	29	006	0.1	III
1.931-50		022 .062	0.6 0.5	108	32 21	еоа.— доо,	0.5 0.4	90 98
1.951-72 High-low		.002 .07 I		115 8	21	.000	0.5	13
ingn ion	•••		, 64° 30′	-	° 24' W		0.5	-5
		012	, 04 30 I.I	120	24 11	.017	0.8	108
1.911-30 1.931-50		012	0.3	105	32	014	0.5	86
1.951-72		.031	0.5	100	18	.010	0.6	95
High-low		.043	—1.Ğ			007	0.2	-13
		Tanan	a, 65° 12	2' N., 15:	2° 0′ W			
1.911-30	7	017	2.5	56	19	002	—I.I	97
1.931-50		016	-0.I	92	29	.001	0.2	98
1.951-72	I4	.024	I.0	95	20	100.	0.2	102
High-low	••	.041	I.5	39		.003	0.9	5
			z, 61° 6'					
1.911-30		.044	2.9	99 86	10	.023	1.4	102 104
1.931-50		040 .038	0.7 0.2	104	26 17	006 003	0.2 0.7	91
1.951-72 High-low		.030		5	1/	003 026	-2.I	-11,
ingn-iow	•••		ANADA,		1025			
			ville, 53°			N.		
1011-20	17	.025	0.3	116	31	.003	-0.7	100
1.911-30 1.931-50		025	-2.0	110	39	001	0.7	112
1.951-72		.024	0.3	105	22	.017	-0.9	100
High-low		002	0.0	— I I		.014	0.2	0
	(Charlotte	town, 46	° 14' N.	, 63° 10'	W.		
1.011-30	17	008	—I.0	68	31	004	0.5	81
	23	.050	2.0	73	39	.007	0.5	92
	14	.046	0.8	94	22	.024	0.1	98
High-low		.054	0.2	26		.028	-0.6	17
		Dawso	n, 64° 4					
1.911-30	17	.023	2.3	75	30	.027	-I.I	103 82
1.931-50		008	0.7	99	37	024 016	0.I 0.2	82 94
1.951-72		.037	0.3 2.6	86 11	22	043	0.2	9
High-low		.014	2.0	11		.045	0.9	-

TABLE 2.—Means of the monthly departures from normal of pressure, temperature and precipitation with low, medium and high monthly values of solar radiation

7

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Winter h	alf-year		(Summer	half-year					
Edmonton, 53° 33' N., 113° 30' W.1.911-3017.0231.411531.0220.5951.931-5023.006-1.010538.0090.31061.951-7214.033-0.515622.0100.3107High-low17-0.00-1.79829004-0.6611.931-5017-0.00-1.79829004-0.6611.931-5023.0091.79737.0100.3971.951-7214.040-0.19322.0170.832High-low17018-0.19531012-0.11141.931-5023.0162.29839.0030.5951.951-6014.0300.39222.0070.197High-low5.0040.4.114.018-0.21.931-5011.00937.27.020-0.21.931-5011.00937.22.007-0.1111.931-50230151.010939002-0.2231.931-50230151.010939002-0.2231.931-50230151.010939002-0.2231.931-50230	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	radiation.	No. of months		Temp., ° F.	Precip.,		Press., inches	Temp, °F.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(CANADA (continue	ed)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Edmonto	on, 53° 3	3' N., 1	13° 30′	W.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I.911-30	. 17					.022						
High-low .010 -1.9 41 012 -0.2 12 Father Point, 48° 31' N., 68° 19' W. L911-30 17 009 -1.7 08 29 004 -0.6 61 L911-30 17 009 -1.7 08 29 012 -0.2 93 High-low 23 .000 1.7 97 37 .010 0.3 97 1.931-50 .23 .000 1.7 97 37 .010 0.2 93 High-low .049 1.6 -5 .017 0.8 32 Montreal, 45° 30' N., 73° 35' W. 1911-30 .07 018 -0.1 95 1.931-50 .14 .030 0.3 92 22 .007 0.1 97 Moose Factory, 51° 16' N., 80° 56' W. 1911-30 .048 0.3 -3 .010 0.2 17 High-low .017 -0.7 .027 .020 -0.2 .1 1.917-30 .017 .017 .021 .031	High-low .010 -1.9 41 012 -0.2 12 Father Point, 48° 31' N., 68° 19' W. 1.911-30 17 000 -1.7 08 29 004 -0.6 61 1.031-50 23 .000 -1.7 97 37 .010 0.3 97 1.031-50 23 .000 -0.7 93 32 .013 0.2 93 High-low .040 -0.1 93 22 .013 0.2 93 High-low .040 -0.1 95 31 012 -0.1 114 1931-50 .23 .016 2.2 98 39 .003 0.5 95 1.951-60 .14 .030 0.3 92 .2007 0.1 97 High-low .11 .019 .37 .27 .020 -0.2 1.931-50 .11 .009 .37 .22 .005 -0.3 1.931-50 .23 .001 .015 .007													
Father Point, 48° 31' N., 68° 19' W. 1.911-30 17 009 -1.7 98 29 0.04 -0.6 61 1.931-50 23 $.009$ 1.7 97 37 $.010$ 0.3 97 1.951-72 1.4 $.040$ -0.1 93 22 $.013$ 0.2 93 High-low 1.4 $.040$ -0.5 31 -0.12 -0.1 114 $1.931-50$ 23 $.016$ 2.2 $.003$ 0.5 95 $1.911-30$ 17 018 -0.1 95 31 012 -0.1 114 $1.931-50$ 23 $.016$ 2.2 $.007$ 0.1 97 High-low $.048$ 0.3 -3 $.019$ 0.2 17 Moose Factory, $51°$ $16'$ N., $80°$ 56' W. $1.911-30$ $.004$ 0.4 $$ 14 $.018$ -0.2 $$ $1.911-30$ 17 $.017$ $.017$ $.017$ $.007$ <td>Father Point, 48° 31' N., 68° 19' W. 1.911-30 17 009 -1.7 98 29 004 -0.6 61 1.931-50 23 .000 1.7 97 37 .010 0.3 97 1.951-72 .14 .040 -0.1 93 22 .013 0.2 93 High-low .049 1.6 -5 .017 0.8 32 Montreal, 45° 30' N., 73° 35' W. 1.14 1.93 1.14 1.93 1.14 1.93 1.98 1.14 1.90 1.97 1.97 1.97 1.97 1.7 1.97 1.97 1.97 1.93 1.93 1.93 1.93 1.93 1.97 1.97 1.93 </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>22</td> <td></td> <td></td> <td></td>	Father Point, 48° 31' N., 68° 19' W. 1.911-30 17 009 -1.7 98 29 004 -0.6 61 1.931-50 23 .000 1.7 97 37 .010 0.3 97 1.951-72 .14 .040 -0.1 93 22 .013 0.2 93 High-low .049 1.6 -5 .017 0.8 32 Montreal, 45° 30' N., 73° 35' W. 1.14 1.93 1.14 1.93 1.14 1.93 1.98 1.14 1.90 1.97 1.97 1.97 1.97 1.7 1.97 1.97 1.97 1.93 1.93 1.93 1.93 1.93 1.97 1.97 1.93						22							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ringn-10w	•	.010	-1.9	41		012	-0.2	12				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		I	Father F	oint, 48°	31' N.,	68° 19′	W.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-1.7	98	29	004	—0.б	61				
High-low	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						22							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		111g11-10w	•						0.8	32				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					o' N., 73	3° 35' W							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
High-low	High-low													
Moose Factory, 51° 16' N., 80° 56' W. 1.911-30 5 .004 0.4 14 .018 -0.2 1.931-50 11 .009 3.7 27 .020 -0.2 1.951-72 11 .019 -0.3 High-low .015 -0.7 1.931-50 23 015 I.0 03 1.931-50 23 015 I.0 03 30 1.931-50 23 015 I.0 103 30 1.911-30 13 039 -1.7 107 23 95 1.931-50 20 0.3 101 1 105	Moose Factory, 51° 16' N., 80° 56' W. 1.911-30 5 .004 0.4 14 .018 -0.2 1.931-50 11 .009 3.7 27 .020 -0.2 1.951-72 11 .019 -0.7 .007 -0.1 1.911-30 17 .017 -1.0 62 31 .008 0.0 67 1.931-50 27 .020 -0.2 20 B <						22							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111g11 10 W							0.2	-1/				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.951-72 11 0.019 -0.3 22 .025 -0.3 High-low 0.05 -0.7 .007 -0.1 Prince Albert, 53° 10' N., 106° 0' W. 1.017 -1.0 62 31 .008 0.0 67 1.911-30 12 120 39 009 0.1 120 1.951-72 14 006 -1.9 137 22 .006 -0.2 90 High-low 011 -0.9 75 002 -0.2 23 St. Johns, N. F., 47° 34' N., 52° 42' W. 1.2 95 1.3 1.2 95 1.931-50 20 006 -0.1 93 35 013 0.3 101 1.951-72 14 .026 -1.0 95 22 .006 -0.2 92 1.931-50 23 016 0.4 97 30 02 92 1.931-50 .23 .016													
High-low Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. 1.911-30 17 .017 -1.0 62 31 008 0.0 67 1.931-50 23 015 1.0 109 39 000 0.1 120 1.931-50 23 015 1.0 137 22 .006 0.2 90 High-low 011 -0.9 75 002 -0.2 23 St. Johns, N. F., 47° 34' N., 52° 42' W. 1.2 95 1.2 95 1.931-50 20 006 -0.1 0.3 101 1.931-50 20 006 -0.1 0.3 101 1.951-72 14 .026 -1.0 95 22 .006 -0.0 101 High-low .065 0.7 -12 .0.25 -2.1 6 Winnipeg, 49° 53' N., 97° 7' W. <td< td=""><td>High-low Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></td<>	High-low Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. Prince Albert, 53° 10' N., 106° 0' W. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						22							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(0 .1		0.1	••				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.011-20								6-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
High-low 011 -0.9 75 002 -0.2 23 St. Johns, N. F., 47° $34'$ N., 52° $42'$ W. 1.911-30 13 039 -1.7 107 23 019 1.2 95 1.931-50 13 039 -1.7 107 23 019 1.2 95 1.931-50 13 039 -1.7 107 23 019 1.2 95 1.931-50 14 .026 -1.0 95 22 .006 -0.9 101 High-low .065 0.7 -12 .025 -2.1 6 Winnipeg, 49° 53' N., 97° 7' W.	High-low 011 -0.9 75 002 -0.2 23 St. Johns, N. F., 47° $34'$ N., 52° $42'$ W. 1.911-30 1.3 0.39 -1.7 107 23 019 1.2 95 1.931-50													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S	t Johns	NEA	7° 21' N	E2º #2	' W						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I.0II-30							12	05				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•							
Winnipeg, 49° 53' N., 97° 7' W. 1.911-30 .016 0.4 97 30 025 92 1.931-50 .23 012 0.5 100 39 $.002$ 0.4 98 1.951-72 .016 24 122 22 $.004$ -0.6 95 High-low .016 24 122 22 $.004$ -0.6 95 High-low .016 24 122 22 $.004$ -0.6 95 High-low .016 24 122 22 $.004$ -0.6 95 JUNITED STATES, I905 TO 1925 L911-30 17 L911-30 17 L911-30 17 <td>Winnipeg, 49° 53' N., 97° 7' W. 1.911-30 17 .016 0.4 97 30 005 -0.2 92 1.931-50 23 012 0.5 100 39 $.002$ 0.4 98 1.951-72 </td> <td></td> <td></td> <td></td> <td>0.I</td> <td></td> <td></td> <td>.006</td> <td></td> <td></td>	Winnipeg, 49° 53' N., 97° 7' W. 1.911-30 17 .016 0.4 97 30 005 -0.2 92 1.931-50 23 012 0.5 100 39 $.002$ 0.4 98 1.951-72				0.I			.006						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	High-low	•	.065	0.7	-12		.025	-2.I	6				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Winnig	peg, 49°	53' N., c	97° 7' W	ν.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I.911-30	. 17			97	30	005	0.2	92				
High-low .000 -2.8 25 .009 -0.4 3 UNITED STATES, 1905 TO 1925 Abilene, 3^2 $23'$ N., 99° 40' W. I.911-30 IVITED STATES, 1905 TO 1925 Abilene, 3^2 $23'$ N., 99° 40' W. I.911-30 IVITED STATES, 1905 TO 1925 Abilene, 3^2 $23'$ N., 99° 40' W. I.911-30 IVITED STATES, 1905 TO 1925 I.911-30 IVITED STATES, 1905 TO 1925 I.911-30 IVITED STATES, 1905 TO 1925 I.921 -001 0.5 III I.931-50 IVITED STATES, 1005 37 I.931-50 IVITED STATES, 1005 IVITED STATES, 1005 IVITED STATES, 1005 IIII IVITED STATES, 1005 IVITED STATES, 1005 IVITED STATES, 1005 IVITED STATES, 1005 IVITED STATES, 1005 IVITED STATES, 1005 <td colspan="4" i<="" td=""><td>High-low .000 -2.8 25 .009 -0.4 3 UNITED STATES, 1905 TO 1925 Abilene, 32° $23'$ N., 99° 40' W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50 1.951-72 .004 0.9 105 37 .001 0.8 78 High-low </td><td>I.93I-50</td><td>. 23</td><td></td><td>0.5</td><td>100</td><td>39</td><td>.002</td><td>0.4</td><td>98</td></td>	<td>High-low .000 -2.8 25 .009 -0.4 3 UNITED STATES, 1905 TO 1925 Abilene, 32° $23'$ N., 99° 40' W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50 1.951-72 .004 0.9 105 37 .001 0.8 78 High-low </td> <td>I.93I-50</td> <td>. 23</td> <td></td> <td>0.5</td> <td>100</td> <td>39</td> <td>.002</td> <td>0.4</td> <td>98</td>				High-low .000 -2.8 25 .009 -0.4 3 UNITED STATES, 1905 TO 1925 Abilene, 32° $23'$ N., 99° 40' W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50 1.951-72 .004 0.9 105 37 .001 0.8 78 High-low	I.93I-50	. 23		0.5	100	39	.002	0.4	98
UNITED STATES, 1905 TO 1925 Abilene, 32° $23'$ N., 99° 40' W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50	UNITED STATES, 1905 TO 1925 Abilene, $32^{\circ} 23'$ N., $99^{\circ} 40'$ W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50						22							
Abilene, $32^\circ 23'$ N., $99^\circ 40'$ W. 1.911-30 1.931-50 17 .021 -0.6 139 29 001 0.5 111 1.931-50 23 .004 0.9 105 37 .001 0.8 78 1.951-72 14 001 0.2 105 22 .000 0.6 105 High-low 022 0.8 -34 001 -1.1 -6 Bismarck, 46° 47' N., 100° 38' W. 001 01 01 01 01 01	Abilene, $32^{\circ} 23'$ N., $99^{\circ} 40'$ W. 1.911-30 17 .021 -0.6 139 29 001 0.5 111 1.931-50 .004 0.9 105 37 .001 0.8 78 1.951-72 .004 0.9 105 37 .001 0.8 78 High-low 001 0.2 105 22 .000 06 105 High-low 022 0.8 34 001 1.1 6 Bismarck, 46° 47' N., 100° 38' W. 1.0 1.0 1.0 1.0 1.0 1.0 1.931-50	High-low	•	,000	2.8	25		.009	-0.4	3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							•						
$1.951-72$ $$ 14 001 0.2 105 22 $.000$ -0.6 105 High-low 022 0.8 -34 001 -1.1 -6 Bismarck, 46° $47'$ N., 100° $38'$ W.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
High-low022 0.8340011.16 Bismarck, 46° 47' N., 100° 38' W.	High-low 022 0.8 34 001 1.1 6 Bismarck, 46° 47' N., 100° 38' N. 1.911-30 17 .007 2.4 67 29 .004 0.0 100 1.931-50													
Bismarck, 46° 47′ N., 100° 38′ W.	$\begin{array}{c} \text{Bismarck, 46^{\circ} 47' N., 100^{\circ} 38' W.} \\ \text{I.91I-30} \dots 17 \dots 007 2.4 67 29 \dots 004 0.0 100 \\ \text{I.93I-50} \dots 23 -0.07 2.2 87 37 -0.03 \text{I.0} 96 \\ \text{I.95I-72} \dots 14 0.01 0.2 98 22 \dots 004 -0.9 109 \end{array}$						22							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0° 20' V		1.1					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L 011-20	17				-		0.0	100				
	1.951-72 14 .001 0.2 98 22 .004 -0.9 109						-							
	-2.2 31 7 .000 -0.9 9	High-low		006	-2.2	31	7	.000	0.9	Ś				

Solar		Winter h	alf-year			Summer 1	half-year	
radiation. Calories	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., ° F.	Precip.,
			ED STATE					
			n, 42° 21	′ N., 71°	4' W.			
1.911-30 1.931-50		022	0.5	79	29	005	1.0	90
1.931-50 1.951-72		.025 .016	3.3 1.1	70 06	37 22	002 004	0.7 0.0	115 96
High-low		.038	0.6	17		.001	-1.0	6
		Charlest	ton, 32° 2	47' N., 7	9° 56' V	v.		
1.911-30		017	0.5	99	29	.000	0.2	103
1.931-50 1.951-72		.021 —.006	0.9 1.0	84 68	37	004	0.I	83 89
High-low		000.— 110.	0.5	31	22	003 003	0.4 0.6	
			ne, 41° 8		4° 48' W			- 1
1.911-30		.025	0.6	149	29	.014	0.5	113
1.931-50		006	0.4	120	37	.004	-0.I	105
1.951-72 High-low		000. 010.—	0.3 0.3	. 156	22	001 015	1.6 1.1	120 7
ingi low	••	-	~	7		U		
			o, 41° 53				0	
1.911-30		.008	0.2	83	29	.000	0.8	100 08
1.931-50 1.951-72		.002 .008	2.3 0.3	101 08	37 22	010. 000.	0.5 —0.3	85
High-low		.000	0.1	15		009	0.5	15
		Cincinn	ati, 3 9°		4° 30' V	V.		
1.911-30		004	1.5	88	29	.012	0.5	95
1.931-50		.024	2.5 1.0	84	37 22	000. 110.—	0.0 0.3	103 106
1.951-72 High-low		005	-0.5	132 34	44	023	0.3	100
0		Corpus C			, 97° 25	′ W.		
1.911-30		.0 0 6	0.2	102	29	002	0.6	101
1.931-50		.012	I.I	99 81	37	.005	0.7	83
1.951-72 High-low		.002 004	0.9 0.7	21	22	003 001	0.5 0.1	94 7
111gn-10 w	•••	Eastpo		4' N., 60	5° 59' V			,
1.011-30	17	015	0.9	69	29	00I	0.1	88
1.931-50		.029	2.1	66	37	.008	0.1	86
1.951-72		.045	-0.3	93	22	.011 .012	0.5 0.4	81
High-low	••	.060	0.6	24			0.4	-7
		Galves		18' N., 9				0
1.911-30		.007	0.4	135	29 27	.006 .013	0.I 0.I	82 80
1.931-50		.020	0.7 1.3	92 79	37 22	.013	0.0	110
1.951-72 High-low	14	.015 .008	0.9	56		002	0.1	28
		Hatte	ras, 35° 1	15' N., 7	5° 40' W	7.		
1.911-30	17	036	0.7	85	20	.000	0.I	112
1.931-50	23	.020	1.7	108	37	000.	0.1	90
1.951-72		003	I.4 0.7	77 8	22	100 100	0.0 0.1	79 33
High-low	••	.033	0.7			.001	0.1	55

	mont	Winter h		r raaiatio	on (con	Summer	half-year	
Solar			A				· · ·	
radiation. Calories	No. of months	Press., inches	Temp., °F.	Precip.,	No. of months	Press., inches	Temp., °F.	Precip.,
		Unit	ED STAT	es (conti	nued)			
		Helen	a, 46° 34	' N., 112	° 4' W.			
1.911-30	17	.018	1.0		29	.006	0.0	
1.931-50	23	010	0.2		37	002	0.0	
1.051-72		.016	0.2	• •	22	.001	-0.3 -0.3	• •
High-low	• •	,002	0.8	• •		005	0.3	•••
		Key W	est, 24° (33' N., 81	1° 48' V	V.		-
1.911-30		006	0.7	86	29	.003	0.0	98
1.931-50		100.	0.7	65	37 22	100.— 000.	0. I 0. I	102 94
1.951-72 High-low		.004 .010	0.7 0.0	94 8	22	003	0.1	
	••			45' N., 9	22° 6' V	0		7
		005	ock, 34°. 0,2	78	22 U V 20		0.4	105
1.911-30 1.931-50		005	I.0	78	37	.004	0.4	86
1.951-72		004	I.I	136	22	006	0.0	105
High-low		.00I	0.9	58		100.	0.4	00
		Mobi	le, <u>3</u> 0° 41	ť N., 88°	2' W.			
1.911-30	17		0.8	117	29	,000	0.I	102
1.931-50		.011	1.5	58	37	.002	0,4	100
1.951-72		100.	1.8	93	22		0.5	124
High-low	••	010.	1.0	24		001	0,4	22
		Nashvil	le, 36° 1	o' N., 86	° 47' W	V.		
1.911-30	17	.006	0.2	89	29	.010	0.8	109
1.931-50		.034	1.7	86	37	.011	0.2	93
1.951-72 High-low		.002 004	0.3 0.1	143 54	22	,004 .006	0.2 0.6	108 —1
ingn-iow	•••				o / 11		0.0	-
				43' N., 7			0.1	00
1.911-30 1.931-50		020 .011	0.2 2.3	111 72	29 37	005	0.1 0.0	99 94
1.931-50		.011	0.5	101	22	.001	-0.4	06
High-low		.031	0.3	10		.006	0.3	-3
	7	North Pl	atte, 41°	8' N., 1	00° 15'	W.		
1.911-30		.015	0.4	100	29	.00.4	0.1	94
1.931-50		007	1.Ġ	106	37	007	0.7	94
1.951-72		005	0.0	173	22	011	0.8	112
High-low	••	020	0.4	66		015	0.9	18
		Phoeni	x, 33° 28	8' N., 112	2° 0′ W			
1.911-30		002	0.5	88	29	003	0.4	62
1.931-50		.002	0.1	81	37	.003	0.2	105
I.951-72 High-low		007 005	0.3 0.2	91 3	22	004 001	0.7 1.1	67 5
								5
			Ore., 45°				- (-6
1.911-30		.048	0.4	89	29	.005	0.6	96 98
1.931-50 1.951-72		005 .022	0.1 0.3	99 85	37 22	003 006	0.4 0.6	98 83
High-low		026	0.1	-4		011	0.0	-13
-								

6.1.		Winter I	alf-year			Summer	half-year	
Solar radiation. Calories	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., °F,	Precip.,
			TED STAT					
		St. Pa	.ul, 44° 5	8' N., 9	03° 3' W	•		
1.911-30		.012	1.0	91	29	.004	-0.7	100
1.931-50 1.951-72		002 .005	2.2 0.3	115 110	37 22	.004 .000	0.6 0.8	120 105
High-low		007	0.7	10	22	004	0.U	5
-	Sa	lt Lake	City, 40°	46' N.	, 111°54			-
1.911-30		.027	0.3	88	29	.007	0.6	97
1.931-50	0	002	0.1	117	37	.000	0.5	126
1.951-72 High-low		.007 020	0.1 0.4	111 23	22	.000 —.007	0.0 —0.6	100 3
111gii 10 w	•••		ego, 32° 4	-	17° 10' W		0.0	5
	17	003	0.0	70	20	.000	0.3	58
1.931-50	-	.012	0.4	125	37	.006	0.4	123
1.951-72		.004	0.3	92	22	.002	-0.3	70
High-low	••	.007	-1.2	22		.002	0.6	12
			isco, 37°		122° 26		0.1	58
1.911-30		.017	0.7	90 114	29 37	.005 .001	0.1	116
1.931-50 1.951-72		002	0.2	54	37 22	.001	0.2	124
High-low		020	-0.4	-36		001	ΰ.I	66
U		1 Luis C	bispo, 35		., 120° 3	9' W.		
1.911-30		.006	0.3	63	29	.005	0.3	26
1.931-50		.013	-0.5	101	37	.010	0.2	140
1.951-72		002 008	0.4 0.7	69 6	22	.003	0.4 0.1	24 —2
High-low		Santa F		′ N., 10	05° 57′ ∖	N.	011	
1.011 20		.021	-0.0	67	20	.003	—0. I	78
1.911-30 1931-50		.021	-0.2	101	37	.005	0.2	93
1.051-72	0	.003	0.5	102	22	001	-0.0	101
High-low	•	.018	I.4	35		007	<u>—</u> 0.8	23
	,		ton, 38°		77° 3′ \			
1.911-30		020	0.9	111	29	.002 —.002	0.1 	104 107
1.931-50 1.951-72		.027 .003	2.6 0.8	76 117	37 22	002	0.4	114
High-low		.023	0.I	6		006	0.5	10
0			Mexico,					
		Merid	a, 20° 58'					
1.911-30	. 15	012	0. I	106	27	100	0.I	90
1.931-50		.004	0.2 0.2	110 67	34 18	.007 005	0.1 0.0	97 109
1.951-72 High-low		.008 .020	0.2	-39	10	005	0.1	109
			ey, 25° 40		0° 18' W			
1.911-30	. 16	001	-0.9	133	29	005	-0.4	121
1.931-50		005	0.0	107	35	.003	0. I	IOI
1.951-72		.007	0.4	55	22	.003	-0.3	97
High-low	•	.008	-1.3	78		800.	0. I	-32

VOL. 78

Solar		Winter h	alf∙year			Summer	half-year	
radiation. Calories	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., °F.	Precip.,
		Cent	ral Ame	ERICA, 10	05-1025			
	5		ador, 13			W.		
I.911-30	11		-0.6	92	10		0.5	01
1.931-50	20		0.I	122	25		0.5	100
1.951-72			0.9	78	17		I.2	97
High-low	• •	• •	1.5	—14			0.7	6
		Colo	n, 9° 23'	N., 79°	23' W.			
1.911-30	13	.00I	0.3	80	20	.00I	0.3	101
1.931-50	19	.003	0.5	97	35	00I	0.5	103
1.951-72		004	0.5	70	18	008	0.5	92
High-low	• •	005	0.2	I0		009	0.2	9
		Bermud	A AND J	AMAICA,	1905-19	25		
		Hamilt	on, 32° 1	7' N., 64	4° 46' W	<i>V</i> .		
I.911-30	12	020	−1.0	82	26	.020	0.3	84
1.931-50	21	.018	0.2	99	37	100,	0.0	102
1.951-72		00 I	I.0	116	22	025	-0.6	95
High-low	• •	.019	2.0	34		045	-0.3	II
	Р	ort au F	rince, 18	° 34' N.	72° 22'	W.		
1.911-30		.006	0.0	87		.006	0.2	96
1.931-50	23		0.2	133	39	002	0.0	98
1.951-72	14	.004	0.7	67	22	004	0.4	96
High-low		002	0.7	-20		010	0.2	0

The charts in figure 2 for the summer half-year show a distribution of the differences of pressure and temperature almost the opposite of that of the winter half-year, north of 50° latitude. The pressure is lower with increased solar radiation over Alaska and northern Canada, and higher over the oceans. The temperature is higher over northern Alaska and Canada, but it is lower over a large part of the United States, just as it is for the winter half-year. The precipitation map shows a deficiency of rainfall in Alaska and northwestern Canada, but there is an excess over central Canada and a large part of the United States. There is a deficiency in Mexico as was found in the winter half-year.

(b) As derived from sun-spot data.—The solar radiation numbers cover only a few years, but Dr. Abbot has shown that there is a relation between the monthly sun-spot numbers and the monthly means of solar radiation, so that when the radiation values are arranged in the order of increasing magnitude, the average of the sun-spot numbers also shows a progressive increase.⁴ Hence, by means of the Wolf and Wolfer sun-spot numbers, the investigation of the influence of solar radiation can be carried back to the earliest meteorological observations.

At a few stations in the United States the meteorological observations extend back to more than a century, but at most of the stations in the net which I have used for the North American Continent they cover periods varying from about 40 to 60 years. I decided to limit the investigation to the period beginning with 1856, and to use all the available data.

¹ Smithsonian Misc. Coll., Vol. 77, No. 5, p. 21. Also Monthly Weath. Rev., May, 1926.

	,	Winter ha		5477 57	or mamor	Summer 1	ialf-year	
Sun spot number	No. of months	Press., inches	Temp., °F.	Precip.,	No. of months	Press., inches	Temp., ° I·.	Precip.,
		1	Alaska,	1880-19	23			
	D	utch Hai	rbor, 53°	54′ N.,	166° 32'	W.		
0-20			0.3	102	46		0.5	100
21-50		• •	-0.3	96	41	• •	0.0	J12
Over 50 High-low		••	0.2 0.1	101 I	53	• •	-0.5 -1.0	85 21
111g11-10 w	•			_			1.0	21
					° 12′ W.			
0-20		002	1.6	91	68	.003	-1.4	105
21-50 Over 50		039 .043	0.7 —1.4	104 106	35. 36	004 003	1.0 2.0	100 06
High-low		.045	-3.0	15	30	003	3.4	0
					.0 . / 11/		0.4	
0.00	0.0		, 58° 18'		↓° 2.4′ W			-6
0-20 21-50		.026 —.038	0.4	102 83	78 44	012 022	0.2 0.6	96 100
Over 50		.002	-0.1	104	38	.022	0.0	06
High-low		024	0.8	2	5-	.036	0.2	0
*		Kodial	17	N IT	e° 22' W.			
0-20	. 8	.033	×, 5/ 4/ I.2	80	9	,000,	-0,6	10
21-50		023	0.5	101	13	002	0.3	102
Over 50		002	1.0	105	25	003	0.0	99
High-low	-	035	2.2	25		012	0.6	8
		Nome	e, 64° 30′	N., 165	° 24' W.			
0-20	. 32	025	3.2	100	38	.012	0.0	- 99
21-50		042	0.5	113	28	025	0.8	94
Over 50		.042	-1.8	92 8	31	002	0.7	103
High-low	•	.067	5.0			014	0.7	3
					52° o' W			
0-20		00I	2.3	86	40	.009	-0.9	100
21-50		071	0.8 1.2	100 110	38	.002 .007	0.3 0.7	89 114
Over 50 High-low		.059		24	39	.007	1.6	14
		Paul Is			, 170° 10			
0-20		071	anu, 57 3.4	- 15 IN. - 06	., 170 IC 15	.001	0.6	115
21-50		.036	0.4	115	16	.001	0.I	106
Over 50		.028	0.8	- 98	38	002	0.5	89
High-low		099	-4.2	2		003	1.I	26
			CANADA	, 1873-19)23			
		Barkerv	ille, 53°	2' N., I.	21° 35′ V	V		
0-20		010	0.7	96	94	.016	-0.2	104
21-50		027	-0.5	95	60	.002	0.6	90
Over 50 High-low		.011 .021	0.5 1.2	108 12	61	.029 .013	0.2 0.0	$\frac{101}{-3}$
111g11-10w		.021				.013	0.0	3
				i Coola				- 9
0-20		• •	1.2 0.1	107	57	• •	0.2 0.4	98 97
21-50 Over 50			0.1	97 109	37 36		0.4	101
High-low			-2.1	2	00		0.2	3
0								

NO. 4 SOLAR ACTIVITY AND WEATHER CHANGES—CLAYTON

	Wolf a	nd Wolf	er sun-s	spot num	bers (co	ontinued)		
_		Winter ha	lf-year			Summer h	alf-year	
Sun spot	No. of	Press.,	Temp	Precip.,	No. of	Press.,	Temp.	Precip.,
number	months	inches	° F.	%	months	inches	° F.	Precip.,
		C.	ANADA	(continue	ed)			
	С	harlottete	own. 46	° 14' N.,	63° 10'	W.		
0-20		.'002	1.6	95	00	003	0.0	114
21-50		014	0. I	110	73	.008	0.2	88
Over 50	76	.005	—1.I	103	68	013	0.3	94
High-low	••	.003	-2.7	8		010	0.3	20
		Dawson	, 64° 4	' N., 139	° 20′ W			
0-20		.017	1.3	98	37	.029	0.9	91
21-50		.022	0.3	95.	34	.003	0.5	105
Over 50		.048	-1.6	101	40	016 045	0.4	99 8
High-low	•••	.031	-2.9	3		045	1.3	U
		Edmontor						
0-20		.002	1.6	95	99	003	0.0	114
21-50 Over 50		014 .005	0.1 1.1	110 103	$73 \\ 68$.008	0.2 0.3	88 94
High-low		.003	-2.7	8	00	013	-0.3	-20
			·				0	
	F	ather Po	oint, 48°	' 31' N.,		W.		
0-20		012	0.0	108	117	.005	0.0	108
21-50		.015	0.3	91	83	.004	0.1 0.1	103 08
Over 50 High-low		.007 .019	0.7 0.7	90 —18	90	002	0.1	10
111gn-10.0		-	•				0.11	10
	1	Kamloop			20° 29′			
0-20		.006	0.2	98	69	00?	-0.4	109
21-50		016	0.4	111	60	008	0.6 0.1	92
Over 50 High-low		.025 .010	0.6 0.8	96 2	56	.010 .012	0.1	100 0
111g11-10w	•••	-					0.5	9
		Masset		8' N., 13	.2° 9′ W	•		
0-20		• •	0.6	90	57	••	-0.3	102
21-50	38	••	-0.2	102	36	••	0.8	96 98
Over 50 High-low	•• 44	•••	-0.5 -1.1	101 11	4 I	•••	0.1 0.4	-4
111g11-10 w							014	7
	N	foose Fa		1° 16' N.				
0-20		015	0.8	••	51	.016	-0.2	• •
21-50		.025	0.0	••	51 67	012 001	0.0 0,2	
Over 50 High-low		001 .014	0.7 1.5	•••	07	001	0.0	
111gn-10w	•••							
				30' N., 7				
0-20		010	0.3	103	127	.003	0,2 0,2	105 06
21-50		.018	0.8 0.7	90 94	87 92	003 .005	0.1	90
Over 50 High-low		.002 .012		9	92	.003	0.3	6
ingn-iow				-			0	
		Prince Al						
0-20		.005	0.5	93	99 72	.003	0.1 —0.1	113 97
21-50		007 .017	0,4 0,6	119 88	72 71	.009 .004	0.1 0.1	97
Over 50 High-low		.017	-0.0	5	/-	100,	0.0	-18
2.11g11 10.11								

	woif a	Winter ha		spot num	vers (co	Summer 1		
Sun spot number	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., °F.	Precip.,
				(continue				
				30' N., 10				
0-20		—.004 —.00б	I.I	107 106	103	002	0.2	101 112
21-50 Over 50		000	1.3 0.7	97	74 81	.003	0.0	00
High-low		.007	-1.8	-10	01	005	0.2	-11
	5	Sable Isla		° 57′ N.,	60° 6′	W.		
0-20		013	0.3	96	59	008	0.4	98
21-50		.029	0.5	101	38	000	O. I	100
Over 50 High-low		008 .005	0.8 1.1	103 7	41	.008 .016	0.5 0.9	102 4
							0.9	-+
0-20				, 49° 24′		33' W.		- 9
21-50		024	0.5 0.3	104	84 66	100. 100.	0.2 —0.1	98 94
Over 50		.0021	-0.3	99	84	.004	-0.2	107
High-low		.026	—0.Š	-6		.033	-0.4	9
	St	. Johns,	N. F., 4	7° 34' N.	, 52° 42′	W.		
0-20		024	-0.2	92	123	022	0.2	100
21-50		.025	0.I	99	86	003	0. I	97
Over 50 High-low		004	0.1 0.1	107 15	101	.021 .043	0.1 0.3	$\frac{103}{-3}$
				.0' N., 79	° 24′ W		0.5	_3
0-20		012	0,43 4	103	130		0.4	60
21-50	89 -	.017	0.6	93	82	006	0.2	96
Over 50	• • 93	00I	0.7	96	95	010	0.3	110
High-low	• •	110.	-1.3	-7		013	0.7	11
		Winnip		53' N., 9				
0-20		.007	1.0	80	128	.003	0.7	102
21-50 Over 50		008	0.1	123	90	.005	-0.I	102
High-low		.003 —.004	0.7 1.7	31	94	.001	0.4 1.1	93
0				J- ATES, 1850	5-1022	1002	***	9
				3' N., 99'				
0-20	08	.002	-0.3	126	97	00I	0.1	107
21-50		003	0.6	87	70	.000	0.0	97
Over 50		.004	-1.3	93	67	002	0.I	92
High-low	• •	.002	—I.0	33		001	-0.2	-15
				7' N., 10				
0-20		.006	0.1	88	127	003	0.4	104
21-50 Over 50		005 .004	-0.4 -1.5	112 97	170 94	.001	0.2	104 94
High-low		002	-1.6	97	94	.003	0.8	10
		Bosto	n, 42° 2	ei' N., 71	° 4' W.			
0-20		.010.	-0.4	102	156	.002	0. I	99
21-50		.019	0.2	101	134	100.	0.1	107
Over 50 High-low	101	100.— 000.		95 7	157	004 006	0.2 0.3	110 11
***811-1011 ***	• •	.009	-0.9			000	0.5	

	Sun	,, orj u	Winter h		poi num	0015 (00.	Summer 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	spot		Press., inches	Temp., ° F.	Precip.,		Press., inches	Temp., ° F.	Precip.,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			UNIT	ED STAT	es (cont	inued)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Charlest	on, 32°	47' N., 7	9° 56' W			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			007		104	156	.002	0.3	102
High-Tow 006 0.2 -3 007 0.1 -66 Cheyenne, 41° 8' N., 104° 48' W. 0-20									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rign-low	•	000	0.2	3		007	0.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Cheyem	ne, 41° 8	' N., 104	4° 48′ W			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						128	002		97
High-fow 009 0.0 -22 $.004$ -0.7 4 Cincinnati, 30° 6' N., 84° 30' W. 0.0 0.2 06 127 002 0.2 101 $0-20$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						95			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rign-low	•	009	0.0	-22		.004	-0.7	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Cincinn	ati, 39°	6' N., 84	° 30' W.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
High-fow									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111gn-10w	•		-	-		001	-1.0	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									2.5
High-low 011 0.2 3 .000 0.8 6 Detroit, 42° 20' N., 83° 3' W. 0-20	21-50	. 92							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uver 50	• 93				00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111g11-10 w	•					.000	0.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0			
High-fow									
Eastport, 44° 54′ N., 66° 59′ W. 0-20									2.
0-20	ingi iow	•	.002	0.5	Ŭ		,004	0.24	9
21-50 00 .019 0.7 100 89 .000 0.0 90 Over 50 89 .003 0.6 89 92 .003 0.3 104			Eastpo	rt, 44° 5	4' N., 66				
Over 50 89 .003 0.6 89 92 .003 0.3 104									
Ingli-low01/ 0.0 -15 .002 0.1 2						92			
	111g11-10 w	•	.017	0.0			.002	0.1	4
El Paso, 31° 47′ N., 106° 30′ W.			El Pas	o, 31° 47	' N., 106				
0-20111 .002 0.3 93 106 .000 0.2 100									
21-50 82001 0.0 101 82001 0.0 88									
Over 50 87 .004 -0.1 107 90 .000 -0.1 105 High-low002 -0.4 14 .000 -0.3 5						90			0
High-low $.002 - 0.4$ I4 $.000 - 0.3$ 5	111g11-10w	•	.002	-0.4	14		.000	-0.3	5
Galveston, 29° 18′ N., 94° 50′ W.			Galvest	on, 29° 1	(8' N., 9	4° 50′ W	•		
0-20									
21-50									
Over 50 93 .007 0.2 87 94 .002 0.0 96						94			
High-low013 0.2 -25 .008 0.0 -9	rign-low	•	.013	0,2	25		.008	0.0	-9
Hatteras, 35° 15' N., 75° 40' W.			Hatter	as, 35° 1	5' N., 75	° 40′ W.			
0-20	0-20	. 131				127	.005	0.1	102
21-50			.007		104				
Over 50 87001 -0.5 91 90007 -0.1 99	Over 50	. 87			-				
High-low $.006 - 0.7 - 12012 - 0.2 - 3$	High-low	•	.000	0.7	-12		012	-0.2	-3

	iv oij a	Winter ha		spor nam		Summer l		
Sun spot number	No. of months	Press., inches	Temp., °F.	Precip.,	No. of months	Press., inches	Temp., °F.	Precip.,
				es (cont				
		Helena	, 46° 34	/ N., 112	2° 4′ W.			
0.20		.007	0.I	92	100	003	0.5	97
21-50		006	0.4	98	82	.005	0.3	95
Over 50		002 000	-0.4	106	90	.001 .004	0.1 0.4	103
High-low	•	009	-0.5	14		.004	0.4	0
		Key We		33' N., 8	1° 48′ W			
0-20		005	0, I	108	144	.002	-0.2	96
2I-50		005 .001	0.3	110	124	003 001	0.2 0.6	111 102
Over 50 High-low	.152	.001	0.3 0.2	94 —14	151	003	0.0	6
	••				0 (1 1)	Č.	0.0	0
0.20	105	Little R	ock, 34° 0.3	45′ N., 88	92° 6' W 100	.005	0.0	10.4
21-50		001	0.3	101	82	001	0.2	02
Over 50		.003	0.1	108	90	007	-0.3	103
High-low		.002	0.2	20		012	-0.3	I
		Marquet	tte, 46°	34' N., 8	7° 24' W	<i>,</i>		
0-20	. 125	.002	0.4	94	125	.002	0.4	106
21-50		.003	0.4	101	86	.003	0.0	89
Over 50		004	0.9	99	95	004	0.6	98
High-low	•••	006	-1.3	5		006	-1.0	8
		Mobile	e, 30° 4	1′ N., 88	° 2′ W.			
0-20		003	0.I	96	127	.002	0.1	97
21-50		.004	0.I	103	92 07	.004	0.0	91
Over 50 High-low	. 93	.001	0.1 0.2	114 18	95	006 008	0.0	101 4
				8' N., 113	· · · · · · · · · · · · · · · · · · ·		-0.1	4
0-20	60	.007		92 N., 113	60 54 W	100.		83
21-50		.007	•••	92 99	45	003	•••	108
Over 50	45	.000		100	45	.00.1		104
High-low	••	007		17		.003		21
		Nashvi	11e, 36°	10' N., 80	5° 47' W			
0-20		001	0.0	98	1.27	.002	Ο,Ι	105
21-50		.007	0.2	106	92	.003	0. I	95
Over 50 High-low			-0.2 -0.2	97 — I	95	008	-0.3	98
111g11-10 w	•••	.000				010	0.4	-7
0-20	160	New Ye	ork, 40° —0.1	43' N., 7	74° 0′ W 155	.000	0.4	102
21-50		.012	0.3	102	134	005	0.0	100
Over 50	160	002	0.6	106	154	002	0.0	99
High-low		.010	-0.5	I		002	-0.4	3
	1	North Pl	atte, 41°	8′ N., 1	100° 45′	W.		
0-20		.007	0.0	93	128	002	0.5	95
21-50		004	0.3	IOI	85	.007	0.2	102
Over 50 High-low		.003 004	0.6 0.6	104 11	90	.001 .003	-0.4 0.0	94 —1
	• •	.004	0.0	11		.005	-0.9	

Sun	worg a	Winter h		por num	0113 (00	Summer h		
spot number	No. of months	Press., inches	Temp., °F.	Precip.,	No. of months	Press., inches	Temp., ° F.	Precip.,
		Unit	ED STAT	es (conti	inued)			
		Omaha	, 41° 16	' N., 95°	56' W.			
0-20	131	.004	0.5	96	127	002	0.4	92
21-50		002	0. I	101	92	.005	-0.4	107
Over 50		.000	-0.4	104	95	.000	0.3	99
High-low	• •	004	-0.9	8		.002	-0.7	7
			x, 33° 2	5' N., 112	2° 0′ W.			
0-20		.002	0.5	91	117	.002	0.4	87
21-50		.002	0.0	88	83	001	0.2	93
Over 50		100.	0.4	123	90	002	0.5	95
High-low	•••	001	0.9	32		004	0.9	8
		ortland, (122° 41′			
0-20		.007	0.3	97	127	.000	0. I	III
2I-50		014 .003	0.1 0.4	102 98	92 05	000. 100.—	0.1 0.2	88
Over 50 High-low		003	-0.7	90 I	95	001	0.2	95 16
ingn ion in				o' N., 12	2° 15' 14		0.5	10
0.00		.005	0.2	IOI IOI	2 15 W	003	0.1	98
0-20		007	0.2	IOI	82	003	0.3 0.1	83
Over 50		.003	0.4	02	90	.004	-0.3	101
High-low		002	—o.Ġ	-9	-	.007	0.6	3
		St. Lou	is, 38° 3	8' N., 90	° 12' W			
0-20	. 161	100.	-0.3	94	156	.002	0,2	94
21-50	126	.003	0.2	109	134	.002	0.4	107
Over 50	161	003	0.6	100	156	005	0.3	93
High-low	• •	004	0.3	6		007	0.5	— I
		St. Pau	ul, 44° 5	8' N., 93				
0-20		.004	0.I	94	139	002	—0.I	94
21-50		004	0.0	108	113	.004	0.9	94
Over 50		:002 006	0.7 0.8	102 8	146	002	0.6 0.5	108 14
High-low	•••	000	0.0	0		.000	0.5	14
				° 46' N.,				
0-20		.006	0.5	102		001	0.5	94
21-50		004	-0.2	99	85	003	0.2 C.0	104
Over 50 High-low		.002 004	0.6 1.1	97 5	90	.002	-0.5	104 10
111g11-10w	•••	004	1.1	-		0	0.5	10
		an Dieg			7° 10' \		0.7	0.4
0-20		002	0.4 0.0	101 00	156 134	.002	0.7 0.8	94 01
21-50		.002 .002	0.0 0.1	104		002 001	0.8	98
Over 50 High-low		.002	-0.1	3	- 3-	003	0.I	4
ingn-iow					122° 26′			·
		an Franc				···. 004	0.3	70
0-20		001 002	0.3	103 102	139 132	004 002	0.3	113
21-50		002	0.1 0.1	94	136	.002	0.2	108
Over 50 High-low		.005	-0.4	-9		01 I	0.I	18

	woij u	Winter ha		101 11411	0013 (00	Summer l		
Sun spot number	No. of months	Press., inches	Temp., °F.	Precip.,	No. of months	Press., inches	Temp., * F.	Precip.,
			ED STAT					
	Sa	n Luis O			, 120° 39'			60
0-20		100.	0.3	105	/-	00I	0.0	68
21-50		.004	0.2 0.1	109 101	59 47	002	0.1 0.3	72 65
Over 50 High-low		000. 100.—	0.1		47	.003	0.3	-3
111g11-10w		.001	014	4		1004	0.0	0
		Santa F	re, 35° 4	1' N., 10	5° 57' W			
0-20	155	.004	0.I	99	146	.00I	0.7	IOI
21-50		004	0.0	108	129	005	0.6	102
Over 50		.007	0.3 0.2	91 8	137	.003 .002	1.3 0.6	94 7
High-low	•••	.003	0.2	0		.002	0.0	_/
		Spokane	e, 47° 40	' N., 11	7° 25' W			
0-20	104	.013	0.2	96		.003	0.0	103
21-50		015	0.3	104	77	006	0.4	104
Over 50	87	.001	-0.3	97	89	,000	0.0	96
High-low	••	012	0.5	I		003	0.0	7
		Washing	oton 389	51' N.	77° 3' W	7.		
0-20	150	010	0.2	105	140	.005	0.0	124
21-50		.018	0.1	96	123	.002	0.3	105
Over 50		.000	0.6	104	137	004	0.2	98
High-low		.010	-0.4	—I		009	0.2	—26
			Mexico,	1878-10	24			
			, 21° 7'					
0-20	80	.007	0.0	99	. 80	.006	0.3	105
21-50		.007	0.2	131	41	.000	0.2	100
Over 50	•• 47	010	0.2	76	47	013	0.2	94
High-low	••	017	0.2	23		019	0.5	
		Mazath	an 23° 1	2' N 10	06° 25' W	7.		
0-20	68	—.006	0.4	107	64	004	0.6	70
21-50		.000	0.3	102	62	.007	0.3	142
Over 50		007	0.4	107	65	008	0.7	70
High-low	••	00I	0.0	0		004	0.1	0
		Merid	a 20° E	N 80	° 37′ W.			
0-20	61	007	0.3	97	63	.006	0.3	117
21-50		.000	0.0	98	50	007	0.0	88
Over 50		.010	0.2	тоб	36	.003	0.2	93
High-low	••	.017	-0.1	9		003	0.I	-24
		Mexico	City to	° 26′ N	, 99° 8′ V	V		
0-20	111	.000	0.3	08	, 99 0 , III	,000	0.0	106
21-50		.004	0.0	130	78	.000	0.0	100
Over 50		,000	0.0	79	89	.000	0.2	89
High-low		.000	-0.3	19		.000	0.2	-17

	Wolf a	nd Wolf	er sun-s	pot num	ibers (co	ontinued))	
Sun-		Winter ha	alf-year			Summer l	nalf-year	
spot number	No. of months	Press., inches	Temp., ° F.	Precip.,	No. of months	Press., inches	Temp., ° F.	Precip.,
		M	EXICO (continue				70
		Montere	ev, 25° 4	.0' N., 10	18' W	Τ.		
0-20	67	.021	0.5	97	67	.008	-0.5	90
21-50	50	.008	0.3	108	56	.000	0.2	115
Over 50		.012	0.5	85	40	.007	0.0	100
High-low	•	.009	I.0	-12		001	0.5	10·
		Oaxad	a, 16° 4	.' N., 96°	43' W.			
0-20		.000	0.3	114	34	.003	-0.3	86
21-50		.004	0.2	90	51	.000	0.0	108
Over 50 High-low	40	.000 .000	0.0 0.3	94 20	47	.007	0.2	107
ingn iow	•••		-			.004	0.5	21
				′ N., 98°				
0-20		004	0.3	75	71	.000	0.0	97
21-50 Over 50		.003	0.2 0.3	168 77	52 81	.003	0.0	III
High-low		.003	0.6	2	01	007	0.2 0.2	96 1
U U		C			_	1007	0.2	
				erica, 18 N., 79°				
0-20	. 38	.001	0.4	N., 79 94		000		
21-50		004	0.3	94 08	46 26	.000 .006	0.5 0.0	90 105
Over 50		.006	0.I	95	27	.000	0.I	105 99
High-low		.005	0.5	I		.000	0.6	99
		San Salv	ador 12	° 41' N	80° o' 1	λī		-
0-20		.000	0.I	110	38	.000	0.1	85
21-50		00I	0.I	141	18	.000	0.0	102
Over 50	. 19	.00I	0.2	158	25	00I	0.1	113
High-low		.00I	0.3	48		00I	0.2	28
	В	ERMUDA .	and We	ST INDIE	s, 1882-1	1020		
				Virgin				
0-20	. 105		0.I	97	IOI		0.0	101
21-50		• •	0.0	107	63		0.0	III
Over 50		•••	0.2	100	101	••	0.0	71
High-low		••	-0.3	3		••	0.0	-30
	-	ort au P			, 72° 22'	W.		
0-20		001	0.3	100	79	.00I	0.2	97
21-50		002	0.3	103	52	.000	0.2	99
Over 50 High-low		.002	0.5 0.8	99 — I	67	001 002	0.3 0.5	100 3
)T < 0		0.0	3
		nilton, B						*00
0-20		.000 .018	0.1 0.4	98 101	73 59	.009 .006	0.1 0.3	100 105
Over 50		005	-0.4	101	59 67	.000	0.0	06
High-low		005	0.5	3	/	003	0.1	-4
		Juan, Po	arto Rio		' N 66°	7' W.		
0-20		Juan, FC	0.3	101 IOI	56	.003	0.0	104
20-50		003	0.3	101	34	.003	0.0	104
Over 50		.002	-0.4	94	43	004	0.0	92
High-low		.002	-0.7	-7		007	0.0	12

The monthly sun-spot numbers were divided into low, medium, and high numbers, and the dates of occurrence were tabulated. The values from 0 to 20 were called low, those from 21 to 50 medium, and those over 50 high. The mean departures from normal pressure and temperature, and the mean percentages of the normal rainfall, were then obtained for each of the three divisions of sun spots. This was done separately for the winter half-year, and for the summer halfvear, and the results are given in table 3.

The number of months included in each average varied according to the length of time data were available from the station used, but in some cases it was 160, or more, for temperature and precipitation, as shown by the tabulated data for Boston, Charleston, and New York. The mean departures from normal pressure are given in thousandths of an inch, the mean departures of temperature in degrees and tenths Fahrenheit, and the mean precipitation in percentages of the normal. The differences between the mean values found with high sun-spot numbers and with low sun-spot numbers are also given. These differences are shown plotted in figure 3 in the same manner as were the differences between the means in the case of high and low solar-radiation values. The lines for pressure are drawn for .03 inch, equal to one millibar, and the lines for temperature are drawn for 1.8° F., or for half that amount, equal to one degree, or to a half degree Centigrade.

(c) The findings of the two investigations compared.-The two sets of charts in figures 2 and 3 depend on entirely different measures of solar variation, and are largely for different periods of time. Yet they show a striking similarity. In winter, accompanying increased solar activity, both studies reveal higher pressure over Alaska and Canada, and lower pressure along southern Alaska, and in the western United States. The temperature is lower in both cases over Alaska, Canada, and the northern United States, and warmer in the southern states, and southward to Colon. The precipitation is also in excess over the region where the temperature is lower, and in defect in Texas and Mexico. Both investigations show in the summer a reversal of pressure, as compared to the winter, north of about latitude 50°. A lower pressure prevails in summer over northwestern Canada and higher temperature in the same region. Higher pressure prevails along the north Pacific and the north Atlantic coast of North America, between latitude 50° and 60°. Lower temperature is found over the interior of the United States, both during the winter and summer half-year. The similarity of the rainfall distribution during the

23

FIG. 3.

summer months is less marked, but there is evidently a relation between the two sets of data.

		Winter h	alf-year			Summer I	half-year	
	Pre	ssure	Tempe	rature	Pre	ssure	Temp	erature
	Solar	Sun	Solar	Sun	Solar	Sun	Solar	Sun
Station	rad.	spots	rad.	spots	rad.	spots	rad.	spots
Dutch Harbor	.061		—0.б	0.I	.113	• •	0.9	
Eagle	.083	.045	—1.9	3.0	095	006	I.3	3.4
Juneau	.071	02.1	-I.7		.012	.036	-0.5	0.2
Nome	.043	.067	—1.6	-5.0	007	014	0.2	0.7
Tanana	.041	.060	1.5	-3.5	.003	.007	0.9	1.б
Valdez-Kodiak .	—.00б	035	3. I	-2.2	026	012	-2.I	0.6
Barkerville	002	.021	0.0	—I.2	.014	.013	-0.2	0.0
Charlottetown .	.054	.003	0.2	-2.7	.028	010	—0.б	0.3
Dawson	.014	.031	-2.6	-2.9	043	045	0.9	1.3
Edmonton	.010	.003	—I.9	-2.7	012	·010	-0.2	0.3
Father Point	.0.49	.019	1.6	-0.7	.017	007	0.8	0.1
Etc. for 47 sta-								
tions			• •	• •		• • •	• •	• •
See Tables 8 and	9.							

 TABLE 4.—Differences between the means of pressure and temperature for high and low solar radiation and for high and low sun-spot numbers

In order to determine numerically the correlation between the differences in the means of pressure and temperature, found with high and with low values of solar radiation, and those found with high and with low sun-spot numbers, the differences given in tables 2 and 3 were tabulated in the manner illustrated in table 4. The correlations between the two classes of differences, one for solar radiation measurements and the other for sun spots, were then computed without further corrections. There are 45 stations given in tables 2 and 3 for which the means of pressure were computed for both the values of solar radiation and for sun spots, and 47 for which the means of temperature were computed. Valdez and Kodiak were treated as one station.

The correlation coefficients found for the four sets of differences are as follows:

Winter half-year, for pressure, 0.56 ± 0.07 ; for temperature, 0.62 ± 0.06 Summer half-year, for pressure, 0.45 ± 0.08 ; for temperature, 0.50 ± 0.07

It is possible to doubt the accuracy of the work, but it seems impossible for anyone to suppose that these two independent sets of correlations could be the result of chance. Fairly interpreted, they mean that higher solar-radiation values prevail at times of numerous sun spots, and that definite geographically located weather changes attend changes in the solar activity, whichever measure of it we employ.

3. THE GEOGRAPHICAL MARCH OF WEATHER EFFECTS DEPENDING ON THE INTENSITY OF SOLAR ACTIVITY

The observed values of solar radiation and sun spots are not numerous enough for the accompanying temperature departures to give smooth curves, when they are subdivided into numerous grades, and mean temperatures obtained for each grade, but the results for a few widely separated stations are given in table 5.

The means in table 5 do not show a steady progress from high to low values, but they do show that on the North American Continent, with very low solar radiation and low sun-spot numbers, the temperature departures above normal are greatest in high latitudes; that they are greatest in middle latitudes with medium solar radiation and sun-spot numbers; and greatest in the subtropical regions of southern Mexico and Central America with high solar radiation and high sun-spot numbers. On the other hand, temperatures below normal occur in high latitudes, and also in the equatorial region, with high solar radiation and high sun-spot numbers.

On account of the paucity of solar radiation measurements, it seemed worth while also to study the distribution of the departures of the monthly means of the weather elements, with very low and very high sun-spot numbers. Accordingly, the means of the monthly departures from normal of pressure and temperature, and the percentages of normal precipitation, were worked out for sun-spot numbers o to 5, and for those over 70, for the same stations as given in table 2. Means were obtained for the winter half-year and for the summer half-year, separately. The results are given in table 6 and are shown graphically in figures 4 and 5. In the separate charts in these figures the pressure lines are drawn for each .003 inch, equal to one millibar, and the temperature lines are drawn for I.8° F., equal to one degree C., or were drawn for half that amount.

radiation cases	Nome	Dawson	Edmonton	St. Paul	Little Rock	San Salvador	Colon
7 7	3.3°F.	4.1°F.	2.6° F.		2.1° F.	-0.4° F.	0.6° F
-1.930 IO	0.5	I.I	0.5	2.2	1.8	0.8*	0.1
.931-1.940 10	2.5	-2.7		1.5	2.0	F.0	0.1
I.94I-I.950 I3		0.0	0.1	2.7	1.8	0.5	0.8
-1.96012	0.4	0.2	-0.7	0.4	1.1	0.8	0.6
.961-1.972 2	-6.2*	3.1*	0.6	-0.5	0.8	:	1.0
Sun-spot numbers	Nome	Dawson		St. Paul	Little Rock	Oaxaca	Colon
0-5	3.6	2.3	1.8	1.0	8*	1.0	2.0
0	-1.2	0.6	2.6	1.7	0.3	*0	0.0
[I-20	:	2.6	0.1	2.0	1.0-	0.4	
0	:	1.2	-1.2	0.4	1.2	0.4	0.6
0	0.0	1.0	0.7	0.0	-0.4	0.2	0.5
51-70	-1.4	-1.5	-1.2	-0.5	-0.2	0.3	0.2
r 70	2.6*	-2.7*	2.3*	-1.0*	0.3	0.4	0.6*

TABLE 5.—Mean departures from normal temperature for six grades of solar radiation during the years 1918 to 1925 and for seven arades of sun-shot numbers during the years 1870 to 1022. White half-year

different for each station according to the length of record. Oaxaca, Mexico, is substituted for San Salvador in the sun spots, because the record at San Salvador covers a short period. On the other hand no records were available from Oaxaca since 1018.

VOL. 78

26

27

FIG. 4.

28

FIG. 5.

		Winter	half-year			Summer h	alf-year	
Sun-spot number	Cases	Press., inches	Temp., °F,	Precip.,	Cases	Press., inches	Temp., ° F.	Precip.,
				ASKA				
0-5	33		0.2	Harbor 100	22		0.6	100
Over 70	24		0.1	96	28	•••	0,0	87
			Ea	agle				
0-5 Over 70		002 .004	1.9 	91	15 20	.006	—1.2 I.I	96 97
0101 /0 111111	17	,004	-	133	20	004	1.1	91
0.5	4.7	0.47	-	ieau ·	-			
0-5 Over 70	17	041 030	0.5 1.2	109 110	36 20	031 .026	0.3 0.3	94 100
			Ko	diak			Ū	
0-5	•••		••	••	••	••		••
Over 70	11	062	-1.4	116	16		0.4	93
				ome				
0-5 Over 70		035	3.6 —2.6	79 70	19 19	•••	2.7 0.7	79 120
	Ċ		Ta	nana	-		,	
0-5	20	003	2.7	93	10	001	0.6	01
Over 70		.016	-1.0	130	19	.007	-0.3	128
			St. Pau	l Islands				
0-5 Over 70	··· 20	.0.3.3	-2.3	02	6 27	.073 007	1.0 0.5	10 2 90
0.00 /0	20	.033	0		-/	.007	0.5	90
•				vADA erville				
0-5	45	.002	0.7	94	41	021	-0.5	115
Over 70	26	.009	0.9	118	32	.048	0.I	98
				Coola				
0-5 Over 70		•••	0.8 1.1	103 111	27 20	•••	0.0 0.2	103 94
0.00 /0	10	••		vson	10		0.12	34
0-5	20	.026	2.3	101	20	.075	-0.5	76
Over 70		.029	2.7	103	20	010	0.2	94
			Cal	gary				
0-5		002	1.3 0.2	105 119	41 40	022 .003	0.1 0.5	133 70
Over 70	43	.009		-	40	.003	0.5	70
0-5	53	033	Charlo 1.0	ttetown 90	48	002	0.3	89
Over 70		.008	-1.0	99	46	.002	0.1	98
			Edm	onton				
0-5		.019	1.8	93	41	.003	0.3	130
Over 70	35	007	2.3	100	43	004	0.1	91

	111.0	Winter l	1- <i>spot 1</i> half-year	umbers	(continu	1ed) Summer h	alf-vear	
Sun-spot				Precip.,	~~~~~			Precip.,
numbei	Cases		Temp., °F,		Cases	inches	Temp., °F,	*%c
		C.		(continue	ed)			
0-5	57	031	0.5	r Point 106	47	.003	0. I	107
Over 70		.014	-1.4	85	47	.003	0. I	95
			17	1				
0-5	26	.018	0.3	nloops 94	31	013	0.5	122
Over 70		.036	-1.4		29	.021	0.0	104
			٦٢.					
0 5	27		.0.0	assett 87	28		0.2	86
0-5 Over 70			-1.2		20 21		0.2 0.1	81
	· ·							
				ntreal				
0-5 Over 70		020 .007	0.4 —1.1	107 94	51 45	.010 .012	0. I 0.0	104 106
0101 70	• 59	.007		94	45			
			Moose	Factory	7			
0-5		003	-1.9	• •	31	.037	-0.5 0.0	• •
Over 70	. 28	00.4	I. I	•••	37	.020	0.0	• •
			Princ	e Albert				
0-5		.013	0.3	90	4 I	.0II	0.4	127
Over 70	. 29	IIO.	2.0	84	39	.035	0.1	84
			Ou'	appelle				
0-5	. 49	.005	0.9	IIO	41	.008	0,1	122
Over 70	•• 35	012	-2.2	100	43	.009	0.0	81
			Sable	e Island				
0-5	30	0.28	0.3	95	28	008	0.6	89
Over 70		005	-1.0	96	21	.014	-0.4	107
			St. Joh	m's, N. I	F.			
0-5	53	028	0.4	93	49	024	0.4	100
Over 70		005	-1.0		21	.01.4	-0.4	107
		C .	W D-:	at Antio	acti			
0.5	17	5. —.041		nt, Antic 108	36 36	007	0.4	93
0-5 Over 70			0.5		44	.018	0.2	105
			-					
				oronto				705
0-5 Over 70		016 003	0.4 		52 46	.012	0.5 0.1	105 122
0,01 /0	39	003	A	95	40			
			W	innipeg				
0-5		.022	1.3	74	52	.024	0.9	104 86
Over 70	39	015	-1.9	112	46	.007	-0.6	00

	~~~~	Winter 1	half-year	amoers	(contin	Summer h	alf-year	
Sun-spot number	Cases	Press., inches	Temp., ° F.	Precip.,	Cases	Press., inches	Temp., °F,	Precip.,
				States ilene				
0-5	49	.007	0.5	109	41	.010	0.9	86
Over 70	- 26	008	0. Ĭ	90	30	003	0,2	115
				narck				
0-5 Over 70		.017 005	0.2	75 102	51 45	.005 .010	0.7 0.7	111 00
		1005	-	ston	40	.010	0.7	90
0-5	. 66	034	-0.1	104	65	100.	0. I	100
Over 70		.001	1.0	87	89	004	-0.1	114
			Char	leston				
0-5		012	-0.6		• •	.006	0.3	94
Over 70	• • •	006	0.1	106	•••	005	0.5	88
				yenne			0	0.1
0-5 Over 70		.017	0.4 0.3	117 82	52 46	.006 .002	0.8 —1.3	86 99
0101 /0	• 39	.019			40	:002		99
				innati				100
D-5 Over 70		007 011	0.7 1.1	99 98	51 46	.005 —.010	0.7 0.2	102 98
	. 57							Í
0-5	18	.007		s Christi 105	42	.000	0.2	105
Over 70		100.	0.0	86	37	003	-0.2	79
			De	enver				
0-5		.019	0.6	112	51	.006	0.8	100
Over 70	• 39	019	0.3	95	46	100.	—I.I	93
			De	etroit				
0-5		010	-1.0		64	.009	0.1	118
Over 70	. 70	009	-0.4	99	84		0.2	99
			Eas	stport				
0-5		032	0,2 —I.I	68 89	52 45	000. 800.	0.1 0.4	96 99
Over 70	. 30	.004			45	.000	0.4	99
				Paso		0.0.5		07
0-5 Over 70		.006 .005	0.2 0.3		43 45	.005 .001	0.4 —0.4	95 105
0,01 /0	. 50	.005	-		10			
				veston	<b>F</b> 2	00I	0. I	116
0-5 Over 70		.004 .000	0.5 0.2		52 46	.001	-0.1 -0.2	98
0.01 /0	. 59	,000		·				
				tteras	5.2	.004	0.3	97
0-5 Over 70		015 005	0.1 0.7		52 45	.004 000.—	0.1	106
0.101.70.11111								

3

		Winter	half-year		(	Summer h	alf-year	
Sun-spot number	Cases	Press., inches	Temp., ° F.	Precip.,	Cases	Press., inches	Temp., ° F.	Precip.,
		Unit		es (conti lena	nued)			
0-5	40	.010		0.3	41	003	0.2	98
Over 70		.011	-1.3	117	45	.003	0.5	104
			~	West				
0-5 Over 70		004 001	0.1 0.4	104 93	60 8.4	.003	-0.2 0.7	101 97
,.	/ -		Little R				,	21
0-5	40	.002	-0.8	07	41	.011	0.6	I.2.4
Over 70		004	0.3	99	45	006	-0.2	100
			Mar	quette				
9-5		.003	-0.1		51	.014	0.5	110
Over 70	39	—.c17	-1.7	86	46	005	0.8	99
				obile				
0-5 Over 70		.002	0.7 0.0	100 122	52 46	.009 —.004	0,2 0.2	94 06
0.01 /0	39	004			40	.004	0.2	90
				hville		070		98
0-5 Over 70		.002 010	0.7 0.7	102 96	52 46	.010 012	0.5 —0.7	98 96
			New	York				
0-5	67	025	0.2		65	.000.	0.4	103
Over 70		100.	0.6	97	86	005	0.I	99
			North	Platte				
0-5		.021	-0.5	100	52	.005	I.0	93
Over 70	30	009	1.8	96	45	.005	I.O	95
		0		naha				0
0-5 Over 70		800. 000.—	0.1 1.1	102 112	52 46	100.— 100.	1.3 0.7	83 95
,.	0,		Phy	oenix				20
0-5	57	.00.1		106	47	.001	0.1	80
Over 70		001	-0.7	137	45	100.	-0.5	95
			Portla	nd, Ore.				
0-5		.018	0.4		52	001	.0.1	133
Over 70	39	110.	0.2	102	46	.004	-0.4	86
				Bluff	.0	0.07		0.2
0-5 Over 70		010. 800.	0.7 0.3		48 45	.001 .009	-0.4 -0.3	83 84
			Salt L	ake City				
0-5	57	.015	0.4	89	52	.COI	0.5	108
Over 70		—.00Ĩ		103	45	.006	0.5	99

VOL. 78

		Winter	half-year			Summer h	alf-year	
Sun-spot number	Cases	Press., inches	Temp., °F.	Precip., %	Cases	Press., inches	Temp., ° F.	Precip.,
		Unit		es (conti Louis	nued)			
0-5		100.	1.0	96	65	.009	0.8	91
Over 70	. 78	013	-0.7	97	88	012	-0.4	۰9I
			St.	Paul				
0-5		.008	0. I	87	56	.005	O. I	97
Over 70	• 74	013	-1.0	101	87	100.	0.9	111
				Diego				
0-5 Over 70		.000	0.4 0.0	93 100	65 88	.006	0.7 0.8	86
0.01 /0	. 70	.005			00	.00.4	0.8	93
	,			rancisco				
0-5 Over 70		.005	0.8 0.1	97 90	51 71	.002 .011	0.2 0.0	70 71
Over 70	. 02	.011				.011	0.0	/1
	.0			is Obispo				
0-5 Over 70		.001 .005	0.4 0.4	100 98	33 23	.002 .010	0.3 0.3	79 50
0101 /0 11111		10-5		-	-0			00
	٤.		Sar 0.1	ita Fe 107	60	.009	I.I	100
0-5 Over 70		000. 100.	0.1	81	82	.009	1.1	87
0.01 /0	. , -		-	hington				
0-5	66	025		hington 106	65	.003	0.2	105
Over 70		.003	-0.8	97	77	008	0.I	100
·			M	EXICO				
				.eon				
0-5	. 42	.008	0.0	98	35	.008	0.2	101
Over 70		024	0.4	67	24	021	0.2	69
			Ma	zatlan				
0-5	. 27	004	0.7	72	22	004	I.4	62
Over 70		.012	0.5	77	29	.004	01	58
			Ν	ferida				
0-5	. 31	.004	0.2	100	28	.016	-0.5	112
Over 70		.000	0.5	94	16	.012	-0.2	108
			Mex	ico City				
0-5	- 55	.000	0.4		-47	.004	-0.2	119
Over 70		.000	0.2	57	44	.004	0.2	80
			Mo	nterey				
0-5	. 31	.012	—1.б	100	26	.012	I.I	93
Over 70		.012	0.2	90	21	.016	0.0	71
			0	axaca				
0-5	12	.00.1	0.2	III	8	.024	04	79
Over 70		.000	0.7	57	23	.004	I.2	122

33

						Summer h		
Sun-spot number	Cases	Press. inches	Temp., °F.	Precip.,	Cases	Precip., inches	Temp., • F.	Precip., %
			West	INDIES				
		Christ	tiansted,	Virgin 1	Islands			
0-5	49		0.0	107	43		0.0	105
Over 70	24		-0.2	105	29	• •	0.2	89
		F	Iamilton	, Bermu	da			
0-5	34	001	0.1	111	32	00I	-0.3	101
Over 70		004	0.8	101	37	.010.	0.0	95
		Po	ort-au-P	rince, H	aiti			
0-5	37			100		—.006	0.0	94
Over 70		.004	0.7	90	37	00 I	0.5	101
		Sa	n Juan,	Porto F	Rico			
0-5	30	.002	0.4	106	27	.003	0. I	112
Over 70		.01I	0.8	89	23	002	0.0	90
			Colon,	Panama				
0-5	27	00 I	0.5	85	22	.003	0.6	88
Over 70	12	.01.4	—o.ð	89	17	001	0.3	104

It is seen from the charts in figure 4 that, with very high sum-spot numbers in winter, the pressure averages above normal over the larger part of Alaska and Canada. It averages below normal over southern Alaska and the Aleutian Islands, over the Great Lakes, and along the Atlantic coast of North America. It averages colder than normal over practically the whole of Canada and the United States, and warmer than normal in Mexico, and along the Gulf Coast of the United States. The low pressure over the Great Lakes probably endures only so long as the lakes remain unfrozen.

In summer, with very high sun-spot numbers, the pressure averages low in northern Canada, and the temperature averages above normal. High pressure is found along the North Pacific coast, and to the north of Newfoundland. A second area of low pressure is found in the Gulf States of the Uhited States. With very high solar radiation, as in July, 1917, these two areas of low pressure in Canada and the United States unite to form one. The temperature averages lower than normal over the larger part of the United States.

With high sun-spot numbers in winter, the average precipitation is in excess over nearly all of Canada and Alaska. The greatest excess is found on the North Pacific coast. It is in defect over the eastern and southern part of the United States, and over Mexico. In summer, the average rainfall is in defect over Canada and the western part of the United States, and in excess over Alaska, the North Atlantic and Gulf States of the United States, and in Central America.

The distribution of the average departures from normal with very low sun-spot numbers is shown in figure 5. It is seen that the pressure in winter averages low over northern and eastern Canada, and the temperature averages above normal. The pressure averages high on the Pacific coast, and over the United States west of the 85th meridian : while the temperature averages below normal in the central and eastern United States. The precipitation averages below normal over Canada and the northern United States, and in excess over a large part of the southern United States, in eastern Mexico, and in Central America. In summer, it averages dry in the central United States, and wet along the Gulf coast, and in southern Canada.

# 4. THE ANNUAL MARCH OF WEATHER EFFECTS DEPENDING ON SOLAR VARIATIONS

In order to determine more accurately the character of the annual period in the relation of sun spots to weather, the means of the departures from normal of pressure, temperature, and precipitation

		Sun spo	ts over 50			Sun sj	oots o-5	
Month	Cases	Mean press., inches	Mean temp., °F.	Mean precip.,	Cases	Mean press., inches	Mean temp., ° F.	Mean precip.,
			Da	wson				
Jan	6	.172	—3.I	96	9	017	-1.5	93
Feb	7	.044	— I.I	IIO	8	.031	4.9	122
Mar	10	.0.43	—I.I	103	7	.091	I.O	90
Apr	7	009	1.7	66	9	.010	3. I	115
May	5	012	-0.3	125	7 8	IIO.	-0.3	76
June	5 8	010.	0.5	120 87	8	.035	0.0	79
July	8	—.019 —.010	0.3	07 107	10	.038 .039		102 02
Sept.	7	037	0.5	107	0	.039	0.3	92 82
Oct	9	.013	0.6	101	9	016	4.1	73
Nov	6	0.40	0.4	88	9	.032	-0. I	80
Dec	7	.073	-4.6	100	8	003	0.I	121
Year		.018	-0.6	100	IOI	.024	0. I	94
			Princ	e Albert				
Jan	IO	.098	-4.5	100	18	—.016	0.4	95
Feb		.028	0.9	62	15	.017	0.2	89
Mar		030	I.4	100	17	.035	0.I	108
Apr		008	0.6	110	19	.005	0.6	92
May		002	0.4	96	16	012	0.5	122
June		003	0.0	86	17	.008	0.5	102
July		.019	0.3	84	15 16	.005	0.4	121
Aug		010.— 010.	0.8 0.2	111 83	16	.006 .003	-0.4 -0.5	127 116
Sept Oct		.010	—I.I	102	10	.003	-0.5	80
Nov		008	2.6	59	18	.010	0.1	107
Dec	11	.033	-3.5	95	16	015	2.6	78
Year		.011	-0.2	91	202	.004	0.2	104
			St.	Paul				
Jan	14	.02.1	2.6	87	22	.003	0.2	103
Feb.		005	0.0	115	19	.015	0. I	72
Mar		014	0.0	111	21	.004	-0.9	51
Apr		.001	I.0	110	24	002	0.4	91
May	12	015	I.O	126	20	.000	0.4	85
June		.000	0.4	91	21	I 00.	0.0	98
July		.002	-0.8	10.4	20		. 0.4	83
Aug		,004	0.8	III	21	012	-0.4	96
Sept		007	0.0	106	21	.009	-1.2	107
Oct.		005	-0.2	103	24	.000	0.2	100 88
Nov.	13	004	-0.5	101	23	.003		88 108
Dec	12	001 002		92 105	22 258	.007 .022	0.0 0.0	94
1 cal	100	002	-0.7	105	-50	.022	0.0	94

# TABLE 7.—The annual period in the influence of sun spots on pressure, temperature, and precipitaition

	iemp		s over 50	e ipitation	(00110	Sun spo	ots o-s	
			·			Mean	Mean	Mean
		Mean press.,	Mean temp.,	Mean precip.,		press.,		precip.,
Month	Cases	inches	°F.	%	Cases	inches	° F.	%
			El	Paso				
Jan	12	.004	-0.3	118	18	.014	0.5	73
Feb		.009	0.6	100	15	007	0. I	143
Mar		.000	0.5	84	18	003	0. I	83
Apr		005	0, I	86	20	.006	-0.I	110
May		003	-I.2	200	16	,006	0.9	66
June	14	.005	0.6	51	17		0.I	134
July		,002	0.4	95	15	001	0.3	95 89
Aug		.007	0.6	125	16	.008	0.8	
Sept		001	-0.2	94	16	003	0.4	104 82
Oct		.004	0. I	109	19	005	0.4	100
Nov		.015	-0.4	130	18	.002 .012	0.3 0.3	65
Dec		.003	-0.3	118	17	.012	0.3	97
Year	177	.002	0, I	106	205	.001	0.3	97
			Cha	rleston				
Jan	т 4	005	0.8	106	22	.008	0.4	105
Feb.	18	013	I.I	98	19	014	0.0	94
Mar	19	00I	0.2	107	21	014	0.8	102
Apr.	17	015	0.4	85	24	.000	0.2	120
May		003	0.5	86	20	.008	0.4	118
June		002	0.3	IIO	21	.00I	0.2	106
July		002	0.6	100	20	.007	0.6	92
Aug		003	0.4	96	21	003	0.4	80
Sept		003	0.I	97	21	.000	0.2	95
Oct		.012	0.8	8.4	24	012	0.3	107
Nov		.015	-0.5	106	23	013	0.4	104
Dec	12	100,	0.6	105	22	100.	0.7	109 103
Year	188	—.00I	0.2	98	258	003	0.1	103
			В	oston				
Jan	14	.014	-1.2	110	22	014	I.I	102
Feb	- i	013	0.9	103	19	023	0.5	90
Mar		020	-0.8	79	20	010.	0.2	109
Apr.		<u> </u>	-0.8	98	24	.003	0.I	112
May		026	0.5	107	20	.012	0.3	85
June		.028	-0.2	119	21	013	0.2	92
July		.002	0.I	95	20	.007	0.4	108
Aug		002	0. I	109	21	007	0.1	106 89
Sept		007	0.3	128	21	800.	0.3	- 09 98
Oct		II0.	-0.9	97	24	012	-0.4	106
Nov		.014	-1.6	79	23	021	0.0	100
Dec	. 12	004	2.2	105	22	002	0.3 0.1	105
Year	. 188	002	-0.7	102	257	004	0,1	100

 

 TABLE 7.—The annual period in the influence of sun-spots on pressure, temperature, and precipitation (continued)

 were computed for each of the twelve months of the year, at a few widely scattered stations in North America. The results are given for high and low sun-spot numbers in table 7.

The means in table 7 show clearly that there is an annual period, and a semi-annual period, in the relation of sun spots to weather. Throughout the continental part of Canada and the United States the greatest plus departures of pressure, and the greatest minus departures of temperature, occur in December or January with high sun-spot numbers, and there is a tendency toward the opposite departures in summer. There is, however, evidently a semi-annual period combined with the annual in which the highest pressures and lowest temperature tend to occur in December-January and June-July, and the opposite about March and September. With low sun-spot numbers the trend is in the opposite direction, but is not so marked. These periods could be brought out more clearly by harmonic analysis or by numerical smoothing.

### 5. SUMMARY OF PRECEDING RESULTS

The results of these studies indicate that there is a real relation between weather conditions and the monthly means of solar radiation and monthly sun-spot numbers, but in the average the amounts of the changes in pressure, temperature, and precipitation are not large. Either there are large disturbing causes, or, as seems more probable, the phase of the effect is not constant at any one place, being sometimes positive and sometimes negative according to some law not yet fully disclosed.

## 6. THE ELEVEN YEAR SUN-SPOT PERIOD AND OTHER PERIODS IN WEATHER PHENOMENA

To anyone who examines the meteorological records, it is evident that there is no sharply defined eleven-year period in the weather elements in any part of the world. Sir Gilbert Walker computed correlation coefficients between the annual pressures and temperatures in various parts of the world and the annual sun-spot numbers. He found a systematic distribution of the positive and negative coefficients over certain areas, but no high correlations.

Plots show that the weather elements are much more variable than the sun spots. There is a two to four-year oscillation in the weather, which is not evident in the sun-spot curve. In order to compare the two, it is necessary to eliminate the short period oscillations, just as it is necessary to eliminate the oscillations due to ordinary waves on the surface of the ocean, in order to study the tidal oscillation due to the moon. This elimination is effected in a certain type of tiderecording machine by means of a small opening which does not permit the water to enter and leave fast enough to record the rapid fluctuations, but responds to the slow rising and falling of the tides. An analogous result may be obtained by the numerical process of smoothing recorded observations, a method which is frequently used in meteorological research.

It is difficult to determine in advance the amount of smoothing of the annual meteorological means needed in order to compare them with annual sun-spot changes; but, from a study of the plotted curves, I decided that three-year means would eliminate the most striking of the short-period oscillations. Accordingly, I computed overlapping three-year means of pressure for a large number of stations scattered over the world, and computed correlation coefficients between the mean pressures and the annual sun-spot numbers for the length of time covered by the records in each case. Coefficients were computed for the same year, and for one, two, and three years following the sun-spot observations, in order to ascertain whether any lag occurred in the relation with the meteorological changes.

These computations were begun a number of years ago when I was in Buenos Aires and I was materially assisted by Mr. Nils Hessling in their preparation. The results are given in table 8. The first two columns give the position of the stations, and the third the number of years of observation. It is seen from this table that at many of the stations the highest correlation coefficients were found for the same year as the sun-spot observations, while at others there was a lag of one year; but at no station was there an indication of a lag greater than one year. The results for the year of the sun-spot observations are plotted in figure 6, in which lines are drawn indicating areas of 0.50 or more correlation, and of zero correlation. The continuous lines inclose areas of positive correlation, and broken lines inclose areas of negative correlation.

It is seen that in the equatorial belt there is a large area where the negative correlations exceed -0.50, extending from western Brazil across Africa and the Indian Ocean and out into the Pacific. Within this area there are found negative correlations of -0.59 at Cuyaba, -0.59 at Quixeramobim, of -0.61 at Recife, Brazil, of -0.54 at Zanzibar, Africa, of -0.54 at Bombay, and -0.88 at Singapore. The high positive correlations are found within the areas of normal high pressure in temperate latitudes; with coefficients of 0.60 at Sydney,





		,	No. of	Yea obs.	rs followi	ng ots
Places	Lat.	Long.	years	0	I	2
North America:						
Victoria, Canada Winniper, Canada	48° 24' N.	123° 19' W.	18 41	-0.11 +0.22	+0.11 + 0.18	0.0.1
Winnipeg, Canada Toronto, Canada Montreal, Canada	43° 29' N.	97°7'W. 79°23'W.	69	+0.03	0.00	
Montreal, Canada	45° 30' N.	73° 35' W. 60° 10' W.	42	+0.31		+0.11
Sydney, Canada Helena, U. S. A	46° 10' N.	112° 4' W.	32 36	+0.60 0.16		-0.03
Helena, U. S. A Duluth, U. S. A	46° 47' N.	02° 6' W.	45	0.02	-0.30	-0.30
Denver, U. S. A Washington, U. S. A.	39° 45′ N.	105° o' W.	38	-0.17 -0.38	-0.06 +0.20	+0.05
Nashville LL S A	20 IO N	105 ° 0 W. 77° 3' W. 86° 47' W. 117° 10' W. 94° 50' W. 88° 2' W. 81° 49' W. 90° 9' W.	38 38	+0.10		 0.10
San Diego, U. S. A.	32° 43′ N.	117° 10' W.	38	+0.10	+0.21	+0.33
Galveston, U. S. A Mobile U. S. A	20° 18' N. 20° 41' N	94° 50' W. 88° 2' W	38 45	+0.41 +0.02	+0.51 +0.15	+0.49 +0.30
Mobile, U. S. A Key West, U. S. A. Mexico, Mex	24° 34' N.	81° 49' W.	38	+0.35	+0.43	+0.44
Mexico, Mex	19° 26' N.	99° 8′ W.	32	+0.25	+0.13	• • • • •
North Atlantic:						
Jacobshaven	69° 13' N.	51° 2'W.	45	+0.24	+0.18	
Godthaab Beruford	$64^{\circ}$ 11' N.	51° 46' W. 14° 19' W.	33 43	+0.35 0.15	+0.21 0.10	-0.03 -0.12
Stykisholm	05" 5" N.	22° 46' W.	61	0.12	-0.19	-0.24
Bernuida	22 18 N	22° 46' W. 64° 47' W. 25° 41' W. 76° 42' W.	23	0.09	-0.06	
Ponta Delgada Jamaica	$37^{\circ} 45^{\circ} N$ . $18^{\circ} 6' N$	25 41 W.	39 17	+0.19 0.28	+0.25 -0.19	+0.13
Barbadoes	13° 8' N.	59° 40' W.	21	+0.33	+0.40	+0.28
Europe:						
37 1"	70° 22' N.	31° 8′ E.	45	+0.04		+0.43
Tromso	69° 39' N.	18° 58' E.	45 32	+0.14 -0.00		+0.17 +0.19
Petrograd	$50^{\circ} 56' \text{ N}.$	40° 32′ E. 30° 16′ E.	56	+0.23		+0.19 +0.31
Vardo Tromso Archangel Petrograd Moscow Valencia	55° 46′ N.	37° 40′ E. 10° 15′ W.	36	+0.02	+0.07	+0.27
Valencia Greenwich		10° 15' W.	39 56	0.22 0.00		0.22 0.25
Lisbon Perpignan	. 38° 43' N.	9° 9′ W. 2° 53′ E.	54	-0.23	-0.22	
Perpignan	. 42° 42′ N.	2° 53′ E.	51 60	0.21 +0,16	0.22	0.19
Basel	$.47^{\circ} 33^{\circ} N.$ $.48^{\circ} 15' N.$	7° 35′ E. 16° 21′ E.	58	+0.13	-0.10	
Athens	. 37° 58′ N.	23° 43′ E.	46	+0.10	+0.24	+0.12
Asia:						
Flaterinhurg	. 56° 50′ N.	60° 38′ E.	53	+0.34	+0.28	
Barnaul	. 53° 20 IN.	60° 38′ E. 83° 47′ E. 92° 6′ E.	53	-0.06 +0.51		-0.20 +0.19
Yeniseisk Nertchinsk	51° 10' N.	92° 6′ E. 119° 37′ E. 29° 3′ E.	35 50	+0.01 +0.05	+0.19 +0.17	
		29° 3′ E.	40	+0.31	+0.28	
Taschenkut	. 45° 21' N.		35 37	+0.26 0.02		—0.01 
Taschenkut Tokio Nagasaki	· 32° 44' N.	32 29 E. 139° 45′ E. 129° 51′ E. 50° 49′ E. 119° 6′ E.	28	+0.32	+0.14	0.II
		50° 49′ E.	30	-0.25 +0.04		
Hong Kong	22° 18' N.		35 26	+0.04		
Agra	. 27° 10 N.	78° 5' E. 45° 3' E.	37	0.00	0.03	0.11
Aden Bombay	. 12 ⁻ 45 IN	45° 3′ E. 72° 49′ E.	27 65	0.18 0.54	0.11 0.61	0.52
Dombay	. 10 54 14.	12 49 14	0,5	0.04		5-

# TABLE 8.—Coefficients of correlation between sun spots and atmospheric pressure (means of 3 consecutive years)

41

.

			No.		rs followi	
Places	Lat.	Long.	of years	0	I	2
Asia (continued):						
Calcutta Madras Rangoon Colombo Batavia	22° 32′ N. 13° 4′ N. 16° 46′ N. 6° 56′ N. 6° 11′ S.	88° 20' E. 80° 14' E. 96° 12' E. 79° 52' E. 106° 50' E.	57 70 36 42 43	0.41 0.45 0.27 0.51 0.49	0.47 0.16 0.63	0.43 0.34 0.58 0.46
North Pacific: Honolulu	21° 18' N.	157° 50' W.	33	+0.11	+0.35	0.23
South America: Quixeramobim Recife Cuyabá Rio de Janeiro Santiago Córdoba Buenos Aires Punta Arenas	12° 54' S. 15° 36' S. 22° 54' S. 33° 27' S.	$\begin{array}{c} 39^{\circ} \ 15' \ W. \\ 34^{\circ} \ 52' \ W. \\ 38^{\circ} \ 24' \ W. \\ 56^{\circ} \ 6' \ W. \\ 43^{\circ} \ 10' \ W. \\ 64^{\circ} \ 12' \ W. \\ 58^{\circ} \ 22' \ W. \\ 70^{\circ} \ 54' \ W. \end{array}$	23 29 17 17 57 51 42 42 31	$\begin{array}{r} -0.30 \\ -0.61 \\ -0.14 \\ -0.59 \\ -0.29 \\ +0.52 \\ +0.26 \\ +0.26 \\ +0.12 \end{array}$	$\begin{array}{c} -0.59 \\ -0.56 \\ -0.40 \\ -0.52 \\ -0.16 \\ +0.60 \\ +0.47 \\ +0.03 \end{array}$	$-0.50 \\ -0.36 \\ -0.35 \\ +0.52 \\ +0.39 \\ +0.48 \\ +0.03$
South Atlantic: St. Helena South Georgia Orcadas	15° 55′ S. 54° 14′ S. 60° 42′ S.	5° 43' W. 36° 33' W. 44° 42' W.	23 15 18	-0.18 + 0.83 + 0.43		-0.17 +0.17 +0.33
Africa: Abassia Zanzibar Durban Cape Town	30° 5′ N. 6° 10′ S. 20° 51′ S.	31° 17′ E. 39° 11′ E. 30° 30′ E. 18° 29′ E.	40 30 32 61	0.21 0.54 0.17 0.60	0.15 0.37 0.10 0.67	-0.10 -0.05 -0.52
Indian Ocean : Singapore Mauritius	1° 15′ N. 20° 6′ S.	103° 51′ E. 57° 53′ E.	34 37	0.88 0.27		0.43 0.41
Australia : Port Darwin Carnarvon Perth Albany Adelaide Sydney (N. S. W.). Hobart	24° 54′ S. 31° 57′ S. 35° 2′ S. 34° 57′ S. 33° 52′ S.	130° 51′ E. 113° 39′ E. 115° 52′ E. 117° 52′ E. 138° 35′ E. 151° 12′ E. 147° 20′ E.	30 26 27 33 55 53 29	$\begin{array}{r} -0.39 \\ -0.17 \\ -0.30 \\ -0.13 \\ -0.53 \\ -0.10 \\ -0.17 \end{array}$	0.45 0.39 0.19 0.19 0.58 0.17 0.15	0.52 0.17 0.45 0.21 0.14
South Pacific : Apia	13° 48′ S.	171° 46' W.	36	+0.16	+0.22	+0.21

# TABLE 8.—Coefficients of correlation between sun spots and atmospheric pressure (means of 3 consecutive years) (continued)

Canada, of 0.51 at Yeniseisk, Russia, of 0.52 at Santiago, Chile, and of 0.83 at the South Georgias; but the observations at the latter station cover only a short period, and the coefficient will probably be lower for a longer interval. These correlations are large enough to be significant, and indicate that the eleven-year period is of sufficient importance to be considered in the long-period changes in certain regions. There are areas of negative correlation in the North Pacific, in the region of the Great Lakes, and in the North Atlantic near Iceland; but the correlation coefficients are not high.

If the annual means of pressure are examined at stations near the same latitude north and south of the equator, similarly situated in relation to the belts of positive and negative correlations outlined in



FIG. 7.-Mean annual atmospheric pressure.

figure 6, it is found that the annual pressure changes show a striking similarity. This similarity is illustrated in figure 7 by a comparison of the annual means of pressure at Buenos Aires and San Diego. The similarity of the pressure changes at these widely separated stations, in opposite hemispheres, is evidence that the pressure changes are controlled by world*-wide conditions, and not by local causes.

In the United States and Canada, the correlation of the sun spots with the three-year means of pressure is not high, and in order to study in what way the long-period changes in this part of the earth were related to solar changes, the three-year means of pressures, for a large number of stations, were plotted and compared with the sun-spot curve.

Figure 8 shows a plot of the three-year means of pressure at Chicago and St. Louis, and also a plot of the three-year means of summer rainfall at Cordoba, Argentina, which shows that after 1887, at least, oscillations of the same nature were taking place in both hemispheres. Preceding 1887, the Cordoba oscillation was inverted to the northern one.

At Chicago there were maxima of pressure in 1889, in 1900, in 1912, and in 1921, which approximated to an eleven-year period inverted to the sun-spot curve. But there are also other maxima showing a combination of the eleven-year period with oscillations of another order. These secondary maxima come out more strikingly at St. Louis. Ey referring to figure 6 it is seen that St. Louis is near a line of zero



FIG. 8.-Three-year means of pressure and rainfall.

correlation with sun spots. The maxima of pressure at St. Louis are nearly equally spaced, and the time interval between the maxima appears to be about one-third of a double sun-spot period, or of an interval of 22.5 years, which Hale now inclines to believe is the real sun-spot period. Maxima of pressure at St. Louis coincided with minima of sun spots in 1889 and in 1913; but, instead of there being one intervening maximum, there were two maxima. These facts lead to a consideration of oscillations of pressure in the atmosphere which are harmonics of the sun-spot period.

When annual means of pressure are plotted, they show that the eight-year period tends to divide into two periods of about four years, of unequal strength, so that alternate maxima are higher. Sir Norman Lockyer was one of the first to call attention to this period of about

four years, suggesting that it was a fraction of the sun-spot period, and was connected with similar changes in the amount of the prominences on the sun. F. H. Bigelow arrived at a similar conclusion in investigating the weather changes of the United States, and called attention to other periods which were fractions of the sun-spot period. Sir Napier Shaw in his book on "The Air and its Ways," p. 176. shows that the yield of wheat for England may be represented from 1885 to 1905 with remarkable fidelity by a combination of six harmonic terms of an eleven-year period. Dinsmore Alter has recently made an extensive study of periodicity in various parts of the world, and arrives at the conclusion that most of the periodic terms are harmonics of the sun-spot period, which he puts at 22.5 years.

Evidence that there are harmonic oscillations of weather in short periods was given by me in the American Journal of Science, March, 1894, and the Meteorologische Zeitschrift, 1895, p. 22. Recently Otto Myrbach has accumulated data bearing on the same point. (Ann. d. Hydr. u. s. w., 1926, Vol. IV.) The researches of Clough lead to somewhat similar conclusions.

This is a subject demanding further research in order to explain how these periodic oscillations arise, why they vary in intensity from time to time, and to determine whether they are related to solar changes of the same kind. It is not yet certain that the eight-year period, for example, is simply one-third of a 22.5-year period, or an harmonic of a much longer period, for there appear to be periodic oscillations of about 2 years, 4 years, 8 years, 16 to 18 years, and 33 to 35 years, which may be parts of one series.

The period of about two years was very marked in the United States during the years 1874 to 1881, when I made an investigation of it. The oscillations are shown in figure 9, reproduced from the American Meteorological Journal of August, 1884. The continuous curves in this diagram were plotted from the progressive averages of successive twelve monthly means of pressure, at several stations in the United States. The curves show an oscillation slightly longer than two years, with a long period swing indicated by the dotted curves.

The departures of the means of 12 months from the means of two years at these four stations, together with those from eight other stations treated in the same manner, furnished the data for the charts in figure 10. The lines in the charts show the departures at the time of the minimum of the period in the central United States (see plot for St. Paul, in figure 9). The broken lines show values below normal for each .010 inch, and the continuous lines show values above normal of the same amount. The charts show that the center of the greatest minus departures which was near Chicago in December, 1875, had moved westward to North Dakota in March, 1880, and the



FIG. 9.—Twelve months means of pressure showing oscillations of pressure of slightly over two years duration. (See plot for St. Paul.)

phase of the period had inverted at eastern stations. This is an important fact; for it becomes evident that in investigating these periodic oscillations, one must consider the progressive motion of these centers, and study not merely single stations where the phase of the period is likely to invert, but must deal with a network of stations covering a large area, the whole world if possible.

## 7. FORECASTS OF NEW YORK TEMPERATURE FOR FIVE DAYS IN ADVANCE

The forecasts of temperature for New York for three, four, and five days in advance were continued during 1925 up to December 1, which thus completed two full years.¹ These forecasts were based on observed solar conditions, in combination with the temperatures observed at two or three stations in the United States.

The forecasts for five days in advance were selected for verification, because, in my opinion, it is impossible to forecast successfully daily temperatures so far in advance, without the aid of solar conditions. The correlation of the daily departures from normal temperature at New York, with similar departures at western stations in the United States, five days earlier, give correlation coefficients of practically zero, as determined from observations covering several months.

The verifications were made as in the preceding year by means of averages. As agreed on in advance with Dr. Abbot, predictions of five degrees above normal were to be considered forecasts of high temperature, those between +4 and -4 were to be considered normal, and those below minus five degrees were to be considered forecasts of low temperature. The forecasted temperatures for five days in advance, during the year ending December 1, 1925, were divided into these three classes, and the average departures of the maximum temperatures from normal on the days for which the forecasts were made are as follows:

#### Temperature

Forecasted	No. of cascs	Mean observed
High	59	+2°.1
Normal	188	+0.5
Low	#83	0.1
Difference		2.2

The difference between the mean temperature following forecasts of high temperature and that following forecasts of low temperature is 2°2 F. in the right direction, and with the mean observed value for normal predictions standing intermediate. The magnitude of this difference is, I think, a measure of success. If the forecasts had been without any basis, this difference would have been near zero; if perfectly successful, it would have been nearly four times as large.

¹ See Smithsonian Misc. Coll., Vol. 77, No. 6, 1925, pp. 54-59.



FIG. 10.—Centers of greatest minus departure in period of slightly over two years, showing movement of the centers of oscillation.

The forecasted temperatures for five days in advance, and the observed temperatures from July 10 to September 3, are shown by means of plots in figure 11. These curves fairly indicate, I think, the character of the successes and failures. In some cases the observed maximum or minimum of temperature occurred a day later, or a day earlier, than predicted, and in one or two cases the expected rise or fall of temperature did not occur; but in most cases there was a peak or depression of temperature at or very near the times forecasted. The breaks in the dotted curve representing the forecasts were due to Sundays when no forecasts were made.



FIG. 11.—The temperature at New York as forecasted five days in advance and the observed values.

### 8. REPLY TO CRITICISM

In preceding papers of this series a large amount of evidence was presented to show that there are systematic and opposing variations in the weather conditions in different parts of the world, correlated with variations in solar radiation, as measured by the Astrophysical Observatories of the Smithsonian Institution. Recently, however, Prof. C. F. Marvin, Dr. H. H. Kimball, and Mr. H. W. Clough have raised the question whether the apparent solar variation may not be due largely, if not entirely, to errors of observation, (Monthly Weather Review, 1925, Vol. 53, pp. 285, 303 and 343.) Fortunately, the maintenance of two observing stations by the Smithsonian Institution permits a determination of the relative values of the varia-

bility, as compared with the probable errors of observation, to be made with great accuracy, provided that the two stations are independent of each other.

(a) Tests of the reality of solar variation based on numerical analysis.—In comparing solar and meteorological data, my first work dealt with observed values of solar radiation from Mt. Wilson, California, later with those from Calama, Chile, and finally with the combined observations from Montezuma, Chile, and Harqua Hala, Arizona. In order to compare the observations at Calama and Mount Wilson, I arranged the observations at Calama in a series of steps separated by 0.010 calorie, as shown in table 9, and for each class at Calama counted the frequency with which simultaneous values occurred in different classes at Mount Wilson.

TABLE 9.—Comparison of Solar Radiation Measurements at Calama, Chile, and Mount Wilson, Calif., Years 1918-1920

Values at Calama	1.920-9	1.930-9	I.040-9	1.950-9	1.960-9
Simultaneous values at Mount Wilson:					
I.900-9	I	I	0	0	0
1.910-9	4	I	I	2	0
I.920-9	3	3	I	2	I
1.930-9	0	4	8	3	0
I.940-9	I	I	5	8	I
1.950-9	I	4	2	7	3
1.960-9	I	0	I	6	3
1.970-9	I	0	Ι	0	I

If there were no relation between the measurements at the two stations the observations would be scattered through the different classes at random. The tabulation shows that this is not the case, but that for each group of observations at Calama there is a maximum occurrence near the same value at Mount Wilson, and a progressive displacement of the maximum frequency, as the solar radiation values increase from 1.920-9 to 1.960-9. The most natural conclusion is that the observers were measuring the same phenomenon, and that this phenomenon showed a range from grade 1.920-9 to 1.960-9, or more than two per cent of the mean solar radiation value. There was no marked secular change during this interval, so that the whole of this variation is attributable to short-period changes. The fact that the maxima tended to come at a slightly lower level at Mt. Wilson shows that there was some constant difference in level between the two, which may well have been due to a difference in the calibration of the instruments, or other similar cause,

The scatter of the observations on each side of the maximum frequency is a measure of the errors of observation. In order to determine the probable error of the observations, I obtained all the differences between the pairs of simultaneous observations, 110 in all, and found that they were distributed as shown in table 10.

 TABLE 10.—Distribution of the Differences in Solar Radiation Values

 Observed Simultaneously at Calama and Mt. Wilson

Mean difference, thousandths of															
a calorie	-70	60	50	40	-30	-20	-10	0	10	20	30	40	50	60	70
Frequencies	I	I	0	3	4	13	23	28	14	6	4	4	6	0	3

In counting the number of observations for -10, for example, all the observations between -6 and -14 were used; for zero, all the observations between -5 and +4 were included; and for +10 all

 TABLE 11.—Comparison of Solar Radiation Measurements at Montesuma and

 Harqua Hala, Years 1920-1924

Values at Montezuma	1.890-1	1.900-9	1.910-9	1.920-9	1.930-9	1.940-9	1.950-9	1.960-9
Values at Harqua Hala	a:							
1.870-9	I			I	I			
1.880-9			I	I	I			
1.890-9	3	2	I	6				
1.900-9		3	ΙI	IO				

1.900-9	 •••	3	11	10	• •	• •	• •	• •
1.910-9	 I	5	20	21	10	4	2	
I.920-9	 I	10	18	35	18	4	2	I
1.930-9	 1	4	7	23	25	3	8	
I.940-9	 		4	5	II	10	8	3
1.950-9	 I		• •	3	6	8	6	3
1.960-9	 				3	3	I	2
1.970-9	 				• •	••	3	I

observations between  $\pm 5$  and  $\pm 14$  were taken. As the distribution of these numbers evidently follows the normal law of distribution of errors of observation, they were reduced to percentages, and a curve of best fit was drawn through them. From this curve the probable error of the differences is found to be  $\pm 0.0121$  calorie. Since this value is made up by the combined errors of observation at Mt. Wilson and Calama, the probable error at one station is  $\frac{0.0121}{\sqrt{2}}$ , which gives a value of  $\pm 0.0086$  for the observations at one station, assuming the errors at the two stations to be equal. Or if we assume, as is probable, that they were somewhat larger at Mt. Wilson, we may take the probable error there as  $\pm 0.010$ , and at Calama, 0.007. The probable error obtained in the usual way from the mean square of the differences also gives  $\pm 0.009$  as the probable error at one station. Turning to the more recent measurements at Montezuma, in northern Chile, and Harqua Hala, in Arizona, for the interval from October, 1920, to November, 1924, table 11 gives for each class of observations at Montezuma the frequency of occurrence of different values at Harqua Hala.

In forming this table all "unsatisfactory" values were discarded except where they were marked U+.

When observations were made in one grade at Montezuma there was a maximum frequency in exactly the same grade at Harqua Hala from 1.890 to 1.970, excepting in grades 1.900-9, 1.950-9, and 1.960-9, where there were only slight displacements. There seems but one explanation of this fact, namely, that the two observers were measuring changes in solar radiation, which progressed from 1.890 to 1.970. This difference is equivalent to a change of four per cent. The scatter of the observations indicates errors of measurement. The number of observations in each grade between 1.910 and 1.950 is sufficiently great, so that they can be converted into percentages, and normal curves of error drawn through them.

These curves are shown in figure 12. From these plots the probable error of the measurements in each grade was determined.

The results agree very closely in each grade in giving a probable error of approximately 0.0085 calorie. This is the combined errors of the measurements at both stations, and needs to be divided by  $\sqrt{2}$  to give the probable error at each individual station, which is thus found to be 0.006. This value agrees very closely with Dr. Abbot's value of 0.0065 found from the whole mass of observations.

In my paper in the Smithsonian Miscellaneous Collections, Vol. 77, No. 6, p. 2, it is shown that the observed probable solar variability from July, 1918, to September, 1922, was  $\pm$ 0.011. That is, there were as many deviations from the median value exceeding that amount as there were below it. But the observed probable solar variability is determined by the combined effect of the true probable solar variability and the probable errors of observation. Having obtained the probable error of the observations, as shown above, I think that we are in a position to compute the true probable solar variability. Let tv represent the true probable solar variability, and  $\pm$ 0.001 is the observed probable solar variability, and  $\pm$ 0.006 the probable error of the observations, we have:

$$(tv)^{2} + (0.006)^{2} = (0.011)^{2}$$
  
 $tv = 0.0002$ 



FIG. 12.—Frequency of occurrence of different values of solar radiation at Harqua Hala corresponding to simultaneous observations at Montezuma.

The arithmetical mean variability of true solar observations, unaffected by accidental error, for the interval July, 1918, to September, 1922, would therefore be:

# $\frac{0.0092}{0.845} = 0.0109$ calorie

(b) Other confirmations of the probable reality of the solar radiation variations reported by the Smithsonian Institution.-In addition to the comparison of observations at two stations, there are the following evidences of solar variation furnished by various classes of researches and by different types of workers. From measurements with the bolometer. Dr. Abbot has found that when the solar radiation increases, the ratio between the intensity of the short-wave radiation and the long-wave radiation increases. This is in accord with the well-known fact that when a body increases in temperature the proportion of short-wave radiation increases, so that the body becomes first red, then yellow, and finally blue, as the temperature continues to rise. Recently Dr. Pettit of Mt. Wilson, by spectroscopic means has measured the relative intensity of solar radiation in the green and ultra-violet. This ratio shows a wide variability of something like 80 per cent, which he has correlated with changes in the mean monthly values of solar radiation, finding a high correlation between the two.¹

Dr. L. A. Bauer has found a close relation between the mean annual interdiurnal variability of solar radiation and certain magnetic effects, which for the years 1919 to 1924 give a correlation reaching 0.97.^a

I found in an average of 200 cases that there is a sharp maximum of solar radiation coinciding with the times of maximum of faculæ on the sun, as shown by the published observations of the Greenwich Observatory. For the months of April to September of the years 1918-1921 there were 121 cases, and the mean maximum of solar radiation varied from the mean value of preceding and following days to the extent of nine times the probable error of the mean.

I found also that there was a marked depression of solar radiation when sun spots and their attendant faculæ crossed the central area of the sun. In this case the depression of the mean solar radiation, below the mean of the values obtained when the spots were near the limb of the sun, was seven times the probable error of the means. These results agree with preliminary ones found by Dr. Abbot.

¹ Pub. Ast. Soc. Pacific, February, 1926, Vol. XXXVIII, No. 221, p. 21.

² Terrestrial Magnetism, December, 1925, Vol. XXX, No. 4, p. 205.

From March to May, 1920, Mr. F. E. Fowle found a high correlation between the flocculi crossing the central disc of the sun and simultaneous solar radiation values.

From results on days of nearly equal atmospheric conditions, Dr. Abbot has found that pyrheliometric observations alone confirm closely the variations in solar-constant values, and show close correlation with sun-spot numbers.¹

Other evidence might be cited, but those given seem sufficient to prove the reality of solar variability.

(c) Solar variability and weather: The reality of their correlation.—Granted solar variability, the question arises, are these variations correlated with terrestrial weather conditions more closely than could be explained by chance coincidence?

I used the observations at Mt. Wilson for a study of the correlation between solar radiation and pressure and temperature in Argentina. While Mt. Wilson values are less accurate than later ones, they are, as Dr. Abbot has said, useful in the form of means of many days.2 In one comparison, I took all of the highest values of solar radiation between the years 1909 and 1918, over 50 in number, and determined the average values of solar radiation for each of the 30 days following and for the five days preceding. Thus I formed a table of 36 columns having as many lines as high values. But owing to failures to observe on some days, all the columns contained gaps excepting the column for zero day. Thus the number of cases varied somewhat, but averaged about 35. I then obtained in a similar way averages of the temperatures for each of the corresponding days at Buenos Aires. After allowing an interval of three days for a lag in the effect, the mean temperature march showed a correlation of 0.66 with the mean march of solar radiation over the 36-day interval.

Exclusive of zero day, the mean values of solar radiation over the 36-day interval ranged from 1.930 to 1.952. As determined above, the probable error of a Mt. Wilson observation is 0.010 calorie. Hence, if there had been no real solar change, the probable variation of the mean of 35 values would have been  $\frac{0.010}{\sqrt{35}} = 0.0017$ . The observed range is hence more than 12 times the probable error of any of the 36 individual means.

For the year 1916 I correlated 10-day means of solar radiation with 10-day means of temperature at various stations in Argentina and

¹ Monthly Weath. Rev., May, 1926.

² Smithsonian Misc. Coll., 1925, Vol. 77, No. 5, p. 3.

obtained correlations exceeding -0.80 (in one case,  $-0.82 \pm 12$ ) between the 10-day mean temperature and the 10-day mean solarradiation values. The range of the mean solar-radiation values in this case is 0.032 gram calorie. Assuming an average of seven values for each 10-day mean, the probable error of such a mean is

 $\pm \frac{0.010}{\sqrt{7}} = 0.0038$ . Here the observed range in mean values is about nine times their probable error.

These computations may incline my critic in Nature of November 20, 1925, to view more favorably the reality of the relations of the solar changes to meteorological changes, which were among the results of my former papers.

(d) Revision of a former evidential result.—In computing the values given in table 8 of my paper "Solar Radiation and Weather" (Smithsonian Miscellaneous Collections, Vol. 77, No. 6, p. 27), I used observed maximum temperatures, but Mr. R. H. Weightman called my attention to the fact that the data were not distributed equally among the months, and for that reason the influence of the annual period was not eliminated, and the resulting differences were too large. To correct for this difference in level, I have in each case obtained the average of all of the mean values for the 15 days from two days before to 12 days after the day of solar observation, and deducted this average from each of the mean values. The residuals are given in the lines marked a, in table 12.

In order to eliminate the influence of the annual period in another way I recomputed the means. For this purpose I used the maximum temperatures given in the daily weather maps of the United States Weather Bureau for the 12 hours between 8 a. m. and 8 p. m. each day, and from these obtained the departures from the normals of the days on which the observations were made. These daily normals were derived from the monthly normals by interpolation, taking the monthly normal as the mean temperature of the 16th day of the month, except in February when the 14th day was used. Using the daily departures from normal thus obtained means were obtained for the interval from two days before to 12 days after high and low solar values.

The results show that, even after eliminating the annual period in this manner, the mean temperatures during the entire period covered by the observations were lower with high solar radiation than with low. This difference in level I attribute to long-period changes, and it was corrected for in the same way as described previously, namely, by getting the average of each set of mean values for the 15 days covered by the observations, and deducting this average from each of the mean values. The results are given in the lines marked *b* in table 12.



FIG. 13.—Mean differences between temperatures with high and with low solar radiation values, years 1918-1922.

The differences between the values accompanying high and low solar radiation are plotted in figure 13. The corrected differences by the first method marked a in table 12 are plotted with dotted lines. The means derived from the departures from normal temperature, marked b in table 12, are plotted with a continuous line. It is seen from the diagram that these two sets of mean values follow the same course. The minor differences arise largely, if not entirely, from a

few changes in dates in the revised data. These curves also are of much the same form as those shown in figure 19 of Smithsonian Miscellaneous Collections, Vol. 77, No. 6. The difference is largely a difference in level, brought about by a complete elimination of longperiod effects. The evidence of real weather changes depending on solar variation, and their lag as between different stations, remains unimpaired.

The maxima at New York occur later than at Winnipeg, and the maxima at both stations occur about three days later in summer than in winter. This lag between winter and summer probably results from a displacement of the centers of action. Allowing for the lag, and using the values b in table 12, the winter departures at Winnipeg show a correlation with the summer departures of  $0.87 \pm 0.07$ .

(c) Do the solar variation and weather correlations have permanency?—Another criticism of the results previously published is that investigations for successive periods of time were not made and compared. Such comparisons have, however, been made, but not hitherto published. Some of them are now given in tables 13 and 14.

Table 13 was computed several years ago, and gives a comparison of the mean temperatures at Buenos Aires following high values of solar radiation for two intervals, (1) for the years 1909 to 1918, and (2) for the years 1919 to 1920. They are for the winter half-year. Up to 1918 no solar radiation measurements were available for the summer half-year of the southern hemisphere. The results in table 13 show that the means of the departures of temperature for the two periods follow almost identical courses. The correlation between the two for the 13 days covered by the observations is  $0.73 \pm 0.09$ .

The work of Sr. Hoxmark and the researches of Sr. Julio Bustos Navarrete indicate that these influences of the solar radiation changes on the pressure and temperature of Chile and Argentina continue to the present time.

Table 14 was computed more recently, and shows for the winter half-year a comparison of the mean temperature at Winnipeg following high solar values for two intervals, (1) for the time July, 1918, to December, 1919, and (2) for the time January, 1920, to March, 1922. The values given in the table are departures from the average of the 11 days. The correlation between the two sets of values is high for the entire period of 11 days covered by the observations, but is highest for the interval o to 5 days, coinciding with and immediately following the maximum of solar radiation.

h	
~	
10	
4	
a	
S	
5	
p	
0	
2	
0	
್ಷ	
***	
t 0	
01	
ž	
f 0	
00	
2	
S	
g	
a	
0	
22	
4-3	
111	
0	
f	
~	
70	
22	1
te	:
.u	
20	
ţ	*
for	
f	•
5	
ures	
шĩ	
	1
ra	
pera	
24	
63	2
**	
<i>uumm</i>	
11	
X	
12	
a.	
M	
2	
12	
la	
0	
he	
**	
f	
0	
- 5	
+	
a	
0	
d	
12	
a.	
Me	
4	
0	
E 12.	
- 21	
B	
E.	
H	

Days $-2$ 1         Winnipeg $2$ $2$ $1$ New York $2$ $-1$ $-1$ New York $2$ $-1$ $-1$ Winnipeg $-1$ $2$ $0$ Winnipeg $-1$ $0$ $0$ New York $-1$ $0$ $0$ New York $-1$ $0$ $0$ New York $0$ $0$ $0$		1 1 2 radiation bel 0.5 0.5 0.6 0.5 0.5 0.5 1.5 0.5 0.9 1.8 0.9 1.8 0.9 1.8 0.1 0.1 0.1 0.1	0         1         2         3         4         5           Solar radiation below 1.931—Winter half-year         23         4         5           28         0.5         0.5         0.1         0.3           28         0.5         0.5         0.4         0.3           29         0.5         0.4         0.3         0.3           20         1.5         0.9         1.0         0.2         1.4           20         1.5         0.9         1.0         0.2         1.4           20         1.6         0.4         0.2         1.4         1.4           20         1.6         0.4         0.2         1.4         1.4           21         1.9         0.4         0.2         1.4         1.4           20         1.8         0.4         0.6         1.4         1.4           20         0.4         0.6         1.5         0.4         1.5         1.5           20         0.4         0.6         1.5         0.4         0.5         1.5         0.5         1.5         0.4         0.5         1.5         0.5         1.5         0.5         1.5         0.5         <	4 	5 half-yea 0°.3 0.3	9	2	0				
страния и стран		radiation t 0.6 1.5 0.9 1.5 0.9 1.5 0.9 1. 0.9 1. 0.9 1. 0.9 1. 0.9 1. 0.9 1. 0.9 1. 0.0 1. 0.0 0.0 0.0 0.0 0.0	below 1.931-       .7     0.1       .5     0.1       .6     1.0       .8     1.9       .4     0.9       .3     0.6       .3     0.6       .3     0.6	-Winter -0.1 -0.3 -0.2 0.4 -Winter 1.5	half-yea 0°.3 0.3	L		D	6	IO	II	12
τ         τ         τ         2%         1         1           τ         τ         τ         τ         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		0.6 0. 1.5 0. 1.5 0. 1.5 0. 1.5 0. 1.5 0. 0.9 1. 0.4 0. 0.4 0. 0.5 0. 0.1 5 0. 0.1 1. 0.1 5 0. 0.1 1. 0.1 1. 0.1 0. 0.1 1. 0.1 0. 0.1 1. 0.1 0. 0.1 0. 0.0 0.		-0.1 -0.3 -0.2 0.4 I.5	0.3 0.3	-						
φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ         φ		1.5 0. 1.5 1.5 0. 0.9 1. 1.5 0. 1.5 0. 1.5 0. 1.1 0. 0.3 1. 1.1 0. 0.3 1. 1.1 0. 0.3 1. 1.1 0. 0.3 1. 1.1 0. 0.3 1. 1.1 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0. 0.0 0.0	5 -0.4 .8 1.0 .8 1.9 .0.6 .3 0.6 .7 -1.0	-0.3 -0.2 0.4 I.5	0.3	—1°.2	0.6	-0.8	-2.2	-1.8	—I.°6	-1.5
1         1           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0		1.5 0.9 1.0 0.9 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2	.8 1.9 .8 1.9 .8 1.9 .4 0.9 .3 0.6	-0.2 0.4 1.5	2	10.0	0.2	0.1	0.1-	-1-2	2.01	-1.2
6	T TT-0 TT	0.9 1. radiation a -0.4 0. -1.1 0. 0.3 -1. 0.3 -1. radiation b	.8 I.9 above 1.960- .4 0.9 .3 0.6 .7 -1.0	0.4 -Winter 1.5	-1.4	9.1-	0.0	-1.4	0.2	0.6	I.1	0.0
	TT TT	radiation a -0.4 0. -1.1 0. 0.4 -0. 0.3 -1. radiation b	above 1.960- .4 0.9 .3 0.6	-Winter 1.5	-1.4	-0.6	0.4	-0.4	0.0	0.7	-1.3	-1.0
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02		-0.4 0. 0.4 0. 0.3 -1. 0.3 -1. radiation b		1.5	half-year	ч						
0.02	The stress	-1.1 0. 0.4 -0. 0.3 -1. 0.3 -1. radiation b			0.0	0.6	-0.6	8.0	0.4	-1.0	-0.6	0.0
6 1.0 6 0.2 7 0.2 7 0.2 6 0.3 0.3 0.0 1.0	The second se	0.4 -0. 0.3 -1. radiation b		1.3	1.2	0.5	-0.3	8.0	0.7	0.1	-0.2	10.4
0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 0.0	Ţ	0.3 —1. radiation b _0.5 —0.		0.0	0.0	-0.4	-0.3	0.4	-0.5	6.0	1.0	6.0
a 0.0 a 0.3 -	ŢŢ	radiation b		0.1	0.5	-0.2	0.6	0.7	0.0	-0.3	0,1	1.0
	11		radiation below 1.931-Summer	-Summer	- half-year	ar						
b 0.2 b 0.0 b 0.0	1		.2 0.2		0.2	0.4	0.6	0.2'	0.3	0.5	0.0	0.7
a 0.3 - b 0.0	0.0			0.6	1.0	-0.4	-0.8	0° I	0.2	0.1	0.3	0.2
		0.0 -0.3		0.1	0.2	0.0	0.5	-0.5	-0.3	0.3	0.7	0.2
	0.4	0.0 -0.0	.3 0.0	0.0	0.0	0.0	-0.4	9.0	0.4	0.0	0.9	0.3
	Solar	radiation a	radiation above 1.960-Summer half-year	Summer	half-ye.	ar						
0.4 -	-1.3			-1.4	0.8	0.7	1.0	0.4	I.0	0.0	1.5	2.3
b I.3	1	1	1	0.1	0.8	0.2	0.0	1.0	0.4	0.0	0.8	1.7
-1.2	1	1	.1 0.7	0.3	-0.4	0.2	0.4	-0.1	1.0	0.6	-0.5	0.3
<i>b</i> 0.3 0.3	0.2	0.5 0.	0.2 0.8	0.7	0.3	-0.4	-0.3	10.4	-0.5	-0.2	8.0	0.1
	Differences between values below 1.931 and above 1.960-Winter half-year	values bel	low 1.931 ar	nd above	N-096.1	Vinter ha	alf-year					
Winnipeg a I.2 0.4	3.7	I.0 0.	.3 -0.8	-1.6	0.3	-1.8	1.2	0.0	-2.6	8.0-	0.1-	0.6
- 0.0 q	3.9	2.6 0.	0.8 -1.0		0.0	-0.7	0.6	0.0	-2.6	-1.3	0.0	0.0
New York a -0.6 -0.1	0.6			-0.2	-1.4	-1.2	0.3	-1.8	0.3	1.5	-1.0	0.0
b —I.4 0.0	0-0-	0.6 2.	2.8 2.9	0.5	0·1	-0.4	-0.2	I.I	0.0	1.0	-1.4	6.0-
Differen	Differences between values below 1.931 and above 1.000-Summer half-year	values belo	0W I.031 and	d above I	.060—Su	mmer ha	lf-vear					
0.0	0.8	0.4 0.	0.0 I.4	2.0	1.0	1.1	Ĩ	10.2	0.7	5.0	9.0	-1.6
b -1.1 -0.3				1.6	0.7	-0.6	0.8	0.2	0.2	1.0		11
6.0	0.4	-0.6 -0.2	.2 -0.5	1	0.6	0.2	0.0	0.5	0.3	-0.3	1.2	
		-0.5 -0.5		-0.7	0.3	0.4	1.0	-0.2	0.1	0.2	1.7	0.2

	(	. 61	01					r i	r	n v	0	0	
		1	0	Ö		br			80	1	Ï	Ī	
		11	0.2	0.0		alf-yec			2	0.2	0.0	0.7	
lf-year		10	0.0	1.3	ths F.	inter h			9	0.7	0.2	-1.5	rees F.
ter ha		6	1.3	1.3	and ten	S-W-		after	2	1.6 8.0	0.3	-0.5	s of deg
s-Win	в	00	0.9	I.I	degrees	n valu	ires *	Days a	4	2.1	0.1	-1.0	nd tenth
value.	ures * maximu	7	0.4	2.0	are in	adiatio	Mean departures *		3	1.6	. 9.0	-1.5 -	egrees a
h solar	Mean departures * Days after solar maximum	9	0.2	-0.2	ons and	solar 1	Mean		57	0.4	 7 0 0 0	-0.5	are in d
ng hig.	Mear ays afte	20	-0.2	- []]	bservatio	nd low			ر ۲	-1.7	0.1	- 2.0	ons and
TABLE 13.—Mean departures of temperature at Buenos Aires following high solar values—Winter half-year	Q	Solar values Cases o I 2 3 4 5 6 7 8 9 10 11 12	1.900 and over $50 - 1^{\circ}1$ F. $-0.2 - 0.4 - 1.1 - 1.8 - 0.2 0.2 0.4 0.9 1.3 0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2$		NorgThese departures are from the means of the 13 days covered by the observations and are in degrees and tenths $F$ .	TABLE 14—Mean departures of temperature at Winnipeg following high and low solar radiation values—Winter half-year			0 I 2 3 4 5 6 7 8	1.960 and over 48 2.1 F. $-1.8$ $-2.9$ $-1.7$ 0.4 1.6 2.1 1.6 0.7 $-0.2$ $-1.2$ 42 5 5 5 7 $-7.2$ $-0.2$ $-0.2$ $-0.5$	6.0	2.3	These departures are from the means of the 11 days covered by the observations and are in degrees and tenths of degrees F.
Aires		3	- I'I-	-0.5	overed 1	lowing		fore	[7	-1.8 -1	-0-1	-I.I	by the c
suenos		10	- 0.4 -	-0.2	3 days c	eg foll		Days before		т. F.	, 4	. 65 I	covered
ure at 1		I	-0.2	0.0	of the I	Winnif			ses	~ со со		5 0.	II days
erat		C	,		eans	e at			Cas	44	5 00	3	i the
f temp		0	-I.'I	-0.7	the me	erature			Solar values Cases	nd ove	u I.93I	0	teans of
tures o		Cases	50 -	- 33	tre from	f temp			Solar	.960 ar	Below	p	om the n
epar		ŝ	over	over	ares a	0 50.							re fro
an d		value	and	and	partı	irtur				÷	:		res a
-Me		solar	066	970	se de	deþe				:			partu
13		01	I.		-The	ean				:			se del
ABLE			:	:	OTE	W-				÷	-		Thes
Ţ		ars	:	:	Ä	E 14.				÷	: :		*
		Years	918	920		ABL			s	616	922	922	
			8101-0001	1919-1920		E			Vears	6161-8161	[920-1922	[920-1922	
			IC	E						0I	51	, F	

60 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 78

#### NO. 4 SOLAR ACTIVITY AND WEATHER CHANGES—CLAYTON

For the six days (o to 5 days) the correlation coefficients for the years 1918-1919 and 1920-1922 as between the two intervals, are as follows:

For temperatures following high solar values.....r =  $0.88 \pm 0.07$ For temperatures following low solar values.....r =  $0.81 \pm 0.10$ For temperatures following high solar values compared with those following low solar values, for the years 1918-1919 .....r =  $-0.87 \pm 0.07$ For temperatures following high solar values compared with those following low solar values, for the years 1920-1922 .....r =  $-0.68 \pm 0.15$ 

Each of these sets of values are independent of each other, and the high correlations strongly support the conclusion that they are closely related with each other. It should be noted, however, that these correlations are between means, and not between individual observations.

Some able meteorologists, like Sir Napier Shaw,⁴ while not denying the facts presented in the previous paper, object to some of the conclusions drawn from them. No one can feel more strongly than I do the great difficulty of correctly interpreting the complex physical processes of the atmosphere; but working hypotheses are as necessary to an investigator as is the compass to a navigator, although an occasional investigator thinks he is working without an underlying hypothesis. I regard my interpretation of observed phenomena as working hypotheses to be modified, or abandoned for better interpretations, as facts accumulate. Doubtless there are some who judge results entirely by the working hypotheses used, and accept or reject the facts entirely on this basis.

This may be illustrated by the story of an early discoverer of meteoric stones, who, having seen them fall, recovered some fragments, and took them to a philosopher. The philosopher looked at them and said, "My friend how do you suppose stones could get up into the sky?" "I don't know," replied the discoverer, "perhaps they were thrown out from a volcano." "A volcano!" said the philosopher, "There isn't a volcano within a thousand miles of here. Poof! it is impossible. Your seeing them fall is purely imaginary," and refused further to examine the evidence.

# 9. A PARTIAL SUMMARY OF THE EVIDENTIAL RESULTS IN THIS PAPER

As it has seemed to me that heretofore critics have been apt to overlook many of the evidences favorable to solar variation and its

¹ Meteorol. Mag., February, 1926, p. 7.

influence on weather, perhaps because these were too numerous and extensive to be mentally digested, I draw together, in the following table 15, 20 of the correlation coefficients which have been given above. Besides these, there are many other evidential results in this paper, but given in other forms.

## TABLE 15 .- Some evidential correlation coefficients

Nature of the correlation	Value	Probable error
Between monthly mean temperature 0 to 4 months succeeding high and low months of solar radiation of the years 1905 to 1925. Stations:		
Nome	-0.72	$\pm 0.16$
Juneau	-0.80	0.I2
Edmonton	0.81	0.12
St. John's, N. F.	0.52	0.24
Hatteras	0.89	0.07
Key West	-0.64	0.20
Between monthly mean differences of temperature and of		
pressure accompanying respectively ranges of solar		
radiation of the years 1918-1925, and ranges of sun-		
spot numbers of the years 1856-1923.		
Pressure, winter half-year	0.56	0.07
Pressure, summer half-year	0.45	0.08
Temperature, winter half-year	0.62	0.06
Temperature, summer half-year	0.50	0.07
In definite geographical areas between pressures and sun-		
spot range.		
4 temperate zone positive correlations exceeding	0.50	
9 tropical zone negative correlations exceeding	0.50	
Between the mean marches of temperature and solar		
radiation for 30 days (1-30) during which high solar		
radiation maxima occurred on the sixth day.		
For temperatures at Buenos Aires, 3 days after	0.66	0.07
Between 10-day means of solar radiation and of Argentine	. 0	
temperatures of the year 1916, June-October	-0.80	0.12
Between mean marches of departures of temperature at		
Winnipeg over ranges of 12 days accompanying a large		
range of solar radiation. As between summer and	0.97	0.07
winter effects Between the mean marches of temperature at Buenos	0.87	0.07
Aires following high solar radiation. As between the		
results of 1909-1918 and those of 1919-1920	0.73	0.00
Between the mean marches of temperature at Winnipeg,	0.73	0.09
o to 5 days following high and low solar values. As		
between results of 1918-1919 and 1920-1922.		
High values	0.88	0.07
Low values	0.81	0.10
As between high values and low values.	0.01	0.10
For the interval 1918-1919	-0.87	0.07
For the interval 1920-1922.	-0.68	0.15