SMITHSONIAN METEOROLOGICAL TABLES

[BASED ON GUYO'T'S ME'TEOROLOGICAL AND FHYSICAL TABLES]

FOURTH REVISED EDITION
(Corrected to January, 2918)

(Publication 2493)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

Tbe kibetsite 角ress
CAMBRIDGE . MASSACHUSETTS
PRINTED IN THE U.S.A.

ADVERTISEMENT TO FOURTH REVISED EDITION.

The original edition of the Smithsonian Meteorological Tables was issued in 1893, and revised editions were published in 1896, 1897, and 1907. A fourth revised edition is here presented, which has been prepared under the direction of Professor Charles F. Marvin, Chief of the U.S. Weather Bureau, assisted by Professor Herbert H. Kimball. They have had at their disposal numerous notes left by the late Professor Cleveland Abbe, and have consulted with officials of the U.S. Bureau of Standards and of other Covernment bureaus relative to the value of certain physical constants 1 nat have entered into the calculation of the tables.

All errata thus far detected in the earlier editions have here been corrected. New vapor pressure tables, derived from the latest experimental values by means of a modification of Van der Waals interpolation formula devised by Professor Marvin, have been introduced. The table of relative acceleration of gravity at different latitudes has been recomputed from a new equation based upon the latest investigations of the U.S. Coast and Geodetic Survey. These values have been employed in reducing barometric readings to the standard value of gravity adopted by the International Bureau of Weights and Measures, supplementing a table that has been introduced for directly reducing barometer readings from the value of gravity at the place of observation to its standard value.

The new values of vapor pressure and of gravity acceleration thus obtained, together with a recent and more accurate determination of the density of mercury, have called for an extensive revision of numerous other tables, and especially of those for the reduction of psychrometric observations, and the barometrical tables.

Among the new tables added are those for converting barometric inches and barometric millimeters into millibars, for determining heights from pressures expressed in dynamic units, tables of gradient winds, and tables giving the duration of astronomical and civil twilight, and the transmission percentages of radiation through moist air.

The tables of International Meteorological Symbols, of Cloud Classification, of the Beaufort Scale of Winds, of the Beaufort Weather Notation, and the List of Meteorological Stations, are among those extensively revised.

Tables for reducing barometric readings to sea level, and tables of logarithms of numbers, of natural sines and cosines, of tangents and cotangents, and for dividing by 28,29 , and 3 I , with a few others, have been omitted from this edition.

This reprint is from the electroplates that were employed in printing the Fourth Revised Edition, after making certain minor corrections.

Charles D. Walcott, Sccretary.

ADVERTISEMENT TO THIRD REVISED EDITION

The original edition of Smithsonian Meteorological Tables was issued in 1893, and revised editions were published in 1896 and 1897. A third revised edition is here presented, which has been prepared at the request of the late Professor Langley by the coöperation of Professors Alexander McAdie, Charles F. Marvin, and Cleveland Abbe.

All errata thus far detected have been corrected upon the plates, the Marvin vapor tensions over ice have been introduced, Professor F. H. Bigelow's System of Notation and Formulæ has been added, the List of Meteorological Stations has been revised, and the International Meteorologica! Symbols, together with the Beaufort Notation, are given at the close of the volume.

R. Rathbun,
Acting Secretary.

Smithsonian Institution,
December, 1906.

ADVERTISEMENT TO SECOND REVISED EDITION.

The edition of the Smithsonian Meteorological Tables issued in 1893 having become exhausted, a careful examination of the work has been made, at my request, by Mr. Alexander McAdie, of the United States Weather Bureau, and a revised edition was published in 1896, with corrections upon the plates and a few slight changes. The International Meteorological Symbols and an Index were also added.

The demand for the work has been so great that it becomes necessary to print a new edition of the revised work, which is here presented with corrections to date.

> S. P. Langley,
> Secretury.

Smithsonian Institution, Washington City,

October 30, 1897.

PREFACE TO EDITION OF 1893.

In connection with the system of meteorological observations estab. lished by the Smithsonian Institution about 1850, a collection of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and published in 1852 as a volume of the Miscellaneous Collections.

Five years later, in 1857, a second edition was published after sareful revision by the author, and the various series of tables were so enlarged as to extend the work from 212 to over 600 pages.

In 1859 a third edition was published, with further amendments.
Although designed primarily for the meteorological observers reporting to the Smithsonian Institution, the tables obtained a much wider circulation, and were extensively used by meteorologists and physicists in Europe and in the United States.

After twenty-five years of valuable service, the work was again revised by the author; and the fourth edition, containing over 700 pages, was published in 1884. Before finishing the last few tables, Dr. Guyot died, and the completion of the work was intrusted to his assistant, Prof. Wm. Libbey, Jr., who executed the duties of final editor.

In a few years the demand for the tables exhausted the edition, and thereupon it appeared desirable to recast entirely the work: After very careful consideration, I decided to publish the new tables in three parts: Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Dr. Guyot's Tables, the present work is so substantially changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

In its preparation the advantage of conformity with the recently issued International Meteorological Tables has been kept steadily in view, and so far as consistent with other decisions, the constants and methods there employed have been followed. The most important difference in constants is the relation of the yard to the metre. The value provisinnally adopted by the Bureau of Weights and Measures of the United States Coast and Geodetic Survey,

$$
\text { I metre }=39.3700 \text { inches, }
$$

has been used here in the conversion-tables of metric and English linear measures, and in the transformation of all formulæ involving such conversions.

A large number of tables have been newly computed; those taken from the International Meteorological Tables and other official sources are credited in the introduction.

To Prof. Wm. Libbey, Jr., especial acknowledgments are due for a large amount of attention given to the present work. Prof. Libbey had already completed a revision, involving considerable recomputation, of the meteorological tables contained in the last edition of Guyot's Tables, when it was determined to adopt new values for many of the constants, and to have the present volume set with new type. This involved a large amount of new computation, which was placed under the direction of Mr. George E. Curtis, who has also written the text, and has carefully prepared the whole manuscript and carried it through the press. To Mr. Curtis's interest, and to his special experience as a meteorologist, the present volume is therefore largely due.

Prof. Libbey las contributed Tables $38,39,55,56,6 \mathrm{r}, 74,77,89$, and 90 , and has also read the proof-sheets of the entire work.

I desire to express my acknowledgments to Prof. Cleveland Abbe, for the manuscript of Tables $32,8 \mathrm{r}, 82,83,84,85,86$; to Mr. H. A. Hazen, for Tables 49, 50, 94, 95, 96, which have been taken from his Hand-book of Metcorological Tables; and also to the Superintendent of the United States Coast and Geodetic Survey, the Chief Signal Officer of the Army, and the Chief of the Weather Bureau, for much valuable counsel during the progress of the work.

> S. P. LANGLEY,
> Secretary.

Table of Contents.

Page

INTRODUCTION.

Description and use of the Tables xi to lxxii
THERMOMETRICAL TABLES.
Table
Conversion of thermometric scales -
I Approximate Absolute, Centigrade, Fahrenheit, and Reau- mur scales 2
2 Fahrenheit scale to Centigrade 5
3 Centigrade scale to Fahrenheit IO
4 Centigrade scale to Fahrenheit, near the boiling point of water I 3
5 Differences Fahrenheit to differences Centigrade I3
6 Differences Centigrade to differences Fahrenheit I 3
Correction for the temperature of the emergent mercurial columnof thermometers.
7 Correction for Fahrenheit thermometers I 4
8 Correction for Centigrade thermometers 14
CONVERSIONS INVOLVING LINEAR MEASURES.
9 Inches into millimeters 16
Io Millimeters into inches 23
II Barometric inches into millibars 36
12 Barometric millimeters into millibars 38
13 Feet into meters 40
14 Meters into feet 42
I5 Miles into kilometers 44
16 Kilometers into miles 46
17 Interconversion of nautical and statute miles 48
18 Continental measures of length with their metric and English equivalents 48
CONVERSION OF MEASURES OF TIME AND ANGLE.
19 Arc into time 50
20 Time into arc 5
21 Days into decimals of a year and angle 52
22 Hours, minutes and seconds into decimals of a day 56
Table Page
23 Decimals of a day into hours, minutes and seconds 56
24 Minutes and seconds into decimals of an hour 57
25 Local mean time at apparent noon 57
26 Sidereal time into mean solar time 58
27 Mean solar time into sidereal time 58
CONVERSION OF MEASURES OF WEIGHT.
28 Conversion of avoirdupois pounds and ounces into kilograms 60
29 Conversion of kilograms into avoirdupois pounds and ounces 61
30 Conversion of grains into grams $6 I$
31 Conversion of grams into grains 62
WIND TABLES.
32 Synoptic conversion of velocities 64
33 Miles per hour into feet per second 65
34 Feet per second into miles per hour 65
35 Meters per second into miles per hour 66
36 Miles per hour into meters per second 67
37 Meters per second into kilometers per hour 68
38 Kilometers per hour into meters per second 69
39 Scale of velocity equivalents of the so-called Beaufort scale of wind 70
Mean direction of wind by Lambert's formula -
$40 \quad$ Multiples of $\cos 45^{\circ}$; form and example of computation 7172
Radius of critical curvature and velocities of gradient winds for frictionless motion in HIGHS and Lows -
English measures 77
42
Metric measures 78
REDUCTION OF TEMPERATURE TO SEA LEVEL.
44 English measures 82
45 Metric measures 83
BAROMETRICAL TABLES.
Reduction of mercurial barometer to standard temperature -
English measures 86Metric measures106
Reduction of mercurial barometer to standard gravity -129
Direct reduction from local to standard gravity 48Reduction through variation with latitude -
English measures 130
49Metric measures132

Table Determination of heights by the barometer - English measures -
5 I Values of $60368(\mathrm{I}+0.0010195 \times 36) \log \frac{29.90}{B}$. . 134
52 Term for temperature I38
53 Correction for gravity and weight of mercury 140
54 Correction for average degree of humidity 142
55 Correction for the variation of gravity with altitude . . I43
Determination of heights by the barometer - Metric and dynamic measures -
$56 \quad$ Values of $18400 \log \frac{760}{B}$ 144

57 Values of $18400 \log \frac{\text { IOI } 3.3}{B}$. 145
58 Temperature correction factor $(a=.00367 \theta)$. 147
59 Temperature correction ($0.00367 \theta \times Z$). 148
60 Correction for humidity 149
6I Correction for humidity. Auxiliary to Table 58 I5I
62 Correction for gravity and weight of mercury 153
63 Correction for the variation of gravity with altitude . . . 154
64 Difference of height corresponding to a change of o.I inch in
the barometer - English measures I55
65 Difference of height corresponding to a change of I millimeter
in the barometer - Metric measures 156
Determination of heights by the barometer -
Formula of Babinet
I 57
Barometric pressures corresponding to the temperature of the boiling point of water -
67 English measures I58
68 Metric measures I 58

HYGROMETRICAL TABLES.

69 Pressure of aqueous vapor over ice - English measures . . . 160
70 Pressure of aqueous vapor over water - English measures . . I6I
71 Pressure of aqueous vapor over ice - Metric measures . . . 165
72 Pressure of aqueous vapor over water - Metric measures . . 166
73 Weight of a cubic foot of saturated vapor - English measures . 169
74 Weight of a cubic meter of saturated vapor - Metric measures . 170
Reduction of psychrometric observations - English measures -
75 Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(1+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
172
76 Relative Humidity - Temperature Fahrenheit 183
Reduction of Psychrometric Observations - Metric measures -
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I} 5 t^{\prime}\right) . \quad \mathrm{I} 86$
77
78 Relative humidity - Temperature Centigrade 192
Table Page
79 Rate of decrease of vapor pressure with altitude for mountain stations 194
Reduction of snowfall measurements -80 Depth of water corresponding to the weight of a cylin-drical snow core 2.655 inches in diameter194
81 Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage 195
82 Quantity of rainfall corresponding to given depths 195
GEODETICAL TABLES.
83 Value of apparent gravity on the earth at sca level 198
84 Relative acceleration of gravity at different latitudes 199
85 Length of one degree of the meridian at different latitudes 2 OI
86 Length of one degree of the parallel at different latitudes 2 O 2
87 Duration of sunshine at different latitudes 203
88 Declination of the sun for the year 1899 214
89 Duration of astronomical twilight 215
90 Duration of civil twilight 216
Relative intensity of solar radiation at different latitudes -
91 Mean intensity for 24 hours of solar radiation on a hori- zontal surface at the top of the atmosphere 217
92 Relative amounts of solar radiation received on a horizontal surface during the year at the surface of the earth 2 I8
93 Air mass, m, corresponding to different zenith distances of the sun 218
94 Relative illumination intensities 2 I 8
MISCELLANEOUS TABLES.
Weight in grams of a cubic centimeter of air - English measures -
Temperature term 220
95
Humidity term, auxiliary table 221 221
96
97 Humidity and pressure terms, combined 222
Weight in grams of a cubic centimeter of air - Metric measures -
98 Temperature term 224
99 Humidity term, auxiliary table 225
100 Humidity and pressure terms, combined 226
ror Atmospheric water-vapor lines in the visible spectrum 229
I02 Atmospheric water-vapor bands in the infra-red spectrum 230
103 Transmission percentages of radiation through moist air 231
r04 International meteorological symbols 232
105 International cloud classification 234
106 Beaufort weather notation 236
ro7 List of meteorological stations 237
Index 259

INTRODUCTION.

DESCRIPTION AND USE OF TABLES.

THERMOMETRY.

The present standard for exact thermometry is the normal centigrade scale of the constant-volume hydrogen thermometer as defined by the International Bureau of Weights and Measures. The constant volume is one liter and the pressure at the freezing point is one meter of mercury reduced to freezing and standard gravity. The scale is completely defined by designating the temperature of melting ice, 0°, and of condensing steam, 100°, both under standard atmospheric pressure. All other thermometric scales that depend upon the physical properties of substances may by definition be made to coincide at the ice point and the boiling point with the normal scale as above defined, but they will diverge more or less from it and from each other at all other points. However, by international consent it is customary in most cases to refer other working scales to the hydrogen scale.

The absolute or thermodynamic scale. To obviate the difficulty which arises because thermometers of different type and substance inherently disagree except at the fixed points, Lord Kelvin proposed that temperatures be defined by reference to certain thermodynamic laws. This course furnishes a scale independent of the nature or properties of any particular substance. The resulting scale has been variously named the absolute, the thermodynamic, and, more recently, in honor of its author, the Kelvin scale. The temperature of melting ice by this scale on the centigrade basis is not as yet accurately known, but it is very nearly $273^{\circ} \cdot 13$, and that of the boiling point, $373^{\circ} \cdot 13$.

Many problems in physics and meteorology call for the use of the absolute scale; but it is not convenient, and in many cases not necessary, to adhere strictly to the true thermodynamic scale. In fact, the general requirements of science will very largely be met by the use of an approximate absolute scale which for the centigrade system is defined by the equation

$$
T=\left(273^{\circ} .+t^{\circ} \mathrm{C} .\right)
$$

The observed quantity, t°, may be referred to the normal hydrogen centigrade scale or be determined by any acceptable thermometric method.

This scale differs from the true Kelvin scale, first, because 273° is not the exact value of the ice point on the Kelvin scale, second, because each observed value of t° other than 0° or 100° requires a particular correction to
convert it to the corresponding value on the Kelvin scale. These corrections will differ according to the kind of thermometer used in obtaining the value t°, and while they are small for temperatures between 0° and 100° they are large at extreme temperatures and are important in all questions involving thermometric precision.

Since, however, the approximate absolute scale is sufficiently exact for nearly all purposes, and especially since it is most convenient in computations and in the publication of results, much confusion and uncertainty of terminology and meaning will be obviated if scientists will agree to give the approximate absolute scale a particular name of its own.

For the purpose of these tables the name Approximate Absolute will be employed, and in accordance therewith thermometric scales may be designated as follows:-
Scale.
Ice point.
Boiling point.
Symbol.

Centigrade
Fahrenheit
Reaumur
Thermodynamic
Absolute
Kelvin
Approximate Absolute

0°	100°	C.
32	212	F. or Fahr.
0	80	R.
[273.13 C. \pm	373.13 C. \pm	A. or K.
491.6 F. 土	$67 \mathrm{I} .6 \mathrm{~F} . \pm$	
(Names strictly synonymous and strictly one ideal scale.)		
273	373	$A . A$.

table 1. Conversion of the Approximate Absolute thermometric scale to the Centigrade, Fahrenheit, and Reaumur scales.

The equivalent values of the four scales are given for every degree on the Approximate Absolute scale from 375° to 0°.

By the help of the table of proportional parts preceding this table, it is also convenient for converting Fahrenheit to Centigrade and Reaumur, and Centigrade to Fahrenheit and Reaumur.

The formulæ expressing the relations between the different scales are also given, in which

$$
\begin{aligned}
A . A .^{\circ} & =\text { Temperature - Approximate Absolute Scale. } \\
C^{\circ} & =\text { Temperature - Centigrade Scale. } \\
F_{.}^{\circ} & =\text { Temperature - Fahrenheit Scale. } \\
R .^{\circ} & =\text { Temperature - Reaumur Scale. }
\end{aligned}
$$

Examples:

To convert $285^{\circ} 5$ Approximate Absolute into Centigrade, Fahrenheit, and Reaumur.
From the table,

$$
285^{\circ} A \cdot A .=12 . C .=53^{\circ} \cdot 6 \mathrm{~F}=9.6 \mathrm{R} .
$$

From the proportional parts, $\frac{0.5}{285.5 A . A .}=\frac{0.5}{12.5 C}=\frac{0.9}{54.5 F .}=\frac{0.4}{10.0 R .}$

To convert $16^{\circ} .9$ Centigrade to Approximate Absolute, Fahrenheit, and Reaumur.
From the table, $\quad 166^{\circ} \mathrm{C} .=289^{\circ} . \mathrm{A} . \mathrm{A} .=60^{\circ} .8 \mathrm{~F} .=12^{\circ} .8 \mathrm{R}$.
From the proportional parts $-\frac{0.9}{16.9 C .}=\frac{0.9}{289.9 A . A}=\frac{1.6}{62.4 \mathrm{~F} .}=\frac{0.7}{13.5 \mathrm{R} .}$
Or,

$$
\begin{aligned}
16.9 \times 2\left(1-\frac{1}{10}\right)+32 & =33.8 \\
& -3.4 \\
& -\frac{32.0}{62.4} F .
\end{aligned}
$$

To convert $147^{\circ} \cdot 7$ Fahrenheit to Approximate Absolute, Centigrade, and Reaumur.
From the table, $\quad 140^{\circ} \cdot F .=333^{\circ}$ A.A. $=60^{\circ} \quad C .=48^{\circ} \cdot R$.
From the proportional parts $7.7=4.3=4.3=3.4$ $\overline{147.7} \mathrm{~F} .=\overline{337.3}$ A.A. $=\overline{64.3} \mathrm{C} .=\overline{51.4} \mathrm{R}$.
Or, $\begin{array}{rl}\frac{147.7-32.0}{2}\left(1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000} \text { etc. }\right) & =57.85 \\ & =5.78 \\ & \\ & +\quad .58 \\ & .06 \\ 64.27 & C .\end{array}$
Fahrenheit may also be reduced to Approximate Absolute by obtaining its equivalent in Centigrade from Table 2 and adding 273 to the result.

To convert $18^{\circ} .3$ Reaumur to Approximate Absolute, Centigrade, and Fahrenheit.
From the table,

$$
16^{\circ} R .=293^{\circ} A \cdot A .=20^{\circ} . C=68^{\circ} . F .
$$

From the proportional parts, $\frac{2.3}{18.3} R=-\frac{2.9}{295.9} A . A .=\frac{2.9}{22.9} C=\frac{5.2}{73.2} \mathrm{~F}$.
Or, $18.3 \times \frac{5}{4}=\frac{91.5}{4}=22.9 C_{\text {. }}$, and $\left(18.3 \times \frac{9}{4}\right)+32=\frac{164.7}{4}+32=73.2 \mathrm{~F}$.
table 2.
Table 2. Conversion of readings of the Fahrenheit thermometer to readings Centigrade.

The conversion of Fahrenheit temperatures to Centigrade temperatures is given for every tenth of a degree from $+130^{\circ} 9 \mathrm{~F}$. to $-120^{\circ} 9 \mathrm{~F}$. The side argument is the whole number of degrees Fahrenheit, and the top argument, tenths of a degree Fahrenheit; interpolation to hundredths of a degree, when desired, is readily effected mentally. The tabular values are given to hundredths of a degree Centigrade.

The formula for conversion is

$$
C^{\circ}=\frac{5}{9}\left(F^{\circ}-32^{\circ}\right)
$$

where F° is a given temperature Fahrenheit, and C° the corresponding temperature Centigrade.

Example:

- To convert 79.7 Fahrenheit to Centigrade.

The table gives directly $26 .{ }^{\circ} 50 \mathrm{C}$.
For conversions of temperatures outside the limits of the table use Table I.
table 3. Conversion of readings of the Centigrade thermometer to readings Fahrenheit.

The conversion of Centigrade temperatures to Fahrenheit temperatures is given for every tenth of a degree Centigrade from $+60^{\circ} .9$ to $-90^{\circ} .9 \mathrm{C}$. The tabular values are expressed in hundredths of a degree Fahrenheit.

The formula for conversion is

$$
F^{\circ}=\frac{9}{5} C^{\circ}+32^{\circ}
$$

where C° is a given temperature Centigrade, and F° the correspondirg temperature Fahrenheit.

For conversions of temperatures outside the limits of the table, use Table I or 4 .

Table 4. Conversion of readings of the Centigrade thermometer near the boiling point to readings Fahrenheit.
This is an extension of Table 3 from $90^{\circ} .0$ to roo. 9 Centigrade.

Example:

To convert $95^{\circ} \cdot 74$ Centigrade to Fahrenheit.
From the table,
By interpolation,

$$
\begin{aligned}
95^{\circ} .70 C & =204^{\circ} .26 \mathrm{~F} . \\
0.04 & =\frac{0.07}{95^{\circ} .74 C .}
\end{aligned}
$$

Table 5. Conversion of differences Fahrenheit to differences Centigrade.

The table gives for every tenth of a degree from 0° to $20^{\circ} .9 \mathrm{~F}$. the corresponding lengths of the Centigrade scale.

TABLE 6.
Table 6. Conversion of differences Centigrade to differences Fahrenheit.
The table gives for every tenth of a degree from 0° to 9.9 C . the corresponding lengths of the Fahrenheit scale.

Example:
To find the equivalent difference in Fahrenheit degrees for a difference of $4^{\circ} \cdot 72$ Centigrade.
From the table,
From the table by moving the decimal point for 0.2,

$$
\begin{aligned}
4^{\circ} 70 C & =8^{\circ} .46 F . \\
\frac{0.02}{4.72} C & =\frac{0.04}{8.50} F .
\end{aligned}
$$

TABLES 7,8.
Tables 7,8. Correction for the temperature of the emergent mercurial columin of thermometers.
When the temperature of the thermometer stem containing a portion of the mercury column is materially different from that of the bulb, a correction needs to be applied to the observed reading unless the instrument has been previously graduated for the condition of use. This correction frequently becomes necessary in physical experiments where the bulb only, or else the bulb with a portion of the stem, is immersed in a bath whose temperature is to be determined. In meteorological observations the correction may become appreciable in wet-bulb, dew-point, and solar-radiation thermometers, when the temperature of the bulb is considerably above or Delow the air temperature.

If t^{\prime} be the average temperature of the emergent mercury column, t the observed reading of the thermometer, n the length of the mercury in the emergent stem in scale degrees, and a the apparent expansion of mercury in glass for I°, the correction is given by the expression

$$
a n\left(t-t^{\prime}\right), \text { or }-a n\left(t^{\prime}-t\right)
$$

which latter may be the more convenient form when t^{\prime} is greater than t.
The value of a varies with the composition of the glass of which the thermometer stem is composed. For glass of unknown composition the best average value for centigrade temperatures appears to be 0.000155 , while for stems of Jena 16^{111}, or similar glasses, or Jena 59^{111}, the values 0.00016 for the former and 0.000165 for the latter may be preferred. (Letter from U.S. Bureau of Standards dated January 5, 1918.)

The use of the formula given above presupposes that the mean temperature of the emergent column has been determined. This temperature may be approximately obtained in one of three ways. (I) By a "fadenthermometer" (Buckingham, Bulletin, Bureau of Standards, 8, 239, I9II, Scientific Paper I70); (2) by exploring the temperature distribution along the stem and calculating the mean temperature; (3) by suspending along the side of, or attaching to the stem, a single thermometer. If properly placed this
thermometer will indicate the temperature of the emergent mercurial column to an accuracy sufficient for many purposes. Under conditions ordinarily met with in practice it is desirable to place the bulb of the auxiliary thermometer at some point below the middle of the emergent column.

It is to be noted that the correction sought is directly proportional to the value of a, and that this may vary for glass stems of different composition from 0.00015 to 0.000165 for Centigrade temperatures. For thermometers ordinarily used in meteorological work, however, 0.000155 appears to be a good average value for Centigrade temperatures (0.000086 for \cdot Fahrenheit temperatures), and the correction formulæ, therefore, are,

$$
\begin{aligned}
& T=t-0.000086 n\left(t^{\prime}-t\right) \text { Fahrenheit temperatures. } \\
& T=t-0.000155 n\left(t^{\prime}-t\right) \text { Centigrade temperatures. }
\end{aligned}
$$

In the above, $T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem and emergent mercury column.
$n=$ Length of mercury in the emergent stem in scale degrees.
When t^{\prime} is $\left\{\begin{array}{l}\text { higher } \\ \text { lower }\end{array}\right\}$ than t the numerical correction is to be $\left\{\begin{array}{l}\text { subtracted. } \\ \text { added. }\end{array}\right\}$
Table 7 gives corrections computed to o.oi for Fahrenheit thermometers from the equation $C=-0.000086 n\left(t^{\prime}-t\right)$. The side argument, n, is given for 10° intervals from 10° to 130°; the top argument, $t^{\prime}-t$, for 10° intervals from 10° to 100°.

Table 8 gives corrections computed to o.or for Centigrade thermometers from the equation $C=-0.000155 n\left(t^{\prime}-t\right)$. The side argument, n, is given for 10° intervals from 10° to 100°; the top argument, $t^{\prime}-t$, for 10° intervals from 10° to 80°.

Example:

The observed temperature of a black-bulb thermometer is $120^{\circ} .4 \mathrm{~F}$., the temperature of the glass stem is $55^{\circ} .2 F$., and the length of mercury in the emergent stem is $130^{\circ} \mathrm{F}$. To find the corrected temperature. With $n=130^{\circ} F$. and $t^{\prime}-t=-65^{\circ} F$., as arguments, Table 7 gives the correction $0^{\circ} .7$., which by the above rule is to be added to the observed temperature. The corrected temperature is therefore 121.. F.

CONVERSIONS INVOLVING LINEAR MEASURES.

The fundamental unit of length is the meter, the length of which is equal to the distance between the defining lines on the international prototype meter at the International Bureau of Weights and Measures (near Paris) when this standard is at the temperature of melting ice $\left(0^{\circ} \mathrm{C}\right)$. The relation
here adopted between the meter and the yard, the English measure of length, is I meter $=39.3700$ inches, as legalized by Act of U.S. Congress, July 28, 1866. This U.S. Standard of length must be distinguished from the British Imperial yard, comparisons of which with the international prototype meter give the relation I meter $=39.370113$ inches. (See Smithsonian Physical Tables, 1916, p. 7, Table 3.)
table 9. Inches into millimeters.
table 9.

$$
1 \text { inch }=25.40005 \text { millimeters. }
$$

The argument is given for every hundredth of an inch up to 32.00 inches, and the tabular values are given to hundredths of a millimeter. A table of proportional parts for thousandths of an inch is added on each page.

Example :

To convert 24.362 inches to millimeters.
The table gives (p .20).

$$
(24.36+.002) \text { inches }=(618.75+0.05) \mathrm{mm} .=618.80 \mathrm{~mm}
$$

table 10. Millimeters into inches.
TABLE 10 .
From o to 400 mm . the argument is given to every millimeter, with subsidiary interpolation tables for tenths and hundredths of a millimeter. The tabular values are given to four decimals. From 400 to 1000 mm ., covering the numerical values which are of frequent use in meteorology for the conversion of barometric readings from the metric to the English barometer, the argument is given for every tenth of a millimeter, and the tabular values to three decimals.

Example:

To convert 143.34 mm . to inches.
The table gives

$$
(143+.3+.04) \mathrm{mm} .=(5.6299+0.0118+0.0016) \text { inches }=5.6433
$$ inches.

Tables 11, 12. Conversion of barometric readings into standard units of pressure.
The equation for the pressure in millibars, ${ }^{1} P_{m b}$, corresponding to the barometric height, B, is

$$
P_{m b}=B \frac{\Delta g}{1000}
$$

where Δ is the densitv of mercury and g is the standard value of gravity.

[^0] centimeter, and is that employed by meteorological services, and recommended by inter-

In order that pressures thus derived shall be expressed in C.G.S. units it is evident that the recognized standard values of the constants of the equation must be employed. It therefore becomes necessary to abandon the values for the density of mercury and for standard gravity heretofore employed, which had the sanction of the International Meteorological Committee, in favor of the more recently determined values that have been adopted by the International Bureau of Weights and Measures.

The value adopted for Δ is 13.5951 grams per cubic centimeter; ${ }^{1}$ and for $g, 980.665$ dynes. ${ }^{2}$

By the use of these constants in the above equation we obtain

$$
\begin{aligned}
& P_{m b}=1.333224 B \text { (millimeters) }, \text { and } \\
& P_{m b}=\frac{1.333224}{0.03937} B=33.86395 B \text { (inches) }
\end{aligned}
$$

where B is the height of the barometer in the units indicated, after reduc tion to standard temperature and the standard value of gravity.
table 11. Barometric inches to millibars.
The argument is for 0.01 inch. From 0.00 to 2.49 inches the tabulated values are given to the nearest hundredth of a millibar, so that by removing the decimal one place to the right the value in millibars of every tenth inch from 0.0 to 24.9 inches may be obtained to the nearest tenth of a millibar. From 25.00 to 3 r .99 inches the tabular values are given to the nearest tenth of a millibar.

The first part of the table may be used as a table of proportional parts for interpolation.

Example:

To convert 23.86 barometric inches into millibars of pressure.
From Table 11, 23.8 inches $=806.0$ millibars
" " " 06 inch $=2.0$ "

$$
23.86 \text { inches }=\overline{808.0} \text { millibars }
$$

table 12. Barometric millimeters to millibars.

The argument is for each millimeter from x to 799 , and the tabular values are given to the nearest tenth of a millibar.

This table may also be used to convert millibars into millimeters of mercury.

[^1]
Example:

To convert 1003.5 millibars into millimeters of mercury. 1003.5 mb . $=(1002.6+0.9) \mathrm{mb} .=(752+0.68) \mathrm{mm} .=752.68 \mathrm{~mm}$.
table 13. Feet into meters.
table 13.
From the adopted value of the meter, 39.3700 inches -
I English foot $=0.3048006$ meter.
Table 13 gives the value in meters and thousandths (or millimeters) for every foot from o to 99 feet; the value to hundredths of a meter (or centimeters) of every 10 feet from 100 to 4090 feet; and the value to tenths of a meter of every io feet from 4000 to 9090 feet. In using the latter part, the first line of the table serves to interpolate for single feet.
Example:
To convert 47 feet 7 inches to meters. 47 feet 7 inches $=47.583$ feet.
The table gives
By moving the decimal point
table 14. Meters into feet.

$$
\text { I meter }=39.3700 \text { inches }=3.280833+\text { feet }
$$

From o to 509 meters the argument is given for every unit, and the tabular values to two decimals; from 500 to 5090 the argument is given to every 10 meters, and the tabular values to one decimal. The conversion for tenths of a meter is added for convenience of interpolation.
Example:
Convert 4327 meters to feet.
The table gives

$$
(4320+7) \text { meters }=(14173.2+23.0) \text { feet }=14196.2 \text { feet }
$$

table 15. Miles into kilometers.
tABLE 15.

$$
1 \text { mile }=1.609347 \text { kilometers. }
$$

The table extends from o to 1009 miles with argument to single miles, and from 1000 to 20000 miles for every 1000 miles. The tabular quantities are given to the nearest kilometer.
table 16. Kilometers into miles.
TABLE 16.
1 kilometer $=0.621370$ mile .
The table extends to 1009 kilometers with argument to single kilometers, and from 1000 to 20000 kilometers for every 1000 kilometers. Tabular values are given to tenths of a mile.

Example:

Convert 3957 kilometers into miles.
The table gives
$(3000+957)$ kilometers $=($ I $864.1+594.7)$ miles $=2458.8$ miles.

Table 17. Interconversion of nautical and statute miles.
The nautical mile as defined by the U.S. Coast and Geodetic Survey (Tables for a polyconic projection of maps. U.S. Coast and Geodetic Survey, Special Publication No. 5, page 4) is "A minute of arc of a great circle of a sphere whose surface equals that of the Clarke representative spheroid of $1866, "$ and the value given is 1853.25 meters, or 6080.20 feet.

Table 18. Continental measures of length with their metric and English equivalents:
This table gives a miscellaneous list of continental measures of length, alphabetically arranged, with the name of the country to which they belong and their metric and English equivalents.

CONVERSION OF MEASURES OF TIME AND ANGLE.

table 19. Arc into time.

$$
\mathrm{I}^{\circ}=4^{\mathrm{m}} ; \mathrm{I}^{\prime}=4^{\mathrm{s}} ; \mathrm{I}^{\prime \prime}=\frac{\mathrm{I}}{\mathrm{I} 5} \mathrm{~s}=0.067 .
$$

Example:

Change $124^{\circ} 15^{\prime} 24^{\prime \prime} 7$ into time.
From the table,

$$
\begin{array}{rllll}
124^{\circ} & = & 8^{\mathrm{h}} & 16^{\mathrm{m}} & 0^{\mathrm{s}} \\
15^{\prime} & = & & \mathrm{I} & 0 \\
24^{\prime \prime} & = & & 1.600 \\
0^{\prime \prime} 7 & = & & & .047 \\
& & & 8^{\mathrm{h}} & 17^{\mathrm{m}} \\
& 1.647
\end{array}
$$

table 20. Time into arc.

Example:
Change $8^{\mathrm{h}} \mathrm{I} 7^{\mathrm{m}} \mathrm{I}^{\mathrm{s}} 647$ into arc.
From the table, $\quad 8^{\mathrm{h}}=120^{\circ}$
$17^{\mathrm{m}}=45^{\prime}$
$\mathbf{I}^{\mathrm{s}}=\quad \mathrm{I} 5^{\prime \prime}$
$0.64=9.60$
By moving the decimal point, $.007=\frac{0.10}{124^{\circ} 15^{\prime} 24^{\prime \prime} 7}$
table 21. Days into decimals of a year and angle.
The table gives for the beginning of each day the corresponding decimal of the year to five places. Thus, at the epoch represented by the beginning of the 15 th day, the decimal of the year that has elapsed since January I.O is computed from the fraction $\frac{14}{365.25}$. The corresponding value in angle obtained by multiplying this fraction by 360°, is given to the nearest minute.

Two additional columns serve to enter the table with the day of the month either of the common or the bissextile year as the argument, and may be used also for converting the day of the month to the day of the year, and vice versa.
Example:
To find the number of days and the decimal of a year between February 12 and August 27 in a bissextile year.
Aug. 27: Day of year $=240$; decimal of a year $\quad=0.65435$
Feb. 12: " " " = 43; " " " = $\underline{0.11499}$
Interval in days $=197$; interval in decimal of a year $=0.53936$
The decimal of the year corresponding to the interval 197 days may also be taken from the table by entering with the argument 198.
table 22. IIours, minutes and seconds into decimals of a day.
TABLE 22.
The tabular values are given to six decimals.

Example:

Convert $5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} .4$ to the decimal of a day:

$$
\begin{array}{rlr}
5^{\mathrm{h}} & =0.208333 \\
24^{\mathrm{m}} & = & 016667 \\
23^{\mathrm{s}} & = & 266 \\
0.4 & = & \frac{5}{0.22527 \mathrm{I}}
\end{array}
$$

By interpolation, or by moving the decimal for 4^{8}
table 23. Decimals of a day into hours, minutes and seconds.
TABLE 23.
Example:
Convert od. 22527 I to hours, minutes and seconds:

$$
\begin{array}{ll}
0.22 & \text { day }=4^{\mathrm{h}} 48^{\mathrm{m}}+28^{\mathrm{m}} 48^{\mathrm{s}}=5^{\mathrm{h}} 16^{\mathrm{m}} 48^{\mathrm{s}} \\
0.0052 \text { day }=7^{\mathrm{m}} 12^{\mathrm{s}}+17^{\mathrm{s}} .28=\begin{array}{r}
29.28 \\
0.00007 \mathrm{I} \text { day }=66.05+0.09
\end{array} \quad \frac{6.14}{5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} \cdot 4}
\end{array}
$$

table 24. Minutes and seconds into decimals of an hour.
The tabular values are given to six decimals.
Example:
Convert $34^{\mathrm{m}} 28^{\mathrm{s}} .7$ to decimals of an hour.

$$
\begin{array}{rrr}
34^{\mathrm{m}} & =0^{\mathrm{h}} 566667 \\
28^{\mathrm{s}} & = & 7778 \\
0.7 & =\frac{194}{0.574639}
\end{array}
$$

table 25. Local mean time at apparent noon.

This table gives the local mean time ${ }^{1}$ that should be shown by a clock when the center of the sun crosses the meridian, on the 1st, 8 th, 16th, and 24 th days of each month. The table is useful in correcting a clock by means of a sundial or noon mark.
Example:
To find the correct local mean time when the sun crosses the meridian on December 15, 1891.
The table gives for December $16,11^{\mathrm{h}} 56^{\mathrm{m}}$. By interpolating, it is seen that the change to December 15 would be only one-half minute; the correct clock time is therefore 4 minutes before 12 o'clock noon.

Table 26. Sidereal time into mean solar time.
table 27. Mean solar time into sidereal time.
According to Newcomb, the length of the tropical year is 365.24220 mean solar days, ${ }^{2}$ whence
365.24220 solar days $=366.24220$ sidereal days.

Any interval of mean time may therefore be changed into sidereal time by increasing it by its $\frac{1}{365 \cdot 24220}$ part, and any interval of sidereal time may be changed into mean time by diminishing it by its $\frac{1}{365.2 \dagger^{220}}$ part.

Table 26 gives the quantities to be subtracted from the hours, minutes and seconds of a sidereal interval to obtain the corresponding mean time interval, and Table 27 gives the quantities to be added to the hours, minutes and seconds of a mean time interval to obtain the corresponding sidereal interval. The correction for seconds is sensibly the same for either a sidereal or a mean time interval and is therefore given but once, thus forming a part of each table.

Examples:

Change $14^{\mathrm{h}} 25^{\mathrm{m}} 36^{\mathrm{s}} .2$ sidereal time into mean solar time.

Given sidereal time		$14^{\text {h }}$	$25^{\text {m }}$	36.2
Correction for $14{ }^{\text {h }}$	$-2^{\mathrm{m}} 17^{\mathrm{s}} .61$			
$25^{\text {m }}$	4.10			
36.2	. 10			
	-2 21.8 I		-2	2 I .8
Corresponding mean time	$=$	14	23	14.4

[^2]2. Change $13^{\mathrm{h}} 37^{\mathrm{m}} 22^{\mathrm{s}} .7$ mean solar time into sidereal time.

Given mean time	=		$13^{\text {h }}$	$37^{\mathrm{m}} 22^{\text {s }} 7$	
Correction for $13{ }^{\text {b }}$	$=+2^{\mathrm{m}}$	$8^{\text {s }} 13$			
$37^{\text {m }}$	$=+$	6.08			
$22^{\text {s }} 7$	+	0.05			
	+ 2	I4.27		+	14.3
Corresponding sidereal time	=		13	39	37.0

TABLE 28.
table 28. Conversion of avoirdupois pounds and ounces into kilograms.
The comparisons of July, 1893, made by the International Bureau of Weights and Measures between the Imperial standard pound and the "kilogram prototype" resulted in the relation:

$$
\text { I pound avoirdupois }=453.5924277 \text { grams. }
$$

For the conversion of pounds, Table 28 gives the argument for every tenth of a pound up to 9.9 , and the tabular conversion values to ten-thousandths of a kilogram.

For the conversion of ounces, the argument is given for every tenth of an ounce up to 15.9 , and the tabular values to ten-thousandths of a kilogram.

TABLE 29.
Table 29. Conversion of kilograms into avoirdupois pounds and ounces.
From the above relation between the pound and the kilogram,

$$
\begin{aligned}
\text { I kilogram } & =2.204622 \text { avoirdupois pounds. } \\
& =35.274 \quad \text { avoirdupois ounces. }
\end{aligned}
$$

The table gives the value to thousandths of a pound of every tenth of a kilogram up to 9.9 ; the values of tenths of a kilogram in ounces to four decimals; and the values of hundredths of a kilogram in pounds and ounces to three and two decimals respectively.
table 30. Conversion of grains into grams.
TABLES 30, 31.
table 31. Conversion of grams into grains.
From the above relation between the pound and the kilogram,

$$
\begin{aligned}
& \text { I gram }=15.432356 \text { grains. } \\
& \text { I grain }=0.06479892 \text { gram } .
\end{aligned}
$$

Table 30 gives to ten-thousandths of a gram the value of every grain from i to 99 , and also the conversion of tenths and hundredths of a grain for convenience in interpolating.

Table 31 gives to hundredths of a grain the value of every tenth of a gram from 0.1 to 9.9 , and the value of every gram from I to 99 . The values of liundredths and thousandths of a gram are added as an aid to interpolation.

WIND TABLES.

CONVERSION OF VELOCITIES.

Table 32. Synoptic conversion of velocities.
This table, ${ }^{1}$ contained on a single page, converts miles per hour into meters per second, feet per second and kilometers per hour. The argument, miles per hour, is given for every half unit from o to 78 . Tabular values are given to one decimal. For the rapid interconversion of velocities, when extreme precision is not required, this table has proved of marked convenience and utility.
table 33. Conversion of miles per hour into feet per second.
The argument is given for every unit up to 149 and the tabular values are given to one decimal.
table 34. Conversion of feet per second into miles per hour.
The argument is given for every unit up to 199 and the tabular values are given to one decimal.
table 35. Conversion of meters per second into miles per hour.
The argument is given for every tenth of a meter per second up to 60 meters per second, and the tabular values are given to one decimal.
table 36. Conversion of miles per hour into meters per second.
The argument is given for every unit up to 149 , and the tabular values are given to two decimals.
table 37. Conversion of meters per second into kilometers per hour.
The argument is given for every tenth of a meter per second up to 60 meters per second, and the tabular values are given to one decimal.
table 38. Conversion of kilometers per hour into meters per second.
The argument is given for every unit up to 200 , and the tabular values are given to two decimals.
Table 39. Scale of Velocity equivalents of the so-called Beaufort scale of wind.
The personal observation of the estimated force of the wind on an arbitrary scale is a method that belongs to the simplest meteorological

[^3]records and is widely practiced. Although anemometers are used at meteorological observatories, the majority of observers are still dependent upon estimates based largely upon their own judgment, and so reliable can such estimates be made that for many purposes they abundantly answer the needs of meteorology as well as of climatology.

A great variety of such arbitrary scales have been adopted by different observers, but the one that has come into the most general use and received the greatest definiteness of application is the duodecimal scale introduced into the British navy by Admiral Beaufort about 1800 .

Table 39 is taken from the Observer's Handbook of the Meteorological Office, London, edition of 1917. The velocity equivalents in meters per second and miles per hour are based on extensive observational data collected by Dr. G. C. Simpson and first published by the Meteorological Office in 1906. Several other sets of equivalents have been published in different countries. For a history of this subject see Rept. Ioth Meeting International Meteorological Committee, Rome, 1913, Appendix VII. (London, 1914.)

In the Quarterly Journal of the Royal Meteorological Society, volume xxx, No. I32, October, 1904, Prof. A. Lawrence Rotch has described an instrument for obtaining the true direction and velocity of the wind at sea aboard a moving vessel. If a line $A B$ represents the wind due to the motion of a steamer in an opposite direction, and $A C$ the direction of the wind relative to the vessel as shown by the drift of its smoke, then, by measuring the angle $D B A$ that the true wind makes with the vessel - which is easily done by watching the wave crests as they approach it - we obtain the third side, $B C$, of the triangle. This represents, in direction and also in length, on the scale used in setting off the speed of the ship, the true direction of the wind relative to the vessel and also its true velocity. The method fails when the wind direction coincides with the ship's course and becomes inaccurate when the angle between them is small.

Calculation of the mean direction of the wind by lambert's Formula.

Lambert's formula for the eight principal points of the compass is

$$
\tan a=\frac{E-W+(N E+S E-N W-S W) \cos 45^{\circ}}{S-S+(N E+N W-S E-S W) \cos 45^{\circ}} .
$$

a is the angle of the resultant wind direction with ṭe meridian. $E, N E, N$, etc., represent the wind movement from the corresponding directions East, Northeast, North, etc. In practice, instead of taking the total wind movement, it is often considered sufficient to take as proportional thereto the number of times the wind has blown from each direction,
which is equivalent to considering the wind to have the same mean velocity for all directions.

If directions are observed to sixteen points, half the number belonging to each extra point should be added to the two octant pbints between which it lies; for example, $N N E=6$ should be separated into $N=3$ and $N E=$ 3; $E S E=4$, into $E=2$ and $S E=2$. The result will be approximately identical with that obtained by using the complete formula for sixteen points.

Table 40. Multiples of $\cos 45^{\circ}$; form for computing the numerator and denominator.

Table 41. Values of the mean direction (α) or its complement $\left(90^{\circ}-a\right)$.
Table 40 gives products of $\cos 45^{\circ}$ by numbers up to 209, together with a form for the computation of the numerator and denominator, illustrated by an example. The quadrant in which a lies is determined by the following rule:

When the numerator and denominator are positive, a lies between N and E.

When the numerator is positive and the denominator negative, a lies between S and E.

When the numerator and denominator are negative, a lies between S and W.

When the numerator is negative and the denominator positive, a lies between N and W.

Table $4 \mathrm{I}^{1}$ combines the use of a division table and a table of natural tangents. It enables the computer, with the numerator and denominator of Lambert's formula (computed from Table 40) as arguments, to take out directly the mean wind direction a or its complement.

The top argument consists of every fifth number from to to 200.
The side argument is given for every unit from I to 50 and for every two units from 50 to 150 . Tabular values are given to the nearest whole degree.

Rule for using the table:

Enter the table with the larger number (either numerator or denominator) as the top argument.
If the denominator be larger than the numerator, the table gives α.
If the denominator be smaller than the numerator, the table gives $90^{\circ}-a$.
.a is measured from the meridian in the quadrant determined by the rule given with Table 40.

[^4]Example:

Table 4I gives

$$
\tan a=\frac{-43}{-27}
$$

$$
\begin{aligned}
90^{\circ}-a & =32^{\circ} \\
a & =S 58^{\circ} W .
\end{aligned}
$$

Note. - If the numerator and denominator both exceed 150 or if either exceeds 200, the fraction must be divided by some number which will bring them within the limits of the table. The larger the values, provided they are within these limits, the easier and more accurate will be the computation. For example, let $\tan \alpha=\frac{-18}{14}$. The top argument is not given for 18 , but if we multiply by 5 or 10 and obtain $\frac{-90}{70}$ or $\frac{-180}{140}$, the table gives, without interpolation, $90^{\circ}-a=38^{\circ}$ and $a=N 52^{\circ} \mathrm{W}$.

GRADIENT WINDS.

When the motions of the atmosphere attain a state of complete equilibrium of flow under definite systems of pressure gradients, the winds blow across the isobars at small angles of inclination depending upon the retarding effects of friction. At the surface of the earth friction is considerable and the angle across the isobars is often great. In the free air, however, the friction is small, and for some purposes may be disregarded entirely. Under an assumption of complete equilibrium of motion and frictionless flow the winds will blow exactly parallel to the isobars, - that is, perpendicular to the gradient which produces and sustains the motion. Such winds are called gradient winds. The anomalous condition of flow of terrestrial winds perpendicular to the moving force is the result of the modifications of atmospheric motions due to the deflective influence of the earth's rotation, and to that other influence due to the inertia reaction of matter when it is constrained to move in a curved path, and commonly called centrifugal force. The equations for gradient wind motions have long been known to meteorologists from the work of Ferrel and others, and may be written in the following form:

For Cyclones

$$
\begin{equation*}
V=r\left[\sqrt{\omega^{2} \sin ^{2} \phi+\frac{\Delta P}{\rho r}}-\omega \sin \phi\right] \tag{I}
\end{equation*}
$$

For Anticyclones

$$
\begin{equation*}
V=r\left[\omega \sin \phi-\sqrt{\omega^{2} \sin ^{2} \phi-\frac{\Delta P}{\rho r}}\right] \tag{2}
\end{equation*}
$$

In C. G.S. Units, $V=$ velocity of the gradient wind in centimeters per second; $r=$ radius of curvature of isobars in centimeters; $\Delta P=$ pressure gradient in dynes per square centimeter per centimeter; $\rho=$ density of air in grams per cubic centimeter; $\omega=$ angular velocity of the earth's rotation
per second $=\frac{2 \pi}{86164}$, and $\phi=$ latitude. In the Northern Hemisphere the winds gyrate counterclockwise in cyclones and clockwise in anticyclones. These gyrations are in the reversed direction each to each in the Southern Hemisphere.

In equation (2) the values of V are imaginary for values of $\frac{\Delta P}{\rho r}$ greater than $\omega^{2} \sin ^{2} \phi$. The equality $\frac{\Delta P}{\rho r}=\omega^{2} \sin ^{2} \phi$, or $r=\frac{\Delta P}{\rho \omega^{2} \sin ^{2} \phi}$ defines and fixes an isobar with minimum curvature in anticyclones. Winds cannot flow parallel to the isobars within this critical isobar. For this isobar the gradient wind has its maximum value $V_{c}=\frac{\Delta P}{\rho \omega \sin \phi}$. For the same gradient and for an isobar with the same curvature in a cyclone the gradient velocity is $V_{l}=V_{c}(\sqrt{2}-1)=0.414 V_{c}$.

When the isobars are parallel straight lines, a condition very often closely realized in nature, $r=\infty$ and the gradient winds have the value given by either (I) or (2) after squaring, namely,

$$
V_{r=\infty}=V_{s}=\frac{\Delta P}{2 \rho \omega \sin \phi}=\frac{1}{2} V_{c} .
$$

For practical units equation (r) becomes

Units of pressure.

$$
V=R\left[\begin{array}{ll}
\sqrt{.0053173 \sin ^{2} \phi+\frac{I}{10 K \rho d}}-.07292 \sin \phi \\
\sqrt{.0053173 \sin ^{2} \phi+\frac{.13333}{R \rho d}}-.07292 \sin \phi & \text { (I) (Millibars) } \\
\sqrt{.068914 \sin ^{2} \phi+\frac{I .6946}{R \rho d}}-.26252 \sin \phi & \text { (II) (Millimeters) } \\
\text { (III) (Inches) }
\end{array}\right.
$$

$V=$ velocities in meters per second in (I) and (II) and in miles per hour in (III).
$R=$ radius of curvature of isobar (wind path) in kilometers in (I) and (II) and in miles in (III).

The gradient is to be deduced from isobars drawn for pressure intervals of I millibar in (I), I millimeter in (II) and $\frac{1}{\mathrm{IO}}$ inch in (III); d, is the perpendicular distance between isobars (as above defined) in kilometers in (I) and (II), and in miles in (III).
$\rho=$ density of air $=$ grams per cubic centimeter in all cases.

Also
Units of pressure.

$$
V_{c}=\left[\begin{array}{l}
\frac{1.3713}{\rho d \sin \phi}(\mathrm{IV}) \\
\frac{1.8284}{\rho d \sin \phi} \text { (V) } \\
\frac{6.4552}{\rho d \sin \phi} \text { (VI) }
\end{array} \text { and } R_{c}=\left[\begin{array}{ll}
\frac{18.806}{\rho d \sin ^{2} \phi} & \text { (VII) (Millibars) } \\
\frac{25.073}{\rho d \sin ^{2} \phi} \text { (VIII) (Millimeters) } \\
\frac{24.590}{\rho d \sin ^{2} \phi} & \text { (IX) (Inches) }
\end{array}\right.\right.
$$

Radius of critical curvature and velocities of gradient winds for frictionless motion in Highs and Lows.
table 42. English Measures.
TABLES 42, 43.
table 43. Metric Measures.
These tables give the radius of curvature of the critical isobar in anticyclones, computed from the equation

$$
R_{c}=\frac{\Delta P}{\rho \omega^{2} \sin ^{2} \phi} ;
$$

the velocity of the wind on this isobar, computed from the equation

$$
V_{c}=\frac{\Delta P}{\rho \omega \sin \phi} ;
$$

the velocity of the wind on a straight isobar, computed from the equation

$$
V_{s}=\frac{\Delta P}{2 \rho \omega \sin \phi}=\frac{\mathrm{I}}{2} V_{c} ; \text { and }
$$

the velocity of the wind in a cyclone having the same gradient as the anticyclone, and on an isobar having a radius of curvature equal to R_{c}, computed from the equation

$$
V_{1}=V_{c}(\sqrt{2}-1)=0.414 V_{c}
$$

Table 42, English measures, gives values of R_{c}, in miles, and of V_{c} High, V_{s}, and V Low, in miles per hour. The side argument is the latitude for 10°, and at 5° intervals from 20° to 90°, inclusive. The top argument, d, is the perpendicular distance in miles between isobars drawn for pressure intervals of $\frac{I}{\text { IO }}$ inch. For values of d one tenth as great as given in the heading of the table the values of R_{c}, V_{c} High, V_{s}, and V Low are increased tenfold.

Table 43, metric measures, gives values of R_{c} in kilometers, and of V_{c} High, V_{s}, and V Low, in meters per second. The side argument is the same as in Table 42. The top argument, d, is the perpendicular distance in kilometers between isobars drawn for pressure intervals of I millimeter. For values of d one tenth as great as given in the heading of the table the values of R_{c}, V_{c} High, V_{s}, and V Low are increased tenfold.
table 44. English Measures.
table 45. Metric Measures.
These tables give for different altitudes and for different uniform rates of decrease of temperature with altitude, the amount in hundredths of a degree Fahrenheit and Centigrade, which must be added to observed temperatures in order to reduce them to sea level.

The rate of decrease of temperature with altitude varies from one region to another, and in the same region varies according to the season and the metcorological conditions; being in general greater in warm latitudes than in cold ones, greater in summer than in winter, and greater in areas of falling pressure than in areas of rising pressure. For continental plateau regions, the reduction often becomes fictitious or illusory. The use of the tables therefore requires experience and judgment in selecting the rate of decrease of temperature to be used. Much experimental work is now in progress with kites and balloons to determine average vertical gradients. It must be remembered that the tables here given are not tables giving the data as recently determined for various elevations.

The tables are given in order to facilitate the reduction of temperature either upward or downward in special investigations, but the reduction is not ordinarily applied to meteorological observations.

The tables, 44 and 45, are computed for rates of temperature change ranging from \mathfrak{r}° Fahrenheit in 200 feet to I° Fahrenheit in 900 feet, and from I° Centigrade in 100 meters to I° Centigrade in 500 meters; and for altitudes up to 5000 feet and 3000 meters respectively.
Example, Table 44.
Observed temperature at an elevation of 2,500 feet,
Reduction to sea level for an assumed decrease in temperature of $1^{\circ} \mathrm{F}$. for every 300 feet,
Temperature reduced to sea level,
Observed temperature at an elevation of 500 meters,
Reduction to sea level for an assumed decrease in temperature of $1^{\circ} \mathrm{C}$. for every 200 meters,

25
$+\quad 15$
Temperature reduced to sea level,

BAROMETRICAL TABLES.

REDUCTION TO A STANDARD TEMPERATURE OF OBSERVATIONS MADE WITH MERCURIAL BAROMETERS HAVING BRASS SCALES.
The indicated height of the mercurial column in a barometer varies not only with changes of atmospheric pressure, but also with variations of the temperature of the mercury and of the scale. It is evident therefore that if
the height of the barometric column is to be a true relative measure of atmospheric pressure, the observed readings must be reduced to the values they would have if the mercury and scale were maintained at a constant standard temperature. This reduction is known as the reduction for temperature, and combines both the correction for the expansion of the mercury and that for the expansion of the scale, on the assumption that the attached thermometer gives the temperature both of the mercury and of the scale.

The freezing point is universally adopted as the standard temperature of the mercury, to which all readings are to be reduced. The temperature to which the scale is reduced is the normal or standard temperature of the adopted standard of length. For English scales, which depend upon the English yard, this is 62° Fahrenheit. For metric scales, which depend upon the meter, it is 0° Centigrade. As thus reduced, observations made with English and metric barometers become perfectly comparable when converted by the ordinary tables of linear conversion, viz: inches to millimeters and millimeters to inches (see Tables 9, 10), for these conversions refer to the meter at 0° Centigrade and the English yard at 62° Falrenheit.

Prof. C. F. Marvin in the Monthly Weather Review for July, 1898, has pointed out the necessity of caution in conversion of metric and English barometer readings:

Example:

$$
\begin{array}{ll}
\text { Attached thermometer, } & 25^{\circ} \cdot+\mathrm{C} . \\
\text { Barometer reading, } & 762.15 \mathrm{~mm} .
\end{array}
$$

If the temperature is converted to Fahrenheit $=77^{\circ} .7$ and the reading to 30.006 in ., the temperature correction according to table 47 would be -o.133 inch and the reduced reading 29.873. This would be erroneous. The correct conversion is found by taking the correction corresponding to $25^{\circ} .4 \mathrm{C}$. and 762 mm ., i.e., -3.15 mm ., which gives a corrected reading of 759 mm ., and converted into inches gives 29.882 which is the correct result.

Professor Marvin further remarks that circumstances sometimes arise in which a Centigrade thermometer may be used to determine the temperature of an English barometer, or a Fahrenheit attached thermometer may be used with a metric scale. In all such cases the temperature must be brought into the same system of units as the observed scale reading before corrections can be applied, and the observed reading must then be corrected for temperature before any conversion can be made.

With aneroid barometers corrections for temperature and instrumental error must be determined for each instrument.

The general formula for reducing mercurial barometers with brass scales to the standard temperature is

$$
C=-B \frac{m(t-T)-l(t-\theta)}{1+m(t-T)},
$$

in which $C=$ Correction for temperature.
$B=$ Observed height of the barometric column.
$t=$ Temperature of the attached thermometer.
$T=$ Standard temperature of the mercury.
$m=$ Coefficient of expansion of mercury.
$l=$ Coefficient of linear expansion of brass.
$\theta=$ Standard temperature of the scale.
The accepted determination of the coefficient of expansion of mercury is that given by Broch's reduction of Regnault's experiments, viz:

$$
m\left(\text { for } \mathrm{I}^{\circ} C .\right)=1 \mathrm{I}^{-9}\left(\mathrm{I} 8 \mathrm{I} 792+0.175 t+0.035116 t^{2}\right)
$$

As a sufficiently accurate approximation, the intermediate value

$$
m=0.0001818
$$

has been adopted uniformly for all temperatures in conformity with the usage of the International Meteorological Tables.

Various specimens of brass scales made of alloys of different composition show differences in their coefficients of expansion amounting to eight and sometimes ten per cent. of the total amount. The Smithsonian Tables prepared by Prof. Guyot were computed with the average value l (for $\mathrm{I}^{\circ} \mathrm{C}$.) $=0.0000188$; for the sake of uniformity with the International Meteorological Tables, the value

$$
l=0.0000184
$$

has been used in the present volume. For any individual scale, either value may easily be in error by four per cent.

A small portion of the tables has been independently computed, but the larger part of the values have been copied from the International Meteorological Tables, one inaccuracy having been found and corrected.
Table 46. Reduction of the barometer to standard temperature - English measures.

For the English barometer the formula for reducing observed readings to a standard temperature becomes

$$
C=-B \frac{m\left(t-32^{\circ}\right)-l\left(t-62^{\circ}\right)}{\mathrm{I}+m\left(t-32^{\circ}\right)}
$$

in which $B=$ Observed height of the barometer in English inches.
$t=$ Temperature of attached thermometer in degrees Fahrenheit.

$$
\begin{aligned}
m & =0.0001818 \times \frac{5}{9}=0.000101 \\
l & =0.0000184 \times \frac{5}{9}=0.0000102
\end{aligned}
$$

The combined reduction of the mercury to the freezing point and of the scale to 62° Fahrenheit brings the point of no correction to approximately $28^{\circ} .5$ Fahrenheit. For temperatures above $28^{\circ} .5$ Fahrenheit, the correction is subtractive, and for temperatures below $28^{\circ} .5$ Fahrenheit, the correction is additive, as indicated by the signs (+) and (-) inserted throughout the table.

The table gives the corrections for every half degree Fahrenheit from 0° to 100°. The limits of pressure are 19 and 31.6 inches, the corrections being computed for every half inch from i9 to 24 inches, and for every twotenths of an inch from 24 to 31.6 inches.

Example :

Observed height of barometer $=29.143$
Attached thermometer, 54.5 F .
Reduction for temperature
$=-0.068$
Barometric reading corrected for temperature
$=29.075$
TABLE 47.
Table 47. Reduction of the barometer to standard temperature - Metric measures.

For the metric barometer the formula for reducing observed readings to the standard temperature, $\mathrm{o}^{\circ} \mathrm{C}$., becomes

$$
C=-B \frac{(m-l) t}{I+m t}
$$

in which C and B are expressed in millimeters and t in Centigrade degrees.

$$
m=0.000 \mathrm{I} 8 \mathrm{I} 8 ; \quad l=0.0000 \mathrm{I} 84
$$

In the table, the limits adopted for the pressure are 440 and 795 millimeters, the intervals being 10 millimeters between 440 and 600 millimeters, and 5 millimeters between 600 and 795 millimeters.

The limits adopted for the temperature are 0° and $+35^{\circ} .8$, the intervals being 0.5 and 1.0 from 440 to 560 millimeters, and 0.2 from 560 to 795 millimeters.

For temperatures above 0° Centigrade the correction is negative, and hence is to be subtracted from the observed readings.

For temperatures below 0° Centigrade the correction is positive, and from $0^{\circ} \mathrm{C}$. down to $-20^{\circ} \mathrm{C}$. the numerical values thereof, for ordinary barometric work, do not materially differ from the values for the corresponding temperatures above $0^{\circ} \mathrm{C}$. Thus the correction for $-9^{\circ} \mathrm{C}$. is numerically the same as for $+9^{\circ} \mathrm{C}$. and is taken from the table. In physical work of extreme precision, the numerical values given for positive temperatures may be used for temperatures below $\mathrm{o}^{\circ} \mathrm{C}$. by applying to them the following corrections:

Corrections to be applied to the tabular values of Table 47 in order to use them when the temperature of the attached thermometer is below O° Centigrade.

Temperature.	PRESSURE IN MILLIMETERS.							
	450	500	550	600	650	700	750	800
C.	mm.							
$-\mathrm{r}^{\circ}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 9	. 00	. 0	. 00	. 00	. 00	. 00	. 00	. 00
-10	0.00	0.00	0.00	0.00	0.00	+o.01	+o.or	+0.01
II	. 00	. 00	. 00	. 00	+0.01	. 01	. 01	. 01
12	. 00	. 00	. 00	+0.01	. 01	. 01	. 01	.or
13	. 00	. 00	+0.01	. 01	. 01	. Or	. OI	.or
- 14	. 00	+0.01	. 01	. 01	. 01	. 01	. 01	. 01
- 15	toor	+oor	+o.01	toor	+0.01	+0.01	+0.01	+o.or
16	. 01	. 01	. 01	. 01	. OI	.or	.or	. Or
17	. 01	- 01	. 01	. OI	. 01	. 01	. OI	. 02
18	.or	. 01	. 01	. 01	. 01	. 01	. 01	. 02
- 19	. O	. 01	. 01	. 01	. 01	.or	. 02	. 02
-20	+o.or	+0.01	+0.01	to.or	+o.01	$+0.02$	+0.02	+0.02
21	.or	. 01	. OI	. 02	. 02	. 02	. 02	. 02
22	.or	. 01	. 02	. 02	. 02	. 02	. 02	. 02
23	. 01	. 02	. 02	. 02	. 02	. 02	. 02	. 02
-24	. 01	. 02	. 02	. 02	. 02	. 02	. 02	. 03

Example:

Observed height of barometer, $763 \cdot 17^{\mathrm{mm}}$: Temperature of the attached thermometer, $-12^{\circ} \mathrm{C}$.
Numerical value of the reduction for $+12^{\circ} \mathrm{C}$.
$=\quad \mathrm{I} .50$
Correction for temperature below $\mathrm{o}^{\circ} \mathrm{C}$.
$=+$
0.01

Reduction for $-12^{\circ} \mathrm{C}$.
$=+\mathrm{I} .5 \mathrm{I}$
Observed height of barometer
$=\quad 763.17$
Barometer corrected for temperature
$=\quad 764.68$

REDUCTION OF THE MERCURIAL BAROMETER TO STANDARD GRAVITY.

Tables 48, 49, 50.
The mercurial barometer does not directly measure the atmospheric pressure. The latter is proportional to the weight of the mercurial column, and also to its height after certain corrections have been applied. Since the height of the barometric column is easily measured, by common consent the pressures are expressed in terms of this corrected height.

The observed height of the barometer changes with the temperature of the mercury as already shown, and also with the variations in the value of gravity, as well as with the pressure. Therefore, to obtain a height that shall be a true relative measure of the atmospheric pressure, the observed
height of the mercurial column must not only be reduced to what its height would be if at a standard temperature, but also to what it would be at a standard value of gravity.

As stated on page xviii, the standard value of gravity adopted is 980.665 dynes. At the time of its adoption this value was assumed to apply for "latitude 45° and sea-level" on the basis of the absolute determination of g at the International Bureau by Defforges, 1887-1890 (Procés-Verbaux, Comité Inter. d. Poids et Mesures, 1887, pp. 27-28, 86; 1891, p. I35).

More recent determinations, ${ }^{1}$ based upon numerous measurements in all parts of the world, and assuming a certain ideal figure for the earth, give for the mean value of g at latitude 45° and sea level the value 980.62 I dynes. This differs from the standard value by $0.0+4$ dyne. Departures of this magnitude from the mean sea-level gravity of a given latitude are frequently encountered, and in some cases surpassed. They are attributed to topography and isostatic compensation, and to gravity anomalies. For example, according to Bowie, ${ }^{2}$ at Pikes Peak, Colo., the correction for topography and compensation is +0.187 dyne, while the gravity anomaly ${ }^{3}$ is +0.02 I dyne, giving a total gravity departure of +0.208 dyne. Also, at Seattle, Wash., from the mean of measurements at two stations, the correction for topography and compensation is -0.019 dyne ${ }^{4}$ and the gravity anomaly is -0.093 dyne, ${ }^{5}$ giving a total gravity departure of -0.112 dyne. The gravity departure at Pikes Peak is sufficient to cause the barometer to read $0.00+$ inch or 0.10 mm . low, while the departure at Seattle is sufficient to cause the barometer to read 0.003 inch or 0.09 mm . high, as compared with what the readings would have been with gravity at normal intensity for the latitudes of the respective stations.

From the foregoing it is evident that the value of local gravity, g_{l}, at the observing station must be determined before the barometer reading can be accurately reduced to standard gravity. In many cases, and especially at sea, it is not practicable to measure g_{l}. In the United States its value may frequently be determined with sufficient accuracy in the following manner:
(I) Compute g_{ϕ}, mean gravity at sea level for the latitude of the station, from the equation ${ }^{6}$

$$
\begin{aligned}
g_{\phi} & =978.039\left(1+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right), \\
& =980.62 \mathrm{I}\left(\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)
\end{aligned}
$$

(2) Correct g_{ϕ} for altitude by the equation ${ }^{7}$
c (dynes) $=-0.0003086 h$ (meters), or
c (dynes) $=-0.000094$ (feet),

[^5]where h is the altitude of the station above sea level.
(3) Correct g_{ϕ} for gravity anomaly. ${ }^{1}$
(4) Finally, g_{ϕ} is to be corrected for topography and isostatic compensation. ${ }^{2}$

Example:

To determine the value of local gravity g_{l}, at the Weather Bureau Office, Atlanta, Ga., latitude $33^{\circ} 45^{\prime} \mathrm{N}$., longitude $84^{\circ} 23^{\prime} \mathrm{W}$., height of barometer above sea level, I218 feet.
From Table 83, mean sea level gravity for latitude $33^{\circ} 45^{\prime}$
$=979.63 \mathrm{I}$ dynes.
Correction for height of barometer ($-0.000094 \times$ I218)
Correction for gravity anomaly,
$=-0.114$ "
$=-\quad 0.023$
Correction for topography and compensation
Local gravity at Weather Bureau Office, Atlanta, Ga. $=979.508$ dynes.

Having determined g_{l}, the reduction of barometer readings to standard gravity is easily and accurately accomplished by multiplying by the ratio g_{l} / g, or by applying a correction to the barometer reading, otherwise corrected, derived from the expression $\frac{\left(g_{l}-g\right)}{g} B$. With $g_{l}<g$ the correction is to be subtracted; with $g_{l}>g$ the correction is to be added. In general, sufficient accuracy will be attained by computing the gravity correction for a station once for all from the equation $C=B_{n} \frac{\left(g_{l}-g\right)}{g}$, in which B_{n} is the normal station barometer pressure, and C is expressed in the same units as B_{n}.

Table 48 gives corrections to reduce barometer readings to standard gravity. The top argument is the barometer reading. The side argument is the difference, $g_{l}-g$, for each tenth of a dyne up to 4.0 dynes. The relation is a linear function of both $g_{l}-g$ and B, and for barometer readings 10 or 100 times greater than those given in the argument the correction may be obtained by removing the decimal point in the tabulated values one or two places, respectively, to the right. The correction obtained will be expressed in the same units as the barometer reading to be corrected.

[^6]Example 1.
The barometer reading corrected for temperature is 29.647 inches, and the local value of gravity is 978.08 . The difference, $g_{l}-g$, $=-2.585$. From the table,
the correction for a barometer reading of 20 inches $=-0.0527 \mathrm{in}$.
the correction for a barometer reading of 9 inches $=-0.0237 \mathrm{in}$.
the correction for a barometer reading of 0.65 inches $=-\underline{0.0017} \mathrm{in}$.
Correction for a barometer reading of 29.65 inches $=-0.078 \mathrm{in}$.
Corrected barometer reading $=29.647 \mathrm{in} .-0.078 \mathrm{in} .=29.569 \mathrm{in}$.

Example 2.

The barometer reading reduced to $o^{\circ} C$. is 637.42 mm ., and the local value of gravity is 98 I .5 I . The difference, $g_{l}-g=+0.845$. From the table,
the correction for a barometer reading of $600 \mathrm{~mm} . \quad=+0.517 \mathrm{~mm}$.
the correction for a barometer reading of 30 mm . $=+0.026 \mathrm{~mm}$.
the correction for a barometer reading of 7 mm . $=+0.006 \mathrm{~mm}$.
Correction for a barometer reading of $637.4 \mathrm{~mm} . \quad=+\overline{0.55} \mathrm{~mm}$.
Corrected barometer reading $=637.42+0.55=+637.97 \mathrm{~mm}$.
In the case of barometer readings made at sea, and also at some land stations, it is not practicable to determine local gravity with greater accuracy than it can be computed from the equations for variation with latitude and altitude given above. The reduction to standard gravity, accordingly, consists of two parts - a correction for altitude, and a correction from the computed sea-level gravity for the latitude of the station to standard gravity. The first part of the correction, or the correction for altitude, may be computed once for all from the expression $\mathrm{c}=-0.0003086 h B_{n}$ (metric measures), or $\mathrm{c}=-0.000094$ h B_{n} (English measures), and is usually combined with the reduction of the barometer to sea level or to some other reference plane. The second part has heretofore consisted of a correction for the difference between the mean value of gravity for the latitude of the station and for latitude 45°; and, in accordance with the equation given atove, it may be derived from the expression

$$
\left(-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right) B
$$

where ϕ is the latitude of the station, and B is the barometer reading. The value of the ratio $\frac{g_{45^{\circ}}-g}{g}=\frac{980.621-980.665}{980.665}=-0.000045$. Therefore, the expression for the gravity correction becomes

$$
\left(-0.00264 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi-0.000045\right) B
$$

Table 49 (English measures) gives the corrections in thousandths of an inch for every degree of latitude and for each inch of barometric pres-
sure from 19 to 30 inches, to reduce barometer readings to standard gravity, computed from the equation

$$
C=\left(-0.0026+\cos 2 \phi+0.000007 \cos ^{2} 2 \phi-0.000045\right) B
$$

Table 50 (metric measures) gives the same corrections in hundredths of a millimeter for each 20 millimeters barometric pressure from 520 to 780 millimeters.

Example:

Barometric reading (corrected for temperature) at latitude
$63^{\circ} 55^{\prime}$,
Correction to standard gravity, Table 49,
Barometer reduced to standard gravity,
$=27.434$ inches
$=0.043$ inches
$=27.477$ inches

The adoption of this new value for standard gravity may require a slight correction to old barometric records in order to make the entire series of readings homogeneous. The amount of this correction will be the difference between the gravity correction computed by these new tables and by the old tables.

Example:

Scattle, Wash., Lat. $47^{\circ} 38^{\prime}$ N. Long. $122^{\circ} 20^{\prime}$ W., height of barometer above sea level 125 feet, normal station barometer 29.89 inches.
g_{ϕ} (Table 83)
$=980.859$ dynes.
Correction for height (-0.000094×125)
$=-\quad .012$
Correction for topography and compensation
$=-\quad$ OI9
Correction for gravity anomaly
Value of local gravity
$=-\ldots .03{ }^{\prime \prime}$
980.735 dynes.

Correction to reduce barometer readings to standard gravity, $\frac{980.735-980.665}{980.665} B_{n}=+0.002$ inch. Old correction, +0.007 ; correction to old records $=0.002 \mathrm{in} .-0.007 \mathrm{in} .=-0.005 \mathrm{in}$.

For correcting back records of readings at sea, or at any place where the value of local gravity cannot be determined, the correction is equal to the ratio $\frac{980.599-980.665}{980.665} B=-0.000067 B$. The corrections are as follows:

Barometer reading. Correction.
From 7 to 22 inches $\quad-0.00 \mathrm{I}$ in.
From 23 to 32 inches -0.002 in.

From 380 to 520 mm . $\quad-0.03 \mathrm{~mm}$.
From 530 to 670 mm . $\quad-0.04 \mathrm{~mm}$.
From 680 to 820 mm . $\quad-0.05 \mathrm{~mm}$.

THE IIYPSOMETRIC FORMULA AND ITS CONSTANTS.
The fundamental formula for reducing the barometer to sea level and for determining heights by the barometer is the original formula of Laplace, amplified into the following form -

$$
\begin{equation*}
Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378_{\bar{b}}^{e}}\right)\left(\mathrm{I}+\frac{g-g_{\mathrm{l}}}{g}\right)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right) \log \frac{p_{0}}{p}, \tag{1}
\end{equation*}
$$

or, where g_{l}, the value of local gravity is unknown,

$$
\begin{equation*}
Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378_{\bar{b}}^{e}}\right)\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+\mathrm{C}\right)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right) \log \frac{p_{0}}{p} \tag{2}
\end{equation*}
$$

in which

$$
\begin{aligned}
h & =\text { Height of the upper station. } \\
h_{\circ} & =\text { Height of the lower station. } \\
Z & =h-h_{\circ} .
\end{aligned}
$$

$p=$ Atmospheric pressure at the upper station.
$p_{0}=$ Atmospheric pressure at the lower station.
$R=$ Mean radius of the earth.
$\theta=$ Mean temperature of the air column between the altitudes h and h_{0}.
$e=$ Mean pressure of aqueous vapor in the air column.
$b=$ Mean barometric pressure of the air column.
$\phi=$ Latitude of the stations.
$K=$ Barometric constant.
$\alpha=$ Cocfficient of the expansion of air.
k and $k^{\prime}=$ Constants depending on the figure of the earth.

$$
\begin{aligned}
C & =\text { Constant }=\text { the ratio } \frac{g_{45^{\circ}}-g}{g} . \\
g & =\text { standard value of gravity }=980.665 \text { dyncs. } \\
g_{l} & =\text { Local value of gravity. }
\end{aligned}
$$

The pressures p_{0} and p are computed from the height of the column of mercury at the two stations; the ratio $\frac{B \circ}{B}$ of the barometric heights may be substituted for the ratio $\frac{p_{0}}{p}$, if B_{\circ} and B are reduced to the values that would be measured at the same temperature and under the same relative value of gravity.

The correction of the observed barometric heights for instrumental temperature is always separately made, but the correction for the variation of gravity with altitude is generally introduced into the formula itself.

If B_{0}, B represent the barometric heights corrected for temperature only, we have the equation

$$
\underline{p_{0}}=\frac{B_{0}}{B}\left(\mathrm{i}+\mu \frac{Z}{R}\right),
$$

μ being a constant depending on the variation of gravity with altitude ($\frac{\mu}{R}=0.0000003$), and

$$
\log \frac{p_{\circ}}{p}=\log \frac{B_{\circ}}{B}+\log \left(1+\mu \frac{Z}{R_{⿱}}\right)
$$

Since $\frac{\mu Z}{R}$ is a very small fraction, we may write

$$
\text { Nap. } \log \left(1+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R} \text {, and } \log \left(1+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R} M
$$

M being the modulus of common logarithms.
By substituting for Z its approximate value $Z=K \log \frac{B_{0}}{B}$, we have

$$
\log \left(\mathrm{I}+\frac{\mu Z}{R}\right)=\frac{\mu K}{R} M \log \frac{B_{\circ}}{B} .
$$

With these substitutions the barometric formula becomes

$$
\begin{align*}
Z= & K(\mathrm{I}+a \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378 \frac{e}{b}}\right)\left(\mathrm{I}+\frac{g-g_{\mathrm{I}}}{g}\right)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right) \times \tag{I}\\
& \left(\mathrm{I}+\frac{\mu K}{R} M\right) \log \frac{B_{\mathrm{o}}}{B}, \text { or }
\end{align*}
$$

(2) $Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378_{\bar{b}}^{e}}\right)\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C\right)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right) \times$

$$
\left(\mathrm{I}+\frac{\mu K}{R} M\right) \log \frac{B_{0}}{B} .
$$

As a further simplification we shall put

$$
\beta=0.378 \frac{e}{b}, \gamma=k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C \text { and } \eta=\frac{\mu K}{R} M,
$$

and write for the second form, (2), the formula -

$$
Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-\beta}\right)(\mathrm{I}+\gamma)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right)(\mathrm{I}+\eta) \log \frac{B_{\mathrm{o}}}{B} .
$$

Values of the constants. - The barometric constant K is a complex quantity defined by the equation

$$
K=\frac{\Delta \times B_{n}}{\delta \times M} .
$$

B_{n} is the normal barometric height of Laplace, 760 mm .
Δ is the density of mercury at the temperature of melting ice. The value adopted by the International Meteorological Committee, and which has been employed in previous editions of these tables is $\Delta=13.5956$. The
most probable value, taking into account the recently determined relation between the liter and the cubic decimeter, ${ }^{1}$ is as already stated, $\Delta=13.5951$ and this value is here adopted.
δ is the density of dry air at $0^{\circ} \mathrm{C}$ under the pressure of a column of mercury B_{n} and under standard gravity. The value adopted by the International Bureau of Weights and Measures for air under the above conditions and free from CO_{2} is $\delta=0.0012928$ grams per cubic centimeter. ${ }^{2}$ This is in close agreement with the value ($\delta=0.00129278$) used in previous editions of these tables. For air containing 4 parts in 10000 of CO_{2} it gives a density of 0.00129307 , and for air containing 3 parts in 10000 of CO_{2}, the proportion adopted by Hann, ${ }^{3}$ it gives a density of 0.00129301 . Therefore, the value adopted for the density of air containing an average amount of CO_{2} is

$$
\delta=0.0012930
$$

M (Modulus of common logarithms) $=0.4342945$. These numbers give for the value of the barometric constant

$$
K=18400 \text { meters. }
$$

For the remaining constants, the following values have been used:
$\alpha=0.00367$ for I° Centigrade. (International Bureau of Weights and Measures: Travaux et Mémoires, t. I, p. A. 54.)
$\lambda=k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C=0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+$ 0.000045
$R=6367324$ meters. (A. R. Clarke: Geodesy, 8°, Oxford, I880.)
$\eta=\frac{\mu K M}{R}=0.002396$. (Ferrel: Report Chief Signal Officer, 1885, pt. 2, pp. 17 and 393.)

TABLES 51, 52, 53, 54, 56.
THE DETERMINATION OF HEIGHTS BY THE BAROMETER.

Tables 51, 52, 53, 54, 55.

English Measures.

Since a barometric determination of the height will rarely be made at a place where g_{l} is known, the discussion which follows will be confined to the second form of the barometric formula developed in the preceding section (see page xxxix). For convenience in computing heights it is arranged in the following form:

$$
Z=K\left(\log B_{0}-\log B\right)\left[\begin{array}{l}
(\mathrm{I}+a \theta) \\
(\mathrm{I}+\beta) \\
\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C\right)(\mathrm{I}+\eta) \\
\left(\mathrm{I}+\frac{Z+2 h_{0}}{R}\right)
\end{array}\right]
$$

${ }^{1}$ Comptes Rendus, Quatrième Conférence Générale Poids et Mesures, 1907, pp. 60-61.
${ }^{2}$ Leduc, l.c.
${ }^{3}$ Lehrbuch der Meteorologie, dritte Auflage, 1915, s. 5.
in which $K\left(\log B_{0}-\log B\right)$ is an approximate value of Z and the factors in the brackets are correction factors depending respectively on the air temperature, the humidity, the variation of gravity with latitude, the variation of gravity with altitude in its effect on the weight of mercury in the barometer, and the variation of gravity with altitude in its effect on the weight of the air. With the constants already given, the formula becomes in English measures:
$Z($ feet $)=60368^{1}\left(\log B_{0}-\log B\right)$

$$
\left[\begin{array}{l}
{\left[\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right]} \\
(\mathrm{I}+\beta) \\
\left(\mathrm{I}+0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi\right. \\
\left(\mathrm{I}+\frac{Z+2 h_{0}}{R}\right)
\end{array}\right]
$$

In order to make the temperature correction as small as possible for average air temperatures, $50^{\circ} \mathrm{F}$. will be taken as the temperature at which the correction factor is zero. This is accomplished by the following transformation:

$$
1+0.002039\left(\theta-32^{\circ}\right)=\left[1+0.002039\left(\theta-50^{\circ}\right)\right]\left[\mathrm{I}+0.0010195 \times 36^{\circ}\right] .
$$

The second factor of this expression combines with the constant, and gives $60368\left(\mathrm{I}+0.0010195 \times 36^{\circ}\right)=62583.6$.

The first approximate value of Z is therefore

$$
62583.6\left(\log B_{\circ}-\log B\right) .
$$

In order further to increase the utility of the tables, we shall make a further substitution for $\log B_{\circ}-\log B$, and write

$$
62583.6\left(\log B_{0}-\log B\right)=62583.6\left(\log \frac{29.9}{B}-\log \frac{29.9}{B_{0}}\right) .
$$

Table 51 contains values of the expression

$$
62583.6 \log \frac{29.9}{B}
$$

for values of B varying by intervals of 0.01 inch from 12.00 inches to 30.90 inches.

The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{0} from the tabular value corresponding to B (B and B_{0} being the barometric readings observed and corrected for temperature at the upper and lower stations respectively).

Table 52 gives the temperature correction

$$
Z \times 0.002039\left(\theta-50^{\circ}\right) .
$$

[^7]The side argument is the mean temperature of the air column (θ) given for intervals of I° from 0° to $100^{\circ} \mathrm{F}$. The top argument is the approximate difference of altitude Z obtained from Table 51.

For temperatures above $50^{\circ} \mathrm{F}$., the correction is to be added, and for temperatures below $50^{\circ} \mathrm{F}$., the correction is to be subtracted. It will be observed that the correction is a linear function of Z, and hence, for example, the value for $Z=1740$ is the sum of the corrections in the columns headed 1000,700 , and 40 .

In general, accurate altitudes cannot be obtained unless the temperature used is freed from diurnal variation.

Table 53 gives the correction for gravity, and for the effect of the variation of gravity with altitude on the weight of the mercury. When altitudes are determined with aneroid barometers the second factor does not enter the formula. In this case the effect of the latitude factor can be obtained by taking the difference between the tabular value for the given latitude and the tabular value for latitude $45^{\circ} 29^{\prime}$. The side argument is the latitude of the station given for intervals of 2°. The top argument is the approximate difference of height Z.

Table 54 gives the correction for the average humidity of the air at different temperatures. In evaluating the humidity factor as a function of the air temperature, the tables given by Prof. Ferrel have been adopted (Meteorological researches. Part iii. - Barometric hypsometry and reduction of the barometer to sea level. Report, U.S. Coast Survey, 1881. Appendix ro.) These tables by interpolation, and by extrapolation below $0^{\circ} F$., give the following values for β :

For Fahrenheit temperatures,

θ	β	θ	β	θ	β	θ	β
F.		F.		F.		F.	
-20°	0.00008	10°	0.00104	36°	0.00267	62°	0.00724
-16	. 00020	12	. 00111	38	. 00293	64	. 00762
-12	. 00032	14	.00118	40	. 00322	66	. 00 SOI
-8	. $000+4$	16	. 00126	42	. 00353	68	.00839
		18	. 00134	44	. 00386	70	. 00877
- 6	0.00050	20	. 0014	46	. 0042 I	72	.00914
- 4	. 00056	22	. 00153	48	. 00458		
-2	. 00062	24	. 00163	50	. 00496	76	0.00990
	. 00068	26	. 00174	52	. 00534	80	. 01065
$+2$. 00075	28	. 00187	54	. 00572	S_{4}	.OII4I
		30	. 00203	56	. 00610	88	. 01217
6	. 00089	32	. 00222	58	. 00648	92	. 01293
8	.00096	34	. 00243	60	. 00686	96	. 01369

This correction could have been incorporated with the temperature factor in Table 52, but it is given separately in order that the magnitude of the correction may be apparent, and in order that, when the actual hu-
midity is observed, the correction may be computed if desired, by the expression

$$
Z\left(0.378 \frac{e}{b}\right)
$$

where e is the mean pressure of vapor in the air column, and b the mean barometric pressure.

The side argument is the mean temperature of the air column, varying by intervals of 2° from $-20^{\circ} \mathrm{F}$. to $96^{\circ} \mathrm{F}$., except near the extremities of the table where the interval is 4°. The top argument is the approximate difference of altitude Z.

Table 55 gives the correction for the variation of gravity with altitude in its effect on the weight of the air. The side argument is the approximate difference of altitude Z, and the top argument is the elevation of the lower station h_{0}.

The corrections given by Tables 53,54 , and 55 are all additive.

Example:

Let the barometric pressure obscrved, and corrected for temperature, at the upper and lower stations be, respectively, $B=23.61$ and $B_{\circ}=29.97$. Let the mean temperature of the air column be 35° F., and the latitude $44^{\circ} 16^{\prime}$. To determine the difference of height.

	Feet.
Table 51, argument 23.61, gives	6420
Table 51, " 29.97,	64
Approximate difference of height (Z)	$=6484$
Table 52, with $Z=6484$ and $\theta=35^{\circ} \mathrm{F}$., gives	- 198
Table 53, with $Z=6300$ and $\phi=44^{\circ}$, gives	+ 16
Table 54, with $Z=6300$ and $\theta=35^{\circ} \mathrm{F}$., gives	+ 16
Table 55, with $Z=6300$ and $h_{\circ}=0$, gives	$+\quad 2$
Final difference of height (Z)	=6320

If in this example the barometric readings be observed with aneroid barometers, the correction to be obtained from Table 53 will be simply the portion due to the latitude factor, and this will be obtained by subtracting the tabular value for $45^{\circ} 29^{\prime}$ from that for 44°, the top argument being $Z=6300$. This gives $16-15=1$.

Tables 56, 57, 58, 59, 60, 61, 62, 63.

Metric and Dynamic Measures.

The barometric formula developed on page xli is, in metric and dynamic units,

$$
Z(\text { meters })=\mathrm{I} 8400\left(\log B_{0}-\log B\right)\left[\begin{array}{l}
(\mathrm{I}+0.00367 \theta C .) \\
\left(\mathrm{I}+0.378 \frac{e}{b}\right) \\
\left(\mathrm{I}+0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi\right. \\
\quad+0.000045)(\mathrm{I}+0.00239) \\
\left(\mathrm{I}+\frac{Z+2 h_{0}}{63673^{24}}\right)
\end{array}\right]
$$

The approximate value of Z (the difference of height of the upper and lower station) is given by the factor $18400\left(\log B_{0}-\log B\right)$. This expression is computed by means of two entries of a table whose argument is the barometric pressure. In order that the two entries may result at once in an approximate value of the elevation of the upper and lower stations, a transformation is made, which gives the following identities:
$\mathbf{I} 8400\left(\log B_{\circ}-\log B\right)=\mathbf{I} 8400\left(\log \frac{760}{B}-\log \frac{760}{B_{\circ}}\right)$ - Metric measures, and $18400\left(\log B_{0}-\log B\right)=18400\left(\log \frac{\text { IOI } 3.3}{B}-\log \frac{\text { IOI } 3.3}{B_{\circ}}\right)-$ Dynamic measures.

Table 56 gives values of the expression $18400 \log \frac{760}{B}$ for values of B varying by intervals of 1 mm . from 300 mm . to 779 mm . The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{0} from the tabular value corresponding to B (B and B_{0} being the barometric readings observed and reduced to $0^{\circ} C$. at the upper and lower stations respectively). The first entry of Table 56 with the argument B gives an approximate value of the elevation of the upper station above sea level, and the second entry with the argument B_{\circ} gives an approximate value of the elevation of the lower station.

Table 57 gives values of the expression $18400 \log \frac{1013.3}{B}$ for values of B varying by intervals of I mb . from o mb . to 1049 mb . The approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{\circ} from the tabular value corresponding to B (B and B_{\circ} being the barometric readings observed and reduced to $0^{\circ} C$. at the upper and lower stations respectively). The first entry of Table 57 with the argument B gives an approximate value of the elevation of the upper station above sea level, and the second entry with the argument B_{\circ} gives an approximate value of the elevation of the lower station.

Table 58 gives the temperature correction factor, $a=0.00367 \theta$, for each tenth of a degree centigrade, from $0^{\circ} \mathrm{C}$. to $50.9^{\circ} \mathrm{C}$. To find the correction corresponding to any mean temperature of the air column, θ, multiply the approximate altitude as determined from Table 56 or 57 by the value of a obtained from this table, and add the result if θ is above $0^{\circ} C$.; subtract, if below $\mathrm{O}^{\circ} \mathrm{C}$.

Attention is called to the fact that the formula is linear with respect to θ, and hence that the correction, for example, for $59^{\circ} .8 \mathrm{C}$. equals the correction for $50^{\circ} .8$ plus the correction for 9° or $.186+.033=.219$, and is to be added.

Table 59 is an amplification of Table 58 and gives the temperature correction $0.00367 \theta \times Z$.

The side argument is the approximate difference of elevation Z and the top argument is the mean temperature of the air column. The values of Z vary by intervals of 100 m . from 100 to 4000 meters and the temperature varies by intervals of I° from $\mathrm{I}^{\circ} \mathrm{C}$. to $10^{\circ} \mathrm{C}$. with additional columns for $20^{\circ}, 30^{\circ}$, and $40^{\circ} \mathrm{C}$. This formula also is linear with respect to θ, and hence the correction, for example, for 27° equals the correction for 20° plus the correction for 7°. When the table is used for temperatures below $0^{\circ} \mathrm{C}$. the tabular correction must be subtracted from, instead of added to, the approximate value of Z.

Table 60 (pp. 149 and 150) gives the correction for humidity resulting from the factor $0.378 \frac{e}{b} \times Z=\beta Z$.

Page 149 gives the value of $0.378 \frac{e}{b}$ multiplied by 10000 . The side argument is the mean pressure of aqueous vapor, e, which serves to represent the mean state of humidity of the air between the two stations. $e=\frac{1}{2}\left(e_{\mathrm{I}}+e_{0}\right)$ (e_{I} and e_{O} being the vapor pressures observed at the two stations) has been written at the head of the table, but the value to be assigned to e is in reality left to the observer, independently of all hypothesis. The top argument is the mean barometric pressure $\frac{1}{2}\left(B+B_{0}\right)$.

The vapor pressure varies by millimeters from I to 40 , and the mean bazometric pressure varies by intervals of 20 mm . from 500 mm . to 760 mm . The tabular values represent the humidity factor β, or $0.378 \frac{e}{b}$, multiplied by 10000.

Page 150 gives the correction for humidity, with Z and $10000 \times 0.378 \frac{e}{b}$ (derived from page 149) as arguments.

The approximate difference of altitude is given by intervals of 100 meters from 100 to 4000 meters, with additional lines for 5000,6000 , and 7000 meters. The values of 10000β vary by intervals of 25 from 25 to 300 . The tabular values are given in tenths of meters to facilitate and increase the accuracy of interpolation.

Table 61. Humidity correction: Value of $\frac{I}{2}\left(\frac{0.378 \frac{e}{b}}{0.00367}\right)$. It has been found advantageous to express the humidity term, βZ, as a correction to the temperature term, a θZ.

Let $a \Delta \theta Z=\beta Z$; then,

$$
\Delta \theta=\frac{\beta}{a}=\frac{0.378 \frac{e}{b}}{0.00367} .
$$

For convenience in computing, the tabulated values of $\Delta \theta$ are for $\frac{1}{2}\left(\frac{0.378 \frac{e}{b}}{0.00367}\right)$. The side and top arguments are air and vapor pressures, respectively, in mm. on p. I5I and in mb. on p. 152. Instead of computing $\Delta \theta$ from the mean of the values of B and e at the upper and lower stations it is computed for each station separately, and the sum oif the two determinations is added to θ.

Table 62 gives the correction for gravity, and for the effect of the variation of gravity with altitude on the weight of the mercurial colurnn. When altitudes are determined with aneroid barometers the latter factor does not enter the formula. In this case the effect of the latitude factor can be obtained by subtracting the tabular value for latitude $45^{\circ} 29^{\prime}$ from the tabular value for the latitude in question.

The side argument is the approximate difference of elevation Z varying by intervals of 100 meters from 100 to 4000 , and by 500 meters from 4000 to 7000 . The top argument is the latitude, varying by intervals of 5° from 0° to 75°

Table 63 gives the correction for the variation of gravity with altitude in its effect on the weight of the air.

The side argument is the same as in Table 62 ; the top argument is the height of the lower station, varying by intervals of 200 meters from 0 to 2000 , with additional columns for 2500,3000 and 4000 meters.

The corrections given in Table 62 and Table 63 apply to the approximate heights computed from metric or dynamic measures by the use of Tables 56 to $6 \mathbf{I}$, inclusive, and are additive.

Example: (Metric Measures.)
Let the barometric reading (reduced to $0^{\circ} \mathrm{C}$.) at the upper station be 655.7 mm .; at the lower station, 772.4 mm . Let the mean temperature of the air column be $\theta=12^{\circ} .3 \mathrm{C}$., the mean vapor pressure $e=$ 9 mm . and the latitude $\phi=32^{\circ}$.
Table 56, with argument 655.7 , gives 1179 meters.
Table 56, " " 772.4, " - 129
Approximate value of $Z=\overline{1308}$
Table 59, with $Z=1308$ and $\theta=12^{\circ} .3 \mathrm{C}$, gives 59
Table 60, with $e=9 \mathrm{~mm}$. and $Z=1370$, gives 7
Table 62, with $Z=1370$ and $\phi=32^{\circ}$, gives
5
Table 63, with $Z=1370$ and $h_{\circ}=0$, gives
Corrected value of Z
$=\overline{\mathrm{I} 379}$ meters.

Example: (Dynamic Measures.)

Let the barometer reading (reduced to $0^{\circ} \mathrm{C}$.) at the upper station be 448.6 mb .; at the lower station, 1000.3 mb . Let the vapor pres-
sure at the upper station be 2.4 mb .; at the lower station 7.3 mb . Let the mean temperature of the air column be $\theta=5^{\circ} .8 \mathrm{C}$. and the latitude $\phi=39^{\circ} 25^{\prime} \mathrm{N}$.
Table 57, with argument 448.6 , gives 65 II meters.
Table 57, with argument 1000.3, gives
Approximate value of Z

104
6407 meters.

Table 6́r, with arguments 449 and 2.4 gives $\Delta \theta=0.3$
Table 6I, with arguments 1000 and 7.3 gives $\Delta \theta=0.4$
Table 58, with $\theta=5.8+0^{\circ} .7=6.5$, and $Z=6407$ gives $6407 \times 0.024=\quad 154$
Table 62 with $Z=6561$ and $\phi=39^{\circ}{ }^{2} 5^{\prime}$, gives 19
Table 63 with $Z=6561$ and $h_{0}=0$, gives
$=\frac{7}{}=6587$ meters.
table 64. Difference of height corresponding to a change of O.I inch in the barometer - English measures.
If we differentiate the barometric formula, page xlii, we shall obtain, neglecting insensible quantities,

$$
d Z=-26281 \frac{d B}{B}\left(1+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
$$

in which B represents the mean pressure of the air column $d Z$.
Putting $d B=0.1$ inch,

$$
d Z=-\frac{2628.1}{B}\left(1+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta) .
$$

The second member, taken positively, expresses the height of a column of air in feet corresponding to a tenth of an inch in the barometer under standard gravity. Since the last factor $(\mathrm{I}+\beta)$, as given on page xliii, is a function of the temperature, the function has only two variables and admits of convenient tabulation.

Table 64, containing values of $d Z$ for short intervals of the arguments B and θ, has been taken from the Report of the U.S. Coast Survey, 1881, Appendix 10, - Barometric hypsometry and reduction of the barometer to sea level, by Wm. Ferrel. ${ }^{1}$

The temperature argument is given for every 5° from $30^{\circ} \mathrm{F}$. to $85^{\circ} \mathrm{F}$., and the pressure argument for every 0.2 inch from 22.0 to 30.8 inches.

This table may be used in computing small differences of altitude, and, up to a thousand feet or more, very approximate results may be obtained.

[^8]
Example :

Mean pressure at Augusta, October, 1891, 29.94; temperature, $60^{\circ} 8 \mathrm{~F}$.
Mean pressure at Atlanta, October, 1891, 28.97; temperature, $59^{\circ} 4$
Mean pressure of air column $\quad B=29.455 ; \quad \theta=60.1$
Entering the table with 29.455 and 60.1 as arguments, we take out 94.95 as the difference of elevation corresponding to a tenth of an inch difference of pressure. Multiplying this value by the number of tenths of inches difference in the observed pressures, viz. 97, we obtain the difference of elevation 921 feet.

TABLE 65.
Table 65. Difference of height corresponding to a change of one millimeter in the barometer - Metric measures.

This table has been computed by converting Table 64 into metric units. The temperature argument is given for every 2° from $-2^{\circ} \mathrm{C}$. to $+36^{\circ} \mathrm{C}$.; the pressure argument is given for $10-\mathrm{mm}$. intervals from 760 to 560 mm .

TABLE 66.
Table 66. Babinet's formula for determining heights by the barometer.
Babinet's formula for computing differences of altitude ${ }^{1}$ represents the formula of Laplace quite accurately for differences of altitude up to 1000 meters, and within one per cent for much greater altitudes. As it has been quite widely disseminated among travelers and engineers, and is of convenient application, the formula is here given in English and metric measures. It might seem desirable to alter the figures given by Babinet so as to conform to the newer values of the barometrical constants now adopted; but this change would increase the resulting altitudes by less than one-half of one per cent without enhancing their reliability to a corresponding degree, on account of the outstanding uncertainty of the assumed mean temperature of the air.

The formula is, in English measures,

$$
Z(\text { feet })=52494\left[\mathrm{I}+\frac{t_{0}+t-64^{\circ}}{900}\right] \frac{B_{0}-B}{B_{0}+B} ;
$$

and in metric measures,

$$
Z \text { (meters) }=16000\left[1+\frac{2\left(t_{0}+t\right)}{1000}\right] \frac{B_{0}-B}{B_{0}+B},
$$

in which Z is the difference of elevation between a lower and anper station at which the barometric pressures corrected for all sources of instrumental error are B_{\circ} and B, and the observed air temperatures are t_{0} and t, respectively.

For ready computation the formula is written

$$
Z=C \times \frac{B_{0}-B}{B_{0}+B},
$$

and the factor C, computed both in English and metric measures, has been kindly furnished by the late Prof. Cleveland Abbe. The argument is $\frac{1}{2}\left(t_{0}+t\right)$ given for every 5° Fahrenheit between 10° and $100^{\circ} \mathrm{F}$., and for every 2° Centigrade between - 10° and 36° Centigrade.

In using the table, it should be borne in mind that on account of the uncertainty in the assumed temperature, the last two figures in the value of C are uncertain, and are here given only for the sake of convenience of interpolation. Consequently one should not attach to the resulting altitudes a greater degree of confidence than is warranted by the accuracy of the temperatures and the formula. The table shows that the numerical factor changes by about one per cent of its value for every change of five degrees Fahrenheit in the mean temperature of the stratum of air between the upper and lower stations; therefore the computed difference of altitude will have an uncertainty of one per cent if the assumed temperature of the air is in doubt by $5^{\circ} \mathrm{F}$. With these precautions the observer may properly estimate the reliability of his altitudes whether computed by Babinet's formula or by more elaborate tables.

Example:

Let the barometric pressure observed and corrected for temperature at the upper and lower stations be, respectively, $B=635 \mathrm{~mm}$. and $B_{\circ}=730 \mathrm{~mm}$. Let the temperatures be, respectively, $t=15^{\circ} \mathrm{C}$., $t_{0}=20$ 。 C. To find the approximate difference of height.
With $\frac{1}{2}\left(t_{0}+t\right)=\frac{20^{\circ}+15^{\circ}}{2}=17^{\circ} .5 \mathrm{C}$., the table in metric measures gives

$$
C=17120 \text { meters. } \frac{B_{0}-B}{B_{0}+B}=\frac{95}{1365} .
$$

The approximate difference of height $=17120 \times \frac{95}{1365}=1191.5$ meters.

THERMOMETRICAL MEASUREMENT OF HEIGHTS BY OBSERVATION OF THE

 TEMPERATURE OF THE BOILING POINT OF WATER.When water is heated in the open air, the elastic force of its vapor gradually increases, until it becomes equal to the incumbent weight of the atmosphere. Then, the pressure of the atmosphere being overcome, the steam escapes rapidly in large bubbles and the water boils. The temperature at which water boils in the open air thus depends upon the weight of the atmospheric column above it, and under a less barometric pressure the water will boil at a lower temperature than under a greater pressure. Now, as the weight of the atmosphere decreases with the elevation, it is obvious that, in ascending a mountain, the higher the station where an observation is made, the lower will be the temperature of the boiling point.

The difference of elevation between two places therefore can be de-
duced from the temperature of boiling water observed at each station. It is only necessary to find the barometric pressures which correspond to those temperatures, and from these to compute the difference of height by the tables given herein for computing heights from barometric observations.

From the above, it may be seen that the heights determined by means of the temperature of boiling water are less reliable than those deduced from barometric observations. Both derive the difference of altitude from the difference of atmospheric pressure. But the temperature of boiling water is a less accurate measurement of the atmospheric pressure than is the height of the barometer. In the present state of thermometry it would hardly be safe, indeed, to rely, in the most favorable circumstances, upon quantities so small as hundredths of a degree, even when the thermometer has been constructed with the utmost care; moreover, the quality of the glass of the instrument, the form and substance of the vessel containing the water, the purity of the water itself, the position at which the bulb of the thermometer is placed, whether in the current of the steam or in the water, - all these circumstances cause no inconsiderable variations to take place in the indications of thermometers observed under the same atmospheric pressure. Owing to these various causes, an observation of the boiling point, differing by one-tenth of a degree from the true temperature, ought to be still admitted as a good one. Now, as the tables show, an error of one-tenth of a degree Centigrade in the temperature of boiling water would cause an error of 2 millimeters in the barometric pressure, or of from 70 to 80 feet in the final result, while with a good barometer the error of pressure will hardly ever exceed one-tenth of a miliimeter, making a difference of 3 feet in altitude.

Notwithstanding these imperfections, the hypsometric thermometer is of the greatest utility to travellers and explorers in rough countries, on account of its being more conveniently transported and much less liable to accidents than the mercurial barometer. A suitable form for it, designed by Regnault (Annales de Chimie et de Physique, Tome xiv, p. 202), consists of an accurate thermometer with long degrees, subdivided into tenths. For observation the bulb is placed about 2 or 3 centimeters above the surface of the water, in the steam arising from distilled water in a cylindrical vessel, the water being made to boil by a spirit-lamp.

TABLES 67, 68.
Barometric pressures at standard gravity corresponding to the temperature of boiling water.
Table 67. English Measures.

- Table 68. Metric Measures.

Table 67 is copied directly from Table 7 o . The argument is the temperature of boiling water for every tenth of a degree from $185^{\circ} .0$ to $214.9^{\circ} 9$ Fahrenheit. The tabular values are given to the nearest o.00I inch.

Table 68 is copied directly from Table 72. The argument is given for every tenth of a degree from 80.0 to $100^{\circ} .9 \mathrm{C}$. The tabular values are given to the nearest 0.01 mm .

HYGROMETRICAL TABLES.

PRESSURE OF SATURATED AQUEOUS VAPOR.

In former editions of these tables the values of aqueous vapor pressures at temperatures between -29° and $100^{\circ} \mathrm{C}$. were based upon Broch's reduction of the classic observations of Regnault. (Travaux et Mémoires du Bureau international des Poids et Mesures, t. I, p. A 19-39). In these computations the same continuous mathematical function was employed to calculate the values of vapor pressure both above and below the point of change of state on freezing. This resulted in a systematic disagreement between observed and computed vapor pressures below the freezing point, and confirmed the inference from the laws of diffusion following from the kinetic theory of gases, namely, that the pressure of the vapor is different according as it is in contact with its liquid or its solid.

Seeking to remove the uncertainty of the values of vapor pressures at temperatures below freezing, Marvin (Annual Report Chief Signal Officer, 1891, Appendix No. 10) made direct experimental determinations thereof, in the course of which the specimens of water were cooled to temperatures of from -10° to $-12^{\circ} \mathrm{C}$. while still retaining the liquid state, thus affording opportunity for measurements of vapor pressure over ice and over water at various temperatures below the freezing point. The results of these investigations, confirmed by similar independent studies by Juhlin, were printed in the third revised edition of these tables.

Since 1907, especially, several extended series ${ }^{1}$ of entirely new determinations, together covering the whole range of temperature from $-70^{\circ} \mathrm{C}$. to $+374^{\circ}$ C., have been made at the Physikalische-Technischen Reichsanstalt. Because of the elaborate instrumental means available and the extreme effort to eliminate all possible errors these results may be presumed to represent the most accurate series of experimental values of this important physical datum available to science.

Hitherto no satisfactory mathematical equation has been offered adequate to give computed values of vapor pressures with an order of precision comparable to the systematic self consistency of the observations

[^9]themselves. This is particularly the case with the more recent data over the whole range of temperature from o° to the critical temperature at about 374° Centigrade. Two remedies have been utilized to overcome this difficulty. First, the employment of separate equations of interpolation adjusted to fit the observations accurately over a short range of temperature, 0° to 100° for example, as in the case of Broch's computations. (It has already been mentioned that theory requires the function for vapor pressures over ice to differ from the one for pressures over water, so that the values for ice offer no difficulty.) The second remedy sometimes employed consists in fitting any reasonably accurate equation as closely as possible to the observations. The differences between the observed and computed values are then charted and a smooth curve drawn by hand through the points thus located. This method has been employed notably by Henning ${ }^{1}$ and others, using an empirical equation proposed by Thiesen.

For the purpose of these tables Marvin has found it possible from among a multitude of equations to develop a modification of the theoretical equation of Van der Waals which fits the whole range of observations much better than any hitherto offered and with an order of precision quite comparable to the data itself. In fact, the equation serves to disclose inconsistencies in the observations, more particularly between 50° and $80^{\circ} \mathrm{C}$., which seem to suggest the need for further experimental determination of values possibly over the range between 0° and 100°.

Although it is not difficult to show, as Cederberg ${ }^{2}$ has done, that the simple form of general theoretical equation for all vapors developed by Van der Waals is inadequate to represent experiments on water vapor with sufficient accuracy for practical requirements, nevertheless a somewhat simple elaboration of its single constant suffices to remove this limitation in a very satisfactory manner.

The resulting equation is:
$\log e=\log \pi-\left[A-b X+m X^{2}-n X^{3}+s X^{4}\right] \frac{\theta-T}{T}$, where $X=\frac{T-453}{10}$. (1)
The quantity within the square brackets in this equation replaces a single term of the Van der Waals equation which was regarded by him as a constant.

In Van der Waals's original equation π and θ are respectively the critical pressure and temperature (absolute). In the present state of physical science, and from the very nature of the data, these quantities cannot be evaluated exactly. Moreover it is unnecessary to do so for the mere purpose of accurately fitting a mathematical curve to the observational data,

[^10]because the same result is attained by simply passing the curve through a point more accurately known and as near as may be to the critical point. This is equivalent to defining π and θ by an "equation of condition." Another "equation of condition" fixes the pressure at the boiling point which by definition must be 760 mm . From the considerations given on page xi computations are greatly facilitated by taking all temperatures on the approximate absolute scale represented by $T=273+t^{\circ}$.

A careful preliminary analysis of the observational data in the vicinity of the critical temperature resulted in assigning values to θ and π as follows:

$$
\theta=643^{\circ}, \log . \pi=5.1959000
$$

It is emphasized here again that these data do not represent critical temperature conditions, but simply a convenient point on the pressure curve slightly below the critical temperature, the value of which is fixed with considerable accuracy by the observational data.

The value of the constant A was fixed by the equation of condition, $e=760 \mathrm{~mm}$. when $T=373(X=-8)$. The remaining constants $(\mathrm{b}, \mathrm{m}$, n, s) are computed by the method of least squares. The results are as follows:

$$
\begin{aligned}
A & =3.1473172 \\
b & =.00295944 \\
m & =.0004191398 \\
n & =.0000001829924 \\
s & =.00000008243516
\end{aligned}
$$

The number of significant figures in the constants is obviously greater than the accuracy of the data justifies; but is justified to facilitate computation and to secure accuracy in the interpolation of values which should themselves be as accurate as the data.

Thiesen ${ }^{1}$ has shown that the observed values of vapor pressure over ice can be reproduced by the equation

$$
\log e=\log e_{\circ}+9.632(1-0.00035 t) \frac{t}{T}
$$

where

$$
e_{\mathrm{o}}=4.5785, \text { and } T=273+t .
$$

For convenience in computing this equation, for metric units it may be written

$$
\begin{equation*}
\log e=0.66072+\left(\frac{9.632-0.0033712 t}{273+t}\right) t \tag{2}
\end{equation*}
$$

For English units the equation becomes

$$
\begin{equation*}
\log e=\overline{\mathrm{I}} .255888+\left(\frac{9.69193-0.00187289 t_{1}}{459.4+t_{1}}\right)\left(t_{1}-32\right) . \tag{3}
\end{equation*}
$$

$$
t=\text { degrees Centigrade } ; t_{t}=\text { degrees Fahrenheit. }
$$

[^11]The vapor pressures in the tables here given are expressed in standard manometric units.

TABLE 69.
Table 69. Pressure of aqueous vapor over ice. English measures.
The pressures, computed by equation (3) above, are given to 0.0000 I inch for each degree of temperature from -60° to -15°, for each half degree from -15 to $\pm 0^{\circ}$, and for each tenth of a degree from $\pm 0^{\circ} .0$ to +32 . ${ }^{\circ}$.
table 70. Pressure of aqueous vapor over zeater. English measures.
This table has been computed by converting Table 72 into English units. The temperature argument is given for every $0 . .1$ from 32.0 to $214^{\circ} .9$ F. The vapor pressures are to 0.0001 inch from 32.0 to $130^{\circ} .9, F$., and to o. 001 inch from 130.0 to 214.9 F .
table 71. Pressure of aqueous vapor over ice. Metric measures.
The pressures, computed by equation (2) above, are given to the nearest 0.0001 mm . for each degree of temperature from -70° to -50°, for each half degree from -50° to -35°, and each tenth of a degree from $-35^{\circ} \cdot \mathrm{o}$ to $\pm 0^{\circ} \mathrm{o}$.

TABLE 72.
Table 72. Pressure of aqueous vapor over water. Metric measures.
The pressures, computed by equation (i) above, are given for each tenth of a degree to 0.001 mm . from 0.0 to $50^{\circ} 9$, and to 0.01 mm . from $50^{\circ} . \mathrm{O}$ to $100^{\circ} 9$. They are given for each degree to 0.1 mm . from 100° to 189°, and in millimeters from 190° to 374°.

TABLES 73, 74.
Table 73. Weight of cubic foot of saturated aqueous vapor - English measures.
table 74. Weight of a cubic meter of saturated aqueous vapor - Metric measures.

For many years it has been customary to assume that the specific gravity of water vapor relative to dry air is a constant whose theoretical value computed from the accurately known densities of its constituent gases is 0.622 I . Direct experimental determinations of the specific volume of dry saturated steam (as yet but few observations are available at moderate temperatures) show conclusively (I) that this theoretical specific gravity is true only for saturated vapor at very low temperatures or when the vapor is in a very attenuated state of partial saturation; (2) that at increasingly higher temperatures the specific gravity is increasingly greater than 0.622 I . These assertions are in accord with the values of weight per cubic foot of
water vapor tabulated by Marks \& Davis ${ }^{1}$ from the most recent determinations of the specific volume of water vapor. However, owing to the paucity of data, and its inaccuracy for the range of atmospheric temperatures and conditions, the values derived from densities given by Marks and Davis between 10° and 50° are probably too low and require revision. The basis on which this assertion is made is the generalization that the theoretical value 0.6221 is probably a minimum specific gravity towards which actual values asymptotically tend at low temperature and low relative humidity in the meteorological sense, or high super heats in the steam engincering sense. This generalization affords a very helpful "control" in harmonizing and combining experimental determinations of specific volume. It was thus employed in a recomputation, from the original experimental data on specific volumes, of the accompanying table of specific gravities, δ, of saturated water vapor.

$T .\left(C^{\circ}\right)$	δ	$T .\left(C^{\circ}\right)$	δ
-60	0.6226	60	0.6273
50	0.6227	70	0.6283
40	0.6229	80	0.6296
30	0.6230	90	0.6311
20	0.6232	100	0.6329
-10	0.6235	110	0.6351
± 0	0.6238	120	0.6377
+10	0.6241	130	0.6408
20	0.6246	140	0.6446
30	0.6251	150	0.6491
40	0.6257	160	0.6545
50	0.6264	170	0.6609
		180	0.6687

The weight of a cubic meter of saturated vapor is given by the expression

$$
W=\frac{a \delta}{1+a t} \cdot \frac{e}{760},
$$

a is the weight of a cubic meter of dry air (free from carbonic acid) at temperature $0^{\circ} \mathrm{C}$., and pressure of 760 millimeters of mercury of standard density under standard gravity: $a=1.29278 \mathrm{~kg}$. (Bureau International des Poids et Mesures: Travaux et Mémoires, t. I, p. A 54.)
δ is the density of aqueous vapor relative to dry air: $\delta=0.622 \mathrm{I}$.
While, as stated above, there is reason for believing that this value is too low, for atmospheric temperatures the error is less than one per cent. For practical work in meteorology and at moderate temperatures, it seems best to retain the theoretical value until the actual value has been determined

[^12]with greater accuracy. For all important calculations except those at low temperatures the values of δ in the Table on page lvi should be employed. e is the pressure of saturated aqueous vapor at temperature t, taken from Tables 71 and 72 .
α is the coefficient of expansion of air for I° C.: $a=0.003670$. t is the temperature in Centigrade degrees.
Whence we have
$$
W(\text { grams })=1.05821 \times \frac{e}{1+0.003670 t} .
$$

Table 74 is computed from this formula and gives the weight of saturated vapor in grams in a cubic meter for dew-points from -29° to $+40^{\circ} 9$ C., the intervals from 6° to $40^{\circ} 9 \mathrm{C}$., being 0°. 1 C. The tabular values are given to three decimals.

The weight W_{r} of a cubic foot of saturated vapor is obtained by converting the foregoing constants into English measures.

The weight of a cubic foot of dry air at temperature $32^{\circ} \mathrm{F}$. and at a pressure of 760 mm . or 29.921 inches is

$$
a_{1} \text { (grains) }=\frac{1292.78 \times 15.43235}{(3.280833)^{3}}=564.94 .
$$

We have therefore,

$$
W_{1}(\text { grains })=\frac{a_{1} \delta}{29.92 \mathrm{I}} \times \frac{e_{1}}{\mathrm{I}+a_{1}\left(t_{1}-32^{\circ}\right)}=1 \mathrm{I} .7459 \frac{e_{1}}{\mathrm{I}+0.002039\left(t_{1}-32^{\circ}\right)}
$$

The temperature t_{1} is expressed in degrees Fahrenheit; the vapor pressure e_{I}, expressed in inches, is obtained from Tables 69 and 70.

Table 73 gives the weight of saturated aqueous vapor in grains per cubic foot for dew points given to every degree from -30° to $+20^{\circ}$, to each half degree from $+20^{\circ}$ to $+70^{\circ}$, and for cvery $0^{\circ} 2$ from $70^{\circ} .0$ to $119^{\circ} .8 \mathrm{~F}$, the values being computed to the thousandth of a grain.

REDUCTION OF OBSERVATIONS WITH THE PSYCHROMETER AND DETERMINATION OF RELATIVE HUMIDITY.

The psychrometric formula derived by Maxwell, Stefan, August, Regnault and others is, in its simplest form,

$$
e=e^{\prime}-\mathrm{AB}\left(t-t^{\prime}\right),
$$

in which $t=$ Air temperature .
$t^{\prime}=$ Temperature of the wet-bulb thermometer.
$e=$ Pressure of aqueous vapor in the air.
$e^{\prime}=$ Vapor pressure, saturated, at temperature t^{\prime}.
$B=$ Barometric pressure.
$A=A$ quantity which, for the same instrument and for certain conditions, is a constant, or a function depending in a small measure on t^{\prime}.

All pressures are expressed in heights of mercurial column under standard gravity.

The important advance made since the time of Regnault consists in recognizing that the value of A differs materially according to whether the wet-bulb is in quiet or moving air. This was experimentally demonstrated by the distinguished Italian physicist, Belli, in 1830, and was well known to Espy, who always used a whirled psychrometer. The latter describes his practice as follows: "When experimenting to ascertain the dew-point by means of the wet-bulb, I always swung both thermometers moderately in the air, having first ascertained that a moderate movement produced the same depression as a rapid one."

The principles and methods of these two pioneers in accurate psychrometry have now come to be adopted in the stanclard practice of meteorologists, and psychrometric tables are adapted to the use of a whirled or ventilated instrument.

The factor A depends in theory upon the size and shape of the thermometer bulb, largeness of stem and velocity of ventilation, and different formulæ and tables would accordingly be required for different instruments. But by using a ventilating velocity of three meters or more per second, the differences in the results given by different instruments vanish, and the same tables can be adapted to any kind of a thermometer and to all changes of velocity above that which gives sensibly the greatest depression of the wet-bulb temperature; and with this arrangement there is no necessity to measure or estimate the velocity in each case further than to be certain that it does not fall below the assigned limit.

The formula and tables here given for obtaining the vapor pressure and dew-point from observations of the whirled or ventilated psychrometer are those deduced by Prof. Wm. Ferrel (Annual Report Chief Signal Officer, 1886, Appendix 24) from a discussion of a large number of observations.

Taking the psychrometric formula in metric units, pressures being expressed in millimeters and temperatures in centigrade degrees, Prof. Ferrel derived for A the value

$$
A=0.000656\left(\mathrm{I}+0.0019 t^{\prime}\right) .
$$

In this expression for A, the factor depending on t^{\prime} arises from a similar term in the expression for the latent heat of water, and the theoretical value of the coefficient of t^{\prime} is 0.00115 . Since it would require a very small change in the method of observing to cause the difference between the theoretical value and that obtained from the experiments, Prof. Ferrel adopted the theoretical coefficient 0.00115 and then recomputed the observations, obtaining therefrom the final value

$$
A=0.000660\left(\mathrm{I}+0.00115 t^{\prime}\right) .
$$

With this value the psychrometric formula in metric measures becomes

$$
e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I}_{5} t^{\prime}\right) .
$$

Expressed in English measures, the formula is

$$
\begin{aligned}
e & =e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left[\mathrm{I}+0.00064\left(t^{\prime}-32^{\circ}\right)\right] \\
& =e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)
\end{aligned}
$$

in which $e=$ Vapor pressure in inches.
$e^{\prime}=$ Pressure of saturated aqueous vapor at temperature t^{\prime}.
$t=$ Temperature of the air in Fahrenheit degrees.
$t^{\prime}=$ Temperature of the wet-bulb thermometer in Fahrenheit degrees.
$B=$ Barometric pressure in inches.

TABLE 75.
table 75. Reduction of Psychrometric Observations - English measures.

$$
\text { Values of } e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(1+\frac{t^{\prime}-32}{\mathrm{I}_{57} \mathrm{I}}\right)
$$

This table provides for computing the vapor pressure, e, from observations of ventilated wet- and dry-bulb Fahrenheit thermometers. From the vapor pressure thus computed the dew-point and relative humidity of the atmosphere may be obtained.

The tabular values of the vapor pressure, e, are computed for degree intervals of t^{\prime} from -20° to $+110^{\circ} \mathrm{F}$. Below $+10^{\circ}$ the interval for $t-t^{\prime}$ is $0^{\circ} 2$, and above 10° the interval is I°. The computation has been made for $B=30.0$ inches, but at the bottom, and usually, also, at the top of each page of the table is given a correction, $\Delta e \times \Delta B$, computed for $B=29.0$ inches or $\Delta B=\mathrm{I}$ inch, and for the value of t^{\prime} indicated. The correction is a linear function of ΔB. For atmospheric pressures less than 30.0 inches, it is to be added to the tabular values of e, while for atmospheric pressures greater than 30.0 inches it is to be subtracted.

The values of e are given to 0.0001 inch for t^{\prime} less than 10°, and to 0.001 inch for t^{\prime} greater than 10°.

Examples:

I. Given, $t=8+\cdot .3 ; t^{\prime}=66^{\circ} .7$, and $B=30.00$ inches. With $t^{\prime}=66^{\circ} \cdot 7$ and $t-t^{\prime}=17^{\circ} 6$ as arguments, Table 75 gives for e the value 0.462 inch. On page 174 , for $t-t^{\prime}=0.0$ it is seen that a vapor presure of 0.462 inch corresponds to a temperature $t^{\prime}=t=57^{\circ}$, which is the saturation, or dew-point temperature for the data given.
2. Given, $t=34.5 ; t^{\prime}=29^{\circ} .4 ; B=22.3$ inches. With $t^{\prime}=29^{\circ} .4$ and $t-t^{\prime}=5^{\circ} .1$ as arguments, Table 75 gives for e the value 0.104 . $\Delta B=30.0-22.3=7.7$, and $\Delta e \times \Delta B=0.0018 \times 7.7=0.014$. Correct value of $e \quad=0.118$ inch

For $t-t^{\prime}=0^{\circ} 0$ a vapor pressure of 0.118 inch corresponds to a temperature $t^{\prime}=t=23^{\circ}$ (see page 174), which is the saturation or dewpoint temperature for the data given.

Table 76. Relative humidity - Temperature Fahrenheit.
The table gives the vapor pressure corresponding to air temperatures from -30° to $+120^{\circ}$ at degree intervals (side argument) and for percentages of saturation at io per cent intervals (top argument). It is computed from the formula

$$
e=e_{s} \times \text { relative humidity }
$$

where e_{s} is the saturation vapor pressure at the given air temperature. Below a temperature of 20° the values of e are given to o.0001 inch; above 20° they are given to o.001 inch.

Examples:

I. In dew-point example I, above, the computed vapor pressure is 0.462 inch. Entering Table 76 with air temperature $8+^{\circ} \cdot 3$ as side argument, we obtain vapor pressure
0.356 inch $\quad=$ relative humidity 30 and
0.462 inch -0.356 inch $=0.106$ inch $=\quad$ " " $\frac{90}{10}=9$
therefore, vapor pressure
0.462 inch with $t=8+\cdot 3 \mathrm{~F}$. = " " 39
2. In dew-point example 2, above, the computed vapor pressure is 0.118 inch. Entering Table 76 with air temperature $34^{\circ} .5$ as side argument, we obtain, vapor pressure
0.100 inch $\quad=$ relative humidity 50 and
0.118 inch -0.100 inch $=0.018$ inch $=\quad$ "
therefore, va.por pressure
0.118 inch with $t=34.5 \mathrm{~F}$.

Reduction of Psychrometric Observations - Metric measures.
Table 77. Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.02115 t^{\prime}\right)$
This table provides for computing the vapor pressure from observations of ventilated wet- and dry-bulb Centigrade thermometers. From the vapor pressure thus computed the dew-point and relative humidity of the atmosphere may be obtained.

The tabular values of the vapor pressure, e, are computed for degree intervals of t^{\prime} from -30° to $+45^{\circ} \mathrm{C}$. Below $-5^{\circ} \mathrm{O}$ the interval for $t-t^{\prime}$
is $0^{\circ} .1$, and above $-5^{\circ} .0$ the interval is I°. The computation has been made for $B=760 \mathrm{~mm}$. but on each page of the table is given a correction, $\Delta e \times \Delta B$, computed for $B=660$, or $\Delta P=100 \mathrm{~mm}$., and for the values of t^{\prime} indicated. The correction is a linear function of ΔB. For atmospheric pressures less than 760 mm . it is to be added to the tabular values of e, while for atmospheric pressures greater than 760 mm . it is to be subtracted. The values of e are given to 0.001 mm . for t^{\prime} less than $-5^{\circ} .0$, and to 0.01 mm . for t^{\prime} greater than $-5^{\circ} .0$.

Example:

Given, $t=10^{\circ} .4 C . ; t^{\prime}=8^{\circ} .3 C$, and $B=740 \mathrm{~mm}$. With $t^{\prime}=8.3$ and $t-t^{\prime}=2.1$ as arguments, Table 77 gives for e the value 7.15 mm .
$\Delta B=\frac{760-740}{100}=0.2 . \quad \Delta e \times \Delta B=0.14 \times 0.2$
$=0.03$.
Corrected value of e
$=7.18 \mathrm{~mm}$.
For $t-t^{\prime}=0$ a vapor pressure of 7.18 mm . corresponds to a temperature $t^{\prime}=t=6^{\circ} \cdot 3 \mathrm{C}$., which is the saturation, or dew-point temperature for the data given.

TABLE 78.
Table 78. Relative humidity - Temperature Centigrade.
This table gives the vapor pressure corresponding to air temperatures from $-45^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. at degree intervals (side argument) and for percentage of saturation at io per cent intervals (top argument). It is computed from the same formula as Table 76 , namely,

$$
e=e_{s} \times \text { relative humidity }
$$

Below a temperature of $+5^{\circ} .0$ the values of e are given to o.oI mm.; above $5^{\circ} .0$ they are given to 0.1 mm .

Example:

In the dew-point example given above, the computed vapor pressure is 7.18 mm . Entering Table 78 with air temperature 10.4 as side argument, we obtain vapor pressure

$$
\begin{equation*}
6.6 \mathrm{~mm} . \quad=\text { relative humidity } \tag{70}
\end{equation*}
$$

and

$$
7.18-6.6=0.58 \mathrm{~mm} . \quad=\quad " \quad 6 \quad \frac{60}{10}=6
$$

therefore, vapor pressure

$$
7.18 \mathrm{~mm} \text {. with } t=10.4 C=" \quad " \quad=76
$$

TABLE 79.
Table 79. Rate of decrease of vapor pressure with altitude for mountain stations.
From hygrometric observations made at various mountain stations on the Himalayas, Mount Ararat, Teneriffe, and the Alps, Dr. J. Hann (Lehrbuch der Meteorologie Dritte Auflage, S. 230) has deduced the following empirical formula showing the average relation between the vapor
pressure e_{0} at a lower station and e the vapor pressure at another station at an altitude h meters above it:

$$
\frac{e}{e_{0}}=10^{-\frac{h}{6300}}
$$

This is of course an average relation for all times and places from which the actual rate of decrease of vapor pressure in any individual case may widely differ.

Table 79 gives the values of the ratio $\frac{e}{e_{0}}$ for values of h from 200 to 6000 meters. An additional column gives the equivalent values of h in feet.

REDUCTION OF SNOWFALL MEASUREMENT.

The determination of the water equivalent of snowfall has usually been made by one of two methods: (a) by dividing the depth of snow by an arbitrary factor ranging from 8 to 16 for snow of different degrees of compactness; (b) by melting the snow and measuring the depth of the resulting water. The first of these methods has always been recognized as incapable of giving reliable results, and the second, although much more accurate, is still open to objection. After extended experience in the trial of both these methods, it has been found that the most accurate and most convenient measurement is that of weighing the collected snow, and then converting the weight into depth in inches. The method is equally applicable whether the snow as it falls is caught in the gage, or a section of the fallen snow is taken by collecting it in an inverted gage.

Table 80. Depth of water corresponding to the weight of a cylindrical snow core, 2.655 inches in diameter.

This table is prepared for convenience in making surveys of the snow layer on the ground, particularly in the western mountain sections of the country. The weighing method is the only one found to be practicable. Present Weather Bureau practice is to take out a sample by means of a special tube, whose diameter, 2.655 inches, has been selected by reason of convenience in manipulation and simplicity in relation to the pound. Table 80 gives the depth of water in inches and hundredths corresponding to given weights. The argument is given in hundredths of a pound from o.OI pound to 2.99 pounds.

Table 81. Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage.

The table gives the depth to hundredths of an inch, corresponding to the weight of snow or rain collected in a gage having a circular collecting mouth 8 inches in diameter - this being the standard size of gage used throughout the United States.

The argument is given in hundredths of a pound from o.OI pound to 0.99 pound. When the weight of the collected snow or rain is one pound or more, the depth corresponding to even pounds may be obtained from the equivalent of one pound given in the heading of the table.

Example:

The weight of the snow collected in a gage having a circular collecting mouth 8 inches in diameter is 3.48 pounds. Find the corresponding depth of water.
A weight of 3 lbs . corresponds to a depth of water of 0.5507×3, equals
1.65 in.

A weight of 0.48 lbs . corresponds to a depth of water of $\underline{0.26}$
A " " 3.48 " " " $"$ I.9I in.
table 82. Quantity of rainfall corresponding to given depths. table 82.
This table gives for different depths of rainfall in inches over an acre the total quantity of water expressed in cubic inches, cubic feet, gallons, and tons. (See Henry, A. J. "Quantity of Rainfall corresponding to Given Depths." Monthly Weather Review, 1898, 26: 408-09.)

GEODETICAL TABLES.

Table 83. Value of apparent gravity on the earth at sea level. ${ }^{1}$
TABLE 83.
The value of apparent gravity on the earth at sea level is given for every twenty minutes of latitude from 5° to 86°, and for degree intervals near the equator and the poles. It is computed to 0.001 dyne from the equation ${ }^{2}$

$$
\begin{aligned}
g_{\phi} & =978.039\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& =980.621\left(\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)
\end{aligned}
$$

in which g_{ϕ} is the value of the gravity at latitude ϕ.
The second form of the equation is the more convenient for the computation.

TABLE 84.
table 84. Relative acceleration of gravity at sea level at different latitudes.
The formula adopted for the variation with latitude of apparent gravity at sea level is that of the U.S. Coast and Geodetic Survey, given above.

The table gives the values of the ratio $\frac{g_{\phi}}{g_{45^{\circ}}}$ to six decimals for every IO^{\prime} of latitude from the equator to the pole.

[^13]
LENGTH OF A DEGREE OF THE MERIDIAN AND OF ANY PARALLEL.

The dimensions of the earth used in computing lengths of the meridian and of parallels of latitude are those of Clarke's spheroid of $1866 .{ }^{1}$ This spheroid undoubtedly represents very closely the true size and shape of the earth, and is the one to which nearly all geodetic work in the United States is now referred.

The values of the constants are as follows:
a, semi-major axis $=20926062$ feet $; \log a=7.3206875$.
b, semi-minor axis $=2085512 \mathrm{I}$ feet $; \log b=7.3192127$.
$e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.00676866 ; \quad \log e^{2}=7.8305030-10$.
With these values for the figure of the earth, the formula for computing any portion of a quadrant of the meridian is

$$
\begin{aligned}
\text { Meridional distance in feet } & =[5.5618284] \Delta \phi \text { (in degrees) }, \\
& -[5.0269880] \cos 2 \phi \sin \Delta \phi, \\
& +[2.0528] \cos 4 \phi \sin 2 \Delta \phi,
\end{aligned}
$$

in which $2 \phi=\phi_{2}+\phi_{1}, \Delta \phi=\phi_{2}-\phi_{1} ; \phi_{1}, \phi_{2}=$ end latitudes of arc.
For the length of I degree, the formula becomes:
I degree of the meridian, in feet $=364609.9-1857 . \mathrm{I} \cos 2 \phi+3.94 \cos 4 \phi$.
The length of the parallel is given by the equation
I degree of the parallel at latitude ϕ, in feet $=$

$$
365538.48 \cos \phi-310.17 \cos 3 \phi+0.39 \cos 5 \phi .
$$

Table 85. Length of one degree of the meridian at different latitudes.
This gives for every degree of latitude the length of one degree of the meridian in statute miles to three decimals, in meters to one decimal, and in geographic miles to three decimals - the geographic mile being here defined to be one minute of arc on the equator. The values in meters are computed from the relation: I meter $=39.3700$ inches. The tabular values represent the length of an arc of one degree, the middle of which is situated at the corresponding latitude. For example, the length of an arc of one degree of the meridian, whose end latitudes are $29^{\circ} 30^{\prime}$ and $30^{\circ} 30^{\prime}$, is 68.879 statute miles.

Table 86. Length of one degree of the parallel at different latitudes.
This table is similar to Table 85.

[^14]table 87. Duration of sunshine at different latitudes for different values of the sun's declination.

Let Z be the zenith, and $N H$ the horizon of a place in the northern hemisphere.
P the pole;
$Q E Q^{\prime}$ the celestial equator;
$R R^{\prime}$ the parallel described by the sun on any given day;
S the position of the sun when its upper limb appears on the horizon;
$P N$ the latitude of the place, ϕ.
$S T$ the sun's declination, δ.
$P S$ the sun's polar distance, $90^{\circ}-\delta$.
$Z S$ the sun's zenith distance, z.
$Z P S$ the hour angle of the sun from meridian, t.
r the mean horizontal refraction $=34^{\prime}$ approximately.
s the mean solar semi-diameter $=16^{\prime}$

$$
z=90^{\circ}+r+s=90^{\circ} 50^{\prime}
$$

In the spherical traingle $Z P S$, the hour angle $Z P S$ may be computed from the values of the three known sides by the formula

$$
\begin{gathered}
\sin \frac{1}{2} Z P S=\sqrt{\frac{\sin \frac{1}{2}(Z S+P Z-P S) \sin \frac{1}{2}(Z S+P S-P Z)}{\sin P Z \sin P S}} \\
\sin \frac{1}{2} t=\sqrt{\frac{\sin \frac{1}{2}(z+\delta-\phi) \sin \frac{1}{2}(z-\delta+\phi)}{\cos \phi \cos \delta}}
\end{gathered}
$$

The hour angle t, converted into mean solar time and multiplied by 2 is the duration of sunshine.

Table 87 has been computed for this volume by Prof. Wm. Libbey, Jr. It is a table of double entry with arguments δ and ϕ. For north latitudes northerly declination is considered positive and southerly declination as negative. The table may be used for south latitudes by considering southerly declination as positive and northerly declination as negative.

The top argument is the latitude, given for every 5° from 0° to 40°, for every 2° from 40° to 60°, and for every degree from 60° to 80°.

The side argument is the sun's declination for every 20^{\prime} from $S 23^{\circ} 27^{\prime}$ to $N 23^{\circ} 27^{\prime}$.

The duration of sunshine is given in hours and minutes.
To find the duration of sunshine for a given day at a place whose latitude is known, find the declination of the sun at mean noon for that day in the Nautical Almanac, and enter the table with the latitude and declination as arguments.

Example:

To find the duration of sunshine, May 18, 1892, in latitude $49^{\circ} 30^{\prime}$ North.
From the Nautical Almanac, $\delta=19^{\circ} 4.3^{\prime} N$.
From the table, with $\delta=19^{\circ} 43^{\prime} N$ and $\phi=49^{\circ} 30^{\prime}$, the duration of sunshine is found to be $15^{h} 3 \mathrm{I}^{m}$.

Table 88. Declination of the sun for the year 1899.

This table is an auxiliary to Table 87, and gives the declination of the sun for every third day of the year $\mathbf{1 8 9 9}$. These declinations may be used as approximate values for the corresponding dates of other years when the exact declination cannot readily be obtained. Thus, in the preceding example, the declination for May 18, 1892, may be taken as approximately the same as that for the same date in 1899 , viz. $19^{\circ} 37^{\prime}$.

THE DURATION OF TWILIGHT.

A review of the literature ${ }^{1}$ indicates that from an early date astronomical twilight has been considered to end in the evening and begin in the morning when the true position of the sun's center is 18° below the horizon. At this time stars of the sixth magnitude are visible near the zenith, and generally there is no trace on the horizon of the twilight glow.

It also appears that civil twilight ends in the evening and begins in the morning when the true position of the sun's center is 6° below the horizon. At this time stars and planets of the first magnitude are just visible. In the evening the first purple light has just disappeared, and darkness compels the suspension of outdoor work unless artificial lighting is provided. In the morning the first purple light is beginning to be visible, and the illumination is sufficient for the resumption of outdoor occupations.

Some confusion has arisen in the computation of tables of the duration of both astronomical and civil twilight, due to the fact that in some instances the time of sunrise or sunset has been considered to be that instant when the center of the sun is on the true horizon; in others, when its center appears to be on the true horizon; and in still others when the upper limb of the sun appears to coincide with the true horizon. In the United States this latter is regarded as defining the time of sunrise and sunset.

In the tables here presented the duration of astronomical twilight is the interval between sunrise or sunset, according to this latter definition, and the instant the true position of the sun's center is 18° below the horizon. Likewise, the duration of civil twilight is the interval from sunrise or sunset to the instant the true position of the sun's center is 6° below the horizon.

[^15]The computations may be made from the equation

$$
\cos t=\frac{\sin a-\sin \phi \sin \delta}{\cos \phi \cos \delta}
$$

where t is the sun's hour angle from the meridian, a is the sun's altitude, considered minus below the horizon, δ is the solar declination, and ϕ is the latitude of the place of observation.

The solar declinations employed are those given in the American Ephenteris and Nautical Almanac, I899, pp. 377-384, Solar Ephemeris for Washington.

The atmospheric refraction with the sun on the horizon has been assumed to be 34^{\prime}, and 16^{\prime} has been allowed for the sun's semi-diameter, so that at the instant of sunrise or sunset, as defined above, the true position of the sun's center is about 50^{\prime} below the horizon. The difference between this value of t and its value with the sun 6° and 18° below the horizon gives, respectively, the duration of civil and astronomical twilight.

The computations have been simplified by the use of Ball's Altitude Tables, ${ }^{1}$ from which the value of t has been determined for true altitudes of the sun of $-50^{\prime},-6^{\circ}$, and -18°.

Table 89. Duration of astronomical twilight.
TABLE 89.
The duration of astronomical twilight is given to the nearest minute for the Ist, IIth, and 2 Ist day of each month for north latitudes, $0^{\circ}, 10^{\circ}$, $20^{\circ}, 25^{\circ}$, and at 2° intervals from 30° to 50°, inclusive. The absence of data for latitude 50° from June 1 to July II, inclusive, indicates that between these dates at this latitude astronomical twilight continues throughout the night.
table 90. Duration of civil twilight.
TABLE 90.
The duration of civil twilight is given to the nearest minute for the Ist, IIth and 2 Ist day of each month for north latitudes $0^{\circ}, 10^{\circ}, 20^{\circ}, 25^{\circ}$, and at 2° intervals from 30° to 50°, inclusive.

RELATIVE INTENSITY OF SOLAR RADIATION AT DIFFERENT LATITUDES.

table 91.
table 91. Mean intensity for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere.
This table is that of Prof. W'm. Ferrel, published in the Annual Report of the Chief Signal Officer, 1885, Part 2, p. 427, and computed from formulæ and constants given in Chapter II of the above publication, pages 75 to 82 . It gives the mean intensity, J, for 24 hours of solar radiation received by a horizontal surface at the top of the atmosphere, in terms of the mean solar

[^16]constant A_{0}, for each tenth parallel of latitude of the northern hemisphere, and for the first and sixteenth day of each month; also the values of the solar constant A in terms of A_{\circ}, and the longitude of the sun for the given dates.

Table 92. Rclative amounts of solar radiation received on a horizontal surface during the year at different latitudes.

The second column of this table is obtained from the last line of Table 91 by multiplying by 1440, the number of minutes in 24 hours. It therefore gives the average daily amount of radiation that would be received from the sun on a horizontal surface at the surface of the earth if none were absorbed or scattered by the atmosphere, expressed in terms of the mean solar constant. The following columns give similar data, exceft that the atmospheric transmission coefficient is assumed to be o.9, o.8, o.7 and 0.6, respectively, and have been computed by utilizing Angot's work (Recherches théoretiques sur la distribution de la chaleur à la surface du globe, par M. Alfred Angot, Annales du Bureau Central Météorologique de France, Année 1883. v. I. B i21-B 169), which leads to practically the same values as Ferrel's when expressed in the same units.

The vertical argument of the table is for 10° intervals of latitude from. the equator to the north pole, inclusive.
table 93. Air mass, m, corresponding to different zenith distances of the sun.
For homogenous rays, the intensity of solar energy after passing through an air mass, m, is expressed by the equation $\mathrm{I}=\mathrm{I}_{0} a^{m}$, where I_{0} is the intensity before absorption, a is the atmospheric transmission coefficient, or the proportion of the energy transmitted by unit air mass, and m is the air mass passed through. If we take for unit air mass the atmospheric mass passed through by the rays when the sun is in the zenith, then for zenith distances of the sun less than 80° the air mass is nearly proportional to the secant of the sun's zenith distance. In general, the secant gives air masses that are too high by an increasing amount as the zenith distance of the sun increases.

The equation by which air masses are sometimes computed is

$$
m=\frac{\text { atmospheric refraction }}{K \sin Z}
$$

where Z is the sun's zenith distance and K is a constant. The uncertain factor in this equation is the atmospheric refraction. Table 93 gives values of m computed by Bemporad (Rend. Acc. Lincei., Roma, Ser. 5, V. 16, 2 Sem. 1907, pp. 66-71) from the above formula, using for K the value $58^{\prime \prime} 36$. The argument is for each degree of Z from 20° to 89°, with values of m added for $Z=0^{\circ}, 10^{\circ}$, and 15°. The values of m are given to two decimal places.

Table 94. Relative illumination intensities.
TABLE 94.
The table gives illumination intensities in foot-candles for zenithal sun, sky at sunset, sky at end of civil twilight, zenithal full moon, quarter moon, and starlight, and the ratio of these intensities to the illumination from the zenithal full moon. For the sources of the data see Kimball, Herbert H., "Duration and Intensity of Twilight," Monthly Weather Review, 1916, 44: 614-620.

MISCELLANEOUS TABLES.

WEIGHT IN GRAMS OF A CUBIC CENTIMETER OF AIR.

The following tables (95 to 100) give the factors for computing the weight of a cubic centimeter of air at different temperatures, humidities and pressures.

$$
\delta=\frac{0.00129305}{\mathrm{I}+0.00367}\left(\frac{B-0.378 e}{760}\right)
$$

in which δ is the weight of a cubic centimeter of air expressed in grams, under the standard value of gravity ($g=980.665$)
B is the atmospheric pressure in millimeters, under standard gravity;
e is the pressure of aqueous vapor in millimeters, under standard gravity;
t is the temperature in Centigrade degrees.
For dry atmospheric air (containing 0.0004 of its weight of carbonic acid) at a pressure of 760 mm . and temperature $0^{\circ} C$., the absolute density, or the weight of one cubic centimeter, is 0.00129305 gram. (International Bureau of Weights and Measures. Travaux et Mémoires, t. I, p. A 54.) See also these Tables, p. xli.

The weight of a cubic centimeter may also be written as follows:

$$
\delta=\frac{0.00129305}{\mathrm{I}+0.0020389\left(t-32^{\circ}\right)}\left(\frac{B-0.378 e}{29.92 \mathrm{I}}\right)
$$

where δ is defined as before, but B and e are expressed in inches and t in Fahrenheit degrees. Thus by the use of tables based on these two formulæ, lines of equal atmospheric density may be drawn for the whole world, no matter whether the original observations are in English or metric measures.

> ENGLISH MEASURES.

TABLES 95, 96, 97.
table 95. Temperature Term.
This table gives the values and logarithms of the expression

$$
\delta_{t, 29.92 \mathrm{I}}=\frac{0.00129305}{\mathrm{I}+0.0020389\left(t-32^{\circ}\right)}
$$

for values of t extending from $-45^{\circ} F$. to $+140^{\circ} F_{\text {., the }}$ thtervals between $0^{\circ} F$. and $110^{\circ} F$. being I°.

The tabular values are given to five significant figures.
table 96. Term for humidity; auxiliary to Table 95.
Table 97. Humidity and pressure term. $\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
TABLE 96 gives values of $0.378 e$ to three decimal places as an aid to the use of Table 97. The argument is the dew-point given for every degree from $-60^{\circ} \mathrm{F}$. to $+140^{\circ} \mathrm{F}$. The second column gives the corresponding values of the vapor pressure (e) derived from Tables 69 and 70 .

TABLE 97 gives values and logarithms of $\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$ for values of h extending from ro.0 to 31.7 inches. The logarithms are given to five significant figures and the corresponding numbers to four decimals.

Example:

The air temperature is $68^{\circ} \mathrm{F}$., the pressure is 29.36 inches and the dewpoint $51^{\circ} \mathrm{F}$. Find the logarithm of the density.
Table 95, for $t=68^{\circ} \mathrm{F}$., gives $7.08085-10$
Table 96, for dew-point 51°, gives $0.378 e=0.142$ inch,
Table 97, for $h=B-0.378 e=29.36-0.14=29.22$, gives
9.98941 - 10

Logarithm of density $=$

$$
\frac{30}{7.07056}-10
$$

METRIC MEASURES.

table 98. Temperature term.
This table gives values and logarithms of the expression

$$
\delta_{l, 760}=\frac{0.00129305}{1+0.00367 t}
$$

for values of t extending from $-34^{\circ} \mathrm{C}$. to $+69^{\circ} \mathrm{C}$. The tabular values are given to five significant figures.
Table 99. Term for humidity; auxiliary to Table 100.
TABLE 100. Ifumidity and pressure terms. $\frac{h}{760}=\frac{B-0.378 e}{760}$.
Table 99 gives the values of 0.378 e to hundredths of a millimeter for dew-points extending from $-50^{\circ} \mathrm{C}$. to $+60^{\circ} \mathrm{C}$. Above $-25^{\circ} \mathrm{C}$. the interval is one degree. The values of the vapor pressure, e, corresponding to these dew-points, given in the second column, are taken from tables 71 and 72 .

Table 100 gives values and logarithms of $\frac{h}{760}=\frac{B-0.378 e}{760}$ for values of h extending from 300 to 799 mm . The atmospheric pressure B is the barometer reading corrected for gravity and $0.378 e$ is the term for
humidity obtained from Table 99. The logarithms are given to five significant figures and the corresponding numbers to four decimal places.
table 101. Atmospheric water-vapor lines in the visible spectrum. table 101.
Table IoI, prepared by the Astrophysical Observatory at Washington, gives a summary of lines in Rowland's "Preliminary Table of Solar Spectrum Wave Lengths," recorded as of atmospheric water vapor origin. There are more than 400 such lines in Rowland's table, but an abridgment is here made as follows:

Only lines of intensity " I " or greaterare here separately given, but the total number and average intensity of the fainter lines lying between these are inserted. Rowland's scale of intensities is such that a line of intensity " I " is "just clearly visible" on Rowland's map; the $I I$ and K lines are of intensity, $\mathrm{I}, 000 ; D_{\mathrm{I}}$ (the sodium line of greater wave length), 20; C., 40. "Lines more and more difficult to see" are distinguished by $0,00,000$, and 0000 .

TABLE 102.
Table 102. Atmospberic water-vapor bands in the infra-red spectrum.
The values of Table 102 relate to the transmission of energy in the minima of various water-vapor bands, when there is I cm . of precipitable water in the path through the air. For other amounts of water-vapor, the depths of these minima may be taken as equal to a^{δ}, where a is the coefficient taken from the third column of Table 102 and δ is the amount of precipitable water in the path. For average conditions in the transmission of radiation through the atmosphere, δ may be determined by the modification of Hann's formula $\delta=2.0 e$ sec. Z, where e is the vapor pressure in cms. as determined by wet and dry thermometers and Z is the angle which the path makes with the vertical.

For the use of the transmissions observed in such bands for the inverse process of determining the amount of water-vapor in the atmosphere, see Fowle, A strophysical Journal, 35, p. 149, 1912; 37, p. 359, 1913.

TABLE 103.
Table 103. Transmission percentages of radiation through moist air.
The values of Table 103 will be of use when the transmission of energy through the atmosphere containing a known amount of water-vapor is under consideration. An approximate value for the energy transmitted may be had if the amount of energy from the source between the wavelengths of the first column is known and is multiplied by the corresponding transmission coefficients of the subsequent columns of the table. The table is compiled from Fowle, " Water-vapor Transparency," Smithsonian Miscellaneous Collections, 68, No. 8, 1917; see also, Fowle, "The Transparency of Aqueous Vapor," Astrophysical Journal, 42, p. 394, 1915.
table 104. International meteorological symbols.
TABLE 104.
The information under this heading has been compiled for the present
edition by the librarian of the United States Weather Bureau, and represents current practice in the use of the symbols approved by the International Meteorological Organization. For further information on the subject of meteorological symbols, see Monthly Weather Ręview (Wash., D.C.), May, 1916, pp. 265-274.
table 105. International cloud classification.
The text under this heading is condensed from the International Cloud Atlas, 2d edition, Paris, igio.

table 106. Beaufort weather notation.

This table has been revised in the library of the United States Weather Bureau, and represents the current practice of American and British observers in the use of the Beaufort letters.

table 107. List of meteorological stations.

This list has been extensively revised in the library of the Weather Bureau, and has been enlarged to include all the stations for which data appear in the "Réseau Mondial" of the British Meteorological Office for 1912 (published 1917). The stations of the Réseau Mondial were selected to represent, so far as available data permitted, the meteorology of all land areas of the globe, on the basis of two, or in some cases three, stations for each ten-degree square of latitude and longitude.

No attempt has been made in this edition of the Smithsonian Tables to indicate the "order" of the several stations, according to the definitions adopted at the Vienna Congress of 1873; as, owing to the present widespread use of self-recording instruments, the old distinction between first and second order stations has lost much of its importance.

Several stations included in the list are no longer in operation. Data concerning the locations and altitudes of these stations are still valuable, in view of the frequent use made of their records in meteorological and climatological studies.

In general, the spellings of names are those most frequently met with in existing compilations of meteorological data, without regard to the practice of English-speaking countries. In a majority of cases the native orthography has been followed.

THERMOMETRICAL TABLES

Conversion of thermometric scales -
Approximate Absolute, Centigrade, Fahrenheit, and Reau-
mur scales................$T a b l e ~ i t$

Fahrenheit scale to Centigrade Table 2
Centigrade scale to Fahrenheit TABLE 3
Centigrade scale to Fahrenheit, near the boiling point of
water Table 4
Differences Fahrenheit to differences Centigrade Table 5
Differences Centigrade to differences Fahrenheit . . . Table 6
Correction for the temperature of the emergent mercurial column of thermometers -

Correction for Fahrenheit thermometers Table 7
Correction for Centigrade thermımeters TABLE 8

Table 1.
APPROXIMATE ABSOLUTE, CENTIGRADE, FAHRENHEIT, AND REAUMUR SCALES.
Conversion Formulæ for Approximate Absolute (A.A), Centigrade (C), Fahrenheit (F), and Reaumur (R) Scales.

A.	I	I	* $\begin{aligned} & \text { I. } \\ & \text { I. }\end{aligned}$	*		5 2.77^{*} $2.22 *$	$\begin{gathered} 6 \\ 3.33^{*} \\ 2.66^{*} \end{gathered}$	7 $3.88 *$ 3.15			
$\begin{array}{r} R \\ C \\ A . A \\ F \end{array}$	I. 2.	$4 \cdot 5$	3. 6.	$9 .$ These	figu	$\begin{gathered} 5 \\ 6.25 \\ 1.25 \\ \text { es repeated } \end{gathered}$	$\begin{gathered} 6 \\ 7.50 \\ \text { I } 3.50 \\ \text { indefinite } \end{gathered}$	$\begin{gathered} 7 \\ 8.75 \\ 15.75 \end{gathered}$			
A.A.	C.	F.	R.	A.A.	C.	F.	R.	A.A.	C.	F,	R.
375°	102°	2 I 5.6	$8 \mathrm{I}^{\circ} .6$	350°	77°	I 70.6	$6 \mathrm{I}^{\circ} 6$	325°	52°	$125^{\circ} 6$	$4{ }^{1} .6$
374	IOI	213.8	80.8	349	76	168.8	60.8	324	51	123.8	40.8
373	100	212.0	80.0	348	75	167.0	60.0	323	50	I 22.0	40.0
372	99	2 I0. 2	79.2	347	74	165.2	59.2	322	49	120.2	39.2
37 I	98	208.4	78.4	346	73	163.4	58.4	32 I	48	I18.4	38.4
370	97	206.6	77.6	345	72	I6ı. 6	57.6	320	47	II6.6	37.6
369	96	204.5	76.8	344	71	I 59.8	56.8	319	46	114.8	36.8
368	95	203.0	76.0	343	70	158.0	56.0	318	45	113.0	36.0
367	94	201.2	75.2	342	69	I 56.2	55.2	317	44	III. 2	35.2
366	93	199.4	74.4	34 I	68	I 54.4	54.4	316	43	109.4	34.4
365	92	197.6	73.6	340	67	I 52.6	53.6	315	42	107.6	33.6
364	91	195.8	72.8	339	66	150.8	52.8	314	4 I	105.8	32.8
363	90	194.0	72.0	338	65	I49.0	52.0	313	40	104.0	32.0
362	89	192.2	71.2	337	64	147.2	51.2	312	39	102.2	31.2
361	88	190.4	70.4	336	63	I 45.4	50.4	3 II	38	100.4	30.4
360	87	188.6	69.6	335	62	143.6	49.6	310	37	98.6	29.6
359	86	186.8	6 S .8	334	61	141.8	48.8	309	36	96.8	28.8
358	85	185.0	68.0	333	60	140.0	48.0	308	35	95.0	28.0
357	84	183.2	67.2	332	59	I 3 S. 2	47.2	307	34	93.2	27.2
356	83	18 I .4	66.4	331	58	I 36.4	46.4	306	33	91.4	26.4
355	82	I79.6	65.6	330	57	I 34.6	45.6	305	32	89.6	25.6
354	81	I77.8	64.8	329	56	I 32.8	44.8	304	31	87.8	24.8
353	80	176.0	64.0	328	55	I 31.0	44.0	303	30	86.0	24.0
352	79	174.2	63.2	327	54	I 29.2	43.2	302	29	84.2	23.2
351	78	172.4	62.4	326	53	127.4	42.4	301	28	82.4	22.4
350	77	170.6	61.6	325	52	125.6	41. 6	300	27	80.6	21.6
A.A.	C.	F.	R.	A.A.	C.	F.	R.	A.A.	c.	F.	R.

A.A.	C.	F.	R.	A. A.	C.	F.	R.	A. A.	C.	F.	R.
300°	27°	$80^{\circ} .6$	21.6	250°	-23°	- 9.4	-18.4	200°	-73°	- 99.4	-58.4
299	26	78.8	20.8	249	24	II. 2	19.2	199	74	101.2	59.2
298	25	77.0	20.0	248	25	13.0	20.0	198	75	103.0	60.0
297	24	75.2	19.2	247	26	14.8	20.8	197	76	10.8	60.8
296	23	73.4	18.4	246	27	16.6	21.6	196	77	106.6	61.6
295	22	71.6	17.6	245	-28	-18.4	-22.4	195	-78	-108.4	-62.4
294	2 I	69.8	16.8	244	29	20.2	23.2	194	79	110.2	63.2
293	20	68.0	16.0	243	30	22.0	24.0	193	80	112.0	64.0
292	19	66.2	15.2	242	31	23.8	24.8	192	81	113.8	64.8
291	18	$64 \cdot 4$	14.4	24 I	32	25.6	25.6	191	82	115.6	65.6
290	17	62.6	13.6	240	-33	-27.4	-26.4	190	-83	-117.4	-66.4
289	16	60.8	12.8	239	34	29.2	27.2	189	84	119.2	67.2
288	15	59.0	12.0	238	35	31.0	28.0	188	85	121.0	68.0
287	14	57.2	11.2	237	36	32.8	28.8	187	86	122.8	68.8
280	13	55.4	10.4	236	37	34.6	29.6	I86	87	124.6	69.6
285	12	53.6	9.6	235	-38	-36.4	-30.4	185	-88	-126.4	-70.4
284	II	51.8	S. 8	234	39	38.2	31.2	184	89	128.2	71.2
283	10	50.0	8.0	233	40	40.0	32.0	183	90	130.0	72.0
282	9	48.2	7.2	232	41	41.8	32.8	182	91	13 I .8	72.8
281	8	46.4	6.4	231	42	43.6	33.6	I8I	92	133.6	73.6
280	7	44.6	5.6	230	-43	-45.4	-34.4	180	-93	-135.4	-74.4
279	6	42.8	4.8	229	44	47.2	35.2	179	94	137.2	75.2
278	5	41.0	4.0	228	45	49.0	36.0	178	95	139.0	76.0
277	4	39.2	3.2	227	46	50.8	36.8	177	96	140.8	76.8
276	3	37.4	2.4	226	47	52.6	37.6	176	97	142.6	77.6
275	$+2$	35.6	$+1.6$	225	-48	-54.4	-38.4	175	-98	-I44.4	-78.4
274	+ I	33.8	+ 0.8	224	49	56.2	39.2	174	99	146.2	79.2
273	± 0	32.0	± 0.0	223	50	58.0	40.0	173	100	148.0	80.0
272	- I	30.2	- 0.8	222	51	59.8	40.8	172	101	149.8	80.8
275	-	28.4	- 1.6	221	52	61.6	41.6	175	102	151.6	8 8. 6
270	-3	26.6	- 2.4	220	-53	-63.4	-42.4	170	-103	- 153.4	-82 4
269	4	24.8	3.2	219	54	65.2	43.2	169	104	155.2	83.2
268	5	23.0	4.0	218	55	67.0	44.0	168	105	157.0	84.0
267	6	21.2	4.8	217	56	68.8	44.8	167	106	158.8	84.8
266	7	19.4	5.6	216	57	70.6	45.6	166	107	160.6	85.6
265	-8	17.6	- 6.4	215	-58	-72.4	-46.4	165	-IoS	-162.4	-86.4
264	9	15.8	7.2	214	59	74.2	47.2	164	109	164.2	87.2
263	10	14.0	8.0	213	60	76.0	48.0	163	110	166.0	88.0
262	II	12.2	8.8	212	61	77.8	48.8	162	III	167.8	88.8
261	12	10.4	9.6	211	62	79.6	49.6	161	II 2	169.6	89.6
260	-13	8.6	-10.4	210	-63	-81. 4	-50.4	160	-II3	-171.4	-90.4
259	14	6.8	II. 2	209	64	83.2	51.2	159	II4	173.2	91.2
258	15	5.0	12.0	208	65	85.0	52.0	158	115	175.0	92.0
257	16	3.2 $+\quad 1$	12.8	207	66	86.8	52.8	157	116	176.8	92.8
256	17	+ 1.4	13.6	206	67	88.6	53.6	156	117	I7 8.6	93.6
255	-18	-0.4	-I4.4	205	-68	-90.4	-54.4	155	-118	- 180.4	-94.4
254	19	2.2	15.2	204	69	92.2	55.2	154	I 19	182.2	95.2
253	20	4.0	16.0	203	70	94.0	56.0	153	120	184.0	96.0
252	21	5.8	16.8	202	71	95.8	56.8	152	121	185.8	96.8
251	22	7.6	17.6	201	72	97.6	57.6	151	122	187.6	97.6
250	-23	-9.4	-18.4	200	-7.3	-99.4	-58.4	150	-123	-189.4	-98.4
A. A.	c.	F.	R.	A. A.	C.	F.	R.	A. A.	C.	F.	R.

Table 1
APPROXIMATE ABSOLUTE, CENTIGRADE, FAHRENHEIT, AND REAUMUR SCALES.

A. A.	C.	F.	R.	A.A.	c.	F.	R.	A.A.	C.	F.	R.
150°	-123°	-189.4	- 98.4	100°	-173°	-279.4	- 138.4	50°	- $223{ }^{\circ}$	-369.4	-178.4
149	124	19 I .2	99.2	99	174	28 I .2	I 39.2	49	224	371.2	I 79.2
148	125	193.0	100.0	98	175	283.0	140.0	48	225	373.0	180.0
147	126	194.8	100.8	97	176	284.8	140.8	47	226	374.8	180.8
146	127	196.6	101.6	96	177	286.6	141.6	46	227	376.6	181. 6
145	-128	-198.4	-102.4	95	-178	-288.4	-I42.4	45	-228	-378.4	-I82.4
144	129	200.2	103.2	94	179	290.2	143.2	44	229	380.2	183.2
143	130	202.0	104.0	93	180	292.0	144.0	43	230	382.0	184.0
142	131	203.8	104.8	92	181	293.8	144.8	42	231	383.8	184.8
141	132	205.6	105.6	91	182	295.6	145.6	41	232	385.6	185.6
140	-I33	-207.4	-106.4	90	-183	-297.4	-146.4	40	-233	-387.4	-186.4
139	I 34	209.2	107.2	89	I84	299.2	147.2	39	234	389.2	187.2
I 38	135	211.0	108.0	88	185	301.0	148.0	38	235	391.0	188.0
137	136	212.8	108.8	87	186	302.8	148.8	37	236	392.8	188.8
I 36	137	214.6	109.6	86	187	304.6	149.6	36	237	394.6	I89.6
135	-138	-216.4	-IIO.4	85	-188	-306.4	-150.4	35	-238	-396.4	-190.4
134	139	218.2	IIII. 2	84	189	308.2	151.2	34	239	398.2	191.2
I33	140	220.0	II 2.0	83	190	310.0	152.0	33	240	400.0	192.0
I 32	141	22	II 2.8	82	191	31 m .8	152.8	32	241	401.8	192.8
131	142	223.6	113.6	81	192	3 ± 3.6	153.6	31	242	403.6	193.6
130	-143	-225.4	-114.4	80	-193	-315.4	-154.4	30	-243	-405.4	-194.4
129	144	227.2	115.2	79	194	317.2	155.2	29	244	407.2	195.2
128	145	229.	II6.	78	195	319.0	156.0	28	245	409.0	196.0
127	146	230.8	116.8	77	196	320.8	156.8	27	246	410.8	r96.8
126	147	232.6	117.6	76	197	322.6	157.6	26	247	412.6	197.6
125	-148	-234.4	-IIS.4	75	-198	-324.4	-158.4	25	-248	-414.4	-I98.4
124	149	236.2	I19.2	74	199	326.2	159.2	24	249	416.2	199.2
123	150	238.0	120.0	73	00	328.0	160.0	23	250	418.0	200.0
122	151	239.8	120.8	72	201	329.8	160.8	22	251	419.8	200.8
121	152	24 1. 6	121. 6	71	202	331.6	16土.6	21	252	42 I .6	201.6
120	-I53	-243.4	-I22.4	70	-203	-333.4	-162.4	20	-253	-423.4	-202.4
II9	154	245.2	3.	69	204	335.2	163.2	19	254	425.2	203.2
118	155	247.0	124.0	68	205	337.0	164.0	18	255	427.0	204.0
117	I56	248.8	124.8	67	206	338.8	164.8	17	256	428.8	204.8
116	157	250.6	125.6	66	207	340.6	165.6	16	257	430.6	205.6
115	-I58	-252.4	-126.4	65	-208	-342.4	-166.4	15	-258	-432.4	-2c6.4
114	159	254.2	127.2	64	209	344.2	167.2	14	259	434.2	207:2
II3	160	256.0	128.0	63	210	346.0	168.0	13	260	436.0	208.0
II2	161	257.8	128.8	62.	211	347.8	168.8	12	261	437.8	208.8
III	162	259.6	129.6	6 I	212	349.6	169.6	II	262	439.6	209.6
110	-163	-261.4	-T30.4	60	-213	-351.4	-170.4	10	-263	-44I. 4	-210.4
109	164	263.2	131.2	59	214	353.2	171.2	9	264	443.2	211.2
108	165	265.0	132.0	58	215	355.0	172.0	8	265	445.0	212.0
107	166	266.8	I 32.8	57	216	356.8	172.8	7	266	446.8	212.8
106	167	268.6	133.6	56	217	358.6	173.6	6	267	448.6	213.6
105	-168	-270.4	-I34.4	55	-218	-360.4	-174.4	5	-268	-450.4	-214.4
104	169	272.2	135.2	54	219	362.2	175.2	4	269	452.2	215.2
103	170	274.0	136.0	53	220	364.0	176.0	3	270	454.0	216.0
102	171	275.8	1 36.8	52	22 I	365.8	176.8	2	271	455.8	216.8
IOI	172	277.6	137.6	51	222	367.6	177.6	I	272	457.6	217.6
100	-I73	-279.4	- I38.4	50	-223	-369.4	-I78.4	0	-273	-459.4	-218.4
A.A.	C.	F.	R.	A.A.	C.	F.	R.	A.A.	c.	F.	R.

FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	C.									
$+130^{\circ}$	$+54^{\circ} .44$	$+54^{\circ} 50$	+54.56	+54.6 I	$+54^{\circ} .67$	$+54^{\circ} 72$	$+54^{\circ} 78$	+54.83	$+54.89$	+54.94
129	53.89	53.94	54.00	54.06	54.11	54.17	54.22	54.28	54.33	54.39
128	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
127	52.78	52.83	52.89	52.94	53.00	53.06	53.11	53.17	53.22	53.28
126	52.22	52.28	52.33	52.39	52.44	52.50	52.56	52.6I	52.67	52.72
+125	+51.67	+51.72	$+51.78$	$+51.83$	+51.89	+51.94	+52.00	+52.06	+52.11	+52.17
124	51.11	5 I .17	5 I .22	51.28	51.33	51.39	51.44	51.50	51.56	51.61
123	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
122	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
121	49.44	49.50	49.56	49.61	49.67	49.72	49.78	49.83	49.89	49.94
$+120$	$+48.89$	+43.94	$+49.00$	$+49.06$	+49.1I	+49.17	+49.22	$+49.28$	+49.33	$+49.39$
I19	48.33	48.39	48.44	48.50	48.56	48.61	48.67	48.72	48.78	48.83
118	47.78	47.83	47.89	47.94	48.00	48.06	48.11	48.17	48.22	48.28
117	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.6I	47.67	47.72
116	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
$+115$	+46. II	+46.17	+46.22	+46.28	+46.33	+46.39	+46.44	$+46.50$	$+46.56$	+46.6I
114	45.56	45.6 I	45.67	45.72	45.78	45.83	45.89	45.94	46.00	46.06
II3	45.00	45.06	45.11	45.17	45.22	45.28	45.33	$45 \cdot 39$	45.44	45.50
II2	44.44	44.50	44.56	44.61	44.67	44.72	44.78	44.83	44.89	44.94
III	43.89	43.94	44.00	44.06	44.1 I	44.17	44.22	44.28	. 44.33	44.39
$+110$	+43.33	+43.39	+43.44	+43.50	$+43.56$	+43.61	$+43.67$	+43.72	+43.78	+43.83
109	42.73	42.83	42.89	42.94	43.00	43.06	43.1 I	43.17	43.22	43.28
108	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
107	41.67	41.72	41.78	41.83	41.89	41.94	42.00	42.06	42.11	42.17
106	41. II	4 I .17	41.22	41.28	4 I .33	41.39	4 I .44	41.50	41.56	41.6I
$\div 105$	$+40.56$	+40.61	+40.67	+40.72	$+40.78$	+40.83	+40.89.	+40.94	$+41.00$	+41.06
104	40.00	40.06	40.11	40.17	40.22	40.28	40.33	40.39	40.44	40.50
103	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
102	35.89	38.94	39.00	39.06	39. 11	39.17	39.22	39.28	39.33	39.39
101	38.33	38.39	38.44	38.50	38.56	38.61	38.67	38.72	38.78	38.83
+100	$+37.78$	$+37.83$	+37.89	$+37.94$	+38.00	$+38.06$	+38.11	+38.17	$+38.22$	+38.28
99	37.22	37.28	37.33	37.39	37.44	37.50	37.56	37.61	37.67	37.72
98	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37.11	37.17
97	36.11	36. 17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.6 I
96	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
+95	$+35.00$	+35.06	+35. 11	+35.17	+35.22	+35.28	+35.33	+35.39	+35.44	+35.50
-94	34.44	34.50	34.56	34.61	34.67	34.72	34.78	34.83	34.89	34.94
93	33.89	33.94	34.00	34.06	34.11	34.17	34.22	34.28	34.33	34.39
92	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
91	32.75	32.83	32.89	32.94	33.00	33.06	33.11	33.17	33.22	33.28
$+9$	+32.22	+32.28	+32.33	+32.39	+32.44	+32.50	+32.56	+32.61	+32.67	+32.72
89	31.67	31.72	31.78	31.83	31.59	31.94	32.00	32.06	32.11	32.17
SS	31.11	31.17	31.22	31.28	31.33	31.39	31.44	31.50	31.56	3 3 .61
86	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
86	30.00	30.06	30. II	30.17	30.22	30.28	30.33	30.39	30.44	30.50
$+85$	+29.44	+29.50	+29.56	+29.6I	$+29.67$	+29.72	+29.78	+29.83	+29.89	+29.94
84	28.89	28.94	29.00	29.06	29.11	29.17	29.22	29.28	29.33	29.39
	28.33	28.39	2 S .44	28.50	2 S .56	2 S .6 I	28.67	28.72	28.78	2 2.83
8I	27.78 27.22	27.83 27.28	27.89 27.33	27.94	28.00	28.06	28.11	28.17	28.22	28.28
			27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
+85	+2	+26.72	+26	+26.83	+26.89	+26.94	+27.00	+27.06	+27.11	+27.17
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Table 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahren heit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+80^{\circ}$	$\begin{gathered} c . \\ +26^{\circ} \epsilon_{7} \end{gathered}$	$\begin{gathered} \text { c. } \\ +26^{\circ} \cdot 72 \end{gathered}$	$+26^{\circ} \cdot 78$	$+26: 83$	$\begin{gathered} \text { c. } \\ +26.89 \end{gathered}$	$\begin{gathered} \text { c. } \\ +26.94 \end{gathered}$	$+27^{\circ} .00$	$\begin{gathered} c \\ +27.06 \end{gathered}$	$\begin{gathered} c . \\ +27^{\circ} .1 I \end{gathered}$	$\begin{gathered} \text { c. } \\ +27^{\circ} .17 \end{gathered}$
79	26.11	26. 17	26.22	26.28	26.33	26.39	26.4 .4	26.50	26.56	26.6 r
78	25.56	25.61	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
77	25.00	25.06	25.1 I	25.17	25.22	25.28	$25 \cdot 3.3$	25.39	25.44	25.50
76	24.44	24.50	24.56	24.61	24.67	24.72	24.78	24.33	24.89	24.94
$+75$	+23.89	+23.94	+24.00	$+24.06$	+24.11	+24.17	+24.22	+24.28	+24.33	+24.39
74	23.33	23.39	23.44	23.50	23.56	23.61	23.67	23.72	23.78	23.83
73	22.78	22.83	22.89	22.94	23.00	23.06	23.11	23.17	23.22	23.28
72	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
71	2 I .67	21.72	21.78	21.83	21.89	21.94	22.00	22.06	22.11	22.17
$+70$	+2I.II	+21.17	+21.22	+21.28	+21.33	+21.39	+21.44	+21.50	$+21.56$	+21.61
69	20.56	20.6I	20.67	20.72	20.78	20.83	20.89	20.94	21.00	21.06
68	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
67	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.53	19.89	19.94
66	18.89	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	19.39
+65	+18.33	+18.39	+18.44	$+18.50$	+1S.56	+18.6I	+18.67	+18.72	+IS.7S	+18.83
64	17.78	17.83	17.89	17.94	I8.00	18.06	18.11	18.17	18.22	18.28
63	17.22	17.28	17.33	17.39	17.44	17.50	17.56	17.61	17.67	17.72
62	16.67	16.72	16.78	16.83	16.89	16.94	17.00	17.06	17.11	7.17
61	16.II	16.17	16.22	16.28	16.33	16.39	16.44	16.50	16.56	16.61
+60	+15.56	+15.61	+15.67	+15.72	$+15.78$	+15. ${ }^{\text {S }}$	+15.89	+15.94	+16.00	+16.06
59	15.00	15.06	15.11	15.17	15.22	15.2 S	15.33	15.39	15.44	15.50
58	14.44	14.50	14.56	14.61	14.67	14.72	14.78	14.83	14.89	14.94
57	13.89	13.94	14.00	14.06	14.11	14.17	14.22	14.28	14.33	14.39
56	13.33	13.39	13.44	13.50	I 3.56	13.61	13.67	13.72	13.78	${ }^{1} 3.83$
+55	+12.7S	$+12.83$	+12.89	+12.94	+13.00	+13.06	+13.11	+13.17	+13.22	¢ 13.28
54	12.22	12.28	12.33	12.39	12.44	12.50	12.56	12.61	12.67	12.72
53	11.67	11.72	11.78	11.83	11.89	11.94	12.00	12.06	12. 11	12.17
52	11.11	11.17	11.22	11.28	11.33	11.39	11.44	11.50	11.56	11.61
51	10.56	10.61	10.67	10.72	10.78	10.93	10.59	10.94	11.00	11.06
+50	+10.00	+10.06	+10.11	$+10.17$	+10.22	$+10.28$	+10.33	+10.39	+10.44	+10.50
49	9.44	9.50	9.56	9.61	9.67	9.72	9.78	9.83	9.89	9.94
48	S. 89	8.94	9.00	9.06	9.11	9.17	9.22	9.28	9.3.3	9.39
47	8.33	8.39	8.44	8.50	8.56	8.61	8.67	S. 72	S. 78	8.83
46	7.78	7.83	7.89	7.94	8.00	8.06	8.11	8.17	S.22	8.28
$+45$	+ 7.22	+ 7.28	$+7.33$	$1+7.39$	$+7.44$	$+7.50$	$+7.56$	+ 7.61	$+7.67$	$+7.72$
44	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7.11	7.17
43	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
42	5.56	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
41	5.00	5.06	5.11	5.17	5.22	5.28	5.33	5.39	5.44	5.50
$+40$	+ 4.44	$+4.50$	$+4.56$	$+4.61$	$+4.67$	$+4.72$	$+4.78$	$+4.83$	$+4.89$	$+4.94$
39	3.89	3.94	4.00	4.06	4.11	4.17	4.22	4.28	4.33	4.39
38	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83
37	2.75	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28
36	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.6 I	2.67	2.72
+35	+ 1.67	+ 1.72	+1.78	$+1.83$	+ 1.89	+ 1.94	$+2.00$	+ 2.06	+ 2.11	$+2.17$
34	+ 1.11	+1.17	+ 1.22	+ 1.28	+1.33	+1.39	+ 1.44	+1.50	+ 1.56	+1.61
33	+ 0.56	+0.6I	$+0.67$	+0.72	+0.78	+0.83	+0.89	+ 0.94	+ 1.00	+1.06
32	0.00	+ 0.06	+0. 11	+0.17	+0.22	+0.28	$+0.33$	+0.39	+ 0.44	$+0.50$
31	-0.56	-0.50	- 0.44	-0.39	-0.33	-0.2S	-0.22	-0.17	-0.11	- 0.06
$+30$	- 1.11	- 1.06	- 1.00	-0.94	-0.89	-0.83	-0.78	-0.72	-0.67	- 0.61
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

FAHRENHEIT SCALE TO CENTIGRADE.

Fahren $=$ heit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
$+30^{\circ}$	$-\mathrm{I} .1 \mathrm{I}$	- 1.06	- I.00	-0.94	-0.89	-0.83	-0:78	$-0^{\circ} 72$	-0.67	-0.61
	1.67	1.61	I. 56	1.50	1.44	I. 39	1.33	1.28	1.22	1.17
- 28	2.22	2.17	2.11	2.06	2.00	I. 94	I. 89	I. S_{3}	1.78	1.72
	2.75	2.72	2.67	2.61	2.56	2.50	2.44	2.39	2.33	2.28
26	3.33	3.2 S	3.22	3.17	3.II	3.06	3.00	2.94	2.89	2.83
$+25$	- 3.89	-3.83	-3.78	-3.72	-3.67	- 3.61	-3.56	-3.50	-3.44	-3.39
24	4.44	$4 \cdot 39$	4.33	4.28	4.22	4.17	4.1 I	4.06	4.00	3.94
23	5.00	4.94	4.89	4.83	4.78	4.72	4.67	4.61	4.56	4.50
22	5.56	5.50	5.44	$5 \cdot 39$	5.33	5.28	5.22	5.17	5.11	5.06
21	6.11	6.06	6.00	$5 \cdot 94$	5.89	5.83	5.78	5.72	5.67	5.61
+20	-6.67	-6.6I	-6.56	-6.50	- 6.44	- 6.39	-6.33	-6.28	- 6.22	-6.17
19	7.22	7.17	7.11	7.06	7.00	6.94	6.59	6.83	6.78	6.72
IS	7.78	7.72	7.67	7.61	7.56	7.50	7.44	$7 \cdot 39$	7.33	7.28
17	8.33	S. 28	8.22	S. 17	S. 11	S.06	8.00	7.94	7.59	7.83
16	S. 59	8.83	8.78	S. 72	8.67	8.61	8.56	8.50	8.44	8.39
$+15$	- 9.44	- 9.39	-9.33	-9.28	-9.22	-9.17	-9.11	-9.06	- 9.00	- 5.94
14	10.00	9.94	9.89	9.83	9.75	9.72	9.67	9.61	9.56	9.50
13	IO. 56	10.50	10.44	10.39	10.33	10.2 S	10.22	10.17	10.11	10.06
12	II. II	I 1.06	II 1.00	10.94	10. 89	10.83	10.78	10.72	10.67	10.61
II	11.67	II.6I	11.56	I 1.50	I 1.44	II. 39	11.33	11.28	11.22	11.17
$+10$	--12.22	-12.17	-12.11	-12.06	-12.00	-İ1.94	-II. S $_{9}$	-11.83	-11.7S	-II. 72
9	12.78	12.72	12.67	12.61	12.56	12.50	12.44	12.39	12.33	12.28
S	13.33	13.28	13.22	13.17	13.11	13.06	13.00	12.94	12.59	12.83
6	13.89	13.83	13.78	13.72	13.67	13.61	13.56	13.50	13.44	13.39
6	14.44	14.39	14.33	14.28	14.22	14.17	14.11	14.06	14.00	13.94
+ 5	-15.00	--14.94	-14.89	-14.83	-14.78	-14.72	-14.67	-14.61	-14.56	-14.50
	15.56	15.50	15.44	I 5.39	15.33	15.2 S	15.22	15.17	15.1 I	15.06
3	16.11	16.06	16.00	15.94	15.89	${ }^{1} 5.83$	15.78	15.72	10.67	15.61
2	16.67	16.61	16.56	16.50	16.44	16.39	16.33	16.28	16.22	16.17
	17.22	17.17	17.11	17.06	17.00	16.94	16.89	16.83	16.78	16.72
$+0$	17.78	17.72	17.67	17.61	17.56	17.50	17.44	17.39	17.33	17.28
0	-17.78	-17.83	-17.89	-17.94	-18.00	-1 S .06	-IS.II	-18.17	-IS. 22	-18.2S
I	IS.33	18.39	18.44	18.50	18.56	18.61	18.67	1S. 72	18.78	18.83
2	: 8.89	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	15.39
3	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.83	19.59	\%.9.94
4	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
-5	-20.56	-20.6I	-20.67	-20.72	-20.78	-20.83	-20.89	-20.94	-21.00	-21.06
ϵ	2 I .11	21.17	21.22	21.28	21.33	21.39	21.44	21.50	21.56	21.61
	21.67	21.72	21.78	21.83	21.89	21.94	22.00	22.06	22. 11	22.17
S	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
9	22.78	22.83	22.59	22.94	23.00	23.06	23.11	23.17	23.22	23.2 S
-10	-23.33	-23.39	-23.44	-23.50	-23.56	-23.61	-23.67	-23.72	-23.78	-23.83
II	23.89	23.94	24.00	24.06	24. 1 I	24.17	24.22	24.28	24.33	24.39
12	24.44	24.50	24.56	24.61	24.67	24.72	24.78	24.83	24.59	24.94
13	25.00	25.06	25.11	25.17	25.22	25.28	25.33	25.39	25.44	25.50
14	25.56	25.61	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
-15	-26.11	-26.17	-26.22	-26.28	-26.33	-26.39	-26.44	-26.50	-26.56	-26.61
16	26.67	26.72	26.78	26.83	26.59	26.94	27.00	27.06	27.11	27.17
17	27.22	27.2 S	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
18	27.78	27.83	27.59	27.94	2 S .00	28.06	$2 \mathrm{S}$.	28.17	28.22	28.28
19	28.33	28.39	28.44	2 S .50	28.56	28.61	28.67	28.72	28.78	28.83
-20	$-2 \mathrm{S}$.	-28.94	-29.00	-29.06	-29. II	-29.17	-29.22	-29.28	-29.33	$\underline{-29.39}$
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Table 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	.2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.	c.	C.	c.	c.	C.	-	c.	c.	c.
-20°	-28.89	-28.94	$-29^{\circ} \mathrm{O} 0$	29.06	$-29^{\circ} \mathrm{II}$	$-29^{\circ} 17$	$-29^{\circ} 22$	-29.28	$-29^{\circ} .33$	-29.39
21	29.44	29.50	29.56	29.61	29.67	29.72	29.78	29.83	29.89	29.94
22	30.00	30.06	30.11	30.17	30.22	30.28	30.33	30.39	30.44	30.50
23	30.56	- 30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
24	31.11	31.17	31.22	3!. 28	31.33	3 3 .39	3 I .44	31.50	31.56	31.61
-25	-31.67	-31.72	-31.78	-31.83	31.89	- 31.94	-32.00	-32.06	-32.11	-32.17
26	32.22	32.28	32.33	32.39	32.44	32.50	32.56	32.61	32.67	32.72
27	32.78	32.83	32.89	32.94	33.00	33.06	33. 11	33.17	33.22	33.28
28	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
29	33.89	33.94	34.00	34.06	34.II	34.17	34.22	34.28	34.33	34.39
-30	-34.44	-34.50	-34.56	-34.61	-34.67	-34.72	-34.78	-34.83	-34.89	-34.94
31	35.00	35.06	35.11	35.17	35.22	35.28	35.33	35.39	35.44	35.50
32	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
33	36.11	36.17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.6 I
34	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37. II	37.17
-35	-37.22	-37.28	-37.33	-37.39	-37.44	-37.50	-37.56	-37.61	-37.67	-37.72
36	37.78	37.83	37.89	37.94	38.00	38.06	38. 11	38.17	33.22	38.28
37	38.33	38.39	38.44	38.50	38.56	38.61	38.67	38.72	38.78	38.83
38	38.89	3 S .94	39.00	39.06	39.11	39.17	39.22	39.28	39.33	39.39
39	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
-40	-40.00	-40.06	-40.11	-40.17	-40.22	-40.28	-40.33	-40.39	-40.44	-40.50
4 I	40.56	40.6I	40.67	40.72	40.78	40.83	40.89	40.94	4 I .00	41.06
42	4 I .11	41.17	41.22	41.28	41.33	41.39	4 I .44	41.50	41.56	41.61
43	41.67	41.72	4 I .78	41.83	41.89	41.94	42.00	42.06	42.11	42.17
44	42.22	42.28	42.33	42.39	42.44	42.5 C	42.56	42.6I	42.67	42.72
-45	-42.78	-42.83	-42.89	-42.94	-43.00	-43.06	-43.11	-43.17	-43.22	-43.28,
46	43.33	43.39	43.44	43.50	43.56	43.61	43.67	43.72	43.78	43.83
47	43.89	43.94	44.00	44.06	44.11	44.17	44.22	44.28	44.33	44.39
48	42.44	44.50	44.55	44.61	44.67	44.72	44.78	44.83	44.89	44.94
49	45.00	45.06	45. I I	45.17	45.22	45.28	45.33	$45 \cdot 39$	45.44	45.50
-50	-45.56	-45.61	-45.67	-45.72	-45.78	-45.83	-45.89	-45.94	-46.00	-46.06
51	46.11	46.17	46.22	46.28	46.33	46.39	46.44	46.50	46.56	46.6x
52	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
53	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.61	47.67	47.72
54	47.78	47.83	47.89	47.94	48.00	48.06	4S.11	48.17	48.22	48.28
-55	-48.33	-48.39	-48.44	-48.50	-48.56	-48.61	-48.67	-48.72	-48.78	-48.83
56	48.89	48.94	49.00	49.06	49. I 1	49.17	49.22	49.28	49.33	49.39
57	49.44	49.50	49.56	49.61	49.67	49.72	49.78	49.83	49.89	49.94
58	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
59	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
-60	-51.11	-51.17	-51.22	-51.28	-51.33	-51.39	-51.44	-51.50	-51.56	-51.61
61	51.67	51.72	51.78	51.83	51.89	51.94	52.00	52.06	52.11	52.17
62	52.22	52.28	52.33	52.39	52.44	52.50	52.56	52.61	52.67	52.72
63	52.78	52.83	52.89	52.94	53.00	53.06	53.11	53.17	53.22	53.28
64	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
	-53.89	-53.94	-54.00	-54.06	-54. II	-54.17	-54.22	-54.28	-54.33	$-54 \cdot 39$
66	54.44	54.50	54.56	54.61	54.67	54.72	54.78	54.83	54.89	54.94
67	55.00	55.06	55.11	55.17	55.22	55.28	- 55.33	55.39	55.44	55.50
68	55.56	55.61	55.67	55.72	55.78	55.83	55.89	55.94	56.00	56.06
69	56.1I	56.17	56.22	56.28	56.33	56.39	56.44	56.50	56.56	56.61
-70	-56.67	$\underline{-56.72}$	-56.78	-56.83	-56.89	-56.94	-57.00	-57.06	-57. 11	-57.17
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

FAHRENHEIT SCALE TO CENTICRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
-70°	-56.67	-56.72	-56.78	$-56^{\circ} .83$	$-56^{\circ} 89$	-56.94	-57.00	-57.06	-57.11	-57.17
71	57.22	57.28	57.33	57.39	57.44	57.50	57.56	57.61	57.67	57.72
72	57.78	57.83	57.89	57.94	58.00	58.06	58.11	58.17	58.22	58.28
73	58.33	$5^{8} .39$	58.44	58.50	58.56	58.61	58.67	58.72	58.78	58.83
74	58.89	58.94	59.00	59.06	59.11	59.17	55.22	59.28	59.33	59.39
-75	-59.44	-59.50	-59.56	-59.61	-59.67	-59.72	-59.78	-59.83	-59.89	-59.94
76	to.00	60.06	60.11	60.17	60.22	60.28	60.33	60.39	60.44	60.50
77	¢0.56	60.61	60.67	60.72	60.78	60.83	60.89	60.94	6 T .00	61.06
78	61.11	61.17	61.22	61.28	61.33	61.39	61.44	61.50	61.56	6r.6ı
79	6 r .67	61.72	61.78	61.83	61.89	61.94	62.00	62.06	62.11	62.17
-80	-62.22	-62.28	-62.33	-62.39	-62.44	-62.50	-62.56	-62.61	-62.67	-62.72
8 I	62.78	62.83	62.89	62.94	63.00	63.06	63.11	63.17	63.22	6.3 .28
82	63.33	63.39	63.44	63.50	63.56	63.61	63.67	63.72	63.78	63.83
83	63.89	63.94	64.00	64.06	64.1 I	64.17	64.22	64.28	64.33	64.39
84	64.44	64.50	64.56	64.61	64.67	64.72	64.78	64.83	64.89	64.94
-85	-65.00	-65.06	-65.11	-65.17	-65.22	-65.28	-65.33	-65.39	-65.44	-65.50
86	65.56	65.61	65.67	65.72	65.78	65.83	65.89	65.94	66.00	66.06
87	66.11	66.17	66.22	66.28	66.33	66.39	66.44	66.50	66.56	66.61
88	66.67	66.72	66.78	66.83	66.89	66.94	67.00	67.06	67.11	67.17
89	67.22	67.28	67.33	67.39	67.44	67.50	67.56	67.6 I	67.67	67.72
-90	-67.78	-67.83	-67.89	-67.94	-68.00	-68.06	-68.11	-68.17	-68.22	-68.28
91	68.33	68.39	68.44	68.50	68.56	68.61	68.67	68.72	68.78	68.83
92	68.89	68.94	69.00	69.06	69.11	69.17	69.22	69.28	69.33	69.39
93	69.44	69.50	69.56	69.61	69.67	69.72	69.78	69.83	69.89	69.94
94	70.00	70.06	70.11	70.17	70.22	70.28	70.33	70.39	70.44	70.50
-95	-70.56	-70.61	-70.67	-70.72	-70.78	-70.83	-70.89	-70.94	-71.00	-71.06
96	71.11	71.17	71.22	71.28	71.33	71.39	7 I .44	71.50	71.56	71.61
97	71.67	71.72	71.78	71.83	71.89	71.94	72.00	72.06	72.11	72.17
98	72.22	72.28	72.33	72.39	72.44	72.50	72.56	72.61	72.67	72.72
99	72.78	72.83	72.89	72.94	73.00	73.06	73.11	73.17	73.22	73.28
-100	-73.33	-73.39	-73.44	-73.50	-73.56	-73.61	-73.67	-73.72	-73.78	-73.83
IOI	73.89	73.94	74.00	74.06	74.11	74.17	74.22	74.28	74.33	74.39
102	74.44	74.50	74.56	74.61	74.67	74.72	74.78	74.83	74.89	74.94
103	75.00	75.06	75.11	75.17	75.22	75.28	75.33	75.39	75.44	75.50
104	75.56	75.61	75.67	75.72	75.78	75.83	75.89	75.94	76.00	76.06
-105	-76.11	-76.17	-76.22	-76.28	-76.33	-76.39	-76.44	-76.50	-76.56	-76.61
106	76.67	76.72	76.78	76.83	76.89	76.94	77.00	77.06	77.11	77.17
107	77.22	77.28	77.33	77.39	77.44	77.50	77.56	77.61	77.67	77.72
108	77.78	77.83	77.89	77.94	78.00	78.06	78.11	78.17	78.22	78.28
109	78.33	78.39	78.44	78.50	78.56	78.61	78.67	78.72	78.78	78.83
-110	-78.89	-78.94	-79.00	-79.06	-79.11	-79.17	-79.22	-79.28	- 79.33	-79.39
111	79.44	79.50	79.56	79.61	79.67	79.72	79.78	79.83	79.89	79.94
112	80.00	80.06	80.11	80.17	80.22	80.28	80.33	So. 39	80.44	80. 50
113	80.56	80.61	80.67	80.72	80.78	80.83	80.89	80.94	8 8 .00	81.06
II4	8I.II	81.17	81.22	81.28	8 I .33	8I. 39	81. 44	81.50	SI. 56	8ı.6I
-115	$-8 \mathrm{I} .67$	$-8 \mathrm{I} .72$	-81.78	-81.83	-81.89	-81. 94	-82.00	-82.06	-82.11	-82.17
116	82.22	82.28	82.33	82.39	82.44	82.50	82.56	82.61	82.67	82.72
117	82.78	82.83	82.89	82.94	83.00	83.06	83.11	83.17	83.22	83.28
118	83.33	83.39	83.44	83.50	83.56	83.61	83.67	83.72	83.78	83.83
119	83.89	83.94	84.00	84.06	84.11	84.17	84.22	84.28	84.33	84.39
-120	-84.44	-84.50	$-84 \cdot 56$	-84.61	-84.67	-84.72	-84.78	-84.83	-84.89	-84.94
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 9

Smithsonian tables.

Table 3.
CENTIGRADE SCALE TO FAHRENHEIT.

Centigrade.	.0	. 1	.2	. 3	.4	.5	.6	.7	. 8	. 9
$+60^{\circ}$	$\begin{gathered} F . \\ +140^{\circ} .00 \end{gathered}$	$\begin{gathered} F \\ +140.18 \end{gathered}$	$\begin{gathered} F \\ +140^{\circ} .36 \end{gathered}$	$\begin{gathered} F \\ +140.54 \end{gathered}$	$\begin{gathered} F \\ +140.72 \end{gathered}$	$\begin{gathered} F \\ +140.90 \end{gathered}$	$\begin{gathered} F \\ +141.08 \end{gathered}$	$\begin{gathered} F \\ +141.26 \end{gathered}$	$\begin{gathered} F \\ +141.44 \end{gathered}$	$\begin{gathered} F \\ +141^{\circ} .62 \end{gathered}$
59	138.20	138.38	I38.56	I38.74	138.92	139.10	139.28	139.46	139.64	139.82
58	I 36.40	I 36.58	136.76	136.94	137.12	137.30	137.48	- 137.66	I 37.84	138.02
57	134.60	134.78	I 34.96	135.14	135.32	135.50	I 35.68	135.86	I36.04	136.22
56	132.80	I 32.98	133.16	I 33.34	1 33.52	I 33.70	I 33.88	134.06	I 34.24	134.42
$+55$	+13 1.00	+131.18	+131.36	+131.54	+131.72	+I31.90	+132.08	+132.26	+I 32.44	+132.62
54	129.20	129.38	129.56	129.74	129.92	130.10	130.28	130.46	130.64	130.82
53	127.40	127.58	127.76	127.94	128.12	I 28.30	128.48	128.66	128.84	129.02
52	125.60	125.78	I 25.96	126.14	126.32	I 26.50	126.68	I 26.86	127.04	127.22
51	123.80	123.98	124.16	I 24.34	124.52	124.70	124.88	125.06	I 25.24	I25.42
$+50$	+122.00		+I 22.36	+I 22.54	+122.72	+I22.90	+123.08	+123.26	$+123.44$	+123.62
49	120.20	120.38	I 20.56	120.74	120.92	121.10	121.28	121.46	I21.64	121.82
48	II8.40	118.58	I 18.76	I 18.94	II9.12	119.30	II9.48	I 19.66	I 19.84	120.02
47	116.60	116.78	I 16.96	117.14	117.32	I 17.50	117.68	117.86	I 18.04	I I 8.22
46	I14.80	II4 98	1 15.16	I 15.34	I I 5.52	I 15.70	I 15.88	I 16.06	I 16.24	4^{2}
$+45$	+113.00	+113.18	+II3.36	+I I 3.54	+113.72	+ II 3.90	+114.08	+114.26	+II4.44	+114.62
44	III. 20	III. 38	III.56	III. 74	III.92	112.10	II 2.28	II2.46	I 12.64	I I 2.82
43	109	109.58	IO9.76	109.94	110.12	110.30	110.48	110.66	110.84	111.02
42	107.60	107.78	107.96	108.14	108.32	108.50	108.68	108.86	109.04	109.22
4 I	105.80	105.98	I06.16	I06.34	106.52	106.70	106.88	107.06	107.24	
$+40$	+104.00	+104.18	+104.36	+104.54	+104.72	+104.90	$+105.08$	$+105.26$	+105.44	+105.62
39	102.20	102.38	102.56	IO2.74	102.92	103.10	103.28	103.46	IO3.64	103.82
38	100.40	100.58	100.76	100.94	IOI.I 2	IOI. 30	IOI. 48	101.66	IOI. 84	102.02
37	98.60	98.78	98.96	99.14	99.32	99.50	99.68	99.86	100.04	100.22
36	96.80	96.98	97.16	$97 \cdot 34$	$97 \cdot 52$	97.70	97.88	98.06	98.24	42
+35	$+95.00$	+ 95.18	+ 95.36	$+95 \cdot 54$	$+95.72$	0	$+96.08$	$+96.26$	$+96.44$	$+96.62$
3	93.	93.38	93.56	93.74	93.92	04.10	94.28	94.46	94.64	2
33	91.4	91.58	91.76	91.94	92.12	92.30	92.48	92.66	02.84	
32	89.60	89.78	89.96	90.14	90.32	90.50	90.68	90.86	91.04	
31	87.80	87.98	88.16	88.34	88.52	88.70	88.88	89.06	89.24	
$+30$	$+86.00$	+ 86.18	+ 86.36	$+86.54$	$+86.72$	$+86.90$	$+87.08$	$+87.26$	$+87.44$	$+87.62$
29	84.20	84.38	. 84.56	84.74	84.92	85.10	85.28	85.46	85.64	85.82
28	82.40	82.58	82.76	82.94	83.12	83.30	83.48	83.66	83.84	
27	80.60	80.78	80.96	8 I .14	81.32	81.50	81.68	81.86	82.04	82.22
26	78.80	78.98	79.16	79.34	79.52	79.70	79.88	80.06	80.24	42
+25	$+77.00$	+ 77.18	$+77 \cdot 36$	$+77.54$	$+77.72$	$+77.90$	$+78.08$	+ 78.26	+ 78.44	78.62
24	75.2	75.38	75.56	75.74	75.92	76.10	76.28	1 76.46	76.64	76.82
23	73.4	73.58	73.76	73.94	74.12	74.30	74.48	74.66	74.84	75.02
22	71.60	71.78	71.96	72.14	72.32	72.50	72.68	72.86	73.04	73.22
2 I	69.80	69.98	70.16	70.34	70.52	70.70	70.88	71.06	71.24	71.42
$+20$	+68.00	$+68.18$	+ 68.36	$+68.54$	$+68.72$	+68.90	$+69.08$	$+69.26$	+69.44	+69.62
19	66.	66.38	66.56	66.74	66.92	67.10	67.28	- 67.46	67.64	67.82
I8	64.40	64.58	64.76	64.94	65.12	65.30	65.48	- 65.66	65.84	66.02
17	62.60	62.78	- 62.96	63.14	63.32	63.50	63.68	63.86	64.04	64.22
16	60.80	60.98	6土.土6	6 I .34	61.52	61.70	6 t .88	62.06	62.24	62.42
$+15$	+ 59.00	$+59.18$	+ 59.36	$+59.54$	$+59.72$	+ 59.90	$+60.08$	$+60.26$	$+60.44$	60.62
14	5	57.38	- 57.56	57.74	57.92	58.10	58.28	58.46	58.64	82
13	55.40	55.58	55.76	55.94	56.12	56.30	56.48	56.66	56.84	57.02
12	53.60	- 53.78	- 53.96	54.14	54.32	54.50	- 54.68	54.86	55.04	55.22
II	51.80	. 51.98	82.16	52.34	52.52	52.70	52.88	53.06	53.24	53.42
$+10$	$+50.00$	$+50.18$	+ 50.36	+ 50.54	$+50.72$	$+50.90$	$+51.08$	$+51.26$	$+51.44$	$+51.62$
	.0	. 1	.2	.3	.4	.5	.6	.7	. 8	.9

CENTIGRADE SCALE TO FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+10^{\circ}$	$\begin{gathered} \text { F. } \\ +50.00 \end{gathered}$	$\begin{gathered} F . \\ +50^{\circ} .18 \end{gathered}$	$\begin{gathered} \text { F. } \\ +50^{\circ} .36 \end{gathered}$	$\begin{gathered} F \\ +50^{\circ} .54 \end{gathered}$	$\begin{gathered} F . \\ +50^{\circ} .72 \end{gathered}$	$\begin{gathered} \text { F. } \\ +50.90 \end{gathered}$	$\begin{gathered} \text { F. } \\ +51.08 \end{gathered}$	$\begin{gathered} \text { F. } \\ +5 \mathrm{I} .26 \end{gathered}$	$\begin{gathered} \text { F. } \\ +5 \mathrm{I} .44 \end{gathered}$	$\begin{gathered} \text { F. } \\ +51^{\circ} .62 \end{gathered}$
$+9$	+48.20	$+48.38$	+48.56	+48.74	+48.92	$+49.10$	$+49.28$	+49.46	+49.64	+49.82
8	46.40	46.58	46.76	46.94	47.12	47.30	47.48	47.66	47.84	48.02
	44.60	44.78	44.96	45.14	45.32	$45 \cdot 50$	45.68	45.86	46.04	46.22
6	42.80	42.98	43.16	$43 \cdot 34$	43.52	43.70	43.88	44.06	44.24	44.42
5	41.00	4 I .18	4 I. 36	41.54	41.72	41.90	42.08	42.26	42.44	42.62
$+4$	+39.20	+39.38	+39.56	+39.74	+39.92	+40.10	+40.28	+40.46	+40.64	+40.82
3	37.40	37.58	37.76	37.94	38.12	38.30	38.48	38.66	38.84	39.02
2	35.60	35.78	35.96	36.14	36.32	36.50	36.68	36.86	37.04	37.22
I	33.80	33.98	34.16	34.34	34.52	34.70	34.88	35.06	35.24	35.42
$+0$	32.00	32.18	32.36	32.54	32.72	32.90	33.08	33.26	33.44	33.62
- 0	+32.00	+31.82	+31. 64	+31.46	+31.28	+31.10	+30.92	+30.74	+30.56	$+30.38$
I	30.20	30.02	29.84	29.66	29.48	29.30	29.12	28.94	28.76	28.58
2	28.40	28.22	28.04	27.86	27.68	27.50	27.32	27.14	26.96	26.78
3	26.60	26.42	26.24	26.06	25.88	25.70	25.52	25.34	25.16	24.98
4	24.80	24.62	24.44	24.26	24.08	23.90	23.72	23.54	23.36	23.18
- 5	+23.00	+22.82	+22.64	+22.46	+22.28	+22.10	+21.92	+21.74	+21.56	$+21.38$
6	2 I .20	21.02	20.84	20.66	20.48	20.30	20.12	19.94	19.76	19.58
	19.40	19.22	19.04	18.86	18.68	18.50	I8.32	18.14	17.96	17.78
8	17.60	17.42	17.24	17.06	16.88	16.70	16.52	16.34	16.16	15.98
9	15.80	15.62	15.44	I5.26	15.08	14.90	I4.72	14.54	14.36	14.18
-10	+14.00	+13.82	+13.64	+13.46	+13.28	$+13.10$	+I2.92	+I2.74	+12.56	+12.38
II	12.20	12.02	II S 84	Ir 166	11.48	11.30	III.12	10.94	10.76	10.58
12	10.40	10.22	10.04	9.86	9.68	9.50	9.32	9.14	8.96	8.78
13	8.60	8.42	8.24	8.06	7.88	7.70	7.52	$7 \cdot 34$	7.16	6.98
14	6.80	6.62	6.44	6.26	6.08	5.90	5.72	$5 \cdot 54$	$5 \cdot 36$	5.18
-15	$+5.00$	+ 4.82	+ 4.64	+ 4.46	+ 4.28	$+4.10$	$+3.92$	$+3.74$	$+3.56$	$+3.38$
I6	+ 3.20	+ 3.02	+ 2.84	+ 2.66	+ 2.48	$+2.30$	+ 2.12	+ 1.94	+ 1.76	+ 1.58
17	+ 1.40	+ 1.22	+ 1.04	+ 0.86	+ 0.68	+ 0.50	$+0.32$	+0.14	- 0.04	-0.22
18	- 0.40	- 0.58	- 0.76	- 0.94	- 1.12	- 1.30	- 1.48	- 1.66	- 1.84	- 2.02
19	- 2.20	- 2.38	- 2.56	- 2.74	- 2.92	-3.10	-3.28	-3.46	- 3.64	-3.82
-20	- 4.00	- 4.18	- 4.36	- 4.54	- 4.72	-4.90	-5.08	-5.26	-5.44	- 5.62
2 I	5.80	5.98	6.16	6.34	6.52	6.70	6.88	7.06	7.24	7.42
22	7.60	7.78	7.96	8.14	8.32	8.50	8.68	8.86	9.04	9.22
23	9.40	9.58	9.76	9.94	10.12	10.30	10.48	10.66	10.84	11.02
24	II. 20	II. 38	II. 56	11.74	11.92	12.10	12.28	12.46	12.64	12.82
	- I 3.00	-I3.18	-13.36	-I3.54	-13.72.	-13.90	-14.08	-14.26	-14.44	-14.62
26	14.80	14.98	15.16	15.34	15.52	15.70	15.88	16.06	16.24	16.42
27	16.60	16.78	16.96	17.14	17.32	17.50	17.68	17.86	18.04	18.22
28	18.40	18.58	18.76	18.94	19.12	19.30	19.48	I 9.66	19.84	20.02
29	20.20	20.38	20.56	20.74	20.92	21.10	21.28	21.46	21.64	21.82
-30	-22.00	-22.18	-22.36	-22.54	-22.72	-22.90	-23.08	-23.26	-23.44	-23.62
31	23.80	23.98	24.16	24.34	24.52	24.70	24.88	25.06	25.24	25.42
32	25.60	25.78	25.96	26.14	26.32	26.50	26.68	26.86	27.04	27.22
33	27.40	27.58	27.76	27.94	28.12	28.30	28.48	28.66	28.84	29.02
34	29.20	29.38	29.56	29.74	29.92	30.10	30.28	30.46	30.64	30.82
-35	-31.00	-31.18	-3I.36	-31.54	-31.72	-31.90	-32.08	-32.26	-32.44	-32.62
36	32.80	32.98	33.16	33.34	33.52	33.70	33.88	34.06	34.24	34.42
37	34.60	34.78	34.96	35.14	35.32	35.50	35.68	35.86	36.04	36.22
38	36.40	36.58	36.76	36.94	37.12	37.30	37.48	37.66	37.84	38.02
39	38.20	38.38	38.56	38.74	$3^{8.9}{ }^{2}$	39.10	39.28	39.46	39.64	39.82
-40	-40.00	-40.18	-40.36	-40.54	-40.72	-40.90	-41.08	-41.26	-41.44	-41.62
	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	. 9

Table 3.
CENTIGRADE SCALE TO FAHRENHEIT.

Gentlprado.	. 0	. 1	. 2	. 3	. 4	.5	. 6	. 7	. 8	.9
	F.	F.	F.	F	F.	F.	F.	F.	F.	F
-40°	40.00	- 40.18	- 40.30	- 10.51	$-40^{\prime \prime} .72$	40.00	- 41.08	4 f .20	41.4 .4	41.62
41	11.80	+1.0)	42.10	42.3.4	42.5-	4:.70	42.88.	4.3.00	1,3.2.4	4.3 .12
42	4.3 .60	4.3 .78	4.3 .00	4.1 .1 .4	4.4.32	4.4 .50	44.68	4.4.86	4.5.0.4	4.5.22
4.3	4.5 .10	1.5.58	4.5 .70	4.5.1).t	4(1.1)	4 3.30	46.48	40.00	40.8 .4	47.02
1.4	47.20	$47 \cdot 38$	47.50	47.7.4	$47.1)=$	48.10	48.23	$48 . .10$.48.(1.)	48.8\%
-45	49.00	- 40.18	- 40.36	- 40.5 .1	-40.72	40.00	- 50.08	50.20	- 50.14	50.62
40	50.80	50.085	51.10	51.3.4	51.52	51.70	51.88	5 2.00	52.2 .4	52.12
47	52.10	52.78	$5 \therefore 00$	5.3 .1 .4	5.3.3?	$5.3 \cdot 50$	5.3 .08	5.3 .80	54.0 .4	54.22
48	$5 \cdot 1.40$	5.4 .58	5.1 .70	5.1 .0 .1	5.5 .12	$5.5 \cdot 30$	$5.5 \cdot 18$	55.00	5.5 .8 .4	50.02
4)	56.20	56.38	50.50	56.7 .1	56.022	57.10	57.2S	57.10	57.0 .4	57.82
-50	5	-	3.30	58.5.4	-58.72	58.00	9. 0.8	-50.20	$-50.4 .4$	50.62
51	50.80	50.08	(10.10	(0.3.31	(10.5 2	0.70	(10.8S	(1) 1.00	(11.2.6	(11..12
52	61.60	61.75	(11.0) 0	(12.1.1	(1) 2.3 ?	62.50	(23. 6	()2.80	03.04	13.22
5.3	03.40	03.58	(13.76)	(3,3.0.1	(1.1.1 -	0.1., 30	0.1 .18	(1.7.0)	0.4.8.4	(15.02)
5.1	(35.20)	05.38	0.5 .50	0.5 .7 .1	(15.0) 2	(1).10	(10). 28	(10.40	00.0 .8	60.82
-55	07.00	+n	(17.36	- 07.5 .1	- 07.7%	- 67.100	- (3N.OS	- 08.8 .20	-63.1.1	68.62
56	6s..ho	OS.08	(0).13	(11) 3.3 .1	(1).5-	(x). 70	(1).SS	70.06	70.2 .4	70.1:
,	70.60	70.78	70.90	71.1 .1	71.3.	71.50	71.08	71.80	72.0 .4	72.32
58	72.10	72.5s	72.70	72.19 .1	7.3.1 ${ }^{\text {a }}$	7.3 .30	73.18	73.60	7.3 .34	7.1.02
51	7.1 .20	71.36	74.50	7.1 .7 .1	7-1.0)	75.10	75.2 S	75.16	75.0.4	75.82
-60	76.00	1,4	7(3,30)	-76.5.1	-76.7-1	76.00	- 77.08	-77.20	$-77 \cdot 4.4$	-77.6
(1)	77.50	77.05	78.10	78.3.4	78.50	78.70	78.88	71.00	7 ().2.4	7).4:
62	$71 .(10$	70.78	$7(0.1)(1)$	80.1.1	$80.3=$	So.50	So.6S	So.si	8 Sc 0.1	S1.2:
0,3	81.10	81.58	S1.70	S1.0.1	S2.1:	S2.,io	82.48	S2.0)	S2.s.1	.02
0.1	Sis. 0	S3.36	Si.50	8.3 .7 .1	8,300	8.1 .10	S1. 8	8.1 .10	8.1 .0 .1	S.K:
-65	S5.00	85.18	S5.30	S5.5.1	$-85.7=$	85.10	$S 0.08$	- So. 20	$-\mathrm{S} 0.4 .4$	- 80.62
()	S6.NO	80.08	87.10	87-3.1	87.5=	87.70	$\mathrm{S}_{7} \mathrm{SS}$	SS.OO	SS.2.4	S8.42
17	SS.60	$8 \mathrm{S.7S}$	SS.0)	Si, 1,1	8) 8.32	Su. 50	B6,08	Sus So	()0.0.1)0.22
(15	10.10	()0.5S	()0.70	(1)0.0.1	()1.1 $=$	1)1.30	(1) 1.45	()1.6)	1. S . 1	0:
(0)	()2.20	92.3.35	1) 2.50	() $\therefore 7.1$	() \therefore () -	1), 3.10	0, 3.2 S	1)3.410	0.3 .0 .1	3.322
-70	O	(1).1.15	().1.30	- 19.1 .5 .1	7%	1)1.110	-05.0S	- 0.5.20	-05.44	-05.62
71	05.80	0.5.0)	()0, 16	() (0.31!	1,5 $=$	() 1.70	0 0) 1.58	07.00	07. 21	c) $7 \cdot .12$
72	97. 10	1) 7.78	()7.0)	()S.1.4	188.3.	08.50'	0S.08	2S. 56	(0).0.4	()0.22
7.3	()).10	(0). 53	10).70	(3).0.1	100.1 $=$	100.,30	100.15	100.6)	100.8.1	101.0:
7.4	101. 0^{0}	101.38	101.50	101.74	101.02	10:10	102.3S	10:.10	102.0.4	102.82
-75	10,3.00	-103.15	-103.36	-10.3.5.1	-103.7 ${ }^{1}$	103.90	-10.4.0S	-10.4.20	-10.4.4.4	-10.4.62
70	10.1.80	10.1.1)	105.10	105., \%	105.5 $=$	105.70	105.ss	100.00	100.2.	100..12
77	106.60	106.7S	106.106	107.1.1	107.3:	107.50	10\%.0S	107.15	103.0.1	108.22
78	10S.10	103.58	108.7 71	108.0.4	100.1 ?	104.,30	100.98	109.60	10).S.	110.02
70	110.20	110.33	110.50	110.71	110.1):	111.10	111.28	111.10	111.0 .1	111.82
-80	- 112.00	-112.1s	-112.30	- 112.5 .4	-112.7 ${ }^{\text {a }}$	- 112.00	-113.0,	-11.3.20	-113.11	-113.02
81	11.3.80	11,3.0.3	11.4 .10	11.4.3.4	$114.5{ }^{\circ}$	11.4 .70	114.88	115.00	115.2 .1	115.42
S:	11.6.60	115.75	115.00	110.1 .4	110,32	110.50	110.68	116.50	117.0 .4	117.22
§:	117.10	117.58	117.70	117.19 .1	118.12	18s,jo	118.45	188.00	118.8 .4	111.0 :
8.1	110.20	110.35	110.50	110.7 .1	110.92	120.10	120.2s	120.16	120.04	120.8:
-85	-121.00	-121.18	121.30	-121.5.1	-121.7 ${ }^{\circ}$	-121.00	- 122.05	-122.20	-1.32.4.	-122.62
80	123.80	122.0゙	12i.10	123.3.4	$1 \therefore 3.52$	123.70	1 23.58	124.00	12.1 .21	12.4.4:
87	121.10	$12.4-85$	12.1 .00	125.1 .4	1:5.,32	12.5 .50	125.05	125.50	120.0 .1	126,22
88	$12(1.10$	120.54	120.70	120.0 .1	127.12	127.30	127.15	127.00	12 m ¢.t	$12 \mathrm{S.O}$
80	$12 \mathrm{~S}, 20$	$12 \mathrm{~S} .3{ }^{\circ}$	$12 \mathrm{~S}, 50$	128.71	128.0	120.10	120.2S	$120 . .10$	120.0 .4	120.82
-90	-1.30.00	-1,30.15	-1,30.30	$-1,30.54$	$-1,30.7 \div$	-1,30.00	-1,31.08	$-1,31.20$	$-1.31 .44$	-131.62
	.0	. 1	. 2	. 3	.4	. 5	. 6	.7	.8	. 9

Table 4.
CENTiGRADE SCALE TO FAHRENHEIT - Near the Boiling Point.

Centigrade.	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	.9
100°	$\begin{gathered} \text { F. } \\ 212^{\circ} \mathrm{OO} \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.18 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212^{\circ} .36 \end{gathered}$	$\begin{gathered} F \\ 212^{\circ} .54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212^{\circ} .72 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212^{\circ} .90 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213^{\circ} .08 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213_{0}^{\circ} 26 \end{gathered}$	$\begin{gathered} F \\ 213^{\circ} .44 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 213^{\circ} .62 \end{gathered}$
99	210.20	210.38	210.56	210.74	210.92	211.10	211.28	211.46	211.64	211.82
98	208.40	208.58	208.76	208.94	209. 12	209.30	209.4S	209.66	209.84	210.02
97	206.60	206.78	206.96	207.14	207.32	207.50	207.68	207. 86	208.04	205.22
96	204.So	204.9S	205.10	205.34	205.52	205.70	205.8S	206.06	206.24	206.42
95	203.00	203.18	203.36	203.54	203.72	203.90	204.08	204.26	204.44	204.62
94	201.20	201.3S	201.56	201.74	201.92	202.10	2 O 2.2 S	202.46	202.64	202.82
93	199.40	199.58	199.76	199.94	200. 12	200.30	200.48	200.66	200.84	201.02
92	197.60	197.78	197.96	198.14	198.32	19S.50	I 98.68	19S.86	199.04	199.22
91	195.80	195.98	196.16	196.34	196.52	196.70	$196.8 S$	197.06	197.24	197.42
90	194.00	194.18	194.36	194.54	194.72	194.90	195.08	195.26	195.44	195.62

TABLE 5.
DIFFERENCES FAHRENHEIT TO DIFFERENCES CENTIGRADE.

Fahrenheit.	. 0	.1	. 2	.3	. 4	. 5	. 6	.7	. 8	. 9
	C.	c.	C.		C.	C.	C.	c.	C.	
0°	0.00	0.06	$0_{0}^{0} \text { I I }$	0.17	$0^{0.22}$	0.28	0.33	0.39	$0.4 .1$	0.50
I	0.56	0.61	0.67	0.72	0.78	0.83	0. 89	0.94	1.00	1.06
2	I. I 1	1.17	1.22	1.28	1.33	1.39	1.44	1.50	1. 56	$1.6{ }^{-}$
3	1.67	1.72	1.78	1.83	1.89	1.94	2.00	2.06	2. 11	2. 77
4	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72
5	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.29
6	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83
7	3.59	3.94	4.00	4.06	4.11	4.17	4.22	4.28	4.33	4.39
8	4.44	4.50	4.56	4.61	4.67	4.72	4.78	4.83	4.89	4.94
9	5.00	5.06	5.11	5.17	5.22	5.28	5.33	5.39	5.44	5.50
10	$5 \cdot 56$	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
11	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
12	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7. I I	7.17
13	7.22	7.28	7.33	7.39	7.44	7.50	7.56	7.61	7.67	7.72
14	7.78	7.83	7.89	7.94	8.00	8.06	8.11	8.17	8.22	S.28
15	8.33	8.39	8.44	S. 50	8.56	S.61	8.67	8.72	8.78	8.83
16	8.89	8.94	9.00	9.06	9.11	9.17	9.22	9.28	9.33	9.39
17	9.44	9.50	9.56	9.61	9.67	9.72	9.75	9.83	9.59	9.94
18	10.00	10.06	10.11	10.17	10.22	10.28	10.33	10.39	10.44	10.50
19	10. 56	10.61	10.67	10.72	10.73	10.83	10.89	10.94	I 1.00	11.06
20	II.II	11.17	11.22	I1. 28	11.33	I I .39	11.44	11.50	11.56	11.61

TABLE 6.
DIFFERENCES CENTIGRADE TO DIFFERENCES FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0°	$\begin{gathered} \text { F. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.18 \end{gathered}$	$\begin{gathered} F . \\ 0.36 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0^{\circ} \cdot 72 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.90 \end{gathered}$	$\begin{aligned} & \text { F. } \\ & 1.08 \end{aligned}$	$\begin{gathered} \text { F. } \\ 1.26 \end{gathered}$	$\begin{aligned} & F . \\ & \therefore \div 44 \end{aligned}$	$\begin{gathered} F . \\ 1.62 \end{gathered}$
1	1.So	1.98	2.16	2.34	2.52	2.70	2.88	3.06	3.24	3.42
2	3.60	3.78	3.96	4.14	4.32	4.50	4.68	4.86	5.04	5.22
3	5.40	5.58	5.76	5.94	6.12	6.30	6.48	6.66	6.84	7.02
4	7.20	7.38	7.56	7.74	7.92	8. 10	8.28	8.46	8.64	8.82
5	9.00	9. 18	9.36	9.54	9.72	9.90	10.08	10.26	10.44	10.62
6	10.80	10.98	11.16	11.34	11.52	11.70	11.88	12.06	12.24	12.42
7	12.60	12.78	12.96	13.14	13.32	13.50	13.68	13.86	14.04	14.22
8	14.40	14.58	14.76	14.94	15.12	15.30	15.48	± 5.66	15.84	16.02
9	16.20	16.38	16.56	16.74	16.92	17.10	17.28	17.46	17.64	17.82

Smitmoonian Tables.

CORRECTION FOR THE TEMPERATURE OF THE EMERGENT MERCURIAL COLUMN OF THERMOMETERS.

$T=t-0.000086 n\left(t^{\prime}-t\right)-$ Fahrenheit temperatures.
$T=t-0.000155 n\left(t^{\prime}-t\right)$ - Centigrade temperatures.
$T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem and emergent mercury column.
$n=$ Length of mercury in the emergent stem in scale degrees.
When t^{\prime} is $\left\{\frac{\text { higher }}{\text { lower }}\right\}$ than t the numerical correction is to be $\left\{\frac{\text { subtracted. }}{a d d e d .}\right\}$

Table 7.
CORRECTION FOR FAHRENHEIT THERMOMETERS.
Values of $0.000086 n\left(t^{\prime}-t\right)$

n	$t^{\prime}-t$									
	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
F.	F.	F.	F.	F.	F.	F.	F.	F.	F.	F.
10°	0.01	0.02	0.03	0.03	$00^{\circ} 4$	0.05	0.06	0.07	0.08	0.09
20	0.02	0.03	0.05	0.07	0.09	0.10	0.12	0.14	0.15	0.17
30	0.03	0.05	0.08	0.10	0.13	0.15	0.18	0.21	0.23	0.26
40	0.03	0.07	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34
50	0.04	0.09	0.13	0.17	0.22	0.26	0.30	0.34	0.39	0.43
60	0.05	0.10	0.15	0.21	0.26	0.31	0.36	0.41	0.46	0.52
70	0.06	0.12	0.18	0.24	0.30	0.36	0.42	0.48	0.54	0.60
80	0.07	0.14	0.21	0.28	0.34	0.41	0.48	0.55	0.62	0.69 .
90	0.08	0.15	0.23	0.31	0.39	0.46	0.54	0.62	0.70	0.77
100	0.09	-. 17	0.26	0.34	0.43	0.52	0.60	0.69	0.77	0.86
110	0.09	0.19	0.28	0.38	0.47	0.57	0.66	0.76	0.85	0.95
120	0.10	0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03
130	0.11	0.22	0.34	0.45	0.56	0.67	0.78	0.90	1.01	I.12

table 8.

CORRECTION FOR CENTIGRADE THERMOMETERS.

Values of $0.000155 n\left(t^{\prime}-t\right)$

n	$t^{\prime}-t$							
	10°	20°	30°	40°	50°	60°	70°	80°
c. 10°	C. 0.02	C. 0.03	C.	C. 0.06	c. 0.08	c. 0.09	$\begin{gathered} \text { C. } \\ 0.1 \mathrm{II} \end{gathered}$	$\begin{gathered} C . \\ 0.12 \end{gathered}$
10° 20	0.02 0.03	0.03 0.06	0.05	0.06 0.12	0.08 0.16	$\begin{aligned} & 0.09 \\ & 0.10 \end{aligned}$		0.12 0.25
30	0.05	0.09	O. 14	0.19	0.23	0.28	0.33	0.37
40	0.06	0.12	-. 19	0.25	0.31	0.37	0.43	0.50
50	0.08	0.16	0.23	0.31	0.39	0.46	0.54	0.62
60	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74
70	0.11	0.22	0.33	0.43	0.54	0.65	0.76	0.87
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99
90	0.14	0.28	0.42	0.56	0.70	0.84	0.98	t.12
100	0.16	0.31	0.46	0.62	0.78	0.93	r. 08	1.24

SMITHSONIAN TABLES.

CONVERSIONS INVOLVING LINEAR MEASURES.

Inches into millimeters TAble 9
Millimeters into inches Table io
Barometric inches into millibars Table II
Barometric millimeters into millibars TABLE 12
Feet into meters TAble I3
Meters into feet TABLE 14
Miles into kilometers Table 15
Kilometers into miles Table 16
Interconversion of nautical and statute miles Table 17Continental measures of length with their metric and EnglishequivalentsTable 18

Table 9.
INCHES INTO MILLIMETERS.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	11111.	mm.	mim.	mm .	mm.	mm.	mm .	mm .	11171.	mi
0.00	0.00	0.25	0.51	0.76	. 02	1.27	1.52	1.78	2.03	2.29
0.10	2.54	2.79	3.05	3.30	3.56	3.8 r	4.06	4.32	4.57	4.83
0.20	5.08	5.33	5.59	5.84	6.10	6.35	6.60	6.86	7.11	7.37
0.30	7.62	7.57	S.I3	8.38	8.64	8.89	9.14	9.40	9.65	9.95
0.40	10.16	10.41	10.67	10.92	11.18	II. 43	11.68	11.94	12.19	12.45
0.50	12.70	12.95	13.21	13.46	13.72	13.97	14.22	14.48	14.73	I4.99
0.60	15.24	15.49	15.75	16.00	16.26	16.51	16.76	17.02	I 7.27	17.53
0.70	17.78	18.03	I8.29	IS. 54	I8.So	19.05	19.30	19.56	19.81	20.07
0.80	20.32	20.57	20.83	21.08	21.34	21.59	21.84	22.10	22.35	22.61
0.90	22.56	23.11	23.37	23.62	23.85	24.13	24.38	24.64	24.89	25.15
1.00	25.40	25.65	25.91	26.16	26.42	26.67	26.92	27.18	27.43	27.69
1.10	27.94	2 S .19	2 S .45	28.70	28.96	29.21	29.46	29.72	29.97	30.23
1.20	30.48	30.73	30.99	31.24	31.50	31.75	32.00	32.26	32.51	32.77
1.30	33.02	33.27	33.53	33.78	34.04	34.29	34.54	34.80	35.05	35.31
1.40	35.56	35.8 r	36.07	36.32	36.58	36.83	37.08	37.34	37.59	37.85
1.50	38.10	38.35	3 3.6I	38.86	39.12	39.37	39.62	39.88	40.13	40.39
1.60	40.64	40.59	41.15	41.40	41.66	41.91	42.16	42.42	42.67	42.93
1.70	43.18	43.43	43.69	43.94	44.20	44.45	44.70	44.96	45.21	45.47
r.So	45.72	45.97	46.23	46.48	46.74	46.99	47.24	47.50	47.75	48.01
1.90	48.26	48.5 I	48.77	49.02	49.2 S	49.53	49.78	50.04	50.29	50.55
2.00	50.80	51.05	51.31	51.56	51.82	52.07	52.32	52.58	52.83	53.09
2.10	53.34	53.59	53.85	54.10	54.36	54.61	54.86	55.12	55.37	55.63
2.20	55.38	56.13	56.39	56.64	56.90	57.15	57.40	57.66	57.91	58.17
2.30	58.42	58.67	58.93	59.18	59.44	59.69	59.94	60.20	60.45	60.75
2.40	60.96	6 I .2 I	61.47	61.72	6 F .98	62.23	62.48	62.74	62.99	63.25
2.50	63.50	63.75	64.01	64.26	64.52	64.77	65.02	65.28	65.53	65.79
2.60	66.04	66.29	66.55	66.80	67.06	67.31	67.56	67.82	68.07	68.33
2.70	68.55	65.83	69.09	69.34	69.60	69.85	70.10	70.36	70.61	70.87
2.So	7 I .12	71.37	71.63	71.88	72.14	72.39	72.64	72.90	73.15	73.41
2.90	73.66	73.9 I	74.17	74.42	74.68	74.93	75.18	75.44	75.69	75.95
3.00	76.20	76.45	76.71	76.96	77.22	77.47	77.72	77.98	78.23	78.49
3.10	78.74	78.99	79.25	79.50	79.76	So.OI	8 O .26	So. 52	So. 77	SI. 03
3.20	8 8 .28	81.53	SI. 79	S2.04	82.30	82.55	S2.So	83.06	83.31	S3.57
3.30	S3. 82	84.07	S.4.33	84.59	S4.84	85.09	S5.34	85.60	S5.85	86.11
3.40	86.36	S6.6 I	86.87	87.12	87.38	87.63	87.88	SS.14	88.39	88.65
3.50	88.90	89.15	89.4I	S9.66	89.92	90.17	90.42	90.68	90.93	91.19
3.60	91.44	91.69	91.95	92.20	92.46	92.71	92.96	93.22	93.47	93.73
3.70	93.98	94.23	94.49	94.74	95.00	95.25	95.50	95.76	96.01	96.27
3.80	96.52	96.77	97.03	97.28	97.54	97.79	95.04	95.30	9 9.55	98.81
3.90	99.06	99.3 I	99.57	99.82	100.08	100.33	100.58	100.84	101.09	101. 35
4.00	IOI. 60	101.85	102.11	IO2.36	102.62	102.87	103.12	103.38	103.63	103.89
4.10	104.14	104.39	104.65	104.90	105.16	105.41	105.66	105.92	106.17	106.43
4.20	106.68	106.93	107.19	107.44	107.70	107.95	108.20	108.46	108.71	108.97
4.30	109.22	109.47	109.73	109.98	110.24	110.49	110.74	111.00	II 1.25	111.51
4.40	III. 76	I I 2.01	I 12.27	I 12.52	112.78	113.03	113.28	II 3.54	113.79	114.05
4.50	I 14.30	I I 4.55	114.81	II5.06	115.32	115.57	115.82	116.08	116.33	116.59
4.60	I 16.54	117.09	117.35	117.60	117.86	118.11	118.36	118.62	IIS.87	119.13
4.70	$119.3{ }^{\text {S }}$	119.63	119.89	120.14	120.40	120.65	120.90	121.16	121.41	121.67
4.8o	121.92	122.17	122.43	122.68	122.94	123.19	123.44	123.70	123.95	124.21
4.90	124.46	124.71	124.97	125.22	125.48	125.73	125.98	126.24	126.49	126.75
5.00	127.00	127.25	127.51	127.76	128.02	128.27	128.52	128.78	129.03	129.29
Proportional Parts		Inch. mm .	0.001	0.002	0.0030	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	50.0	0.007	0.008	0.009
			0.051	0.076	0.152		0.178	0.203	. 229	

Table 9.

INCHES INTO MILLIMETERS.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mn	m.	$1 \mathrm{mm}$.	mm.	m	mm.	1.	n.	.	mm.
5.00	127.00	127.25	127.51	127.76	128.02	128.27	128.52	12S.78	129.03	129.29
5.10	129.54	129.79	130.05	130.30	I 30.56	130.81	131.06	131.32	131.57	131.83
5.20	132.08	132.33	I32.59	132.84	133. 10	133.35	133.60	133.86	134. 11	134.37
5.30	$13+62$	134.57	-35.13	135.38	135.64	I 35.89	136.14	136.40	136.65	136.91
5.40	137.16	I 37.41	I 37.67	137.92	138.18	138.43	138.68	I3S.94	139.19	I 39.45
5.50	139.70	139.95	140.21	140.46	140.72	140.97	141.22	141.48	141.73	141.99
5.60	142.24	142.49	142.75	143.00	143.26	143.5I	143.76	I44.02	144.27	144.53
5.70	144.78	145.03	145.29	145.54	145.80	146.05	146.30	146.56	146.81	147.07
5.80	147.32	147.57	147.83	148.05	148.34	148.59	148.84	149.10	I 49.35	I49.6I
5.90	I 49.86	150.11	150.37	150.62	150.88	151.13	151.38	151.64	151.89	152.15
6.00	152.40	I52.66	I52.91	153.16	153.42	153.67	153.92	I54.18	154.43	154.69
6.10	154.94	155.19	155.45	155.70	155.96	I56.21	156.46	156.72	156.97	157.23
6.20	157.48	157.73	157.99	158.24	158.50	158.75	159.00	159.26	159.5 I	159.77
6.30	160.02	160.27	160.53	160.75	161.04	161.29	161.54	161.80	162.05	162.31
6.40	162.56	162.81	163.07	163.32	163.58	163.83	164.08	164.34	164.59	164.85
6.50	165.10	165.35	165.61	165.86	166. 12	166.37	166.62	166.88	167.13	167.39
6.60	167.64	167.89	168.15	168.40	168.66	165.91	169.16	169.42	169.67	169.93
6.70	170.18	170.43	170.69	170.94	171.20	171.45	171.70	171.96	172.21	172.47
6.80	172.72	172.97	173.23	173.48	173.74	173.99	174.24	174.50	174.75	175.01
6.90	175.26	175.51	175.77	176.02	176.28	176.53	175.78	177.04	177.29	177.55
7.00	177.80	178.05	178.31	${ }_{17} 8.56$	178.82	179.07	179.32	179.5S	179.83	ISo.09
7.10	180.34	ISo. 59	ISo. 85	ISI.10	ISI. 36	ISI.6I	ISI. 86	IS2.12	152.37	182.63
7.20	182.58	183.13	183.39	183.64	183.90	IS4. 15	IS4.40	IS4.66	IS4.91	185.17
7.30	IS5.42	IS5.67	185.93	IS6. IS	IS6.44	IS6.69	IS6.94	187.20	1S7.45	157.71
7.40	187.96	ISS. 21	I 88.47	IS8.72	I88.98	IS9.23	IS9.48	IS9.74	IS9.99	190.25
7.50	190.50	190.75	191.01	191.26	191.52	191.77	192.02	192.28	192.53	192.79
7.60	193.04	193.29	193.55	193.80	194.06	194.3I	194.56	194.82	195.07	195.33
7.70	195.5 S	195.83	195.09	196.34	196.60	196.85	197.10	197.36	197.61	197.87
7.80	19S. 12	198.37	198.63	19S. 18 $^{\text {S }}$	199.14	199.39	199.64	199.90	200.15	200.41
7.90	200.66	200.91	201.17	201. i 2	201.68	201.93	202.18	202.44	202.69	202.95
8.00	203.20	203.45	203.71	203.96	204.22	204.47	204.72	204.98	205.23	205.49
S.10	205.74	205.99	206.25	206.50	206.76	207.01	207.26	207.52	207.77	208.03
S. 20	205.28	205.53	208.79	209.04	209.30	209.55	209. ${ }^{2}$	210.06	210.31	210.57
S. 30	210.82	211.07	211.33	211.58	2II.S4	212.09	212.34	212.60	212.85	213.11
S. 40	213.36	213.61	213.87	214.12	214.38	214.63	214.88	215.14	215.39	215.65
8.50	215.90	216.15	216.41	216.66	216.92	217.17	217.42	217.68	217.93	2IS. 19
8.60	218.44	218.69	218.95	219.20	219.46	219.71	219.96	220.22	220.47	220.73
8.70	220.95	221.23	221.49	221.74	222.00	222.25	222.50	222.76	223.01	223.27
S.So	22352	223.77	224.03	22.4 .28	224.54	224.79	225.04	225.30	225.55	225. I I
8.90	226.06	226.3 I	226.57	$226 . \mathrm{S}^{2}$	227.08	227.33	227.58	227.84	228.09	228.35
9.00	228.60	228.85	229.11	229.36	229.62	229.87	230.12	$=3 \cap .38$	230.63	230.89
9.10	231.14	231.39	231.65	231.90	232.16	232.41	232.66	232.92	233.17	233.43
9.20	233.68	233.93	234.19	234.44	234.70	234.95	235.20	235.46	235.71	235.97
9.30	236.22	236.47	236.73	236.98	237.24	237.49	237.74	235.00	238.25	23 S. 51
9.40	238.76	239.01	239.27	239.52	239.78	240.03	240.28	240.54	240.79	241.05
9.50	241.30	241.55	241.81	242.06	2.42 .32	242.57	242.82	2.3 .08	243.33	243.59
9.60	243.54	244.09	$24+35$	244.60	2.44 .86	245. 11	245.36	245.62	245.87	246.13
9.70	246.38	246.63	246.89	247.14	2.47 .40	247.65	247.90	248.16	248.41	2.48 .67
9.80	248.92	249.17	$2+9.43$	249.68	249.94	250.19	250.44	250.70	250.95	251.21
9.90	251.46	251.71	251.97	252.22	252.48	252.73	252.98	253.24	253.49	253.75
10.00	254.00	254.25	254.5I	254.76	255.02	255.27	255.52	255.78	256.03	256.29
Proporlional Parts		s. Inch mm .	. 0.001	0.002	0.0030	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	0.006	0.007	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		. 0.025	0.051	0.076	0.152		0.178	0.203		

Smithsonian Tableg.
I inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.									
10.00	254.00	254.25	254.5	254.76	255.02	255.27	255.52	255.78	256.03	256.29
10.10	256.54	256.79	257.05	257.30	257.56	257.81	258.06	258.32	258.57	258.83
10.20	259.08	259.33	259.59	259.84	260. 10	260.35	260.60	260.86	261.11	261.37
10.30	261. 62	261.87	262.1	262.38	262.64	262.89	263.14	263.40	263.65	263.91
10.40	264.16	264.41	264.6	264.92	265.18	265.43	265.68	265.94	266.19	266.45
10.50	266.70	266.95	267.21	267.46	267.72	267.97	268.22	268.48	268.73	268.99
10.60	269.24	269.49	269.75	270.00	270.26	270.51	270.76	271.02	271.27	271.53
10.70	271.78	272.03	272.29	272.54	272.80	273.05	273.30	273.56	273.81	274.07
10.80	274.32	274.57	274.93	275.08	275.34	275.59	275.84	276.10	276.35	276.61
10.90	276.86	277.11	$277 \cdot 37$	277.62	277.88	278.13	278.38	278.64	278.89	279.15
11.00	279.40	279.65	279.91	280.16	280.42	280.67	280.92	281.18	281.43	281. 69
I 1. 10	281.94	282.19	282.45	282.70	282.96	283.21	283.46	283.72	283.97	284.23
11.20	284.48	284.73	284.99	285.24	285.50	285.75	286.00	286.26	286.51	286.77
I 1.30	287.02	287.27	287.53	287.78	288.04	288.29	288.54	288.80	289.05	289.31
I1.40	289.56	289.81	290.07	290.32	290.58	290.83	291.08	291.34	291.59	291.85
11.50	292. 10	292.35	292.61	292.86	293. I2	293.37	293.62	293.88	294. 13	294.39
11.60	294.64	294.89	295.15	295.40	295.66	295.91	296.16	296.42	296.67	296.93
11.70	297. IS	297.43	297.69	297.94	298.20	298.45	298.70	298.96	299.21	299.47
11.80	299.72	299.97	300.23	300.48	300.74	300.99	301.24	301.50	301.75	302.01
11.90	302.26	302.51	302.77	303.02	303.28	303.53	303.78	304.04	304.29	304.55
12.00	304.So	305.05	305.31	305.56	305.82	306.07	306.32	306.58	306.83	307.09
12.10	307.34	307.59	307.85	308.10	308.36	308.6I	308.86	309. 12	309.37	309.63
12.20	309.88	310. 13	310.39	310.64	310.90	3II.I5	311.40	311.66	3II.9I	312.17
12.30	312.42	312.67	312.93	313.18	313.44	313.69	313.94	314.20	314.45	314.71
12.40	314.96	315.21	315.47	315.72	315.98	316.23	316.48	316.74	316.99	317.25
12.50	317.50	317.75	318.01	$3 \mathrm{IS}$.	318.52	$3 \mathrm{IS.77}$	319.02	319.28	319.53	319.79
12.60	320.04	320.29	320.55	320.80	321.06	321.31	321.56	321.82	322.07	322.33
12.70	322.58	322.83	323.09	323.34	323.60	323.85	324. 10	324.36	324.61	324.87
12.80	325. 12	325.37	325.63	325.88	326. 14	326.39	326.64	326.90	327.15	327.41
12.90	327.66	327.91	328.17	32 S .42	328.68	328.93	329.18	329.44	329.69	329.95
13.00	330.20	330.45	330.71	330.96	331.22	33 I .47	331.72	331.98	332.23	332.49
13.10	332.74	332.99	333.25	333.50	333.76	334.01	334.26	334.52	334.77	335.03
13.20	335.28	335.53	335.79	336.04	336.30	336.55	336.8o	337.06	337.31	337.57
13.30	337.82	335.07	338.33	338.58	338.84	339.09	339.34	339.60	339.85	340. I I
13.40	340.36	340.6I	340.87	341.12	34 I .38	341.63	34 I .88	342.14	342.39	342.65
13.50	342.90	343. 5	343.4 I	343.66	343.92	344. 17	344.42	344.68	344.93	345.19
13.60	345.44	345.69	345.95	346.20	346.46	346.71	346.96	347.22	347.47	347.73
13.70	347.98	348.23	348.49	348.74	349.00	349.25	349.50	349.76	350.01	350.27
13.80	350.52	350.77	351.03	351.28	351.54	351.79	352.04	352.30	352.55	352.81
13.90	353.06	353.3I	353.57	353.82	354.08	354.33	354.58	354. 84	355.09	355.35
14.00	355.60	355.85	356. 11	356.36	356.62	356.87	357.12	357.38	357.63	357. 99
14.10	358. 14	358.39	358.65	358.90	359.16	359.41	359.66	359.92	360.17	360.43
14.20	360.68	360.93	361.19	361.44	361.70	361.95	362.20	362.46	362.71	362.97
14.30	363.22	363.47	363.73	363.98	364.24	364.49	364.74	365.00	365.25	365.51
14.40	365.76	366.01	366.27	366.52	366.78	367.03	367.28	367.54	367.79	368.05
14.50	368.30	368.55	368.8I	369.06	369.32	369.57	369.82	370.08	370.33	370.59
14.60	370.84	371.09	371.35	371.60	371.86	372.11	372.36	372.62	372.87	373.13
14.70	373.38	373.63	373.89	374.14	374.40	374.65	374.90	375.16	375.41	375.67
14.80	375.92	376.17	. 376.43	376.68	376.94	377.19	377.44	377.70	377.95	378.21
14.90	378.46	378.7 I	378.97	379.22	379.48	379.73	379.98	380.24	3So. 49	380.75
15.00	38 I .00	38 r .25	$3^{81} .51$	381.76	382.02	382.27	382.52	382.78	383.03	383.29
Proportional Parts		Inch mm .	. 0.001	0.002	$0.003 \quad 0$.	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	0.007	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		. 0.025	0.051	0.076 0.	0.178			0.203		

1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	min.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	min.
15.00	381.00	381.25	3 SI. 51	3 SI .76	3 S 2.02	3 S2.27	382.52	382.78	383.03	383.29
15.10	${ }_{3}$ S3.54	383.79	384.05	3 S 4.30	384.56	3 S4.SI	385.06	385.32	385.57	385.83
15.20	3 S6.08	386.33	386.59	386.84	387.10	387.35	387.60	387.86	3SS.II	388.37
15.30	3 SS.62	385.87	389.13	389.38	389.64	389.S9	390. 14	390.40	390.65	390.91
15.40	391.16	391.4I	391.67	391.92	392. IS	392.43	392.68	392.94	393.19	393.45
15.50	393.70	393.95	394.21	394.46	394.72	394.97	395.22	395.4 S	395.73	395.99
15.60	396.24	39.649	396.75	397.00	397.26	397.51	397.76	$39 \mathrm{S.02}$	398.27	398.53
15.70	$39 \mathrm{S.7S}$	399.03	399.29	399.54	399.80	400.05	400.30	400.56	400. 11	401.07
15.80	401.32	401.57	401.83	402.05	402.34	402.59	402.84	403.10	403.35	403.61
15.90	403.86	404. 11	404.37	404.62	404.88	405.13	405.38	405.64	405.89	406.15
16.00	406.40	406.65	406.91	407.16	407.52	407.67	407.92	408.18	$40 S .43$	408.69
16.10	408.94	409.19	409.45	409.70	409.96	410.21	410.46	410.72	410.97	411.23
16.20	411.48	411.73	4II. 99	412.24	412.50	412.75	413.00	413.26	413.51	413.77
16.30	414.02	414.27	414.53	414.78	415.04	415.29	415.54	415.80	416.05	416.31
16.40	416.56	416.SI	417.07	417.32	417.58	417.83	4IS.0S	41 S .34	418.59	4IS. 85
16.50	419.10	419.35	419.61	419.86	420.12	420.37	420.62	420.88	421.13	421.39
16.60	421.64	42 I. 99	422.15	422.40	422.66	422.91	423.16	423.42	423.67	423.93
16.70	424.18	424.43	424.69	424.94	425.20	425.45	425.70	425.96	426.21	426.47
16.80	426.72	426.97	427.23	427.48	427.74	427.99	428.24	428.50	428.75	429.01
16.90	429.26	429.51	429.77	430.02	430.28	430.53	430.78	431.04	431.29	431.55
17.00	43 I .80	432.05	432.31	432.56	$432 . \mathrm{S}_{2}$	433.07	433.32	433.55	433.53	434.09
17.10	434.34	434.59	434.85	435.10	435.36	435.61	435.86	436.12	436.37	436.63
17.20	436.88	437.13	437.39	437.64	437.90	438.15	438.40	438.66	438.91	439.17
17.30	439.42	439.67	439.93	440.18	440.44	440.69	440.94	441.20	44 I .45	441.71
17.40	441.96	442.2 I	442.47	442.72	442.98	443.23	443.48	443.74	443.99	444.25
17.50	444.50	444.75	445.01	445.26	445.52	445.77	446.02	446.28	446.53	446.79
17.60	447.04	447.29	447.55	447.80	44 S .06	448.31	448.56	448.82	449.07	449.33
17.70	449.58	$449 . S_{3}$	450.09	450.34	450.60	450.85	451.10	451.36	45 I .61	451.87
17.80	452.12	452.37	452.63	$452 . \mathrm{SS}$	453. 14	453.39	453.64	453.90	454.15	454.41
17.90	454.66	454.91	455.17	455.42	455.68	455.93	456.18	456.44	456.69	456.95
18.00	457.20	457.45	457.71	457.96	458.22	45 S .47	45S. 72	45 S .98	459.23	459.49
18.10	459.74	459.99	460.25	460.50	460.76	461.01	461. 26	461.52	461.77	462.03
IS. 20	462.28	462.53	462.79	463.04	463.30	463.55	463. So	464.06	464.31	464.57
18.30	464.82	465.07	465.33	465.58	465.84	466.09	466.34	466.60	466.85	467.11
18.40	467.36	467.6I	467.87	468. 12	468.38	468.63	468.88	469.14	469.39	469.35
18.50	469.90	470. 15	470.41	470.66	470.92	471.17	471.42	471.68	471.93	472.19
18.60	472.44	472.69	472.95	473.20	473.46	473.71	473.96	474.22	474.47	474.73
IS.70	474.98	475.23	475.49	475.74	476.00	476.25	476.50	476.76	477.01	477.27
18.8o	477.52	477.77	478.03	478.28	47 S .54	478.79	479.04	479.30	479.55	479.8I
18.90	480.06	4So. 3 I	480.57	480.82	4 Si .0 S	48 I .33	4SI. 58	481.84	482.09	482.35
19.00	482.60	4S2.85	483.1I	483.36	483.62	483.87	484.12	484.38	484.63	484. 99
19.10	485.14	485.39	4 S 5.65	485.90	486.16	4S6.41	486.66	486.92	487.17	487.43
19.20	487.68	487.93	488.19	488.44	$48 S .70$	4SS. 95	489.20	489.46	489.71	489.97
19.30	490.22	490.47	490.73	490.98	491.24	491.49	491.74	492.00	492.25	492.51
19.40	492.76	493.01	493.27	493.52	493.75	494.03	494.28	494.54	494.79	495.05
19.50	495.30		495.8I	496.06	496.32	496.57	496.82	497.0S	497.33	497.59
19.60	497.84	498.09	498.35	498.60	498.86	499.11	499.36	499.62	499.87	500.13
19.70	500.38	500.34	500.89	501.14	501.40	501.65	501.91	502.16	502.41	502.67
19.80	502.92	503.1S	503.43	503.68	503.94	504.19	504.45	504.70	504.95	505.21
19.90	505.46	505.72	505.97	506.22	506.48	506.73	506.99	507.24	507.49	507.75
20.00	50S.00	508.26	508.51	508.76	509.02	509.27	509.53	509.7S	510.03	510.29
Proportional Parts.			h. 0.001	0.002	0.0030	40.005		0.007	0.008	0.009
			. 0.025	0.051	0.076	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	0. 152	0.178	0.203	0.009 0.229

I inch $=25.40005 \mathrm{~mm}$.

Inches	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.									
20.00	508.00	508.26	508.51	508.76	509.02	509.27	509.53	509.78	510.03	510.29
20.10	510.54	510.80	511.05	5 II. 30	511.56	5II.SI	512.07	512.32	512.57	512.83
20.20	513.08	513.34	513.59	513.84	514.10	514.35	514.6I	514.86	515.11	515.37
20.30	515.62	5 15.88	516.13	516.38	516.64	516.89	517.15	517.40	517.65	517.91
20.40	518.16	518.42	5 I 8.67	518.92	519.1S	519.43	519.69	519.94	520.19	520.45
20.50	520.70	520.96	52 I .21	521.46	52 I .72	52 I .97	522.23	522.48	522.73	522.99
20.60	523.24	523.50	523.75	524.00	524.26	524.5 I	524.77	525.02	525.27	525.53
20.70	525.78	526.04	526.29	526.54	526.80	526.95	527.31	527.56	527.8I	528.07
20.So	528.32	$52 \mathrm{S.5}$	$52 \mathrm{S}. 8_{3}$	529.08	529.34	529.59	529.85	530.10	530.35	530.6I
20.90	530.86	53 I .12	531.37	531.62	$53 \mathrm{I} . \mathrm{SS}$	532.13	532.39	532.64	532.89	533.15
21.00	533.40	533.66	533.91	534.16	534.42	534.67	534.93	535.18	535.43	535.69
2 I. 10	535.94	536.20	536.45	536.70	536.96	537.21	537.47	537.72	537.98	538.23
2 I .20	53 S .48	538.74	538.99	539.24	539.50	539.75	540.01	540.26	540.51	540.77
2 I .30	54 t .02	541.28	541.53	541.7S	542.04	542.29	542.55	542.So	543.05	543.31
21.40	543.56	543.82	544.07	544.32	544.5S	544.83	545.09	545.34	545.59	545.85
21.50	546. Io	546.36	546.6I	546.86	547. I2	547.37	547.63	547.88	548.13	548.39
21.60	548.64	548.90	549. 15	549.40	549.66	549.91	550.17	550.42	550.67	550.93
21.70	551.18	551. 44	551.69	551.94	552.20	552.45	552.7 I	552.96	553.2 1	553.47
$2 \mathrm{I} . \mathrm{So}^{\circ}$	553.72	553.98	554.23	554.48	554.74	554.99	555.25	555.50	555.75	556.01
21.90	556.26	556.52	556.77	557.02	557.28	557.53	557.79	55S.04	558.29	558.55
22.00	558. So	559.06	559.31	559.56	559.82	560.07	560.03	560.58	560.83	561.09
22.10	56 I .34	561.60	561. 5^{5}	562.10	562.36	562.61	562.87	563.12	563.37	563.63
22.20	563.88	564.14	564.39	564.64	564.90	565. I5	565.41	565.66	565.91	566.17
22.30	566.42	566.68	566.93	567.1S	567.44	567.69	567.95	568.20	568.45	568.71
22.40	568.96	569.22	569.47	569.72	569.98	570.23	570.49	570.74	570.99	571.25
22.50	57 I .50	571.76	572.01	572.26	572.52	572.77	573.03	573.2 S	573.53	573.79
22.60	574.04	574.30	574.55	574.80	575.06	575.31	575.57	575.82	576.07	576.33
22.70	576.58	576.S4	577.09	577.34	577.60	577.95	57S. I I	578.36	578.61	578.87
22.80	579.12	579.38	579.63	579.88	5So.14	580.39	5So. 65	580.90	5SI.15	58 I .41
22.90	581.66	5 SI .92	5S2.17	582.42	582.68	582.93	5S3.19	58.3 .44	$55_{3} .69$	583.95
23.00	58.420	584.46	584.71	584.96	585.22	585.47	585.73	585.98	586.23	586.49
23.10	586.74	587.00	587.25	587.50	587.76	5SS.OI	588.27	588.52	588.77	589.03
23.20	5 Sg .28	589.54	589.79	590.04	590.30	590.55	590. I I	591.06	591.3I	591.57
23.30	591.82	592.0S	592.33	592.58	592.84	593.09	593.35	593.60	593.85	594.11
23.40	594.36	594.62	594.87	595.12	595.38	595.63	595.89	596.14	596.39	596.65
23.50	596.90	597.16	597.41	597.66	597.92	598. 17	598.43	598.68	598.93	599.19
23.60	599.44	599.70	599.95	600.20	600.46	600.71	600.97	601.22	601.47	601.73
23.70	601.98	602.24	602.49	602.74	603.00	603.25	603.5 I	603.76	604.01	604.27
23.80	604.52	60.4.78	605.03	605.28	605.54	605.79	606.05	606.30	606.55	606.81
23.90	607.06	607.32	607.57	607.82	608.0S	605.33	608.59	608.84	609.09	609.35
24.00	609.60	609.86	610. I I	6Io. 36	6io. 62	610.87	6ir.13	6Ir. 3 S	6ir. 63	6Ir. 89
24.10	612. 14	612.40	6I2.65	612.90	613.16	613.41	613.67	613.92	6r4. 17	614.43
24.20	614.68	614.94	615.19	615.44	615.70	615.95	616.21	616.46	616.71	616.97
24.30	617.22	617.48	617.73	617.95	6rS. 24	615.49	618.75	619.00	619.25	619.51
24.40	619.76	620.02	620.27	620.52	620.78	621.03	621.29	621.54	621.79	622.05
24.50	622.30	622.56	622.8I	623.06	623.32	623.57	623.83	624.08	624.33	624.59
24.60	624.54	625 IO	625.35	625.60	625.86	626. I I	626.37	626.62	626.87	627.13
24.70	627.38	627.54	627.89	62S.I4	628.40	628.65	628.91	629.16	629.41	629.67
24.80	629.92	630.18	630.43	630.68	630.94	631.19	631.45	631.70	631.95	632.21
24.90	632.46	632.12	632.97	633.22	633.48	633.73	633.99	634.24	634.49	634.75
25.00	635.00	635.26	635.51	635.76	636.02	636.27	636.53	636.78	637.03	637.29
Proportional Parts		Inchmm .	. 0.001	0.002	$03 \quad 0.004$		0.006	0.007	0.008	0.009
		. 0.025	0.051	0.076		0.152	0.178	0.203	0.229	

INCHES INTO MILLIMETERS.
I inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	.01	. 02	. 03	. 04	. 05	. 06	07	. 03	09
	mm .	mm.							mim.	mm.
25.00	635.00	635.26	635.51	635.76	636.02	636.27	636.53	636.78	637.03	637.29
25.10	637.54	637.80	635.05	635.30	63 S. 56	638.81	639.07	639.32	639.57	639.83
25.20	6.40 .08	640.34	640.59	6.40 .84	$6+1.10$	$6+1.35$	641.61	641.86	642.11	642.37
25.30	642.62	642.85	643.13	643.38	643.64	643.59	644. 15	644.40	644.65	$6+4.91$
25.40	$6+5.16$	645.42	645.67	$6+5.92$	646.1S	6.46 .43	6.46 .69	6.46 .94	647.19	647.45
25.50	647.70	647.96	648.21	648.46	6.48 .72	6.48 .97	649.23	6.49 .48	649.73	649.99
25.60	650.24	650.50	650.75	651.00	651.26	651.51	651.77	65\%.02	654.27	652.53
25.70	652.78	653.04	653.29	653.54	653.80	654.05	654.31	654.56	654.81	655.07
25.80	655.32	655.5^{S}	655. S3	656.08	656.34	656.59	656.85	657.10	$657 \cdot 35$	657.61
25.90	657.86	65 S. 12	658.37	658.62	658.85	659.13	659.39	659.64	659.89	660.15
26.00	660.40	660.66	660.91	661.16	661.42	661.67	661.93	662.18	662.43	662.69
26.10	662.94	663.20	663.45		663.96	664.21	664.47	664.72	664.97	665.23
26.20	665.48	665.74	665.99	666.24	666.50	666.75	667.01	667.26	667.51	667.77
26.30	668.02	66S.2S	665.53	668.78	669.04	669.29	669.55	669.80	670.05	670.31
26.40	670.56	670.82	671.07	671.32	671.55	$671 . S_{3}$	672.09	672.34	672.59	672.85
26.50	673.10	673.36	673.61	673.86	674.12	674.37	674.63	674.88	675.13	675-39
26.60	675.64	675.90	676.15	676.40	676.66	676.91	677.17	677.42	677.67	677.93
26.70	678.18	678.44	678.69	678.94	679.20	679.45	679.71	679.96	680.21	680.47
26.50	650.72	680.98	681.23	68 I .48	681.74	6SI. 99	682.25	682.50	682.75	683.01
26.90	683.26	683.52	$65_{3.77}$	684.02	684.28	684.53	684.79	685.04	685.29	685.55
27.00	655.80	686.06	686.31	686.56	686.82	687.07	687.33	687.58	687.83	688.09
27.10	655.34	688.60	688.55	689.10	689.36	689.6I	689.87	690.12	690.37	690.63
27.20	690.88	691.14	691.39	691.64	691.90	692.15	692.41	692.66	692.91	693.17
27.30	693.42	693.68	693.93	694. 18	694.44	694.69	694.95	695.20	695.45	695.71
27.40	695.96	696.22	696.47	696.72	696.98	697.23	697.49	697.74	697.99	698.25
27.50	698.50	698.76	699.01	699.26	699.52	699.77	700.03	700.28	700.53	700.79
27.60	701.04	701.30	701.55	701. So	702.06	702.31	702.57	702.82	703.07	703.33
27.70	703.58	703. 44	704.09	704.34	704.60	704.S5	705.11	705.36	705.61	705. ${ }^{\text {S }}$
27.80	706.12	706.38	706.63	706.SS	707.14	707.39	707.65	707.90	70S.15	708.41
27.90	708.66	708.92	709.17	709.42	709.68	709.93	710.19	710.44	710.69	710.95
28.00	711.20	711.46	711.71	711.96	712.22	712.47	712.73	712.98	713.23	713.49
28.10	713.74	714.00	714.25	714.50	714.76	715.01	715.27	715.52	715.77	716.03
28.20	716.28	716.54	716.79	717.04	717.30	717.55	717.81	$718 . c 6$	718.31	715.57
28.30	718.82	719.08	719.33	719.58	719.84	720.09	720.35	720.60	720.85	721.11
28.40	721.36	721.62	721.57	722.12	722.39	722.63	722.59	723.14	723.39	723.65
28.50	72.3 .90	724.16	724.41	72.66	724.92	725.17	725.43	725.68	725.93	726.19
28.60	726.44	726.70	726.95	727.20	727.46	727.71	727.97	$72 \mathrm{S.22}$	728.47	72 S .73
28.70	72 T .98	729.24	729.49	729.74	730.00	730.25	730.51	730.76	731.01	731.27
28.80	731.52	731.78	732.03	732.2 S	732.54	732.79	733.05	733.30	733.55	733.81
28.90	734.06	734.32	734.57	734.82	735.08	735.33	735.59	735.54	736.09	736.35
29.00	736.60	736.86	737.11	737.36	737.62	737.87	73S.13	738.3 S	738.63	738.89
29.10	739.14	739.40	739.65	739.90	740.16	740.41	740.67	740.92	741.17	741.43
29.20	$7+1.68$	741.94	742.19	742.44	742.70	742.95	743.21	743.46	743.71	743.97
29.30	744.22	744.48	744.73	744.98	745.24	745.49	745.75	746.00	746.25	746.51
29.40	746.76	747.02	747.27	747.52	747.78	74 S .03	74S.29	748.54	748.79	749.05
29.50	749.30	749.56	749. I $^{\text {I }}$	750.06	750.32	750.57	750.83	751.08	751.33	751.59
29.60	751.84	752.10	752.35	752.60	752.56	753.11	$753 \cdot 37$	753.62	753.87	754.13
29.70	754.38	754.64	754.S9	755.14	755.40	755.65	755.91	756.16	756.41	756.67
29.80	756.92	757.18	757.43	757.68	757.94	75 S .19	75 S.45	758.70	758.95	759.21
29.90	759.46	759.72	759.97	760.22	760.48	760.73	760.99	761.24	761.49	761.75
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29

INCHES INTO MILLIMETERS.

1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	.01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm .	mm .	mm.
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29
30.10	764.54	764.80	765.05	765.30	765.56	765.81	766.07	766.32	766.57	766.83
30.20	767.08	767.34	767.59	767.84	768.10	768.35	768.61	768.86	769.11	769.37
30.30	769.62	769.88	770.13	770.38	770.64	770.89	771.15	771.40	771.65	771.91
30.40	772.16	772.42	772.67	772.92	773.18	773.43	773.69	773.94	774.19	774.45
30.50	774.70	774.96	775.21	775.46	775.72	775.97	776.23	776.48	776.73	776.99
30.60	777.24	777.50	777.75	778.00	778.26	778.51	778.77	779.02	779.27	779.53
. 30.70	779.78	780.04	780.29	78.54	$7 \mathrm{So} . \mathrm{So}$	781.05	781.31	78 I .56	78 I . SI	782.07
30.80	782.32	782.58	782.83	783.08	783.34	783.59	783.85	784.10	78.4.35	78.61
30.90	784.86	785.12	785.37	785.62	785.88	786.13	786.39	786.64	786.89	787.15
31.00	787.40	787.66	787.91	788.16	788.42	788.67	788.93	789.18	789.43	789.69
31.10	789.94	790.20	790.45	790.70	790.96	791.21	791.47	791.72	791.97	792.23
31.20	792.48	792.74	792.99	793.24	793.50	793.75	794.01	794.26	794.5I	794.77
31.30	795.02	795.28	795.53	795.78	796.04	796.29	796.55	796.8o	797.05	797.31
31.40	797.56	797.82	798.07	798.32	798.58	798.83	799.09	799.34	799.59	799.85
31.50	800.10	800.36	800.61	Soo. 86	SoI.12	Sor. 37	Sor. 63	Sot.SS	So2.13	S02.39
31.60	So2.64	So2.90	803.15	So3.40	803.66	So3.91	So4. 17	So4.42	S04.67	So4.93
31.70	So5.18	So5.44	805.69	805.94	806.20	So6.45	806.71	So6.96	807.21	So7.47
31.80	So7. 72	So7.98	SoS. 23	So8.48	808.74	So8.99	Sog. 25	Sog. 50	Sog. 75	8io.01
31.90	Sio. 26	SIO. 5^{2}	810.77	$\mathrm{Sin}_{6} 02$	SII. 28	SII. 53	81r. 79	SI2.04	SI2.29	SI2.55
32.00	812.80									
Proportional Parts.		Inch	. 0.001	0.002	0.0030.076	$\begin{array}{ll} 4 & 0.005 \\ 2 & 0.127 \end{array}$	$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.178 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.203 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		0.025	0.051							

8mithbonian Tableg

MILLIMETERS INTO INCHES.
I mm. $=0.03937$ inch.

Table 10.
MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Iuches.	nches.	Inches.	Inches.
400	15.745	15.752	15.756	15.760	I 5.764	15.768	15.772	15.776	15.779	15.783
401	15.787	15.791	15.795	15.799	15.803	15.807	$15 . S 11$	15.815	15.819	15.823
402	15.827	15.831	15.835	15.839	15.842	I5.846	15.550	15.854	$15.85{ }^{\text {S }}$	15.862
403	I 5.866	15.870	15.874	15.578	15.882	15.886	15.590	15.594	15.898	15.902
404	15.905	15.909	15.913	15.917	15.921	I5.925	15.929	15.933	15.937	15.94I
405	15.945	15.949	15.953	15.957	15.961	15.965	15.968	15.972	15.976	15.980
406	15.984	15.985	15.992	15.996	16.000	16.004	16.008	16.012	16.016	16.020
407	16.024	16.028	16.031	16.035	16.039	16.043	16.047	16.051	16.055	-6.059
408	16.063	16.067	16.071	16.075	16.079	16.083	16.087	16.091	16.094	16.098
409	16.102	16.106	16.110	16.114	16.1IS	16.122	16.126	16.130	16.134	16.138
410	I6.142	16.146	16.150	16. 154	16.157	16.16I	16.165	16.169	16. 173	16.177
411	16.181	16.185	16.189	16.193	16.197	16.201	16.205	16.209	16.213	16.217
412	16.220	16.224	16.228	16.232	16.236	16.240	I6.244	16.248	16.252	16.256
413	16.260	16.264	16.268	16.272	16.276	16.279	16.283	16.287	16.291	16.295
414	16.299	16.303	16.307	16.311	16.315	16.319	16.323	16.327	I6.33I	16.335
415	16.339	16.342	16.346	I6.350	16.354	16.358	16.362	16.366	16.370	16.374
416	16.378	16.382	16.386	16.390	16.394	10. 398	16.402	16.405	16.409	16.413
417	16.417	16.42 I	16.425	16.429	16.433	16.437	16.441	16.445	16.449	16.453
418	16.457	16.46 I	16.465	16.468	16.472	16.476	16.4So	16.484	16.4SS	16.492
419	16.496	16.500	16.504	16.508	16.512	16.516	16.520	16.524	$16.52 S$	16.53I
420	16.535	16.539	16.543	16.547	If. 55 I	16.555	16.559	16.563	I6.567	16.571
42 I	16.575	16.579	16.583	16.587	16.591	16.594	16.598	16.602	16.606	16.610
422	16.614	16.618	16.622	16.626	16.630	16.634	16.638	16.642	16.646	16.650
423	I6.654	16.657	I6.661	16.665	16.669	16.673	16.677	16.68 I	16.685	16.689
424	16.693	16.697	16.701	16.705	16.709	16.713	16.717	16.720	16.724	16.72 S
425	16.732	16.736	16.740	16.744	16.748	16.752	16.756	16.760	16.764	16.768
426	16.772	16.776	16.779	16.783	16.787	16.791	16.795	16.799	16.503	16.807
427	16.81 I	16.815	16.819	16.523	16.527	16.53 I	16. ${ }^{\text {c }} 3.85$	16.539	16.842	16.846
428	16.850	16.854	16.858	16.862	16.566	16.570	16.874	16.575	16.SS2	16.856
429	16.590	16.894	16.898	16.902	16.905	16.909	16.913	16.917	16.921	16.925
430	16.929	16.933	16.937	16.94 I	16.945	16.949	16.953	16.957	16.96I	16.965
431	16.968	16.972	16.976	16.980	16.984	16.988	16.992	16.996	17.000	17.004
432	17.008	17.012	17.016	17.020	17.024	17.028	17.031	17.035	17.039	17.043
433	17.047	17.051	17.055	17.059	17.063	17.067	17.071	17.075	17.079	17.083
434	17.087	17.091	17.094	17.098	17.102	17.106	17.110	17.114	17.118	17.122
435	17.126	17.130	17.134	17.13S	17.142	17.146	17.150	17.154	17.157	17.161
436	17.165	17.169	17.173	:7.177	17.1SI	17.185	17.189	17.193	17.197	17.201
437	17.205	17.209	17.213	17.217	17.220	17.224	17.22 S	17.232	17.236	17.240
438	17.244	17.248	17.252	17.256	17.260	17.264	17.268	17.272	17.276	17.279
439	17.283	17.287	17.291	17.295	17.299	17.303	17.307	17.3 II	17.315	17.319
440	17.323	17.327	17.331	17.335	17.339	17.342	17.346	17.350	17.354	17.358
441	17.362	17.366	17.370	17.374	17.378	17.3 S2	17.386	17.390	17.394	17.398
44^{2}	17.402	17.405	17.409	17.413	17.417	17.42 I	17.425	17.429	17.433	17.437
443	17.44 I	17.445	17.449	17.453	17.457	17.46I	17.465	17.468	17.472	17.476
444	17.480	17.484	17.458	17.492	17.496	17.500	17.504	17.508	17.512	17.516
445	17.520	17.524	17.528	17.531	17.535	17.539	17.543	17.547	17.551	17.555
446	17.559	17.563	17.567	17.571	17.575	I7.579	17.583	17.587	17.591	17.594
447	17.598	17.602	17.606	17.610	17.614	17.618	17.622	17.626	17.630	17.634
448	17.6 .38	17.642	17.646	I7.650	17.654	17.657	17.661	17.665	17.669	I 7.673
449	17.677	17.68I	17.685	17.689	17.693	17.697	17.701	17.705	17.709	17.713
450	17.717	17.720	17.724	17.728	17.732	17.736	17.740	17.744	17.748	17.752

Bmititsonian Tables.

MILLIMETERS INTO INCHES.
I mm. $=0.03937$ inch.

Millimeters,	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.									
450	17.717	17.720	17.724	17.728	17.732	17.736	17.740	17.744	17.748	17.752
451	17.756	17.760	17.764	17.768	17.772	17.776	17.779	17.783	17.787	17.791
452	17.795	17.799	17.803	17.807	17.811	17.815	17.819	17.823	17.827	17.83 I
453	17.835	17.839	17.842	17.846	17.850	17.854	17.858	17.862	17.866	17.870
454	17.874	17.878	17.882	17.886	17.890	17.894	17.898	17.902	17.905	17.909
455	17.913	17.917	17.921	17.925	17.929	17.933	17.937	17.941	17.945	17.949
456	17.953	17.957	17.961	17.965	17.968	17.972	17.976	17.980	17.984	17.988
457	17.992	17.996	18.000	18.004	18.008	IS.012	I8.016	18.020	18.024	18.028
458	18.03 I	18.035	18.039	18.043	18.047	IS.051	IS.055	IS.059	18.063	18.067
459	1S.07I	18.075	18.079	18.083	18.087	18.091	18.094	18.098	18.102	18.106
460	IS. 110	18.114	IS. IIS	18.122	IS. 126	IS. 130	18.134	IS. 138	IS. 142	18. 146
461	IS.150	18.154	18.157	18.161	18.165	18.169	18.173	18.177	IS.18I	IS. IS5
462	18.189	18.193	18.197	18.201	18.205	IS.209	IS.213	18.216	18.220	18.224
463	18.228	18.232	18.236	18.240	$18.2+4$	$18.24{ }^{\circ}$	18.252	18.256	IS. 260	IS. 264
464	18.268	18.272	18.276	18.279	18.283	18.287	IS.291	IS. 295	1 S .299	18.303
465	I8.307	18.311	18.315	18.319	18.323	I8.327	IS.33I	18.335	IS. 339	IS. 342
466	18.346	IS. 350	18.354	18.35 S	18.362	I8.366	IS.370	18.374	I 8.378	18.382
467	18.386	18.390	18.394	18.398	18.402	I8.405	IS. 409	18.413	IS.417	18.42 I
468	IS.425	18.429	18.433	18.437	18.44 I	I8.445	18.449	18.453	IS. 457	18.461
469	IS.465	IS.468	18.47^{2}	18.476	18.480	18.484	18.488	18.492	18.496	18.500
470	IS.504	18.508	18.512	18.516	18.520	IS. 524	I8.528	18.53 I	I 8.535	18.539
47 I	IS. 543	18.547	I8.55 1	18.555	18.559	18.563	18.567	18.57 I	18.575	I8.579
472	18.553	18.587	18.591	18.594	18.598	18.602	IS.6u6	18.610	18.614	IS.618
473	18.622	18.626	18.630	18.634	18.63 S	IS.642	I8.646	18.650	I 8.654	I8.657
474	I8.66I	I 8.665	I8.669	18.673	18.677	18.68I	18.685	18.689	18.693	18.697
475	IS. 701	18.705	18.709	18.713	18.716	18.720	IS. 724	18.728	18.732	18.736
476	IS.740	IS. 744	18.748	IS.752	18.756	18.760	18.764	18.768	18.772	I8.776
477	IS.779	18.783	18.787	18.791	I\$. 795	18.799	18.803	18.807	18.81 I	18.815
478	IS.SI9	18.523	18.827	18.83 I	18.835	18.839	I8. 842	18.846	18.850	18.854
479	IS. 855°	18.862	18.866	18.870	18.874	18.878	18.882	18.886	18.890	IS. 994
480	18.898	18.902	18.905	18.909	IS. 913	18.917	18.921	18.925	18.929	18.933
481	18.937	18.941	IS.945	18.949	18.953	I8.957	18.961	18.965	I8.968	18.972
482	18.976	18.980	18.984	18.988	18.992	18.996	19.000	19.004	19.008	19.012
483	19.016	19.020	19.024	19.028	19.03I	19.035	19.039	19.043	19.047	19.051
484	19.055	19.059	19.063	19.067	19.071	19.075	19.079	19.083	19.087	19.09 I
485	19.094	19.098	19.102	19.106	19.110	19.114	19.118	19.122	19.126	19.130
486	19.134	19.138	19.142	19.146	19.150	19. 154	19.157	19.161	19.165	19.169
487	19.173	19.177	19.ISI	19.185	19.159	19. 193	19.197	19.201	19.205	19.209
488	19.213	19.216	19.220	19.224	19.228	19.232	19.236	I9.240	19.244	19.248
489	19.252	19.256	19.260	19.264	19.268	19.272	19.276	I9.279	19.283	19.287
490	19.291	19.295	19.299	19.303	19.307	19.311	19.315	19.319	19.323	19.327
491	19.33 I	19.335	19.339	19.342	19.346	19.350	19.354	19.358	19.362	19.366
492	19.370	19.374	19.378	19.382	19.386	19.390	19.394	19.398	19.402	19.405
493	19.409	19.413	19.417	19.42 I	19.425	19.429	19.433	19.437	19.44I	19.445
494	19.449	19.453	19.457	19.46 I	19.465	19.463	19.472	19.476	19.480	19.484
495	19.488	19.492	19.496	19.500	19.504	19.508	19.512	19.516	19.520	19.524
496	19.528	19.53 I	19.535	19.539	19.543	19.547	19.55 I	19.555	19.559	19.563
497	19.567	19.571	19.575	19.579	19.583	19.587	19.591	19.594	19.598	19.602
498	19.606	19.610	19.614	19.618	19.622	19:626	19.630	19.634	19.638	19.642
499	19.646	19.650	19.654	19.657	19.66I	19.665	19.669	19.673	19.677	19.68I
500	19.685	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720

MILLIMETERS INTO INCHES.

I mm. $=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	8	. 9
	Inches. ${ }^{\text {a }}$	Inches.	Inches.	Inches.						
503	19.655	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720
501	19.724	19.728	19.732	19.736	19.740	19.744	19.748	19.752	19.756	19.760
502	19.764	19.768	19.772	19.776	19.779	19.783	19.787	19.791	19.795	19.799
503	19.803	19.807	19.81 I	19.815	19.819	19.823	19.827	19.831	19.835	19.839
504	19.842	19.846	19.850	19.854	19.858	I9. 862	19.866	19.870	19.874	19.878
505	19.882	19.886	19.890	19.894	$19 . \mathrm{SgS}$	19.902	19.905	19.909	19.913	19.917
506	19.921	19.925	19.929	19.933	19.937	19.941	19.945	19.949	19.953	19.957
507	19.961	19.965	19.968	19.972	19.976	19.980	19.984	19.988	19.992	19.996
508	20.000	20.004	20.008	20.012	20.016	20.025	20.024	20.028	20.031	20.035
509	20.039	20.043	20.047	20.05 I	20.055	20.059	20.063	20.067	20.07 I	20.075
510	20.079	$20.0 S_{3}$	20.087	20.091	20.094	20.098	20.102	20.106	20.110	20.114
511	20.118	20.122	20.126	20.130	20.134	20.138	20.142	20.146	20.150	20.154
512	20.157	20.161	20.165	20.169	20.173	20.177	20.181	20.185	20.189	20.193
513	20.197	20.201	20.205	20.209	20.213	20.216	20.220	20.224	20.228	20.232
5I4	20.236	20.240	20.244	20.248	20.252	20.256	20.260	20.264	20.268	20.272
515	20.276	20.279	20.283	20.287	20.291	20.295	20.299	20.303	20.307	20.311
516	20.315	20.319	20.323	20.327	20.33I	20.335	20.339	20.342	20.346	20.350
517	20.354	20.35 S	20.362	20.366	20.370	20.374	20.378	20.382	20.386	20.390
5 IS	20.394	20.398	20.402	20.405	20.409	20.413	20.417	20.42 I	20.425	20.429
519	20.433	20.437	20.14 I	20.445	20.449	20.453	20.457	20.461	20.465	20.468
520	20.472	20.476	20.480	20.484	20.488	20.492	20.496	20.500	20.504	20.508
52 I	20.512	20.516	20.520	20.524	20.528	20.531	20.535	20.539	20.543	20.547
522	20.551	20.555	20.559	20.563	20.567	20.57 I	20.575	20.579	20.583	20.587
523	20.591	20.594	20.598	20.602	20.606	20.610	20.614	20.618	20.622	20.626
524	20.630	20.634	20.638	20.642	20.646	20.650	20.654	20.657	20.66I	20.665
525	20.669	20.673	20.677	20.68I	20.685	20.689	20.693	20.697	20.701	20.705
526	20.709	20.713	20.716	20.720	20.72 .4	20.72 S	20.732	20.736	20.740	20.744
527	20.748	20.752	20.756	20.760	20.76 .4	20.768	20.772	20.776	20.779	20.783
528	20.787	20.791	20.795	20.799	20.803	20.807	20.SII	$20 . \mathrm{SI} 5$	20.819	20.823
529	20.827	20.831	20.835	20.839	20.S42	20.846	20.850	20.854	20.858	20.862
530	20.866	20.870	20.874	20.S78	20.882	20.886	20.890	20.894	20.898	20.902
531	20.905	20.909	20.913	20.917	20.92 I	20.925	20.929	20.933	20.937	20.941
532	20.945	20.949	20.953	20.957	20.961	20.965	20.968	20.972	20.976	20.980
533	20.984	20.988	20.992	20.996	21.000	21.004	21.008	21.012	21.016	21.020
534	21.024	21.028	21.03I	21.035	21.039	21.043	21.047	21.05 I	21.055	21.059
535	21.063	21.067	21.071	21.075	21.079	$21.0 S_{3}$	21.087	21.091	21.094	21.09S
536	21.102	21. 106	21.110	2I.114	21.118	21.122	21.125	21.130	21.134	21.13S
537	21.142	21.146	21.150	21.154	21.157	21.161	21.165	21.169	21.173	21.177
538	21.ISI	21.185	21.189	21.193	21.197	21.201	21.205	21.209	21.213	21.216
539	21.220	21.224	21.22 S	21.232	21.236	21.240	21.244	21.248	21.252	21.256
540	21.260	21.264	21.268	21.272	21.276	21.279	21.283	21.287	21.291	21.295
541	21.299	21.303	21.307	21.3II	21.315	21.319	21.323	21.327	21.331	21.335
542	21.339	21.342	21.346	21.350	21.354	21.35 S	21.362	21.366	21.370	21.374
543	21.378	21.382	21.386	21.390	21.394	21.398	21.402	21.405	21.409	21.413
544	21.417	2 I .42 I	21.425	21.429	21.433	21.437	21.441	21.445	21.449	21.453
545	21.457	21.461	21.465	21.468	21.472	21.476	21.480	21.484	21.4SS	21.492
546	21.496	21.500	21.504	$21.50 S$	21.512	21.516	21.520	2 I .524	21.52 S	21.531
547	21.535	21.539	21.543	21.547	21.551	2 I .555	21.559	21.563	21.567	21.57 I
548	21.575	2I. 579	21.583	21.587	21.591	21.594	21.598	21.602	21.606	21.610
549	21.614	21.618	21.622	21.626	21.630	21.634	21.638	21.642	21.646	21.650
550	21.654	21.657	21.661	21.665	21.66 y	21.673	21.677	21.68I	21.685	21.689

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. I	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.									
550	21.654	21.657	2I.66I	21.665	21.669	21.673	21.677	21.6SI	21.685	21.6S9
55 I	21.693	21.697	21.701	21.705	21.709	21.713	21.716	21.720	21.724	21.72S
552	21.732	21.736	21.740	21.744	21.748	21.752	21.756	21.760	21.764	21.768
553	21.772	21.776	21.779	21.783	21.787	21.791	21.795	21.799	$21 . \mathrm{SO}_{3}$	21. 807
554	$21 . S I I$	21.SI5	21.SI9	21.823	21.S27	21.83 I	21.835	21.839	2 I. S42	21.846
555	21.850	21.854	21. S $_{5} \mathrm{~S}$	21. 662	21. 866	21.870	21.874	21.S7S	21.SS2	21. 886
556	21.890	21.894	21.898	21.902	21.905	21.909	21.913	21.917	2I.92I	21.925
557	21.929	21.933	21.937	21.941	21.945	21.949	21.953	21.957	21.961	21.965
558	21.968	21.972	21.976	21.980	21.984	21.988	21.992	21.996	22.000	22.004
559	$22.00 S$	22.012	22.016	22.020	22.024	$22.02 S$	22.031	22.035	22.039	22.043
560	22.047	22.051	22.055	22.059	22.063	22.067	22.071	22.075	22.079	22.083
561	22.087	22.091	22.094	22.098	22.102	22.106	22.110	22.114	22.11S	22.122
562	22.126	22.130	22.134	22.138	22.142	22.146	22.150	22.153	22.157	22.161
563	22.165	22.169	22.173	22.177	22.1SI	22.185	22.189	22.193	22.197	22.201
564	22.205	22.209	22.213	22.216	22.220	22.224	22.22 S	22.232	22.236	22.240
565	22.244	22.248	22.252	22.256	22.260	22.264	$22.26 S$	22.272	22.276	22.279
566	22.283	22.287	22.291	22.295	22.299	22.303	22307	22.311	22.315	22.319
567	22.323	22.327	22.33 I	22.335	22.339	22.342	22.346	22.350	22.354	22.358
568	22.362	22.366	22.370	22.374	22.375	22.3 S2	22.386	22.390	22.394	22.398
569	22.402	22.405	22.409	22.413	22.417	22.42 I	22.425	22.429	22.433	22.437
570	22.44 I	22.145	22.449	22.453	22.457	22.46 I	22.465	22.468	22.472	22.476
571	22.480	22.484	22.488	22.492	22.496	22.500	22.504	22.508	22.512	22.516
572	22.520	22.524	22.528	22.53 I	22.535	22.539	22.543	22.547	22.55 I	22.555
573	22.559	22.563	22.567	22.571	22.575	22.579	22.583	22.587	22.591	22.594
574	22.598	22.602	22.606	22.610	22.614	22.61 S	22.622	22.626	22.630	22.634
575	22.638	22.642	22.646	22.650	22.653	22.657	22.66 I	22.665	22.669	22.673
576	22.677	22.681	22.685	22.689	22.693	22.697	22.701	22.705	22.709	22.713
577	22.716	22.720	22.724	22.728	22.732	22.736	22.740	22.744	22.748	22.752
578	22.756	22.760	22.764	22.768	22.772	22.776	22.779	22.783	22.787	22.791
579	22.795	22.799	$22 . \mathrm{So3}$	22.507	22.SII	22.815	22.519	22.823	22.827	22.83 I
580	22.835	22.839	22.842	22.846	22.850	22.854	$22 . \mathrm{S} 5 \mathrm{~S}$	22.862	22.866	22.870
5 SI	22.874	22.87S	22.882	22.8S6	22.890	22.894	22.898	22.902	22.905	22.909
582	22.913	22.917	22.921	22.925	22.929	22.933	22.937	22.941	22.945	22.949
583	22.953	22.957	22.96 I	22.965	22.968	22.972	22.976	22.980	22.984	22.988
584	22.992	22.996	23.000	23.004	$23.00 S$	23.012	23.016	23.020	23.024	23.028
585	23.03 I	23.035	23.039	23.043	23.047	23.05 I	23.055	23.059	23.063	23.067
586	23.071	23.075	23.079	23.083	23.087	23.091	23.094	23.09S	23.102	23.106
5 S 7	23.110	23.114	23.1IS	23.122	23.126	23.130	23.134	23.13S	23.142	23.146
5 5S	23.150	23.153	23.157	23.161	23.165	23.169	23.173	23.177	23.181	23.185
5 S 9	23.189	23.193	23.197	23.201	23.205	23.209	23.213	23.216	23.220	23.224
590	23.228	23.232	23.236	23.240	23.244	23.248	23.252	23.256	23.260	23.264
591	23.268	23.272	23.276	23.279	23.2 S 3	23.287	23.291	23.295	23.299	23.303
592	23.307	23.311	23.315	23.319	23.323	23.327	23.331	23.335	23.339	$23 \cdot 342$
593	23.346	23.350	23.354	23.358	23.362	23.366	23.370	23.374	23.375	23.382
594	23.356	23.390	23.394	23.398	23.402	23.405	23.409	23.413	23.417	23.421
595	23.425	23.429	23.433	23.437	23.441	23.445	23.449	23.453	23.457	23.461
596	23.465	23.468	23.472	23.476	23.480	23.48.4	23.488	23.492	23.496	23.500
597	23.504	23.508	23.512	23.516	23.520	23.524	23.52 S	23.531	23.535	23.539
598	23.543	23.547	23.551	23.555	23.559	23.563	23.567	23.571	23.575	23.579
599	23.5 S 3	23.587	23.591	23.594	23.59 S	23.602	23.606	23.610	23.614	23.618
600	23.622	23.626	23.630	23.634	23.638	23.642	23.646	23.650	23.653	23.657

table 10.
MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937 \mathrm{inch}$.

Millimeters	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.									
600	23.622	23.626	23.630	23.634	23.638	23.642	23.646	23.650	23.653	23.657
601	23.661	23.665	23.669	23.673	23.677	23.68I	23.685	23.689	23.693	23.697
602	23.701	23.705	23.709	23.713	23.716	23.720	23.724	23.728	23.732	23.736
603	23.740	23.744	23.748	23.752	23.756	23.760	23.764	23.768	23.772	23.776
604	23.759	23.783	23.787	23.791	23.795	23.799	23.803	23.807	23.81 I	23.815
605	23.819	23.823	23.827	23.831	23.835	23.839	23.842	23.846	23.850	23.854
606	23.858	23.862	23.866	23.870	23.874	23.878	23.882	23.886	23.890	23.894
607	23.898	23.902	23.905	23.909	23.913	23.917	23.921	23.925	23.929	23.933
608	23.937	23.94 I	23.945	23.949	23.953	23.957	23.961	23.965	23.968	23.972
609	23.976	23.9 So	23.984	23.988	23.992	23.996	24.000	24.004	24.008	24.012
610	24.016	24.020	24.024	24.028	24.031	24.035	24.039	24.043	24.047	24.051
6 II	24.055	24.059	24.063	24.067	24.071	24.075	24.079	24.083	24.087	24.091
612	24.094	24.098	24.102	24.106	24. I IO	24.114	24.118	24.122	24.126	24.130
613	24. 134	24.138	24.142	24.146	24.150	24. 153	24.157	24.16I	24.165	24.169
614	24.173	24.177	24.18I	24.185	24.189	24. 193	24.197	24.201	24.205	24.209
615	24.213	24.216	24.220	24.224	24.22 S	24.232	24.236	24.240	24.244	24.248
616	24.252	24.256	24.260	24.264	24.268	24.272	24.276	24.279	24.283	24.287
617	24.291	24.295	24.299	24.303	24.307	24.311	24.315	24.319	24.323	24.327
618	24.33 I	24.335	24.339	24.342	24.346	24.350	24.354	24.358	24.362	24.366
619	24.370	24.374	24.37 S	24.382	24.386	24.390	24.394	24.398	24.402	24.405
620	24.409	24.413	24.417	24.421	24.425	24.429	24.433	24.437	24.44 I	24.445
621	24.449	24.453	24.457	24.461	24.465	24.46 S	24.472	24.476	24.480	24.484
622	24.488	2.4.492	24.496	24.500	24.504	24.508	24.512	24.516	24.520	24.524
623	24.528	24.531	24.535	24.539	24.543	24.547	24.55 I	24.555	24.559	24.563
624	24.567	24.57I	24.575	24.579	24.583	24.587	24.591	24.594	24.598	24.602
625	24.606	24.610	24.614	24.6IS	24.622	24.626	24.630	24.634	24.638	24.642
626	24.646	24.650	24.653	24.657	24.66 I	24.665	24.669	24.673	24.677	24.681
627	24.685	24.689	24.693	24.697	24.701	24.705	24.709	24.713	24.716	24.720
623	24.724	24.72 S	24.732	24.736	24.740	24.744	24.748	24.752	24.756	24.760
629	24.764	24.768	24.772	24.776	24.779	24.783	24.787	24.791	24.795	24.799
630	24.803	24.807	24.8 II	24.815	24.819	24.823	24.827	24.831	24.835	24.839
631	24.842	24.846	24.850	24.854	24.858	24.862	24.866	24.570	24.874	24.878
632	24.882	24.886	24.890	24.894	24.898	24.902	24.905	24.909	24.913	24.917
633	24.92 I	24.925	24.929	24.933	24.937	24.94 I	24.945	24.949	24.953	24.957
634	24.96 I	24.965	24.968	24.972	24.976	24.980	24.984	24.988	24.992	24.996
635	25.000	25.004	25.008	25.012	25.016	25.020	25.024	25.028	25.031	25.035
636	25.039	25.043	25.047	25.051	25.055	25.059	25.063	25.067	25.071	25.075
637	25.079	25.083	25.087	25.091	25.094	25.09S	25.102	25. 106	25.110	25.1I4
638	25.1IS	25.122	25.126	25.130	25. I 34	25.13S	25.142	25.146	25.150	25.153
639	25.157	25.161	25.165	25.169	25.173	25.177	25.181	25.185	25. IS9	25.193
640	25.197	25.201	25.205	25.209	25.213	25.216	25.220	25.224	25.228	25.232
641	25.236	25.240	25.244	25.24 S	25.252	25.256	25.260	25.264	25.268	25.272
6.42	25.276	25.279	25.253	25.257	25.29 I	25.295	25.299	25.303	25.307	25.3II
$6+3$	25.315	25.319	25.323	25.327	25.33 I	25.335	25.339	25.342	25.346	25.350
644	25.354	25.358	25.362	25.366	25.370	$25 \cdot 374$	25.37 S	25.3 S2	25.386	25.390
645	25.394	25.398	25.402	25.405	25.409	25.413	25.417	25.42 I	25.425	25.429
646	25.433	25.437	25.441	25.445	25.449	25.453	25.457	25.461	25.465	25.468
$6 .+7$	25.472	25.476	25.4 So	25.484	25.488	25.492	25.496	25.500	25.504	25.508
648	25.512	25.516	25.520	25.524	25.52 S	25.53 I	25.535	25.539	25.543	25.547
649	25.55 I	25.555	25.559	25.563	25.567	25.571	25.575	25.579	$25.5{ }^{\text {S }} 3$	25.587
650	25.591	25.594	25.598	25.602	25.606	25.610	25.614	25.618	25.622	25.626

8minhsoniam Tables.

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

$\begin{gathered} \text { Milli- } \\ \text { meters. } \end{gathered}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.									
650	25.59 I	25.594	25.598	25.602	25.606	25.610	25.614	25.618	25.622	25.626
651	25.630	25.634	25.638	25.642	25.646	25.650	25.653	25.657	25.661	25.665
652	25.669	25.673	25.677	25.681	25.685	25.689	25.693	25.697	25.701	25.705
653	25.709	25.713	25.716	25.720	25.724	25.728	25.732	25.736	25.740	25.744
654	25.748	25.752	25.756	25.760	25.764	25.768	25.772	25.776	25.779	25.783
655	25.787	25.791	25.795	25.799	25.803	25.807	25.SII	25.815	25.819	25.823
656	25.827	25.83 I	25.835	25.839	25.842	25.846	25.850	25.554	25.858	25.862
657	25.866	25.870	25.874	25.878	25.882	25.886	25.890	25.894	25.898	25.902
658	25.905	25.909	25.913	25.917	25.92 I	25.925	25.929	25.933	25.937	25.94 I
659	25.945	25.949	25.953	25.957	25.96I	25.965	25.968	25.972	25.976	25.980
660	25.984	25.988	25.992	25.996	26.000	26.004	26.008	26.012	26.016	26.020
661	26.024	26.028	26.03 I	26.035	26.039	26.043	26.047	26.051	26.055	26.059
662	26.063	26.067	26.071	26.075	26.079	26.083	26.087	26.090	26.094	26.098
663	26. 102	26.106	26.1 Io	26.114	26.118	26.122	26.126	26.130	26.134	26.13S
664	26.142	26.146	26. 150	26.153	26.157	26.161	26.165	26.169	26.173	26.177
665	26.18I	26.185	26. IS9	26.193	26.197	26.201	26.205	26.209	26.213	26.216
666	26.220	26.224	26.228	26.232	26.236	26.240	26.244	26.248	26.252	26.256
667	26.260	26.264	26.268	26.272	26.276	26.279	26.283	26.287	26.291	26.295
668	26.299	26.303	26.307	26.3 I I	26.315	26.319	26.323	26.327	26.33 I	26.335
669	26.339	26.342	26.346	26.350	26.354	26.358	26.362	26.366	26.370	26.374
670	26.378	26.382	26.386	26.390	26.394	26.398	26.402	26.405	26.409	26.413
671	26.417	26.421	26.425	26.429	26.433	26.437	26.44 I	25.445	26.449	26.453
672	26.457	26.461	26.465	26.468	26.472	26.476	26.4So	26.484	26.485	26.492
673	26.496	26.500	26.504	26.508	26.512	26.516	26.520	26.524	26.528	26.53 I
674	26.535	26.539	26.543	26.547	26.55 I	26.555	26.559	26.563	26.567	26.571
675	26.575	26.579	26.583	26.587	26.590	26.594	26.598	26.602	26.606	26.610
676	26.614	26.618	26.622	26.626	26.630	26.634	26.63 S	26.642	26.646	26.650
677	26.653	26.657	26.66 I	26.665	26.669	26.673	26.677	26.68I	26.685	26.689
678	26.693	26.697	26.701	26.705	26.709	26.713	26.716	26.720	26.724	26.728
679	26.732	26.736	26.740	26.744	26.748	26.752	26.756	26.760	26.764	26.768
680	26.772	26.776	26.779	26.783	26.787	26.791	26.795	26799	26.803	26.507
681	26.SII	26.815	26.819	26.823	26.827	26.83 I	26.835	26.838	26.842	26.846
682	26.850	26.554	26.858	26.862	26.866	26.870	26.574	26.578	26.882	26.886
683	26.890	26.594	26.598	26.902	26.905	26.909	26.913	26.917	26.921	26.925
684	26.929	26.933	26.937	26.941	26.945	26.949	26.953	26.957	26.961	26.965
685	26.968	26.972	26.976	26.98o	26.984	26.988	26.992	26.996	27.000	27.004
686	27.008	27.012	27.016	27.020	27.024	27.028	27.031	27.035	27.039	27.043
687	27.047	27.051	27.055	27.059	27.063	27.067	27.071	27.075	27.079	27.083
688	27.087	27.090	27.094	27.098	27.102	27.106	27.110	27.114	27.118	27.122
689	27.126	27.130	27.134	27.138	27.142	27.146	27.150	27.153	27.157	27.16I
690	27.165	27.169	27.173	27.177	27.18I	27.185	27.189	27.193	27.197	27.201
691	27.205	27.209	27.213	27.216	27.220	27.224	27.22 S	27.232	27.236	27.240
692	27.244	27.248	27.252	27.256	27.260	27.264	27.268	27.272	27.276	27.279
693	27.283	27.287	27.29 I	27.295	27.299	27.303	27.307	27.311	27.315	27.319
694	27.323	27.327	27.33 I	27.335	27.339	27.342	27.346	27.350	27.354	$27.35{ }^{\text {S }}$
695	27.362	27.366	27.370	27.374	27.378	27.382	27.386	27.390	27.394	27.39S
696	27.402	27.405	27.409	27.413	27.417	27.421	27.425	27.429	27.433	27.437
697	27.44 I	27.445	27.449	27.453	27.457	27.461	27.465	27.468	27.472	27.476
698	27.480	27.484	27.488	27.492	27.496	27.500	27.504	27.508	27.512	27.516
699	27.520	27.524	27.52 S	27.531	27.535	27.539	27.543	27.547	27.551	27.555
700	27.559	27.563	27.567	27.571	27.575	27.579	27.583	27.587	27.590	27.594

Bmitmsonian Tables.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	4	. 5	. 6	. 7	. 8	. 9
	Inches.									
700	27.559	27.563	27.567	27.571	27.575	27.579	27.583	27.587	27.590	27.594
7 I	27.598	27.602	27.606	27.610	27.614	27.618	27.622	27.626	27.630	27.634
702	27.63 S	27.642	27.646	27.650	27.653	27.657	27.661	27.665	27.669	27.673
703	27.677	27.6SI	27.685	27.689	27.693	27.697	27.701	27.705	27.709	27.713
704	27.716	27.720	27.724	27.728	27.732	27.736	27.740	27.744	27.748	27.752
705	27.756	27.760	27.764	27.768	27.772	27.776	27.779	27.783	27.787	27.791
706	27.795	27.799	27.503	27.507	27.SII	27.815	27.819	27.823	27.827	27.831
707	27.835	27.839	27.842	27.846	27.850	27.554	27.858	27.562	27.566	27. 270
708	27.874	27.875	27.882	27.886	27.890	27.894	27.898	27.902	27.905	27.309
709	27.913	27.917	27.921	27.925	27.929	27.933	27.937	27.941	27.945	27.949
710	27.953	27.957	27.961	27.965	27.968	27.972	27.976	27.9So	27.984	27.988
7 II	27.992	27.996	2S.000	2 S .004	25.008	28.012	28.016	2 S .020	28.024	28.028
712	$2 \mathrm{S.O} 3 \mathrm{I}$	$2 S .035$	$2 \mathrm{S.039}$	28.043	$2 S .047$	2S.051	2 S .055	23.059	2 S .063	$2 \mathrm{S.067}$
713	28.07 I	$2 \mathrm{S.075}$	28.079	2 S .083	28.087	28.090	2 S .094	2S.09S	2 S .102	2S.106
714	2S. 110	2S. 114	2S.IIS	2 S .122	2S.126	28.130	2S. 134	$2 \mathrm{S.138}$	2S.142	2S. 146
715	28.150	28. 153	2S. 157	2S.161	2 S. 165	2S.169	2S. 173	2S.177	2S. ISI	2S. IS 5
716	28. IS9	2S. 193	2S.197	28.201	$2 \mathrm{S}$.	2 S .209	2 S .213	2 S .216	28.220	2 S .224
717	2 S .22 S	28.232	28.236	28.240	28.244	2 S .248	$2 \mathrm{S}$.	$2 \mathrm{S}$.	$2 S .260$	2 S .264
715	2 S .26 S	$2 \mathrm{S}$.	$2 \mathrm{S}$.	2 2S.279	$2 \mathrm{S.2S3}$	$2 \mathrm{S}$.	$2 \mathrm{S.291}$	2S. 295	28.299	2 S .303
719	28.307	2 S .31 I	$2 \mathrm{S}$.	2 S .319	28.323	28.327	$2 \mathrm{S.33I}$	2S.335	2 S .339	28.342
720	28.346	2 S. 350	2 2S. 354	2 S .358	28.362	2S. 366	2 S .370	2 S .374	2 S .37 S	2.3 .382
721	28.386	2 S .390	2S. 39.4	2 S .39 S	2 S .402	2 S .405	2 S .409	2 S .413	2 S .417	28.421
722	28.425	2 S .429	2 S .433	28.437	2S.441	2 S .445	2S. 449	2 S .453	28.457	2 S .461
723	28.465	28.465	2 S .472	2 S .476	2S.4So	2 S .484	28.488	2 S .492	2 S .496	2S. 500
724	$2 \mathrm{S}$.	28.508	$2 \mathrm{S}$.	2S.516	2 S .520	2 S .52 .4	2 S .52 S	28.53 I	2S. 535	2 S .539
725	$2 \mathrm{S}$.	28.547	2S.551	28. 555	2S. 559	28.563	28.567	2 S .57 I	2S. 575	28.579
726	$2 \mathrm{~S} .5 \mathrm{~S}_{3}$	2 S .587	28.590	2 S .594	2S.59S	$2 \mathrm{S.602}$	2 S .606	28.610	28.614	2S.61S
727	2 S .622	28.626	2 S .630	28.634	2 S .63 S	2 S .642	$2 S .646$	2 S .650	28.653	28.657
728	2 S .66 I	2 S .663	28.669	28.673	28.677	28.681	$2 \mathrm{S.655}$	2S.689	28.693	2 S .697
729	28.701	2 S .705	2S.709	$2 \mathrm{S}$.	$2 \mathrm{S.716}$	2 S .720	2 S .724	2 S .72 S	2S.732	28.736
730	2 S .740	28.744	2S.748	28.752	2 S. 756	28.760	28.764	$2 \mathrm{S}$.	2 S .772	28.776
731	2 S .779	2S.73	2S.787	2S.791	2 S .795	28.799	2S. ${ }^{\text {So3 }}$	$2 \mathrm{~S} . \mathrm{SO} 7$	2S.SII	2S.S15
732	2S.SI9	2 S .823	$2 \mathrm{S.S27}$	2S.S3I	2S.S35	28.839	28.842	2S.846	2 S .850	$2 S .854$
733	2S. $5_{5}{ }^{\text {S }}$	$2 S .862$	28.866	$2 \mathrm{S}$. S70	2S. 574	28.57 S	28.882	28.856	2 S .590	$2 \mathrm{S}$.
734	28.598	2 S .902	2 S .905	2S.909	$2 \mathrm{S.913}$	28.917	28.921	28.925	2S. 929	2 S .933
735	2 S .937	$2 \mathrm{S}$.	28.945	2 S .949	2 2S.953	28.957	2 S .961	28.965	2 S .96 S	2 S .972
736	28.976	2S.9So	2 S .984	2S.98S	2 S .992	28.996	29.000	29.004	29.00S	29.012
737	29.016	29.020	29.024	29.02 S	29.03 I	29.035	29.039	29.043	29.047	29.051
73 S	29.055	29.059	29.063	29.067	29.07 I	29.075	29.079	29.083	29.087	29.090
739	29.094	29.098	29.102	29.106	29.110	29. 114	29.1IS	29.122	29.126	29.130
740	29.134	29.13S	29.142	29.146	29.150	29.153	29.157	29.16I	29.165	29.169
741	29.173	29.177	29.1SI	29. IS 5	29.189	29.193	29.197	29.201	29.205	29.209
742	29.213	29.216	29.220	29.224	29.228	29.232	29.236	29.240	29.244	29.24 S
743	29.252	29.256	29.260	29.25 .4	29.268	29.272	29.276	29.279	29.283	29.287
744	29.291	29.295	29.299	29.303	29.307	29.31 I	29.315	29.319	29.323	29.327
745	29.331	29.335	29.339	29.342	29.346	29.350	29.354	29.358	29.362	29.366
746	29.370	29.374	29.375	29.382	29.3 S6	29.390	29.394	29.398	29.402	29.405
747	29.409	29.413	29.417	29.421	29.425	29.429.	29.433	29.437	29.441	29.445
$74{ }^{\text {S }}$	29.449	29.453	29.457	29.461	29.465	$29.46{ }^{\circ}$	29.472	29.476	29.480	29.454
749	29.458	29.492	29.496	29.500	29.504	29.508	29.512	29.516	29.520	29.524
753	29.52 S	29.531	29.535	29.539	29.543	29.547	29.55 I	29.555	29.559	29.563

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.									
750	29.528	29.53I	29.535	29.539	29.543	29.547	29.551	29.555	29.559	29.563
751	29.567	29.57 I	29.575	29.579	29.583	29.587	29.590	29.594	29.598	29.602
752	29.606	29.610	29.614	29.618	29.622	29.626	29.630	29.634	29.638	29.642
753	29.646	29.650	29.653	29.657	29.66I	29.665	29.669	29.673	29.677	29.68ı
754	29.685	29.689	29.693	29.697	29.701	29.705	29.709	29.713	29.716	29.720
755	29.724	29.728	29.732	29.736	29.740	29.744	29.748	29.752	29.756	29.760
756	29.764	29.768	29.772	29.776	29.779	29.783	29.757	29.791	29.795	29.799
757	29.803	29.807	29.8II	29.815	29.819	29.823	29.827	29.831	29.835	29.839
758	29.842	29.846	29850	29.854	29.858	29.862	29.866	29.870	29.874	29.578
759	29.882	29.886	29.890	29.894	29.598	29.902	29.905	29.909	29.913	29.917
760	29.921	29.925	29.929	29.933	29.937	29.941	29.945	29.949	29.953	29.957
761	29.961	29.965	29.968	29.972	29.976	29.9So	29.984	29.988	29.992	29.996
762	30.000	30.004	30.008	30.012	30.016	30.020	30.024	30.027	30.031	30.035
763	30.039	30.043	30.047	30.051	30.055	30.059	30.063	30.067	30.071	30.075
764	30.079	30.083	30.087	30.090	30.094	30.098	30.102	30.106	30.1 10	30.114
765	30.118	30.122	30.126	30.130	30.134	30.138	30.142	30.146	30.150	30.153
766	30.157	30.16I	30.165	30.169	30.173	30.177	30.181	30.1S5	30.189	30.193
767	30.197	30.201	30.205	30.209	30.213	30.216	30.220	30.224	30.22 S	30.232
768	30.236	30.240	30.244	30.248	30.252	30.256	30.260	30.264	30.268	30.272
769	30.276	30.279	$30.2 \mathrm{~S}_{3}$	30.287	30.291	30.295	30.299	30.303	30.307	30.31 I
770	30.315	30.319	30.323	30.327	30.331	30.335	30.339	30.342	30.346	30.350
771	30.354	30.358	30.362	30.366	30.370	30.374	30.378	30.382	30.356	30.390
772	30.394	30.398	30.402	30.405	30.409	30.413	30.417	30.42 I	30.425	30.429
773	30.433	30.437	30.44 I	30.445	30.449	30.453	30.457	30.461	30.465	30.468
774	30.472	30.476	30.480	30.484	30.488	30.492	30.496	30.500	30.504	30.508
775	30.512	30.516	30.520	30.524	30.528	30.531	30.535	30.539	30.543	30.547
776	30.55 İ	30.555	30.559	30.563	30.567	30.57 I	30.575	30.579	30.583	30.587
777	30.590	30.594	30.598	30.602	30.606	30.610	30.614	30.618	30.622	30.626
778	30.630	30.634	30.638	30.642	30.646	30.650	30.653	30.657	30.661	30.665
779	30.669	30.673	30.677	30.6SI	30.685	30.689	30.693	30.697	30.701	30.705
780	30.709	30.713	30.716	30.720	30.724	30.728	30.732	30.736	30.740	30.744
781	30.748	30.752	30.756	30.760	30.764	30.768	30.772	30.776	30.779	30.783
${ }_{7}{ }_{72}$	30.787	30.791	30.795	30.799	30.So3	30.807	30.8 II	30.815	30.819	30.823
783	30.827	30.83 I	30.835	30.839	30.842	30.S46	30.850	30.854	$30 . \mathrm{S}_{5} \mathrm{~S}$	30.862
784	30.866	30.870	30.874	30.878	30.S82	30.S86	30.890	30.894	30.898	30.902
785	30.905	30.909	30.913	30.917	30.921	30.925	30.929	30.933	30.937	30.941
786	30.945	30.949	30.953	30.957	30.96I	30.965	30.968	30.972	30.976	30.980
787	30.984	30.988	30.992	30.996	31.000	31.004	31.008	31.012	31.016	31.020
788	31.024	31.027	31.03 I	31.035	31.039	31.043	31.047	3 I .05 I	31.055	31.059
789	31.063	31.067	31.07 I	31.075	31.079	31.083	31.057	31.090	31.094	31.098
790	3 I .102	31. 106	31.110	31.114	31.118	31.122	31.126	31.130	31.134	31.138
791	3 I .142	31.146	31.150	3I.153	3 I .157	3I.16I	31.165	31.169	31.173	31.177
792	3I.ISI	31.185	31.189	3I.193	31.197	3 I .201	31.205	31.209	31.213	31.216
793	31.220	31.224	31.228	31.232	31.236	31.240	31.244	31.248	3 I .252	31.256
794	31.260	31.264	3 I .268	31.272	31.276	31.279	31.283	31.287	31.291	31.295
795	31.299	31.303	31.307	31.311	31.315	31.319	31.323	31.327	31.331	3 I .335
796	31.339	31. 342	31.346	31.350	31.354	31.358	31.362	31.366	31.370	31.374
797	31.378	$3 \mathrm{I} .3 \mathrm{~S}^{2}$	31.386	31. 390	31. 394	31.398	31.402	3 I .405	3 I .409	31.413
798	31.417	3 I .42 I	31.425	31.429	31.433	31.437	31.44 I	31.445	31.449	31.453
799	31.457	3I.46I	31.465	31.468	31.472	31.476	31.4So	31.484	31.488	31.492
800	31.496	31.500	31.504	31.508	31.512	31.516	31.520	31.524	31.527	3I.53I

Table 10.

MILLIMETERS INTOINCHES.

$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inclies.	Inches.	Inches.	Inches.	Inches.	Inches.
800	31.496	31.500	31.504	31.508	31.512	31.516	31.520	3 I .524	31.527	3 I .53 I
SoI	31.535	31.539	31.543	31.547	3 I .55 I	3I. 555	31.559	31.563	31.567	31.571
SO2	31.575	31.579	31.583	31.587	31.590	31.594	31.598	31.602	31.606	31.610
803	3 F .614	31.618	31.622	31.626	31.630	31.634	31.638	31.642	31.646	31.650
So4	3 I .653	31.657	3r.66I	31.665	31.669	31.673	31.677	3 I .681	31.685	31.689
805	31.693	31.697	31.701	31.705	31.709	31.713	31.716	31.720	31.724	31.728
So6	31.732	31.736	31.740	31.744	31.748	3 I .752	31.756	3 L .760	31.764	31.768
So7	31.772	31.776	31.779	31.783	31.787	3 I .791	31.795	31.799	$31 . \mathrm{SO} 3$	31. So7
Sos	$3 \mathrm{I} . \mathrm{SiI}$	31.815	31.819	31.823	31.827	31.831	31.835	31.839	31.842	31.846
809	31.850	3 I .854	31.858	31.S62	31.866	31.870	3 I .574	31.878	$3 \mathrm{I} . \mathrm{SS}_{2}$	31.886
810	31.890	31.894	31.598	31.902	31.905	31.909	31.913	31.917	31.921	31.925
811	31.929	31.933	31.937	31.941	31.945	31.949	31.953	31.957	31.961	31.965
812	31.968	31.972	31.976	31.980	3 T .984	31.988	31.992	31.996	32.000	32.004
813	32.008	32.012	32.016	32.020	32.024	32.027	32.031	32.035	32.039	32.043
814	32.047	32.05 I	32.055	32.059	32.063	32.067	32.071	32.075	32.079	32.083
815	32.087	32.090	32.09 .4	32.098	32.102	32.106	32.110	32.114	32.118	32.122
S16	32.126	32.130	32.134	32.138	32.142	32.146	32.150	32.153	32.157	32.161
817	32.165	32.169	32.173	32.177	32.ISI	32.185	32.189	32.193	32.197	32.201
818	32.205	32.209	32.213	32.216	32.220	32.224	32.228	32.232	32.236	32.240
SI9	32.244	32.248	32.252	32.256	32.260	32.264	32.268	32.272	32.276	32.279
820	$32.2 \mathrm{~S}_{3}$	32.287	32.291	32.295	32.299	32.303	32.307	32.311	32.315	32.319
821	32.323	32.327	32.33 I	32.335	32.339	32.342	32.346	32.350	32.354	32.358
822	32.362	32.366	32.370	32.374	32.378	32.382	32.386	32.390	32.394	32.398
823	32.402	32.405	32.409	32.413	32.417	32.42 I	32.425	32.429	32.433	32.437
S2.4	32.44 I	32.445	32.449	. 32.453	32.457	32.461	32.465	32.468	32.472	32.476
825	32.450	32.484	32.488	32.492	32.496	32.500	32.504	32.508	32.512	32.516
S26	32.520	32.52.	32.527	32.53 I	32.535	32.539	32.543	32.547	32.55 I	32.555
827	32.559	32.563	32.567	32.571	32.575	32.579	32.583	32.587	32.590	32.594
828	32.59 S	32.602	32.606	32.610	32.614	32.618	32.622	32.626	32.630	32.634
829	32.638	32.642	32.646	32.650	32.653	32.657	32.661	32.665	32.669	32.673
830	32.677	32.68 I	32.685	32.689	32.693	32.697	32.701	32.705	32.709	32.713
831	32.716	32.720	32.72 .4	32.72 S	32.732	32.736	32.740	32.744	32.748	32.752
832	32.756	32.760	32.764	32.768	32.772	32.776	32.779	32.783	32.787	32.791
833	32.795	32.799	32.803	32.807	32.811	32.815	32.819	32.823	32.827	32.831
834	32.835	32.839	32.8 .42	32.846	32.850	32.854	32.858	32.862	32.866	32.870
835	32.874	32.878	32.882	32.856	32.890	32.894	32.898	32.902	32.905	32.909
836	32.913	32.917	32.921	32.925	32.929	32.933	32.937	32.94 I	32.945	32.949
837	32.953	32.957	32.96 I	32.965	32.968	32.972	32.976	32.980	32.984	32.988
83 S	32.992	32.996	33.000	33.004	33.008	33.012	33.016	33.020	33.024	33.027
839	33.03 I	33.035	33.039	33.043	33.047	33.051	33.055	33.059	33.063	33.067
840	33.07 I	33.075	33.079	33.083	33.087	33.090	33.094	33.098	33.102	33.106
8.11	33.510	33.114	33.118	33.122	33.126	33.130	33.134	33.138	33.142	33.146
8.42	33. 150	33.153	33.157	33.161	33.165	33.169	33.173	33.177	33.181	33. IS5
843	33. IS9	33.193	33.197	33.201	33.205	33.209	33.213	33.216	33.220	33.224
S44	33.228	33.232	33.236	33.240	33.244	33.248	33.252	33.256	33.260	33.264
845	33.268	33.272	33.276	33.279	$33.2 S_{3}$	33.287	33.29 I	33.295	33.299	33.303
846	33.307	33.31 1	33.315	33.319	33.323	33.327	33.33I	33.335	33.339	33-342
847	33.346	33.350	33.354	33.358	33-362	33.366	33.370	33.374	33.378	$33 \cdot 382$
8.48	33.386	33.390	33.394	33.398	33.402	33.405	33.409	33.413	33.417	33.421
S49	33.425	33.429	33.433	33.437	33.44I	33.445	33.449	33.453	33.457	33.461
850	33.464	33.468	33.472	33.476	33.480	33.484	33.488	33.492	33.496	$33.50 n$

MILLIMETERS INTO INCHES.
$1 \cdot \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Iuches.	Inches.								
850	33.464	33.468	33.472	33.476	33.480	33.484	33.488	33.492	33.496	33.500
851	33.504	33.508	33.512	33.516	33.520	33.524	33.527	33.53 I	33.535	33.539
852	33.543	33.547	33.551	33.555	33.559	33.563	33.567	33.571	33.575	33.579
S53	33.583	33.587	33.590	33.594	33.59 S	33.602	33.606	33.610	33.614	33.618
854	33.622	33.626	33.630	33.634	33.63 S	33.642	33.646	33.650	33.653	33.657
855	33.66 I	33.665	33.669	33.673	33.677	33.681	33.685	33.689	33.693	33.697
856	33.701	33.705	33.709	33.713	33.716	33.720	33.724	33.728	33.732	33.736
857	33.740	33.744	33.74 S	33.752	33.756	33.760	33.764	33.768	33.772	33.776
S5S	33.779	33.753	33.787	33:791	33.795	33.799	33.803	33.807	33.811	33.815
S59	33.819	33.823	33.827	33.83 I	33.835	33.839	33.842	33.846	33.850	33.854
860	33.858	33.862	33.866	33.870	33.874	33.878	33.882	33.886	33.890	33.894
861	33.898	33.902	33.905	33.909	33.913	33.917	33.921	33.925	33.929	33.933
862	33.937	33.94 I	33.945	33.949	33.953	33.957	33.96I	33.964	33.968	33.972
863	33.976	33.9So	33.984	33.988	33.992	33.996	34.000	34.004	34.008	34.012
S64	34.016	34.020	34.024	34.027	34.03 I	34.035	34.039	34.043	34.047	34.051
865	34.055	34.059	34.063	34.067	34.071	34.075	34.079	34.083	34.087	34.090
866	34.094	34.098	34.102	34.106	34.110	34.114	34.IIS	34.122	34.126	34.130
867	34.134	34.13S	34.142	34.146	34.150	34.153	34. 157	34.16I	34.165	34.169
868	34. 773	34.177	34.ISI	$34.1 \mathrm{~S}_{5}$	34.159	34.193	34.197	34.201	34.205	34.209
869	34.213	34.216	34.220	34.224	34.228	34.232	34.236	34.240	34.244	34.248
870	34.252	34.256	34.260	34.264	34.268	34.272	34.276	34.279	34.283	34.287
871	34.291	34.295	34.299	34.303	34.307	34.31 I	34.3I 5	34.319	34.323	$34 \cdot 327$
S72	34.33 I	34.335	34.339	34.342	34.346	34.350	34.354	34.358	34.362	$34 \cdot 366$
873	34.370	34.374	34.378	34.382	$34 \cdot 386$	34.390	34.394	34.398	34.402	34.405
874	34.409	34.413	34.417	34.42I	34.425	34.429	34.433	34.437	34.441	34.445
875	34.449	34.453	34.457	34.46I	34.464	24.468	34.472	34.476	34.48o	34.484
S76	34.488	34.492	34.496	34.500	34.504	34.508	34.512	34.516	34.520	34.524
S77	34.527	34.53 I	34.535	34.539	34.543	34.547	34.55 I	34.555	34.559	$3+563$
878	34.567	34.571	34.575	34.579	34.583	34.587	34.590	34.594	34.598	34.602
879	34.606	34.610	34.614	34.61S	34.622	34.626	34.630	34.634	34.638	34.642
880	34.646	34.650	34.653	34.657	34.661	34.665	34.669	34.673	34.677	34.68r
S8I	34.685	34.689	34.693	34.697	34.701	34.705	34.709	34.713	34.716	34.720
882	34.724	34.728	34.732	34.736	34.740	34.744	34.748	34.752	34.756	34.760
88_{3}	34.764	34.768	34.772	34.776	34.779	34.783	34.787	34.791	34.795	34.799
884	34.803	34.807	34.8I I	34.815	34.819	34.823	34.827	34.831	34.835	34.839
885	34.842	34.846	34.850	34.854	34.858	34.862	34.866	34.870	34.874	34.878
S86	34.882	34.886	34.890	34.894	34.898	34.902	34.905	34.909	34.913	34.917
SS7	34.92 I	34.925	34.929	34.933	34.937	34.94 I	34.945	34.949	34.953	34.957
S88	34.96I	34.964	34.968	34.972	34.976	34.980	34.984	34.988	34.992	34.996
889	35.000	35.004	35.008	35.012	35.016	35.020	35.024	35.027	35.031	35.035
890	35.039	35.043	35.047	35.05I	35.055	35.059	35.063	35.067	35.071	35.075
891	35.079	35.083	35.087	35.090	35.094	35.098	35.102	35. 106	35.110	35.114
S92	35.118	35.122	35.i26	35. I 30	35.134	35.138	35.142	35.146	35.150	35.153
893	35.157	35.16I	35.165	35.169	35.173	3.5.177	35.18r	35.185	35. I 89	35.193
894	35.197	35.201	35.205	35.209	35.213	35.216	35.220	35.224	35.22 S	35.232
895	35.236	35.240	35.244	35.24S	35.252	35.256	35.260	. 35.264	35.268	35.272
S96	35.276	35.279	35.283	35.287	35.291	35.295	35.299	35.303	35.307	35.31 I
S97	35.3 I5	35.319	35.323	35.327	35.33 I	35.335	35.339	35.342	35.346	35.350
898	35.354	35.358	35.362	35.366	35.370	35.374	35.378	35.382	35.386	35.390
S99	35.394	35.398	35.402	35.405	35.409	35.413	35.417	35.42 1	35.425	35.429
900	35.433	35.437	35.44 I	35.445	35.449	35.453	35.457	35.46I	35.464	35.468

MILLIMETERS INTO INCHES.
I mm. $=0.0593$! inch.

Millimeters.	. 0	. 1	2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
900	35.433	35.437	35.44 I	35.445	35.449	35.453	35.457	35.46I	35.464	35.468
901	35.472	35.476	35.48o	35.484	35.488	35.492	35.496	35.500	35.504	35.508
902	35.512	35.516	35.520	35.524	$35 \cdot 527$	35.53I	35.535	35.539	35.543	35-547
903	35.55I	35.555	35.559	35.563	35.567	35.571	35.575	35.579	35.583	35.587
904	35.590	35.594	35.598	35.602	35.606	35.610	35.614	35.6 IS	35.622	35.626
905	35.630	35.634	35.638	35.642	35.646	35.650	35.653	35.657	35.66I	35.665
906	35.669	35.673	35.677	35.68I	35.685	35.689	35.693	35.697	35.701	35.705
907	35.709	35.713	35.716	35.720	35.724	35.72 S	35.732	35.736	35.740	35.744
908	35.74 S	35.752	35.756	35.760	35.764	35.768	35.772	35.776	35.779	35.783
909	35.757	35.791	35.795	35.799	35.803	35.So7	35.8II	35.SI5	35.S19	35.823
910	35.827	35.83 I	35.835	35.839	35.842	35.846	35.850	35.S54	35.858	35.862
911	35.866	35.870	35.874	35.878	35.882	35.8S6	35.890	35.894	35.898	35.902
912	35.905	35.909	35.913	35.917	35.92 I	35.925	35.929	35.933	35.937	35.941
913	35.945	35.949	35.953	35.957	35.96I	35.964	35.968	35.972	35.976	35.9So
914	35.984	35.958	35.992	35.996	36.000	36.004	36.008	36.012	36.016	36.020
915	36.024	36.027	36.031	36.035	36.039	36.043	36.047	36.051	36.055	36.059
916	36.063	36.067	36.071	36.075	36.079	36.083	36.087	36.090	36.094	36.098
917	36. IO2	36.106	.36.110	36. I 14	36.118	36.122	36.126	36.130	36.124	36.138
918	36. I42	36.146	36.150	36.153	36.157	36.16I	36.165	36.169	36.173	36.177
919	36. ISI	36.185	36.189	36. 193	36.197	36.201	36.205	36.209	36.213	36.216
920	36.220	36.224	36.228	36.232	36.236	36.240	36.244	36.248	36.252	36.256
921	36.260	36.264	36.263	36.272	36.276	36.279	36.283	36.287	36.291	36.295
922	36.299	36.303	36.307	36.3 II	36.315	36.319	36.323	36.327	36.331	36.335
923	36.339	36.342	36.346	36.350	36.354	36.358	36.362	36.366	36.370	36.374
924	36.378	36.382	36.386	36.390	36.394	36.398	36.402	36.405	36.409	36.413
925	36.417	36.42 I	36.425	36.429	36.433	36.437	36.44 I	36.445	36.449	36.453
926	36.457	36.461	36.464	36.468	36.472	36.476	36.480	36.484	36.488	36.492
927	36.496	36.500	36.504	36.508	. 36.512	36.516	36.520	36.524	36.527	36.531
928	36.535	36.539	36.543	36.547	36.551	36.555	36.559	36.563	36.567	36.57 I
929	36.575	36.579	36.583	36.587	36.590	36.594	36.598	36.602	36.606	36.610
930	36.614	36.618	36.622	36.626	36.630	36.634	36.63 S	36.642	36.646	36.650
931	36.653	36.657	36.661	36.665	36.669	36.673	36.677	36.681	36.685	36.689
932	36.693	36.697	36.701	36.705	36.709	36.713	36.716	36.720	36.724	36.728
933	36.732	36.736	36.740	36.744	36.748	36.752	36.756	36.760	36.764	36.768
934	36.772	36.776	36.779	36.783	36.757	36.791	36.795	36.799	36.803	36.807
935	36.8II	36.8I5	36.819	36.823	36.827	36.83 I	36.835	36.839	36.842	36.846
936	36.850	36.554	36.558	36.862	36.866	36.870	36.874	36.878	36.882	36.856
937	36.890	36.894	36.898	36.902	36.905	36.909	36.913	36.917	36.921	36.925
938	36.929	36.933	36.937	36.94 I	36.945	36.949	36.953	36.957	36.96I	36.964
939	36.968	36.972	36.976	36.980	36.984	36.988	36.992	36.996	37.000	37.004
940	37.00S	37.012	37.016	37.020	37.024	37.027	37.031	37.035	37.039	37.043
941	37.047	37.051	37.055	37.059	37.063	37.067	37.071	37.075	37.079	37.083
942	37.087	37.090	37.094	37.098	37.102	37.106	37.110	37.114	37.118	37.122
943	37.126	37.130	37.134	37.138	37.142	37.146	37.150	37.153	37.157	37.161
944	37.165	37.169	37.173	37.177	37.ISI	37.185	37.189	37.193	37.197	37.201
945	37.204	37.208	37.212	37.216	37.220	37.224	37.22 S	37.232	37.236	37.240
946	37.244	37.248	37.252	37.256	37.260	37.264	37.268	37.272	37.276	37.279
947	37.283	37.287	37.29 I	37.295	37.299	37.303	37.307	37.311	37.315	37.319
948	37.323	37.327	37.33 I	37.335	37.339	37.342	37.346	37.350	37.354	37.358
949	$37 \cdot 362$	37.366	37.370	37.374	37.378	$37.3 \mathrm{~S}^{2}$	$37 \cdot 386$	37.390	37.394	37.398
950	37.402	37.405	37.409	37.413	37.417	37.42 I	37.425	37.429	37.433	37.437

Smithsonian Tables.

MILLIMETERS INTO INCHES.
Table 10.
1 mm . $=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
950	37.402	37.405	37.409	37.413	37.417	37.42 I	37.425	37.429	37.433	37.437
951	37.44 I	37.445	37.449	37.453	37.457	37.461	37.464	37.468	37.472	37.476
952	37.48o	37.484	37.485	37.492	37.496	37.500	37.50 .4	37.508	37.512	37.516
953	37.520	37.524	37.527	37.531	37.535	37.539	37.543	37.547	37.551	37.555
954	37.559	37.563	37.567	37.57 I	37.575	37.579	37.583	37.587	37.590	37.594
955	37.598	37.602	37.606	37.610	37,614	37.6IS	37.622	37.626	37.630	37.634
956	37.638	37.642	37.646	37.650	37.653	37.657	37.66I	37.665	37.669	37.673
957	37.677	37.6SI	37.685	37.689	37.593	37.697	37.701	37.705	37.709	37.713
958	37.716	37.720	37.724	37.728	37.732	37.736	37.740	37.744	37.748	37.752
959	37.756	37.760	37.764	37.768	37.752	37.776	37-779	37.78_{3}	37.787	37.791
960	37.795	37.799	$37 . \mathrm{So}_{3}$	37.807	37.8II	37.815	37.819	37.823	37.827	37.831
961	37.835	37.839	37.842	37.S 46	37.850	37.854	37.858	37.862	37.866	37.870
962	37.874	37.878	37.882	37.886	37.890	37.894	37.898	37.901	37.905	37.909
963	37.913	37.917	37.92 I	37.925	37.929	37.933	37.937	37.941	37.945	37.949
964	37.953	37.957	37.961	37.964	37.968	37.972	37.976	37.980	37.984	37.988
965	37.992	37.996	3 S.000	3 S .004	38.008	38.012	38.016	38.020	38.024	38.027
966	38.03 I	38.035	38.039	38.043	38.047	38.051	3 S. 055	3 3. 059	38.063	38.067
967	3 S.071	3 S.075	38.079	$3 \mathrm{~S}^{\text {S }} 08_{3}$	38.087	3 S .090	38.094	$3 \mathrm{S.098}$	3S.102	3S.106
968	3S. 110	3 3.114	38.118	38.122	38.126	38.130	3 S. 134	3S.138	38.142	38.146
969	38.150	38.153	38.157	3S.16I	38. 165	3S.169	38.173	38.177	3S.ISI	38.1S5
970	3S. IS9	38.193	3S.197	38.201	38.205	38.209	38.213	38.216	3 S. 220	38.224
97 I	3 3.22S	3 S.232	38.236	3 S. 240	3 S. 244	38.248	38.252	38.256	3 3.260	38.264
972	3 S. 268	3 S. 272	38.276	38.279	$3 \mathrm{~S}^{2} .2 \mathrm{~S}_{3}$	$3 \mathrm{~S}^{2} .287$	38.291	38.295	3 3. 299	38.303
973	$3 \mathrm{S}$.	3 S. 3 II	38.315	38.319	$3 \mathrm{S}$.	38.327	38.331	3 3. 335	38.339	38.342
974	3 S. 346	38.350	$3 \mathrm{S}$.	$3 \mathrm{S.358}$	38.362	38.366	38.370	38.374	38.375	38.382
975	38.386	3 S. 390	38.394	38.398	38.401	38.405	38.409	3 S .413	38.417	38.421
976	3 3. 425	3 S. 429	38.433	38.437	38.44 I	38.445	3 3.449	3 S .453	38.457	38.461
977	38.464	3 S .468	38.472	38.476	$3 \mathrm{S.480}$	38.484	38.488	38.492	3 S. 496	38.500
978	$3 \mathrm{S}$.	${ }_{3}{ }^{\text {S. } 508}$	3 3. 512	38.516	3 S. 520	38.524	38.527	38.53 I	38.535	3 3.539
979	$3 \mathrm{S}$.	38.547	38.551	38.555	3 S. 559	38.563	38.567	38.571	38.575	38.579
980	38.583	38.587	38.590	38.594	38.598	38.602	38.606	38.610	38.614	38.618
981	38.622	38.626	38.630	38.634	38.638	$3 \mathrm{S.642}$	38.646	3 S .650	38.653	38.657
982	$3 \mathrm{S.66I}$	3 S.665	38.669	38.673	38.677	38.681	38.685	38.689	38.693	38.697
983	38.701	38.705	38.709	3 S .713	3 S.716	38.720	3 S. 724	38.72 S	38.732	38.736
984	35.740	38.744	38.748	38.752	38.756	38.760	38.764	3 S .768	38.772	38.776
985	$3 \mathrm{S}$.	38.783	38.787	38.791	38.795	38.799	38.803	$3 \mathrm{S}$.	3 S.Six	38.815
9 96	3 S. 819	38.823	38.827	38.83 I	38.835	38.839	38.842	38.846	38.850	38.854
987	38.858	38.862	38.866	38.870	38.874	38.578	38.882	38.886	3 S. 990	38.894
9 98	3 3. 998	38.901	38.905	3 3.909	3 S.913	3 3.917	38.92 I	3 3.925	38.929	38.933
989	38.937	38.94 I	$3^{8} .945$	38.949	38.953	38.957	38.961	38.964	38.968	3 S.972
990	38.976	38.9So	38.984	38.988	3 S.992	38.996	39.000	39.004	39.00S	39.012
991	39.016	39.020	39.024	39.027	39.03 I	39.035	39.039	39.043	39.047	39.05I
992	39.055	39.059	39.063	39.067	39.07I	39.075	39.079	39.083	39.087	39.090
993	39.094	39.098	39.102	39.106	39.110	39. II4	39.118	39.122	39.126	39.130
994	39.134	39.13S	39.142	39.146	39.150	39.153	39.157	39.16I	39.165	39.169
995	39.173	39.177	39.18I	39.185	39.189	39.193	39.197	39.201	39.205	39.209
996	39.213	39.216	39.220	39.224	39.22 S	39.232	39.236	39.240	39.244	39.248
997	39.252	39.256	39.260	39.26 .4	39.268	39.272	39.276	39.279	39.283	39.287
998	39.291	39.295	39.299	39.303	39.307	39.311	39.315	39.319	39.323	39.327
999	39.33 I	39.335	39.339	39.342	39.346	39.350	39.354	39.35^{5}	39.362	39.366
1000	39.370	39.374	39.37 S	39.3 S2	39.3 S6	39.390	39.394	39.398	39.401	39.405

Table 11.
BAROMETRIC INCHES (MERCURY) INTO MILLIBARS.
I inch $=33.86395 \mathrm{mb}$.

Inches	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mb.	mb.	mb.	mb .	mb .	mb .	mb .	mb.	mb .	mb.
0.0	0.00	0.34	0.68	1.02	1.35	1.69	2.03	2.37	2.71	3.05
0.1	3.39	3.73	4.06	4.40	4.74	5.08	$5 \cdot 43$	5.76	6.10	0.43
0.2	6.77	7.11	7.45	7.79	8.13	8.47	8.80	¢.1.4	9.48	9.82
0.3	10.16	10.50	10.84	11.18	11.51	\% 1.85	12.19	12.53	12.87	13.21
0.4	13.55	13.88	14.22	14.56	14.90	15.24	15.58	15.92	10.25	16.59
0.5	16.93	17.27	17.61	17.95	18.29	18.63	18.96	10.30	10.64	19.98
0.6	20.32	20.66	21.00	2 I .33	21.67	22.01	22.35	22.09	23.03	23.37
0.7	23.70	24.04	24.38	24.72	25.06	25.40	25.74	26.08	26.41	26.75
0.8	27.09	27.43	27.77	28.11	28.45	28.78	29.12	29.46	29.80	30.14
0.9	30.48	30.82	31.15	31.49	31.83	32.17	32.51	32.85	33.19	33.53
1.0	33.86	34.20	34.54	34.88	35.22	35.56	35.00	36.23	36.57	36.91
I.I	37.25	37.59	37.93	38.27	38.60	38.9 .4	39.28	30.02	39.96	40.30
1.2	40.64	40.08	4 E .31	4 C .65	41.99	42.33	42.67	43.01	$43 \cdot 35$	43.68
1.3	44.02	44.30	44.70	45.04	45.38	45.72	46.05	46.39	40.73	47.07
1.4	47.41	47.75	48.09	48.43	48.76	49.10	49.44	49.78	50.12	50.46
1.5	50.80	51.13	51.47	51.8 I	52.15	52.49	52.83	53.17	53.51	53.84
1.6	54.18	54.52	54.86	55.20	55.54	55.88	56.21	56.55	56.89	57.23
1.7	57.57	57.91	58.25	58.58	58.92	59.26	59.60	59.94	60.28	60.62
1.8	60.96	61.29	61.63	61.97	62.31	62.65	62.00	63.33	63.06	64.00
1.9	64.34	6.4 .68	65.02	65.36	65.70	66.03	66.37	60.71	67.05	67.39
2.0	67.73	68.07	68.41	68.74	69.08	69.42	69.76	70.10	70.44	70.78
2.1	71.11	71.45	71.79	72.13	72.47	72.8 r	73.15	73.48	73.82	74.16
2.2	74.50	$7+84$	75.18	75.52	75.86	76.19	76.53	76.87	77.21	77.55
2.3	77.80	78.23	78.56	78.90	79.24	79.58	79.92	80.26	So. 60	80.93
2.4	81.27	81.61	81.95	82.29	S2.63	82.97	83.31	83.64	S3.98	8.4 .32
25.0	846.6	846.9	847.3	847.6	848.0	S.4.3	$8_{4} 8.6$	S40.0	S40.3	S 49.6
25.1	850.0	850.3	S50.7	851.0	851.3	851.7	852.0	85.4	S 52.7	\$53.0
25.2	853.4	853.7	854.0	854.4	854.7	855.1	855.4	855.7	856.1	856.4
25.3	856.8	857.1	857.4	857.8	858.1	858.5	858.3	859.1	S50.5	S59.8
25.4	800.I	860.5	860.8	861.2	861.5	861.8	802.2	802.5	S02.9	S63.2
25.5	863.5	863.9	86.4 .2	864.5	86.4 .9	865.2	S65.6	865.9	866.2	866.6
25.6	806.9	807.3	867.6	867.9	868.3	868.6	868.9	860.3	869.6	870.0
25.7	870.3	870.7	871.0	871.3	871.7	S72.0	872.3	872.7	873.0	S73.4
25.8	873.7	874.0	874.4	874.7	875.0	875.4	S75.7	870.1	876.4	876.7
25.9	877.1	877.4	877.8	878.1	878.4	878.8	879.I	879.4	S79.S	S80. 1
26.0	SSO. 5	880.8	881.1	881.5	881.8	882.2	S82.5	SS2.8	SS3.2	$88_{3.5}$
26.1	883.8	88.8 .2	88.4	88.4 .9	885.2	885.5	885.9	880.2	880.6	880.9
26.2	887.2	887.6	887.9	888.3	888.6	888.9	880.3	889.6	889.9	S90.3
26.3	800.6	801.0	891.3	891.6	892.0	S92.3	80.7	893.0	So, 3. 3	S93.7
26.4	S94.0	$89+3$	S9.4.7	895.0	895.4	S95.7	896.0	896.4	S96.7	S97.1
26.5	S97.4	897.7	898.1	S98.4	S98.7	S99.1	S00.4	Sop. 8	900. I	000.4
26.6	900.8	901.1	901.5	901.8	902.1	902.5	902.8	903.2	903.5	003.8
26.7	90.4.2	904.5	90.48	905.2	905.5	905.9	906.2	906.5	000.9	907.2
26.8	907.6	907.9	908.2	908.6	908.9	909.2	909.6	900.2	010.3	910.6
26.9	910.9	911.3	911.6	912.0	912.3	912.6	913.0	913.3	913.6	914.0
27.0	914.3	914.7	915.0	915.3	915.7	916.0	916.4	916.7	917.0	917.4
27.1	917.7	918. ז	918.4	918.7	919.1	919.4	919.7	920.1	020.4	920.8
27.2	921.1	921.4	921.8	922.1	922.5	922.8	92.3 .1	92.3 .5	023.8	924.1
27.3	924.5	924.8	925.2	925.5	925.8	926.2	926.5	926.9	927.2	927.5
27.4	927.9	928.2	928.5	928.9	929.2	929.6	929.9	930.2	930.6	930.9

Smithsonian tables.

I inch $=33.86395 \mathrm{mb}$.

Inches,	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mb.	mb .	mb.	mb.	mb.	mb.	mb.	mb .	mb.	mb.
27.5	931.3	931.6	931.9	932.3	932.6	933.0	$933 \cdot 3$	933.6	934.0	934.3
27.6	934.6	935.0	935.3	935.7	936.0	936.3	936.7	937.0	937.4	937.7
27.7	938.0	938.4	938.7	939.0	939.4	939.7	940.1	940.4	940.7	941.1
27.8	$9+1.4$	941.8	942.I	942.4	942.8	943.1	943.4	943.8	944.1	944.5
27.9	944.8	945.1	945.5	945.8	946.2	946.5	946.8	947.2	947.5	947.9
28.0	948.2	948.5	948.9	949.2	949.5	949.9	950.2	950.6	950.9	951.2
28.1	951.6	951.9	952.3	952.6	952.9	953.3	953.6	953.9	$954 \cdot 3$	954.6
28.2	955.0	955.3	955.6	956.0	956.3	956.7	957.0	$957 \cdot 3$	957.7	958.0
28.3	958.3	958.7	959.0	959.4	959.7	960.0	960.4	960.7	961.1	961.4
28.4	961.7	962.1	962.4	962.8	963.1	963.4	963.8	964.1	964.4	964.8
28.5	965.1	965.5	965.8	966.1	966.5	966.8	967.2	967.5	967.8	968.2
28.6	9068.5	968.8	969.2	969.5	969.9	970.2	970.5	970.9	971.2	971.6
28.7	971.9	972.2	972.6	972.9	973.2	973.6	973.9	$974 \cdot 3$	974.6	974.9
28.8	975.3	975.6	976.0	976.3	976.6	977.0	$977 \cdot 3$	$977 \cdot 7$	978.0	978.3
28.9	978.7	979.0	979.3	979.7	980.0	980.4	980.7	981.0	98 I .4	981.7
29.0	982.1	982.4	982.7	983.1	983.4	983.7	984.1	984.4	984.8	985.1
29.1	985.4	985.8	986.1	986.5	986.8	987.1	987.5	987.8	988.2	988.5
29.2	988.8	989.2	989.5	989.8	990.2	990.5	990.9	991.2	991.5	991.9
29.3	992.2	992.6	992.9	993.2	993.6	993.9	994.2	994.6	994.9	995.3
29.4	995.6	995.9	996.3	996.6	997.0	$997 \cdot 3$	997.6	998.0	998.3	998.6
29.5	999.0	999.3	999.7	1000.0	1000.4	1000.7	1001.0	1001.4	1001.7	1002.0
29.6	1002.4	1002.7	1003.1	1003.4	1003.7	1004.1	1004.4	1004.7	1005. 1	1005.4
29.7	1005.8	1006.1	1006.4	1006.8	1007. 1	1007.5	1007.8	1008. 1	1008.5	1008.8
29.8	1009. 1	1009.5	1009. 8	roro. 2	1010.5	1010.8	1011.2	IOII. 5	IOII. 9	IOI2.2
29.9	1012.5	1012.9	1013.2	1013.5	IOr 3.9	1014.2	1014.6	1014.9	1015.2	1015.6
30.0	1015.9	1016.3	1016.6	1016.9	1017.3	1017.6	1018.0	1018.3	IOI8.6	1019.0
30.1	1019.3	1019.6	1020.0	1020.3	1020.7	1021.0	1021.3	1021.7	1022.0	1022.4
30.2	1022.7	1023.0	1023.4	1023.7	1024.0	1024.4	1024.7	1025. 1	1025.4	1025.7
30.3	1026.1	1026.4	1026.8	1027.1	1027.4	1027.8	1028.1	1028.4	1028.8	1029.1
30.4	1029.5	1029.8	1030.1	1030.5	1030.8	1031.2	1031.5	IO31. 8	1032.2	1032.5
30.5	1032.9	1033.2	1033.5	1033.9	1034.2	1034.5	1034.9	1035.2	1035.6	1035.9
30.6	1036.2	1036.6	1036.9	1037.3.	1037.6	1037.9	1038.3	1038.6	1038.9	1039-3
30.7	1039.6	1040.0	1040.3	10.40 .6	1041.0	1041.3	1041.7	1042.0	1042.3	1042.7
30.8	1043.0	1043.3	1043.7	1044.0	1044.4	1044.7	1045.0	1045.4	1045.7	1046.1
30.9	1046.4	1046.7	1047.1	1047.4	1047.8	1048.1	1048.4	1048.8	1049. 1	1049.5
31.0	1049.8	1050.1	1050.5	1050.8	1051.1	1051.5	1051.8	1052.2	1052.5	1052.8
3 I .1	1053.2	1053.5	1053.8	1054.2	1054.5	1054.9	1055.2	1055.5	1055.9	1056.2
31.2	1056.6	1056.9	1057.2	1057.6	1057.9	1058.2	1058.6	1058.9	1059.3	1059.6
. 31.3	1059.9	1060.3	1060.6	1061.0	1061. 3	1061.6	1062.0	1062.3	1062.7	1063.0
3 I .4	1063.3	1063.7	1064.0	$106+3$	1064.7	1065.0	1065.4	1065.7	1066.0	1066.4
31.5	1066.7	1067.1	1067.4	1067.7	1068.1	1068.4	1068.7	1069.1	1069.4	1069.8
31.6	1070.1	1070.4	1070.8	1071.1	1071.5	1071.8	1072.1	1072.5	1072.8	1073.1
31.7	1073.5	1073.8	1074.2	1074.5	1074.8	1075.2	1075.5	1075.9	1076.2	1076.5
31.8	1076.9	1077.2	1077.6	1077.9	1078.2	1078.6	1078.9	1079.2	1079.6	1079.9
31.9	1080.3	1080.6	1080.9	1081.3	1081. 6	1082.0	1082.3	1082.6	1083.0	1083.3

SMITHSONIAN TABLES.

BAROMETRIC MILLIMETERS (MERCURY) INTO MILLIBARS.

$1 \mathrm{~mm} .=1.33322387 \mathrm{mb}$.

$\begin{gathered} \text { Milli- } \\ \text { meters. } \end{gathered}$	0	1	2	3	4	5	6	7	8	9
	mb.	mb.	mb.	mb.	mb.	mb.	mb.	mb.	mb.	mb.
0	\bigcirc	1.3	2.7	4.0	$5 \cdot 3$	6.7	S.O	9.3	10.7	12.0
10	13.3	14.7	16.0	17.3	18.7	20.0	21.3	22.7	24.0	25.3
20	26.7	28.0	29.3	30.7	32.0	$33 \cdot 3$	34.7	36.0	$37 \cdot 3$	38.7
30	40.0	41.3	42.7	44.0	45.3	46.7	48.0	49.3	50.7	52.0
40	$53 \cdot 3$	54.7	56.0	$57 \cdot 3$	58.7	60.0	61.3	62.7	64.0	$65 \cdot 3$
50	66.7	68.0	69.3	70.7	72.0	73.3	74.7	76.0	77.3	78.7
60	80.0	8 I. 3	82.7	84.0	85.3	86.7	88.0	89.3	90.7	92.0
70	93.3	94.7	96.0	97.3	98.7	100.0	101.3	102.7	104.0	105.3
80	106.7	108.0	109.3	110.7	II 2.0	113.3	II 4.7	16.0	117.3	118.7
90	120.0	121.3	122.7	124.0	I25.3	126.7	128.0	129.3	130.7	132.0
100	133.3	I 34.7	I 36.0	137.3	138.7	140.0	141.3	42.7	144.0	145.3
110	146.7	148.0	149.3	150.7	152.0	153.3	154.7	56.0	157.3	158.7
120	160.0	161.3	162.7	164.0	165.3	166.7	168.0	69.3	170.7	172.0
130	173.3	174.7	176.0	177.3	I78.7	I80.0	181.3	82.7	184.0	185.3
140	186.7	188.0	I89.3	190.7	192.0	193.3	194.7	196.0	197.3	198.7
150	200.0	201.3	202.7	204.0	205.3	206.6	208.0	209.3	210.6	212.0
160	213.3	214.6	216.0	217.3	218.6	220.0	221.3	222.6	224.0	225.3
170	226.6	228.0	229.3	230.6	232.0	233.3	234.6	236.0	237.3	238.6
180	240.0	241.3	242.6	244.0	245.3	246.6	248.0	249.3	250.6	25.0
190	253.3	254.6	256.0	257.3	258.6	260.0	261.3	26.6	264.0	265.3
200	266.6	268.0	269.3	270.6	272.0	273.3	274.6	276.0	277.3	278.6
210	280.0	281.3	282.6	284.0	285.3	286.6	288.0	28.3	290.6	292.0
220	293.3	294.6	296.0	297.3	293.6	300.0	301.3	302.6	304.0	305.3
230	306.6	308.0	309.3	310.6	312.0	313.3	314.6	316.0	317.3	318.6
240	320.0	321.3	322.6	324.0	325.3	326.6	328.0	329.3	330.6	332.0
250	333.3	334.6	336.0	337.3	338.6	340.0	341.3	342.6	344.0	345.3
260	346.6	348.0	349.3	350.6	352.0	353.3	354.6	356.0	357.3	358.6
270	360.0	361.3	362.6	364.0	365.3	366.6	368.0	369.3	370.6	372.0
280	373.3	374.6	376.0	377.3	378.6	380.0	381.3	382.6	384.0	385.3
290	386.6	388.0	389.3	390.6	392.0	393.3	394.6	396.0	397.3	398.6
300	400.0	401.3	402.6	404.0	405.3	406.6	408.0	409.3	410.6	412.0
310	413.3	414.6	416.0	417.3	418.6	420.0	42 I. 3	422.6	424.0	425.3
320	426.6	428.0	429.3	430.6	432.0	433.3	434.6	436.0	437.3	438.6
330	440.0	441.3	442.6	444.0	445.3	446.6	448.0	449.3	450.6	452.0
340	45.3 .3	454.6	456.0	457.3	458.6	460.0	461.3	462.6	404.0	465.3
350	466.6	468.0	469.3	470.6	472.0	473.3	474.6	476.0	477.3	478.6
360	480.0	48 I .3	482.6	484.0	485.3	486.6	488.0	489.3	490.6	492.0
370	493.3	494.6	496.0	497.3	498.6	500.0	501.3	502.6	504.0	505.3
380	506.6	508.0	509.3	510.6	512.0	513.3	514.6	516.0	517.3	518.6
390	520.0	521.3	522.6	524.0	525.3	526.6	528.0	529.3	530.6	532.0
400	533.3	534.6	536.0	537.3	538.6	540.0	541.3	542.6	544.0	545.3
410	546.6	548.0	549.3	550.6	552.0	553.3	554.6	556.0	557.3	558.6
420	560.0	561.3	562.6	564.0	565.3	560.6	568.0	569.3	570.6	572.0
430	573.3	574.6	576.0	577.3	578.6	580.0	581.3	582.6	584.0	585.3 50.6
440	586.6	588.0	5S9.3	590.6	592.0	593.3	594.6	596.0	597.3	598.6

SMITHSONIAN TABLES.

TAble 12.
BAROMETRIC MILLIMETERS (MERCURY) INTO MILLIBARS.
$1 \mathrm{~mm} .=1.33322387 \mathrm{mb}$.

Millim.eters.	0	1	2	3	4	5	6	7	8	9
	mb.	mb.	mb .	mb .	mb.	mb.	mb.	mb.	mb.	mb.
450	600.0	601.3	602.6	604.0	605.3	606.6	608.0	609.3	510.6	6 II. 9
460	613.3	614.6	615.9	617.3	618.6	619.9	621.3	622.6	623.9	625.3
470	626.6	627.9	629.3	630.6	631.9	633.3	634.6	635.9	637.3	639.6
480	639.9	641.3	642.6	643.9	645.3	646.6	647.9	649.3	650.6	651.9
490	653.3	654.6	655.9	$657 \cdot 3$	658.6	659.9	661.3	662.6	663.9	665.3
500	666.6	667.9	669.3	670.6	671.9	673.3	674.6	675.9	677.3	678.6
510	679.9	681.3	682.6	683.9	$65_{5 \cdot 3}$	686.6	687.9	689.3	690.6	691.9
520	693.3	694.6	695.9	697.3	698.6	699.9	701.3	702.6	703.9	705.3
530	706.6	707.9	709.3	710.6	711.9	713.3	714.6	715.9	717.3	718.6
540	719.9	721.3	722.6	723.9	725.3	726.6	727.9	729.3	730.6	731.9
550	733.3	734.6	735.9	737.3	738.6	739.9	741.3	742.6	743.9	745.3
560	746.6	747.9	749.3	750.6	751.9	753.3	754.6	755.9	757.3	758.6
570	759.9	761.3	762.6	763.9	765.3	766.6	767.9	769.3	770.6	771.9
580	773.3	774.6	775.9	$777 \cdot 3$	778.6	779.9	781.3	782.6	783.9	785.3
590	786.6	787.9	789.3	790.6	791.9	793.3	794.6	795.9	797.3	798.6
600	799.9	SoI. 3	802.6	S03.9	805.3	So6.6	807.9	809.3	810.6	8II.9
610	813.3	814.6	815.9	817.3	818.6	819.9	821.3	822.6	823.9	825.3
620	826.6	S27.9	829.3	830.6	831.9	833.3	834.6	835.9	837.3	S38.6
630	839.9	841.3	842.6	843.9	845.3	846.6	847.9	$8+9.3$	850.6	851.9
640	853.3	854.6	855.9	857.3	858.6	859.9	861.3	862.6	863.9	865.3
650	866.6	867.9	869.3	870.6	871.9	873.3	874.6	S75.9	877.3	878.6
660	879.9	88 I .3	S82.6	883.9	885.3	886.6	887.9	S89.3	890.6	SOI. 9
670	893.3	894.6	895.9	897.3	898.6	899.9	901.3	902.6	903.9	905.3
680	906.6	907.9	909.3	910.6	91.9	913.3	914.6	915.9	917.3	918.6
690	919.9	921.3	922.6	923.9	925.3	926.6	927.9	929.3	930.6	931.9
700	933.3	934.6	935.9	937.3	938.6	939.9	941.3	942.6	943.9	945.3
710	946.6	947.9	949.3	950.6	951.9	953.3	954.6	955.9	957.3	958.6
720	959.9	961.3	962.6	963.9	965.3	966.6	967.9	969.3	970.6	971.9
730	$973 \cdot 3$	974.6	975.9	977.3	978.6	979.9	98 I .3	982.6	983.9	985.3
740	986.6	987.9	989.3	990.6	991.9	993.3	994.6	995.9	997.3	998.6
	999.9	1001. 3	1002.6	100.3 .9	1005.3	1006.6	1007.9	1009.3	1010.6	1011.9
760	1013.3	1014.6	1015.9	1017.2	1018.6	1019.9	1021.2	1022.6	1023.9	1025.2
770	1026.6	1027.9	1029.2	1030.6	1031.9	1033.2	1034.6	1035.9	1037.2	1038.6
780	1039.9	1041.2	1042.6	1043.9	1045.2	1046.6	1047.9	1049.2	1050.6	1051.9
790	1053.2	1054.6	1055.9	1057.2	1058.6	1059.9	1061.2	1062.6	1063.9	1065.2

Smithsonian Tables.

TAble 13.
FEET INTO METERS.
1 foot $=0.3048006$ meter.

Feet.	0	I	2	3	4	5	6	7	8	9
	m.	m.	m.	m.	m.	m.	m. ${ }^{\circ}$	m.	m.	m.
0	0.00	0.305	0.610	0.914	1. 219	1.524	1. 829	2. 134	2.438	2.743
10	3.048	3.353	$3.65 S$	3.962	4.267	4.572	4.877	5.182	5.486	5.791
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	8.534	8.839
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	II. 887
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935
50	15.240	15.545°	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983
60	18.288	18.593	I 8.598	19.202	19.507	19.812	20.117	20.422	20.726	21.03 I
70	21.336	21.641	21.946	22.250	22.555	22.860	23.165	23.470	23.774	24.079
So	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127
90.	27.432	27.737	28.042	28.346	28.55 I	28.956	29.261	29.566	29.870	30.175
	0	10	20	30	40	50	60	70	80	90
100	30.48	33.53	36.58	39.62	42.67	45.72	48.77	5 I .82	54.86	57.91
200	60.96	64.01	67.06	70.10	73.15	76.20	79.25	82.30	S5.34	88.39
300	91.44	94.49	97.54	100.58	103.63	106.68	109.73	I 12.78	115.82	118.87
400	121.92	124.97	128.02	131.06	134. 11	137.16	140.21	143.26	146.30	149.35
500	152.40	155.45	158.50	161.54	164.59	167.64	170.69	173.74	176.78	179.83
600	182.88	185.93	IS8.98	192.02	195.07	198.12	201.17	204.22	207.26	210.31
700	213.36	216.41	219.46	222.50	225.55	228.60	231.65	234.70	237.74	240.79
0	243.84	246.89	249.94	252.98	256.03	259.08	262.13	265. IS	268.22	271.27
900	274.32	$277 \cdot 37$	280.42	283.46	286.5I	289.56	292.61	295.66	298.70	301.75
1000	304.So	307.85	310.90	313.94	316.99	320.04	323.09	326.14	329. IS	332.23
1100	335.28	338.33	341.38	344.42	347.47	350.52	353.57	356.62	359.67	362.71
1200	365.76	368.81	371.86	374.90	377.95	381.00	384.05	387.10	390. 14	393.19
1300	396.24	399.29	402.34	405.38	408.43	4II. 48	414.53	417.58	420.62	423.67
1400	426.72	429.77	432.82	435.86	438.91	441.96	445.01	448.06	451.10	454.15
1500	457.20	460.25	463.30	466.34	469.39	472.44	475.49	478.54	481.58	484.63
1600	487.68	490.73	493.78	496.82	499.87	502.92	505.97	509.02	512.07	515.11
1700	518.16	52 I .21	524.26	527.31	530.35	533.40	536.45	539.50	542.55	$545 \cdot 59$
I800	548.64	551.69	554.74	557.79	560.83	563.88	566.93	569.98	573.03	576.07
1900	579.12	582.17	585.22	588.27	591.31	594.36	597.4 I	600.46	603.5 I	606.55
2000	609.60	612.65	615.70	6 I 8.75	62 I .7 .9	624.84	627.89	630.94	633.99	637.03
2100	640.08	643.13	646.18	649.23	652.27	655.32	658.37	661.42	664.47	667.51
2200	670.56	673.61	676.66	679.71	682.75	685.80	688.85	691.90	694.95	697.99
2300	701.04	704.09	707.14	710.19	713.23	716.28	719.33	722.38	725.43	728.47
2400	731.52	734.57	737.62	740.67	743.71	746.76	749.81	752.86	755.91	758.95
2500	762.00	765.05	768.10	771.15	774.19	777.24	780.29	783.34	786.39	759.43
2600	792.48	795.53	798.58	Sor. 63	S04. 67	807.72	S10.77	S13.82	816.87	819.91
2700	S22.96	826.01	\$29.06	S32.II	835.15	838.20	841. 25	844.30	S47.35	S50.39
2800	S53.44	856.49	S59.54	S62.59	865.63	868.68	S71.73	874.78	877.83	SSo. 87
2900	883.92	886.97	890.02	S93.07	S96:11	S99.16	902.21	905.26	908.3I	9II. 35
3000	914.40	917.45	920.50	923.55	926.59	929.64	932.69	935.74	938.79	941.83
3100	944.88	947.93	950.98	954.03	957.07	960.12	963.17	966.22	969.27	972.31
3200	975.36	978.41	98i. 46	984.51	987.55	990.60	993.65	996.70	999.75	1002.79
3300	1005.84	1008. 89	IOII. 94	IO14.99	1018.03	IO2I.08	IO24.I3	1027.18	1030.23	1033.27
3400	1036.32	1039.37	1042.42	1045.47	1048.51	1051.56	1054.61	1057.66	1060.71	1063.75
3500	1066.80	1069.85	IC72.90	1075.95	107S.99	IOS2.04	1085.09	1088.14	1091. 19	1094.23
3600	1097.28	1100.33	1103.38	1106.43	1109.47	I I 12.52	I 115.57	1 I I 8.62	II21. 67	I I 24.7 I
3700	1127.76	I 130.81	II 33.86	I 1.36 .9 I	1139.95	I 143.00	1146.05	1149.10	I 152.15	I 155.19
3800	1158.24	I161.29	1164.34	1157.39	1170.43	I 173.48	I I 76.53	I 79.58	1182.63	II 155.67
3900	1 IS8.72	I 191.77	$1194 . \mathrm{S} 2$	I 197.87	1200.91	I 203.96	1207.61	1210.06	1213.II	1216.15
4000	1219.20	1222.25	1225.30	1228.35	1231.39	I234.44	1237.49	1240.54	1243.59	1246.63

FEET INTO METERS.
I $\mathrm{foot}=0.3048006$ meter.

Feet.	0	10	20	30	40	50	60	70	80	90
	m.	m.	m.	m	m	m.	m.	m.	m.	m.
4000	1219.2	1222.3	1225.3	1228.3	1231.4	1234.4	1237.5	1240.5	1243.6	1246.6
4100	1249.7	1252.7	1255.8	1258.8	1261.9	1264.9	126S.0	1271.0	1274.1	1277. 1
4200	1280. 2	1283.2	1286.3	1289.3	1292.4	1295.4	1298.5	1301.5	I304. 5	I307.6
4300	I310.6	1313.7	1316.7	1319.8	I322.8	I 325.9	1328.9	1332.0	1335.0	I33S. 1
4400	I341. 1	I 344.2	I347.2	1350.3	I 353.3	I 356.4	I 359.4	1362.5	I 365.5	I368.6
4500	1371.6	1374.7	1377.7	I3So. 7	$\mathrm{I}_{3} \mathrm{~S}_{3} .8$	1386.8	I3S9.9	1392.9	I396.0	1399.0
4600	1402. 1	1405.1	1408.2	I4 I I. 2	1414.3	1417.3	1420.4	142.4	I 426.5	1429.5
4700	1432.6	1435.6	143 S. 7	1441.7	I444.8	1447.8	1450.9	1453.9	1456.9	1460.0
4800	1463.0	1466. 1	1469.1	1472.2	1475.2	1478.3	1481.3	1484.4	1487.4	1490.5
4900	1493.5	1496.6	I499.6	1502.7	1505.7	1508.8	1511.8	1514.9	1517.9	1521.0
5000	1524.0	1527.1	1530.1	I533. I	1536.2	1539.2	1542.3	1545.3	154S.4	1551.4
5100	I554.5	I 557.5	1560.6	1563.6	1566.7	1569.7	1572.8	1575.8	1578.9	15 SI .9
5200	1585.0	1588.0	I59i. 1	1594. 1	1597.2	1600.2	1603.3	1606.3	1609.3	16I2.4
5300	I6I5.4	16IS. 5	1621.5	1624.6	1627.6	1630.7	1633.7	1636.8	1639.8	1642.9
5400	1645.9	I649.0	1652.0	1655. 1	165S. 1	1661.2	1664.2	1667.3	1670.3	1673.4
5500	1676.4	1679.5	16S2.5	1685.5	1688.6	1691.6	1694.7	1697.7	1700.8	1703.8
5600	1706.9	1709.9	1713.0	1716.0	1719.1	1722. I	1725.2	1728.2	1731.3	1734.3
5700	1737.4	1740.4	1743.5	1746.5	I749.6	1752.6	1755.7	1758.7	1761.7	1764.8
5800	1767.8	1770.9	1773.9	1777.0	1780.0	1783.1	1786. 1	1789.2	1792.2	1795.3
5900	1798.3	ISOI. 4	ISO4.4	ISO7.5	ISIO. 5	1813.6	ISI6.6	ISI9.7	I822.7	IS25.8
6000	IS2S.8	IS3I.9	1834.9	1837.9	1841.0	IS44.0	1847. 1	1850.1	1853.2	IS56.2
6100	1859.3	I862.3	IS65.4	IS6S. 4	I871.5	IS74.5	IS77.6	ISSO. 6	1883.7	IS86.7
6200	1889.8	IS92.8	IS95.9	IS9S. 9	1902.0	1905.0	IgoS. 1	I9II. 1	1914.I	1917.2
6300	1920.2	1923.3	1926.3	1929.4	1932.4	1935.5	193S.5	1941.6	1944.6	1947.7
6400	1950.7	1953.8	1956.8	1959.9	1962.9	I966.0	1969.0	1972.1	1975.I	1978.2
6500	198 I .2	1984.3	1987.3	1990.3	1993.4	1996.4	1999.5	2002.5	2005.6	200S. 6
6600	2011.7	2014.7	2017.8	2020.S	2023.9	2026.9	2030.0	2033.0	2036.1	2039.1
6700	2042.2	2045.2	204S.3	2051.3	2054.4	2057.4	2060.5	2063.5	2066.5	2069.6
6Soo	2072.6	2075.7	207S. 7	20SI. 8	2084.8	2087.9	2090.9	2094.0	2097.0	2100.1
6900	2 IO 3.1	2106.2	2109.2	2 II2.3	2115.3	21IS.4	2121.4	2124.5	2127.5	2130.6
7000	2133.6	2136.7	2139.7	2142.7	2 I 45.8	2148.8	2151.9	2154.9	2158.0	2161.0
7100	2164.1	2167.1	2170.2	2173.2	2176.3	2179.3	2182.4	2 IS5.4	2188.5	2191.5
7200	2194.6	2197.6	2200.7	2203.7	2206.8	2209.8	2212.9	2215.9	2218.9	2222.0
7300	2225.0	222S. I	2231.1	2234.2	2237.2	2240.3	2243.3	22.46 .4	2249.4	2252.5
7400	2255.5	2258.6	2261.6	2264.7	2267.7	2270.8	$2273 . \mathrm{S}$	2276.9	2279.9	2283.0
7500	22S6.0	2289. 1	2292. I	2295. I	2298.2	2301.2	2304.3	2307.3	2310.4	2313.4
7600	2316.5	2319.5	2322.6	2325.6	2328.7	23.31 .7	$2334 . \mathrm{S}$	2337.8	2340.9	2343.9
7,00	2347.0	2350.0	2353.1	2356. 1	2359.2	2362.2	2365.3	2368.3	2371.3	2374.4
7S00	2377.4	23 So. 5	2383.5	2386.6	2389.6	2392.7	2395.7	239S.S	2401.8	2404.9
7900	2407.9	2411.0	2414.0	2417.1	2420.1	2423.2	2426.2	2429.3	2432.3	2435.4
8000	243 S. 4	2441.5	2444.5	2447.5	2450.6	2453.6	2456.7	2459.7	2462.8	2465.8
8100	2468.9	2471.9	2475.0	2478.0	248 I .1	24S4. I	2487.2	2490.2	2493.3	2496.3
S200	2799.4	2502.4	2505.5	2508.5	2511.6	2514.6	2517.7	2520.7	2523.7	2526.8
8300	2529.8	2532.9	2535.9	2539.0	2542.0	2545. I	2548. 1	255 I. 2	2554.2	2557.3
8400	2560.3	2563.4	2566.4	2569.5	2572.5	2575.6	2578.6	2581.7	2584.7	2587.8
8500	2590.8	2593.9	2596.9	2599.9	2603.0	2606.0	2609. I	2612.1	26I5.2	2618. 2
8600	262 I .3	2624.3	2627.4	2630.4	2633.5	2636.5	2639.6	2642.6	2645.7	2648.7
8700	2651.8	2654.8	2657.9	2660.9	2664.0	2667.0	2670. 1	2673. I	2676. 1	2679.2
8 SoO	2682.2	2685.3	2688.3	2691.4	2694.4	2697.5	2700.5	2703. 6	2706.6	2709.7
8900	2712.7	2715.8	2718.8	2721.9	2724.9	2728.0	2731.0	2734. I	2737.1	2740.2
9000	2743.2	2746.3	2749.3	2752.3	2755.4	275S.4	2761.5	2764.5	2767.6	2770.6

Table 14.
METERS INTO FEET.
1 meter $=39.3700$ inches $=3.280833$ feet.

Meters.	0	1	2	3	4	5	6	7	8	9
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
0	0.00	3.28	6.56	9.84	13.12	16.40	19.68	22.97	26.25	29.53
10	32.81	36.09	39.37	42.65	45.93	49.21	52.49	55.77	59.05	62.34
20	65.62	68.90	72.18	75.46	78.74	82.02	85.30	88.58	91.56	95.14
30	98.42	101.71	104.99	108.27	III 1.55	114.83	IIS.1I	121.39	124.67	127.95
40	I 31.23	134.5 I	I 37.79	141.08	I 44.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.32	170.60	173.88	177.16	ISo. 45	IS3.73	187.01	190.29	193.57
60	196.85	200.13	203.41	206.69	209.97	213.25	216.53	219.82	223.10	226.38
70	229.66	232.94	236.22	239.50	242.78	246.06	249.34	252.62	255.90	259.19
So	262.47	265.75	269.03	272.31	275.59	278.87	2 S 2.15	285.43	2S8.71	291.99
90	295.27	298.56	301.54	305.12	308.40	311.68	314.96	$3 \mathrm{IS.24}$	32 I .52	324.80
100	$32 \mathrm{S.0S}$	331.36	334.64	337.93	341.2 I	344.49	347.77	351.05	354.33	357.61
110	360.89	364.17	367.45	370.73	374.01	377.30	3So.5S	383.56	387.14	390.42
120	393.70	396.98	400.26	403.54	406.82	410.10	413.38	416.67	419.95	423.23
130	426.51	429.79	433.07	436.35	439.63	442.91	446.19	449.47	452.75	456.04
140	459.32	462.60	465.88	469.16	472.44	475.72	479.00	482.28	485.56	488.84
150	492.12	495.4 I	498.69	501.97	505.25	508.53	511.8i	515.09	518.37	521.65
160	524.93	528.2 1	531.49	534.78	538.06	541.34	544.02	547.90	551.18	554.46
170	557.74	561.02	564.30	567.58	570.56	574.15	577.43	580.71	583.99	587.27
I 80	590.55	593.83	597.11	600.39	603.67	606.95	610.23	613.52	616.50	620.08
190	623.36	626.64	629.92	633.20	636.48	639.76	643.04	646.32	649.60	652.89
200	656.17	659.45	662.73	666.01	669.29	672.57	675.85	679.13	682.41	685.69
210	688.97	692.26	695.54	698.82	702.10	705.38	708.66	71.94	715.22	718.50
220	721.78	725.06	72 S .34	731.63	734.91	73 S.19	741.47	744.75	748.03	751.31
230	754.59	757.87	$76 \mathrm{t.15}$	76.4.43	767.71	771.00	774.28	777.56	780.84	784.12
2.40	787.40	790.68	793.96	797.2.4	Soo. 52	So3.80	807.08	Sio. 37	S13.65	SI6.93
250	820.21	S23.49	826.77	S30.05	S33.33	S36.6 I	839.89	843.17	846.45	849.74
260	S53.02	856.30	$859.5{ }^{\text {S }}$	S62.86	866.14	S69.42	872.70	S75.98	S79.26	S82.54
270	885.82	S89.1 1	892.39	S95.67	898.95	902.23	905.51	908.79	912.07	915.35
280	918.63	92 I .9 I	925.19	$92 \mathrm{S.48}$	931.76	935.04	938.32	941.60	944.85	948.16
290	951.44	954.72	958.00	961.28	964.56	967.85	971.13	974.41	977.69	980.97
300	984.25	987.53	990.8I	994.09	997.37	1000.65	1003.93	1007.22	IOIO. 50	1013.78
310	1017.06	1020.34	1023.62	1026.90	1030.18	1033.46	1036.74	10.40.02	1043.30	1046.59
320	1049.87	I053.15	1056.43	1059.71	1062.99	1066.27	1069.55	1072.83	1076.1 1	1079.39
330	1082.67	1085.96	1089.24	1092.52	1095.So	1099.0S	I 102.36	I 105.64	I 109.92	I 112.20
340	I I I 5.48	III 8.76	II22.04	I 125.33	II 28.61	II31.89	I 135.17	1 I 3 S .45	1141.73	I 145.01
350	II48.29	1151.57	I 154.85	1158.13	II6I.4I	1164.70	1167.98	II7 7.26	1174.54	II77.82
360		IIS4.3S	I IS7.66	1190.94	1194.22	I 197.50	1200.78	1204.07	1207.35	I2 10.63
370	1213.91	1217.19	1220.47	1223.75	1227.03	1230.31	1233.59	1236.87	1240.15	I243.44
380	12.46 .72	1250.00	1253.28	1256.56	I259.84	1263.12	I266.40	I269.68	1272.96	I276.24
390	1279.52	I282.8I	1286.09	1289.37	1292.65	1295.93	I299.2 I	I 302.49	1305.77	I 309.05
400	1312.33	I315.6I	1318.89	1322.15	1325.46	1328.74	I 332.02	I 335.30	133 S .58	I341. 86
410	1345.14	I 348.42	1351.70	1354.98	I 355.26	136i.55	I 364.83	1368.11	1371.39	I 374.67
420	1377.95	r3Si. 23	1384.51	1387.79	I 391.07	1394.35	I397.63	I 400.92	1404.20	1407.48
430	1410.76	1414.04	1417.32	1420.60	I423.SS	1427.16	1430.44	1 433.72	1437.00	I440.29
440	1443.57	r 446.85	1450.13	1 453.41	I456.69	1459.97	1463.25	1466.53	1469.81	1473.09
450	ז476.37	I479.66	1482.94	I4S6.22	1489.50	1492.78	I 496.06	1499.34	1502.62	1505.90
460	1509.18	I512.46	1515.74	1519.03	1522.3 I	1525.59	1528.87	1532.15	${ }^{1} 535.43$	I 538.71
470	1541.99	I 545.27	1548.55	1551.83	$1555 . \mathrm{I}$ I	${ }^{1} 555.40$	1561.68	1564.96	1568.24	1571.52
480	1574.80	1578.08	158 r .36	1584.64	1557.92	1591.20	I 594.4S	1597.77	I 60I.05	1604.33
49°	1607.61	1610.89	1614.17	1617.45	1620.73	1624.01	1627.29	1630.57	1633.85	1637.14
500	1640.42	I643.70	i646.98	1650.26	1653.54	1656.82	1660.10	1663.38	1660.66	1669.94

METERS INTO FEET.

1 meter $=39.3700$ inches $=3280833$ feet.

Meters	0	0	20	30	40	50	60	70	80	90
	ee	Feet	Fe	Feet.	Feet	Feet	Feet.	Feet.	Feet.	Feet.
500	1640.4	1673.2	1706.0	1738.8	1771.6	ISo4.5	1837.3	IS70.I	1902.9	1935.7
600	1968.5	2001.3	2034.1	2066.9	2099.7	2132.5	2165.3	2198.2	2231.0	2263.8
700	2296.6	2329.4	2362.2	2395.0	2427.8	2460.6	$2493 \cdot 4$	2526.2	2559.0	2591.9
Soo	2624.7	2657.5	2690.3	2723.1	2755.9	2788.7	2821.5	2854.3	2887. 1	2919.9
900	2952.7	2985.6	3018.4	3051.2	3084.0	3116.8	3149.6	3182.4	3215.2	3248.0
1000	3280.8	3313.6	3346.4	3379.3	3412.1	3444.9	$3477 \cdot 7$	3510.5	$3543 \cdot 3$	3576.1
I 100	3608.9	3641.7	3674.5	3707.3	3740.1	3773.0	3805.5	3838.6	3871.4	3904.2
1200	3937.0	3969.8	4002.6	4035.4	4068.2	4101.0	41.33 .8	4166.7	4199.5	42,32.3
1300	$4265 . \mathrm{I}$	4297.9	4330.7	4363.5	4396.3	4429.1	4461.9	4494.7	4527.5	4560.4
1400	4593.2	4626.0	465 S. 5	4691.6	4724.4	4757.2	4790.0	4822.5	4855.6	4858.4
1500	492 I. 2	4954. 1	4986.9	5019.7	5052.5	5085.3	5IIS.I	5150.9	5183.7	5216.5
1600	5249.3	52S2.1	5314.9	5347.8	5380.6	5413.4	5446.2	5479.0	551.8	5544.6
1700	5577.4	5610.2	5643.0	5675.8	5708.6	5741.5	$5774 \cdot 3$	5807.1	5 5.39 .9	5872.7
ISco	5905.5	5938.3	597 I. I	6003.)	6036.7	6069.5	6102.3	6I 35.2	6168.0	6200.8
1900	6233.6	6266.4	6299.2	6332.0	6364.8	6397.6	6430.4	6463.2	6496.0	6528.9
2000	6561.7	6594.5	$6627 \cdot 3$	6660.I	6692.9	6725.7	6758.5	6791.3	6824.1	6856.9
2100	6859.7	6922.6	6955.4	6988.2	7021.0	7053.8	7086.6	7119.4	7152.2	7185.0
2200	7217.8	7250.6	7283.4	7316.3	7349.1	73 Sr. 9	7414.7	$74+7.5$	7480.3	7513.1
2300	7545.9	7578.7	76 II.5	7644.3	7677. 1	7710.0	7742.8	7775.6	7 SoS. 4	7541.2
2400	7874.0	7906.8	7939.6	7972.4	Soo5. 2	So3S.0	So70. 8	8103.7	SI 36.5	SI69.3
2500	8202.1	S234.9	S267.7	8300.5	8333.3	8366.1	8398.9	S431.7	8464.5	S497.4
2600	8530.2	S563.0	8595.8	8628.6	866 r .4	8694.2	8727.0	S759:S	S792.6	8825.4
2700	S858.2	8Sgr.i	S923.9	S956.7	8989.5	9022.3	9055. 1	9087.9	9120.7	9153.5
2800	9186.3	9219.1	9251.9	9284.5	9317.6	9350.4	9383.2	9.416 .0	9448.5	94Si. 6
2900	9514.4	9547.2	9580.0	9612.8	9645.6	9678.5	9711.3	9744.1	9776.9	9809.7
3000	9842.5	9875.3	990S.I	9940.9	9973.7	I0006.5	10039.3	10072.2	10105.0	IOI37.8
3100	10170.6	10203.4	IO236.2	10269.0	10301. ${ }^{\text {d }}$	103.34.6	10367.4	IO400.2	10433.0	10465.9
3200	10498.7	10531.5	10564.3	10597.1	10629.9	10662.7	IO695.5	10728.3	10761.1	10793.9
3300	10826.7	IoS59.6	Ios92.4	10925.2	1095 S.0	I0990.S	I 1023.6	I 1056.4	I 1089.2	I 1122.0
3400	II 154.8	IIIS7.6	I 1220.4	I1253.3	I 1286.1	I 318.9	I 1351.7	11384.5	I 1 417.3	I I 450.1
3500	II4S2.9	II515.7	I 1548.5	11581.3	I1614.I	I 1647.0	I 1679.8	II7 72.6	I 1745.4	11775.2
3600	riSil.o	I IS $43 . \mathrm{S}$	IIS76.6	11909.4	I 1942.2	I1975.0	12007.8	I 2040.7	I2073.5	12106.3
3700	12139.1	12171.9	I2204.7	12237.5	I2270.3	[2303.1	I2335.9	12368.7	I2401.5	I2434.4
3800	I2467.2	12500.0	I2532.S	12565.6	1259S.4	I2631.2	I2664.0	I2696.S	I2729.6	12762.4
3900	12795.2	I2S2S.I	12S60.9	12893.7	I2926.5	I2959.3	I2992.1	I3024.9	I 3057.7	I 3090.5
4000	[3123.3	13156.1	I3IS8.9	13221.8	I 3254.6	I 3287.4	I 3320.2	13353.0	I 33 S5.8	I 3418.6
4100	「3451.4	I34S4.2	13517.0	13549.8	I35S2.6	I 3615.5	I 3648.3	I3681. 1	I3713.9	13746.7
4200	13779.5	13SI2.3	I3S45.I	13877.9	I3910.7	I 3943.5	r 3976.3	I 4009. 2	I 4042.0	14074.8
4300	I4107.6	14140.4	14173.2	I4206.0	14235.8	I427 .6	14304.4	14337.2	I 4370.0	14402.9
4400	T4435.7	14468.5	I4501. 3	I $4534 . \mathrm{I}$	14566.9	I4599.7	14632.5	14665.3	1469S.1	14730.9
4500	14763.7	14796.6	I4829.4	14862.2	14895.0	I4927.8	14960. 6	I 4993.4	I5026.2	15059.0
4600	15091.8	I 5124.6	I 5157.4	15190.3	15223.1	I 5255.9	I 5288.7	1532 I. 5	${ }^{1} 5354.3$	${ }^{1} 5387.1$
4700	15419.9	15452.7	I 5485.5	15518.3	I 5551.1	I5584.0	I5616.8	I 5649.6	15682.4	15715.2
4800	r 5748.0	I $5750 . S$	I5813.6	I5S46.4	I5879.2	r5912.0	I 5944.8	15977.7	16010.5	16043.3
4900	r6076.1	I6IOS.9	16141.7	I6I74.5	16207.3	I6240.1	16272.9	16305.7	16338.5	1637 I. 4
5000	I6404.2	16437.0	I6469.8	16502.6	16535.4	I6568.2	16601.O	16633.8	16666.6	16699.4

$\begin{array}{lllllllllll}\text { Tenths of a meter. } & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9\end{array}$
$\begin{array}{llllllllll}\text { Feet. } & 0.328 & 0.656 & 0.984 & 5.312 & 1.640 & 1.968 & 2.297 & 2.625 & 2.953\end{array}$

I mile $=$ r. 609347 kilometers.

Miles.	0	I	2	3	4	5	6	7	8	9
	km .	km.	km.	km.	km.	km .	km .	km .	km .	km
0	\bigcirc	2	3	5	6	8	10	I I	13	14
10	16	18	19	21	23	24	26	27	29	3 I
20	32	34	35	37	39	40	42	43	45	47
30	48	50	51	53	55	56	58	60	6 I	63
40	64	66	68	69	71	72	74	76	77	79
50	So	S2	84	85	87	S9	90	92	93	95
60	97	98	100	IOI	103	105	106	108	109	III
70	II3	114	116	117	II9	12I	122	124	126	127
So	129	I30	132	134	135	I37	138	140	142	I43
90	145	146	148	150	151	153	154	156	158	[59
100	16 I	163	164	166	167	169	17 I	172	174	175
I 10	177	179	180	182	18.3	185	187	188	190	192
120	193	195	196	198	200	201	203	204	206	208
130	209	211	212	214	216	217	219	220	222	224
140	225	227	229	230	232	233	235	237	238	240
150	241	243	245	246	248	249	251	253	254	256
160	257	259	261	262	264	266	267	269	270	272
170	274	275	277	278	280	282	2 S 3	285	286	288
ISo	290	291	293	295	296	298	299	301	303	304
190	306	307	309	311	312	314	315	317	319	320
200	322	323	325	327	32 S	330	332	333	335	336
210	338	340	341	343	344	346	348	349	351	352
220	354	356	357	359	360	362	364	365	367	369
230	370	372	373	375	377	378	380	381	383	$3{ }^{3}$
240	386	3 SS	359	39 I	393	394	396	398	399	401
250	402	404	406	407	409	410	412	414	415	417
260	418	420	422	423	425	426	428	430	431	433
270	435	436	438	439	44 I	443	444	446	447	449
280	451	452.	454	455	457	459	460	462	463	465
290	467	468 .	470	472	473	475	476	478	480	4SI
300	483	484	486	488	489	491	492	494	496	497
310	499	501	502	504	505	507	509	510	512	5 I 3
320	515	517	518	520	521	523	525	526	528	529
330	531	533	534	536	538	5.39	54 I	542	544	546
340	547	549	550	552	554	555	557	558	560	562
350	563	565	566	568	570	57 I	573	575	576	578
360	579	5 SI	533	584	586	587	539	591	592	594
370	595	597	599	600	602	604	605	607	608	6 ro
3 SO	612	6 I 3	6 5 5	6 I 6	6 I 8	620	621	623	624	626
390	628	629	631	632	634	636	637	639	641	642
400	644	645	647	649	650	652	653	655	657	658
410	660	665	663	665	666	66 S	669	671	673	674
420	676	678	679	681	682	684	686	687	689	690
430	692	694	695	697	698	700	702	703	705	706
440	708	710	711	713	715	716	718	719	721	723
450	724	726	727	729	73 I	732	734	735	737	739
460	740	742	744	745	747	748	750	752	753	755
470	756	758	760	761	763	764	766	768	769	771
480	772	774	776	778	779	781	782	784	785	787
490	789	790	792	793	795	797	798	800	801	803
500	So5	So6	So8	So9	8iI		SI4			
510	S2I	S22	S24	826	827	829	S30	S32	834	S35
520	837	838	S40	842	S43	845	847	848	850	851
530	853	855	S56	858	859	861	863	864	866	S67
540	869	871	872	S74	S75	877	879	8So	SS2	884
550	S85	SS7	888	890	892	893	895	S96	898	900

Smit - nian Tables.

Miles.	0	1	2	3	4	5	6	7	8	9
	km.	km .	km .	km .	km .	km.	km.	km.	km .	km.
550	SS5	887	SS8	890	892	893	895	S96	898	900
560	901	903	904	906	908	909	9 II	912	914	916
570	917	919	921	922	924	925	927	929	930	932
580	933	935	937	938	940	941	943	945	946	948
590	950	951	953	954	956	958	959	961	962	964
600	966	967	969	970	972	974	975	977	978	980
610	982	983	955	957	988	990	991	993	995	996
620	998	999	IOOI	1003	1004	1006	1007	1009	IOI I	IOI2
630	IOI4	IOI5	IOI 7	IOI9	1020	1022	1024	IO25	1027	1028
640	1030	1032	1033	1035	1036	1038	1040	IO4I	1043	1044
650	1046	1048	IO49	1051	1053	1054	1056	1057	1059	106I
660	1062	1064	1065	1067	1069	1070	1072	1073	1075	1077
670	1078	10So	108I	1083	1085	1086	Io8S	1090	109I	1093
680	1094	1096	1098	1099	IIOI	I IO2	I 104	I 106	IIO7	1109
690	II IO	III2	III4	III5	I I 17	IIIS	II2O	II22	1123	I 125
700	II27	1128	II 30	II3I	I 133	II35	II36	1138	II39	II4
710	II43	I I44	II46	II47	1149	II5 1	I I52	I I 54	I I 56	II57
720	I159	1160	II62	II64	II65	1167	II6S	1170	1172	1173
730	I I 75	1176	I178	I 180	I 181	IIS3	IIS4	I I86	IISS	IIS9
740	II9I	II93	II94	II96	1197	II99	I2OI	1202	1204	1205
750	1207	1209	1210	1212	1213	1215	1217	1218	1220	1221
760	1223	1225	1226	1228	1230	1231	1233	1234	1236	1238
770	1239	1241	1242	1244	1246	1247	1249	1250	1252	1254
780	I255	1257	1259	1260	1262	1263	1265	1267	1268	1270
790	I271	1273	1275	1276	1278	1279	I2SI	1283	1284	1286
800	1287	1289	1291	1292	1294	1296	1297	1299	1300	1302
810	1304	1305	1307	1308	1310	1312	1313	I3I5	1316	1318
820	1320	I32I	I 323	1324	I326	1328	1329	1331	1333	1334
S30	1336	1337	I 339	1341	I 342	I 344	1345	I347	I 349	1350
840	1352	1353	I 355	1357	1358	1360	1362	1363	I 365	1366
850	I368	1370	1371	1373	I374	1376	1378	1379	1381	1382
860	1384	I 386	1387	1389	I390	I 392	1394	I 395	1397	1399
870	1400	1402	1403	1405	1407	I 408	I410	I4 II	1413	14I5
880	1416	I4I8	1419	142 I	1423	I424	1426	1427	1429	1431
890	1432	1434	1436	I437	I439	1440	1442	I444	I445	1447
900	1448	I 450	1452	I453	I455	I456	1458	1460	I46I	1463
910	1464	1466	1468	1469	1471	1473	1474	1476	1477	1479
920	1481	1482	1484	1485	1487	1489	1490	1492	1493	1495
. 930	1497	I 498	1500	1502	1503	1505	1506	1508	1510	I 511
940	1513	I5I4	1516	1518	1519	152 I	1522	I524	$15: 6$	1527
950	I529	I530	1532	I534	1535	I 537	1539	1540	1542	I543
960	1545	I 547	I 548	I550	I 551	I 553	I 555	I 556	I 558	I559
970	1561	1563	I 564	I566	1567	I 569	1571	I 572	1574	I 576
980	1577	I579	1580	1582	I.584	I 5 S 5	1587	1588	1590	1592
990	I 593	I 595	I596	I598	1600	1601	1603	1605	1606	1608
1000	1609	16 II	1613	I6I4	1616	16โ7	16I9	I62I	I 622	I624
Miles. km Miles. km. Miles. km. Miles. km. 1000 1609 6000 9656 11000 17703 16000 25750 2000 3219 7000 $\mathrm{II265}$ 12000 19312 17000 27359 3000 4828 8000 12875 13000 20922 18000 28968 4000 6437 9000 14484 14000 2253 I 19000 30578 5000 8047 10000 16093 15000 24140 20000 32187										

Table 16.
KILOMETERS INTO MILES.
I kilometer $=0.621370 \mathrm{mile}$.

KIIO-	0	1	2	3	4	5	6	7	8	9
	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Milest.	Miles.	Miles.	Miles.
0	0.0	0.6	1.2	1.9	2.5	3.1	3.7	4.3	5.0	5.6
10	6.2	6.8	7.5	8.I	8.7	9.3	9.9	10.6	11.2	II. 8
20	12.4	13.0	13.7	14.3	14.9	15.5	16.2	16.8	17.4	18.0
30	18.6	19.3	19.9	20.5	$2 \mathrm{II.1}$	21.7	22.4	23.0	23.6	24.2
40	${ }^{2}+9$	25.5	26.1	26.7	27.3	28.0	28.6	29.2	29.8	30.4
50	3 I .1	31.7	32.3	32.9	33.6	34.2	34.8	35.4	36.0	36.7
60	37.3	37.9	38.5	39.1	39.8	40.4	41.0	41.6	42.3	42.9
70	43.5	44.1	44.7	45.4	46.0	46.6	47.2	47.8	48.5	49.1
So	49.7	50.3	51.0	51.6	52.2	52.8	53.4	54.1	54.7	55.3
90	55.9	56.5	57.2	57.8	58.4	59.0	59.7	60.3	60.9	61.5
100	62.1	62.8	63.4	64.0	64.6	65.2	65.9	66.5	67.1	67.7
110	68.4	69.0	69.6	70.2	70.8	71.5	72.1	72.7	73.3	73.9
120	74.6	75.2	75.8	76.4	77.0	77.7	78.3	78.9	79.5	80.2
130	So. 8	SI. 4	82.0	S2.6	83.3	83.9	S4.5	$85 . \mathrm{I}$	S5.7	86.4
140	87.0	87.6	88.2	88.9	S9.5	90.1	90.7	$9 \mathrm{I} \cdot 3$	92.0	92.6
150	93.2	93.8	94.4	95.1	95.7	96.3	96.9	97.6	98.2	98.8
160	99.4	100.0	100.7	101.3	101.9	102.5	103.1	103.8	104.4	105.0
170	105.6	106.3	106.9	107.5	108. 1	108.7	109.4	110.0	110.6	111.2
150	III. S	112.5	113.1	113.7	114.3	115.0	115.6	116.2	116.8	117.4
190	IIS.1	118. ${ }^{1}$	119.3	119.9	120.5	121.2	121.8	122.4	123.0	123.7
200	124.3	124.9	125.5	126.1	126.8	127.4	128.0	129.6	129.2	129.9
210	130.5	13 I .1	131.7	132.4	133.0	133.6	134.2	134.8	135.5	136.1
220	136.7	137.3	137.9	138.6	139.2	139.8	140.4	141.1	141.7	142.3
230	142.9	143.5	144.2	144.8	145.4	i46.0	146.6	147.3	147.9	148.5
240	149.1	149.8	150.4	151.0	151.6	152.2	152.9	153.5	154. 1	154.7
250	155.3	156.0	156.6	157.2	157.8	158.4	159.1	159.7	160.3	160.9
260	161.6	162.2	162.8	163.4	164.0	164.7	165.3	165.9	166.5	167.1
270	167.8	168.4	169.0	169.6	170.3	170.9	171.5	172.1	172.7	173.4
280	174.0	174.6	175.2	175.8	176.5	177.I	177.7	178.3	179.0	179.6
290	ISO. 2	180.8	181.4	182.1	182.7	183.3	183.9	IS4.5	I85.2	185.8
300	IS6.4	187.0	187.7	188.3	188.9	189.5	190.1	190.8	191.4	192.0
310	192.6	193.2	193.9	194:5	195.1	195.7	196.4	197.0	197.6	198.2
320	198.8	199.5	200.1	200.7	201.3	201.9	202.6	203.2	203.8	204.4
330	205. I	205.7	206.3	206.9	207.5	208.2	203.8	209.4	2 20.0	210.6
340	211.3	211.9	212.5	213.1	$213.8{ }^{\circ}$	214.4	215.0	215.6	216.2	216.9
350	217.5	218. 1	218.7	219.3	220.0	220.6	221.2	221.8	222.5	223.1
360	223.7	224.3	224.9	225.6	226.2	226.8	227.4	228.0	228.7	229.3
	229.9		231.1	231.8		233.0	233.6	234.3	234.9	235.5
3 30	236.1	236.7	237.4	238.0	238.6	239.2	239.8	240.5	241.1	2.41 .7
390	242.3	243.0	243.6	244.2	244.8	2.45	246.1	246.7	247.3	247.9
400	248.5	249.2	249.8	250.4	251.0	251.7	252.3	252.9	253.5	254. I
410	254.8	255.4	256.0	256.6	257.2	257.9	258.5	259.1	259.7	260.4
420	261.0	261.6	262.2	262.8	263.5	264.1	264.7	265.3	265.9	266.6
430	267.2	267.8	268.4	269.1	269.7	270.3	270.9	271.5	272.2	272.8
440	273.4	274.0	274.6	275.3	275.9	276.5	277.1	277.8	278.4	279.0
450	279.6	280.2	280.9	281.5	282.1	282.7		284.0	284.6	285.2
460	285.8	286.5	287.1	287.7	288.3	288.9	289.6	290.2	290.8	29 I .4
470	292.0	292.7	293.3	293.9	294.5	295.2	295.8	296.4	297.0	297.6
$4{ }^{\circ} \mathrm{O}$	298.3	298.9	299.5	300. 1	300.7	301.4	302.0	302.6	303.2	303.8
490	304.5	305.1	305.7	306.3	307.0	307.6	308.2	308.8	309.4	310.1
500	310.7	311.3		312.5				315.0		316.3
510	316.9	317.5	318.1	318.8	319.4	320.0	320.6	321.2	32 I.9	322.5
520	323.1	323.7	324.4	325.0	325.6	326.2	326.8	327.5	328.1	328.7
530	329.3	329.9	330.6	331.2	331.8	332.4	333.1	333.7	334.3	334.9
540	335.5	336.2	336.8	337.4	338.0	338.6	339.3	339.9	340.5	341.1

KILOMETERS INTO MILES.

I nautical mile* $=6080.20$ feet.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
I	1.1516	1	
2	2.303 I		
3	3.4547	2	1.7368
4	4.6062	3	2.6052
5		4	3.4736
6	5.7578		
7	6.9093	6	4.3420
8	8.0609	7.2104	
9	9.2124	8	6.0787
	10.3640	9	6.9471

*As defined by the United States Coast Survey.
Table 18.

CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENGLISH EQUIVALENTS.

The asterisk (*) indicates that the measure is obsolete or seldom used.

Measure.	Metric Equivalent.	English Equivalent.
El (Netherlands)	I meter.	$3.280 \dot{8}$ feet.
Fathom, Swedish $=6$ feet	1.7814	5.8445 "
Foot, Austrian*	0.31608 "	1.0370 "
old French*	0.32484 "	1.0657 "
Russian	0.30480 "	I "
Rheinlandisch or Rhenish (Prussia*, Dennıark, Norway*).	0.31385 "	1.0297 "
Swedish*	0.2969 "	0.9741 "
Spanish* $=1 / 3$ vara	0.2786	0.9140 "
*Klafter, Wiener (Vienna)	I.S9648 "	6.2221 "
*Line, old French $=\frac{\mathrm{r}}{144}$ foot	0.22558 cm .	0.0888 inch.
Mile, Austrian post* $=24000$ feet	$\begin{aligned} & 7.58594 \mathrm{~km} . \\ & \mathrm{I} .852 \end{aligned}$	4.714 statute miles. I. 1508
Swedish $=36000$ feet	10.69	6.642 "
Norwegian $=36000$ feet	II.2986 "	7.02 "
Netherlands (mijl)	"	0.6214 " "
Prussian (law of 1868)	7.500	4.660 " "
Danish	7.5324	4.6804
Palm, Netherlands	O.I meter.	0.328 r feet.
*Rode, Danish	3.7662 "	12.356 "
* Ruthe, Prussian, Norwegian	3.7662 "	12.356 "
Sagene (Russian)	2.1336 "	7 "
*Toise, old French $=6$ feet	1.9490	6.3943 "
*Vara, Spauish	0.8359	2.7424
Mexican	0.8380	2.7493
Werst, or versta (Russian) $=500$ sashjene .	1.0668 km .	3.500 "

CONVERSION OF MEASURES OF TIME AND ANGLE.

Arc into time Table ig
Time into arc TABle 20
Days into decimals of a year and angle Table 21
Hours, minutes and seconds into decimals of a day Table 22
Decimals of a day into hours, minutes and seconds TABLE 23
Minutes and seconds into decimals of an hour Table 24
Local mean time at apparent noon Table 25
Sidereal time into mean solar time TABLE 26
Mean solar time into sidereal time Table 27

Table 19.
ARC INTO TIME.

-	h. m	-	h. m.	-	h. m.		h m .		h. m.		h. m.	,	m. s.	//	s.
0		60		120	8 -	180	120	240	160	00	200	0	0	0	0.000
1	-	61	44	121	S 4	181	124	241	164	301	20		o	1	0.067
2	- 8	62	4 S	122	S 8	IS_{2}	12 S	242	16 S	302	20	2	- 8	2	0.133
3	- 12	63	412	123	812		1212	43	1612	303	2012	3	$\bigcirc 12$	3	0.200
4	- 16	64	416	124	S 16	IS4	1216	244	1616	304	20	4	-	4	0.267
	- 20	65	420	125	S 20	185	1220	245	1620	305	2020	5	- 20	5	0.333
6	- 24	66	424	126	824	IS6	1224	246	1624	306	20	6	24	6	0.400
7	- 28	6	428	127	S 28	IS7	1228	247	16	307	20		- 28		0.467
S	- 32	6	432	128	832	ISS	1232	248	1632	308	2032	8	- 32	8	0.533
9	- 36	69	4.36	12	S 36	I89	1236	249	1636	309	2036	9	- 36	9	0.600
10	O 40	70	4	130	840	190	1240	250	1640	310	20	10	o	10	0.667
11	044	71	444	I3I	844	191	1244	251	16	311	2044	II	044	II	33
12	- 4	72	4	132	S	192	1248	252	1648	312	2048	12	- 48	12	0.800
13	- 52	73	452	133	852	193	1252	253	1652	313	2052	13	- 52	13	0. 567
14	- 56	74	456	1.34	S 56	194	1256	254	16 56	4	2056	14	- 56	14	0.933
15	10	75	5 -	13	90	195	I3 0	255	170	315	210	15	I	15	1.000
16	I 4	76	54	136	94	196	134	256	174	316	2 I	16	I	16	1.067
17	18	77	5 8	137		97	13 8	257	17	317	21	17	I	17	I. 133
18	112	78	512	13	912	198	I3 12	258	1712	318	2112	IS	1 I	18	200
19	116	79	516	139	916	199	1316	259	1716	319	2116	19	1 I	19	I. 267
20	1	80	5	140	920	200	13	260	1720	320	2120	20	120	20	1.333
21	1	SI	5				I3	26	1724	32 I	21		124	2 I	400
22	I 28	82	528	142	9	202	13	262	17	322	2128	22	I 28	22	I. 467
23	1	83	532	143	9	203	I3 3^{2}	63	1732	323	2132	23	I 32	23	I. 533
24	I 36	84	5	I44	9	204	I3 36	264	1736	324	21 3^{6}	2.4	I 36	24	1. 600
25	I 40	85	5	145	940	205	13	265	1740	325	2140	25	I 40	25	I. 667
26	I 44	86	544	146	9	206	I3	66	17	326	2144	26	I 44	26	I. 733
27	I 48	S7	548	147	9	207	I3	67	1748	327	21	27	1	27	I. 800
28	I 52	SS	552	34	9	20	I3		1752	328	21 52	28	I 52	28	I. 867
29	I 56	S9	. 5.56	149	9	209	I3	26	1756	329	21.56	29	I 56	29	1.933
$\frac{30}{31}$		90		0	10	2	14	270	I 8	330	22	30		30	2.000
3 I		91		151						I				1	
32	2 S	92	68	152	10		148	272	18 S	332	22	32		32	2.133
33	212	93	612	153	10	213	1412	273	IS 12	333	2212	33	212	33	2.200
	2	94	6	154	10	214	I4	274	IS 16	334	2216	34	2	34	2.267
3	220	95	620	155	10	215	1420	275	I8 20	335	2220	35	220	35	2.333
36	22	96	624	I56	10	216	14	276	IS	336	22	36	224	36	2.400
37	228	97	628	157	102	17	14	277	IS 28	337	2228	37	228	37	2.467
3	232	95	632	158		218	I4	27 S	IS 32	33 S	2232	38	232	3 S	2.533
39	236	99	636	159	IO 36	219	1436	279	IS . 36	339	2236	39	236	39	2.600
40	24	100	640	160	10	22	1440	280	I8 40	340	2240	40	240	40	2.667
41	2	101	644	161		22 I		1		4 I			244	41	2.733
42	248	10	648	162	Io	222	1448	$2 \mathrm{S2}$	I8 48	342	2248	42	248	42	2.800
43	252	103	652	163	IO	223	1452	283	IS 52	343	2252	43	252	43	2.867
44	256	104	656	164	IO 56	224	1456	284	IS 56		2256	44	256	44	2.933
45	30	10	7 o	16	II O	22	150	285	19 -	345	230	45	30	45	3.000
46	3	106	74	166	II 4	226	I5 4	286	I9 4	346	234	46	34	46	3.067
47	3 S	107	78	1	II 8	227	15 S	25	19 S	347	23 S	47	3	47	3. 133
4	312	108	712	168	II 12	228	1512	25	19 I2	34	2312	48	312	48	3.200
49	316	109	716	169	II 16	229	1516	2 So	1916	349	2316	49	316	49	3.267
50	320	110	720	17	II	230	I5 20	290	1920	35	2320	50	320	50	$3 \cdot 333$
5 I	324		724	17	II 24	2	I5 24	91	1924	351	2324	5	324	51	3.400
52	328	112	728	172	II 28	232	I5 28	92	1928	352	2328	52	328	52	3.467
53	332	113	732	173	II 32	233	1532	293	1932	353	2332	53	332	53	3.533
55	336	II	736	174	II 36	234	1536	294	1936	354	2336	54	336	54	3.600
55	340	115	740	175	II 40	235	I5 40	295	1940	355	2340	55	340	55	3.667
56	344	116	744	176	II 44	236	1544	296	1944	356	2344	56	344	56	3.733
57	348	117	748	177	II 48	237	1548	297	1948	357	2348	57	348	57	3. 800
5	352	II	752	178	II 52	238	1552	298	1952	35S	2352	5 S	352	58	3.567
59	356	119	756	179	II 56	239	1556	299	1956	35y	$\therefore 56$	59	356	59	3.933
60	40	120	80	180	120	240	160	300	$20 \quad 0$	360	240	60	4	60	4.000

Smithgonian Tableg.

TIME INTO ARC.

Hours into Arc.

Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
hrs.	0	hrs.	0	hrs.	0	hrs.	0	hrs.	0	hrs.	0
1	15	5	75	9	I35	13	195	17	255	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	IO5	11	165	15	225	19	285	23	345
4	60	8	I20	12	ISO	16	240	20	300	24	360

Minutes of Time into Arc.
Seconds of Time into Arc.

m.	-	1	m.	\bigcirc,	m.	-. 1	s.	,	/1	s	11	s.	1	/1
1	0	I5	21	515	41	IO 15	1	o	15	21	515	41		
2	0	30	22	530	42	1030	2	-	30	22	530	42		30
3	-	45	23	545	43	IO 45	3	-	45	23	545	43		45
4	I	-	24	6 o	44	II 0	4	1	-	24	6	44	11	0
5	I	15	25	615	45	II 15	5	I	I5	25	615	45	II	15
6	I	30	26	630	46	II 30	6	1	30	26		46	II	30
7	I	45	27	645	47	II 45	7	1	45	27	645	47	II	45
S	2	0	28	7 0	48	120	8	2	0	28	7 -	48	12	0
9	2	I5	29	7 I5	49	12 I 5	9	2	15	29	$7 \quad 15$	49	12	I5
10	2	30	30	730	50	1230	10	2	30	30	730	50	12	30
II	2	45	31	745	51	1245	I I	2	45	31	745	51	12	45
12	3	-	32	S 0	52	130	12	3	0	32	80	52	I3	\bigcirc
13	3	15	33	S I5	53	I3 15	13	3	15	33		53	I3	15
14	3	30	$3+$	S 30	54	1330	14	3	30	34	S 30	54	13	30
15	3	45	35	S 45	55	1345	15	3	45	35		55	13	45
16	4	0	36	90	56	140	16	4	0	36	90	56	14	0
17	4	15	37	9 I5	57	1415	17	4	I5	37		57	14	
18	4	30	38	930	58	1430	18	4	30	38	930	58		30
19	4	45	39	945	59	I4 45	19	4	45	39		59		
20	5		40	100	60	I5 o	20	5	0	40	10 O	60	15	0

Hundredths of a Second of Time into Arc.

Hundredths of a Second of Time	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
$\begin{gathered} \text { s. } \\ 0.00 \end{gathered}$	\%'00	O. ${ }^{\prime \prime} 15$	0.130	O. 0.45	\%'60	0. 175	0.90	İ. 05	I' 20	İ35
. 10	I. 50	1. 65	I. 80	1.95	2.10	2.25	2.40	2.55	2.70	2.85
. 20	3.00	3.15	3.30	3.45	3.60	3.75	3.90	4.05	4.20	4.35
. 30	4.50	4.65	4.80	4.95	5.10	5.25	5.40	$5 \cdot 55$	5.70	5.85
. 40	6.00	6.15	6.30	6.45	6.60	6.75	6.90	7.05	7.20	$7 \cdot 35$
0.50	$7 \cdot 50$	7.65	7.80	7.95	8.10	8.25	8.40	8.55	8.70	S. 85
. 60	9.00	9.15	9.30	9.45	9.60	9.75	9.90	10.05	10.20	10.35
.70	10.50	IO. 65	10.So	10.95	II.10	II. 25	II. 40	11.55	11.70	II. 85
. 80	12.00	I2.15	12.30	12.45	12.60	12.75	12.90	13.05	13.20	13.35
. 90	13.50	I 3.65	13.80	13.95	14.10	14.25	14.40	14.55	14.70	14.85

Table 21.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angle.	Day of	Month.	$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				Common rear.	Bissextile Year.
I	0.00000	$0^{\circ} 0^{\prime}$	Jan. I	Jan. I	51	-. 13689	$49^{\circ} 17^{\prime}$	Feb. 20	Feb. 20
2	. 00274	- 59		2	52	. 13963	5016	21	I
3	. 00548	158	3	3	53	. 14237	515	22	22
4	. OOS2I	257	4	4	54	. 14511	5214	23	23
5	0.01095	357	5	5	55	0.14784	5313	24	24
6	. 01369	456	6	6	56	. 15058	54	25	25
7	.oI643	555	7	7	57	. 5332	$55 \quad 12$	26	26
8	. 01916	654	8	8	5 S	. 15606	56 II	27	27
9	.02190	753	9	9	59	- 15880	57 10	28	28
10	0.02464	852	10	10	60	0.16153	589	Mar. 1	29
II	. 02738	951	11	II	$6 \mathrm{I}^{\circ}$. 16427	598		Mar.
12	. 03011	1051	12	12	62	. 16701	607	3	2
13	. 03285	II 50	13	13	63	. 16975	617	4	3
14	. 03559	1249	14	14	64	. 17248	626	5	4
15	0.03833	1348	15	15	65	0.17522	635	6	5
16	.04107	1447	16	16	66	. 17796	$64 \quad 4$	7	6
17	.04381	1546	17	17	67	. 18070	653	8	7
18	. 04654	1645	18	18	68	. 18344	$66 \quad 2$	9	8
19	. 04928	1744	19	19	69	. IS617	67 I	10	9
20	0.05202	1844	20	20	70	0.18891	68 -	II	10
21	. 05476	1943	21	21	71	. 19165	$69 \quad 0$	12	II
22	. 05749	2042	22	22	72	. 19439	6959	13	12
23	. 06023	2141	23	23	73	. 19713	70 5S	14	13
24	. 06297	2240	24	24	74	. 19986	7157	15	14
25	0.0657 I	2339	25	25	75	0.20260	7256	16	15
26	. 06845	2438	26	26	76	. 20534	7355	17	16
27	. 07118	2538	27	27	77	. 20 So8	7454	18	17
28	. 07392	2637	28	28	78	. 21081	7554	19	18
29	. 07666	$27 \quad 36$	29	29	79	. 21355	7653	20	19
30	0.07940	2835	30	30	80	0.21629	7\% 52	21	20
31	.08214	2934	31	3 I	SI	. 21903	-4 5	22	21
32	.08.487	3033	Feb. I	Feb. I	82	. 22177	7950	23	22
33	.08761	3132		2	S_{3}	. 22450	So 49	24	23
34	. 09035	$32 \quad 32$	3	3	S4	. 22724	SI 48	25	24
35	0.09309	33 31	4	4	85	0.22998	8248	26	25
36	.095S2	3430	5	5	86	. 23272	S3 47	27	26
37	. 09856	$35 \quad 29$	6	6	87	. 23546	S4 46	28	27
38	.10130	$36 \quad 28$	7	7	88	. 23819	S5 45	29	28
39	. 10.404	3727	8	8	S9	. 24093	8644	30	29
40	0.10678	$38 \quad 26$	9	9	90	0.24367	S7 43	3 I	30
41	. 10951	3926	10	10	91	.2464I	S8 42	Apr. ${ }^{\text {I }}$	3 I
42	. II225	$40 \quad 25$	II	I I	92	. 24914	8942		Apr. I
43	. I 1499	4124	12	12	93	. 25188	9041	3	2
44	. 11773	$42 \quad 23$	13	13	94	. 25462	9140	4	3
45	0.12047	4322	14	14	95	0.25736		5	4
46	. 12320	44 21	15	15	96	. 26010	9338	6	5
47	.12594	$45 \quad 20$	16	16	97	. 26283	9437	7	6
48	. 12868	46 19	17	17	98	. 26557	9536	8	7
49	.13142	47 19	18	18	99	. 26831	9635	9	8
50	0.13415	$48 \quad 18$	19	19	100	0.27105	9735	10	9

Smithsonian Tablee.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	$\begin{aligned} & \text { Decimal } \\ & \text { of } \\ & \text { a Year. } \end{aligned}$	Angle.	Day of Month.		$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of. a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				Common Year.	B'ssextile Year.
101	0.27379	$98^{\circ} 34$	Apr. 1 I	Apr. 10	151	0.41068	$147{ }^{\circ} 51^{\prime}$	May 31	May 30
102	. 27652	9933	12	11	152	. 41342	14850	June 1	3 I
103	. 27926	100 32	I3	12	153	.41615	14949		June I
104	. 28200	IOI 31	14	13	154	. 41889	15048	3	2
105	0.28474	10230	15	14	155	0.42163	15147	4	3
106	.28747	10329	16	15	156	. 42437	15246	5	4
107	. 29021	10429	17	16	157	. 42710	15345	6	5
108	. 29295	10528	I8	17	I58	. 42984	15445	7	6
109	. 29569	10627	19	IS	I59	. 43258	I 5544	8	7
110	0.29 S43	10726	20	19	160	0.43532	I5643	9	8
III	. 30116	10825	2 I	20	161	.43So6	I57 42	10	9
112	. 30390	10924	22	2 I	162	. 44079	15841	11	10
II3	. 30664	IIO 23	23	22	163	. 44353	I 5940	12	II
II4	. 30938	III 23	24	23	164	. 44627	16039	13	12
115	0.31211	11222	25	24	165	0.44901	161 39	14	13
116	.31485	11321	26	25	166	. 45175	16238	15	14
117	. 31759	11420	27	26	167	. 45448	16337	16	15
118	. 32033	11519	28	27	168	. 45722	16436	17	16
119	. 32307	116 IS	29	28	169	. 45996	16535	18	17
120	0.32580	11717	30	29	170	0. 46270	16634	19	18
121	. 32854	11817	May 1	30	17 !	. 46543	16733	20	19
122	-33128	11916	2	May I	172	. 46817	16833	21	20
123	. 33402	12015	3	2	173	.47091	16932	22	21
124	-3.3676	12114	4	3	174	. 47365	17031	23	22
125	0.339.49	12213	5	4	175	0.47639	I71 30	24	23
126	. 34223	12312	6	5	176	. 47912	17229	25	24
127	- 34497	124 II	7	6	177	. 48186	17328	26	25
128	34771	12510	8	7	178	. 48460	17427	27	26
129	. 35044	126 Io	9	8	179	. 48734	I75 26	28	27
130	0.35318	1279	10	9	180	0.49008	17626	29	28
131	. 35592	128 8	II	10	I8I	. 4928 I	17725	30	29
132	. 35566	1297	12	11	182	. 49555	17824	July 1	30
133	. 36140	1306	13	12	183	. 49829	17923	,	July 1
I34	.36413	1315	14	13	I84	. 50103	ISO 22	3	2
135	0.36687	1324	15	14	185	0.50376	ISI 2I	4	3
136	. 36961	I33 4	16	15	I86	. 50650	I82 20	5	4
137	. 37235	I 343	17	16	187	. 50924	$\mathrm{I}_{3} 22$	6	5
138	. 37509	$135 \quad 2$	18	17	I88	.51198	IS4 19	7	6
I39	. 37782	136 I	19	18	I89	. 51472	185 I8	8	7
140	0.38056	137 0	20	19	190	0.51745	18617	9	8
I4 I	. 38330	13759	21	20	191	. 52019	18716	10	9
142	. 38604	13858	22	21	192	. 52293	18815	II	10
143	-38877	13958	23	22	193	. 52567	IS9 14	12	1 I
144	-39151	140.57	24	23	194	. 5284 I	19014	13	12
145	0.39425	14156	25	24	195	0.53114	19113	14	13
146	. 39699	14255	26	25	196	. 53388	19212	15	14
147	. 39973	14354	27	26	197	. 53662	193 II	16	15
148	. 40246	14453	28	27	198	. 53936	19410	17	16
149	. 40520	14552	29	28	199	. 54209	1959	18	17
150	0.40794	14651	30	29	200	0.54483	1968	19	18

gm yhbonian Tableg.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angle.	Day of Month.		$\begin{gathered} \text { Day } \\ \text { of } \\ \text { sear. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.	
			Conmon Year.	Bissext:le Year.				Common Year.	Bissextile Year.
201	0.54757	$197^{\circ} \mathrm{S}^{\prime}$	July 20	July 19	251	0.68446	$2.46^{\circ} 24^{\prime}$	Sept. S	Sept. 7
202	. 55031	1987	21	20	252	. 68720	24724		
203	. 55305	1996	22	2 I	253	. 68994	24823	10	9
204	. 55578	2005	23	22	254	. 69268	24922	II	10
205	0. 55852	2 I 4	24	23	255	0.6954I	25021	12	II
206	. 56126	2023	25	24	256	.698i5	25120	13	12
207	. 56400	2032	26	25	257	. 70089	25219	14	I3
20 S	. 56674	204 I	27	26	258	. 70363	253 IS	15	14
209	. 56947	205 I	28	27	259	. 70637	25417	16	15
210	0.5722 I	206 0	29	28	260	0.70910	25517	17	16
211	. 57495	20659	30	29	261	.71184	25616	18	17
212	. 57769	20758	3 I	30	262	. 71458	25715	19	18
213	. 5 So42	20857	Aug. I	3 I	263	. 71732	25 S 14	20	19
214	.58316	20956	2	Aug. 1	264	. 72005	25913	21	20
215	0.55590	21055	3	2	265	0.72279	26012	22	21
216	. 58864	2II 55	4	3	266	. 72553	261 II	23	22
217	. 59138	21254	5	4	267	.72827	262 II	24	23
218	. 5941 I	21353	6	5	268	.73101	26310	25	24
219	. 59685	21452	7	6	269	. 73374	2649	26	25
220	0.59959	215 5I	8	7	270	0.73648	2658	27	26
221	. 60233	21650	9	S	271	. 73922	2667	2.8	27
222	. 60507	21749	10	9	272	.74196	2676	29	28
223	. 607 So	21849	II	10	273	. 74470	2685	30	29
224	.61054	21948	12	I I	274	. 74743	2695	Cet. I	30
225	0.6132S	22047	13	12	275	0.75017	2704	2	Oct. I
226	. 61602	22146	14	13	276	.75291	$27 \mathrm{I} \quad 3$	3	2
227	.61875	22245	15	14	277	. 75565	272	4	3
228	. 62149	22344	16	15	278	$.75 \mathrm{~S}_{3} \mathrm{~S}$	273 I	5	4
229	. 62423	22443	17	16	279	.76112	274 -	6	5
230	0.62697	22543	18	17	280	0.76386	27459	7	6
231	. 6297 I	22642	19	18	281	. 76660	27559	8	7
232	. 63244	22741	20	19	282	. 76934	276 58	9	8
233	. 63518	22840	2 I	20	$2 S_{3}$.77207	27757	10	9
234	. 63792	22939	22	21	2 S 4	. 774 SI	27556	II	10
235	0.64066	23038	23	22	285	0.77755	27955	12	II
236	. 64339	23137	24	2.3	286	. 7 So29	28054	13	12
237	.64613	23236	25	24	287	.78303	2SI 53	14	13
23 S	.64587	23336	26	25	285	.75576	28252	I5	14
239	.6516I	23435	27	26	289	. 78550	28352	16	I5
240	0.65435	23534	28	27	290	0.79124	28451	17	16
24 I	. 65708	23633	29	2 S	291	. 79398	28550	IS	17
242	. 65982	25732	30	29	292	. 79671	25649	19	18
243	. 66256	23831	3 I	30	293	. 79945	25748	20	19
24.4	. 66530	23930	Scpt. I	3 I	294	. 80219	2 SS 47	2 I	20
245	0.66504	24030	2	Sept. I	295	0. 50493	28946	22	2 I
246	. 67077	24129	3	2	296	. $\mathrm{So7} 67$	29046	23	22
247	. 67351	24228	4	3	297	. Sio40	29145	24	23
24 S	. 67625	24327	5	4	298	.SI3I4	29244	25	24
249	.67899	24426	6	5	299	.Sis5S	29343	26	25
250	0.68172	24525	7	6	300	0.81862	29442	27	26

Smithronian Tableg.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

Table 22.
HOURS, MINUTES AND SECONDS INTO DECIMALS OF A DAY.

Hours.	Day.	Min.	Day.	Min.	Day.	Sec.	Day.	Sec.	Day.
1	0.041667	1	0.000694	31	0.021 528	1	0.000012	31	0.000359
2	. 083333	2	.OOI 389	32	. 022222	2	. 000023	32	. 000370
3	.125000	3	. 002083	33	. 022917	3	. 000035	33	. 000382
4	. 166667	4	. 002778	34	. 02361 I	4	. 000046	34	. 000394
5	0.208333	5	0.003472	35	0.024305	5	0.000058	35	0.000405
6	. 250000	6	. 004167	36	. 025000	6	. 000069	36	. 000417
7	. 291667	7	. 004861	37	. 025694	7	. 000081	37	. 0000428
8	. 333333	8	. 005556	38	. 026389	8	. 000093	38	. 000440
9	. 375.000	9	. 006250	39	. 027083	9	. 000104	39	. 000451
10	0.416667	10	0.006944	40	0.027778	10	0.000116	40	0.000463
II	. 458333	11	. 007639	41	. 028472	I I	.000 127	41	. 000475
12	. 500000	12	.008 333	42	. 029167	12	. 000139	42	. 000486
13	. 541 l 67	13	. 009028	43	. 029 861	I3	. 000150	43	. 000498
14	. 583333	14	. 009722	44	. 030556	14	. 000162	44	. 000509
15	0.625000	15	0.010417	45	0.031250	15	0.000174	45	0.000521
16	. 666667	16	.ori III	46	.031 944	16	. 000185	46	. 000532
17	.708333	17	. OII 806	47	. 032639	17	. 000197	47	. 000544
18	.750000	18	.OI2 500	48	. 033333	18	. 000208	48	. 000556
19	. 791667	19	. 013194	49	. 034028	19	. 000220	49	. 000567
20	0.833333	20	0.013889	50	0.034722	20	0.00023 I	50	0.000579
2 I	. 875000	2 I	.OI4 583	5 I	. 035417	2 I	. 000243	5 I	. 000590
22	. 916667	22	. 015278	52	. 036111	22	.000 255	52	. 000602
23	. 958333	23	.OI5 972	53	. 036806	23	. 000266	53	. 000613
24	1.000 000	24	. 116667	54	. 037500	24	. 000278	54	. 000625
		25	0.017361	55	0.038194	25	0.000289	55	0.000637
		26	. 018056	56	. 038889	26	. 000 301	56	. 000648
		27	. 018750	57	.039583	27	. 0003 13	57	. 000660
		28	.OI9 444	58	. 040278	28	. 000324	58	. 000671
		29	. 020139	59	. 040972	29	. 000336	59	. 000683
		30	0.020833	60	0.041667	30	0.000347	60	. 000694

Table 23.
DECIMALS OF A DAY INTO HOURS, MINUTES AND SECONDS.

Hundredths of a Day.			Ten Thousandths of a Day.		Millionths of a Day.	
d.	h. m.		d.	min. sec.	d.	sec.
0.01	14		0.0001	8.64	0.000001	0.09
. 02	28		2	17.28	2	-. 17
. 03	43		3	25.92	3	0.26
. 04	57		4	34.56	4	0.35
0.05	I 12	\bigcirc	0.0005	4.3 .20	0.000005	0.43
. 06	I 26		6	51.84	6	0. 52
. 07	140	48	7	10.48		0.60
. 08	I 55		8	I 9.12	8	0.69
. 09	29		9	I 17.76	9	0.78
0.10	224	0	0.0010	I 26.40	0.000010	0.86
. 20	448	\bigcirc	20	2 52.80	20	1.73
. 30	$7 \quad 12$	-	30	$4 \quad 19.20$	30	2.59
. 40	$9 \quad 36$	0	40	$5 \quad 45.60$	40	3.46
0.50	120	-	0.0050	$7 \quad 12.00$	0.000050	4.32
. 60	1424	\bigcirc	60	$8 \quad 38.40$	60	5.18
. 70	1648	-	70	104.80	70	6.05
. 80	19.12	0	80	1131.20	80	6.91
. 90	2 I 36	-	90	$12 \quad 57.60$	90	7.78

Smithsonian Tables.

MINUTES AND SECONDS INTO DECIMALS OF AN HOUR.

Min.	Decima's of an hour.	Min.	Decimals of an hour.	Sec.	Decimals of an hour.	Sec.	Decimals of an hour.
I	0.016667	31	0.516667	1	0.000278	31	0.0086 II
2	. 033333	32	. 533333	2	. 000556	32	. 008889
3	. 050000	33	. 550000	3	. 000833	33	. 009167
4	. 066667	34	. $56666{ }^{\text {c }} 7$	4	.OOI I I I	34	. 009444
5	0.083333	35	0.583333	5	0.001359	35	0.009722
6	. 100000	36	. 600000	6	. 001667	36	. 010000
7	.116667	37	. 616667	7	.001 944	37	. 010278
8	. 133333	38	. 633333	8	. 002222	38	.oro 556
9	. 150000	39	. 650000	9	. 002500	39	.oIO S33
10	0.166667	40	0.666667	10	0.002778	40	O.OII III
11	.183 333	41	. 683333	II	.003. 056	41	. 111389
12	. 200000	42	. 700000	12	. 003333	42	.OII 667
13	. 216667	43	. 716667	13	. 003 51 I	43	. OII 944
14	. 233333	44	. 733333	14	. 003 S89	44	. 012222
15	0.250000	45	0.750000	15	0.004167	45	0.012500
16	. 266667	46	. 766667	16	. 004444	46	. 012778
17	. 283333	47	. 783333	17	. 004722	47	.OI3 056
18	. 300000	48	. 800000	18	. 005000	48	.OI3 333
19	. 316667	49	.Si6667	19	. 005278	49	.oi36II
20	0.333333	50	0.833333	20	0.005556	50	0.013889
21	. 350000	51	. 850000	21	. 005 S33	5 I	. 014167
22	. 366667	52	. 866667	22	. 006 I I I	52	. 101444
23	. 383333	53	. 883333	23	. 006389	53	. 014722
24	. 400000	54	. 900000	24	. 006667	54	. 015000
25	0.416667	55	0.916667	25	0.006944	55	0.015278
26	. 433333	56	. 933333	26	. 007222	56	.OI 5.556
27	. 450000	57	. 950000	27	. 007500	57	. 015833
28	. 466667	58	. 966667	28	. 007778	58	. 016 III
29	. 483333	59	. 983333	29	. 008056	59	. 016389
30	0.500000	60	1.000000	30	0.00§ 333	60	0.016667

Table 25.
LOCAL MEAN TIME AT APPARENT NOON.

TABLE 26.
SIDEREAL TIME INTO MEAN SOLAR TIME.

The tabular values are to be subtracted from a sidereal time interval.

Hrs.	Reduction to Mean Time.	Min.		Min.	$\begin{aligned} & \text { Reduc- } \\ & \text { tomon } \\ & \text { to Mean } \\ & \text { Time. } \end{aligned}$
h.	m. s.	m.	s.	m.	s.
1	- 9.83	1	0. 16	31	5.08
2	- I9.66	2	0.33	32	5.24
3	- 29.49	3	0.49	33	5.4 I
4	- 39.32	4	0.66	34	5.57
5	- 49.15	5	0.82	35	5.73
6	- 58.98	6	0.98	36	5.90
7	18.8 I	7	I. 55	37	6.06
8	I 18.64	8	I. 31	38	6.23
9	I 28.47	9	1.47	39	6.39
10	138.30	10	1.64	40	6.55
II	I 48.13	II	I. So	4 I	6.72
12	157.95	12	1.97	42	6.88
13	27.78	13	2.13	43	7.04
14	2 17.6I	14	2.29	44	7.21
15	$2 \quad 27.44$	15	2.46	45	$7 \cdot 37$
16	237.27	16	2.62	46	7.54
17	2 47.10	17	2.79	47	7.70
18	256.93	IS	2.95	48	7.86
19	$3 \quad 6.76$	19	3.II	49	8.03
20	$\begin{array}{lll}3 & 16.59\end{array}$	20	3.28	50	8.19
21	$3 \quad 26.42$	21	3.44	51	8.36
22	336.25	22	3.60	52	S. 52
23	346.08	23	3.77	53	S. 68
24	3 55.91	24	3.93	54	8. 85
		25	4. 10	55	9.01
		26	4.26	56	9.17
		27	4.42	57	9.34
		2 S	4.59	58	9.50
		29	4.75	59	9.67
		30	4.91	60	9.83

Table 27.
MEAN SOLAR TIME INTO SIDEREAL TIME.
The tabular values are to be added to a mean solar time interval.

Hrs.	Reduction to Sidereal Time.	Min.	Reduc. tion to Siderea Time.	Min.	$\begin{aligned} & \text { Reduc- } \\ & \text { ton to } \\ & \text { Sidereal } \\ & \text { Time. } \end{aligned}$
h.	m. s.	m.	s.	m.	s.
1	- 9.86	1	0.16	31	5.09
2	- 19.71	2	0.33	32	5.26
3	- 29.57	3	0.49	33	5.42
4	- 39.43	4	0.66	34	5.59
5	- 49.28	5	0. 82	35	5.75
6	- 59.14	6	0.99	36	5.91
7	I 9.00	7	I. 15	37	6.08
8	I 18.85	8	I. 31	3 S	6.24
9	I 28.71	9	I. 48	39	6.41
10	I 38.56	10	1.64	40	6.57
II	I 48.42	II	I. SI_{1}	4 I	6.74
12	I 58.28	12	1.97	42	6.90
13	2 8.13	I3	2. 14	43	7.06
14	2 I 7.99	14	2.30	44	7.23
15	$2 \quad 27.85$	15	2.46	45	7.39
16	$2 \quad 37.70$	16	2.63	46	7.56
17	247.56	17	2.79	47	7.72
18	257.42	IS	2.96	48	7.89
19	$3 \quad 7.27$	19	3.12	49	8.05
20	3 17.13	20	3.29	50	S. 21
21	326.99	2 I	3.45	5 I	8.38
22	$3 \begin{array}{lll}3 & 36.84\end{array}$	22	. 3.61	52	8. 54
23	346.70	23	3.78	53	S.71
24	$\begin{array}{lll}3 & 56.56\end{array}$	24	3.94	54	8.87
		25	4.11	55	9.04
		26	4.27	56	9.20
		27	4.44	57	$9 \cdot 36$
		28	4.60	58	9.53
		29	4.76	59	9.69
		30	4.93	60	9.86

Reduction for Seconds-sidereal or mean solar.

The tabular values are to be $\left\{\begin{array}{l}\text { subtracted from a sidereal } \\
\text { added to a mean solar }\end{array}\right\}$ time interval.

Sidereal or Mean Time	0	I	2	3	4	5	6	7	8	9
s.	s.	s.	s.	s.	s.	s.	s.	s.	s.	s.
0	0.00	0.00	0.01	O.OI	0.01	O.OI	0.02	0.02	0.02	0.02
10	. 03	. 03	. 03	. 04	. 04	. 04	. 04	. 05	. 05	. 05
20	. 05	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 08	. 08
30	. 08	. 08	. 09	. 09	. 09	.10	. 10	. 10	. 10	.II
40	. I I	. 11	. 11	. 12	. 12	. 12	. 13	. 13	. 13	. 13
50	0.14	0.14	0.14	-.15	0.15	0.15	0.15	0.16	0.16	0.16

Smithbonian Tables.

[^17]
CONVERSION OF MEASURES OF WEIGHT.

Conversion of avoirdupois pounds and ounces into kilograms . Table 28
Conversion of kilograms into avoirdupois pounds and ounces . TABLE 29 Conversion of grains into grams Table 30

Conversion of grams into grains TABLE 3 I

Table 28.
AVOIRDUPOIS POUNDS AND OUNCES INTO KILOGRAMS.
I avoirdupois pound $=0.4535924$ kilogram.
I avoirdupois ounce $=0.0283495$ kilogram.

Pounds.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg.	kg .	kg.	kg .	kg.	kg .	kg .	kg.	kg.	kg .
0	0.0000	0.0454	0.0907	0.1361	0.18I4	0.2268	0.2722	0.3175	0.3629	0.4082
I	0.4536	0.4990	0.5443	0.5897	0.6350	0.6804	0.7257	0.7711	0.8165	0. 8618
2	0.9072	0.9525	0.9979	1.0433	1.0886	I. 1340	1.1793	I. 2247	1.2701	I.3I54
3	I. 3608	1.4061	I.4515	1.4969	1.5422	1.5876	1.6329	1. 6783	1.7237	1.7690
4	I.8144	I. 8597	1.905I	1.9504	1.9958	2.0412	2.0865	2.1319	2.1772	2.2226
5	2.2680	2.3133	2.3587	2.4040	2.4494	2.4948	2.5401	2.5855	2.6308	2.6762
6	2.7216	2.7669	2.8123	2.8576	2.9030	2.9484	2.9937	3.0391	3.0844	3.1298
7	3.1751	3.2205	3.2659	3.3112	3.3566	3.4019	3.4473	3.4927	3.53 So	3.5834
8	3.6287	3.6741	3.7195	3.7648	3.8102	3. 8555	3.9009	3.9463	3.9916	4.0370
9	4.0823	4.1277	4.173 I	4.2184	4.2638	4.3091	4.3545	4.3998	4.4452	4.4906
Ounces.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg	kg	kg.	kg	kg.	kg	kg.	kg	kg.	kg.
0	0.0000	0.0028	0.0057	0.0085	0.0113	0.0142	0.0170	0.0198	0.0227	0.0255
1	. 0283	. 0312	. 0340	. 0369	. 0397	. 0425	. 0454	. 0482	. 0510	. 0539
2	. 0567	. 0595	. 0624	. 0652	.068o	. 0709	. 0737	. 0765	. 0794	.0822
3	. 0850	. 0879	. 0907	. 0936	. 0964	. 0992	. 1021	. 1049	. 1077	. 1106
4 •	. 1134	. 1162	.II9I	. 1219	. 1247	. 1276	. 1304	. 1332	. 1361	. 1389
5	0.1417	0.1446	0. 1474	0.1503	0. 1531	0. 1559	0. 1588	0.1616	0. 1644	0.1673
6	. 1701	. 1729	. 1758	. 1786	.ISI4	. 1843	.1871	. 1899	. 1928	. 1956
7	. 1984	. 2013	. 2041	. 2070	. 2098	. 2126	. 2155	. 2183	. 22 II	. 2240
8	. 2268	. 2296	. 2325	. 2353	. 23 SI	. 2410	. 2438	. 2466	. 2495	. 2523
9	. 2551	. 2580	. 2608	. 2637	. 2665	. 2693	. 2722	. 2750	. 2778	. 2807
10	0.2835	0.2863	0.2892	0.2920	0.2948	0.2977	0.3005	0.3033	0.3062	0.3090
II	. 3118	. 3147	-3175	. 3203	. 3232	. 3260	. 3289	. 3317	. 3345	. 3374
12	. 3402	- 3430	. 3459	. 3487	.35I5	. 3544	- 3572	. 3600	. 3629	. 3657
13	. 3685	- 3714	. 3742	. 3770	. 3799	. 3827	. 3 S56	-3884	. 3912	. 3941
14	. 3969	- 3997	. 4026	. 4054	. 4082	.4III	. 4139	.4167	. 4196	. 4224
15	.4252	.428I	.4309	. 4337	. 4366	. 4394	. 4423	.445I	. 4479	. 4508

smthbonian Tablee.

Table 29.
K:LOGRAMS INTO AVOIRDUPOIS POUNDS AND OUNCES.
I kilogram $=2.204622$ avoirdupois pounds.

Table 30.
GRAINS INTO GRAMS.
I grain $=0.06479892$ gram.

Gmitheonian Tableg.

GRAMS INTO GRAINS.

1 gram $=15.432356$ grains.

Grams.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	
0	Grains.	Grains.	Grains.	Grains.	Grains.	Grains.	Grains.	Grains.	Grains.	Graius.	
	. 00	I. 54		20.06	6.1721.61	$\begin{array}{r} 7.72 \\ 23.15 \end{array}$	$\begin{array}{r} 9.26 \\ 24.69 \end{array}$	10. So	12.35	13.89	
1	15.43	16.98	3.09 18.52 33.95					26.2441.67	27.78	29.32	
2	30.86	32.41	33.95	35.49	37.04	3 S .58	40.12		43.2158.64	44.7560.19	
3	46.30	47.84	49.3864.82	$\begin{array}{r} 50.93 \\ 66.36 \end{array}$	$\begin{aligned} & 52.47 \\ & 67.90 \end{aligned}$	54.01	55.56	57.10			
4	61.73	63.27				69.45	70.99	72.53	74.08	75.62	
5	77.16	78.71	$\begin{aligned} & 80.25 \\ & 95.68 \end{aligned}$	8 I .79	S3.33	84.88	86.42	87.96	89.51	. 05	
6	92.59	94.14		97.22	98.77	100.31	101.85	103.40	104.94	106.48	
7	108.03	109.57	III.II	112.66	II 4.20	115.74	117.29	I 18.83	120.37	121.92	
8	123.46	125.00	126.55	123.09	129.63145.06	$\begin{aligned} & \text { I3I.IS } \\ & \text { I46.6I } \end{aligned}$	$\begin{aligned} & 132.72 \\ & 148.15 \end{aligned}$	$\begin{aligned} & 134.26 \\ & 149.69 \end{aligned}$	$\begin{aligned} & 135.80 \\ & \text { I } 5 \mathrm{I} .24 \end{aligned}$	$\begin{aligned} & 137.35 \\ & \\ & I 52.78 \end{aligned}$	
9	I38.89	140.43	141.98	143.52							
	0	I	2	3	4	5	6	7	8	9	
0°	Grains. 0.00	$\begin{array}{r\|} \text { Grains. } \\ 15.43 \end{array}$	Grains. 30.86	Grains.	Grains.	Grains.	Grains.	Grains.	Grains.	$\begin{gathered} \text { Grains. } \\ \text { I3S.S9 } \end{gathered}$	
10	I54.32	169.76	$\begin{array}{r} 30.00 \\ 185.19 \end{array}$	200.62	$\begin{array}{r} 61.73 \\ 216.05 \end{array}$	$\begin{array}{r} 77.16 \\ 231.49 \\ \hline \end{array}$	$\begin{array}{r} 92.59 \\ 246.92 \end{array}$	108.03 262.35	277.78	293.21	
20	308.65	324.08	339.5 I	354.94	370.38	231.49 385.81	$\begin{aligned} & 246.92 \\ & 401.24 \end{aligned}$	416.67	432.II	447.54601.66	
30	462.97	478.40	493.84648.16	509.27	524.70	540.13	555.56	571.00	586.43		
40	617.29	632.73		663.59	679.02	694.46	709.89	725.32	740.75	756.19	
50	771.62	787.05	So2.4S	817.91	S33.35	848.78	864.2 1	879.64	895.08	910.5I	
60	O25.94	94 I .37	956.8I	972.24	957.67	$\left\|\begin{array}{l} 1003.10 \\ 1157.43 \end{array}\right\|$	IO18.54	1033.97	I049.40	$\begin{aligned} & 1064.83 \\ & 1219.16 \end{aligned}$	
70	IOSo. 26	1095.70	IIII.I3	I 126.56	1141.99		$\left\|\begin{array}{l} \text { II } 72.86 \\ \mathrm{I} 327.18 \end{array}\right\|$	I I88.29	1203.72		
So	1234.59	1250.02	$\left\lvert\, \begin{aligned} & 1265.45 \\ & \text { I419.7S }\end{aligned}\right.$	$\begin{aligned} & \text { 128o.S9 } \\ & \text { 1435.2I } \end{aligned}$	$\begin{aligned} & 1296.32 \\ & 1450.64 \end{aligned}$	$\begin{aligned} & 1157.43 \\ & 13 \mathrm{II} .75 \end{aligned}$		I342.61	I358.05	$\begin{aligned} & 1219.16 \\ & \text { 1373.48 } \end{aligned}$	
90	1388.91	1404.34				I466.07	I48I.5I	I496.94	1512.37	1527.80	
	gram.	$\begin{gathered} \text { Grain. } \\ 0.154 \\ .309 \\ .463 \\ .617 \\ .772 \end{gathered}$	$\begin{gathered} \text { gram. } \\ 0.06 \\ .07 \\ .05 \\ .09 \\ .10 \end{gathered}$		$\begin{gathered} \text { Grain. } \\ 0.926 \\ \text { I.080 } \\ 1.235 \\ 1.389 \\ \text { 1.543 } \end{gathered}$	gram. 0.001 .002 .003 .004 .005	Grain. 0.015 .031 . 046 .077	$\begin{gathered} \text { gram. } \\ 0.006 \\ .007 \\ .008 \\ .009 \\ .010 \end{gathered}$		$\begin{gathered} \text { Grain. } \\ 0.093 \\ .108 \\ .123 \\ .139 \\ .154 \end{gathered}$	
				6							
	. 03										
	. 05										

WIND TABLES.

Synoptic conversion of velocities Table 32
Miles per hour into feet per second Table 33
Feet per second into miles per hour Table 34
Meters per second into miles per hour Table 35
Miles per hour into meters per second Table 36
Meters per second into kilometers per hour Table 37
Kilometers per hour into meters per second Table 38
Scale of velocity equivalents of the so-called Beaufort scale of wind Table 39
Mean direction of the wind by Lambert's formula -
Multiples of $\cos 45^{\circ}$; form and example of computation Table 40
Values of the mean direction (a) or its complement ($90^{\circ}-a$) TABLE 4 I
Radius of critical curvature and velocities of gradient winds forfrictionless motion in Highs and Lows.
English measures Table 42
Metric measures Table 43

SYNOPTIC CONVERSION OF VELOCITIES.

Miles per hour into meters per second, feet per second
and kilometers per hour.

Miles per hour.	Meters per second	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { second. } \end{gathered}$	Kilometers per hour.	$\begin{aligned} & \text { Miles } \\ & \text { poer } \\ & \text { hour. } \end{aligned}$	Meters per second.	Feet per second	Kilometers per hour.	Miles per hour.	$\begin{gathered} \text { Meters } \\ \text { per } \\ \text { second. } \end{gathered}$	Feet per second.	Kilome- ters per hour.
0.0	0.0	0.0	0.0	26.0	I 1.6	3 S.I	41.8	52.0	23.2	76.3	83.7
0.5	0.2	0.7	0.8	26.5	1.8	38.9	42.6	52.5	23.5	77.0	84.5
1.0	0.4	I. 5	I. 6	27.0	12.1	39.6	43.5	53.0	23.7	77.7	85.3
I. 5	0.7	2.2	2.4	27.5	12.3	40.3	44.3	53.5	23.9	78.5	86.I
2.0	0.9	-2.9	3.2	28.0	12.5	41.1	45.1	54.0	2.4 .1	79.2	86.9
2.5	I. I	3.7	4.0	28.5	12.7	41.8	45.9	54.5	24.4	79.9	87.7
3.0	I. 3	4.4	4.8	29.0	13.0	42.5	46.7	55.0	24.6	80.7	88.5
3.5	I. 6	5.1	5.6	29.5	13.2	$43 \cdot 3$	47.5	55.5	2.4 .8	SI. 4	S9.3
4.0	I. 8	5.9	6.4	30.0	13.4	44.0	48.3	56.0	25.0	82.I	90.1
4.5	2.0	6.6	7.2	30.5	I3.6	44.7	49.1	56.5	25.3	82.9	90.9
5.0	2.2	7.3	8.0	31.0	13.9	45.5	49.9	57.0	25.5	83.6	91.7
5.5	2.5	8.1	8.9	31.5	14.1	46.2	50.7	57.5	25.7	84.3	92.5
6.0	2.7	8.8	9.7	32.0	14.3	46.9	51.5	58.0	25.9	S5.1	93.3
6.5	2.9	9.5	10.5	32.5	14.5	47.7	52.3	58.5	26.2	85.3	94.1
7.0	3.1	10.3	11.3	33.0	14.8	48.4	53.1	59.0	26.4	86.5	95.0
7.5	3.4	I 1.0	I2.1	33.5	15.0	49.1	53.9	59.5	26.6	87.3	95.8
8.0	3.6	11.7	12.9	34.0	I5.2	49.9	54.7	60.0	26.8	88.0	95.6
8.5	3.8	12.5	13.7	34.5	15.4	50.6	55.5	60.5	27.0	88.7	97.4
9.0	4.0	13.2	14.5	35.0	15.6	5 I 3	56.3	61.0	27.3	89.5	98.2
9.5	4.2	13.9	I 5.3	35.5	15.9	52.1	57.1	6I:5	27.5	90.2	99.0
10.0	4.5	14.7	16.1	36.0	16.1	52.8	57.9	62.0	27.7	90.9	99.8
10.5	4.7	15.4	16.9	36.5	16.3	53.5	58.7	62.5	27.9	91.7	100.6
11.0	4.9	16.1	17.7	37.0	16.5	54.3	59.5	63.0	28.2	92.4	IOI. 4
II. 5	5.I	16.9	I8.5	37.5	16.8	55.0	60.4	63.5	28.4	93.1	102.2
12.0	5.4	17.6	19.3	38.0	17.0	55.7	6 I .2	64.0	2 S .6	93.9	103.0
12.5	5.6	18.3	20.1	38.5	17.2	56.5	62.0	64.5	28.8	94.6	103.8
13.0	5.8	19.1	20.9	39.0	17.4	57.2	62.5	65.0	29.1	$95 \cdot 3$	104.6
13.5	6.0	19.8	21.7	39.5	17.7	57.9	63.6	65.5	29.3	96.1	105.4
14.0	6.3	20.5	22.5	40.0	17.9	58.7	6.4	66.0	29.5	96.8	106.2
14.5	6.5	21.3	23.3	40.5	IS.I	59.4	65.2	66.5	29.7	97.5	107.0
15.0	6.7	22.0	24.1	41.0	I8. 3	60.1	66.0	67.0	30.0	98.3	107.8
15.5	6.9	22.7	24.9	41.5	18.6	60.9	66.8	67.5	30.2	99.0	108.6
16.0	7.2	23.5	25.7	42.0	18.5	6 I .6	67.6	68.0	30.4	99.7	109.4
16.5	7.4	24.2	26.6	42.5	19.0	62.3	68.4	68.5	30.6	100.5	110.2
17.0	7.6	24.9	27.4	43.0	19.2	63.1	69.2	69.0	30.8	IOI. 2	II I 10
17.5	7.8	25.7	28.2	43.5	19.4	63.8	70.0	69.5	3 I .1	IOI. 9	II 1.8
18.0	8.0	26.4	29.0	44.0	19.7	64.5	70.8	70.0	31.3	102.7	112.7
18.5	8.3	27.1	29.8	44.5	19.9	65.3	71.6	70.5	31.5	103.4	113.5
19.0	8.5	27.9	30.6	45.0	20.1	66.0	72.4	71.0	31.7	104.I	II 4.3
19.5	S. 7	28.6	3 I .4	45.5	20.3	66.7	73.2	71.5	32.0	104.9	115.I
20.0	8.9	29.3	32.2	46.0	20.6	67.5	74.0	72.0	32.2	105.6	II 5.9
20.5	9.2	30.1	33.0	46.5	20.8	68.2	74.8	72.5	32.4	106.3	116.7
21.0	9.4	30.8	33.8	47.0	21.0	68.9	75.6	73.0	32.6	107.1	117.5
21.5	9.6	31.5	34.6	47.5	21.2	69.7	76.4	73.5	32.9	107.8	118.3
22.0	9.8	32.3	35.4	48.0	21.5	70.4	77.2	74.0	33.1	108.5	II9.I
22.5	10.1	33.0	36.2	48.5	21.7	71.1	78.1	74.5	33.3	109. 3	119.9
23.0	10.3	33.7	37.0	49.0	21.9	71.9	78.9	75.0	33.5	110.0	I20.7
23.5	10.5	34.5	37.8	49.5	22.1	72.6	79.7	75.5	33.8	110.7	121.5
24.0	10.7	35.2	38.6	50.0	22.4	73.3	So. 5	76.0	34.0	III. 5	122.3
2.4 .5	11.0	35.9	39.4	50.5	22.6	74.1	8 I .3	76.5	34.2	I 12.2	123.1
25.0	II. 2	36.7	40.2	5 I .0	22.8	74.8	S2.I	77.0	34.4	112.9	123.9
25.5	II. 4	37.4	41.0	51.5	23.0	75.5	82.9	77.5	34.6	II3.7	124.7
26.0	II. 6	38.1	4 I .8	52.0	23.2	76.3	83.7	78.0	34.9	II4.4	125.5

MILES PER HOUR INTO FEET PER SECOND.
I mile per hour $=\frac{44}{30}$ feet per second.

Miles $\begin{aligned} & \text { Mier }\end{aligned}$	0	1	2	3	4	5	6	7	8	9
	Feet per sec.	Feet per sec.	Feet pes	Feet per	Feet per	Feet per sec.	eet per sec.	Feet per	Feet per	Feet per
0	. 0	I. 5	2.9	4.4	5.9	7.3	8.8	10.3	II. 7	13.2
10	14.7	16.1	17.6	19.1	20.5	22.0	23.5	24.9	26.4	27.9
20	29.3	30.8	32.3	33.7	35.2	36.7	38.1	39.6	41.1	42.5
30	44.0	45.5	46.9	48.4	49.9	51.3	52.8	$5+3$	55.7	57.2
40	58.7	60.1	61.6	63.1	64.5	66.0	67.5	68.9	70.4	71.9
50	73.3	74.8	76.3	77.7	79.2	So. 7	82.1	S3. 6	85. 1	86.5
60	85.0	89.5	90.9	92.4	93.9	95.3	96.8	98.3	99.7	101.2
70	102.7	104.1	105.6	107.1	108.5	110.0	111.5	112.9	19.4	115.9
80	117.3	118.8	120.3	121. 7	123.2	124.7	126.1	127.6	129.1	130.5
90	132.0	I 33.5	134.9	136.4	137.9	139.3	140.8	142.3	143.7	145.2
100	146.7	148.1	149.6	151.1	152.5	154.0	155.5	156.9	158.4	159.9
I 10	161. 3	162.8	164.3	165.7	167.2	168.7	17 O .1	171.6	173. 1	174.5
120	176.0	177.5	178.9	ISo. 4	181.9	I83.3	184.8	186.3	187.7	189.2
130	190.7	192.1	193.6	195. I	196.5	198.0	199.5	200.9	202.4	203.9
140	205.3	206.8	208.3	209.7	211.2	212.7	214.1	215.6	217.1	218.5

Table 34.

FEET PER SECOND INTO MILES PER HOUR.
I foot per second $=\frac{30}{44}$ miles per hour.

Feet per sec.	0	1	2	3	4	5	6	7	8	9
	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per lir.	Miles per lir.	Miles per hr.
0	0.0	0.7	I. 4	2.0	2.7	3.4	4. I	4.8	5.5	6.1
10	6.8	7.5	8.2	8.9	9.5	10.2	10.9	11.6	12.3	13.0
20	13.6	14.3	15.0	15.7	16.4	17.0	17.7	18.4	19.1	19.8
30	20.5	21.1	21.8	22.5	23.2	23.9	24.5	25.2	25.9	26.6
40	27.3	28.0	28.6	29.3	30.0	30.7	31.4	32.0	32.7	33.4
50	34. I	34.8	35.5	36.1	36.8	37.5	3 S. 2	38.9	39.5	402
60	40.9	41.6	42.3	43.0	43.6	44.3	45.0	45.7	46.4	47.0
70	47.7	48.4	49.1	49.8	50.5	5 I .1	$5 \mathrm{I} . \mathrm{S}$	52.5	53.2	53.9
80	54.5	55.2	55.9	56.6	57.3	58.0	5 S. 6	59.3	60.0	60.7
90	61.4	62.0	62.7	63.4	64.1	64.8	65.5	66.1	66.8	67.5
100	65.2	68.9	69.5	70.2	70.9	71.6	72.3	73.0	73.6	74.3
110	75.0	75.7	76.4	77.0	77.7	78.4	79.1	79.8	So. 5	SI. I
120	81.8	82.5	83.2	83.9	84.5	S5.2	85.9	S6.6	S7.3	88.0
130	S8. 6	89.3	90.0	90.7	91.4	92.0	92.7	93.4	94. 1	94.8
140	95.5	96.1	96.8	97.5	98.2	9 S. 9	99.5	100.2	100.9	101.6
150	102.3	103.0	103.6	104.3	105.0	105.7	106.4	107.0	107.7	108.4
160	109.1	109.8	I 10.5	III. I	111.8	112.5	113.2	113.9	II 4.5	115.2
170	115.9	116.6	117.3	118.0	I 18.6	119.3	120.0	120.7	12 I .4	120.0
ISo	122.7	123.4	124. 1	124.8	125.5	126.1	126.8	127.5	128.2	128.9
190	129.5	130.2	130.9	131.6	I 32.3	133.0	I33.6	134.3	135.0	I 35.7

Table 35.
METERS PER SECOND INTO MILES PER HOUR.
I meter per second $=\mathbf{2 . 2 3 6 9 3 2}$ miles per hour.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	viles per hr.
0	0.0	0.2	0.4	0.7	0.9	I.I	1.3	I. 6	1.8	2.0
I	2.2	2.5	2.7	2.9	3.1	3.4	3.6	3.8	4.0	4.3
2	4.5	4.7	4.9	5. I	5.4	5.6	5.8	6.0	6.3	6.5
3	6.7	6.9	7.2	7.4	7.6	7.8	8.1	8.3	8.5	8.7
4	8.9	9.2	9.4	9.6	9.8	10.1	10.3	10.5	10.7	II.O
5	II. 2	II. 4	11.6	II. 9	12. 1	12.3	12.5	12.8	13.0	13.2
6	13.4	13.6	13.9	14. I	14.3	14.5	14.8	15.0	15.2	15.4
7	15.7	15.9	16. I	16.3	16.6	16.8	17.0	17.2	17.4	17.7
8	17.9	18.1	18.3	I8.6	I8.8	19.0	19.2	19.5	19.7	19.9
9	20.1	20.4	20.6	20.8	21.0	21.3	21.5	2 I .7	21.9	22. I
10	22.4	22.6	22.8	23.0	23.3	23.5	23.7	23.9	24.2	24.4
II	24.6	24.8	25.1	25.3	25.5	25.7	25.9	26.2	26.4	26.6
12	26.8	27.1	27.3	27.5	27.7	2 2.0	28.2	28.4	28.6	28.9
13	29.1	29.3	29.5	29.8	30.0	30.2	30.4	30.6	30.9	3 I .1
14	31.3	31.5	31.8	32.0	32.2	32.4	32.7	32.9	33. 1	33.3
15	33.6	33.8	34.0	34.2	34.4	$34 \cdot 7$	34.9	35. I	$35 \cdot 3$	35.6
16	35.8	36.0	36.2	36.5	36.7	36.9	37. 1	37.4	37.6	37.8
17	3 8.0	3 S. 3	38.5	38.7	38.9	39.1	39.4	39.6	39.8	40.0
18	40.3	40.5	40.7	40.9	41.2	4 I .4	41.6	4 I .8	42.1	42.3
19	42.5	42.7	43.0	43.2	43.4	43.6	43.8	44.1	44.3	44.5
20	44.7	45.0	45.2	45.4	45.6	45.9	46. I	46.3	46.5	46.8
- 21	47.0	47.2	47.4	47.6	47.9	48.1	48.3	48.5	48.8	49.0
22	49.2	49.4	49.7	49.9	50.1	50.3	50.6	50.8	51.0	51.2
2.3	5 I .5	51.7	51.9	52.1	52.3	52.6	52.8	53.0	53.2	53.5
24	53.7	53.9	54.1	54.4	54.6	54.8	55.0	55.3	55.5	55.7
25	55.9	56. I	56.4	56.6	56.8	57.0	57.3	57.5	57.7	57.9
26	5 S .2	58.4	58.6	58.8	59.1	59.3	59.5	59.7	60.0	60.2
27	60.4	60.6	60.8	6 I .1	61.3	61.5	6 I .7	62.0	62.2	62.4
28	62.6	62.9	63.1	63.3	63.5	63.8	64.0	64.2	64.4	64.6
29	64.9	65.1	65.3	65.5	65.8	66.0	66.2	66.4	66.7	66.9
30	67.1	67.3	67.6	67.8	68.0	68.2	68.5	68.7	68.9	69.1
31	69.3	69.6	69.8	70.0	70.2	70.5	70.7	70.9	7 I .1	71.4
32	71.6	71.8.	72.0	72.3	72.5	72.7	72.9	73.1	73.4	73.6
33	73.8	74.0	74.3	74.5	74.7	74.9	75.2	75.4	75.6	75.8
34	76. 1	76.3	76.5	76.7	77.0	77.2	77.4	77.6	77.8	78.1
35	78.3	78.5	78.7	79.0	79.2	79.4	79.6	79.9	So. I	So. 3
36	So. 5	So. 8	Si.o	81.2	SI. 4	SI. 6	81.9	S2.I	82.3	82.5
37	S2. 8	83.0	S3.2	S3.4	83.7	S4.0	S4. I	84.3	84.6	S4.8
38	85.0	85.2	85.5	85.7	85.9	S6. 1	86.3 88.6	86.6 88.8	86.8 89.0	S7.0 89.3
39	S7.2	87.5	87.7	87.9	SS. I	SS. 4	S8.6	88.8	89.0	S9.3
40	S9.5	89.7	89.9	90.2	90.4	90.6	90.8	91.0	91.3	91.5
4 I	91.7	91.9	92.2	92.4	92.6	92.8	93. I	93.3	93.5	93.7
42	94.0	94.2	94.4	94.6	94.8	95.1	95.3	95.5	95.7	96.0
43	96.2	96.4	96.6	96.9	97.1	97.3	97.5 99.8	97.8 roo.0	98.0 100.2	98.2 100.4
44	98.4	98.7	98.9	99.1	99.3	99.5	99.8	100.0	100.2	100.4

METERS PER SECOND INTO MILES PER HOUR.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.
45	100.7	100.9	IOI. 1	101.3	IOI. 6	IOI. 8	102.0	102.2	102.5	102.7
46	102.9	103.1	103.3	103.6	103. 8	104.0	104. 2	104.5	104.7	104.9
47	105.I	105.4	105.6	105.8	106.0	106.3	106.5	106.7	106.9	107.2
48	107.4	107.6	107. ${ }^{\text {d }}$	10S.0	10S. 3	10S. 5	108.7	108.9	109.2	109.4
49	109.6	109.8	IIO.I	I 10.3	I 10.5	I 10.7	III. 0	III. 2	III. 4	III. 6
50	III.S	II2.I	II2.3	II2.5	112.7	II3.0	II3.2	II 3.4	113.6	113.9
5 I	II4. I	114.3	I 14.5	II4.S	115.0	II 5.2	115.4	I15.7	II5.9	II6. 1
52	116.3	116.6	116.8	117.0	117.2	117.4	117.7	117.9	IIS. I	II8.3
53	II8.6	IIS.8	II9.0	119.2	I 19.5	I19.7	I 19.9	120.I	120.4	I20.6
54	120.8	121.0	121.3	121.5	121.7	121.9	122.I	122.4	122.6	122.8
55	123.0	123.3	123.5	123.7	123.9	124.2	124.4	124.6	124.8	125.I
56	125.3	125.5	125.7	I26.0	126.2	I26.4	126.6	I26.8	127.1	127.3
57	127.5	127.8	128.0	128.2	128.4	I28.6	128.9	I29. I	129.3	I29.5
58	129.7	I30.0	130.2	I 30.4	130.7	130.9	I3I. I	13 I .3	I31.6	131.8
59	I32.0	I32.2	132.5	${ }^{1} 32.7$	132.9	I33. 1	133.3	${ }^{1} 33.6$	I 33.8	I 34.0

Table 36.

MILES PER HOUR INTO METERS PER SECOND.

I mile per hour $=0.4470409$ meters per second.

Miles per hour.	0	I	2	3	4	5	6	7	8	9
	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.
0	0.00	0.45	o. 89	I. 34	1. 79	2.24	2.68	3.13	3.58	4.02
10	4.47	4.92	$5 \cdot 36$	5.81	6.26	6.71	7.15	7.60	8.05	8. 49
20	S. 94	9.39	9.83	10.28	10.73	II.18	11.62	12.07	12.52	12.96
30	13.41	13.86	14.31	14.75	I5.20	15.65	16.09	16.54	16.99	17.43
40	17.85	IS. 33	18.78	19.22	19.67	20.12	20.56	21.01	21.46	21.90
50	22.35	22.So	23.25	23.69	24.14	24.59	25.03	25.48	25.93	26.37
60	26.52	27.27	27.72	28.16	2S:61	29.06	29.50	29.95	30.40	30.85
70	31.29	31.74	32.19	32.63	33.08	33.53	33.98	34.42	34.87	35.32
So	35.76	36.21	36.66	37.10	37.55	3 3.00	38.44	38.89	39.34	39.79
90	40.23	40.68	4 I .13	4 I .57	42.02	42.47	42.92	43.36	43.81	44.26
100	44.70	45.15	45.60	46.04	46.49	46.94	47.39	47.83	48.28	48.73
110	49.17	49.62	50.07	50.51	50.96	5 I .41	51. 56	52.30	52.75	53.20
120	53.64	54.09	54.54	54.98	55.43	55.88	56.33	56.77	57.22	57.67
130	58.12	58.56	59.01	59.46	59.90	60.35	60.80	61.24	61.69	62.14
140	62.59	63.03	63.48	63.93	64.37	64.82	65.27	65.72	66.16	66.61

METERS PER SECOND INTO KILOMETERS PER HOUR.
I meter per second $=3.6$ kilometers per hour.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\underset{\text { per hr. }}{\text { km. }}$	$\underset{\text { yer hr. }}{\mathrm{km} .}$	$\begin{gathered} \mathrm{km} . \\ \text { per } \mathrm{hr} . \end{gathered}$	$\begin{gathered} \mathrm{km} . \\ \text { per } \mathrm{hr} . \end{gathered}$	$\underset{\text { per } \mathrm{kr} .}{\mathrm{km}_{2} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\begin{aligned} & \mathrm{km} . \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km.}}$
0	0.0	0.4	0.7	I. 1	I. 4	I. S	2.2	2.5	2.9	3.2
I	3.6	4.0	4.3	4.7	5.0	5.4	5.8	6.1	6.5	6.5
2	7.2	7.6	7.9	8.3	8.6	9.0	9.4	9.7	10.1	10.4
3	10.8	II. 2	11.5	11.9	12.2	12.6	13.0	I 3.3	13.7	14.0
4	14.4	14.8	15.1	I5.5	15.8	16.2	16.6	16.9	17.3	17.6
5	18.0	1 S .4	18.7	19.1	19.4	19.8	20.2	20.5	20.9	21.2
6	21.6	22.0	22.3	22.7	23.0	23.4	23.8	24.1	24.5	24.8
7	25.2	25.6	25.9	26.3	26.6	27.0	27.4	27.7	28.1	28.4
8	28.8	29.2	29.5	29.9	30.2	30.6	31.0	3 I .3	31.7	32.0
9	32.4	32.8	33.1	33.5	33.8	34.2	34.6	34.9	$35 \cdot 3$	35.6
10	36.0	36.4	36.7	37.1	37.4	37.8	3 S. 2	38.5	38.9	39.2
11	39.6	40.0	40.3	40.7	41.0	41.4	41.8	42.1	42.5	42.8
12	43.2	43.6	43.9	44.3	44.6	45.0	45.4	45.7	46.1	46.4
13	46.8	47.2	47.5	47.9	48.2	48.6	49.0	49.3	49.7	50.0
14	50.4	50.8	5 I .1	51.5	51.8	52.2	52.6	52.9	$53 \cdot 3$	53.6
15	54.0	54.4	54.7	55. I	55.4	55.8	56.2	56.5	56.9	57.2
16	57.6	5 S.0	58.3	58.7	59.0	59.4	59.8	60.1	60.5	60.8
17	61.2	61.6	61.9	62.3	62.6	63.0	63.4	63.7	64.1	64.4
18	64.8	65.2	65.5	65.9	66.2	66.6	67.0	$67 \cdot 3$	67.7	68.0
19	68.4	68.8	69.1	69.5	69.8	70.2	70.6	70.9	71.3	71.6
20	72.0	72.4	72.7	73.1	73.4	73.8	74.2	74.5	74.9	75.2
21	75.6	76.0	76.3	76.7	77.0	77.4	77.8	7 S . 1	78.5	78.8
22	79.2	79.6	79.9	So. 3	So. 6	81.0	SI. 4	81.7	S2. 1	82.4
23	S2.S	83.2	83.5	83.9	S4.2	S4.6	55.0	S5.3	S5.7	S6.0
24	S6.4	S6. 8	87.1	87.5	87.8	88.2	S8.6	88.9	S9.3	89.6
25	90.0	90.4	90.7	91.1	91.4	$91 . S$	92.2	92.5	92.9	93.2
26	93.6	94.0	94.3	94.7	95.0	95.4	95.8	96.1	96.5	96.8
27	97.2	97.6	97.9	98.3	98.6	99.0	99.4	99.7	100. I	100.4
28	100.S	101.2	101.5	101.9	102.2	102.6	103.0	103.3	103.7	104.0
29	104.4	104.8	105. 1	105.5	105.8	106.2	106.6	106.9	$107 \cdot 3$	107.6
30	IoS.o	108. 4	10S. 7	109. 1	109.4	109.S	IIO. 2	I 10.5	110.9	III. 2
31	I II 1.6	112.0	112.3	112.7	113.0	113.4	113.8	I I4. I	II 4.5	II4.8
32	I 15.2	115.6	115.9	116.3	116.6	117.0	117.4	117.7	IIS.I	IIS.4
33	IIS.S	119.2	I19.5	119.9	120.2	120.6	121.0	121.3	I21.7	122.0
34	122.4	122.8	123.1	123.5	123.8	124.2	124.6	124.9	125.3	125.6
35	126.0	126.4	126.7	127.1	127.4	127.8	128.2	128.5	128.9	129.2
36	129.6	I 30.0	130.3	130.7	131.0	I3I. 4	131.8	132.1	132.5	I32.8
37	133.2	I 33.6	133.9	134.3	134.6	${ }^{1} 35.0$	135.4	135.7	136.1	136.4
3 S	${ }^{1} 36.8$	I 37.2	137.5	1 37.9	138.2	I38.6	139.0	139.3	139.7	140.0
39	I 40.4	140.8	141. 1	14 I .5	$14 \mathrm{I} . \mathrm{S}$	142.2	142.6	142.9	143.3	143.6
40	144.0	144.4	144.7	145.I	145.4	I $45 . \mathrm{S}$	146.2	146.5	I46.9	147.2
41	147.6	148.0	148.3	148.7	149.0	149.4	149.8	150.1	150.5	150.8
42	151.2	151.6	151.9	152.3	152.6	153.0	153.4	153.7	${ }^{154.1}$	${ }^{1} 54.4$
43	I54.8	I55.2	${ }^{1} 55.5$	I 55.9	156.2	${ }^{1} 56.6$	157.0	157.3	157.7	158.0
44	I58.4	15 S .8	159. 1	I 59.5	I 59.8	160.2	160.6	160.9	I61.3	Iót. 6

Table 37.
METERS PER SECOND INTO KILOMETERS PER HOUR.

Meters per second	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	km . per hr.	km . per hr.	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$		$\underset{\text { per hr. }}{\text { km. }}$	km . per hr.	$\begin{gathered} \mathrm{km} . \\ \text { per hr. } \end{gathered}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$
45	162.0	162.4	162.7	163.1	163.4	163.8	164.2	164.5	164.9	165.2
46	165.6	166.0	166.3	166.7	167.0	167.4	167.8	168.1	168.5	168.8
47	169.2	169.6	169.9	170.3	170.6	171.0	171.4	171.7	I72.I	172.4
48	172.8	173.2	173.5	173.9	174.2	174.6	175.0	175.3	175.7	176.0
49	176.4	176.8	177.1	177.5	177.8	178.2	178.6	178.9	I79.3	179.6
50	ISO.O	ISo. 4	180. 7	I8I. 1	181. 4	181.8	IS2.2	IS2.5	I82.9	IS3.2
51	183.6	IS4.0	IS4.3	184.7	I 85.0	185.4	IS5.8	IS6. 1	186.5	IS6.S
52	IS7.2	IS7.6	187.9	188.3	ISS.6	IS9.0	IS9.4	189.7	190. 1	190.4
53	190.5	191.2	191.5	191.9	192.2	192.6	193.0	193.3	193.7	194.0
54	194.4	194.8	195.1	195.5	195.8	196.2	196.6	196.9	197.3	197.6
55	198.0	198.4	198.7	199.1	199.4	199.8	200.2	200.5	200.9	201.2
56	201.6	202.0	202.3	202.7	203.0	203.4	203.8	204. 1	204.5	204.8
57	205.2	205.6	205.9	206.3	206.6	207.0	207.4	207.7	20S. 1	208.4
58	20 S. 8	20.2	209.5	209.9	210.2	210.6	211.0	211.3	211.7	212.0
59	212.4	212.8	213.1	213.5	213.8	214.2	214.6	214.9	215.3	215.6

Table 38.
KILOMETERS PER HOUR INTO METERS PER SECOND.
I kilometer per hour $=\frac{10}{36}$ meters per second.

Kilcmeters per hour.	0	1	2	3	4	5	6	7	8	9
	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.
0	0.00	0.28	0.56	0.83	I.II	I. 39	1.67	I. 94	2.22	2.50
10	2.78	3.06	3.33	3.61	3.89	4.17	4.44	4.72	5.00	5.28
20	5.56	5.83	6.11	6.39	6.67	6.94	7.22	7.50	7.78	S.06
30	S. 33	8.61	S. 89	9.17	9.44	9.72	10.00	10.28	10.56	10.83
40	II. II	11.39	11.67	II. 94	12.22	12.50	12.78	13.06	13.33	13.61
50	13.89	14.17	14.44	14.72	15.00	15.28	15.56	15.83	16. II	16.39
60	16.67	16.94	17.22	17.50	17.78	18.06	18.33	18.61	18.89	19.17
70	19.44	19.72	20.00	20.28	20.56	20.83	21. II	21. 39	21.67	21.94
80	22.22	22.50	22.78	23.06	23.33	23.61	23.89	24.17	24.44	24.72
90	25.00	25.2 S	25.56	25.83	26.11	26.39	26.67	26.94	27.22	27.50
100	27.78	28.06	28.33	28.61	28.89	29.17	29.44	29.72	30.00	30.28
110	30.56	30.83	3 I .11	31.39	31.67	31.94	32.22	32.50	32.78	33.06
120	33.33	33.61	33.89	34.17	34.44	34.72	35.00	35.28	35.56	35.83
130	36. 1 I	36.39	36.67	36.94	37.22	37.50	37.78	38.06	38.33	38.61
140	38.89	39.17	39.44	39.72	40.00	40.25	40.56	40.83	4 I .11	41. 39
150	41.67	41.94	42.22	42.50	42.78	43.06	43.33	43.61	43.89	44.17
160	44.44	44.72	45.00	45.28	45.56	45.83	46.11	46.39	46.67	46.94
170	47.22	47.50	47.78	48.06	48.33	48.61	48.89	49.17	49.44	49.72
180	50.00	50.28	50.56	50.83	51.11	51.39	51.67	51.94	52.22	52.50
190	52.78	53.06	53.33	53.61	53.89	54.17	54.44	54.72	55.00	55.28

Table 39.
SCALE OF VELOCITY EQUIVALENTS OF THE SO-CALLED BEAUFORT SCALE OF WIND.

Beaufort Number.	Explanatory titles,	Mode of estimating aboard sailing vessels.	Specification for use on land.	Meters per second	Miles per hour.
\bigcirc	Calm		Calm, smoke	Less than 0.3	Less than I
I	Light air		rises vertically. Direction of wind shown by smoke drift, but not by wind vanes.	$0.3-1.5$	1-3
2	Slight breeze	Sufficient wind for working ship	Wind felt on face; leaves rustle; ordinary vane moved by wind.	1.6-3.3	4-7
3	$\begin{aligned} & \text { Gentle } \\ & \text { breeze } \end{aligned}$		Leaves and small twigs in constant motion; wind extends light flag.	3.4-5.4	8-12
4	$\begin{aligned} & \text { Moderate } \\ & \text { breeze } \end{aligned}$	Forces most advantageous for sailing with leading wind and all	Raises dust and loose paper; small branches are moved.	$5 \cdot 5-7 \cdot 9$	13-18
5	$\begin{aligned} & \text { Fresh } \\ & \text { breeze } \end{aligned}$	sail drawing	Small trees in leaf begin to sway; crested wavelets form on inland waters.	8.0-10.7	19-24
6	$\left.\begin{array}{l} \text { Strong } \\ \text { breeze } \end{array}\right]$	Reduction of sail necessary with leading wind	Large branches in motion; whistling heard in telegraph wires; umbrellas used with difficulty.	10.8-13.8	25-3I
7	High wind		Whole trees in motion; inconvenience felt when walking against wind.	13.9-17.1	32-38
8	Gale	Considerable reduction of sail necessary even with wind	Breaks twigs off trees; generally impedes progress.	17.2-20.7	39-46
9	Strong gale	quartering	Slight structural damage occurs (chimney pots and slate renioved).	20.8-24.4	47-54
10	Whole gale	Close reefed sail running, or hove to under storm sail	Seldom experienced inland; trees uprooted; considerable structural damage occurs.	$24.5-28.4$ $=$	55-63
II	Storm J		Very rarely experienced, accompanied by widespread damage.	28.5-33.5	64-75
12	Hurricane	No sail can stand even when running		33.6 or above	Above 75

MEAN DIRECTION OF' THE WIND BY LAMEERT'S FORMULA.
$\tan \alpha=\frac{E-W+(N E+S E-N W-S W) \cos 45^{\circ}}{N-S+(N E+N W-S E-S W) \cos 45^{\circ}}$
Multiples of $\cos 45^{\circ}$.

Number.	0	I	2	3	4	5	6	7	8	9
0	0.0	0.7	1.4	2.1	2.8	3.5	4.2	4.9	5.7	6.4
10	7.1	7.8	8.5	9.2	9.9	10.6	I I. 3	12.0	12.7	13.4
20	14.1	14.8	15.6	16.3	17.0	17.7	18.4	19.1	19.8	20.5
30	21.2	21.9	22.6	23.3	24.0	24.7	25.5	26.2	26.9	27.6
40	28.3	29.0	29.7	30.4	31.1	31.8	32.5	33.2	33.9	34.6
50	35.4	36.1	36.8	37.5	38.2	38.9	39.6	40.3	41.0	41.7
60	42.4	43. I	43.8	44.5	$\triangle 5.3$	46.6	46.7	47.4	48. I	48.8
70	49.5	50.2	50.9	51.6	52.3	53.0	53.7	54.4	55.2	55.9
80	56.6	57.3	58.0	58.7	59.4	60.1	60.8	61.5	62.2	62.9
90	63.6	$64 \cdot 3$	65.1	65.8	66.5	67.2	67.9	68.6	69.3	70.0
100	70.7	71.4	72.1	72.8	73.5	74.2	75.0	75.7	76.4	77.1
1 Io	77.8	78.5	79.2	79.9	So. 6	81.3	S2.0	S2.7	83.4	84.I
120	84.9	85.6	S6.3	87.0	87.7	S8.4	S9. I	Sg.S	90.5	91.2
130	91.9	92.6	93.3	94.0	94.5	95.5	96.2	96.9	97.6	98.3
140	99.0	99.7	100.4	IOI. I	101.8	102.5	103.2	103.9	104.7	105.4
150	106. 1	106.8	107.5	108.2	108.9	109.6	110.3	III. 1	IIt. 7	112.4
160	II3.1	113.8	I 14.6	115.3	116.0	116.7	II7.4	IIS. I	II $¢ . S$	119.5
170	120.2	120.9	121.6	122.3	123.0	123.7	124.5	125.2	125.9	126.6
ISo	127.3	128.0	128.7	129.4	130.1	I30.S	I31. 5	I32.2	132.9	${ }^{1} 33.6$
190	134.4	I35.I	135.8	136.5	137.2	137.9	138.6	139.3	140.0	140.7
200	141.4	142.1	142.8	143.5	144.2	145.0	145.7	146.4	147. 1	147.8

Form for Computing the Numerator and Denominator.

Directions.	E	W	N	S	$N E$	SW	$S E$	$N W$	
Observed values.	7	12	6	26	13	45	2	24	
	$E-W$		$N-S$		$N E-S W$		$S E-N W$		
	$[-5]$		$[-20]$		$[-32] \times \cos 45^{\circ}[-22] \times \cos 45^{\circ}$				
Numerator (n).	$[-5]$		$+\quad[-22.6]+[-15.6]=[-43.2]$						
Jenominator (d).	$[-20]+[-22.6]-[-15.6]=[-27.0]$								

is the angle between the mean wind direction and the meridian.
he signs of the numerator (n) and denominator (d) determine the quadrant in which a lies.
When n and d are positive, a lies between N and $\mathrm{E}: \quad \frac{+}{+}=N E$.
When n is positive and d negative, a lies between S and $E: \quad \pm=S E$.
When n and d are negative, a lies between S and $W: \quad==S W$.
When n is negative and d positive, a lies between N and $W: \frac{-}{4}=N W$.

TAB:E 41.
MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement ($90^{\circ}-a$).
$\alpha=\tan ^{-1} n / d$

n or d.	DENOMINATOR OR NUMERATOR (d OR n).																		
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
1	6°	$4{ }^{\circ}$	3°	2°	2°	2°	I°	I°	1	I	I	I	1	I^{2}	I°	I°	$1{ }^{\circ}$	I°	I°
2	II	8	6	5	4	3	3	3	2	2	2	2	2	2	I	1	1	I	I
3	17	II	9	7	6	5	4	4	3	3	3	3	2	2	2	2	2	2	2
4	22	15	II	9	8	7	6	5	5	4	4	4	3	3	3	3	3	2	2
5	27	18	14	II	9	8	7	6	6	5	5	4	4	4	4	3	3	3	3
6	31	22	17	13	II	10	9	8	7	6	6	5	5	5	4	4	4	4	3
7	35	25	19	16	I3	II	Io	9	8	7	7	6	6	5	5	5	4	4	4
8	39	28	22	18	I5	13	II	10	9	8	8	7	7	6	6	5	5	5	5
9	42	31	24	20	17	14	13	II	10	9	9	8	7	7	6	6	6	5	5
10	45	34	27	22	18	16	14	13	II	10	9	9	8	8	7	7	6	6	6
I I		36	29	24	20	17	15	14	12	II	10	10	9	8	8	7	7	7	6
12		39	31	26	22	19	17	15	13	12	II	10	10	9	9	8	8	7	7
13		4 I	33	27	23	20	18	16	15	13	12	II	II	10	9	9	8	S	7
14		43	35	29	25	22	19	17	16	14	13	12	II	II	10	9	9	8	8
15		45	37.	3 I	27	23	21	18	17	15	14	13	12	II	II	10	9	9	9
16			39	33	28	25	22	20	18	16	15	14	13	12	II	II	10	10	9
17			40	34	30	26	23	21	19	17	16	15	14	13	12	II	II	10	10
18			42	36	31	27	24	22	20	IS	17	15	14	13	13	12	II	II	Io
19			44	37	32	28	25	23	21	19	18	16	15	14	13	I3	12	II	II
20			45	39	34	30	27	24	22	20	18	17	16	15	14	13	13	12	II
21				40	35	31	28	25	23	21	19	18	17	16	15	14	13	12	12
22				41	36	32	29	26	24	22	20	19	17	16	15	15	14	13	12
23				43	37	33	30	27	25	23	21	19	18	17	16	15	14	14	13
24				44	39	34	3 I	28	26	24	22	20	19	I8	17	16	15	14	13
25				45	40	36	32	29	27	24	23	21	20	18	17	16	16	15	14
26					41	37	33	30	27	25	23	22	20	19	18	17	16	15	15
27					42	38	34	3 I	28	26	24	22	21	20	19	18	17	16	15
28					43	39	35	32	29	27	25	23	22	20	19	I8	17	16	16
29					44	40	36	33	30	28	26	24	23	2 I	20	19	I8	17	16
30					45	41	37	34	31	29	27	25	23	22	2 I	19	18	18	17
31						42	38	35	32	29	27	25	24	22	21	20	19	18	17
32						42	39	35	33	30	28	26	25	23	22	21	20	19	18
33						43	40	36	33	31	29	27	25	24	22	21	20	19	18
34						44	40	37	34	32	30	28	26	24	23	22	21	20	19
35						45	41	38	35	32	30	28	27	25	24	22	21	20	19
36							42	39	36	33	31	29	27	26	24	23	22	21	20
37							43	39	37	34	32	30	28	26	25	24	22	21	20
38							44	40	37	35	32	30	28	27	25	24	23	22	21
39							44	41	38	35	33	3 I	29	27	26	25	23	22	21
40							45	42	39	36	34	32	30	28	27	25	24	23	22
41								42	39	37	34	32	30	29	27	26	24	23	22
42								43	40	37	35	33	31	29	28	26	25	24	23
43								44	41	38	36	33	32	30	2 S	27	26	24	23
44								44	41	39	36	34	3^{2}	30	29	27	26	25	24
45								45	42	39	37	35	33	31	29	28	27	25	24
46									43	40	37	35	33	32	30	28	27	26	25
47									43	4 I	38	36	34	32	30	29	28	26	25
48									44	41	39	36	34	33	31	29	28	27	26
49									44	42	39	37	35	33	31	30	29	27	26
50									45	42	40	38	36	34	32	30	29	28	27

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.

Values of the mean direction (α) or its complement $\left(90^{\circ}-\alpha\right)$.

n or d.	DENOMINATOR OR NUMERATOR (d OR n).									
	105	110	115	120	125	130	135	140	145	150
1	1°	I°	0°							
2	1	1	I	1	1	I	I	1	1	I
3	2	2	1	1	I	1	1	1	1	1
4	2	2	2	2	2	2	2	2	2	2
5	3	3	2	2	2	2	2	2	2	2
6	3	3	3	3	3	3	3	2	2	2
7	4	4	3	3	3	3	3	3	3	3
8	4	4	4	4	4	4	3	3	3	3
9	4	4	4	4	4	4	4	4	4	3
10	5	5	5	5	5	4	4	4	4	4
11	6	6	5	5	5	5	5	4	4	4
12	7	6	6	6	5	5	5	5	5	5
13	7	7	6	6	6	6	6	5	5	5
14	8	7	7	7	6	6	6	6	6	5
15	8	8	7	7	7	7	6	6	6	6
16	9	8	8	8	7	7	7	7	6	6
17	9	9	8	8	8	7	7	7	7	6
18	10	9	9	9	8	8	8	7	7	7
19	10	10	9	9	9	8	S	8	7	7
20	II	10	10	9	9	9	8	8	8	8
21	II	II	10	10	10	9	9	9	8	8
22	12	II	II	10	10	10	9	9	9	8
23	12	12	II	II	10	10	10	9	9	9
24	13	12	12	II	II	10	10	10	9	9
25	13	13	12	12	II	II	10	10	10	9
26	14	13	13	12	12	II	II	II	10	10
27	14	14	13	13	12	12	II	II	11	10
28	15	14	14	13	13	12	12	II	II	11
29	15	15	14	14	13	13	12	12	II	II
30	16	15	15	14	13	13	13	12	12	II
31	16	16	15	14	14	13	13	12	12	12
32	17	16	16	15	14	14	13	13	12	12
33	17	17	16	15	15	14	14	13	13	12
34	18	17	16	16	15	15	14	14	13	13
35	18	18	17	16	16	15	15	14	14	13
36	19	18	17	17	16	15	15	14	14	13
37	19	19	18	17	16	16	15	15	14	14
38	20	19	18	18	17	16	16	15	15	14
39	20	20	19	18	17	17	16	16	15	15
40	2 I	20	19	18	18	17	17	16	15	15
41	21	20	20	19	18	18	17	16	16	15
42	22	21	20	19	19	18	17	17	16	16
43	22	21	21	20	19	18	18	17	17	16
44	23	22	21	20	19	19	18	17	17	16
45	23	22	21	21	20	19	18	18	17	17
46	24	23	22	21	20	19	19	18	18	17
47	24	23	22	21	21	20	19	19	18	17
48	25	24	23	22	21	20	20	19	18	18
49	25	24	23	22	21	21	20	19	19	18
50	25	24	23	23	22	21	20	20	19	18

Table 41.

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement $\left(90^{\circ}-\alpha\right)$.

n or d.	DENOMINATOR OR NUMERATOR (d OR n).									
	155	160	165	170	175	180	185	190	195	200
1	0°	0°	0°	0°	0°	0°	0°	0°	0°	0°
2	-	1	1	1	I	1	I	1	I	I
3	1	I	I	I	I	1	I	1	I	1
4	1	I	I	I	1	1	1	1	I	1
5	2	2	2	2	2	2	2	2	I	1
6	2	2	2	2	2	2	2	2	2	2
7	3	3	2	2	2	2	2	2	2	2
8	3	3	3	3	3	3	2	2	2	2
9	3	3	3	3	3	3	3	3	3	3
10	4	4	3	3	3	3	3	3	3	3
11	4	4	4	4	4	3	3	3	3	3
12	4	4	4	4	4	4	4	4	4	3
13	5	5	5	4	4	4	4	4	4	4
14	5	5	5	5	5	4	4	4	4	4
15	6	5	5	5	5	5	5	5	4	4
16	6	6	6	5	5	5	5	5	5	5
17	6	6	6	6	6	5	5	5	5	5
18	7	7	6	6	6	6	6	6	5	5
19	7	7	7	6	6	6	6	6	6	5
20	7	7	7	7	7	6	6	6	6	6
21	8	7	7	7	7	7	6	6	6	6
22	8	8	8	7	7	7	7	7	6	6
23	8	8	8	8	7	7	7	7	7	7
24	9	9	8	8	8	8	7	7	7	7
25	9	9	9	8	8	8	8	7	7	7
26	10	9	9	9	8	8	8	8	8	7
27	10	10	9	9	9	9	8	8	8	8
28	10	10	10	9	9	9	9	8	8	8
29	II	10	10	10	9	9	9	9	8	8
30	II	II	10	10	10	9	9	9	9	9
3 I	11	II	II	10	10	10	10	9	9	9
32	12	II	II	II	10	10	10	10	9	9
33	12	12	11	II	II	10	10	10	10	9
34	12	12	12	II	II	II	10	10	10	10
35	13	12	12	12	II	II	II	10	10	10
36	13	13	12	12	12	11	II	II	10	10
37	13	13	13	12	12	12	II	II	11	10
38	14	13	13	13	12	12	12	II	II	II
39	14	14	13	13	13	12	12	12	11	II
40	14	14	14	13	13	13	12	12	12	II
41	15	14	14	14	13	13	12	12	12	12
42	15	15	14	14	13	13	13	12	12	12
43	16	15	15	14	14	13	13	13	12	12
44	16	15	15	15	14	14	13	13	13	12
45	16	16	15	15	I4	14	14	13	13	13
46	17	16	16	15	I5	14	14	14	13	13
47	17	16	16	15	15	15	14	14	14	13
48	17	17	16	16	15	15	15	14	14	13
49	18	17	17	16	16	15	15	14	14	14
50	18	17	17	16	16	16	15	15	14	14

8mithbonian tables.

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement ($90^{\circ}-a$).

$$
a=\tan ^{-1} \frac{n}{d} .
$$

	DENOMINATOR OR NUMERATOR (d OR n).															
d.	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130
50	42°	40°	38°	36°	34°	32°	30°	29°	28°	27°	25°	24°	23°	23°	22°	21°
52	43	4 I	39	37	35	33	3 I	30	29	27	26	25	24	23	23	22
54	44	42	40	38	36	34	32	31	30	28	27	26	25	24	23	22
56		43	4 I	39	37	35	33	32	31	29	28	27	26	25	24	23
58		44	42	40	38	36	34	33	31	30	29	28	27	26	25	24
60		45	43	41	39	37	35	34	32	31	30	29	28	27	26	25
62			44	42	40	38	36	35	33	32	31	29	28	27	26	25
64			45	42	40	39	37	35	34	33	31	30	29	28	27	26
66				43	4 I	40	38	36	35	33	32	31	30	29	28	27
68				44	42	40	39.	37	36	34	33	32	31	30	29	28
70				45	43	4 I	39	38	36	35	34	32	31	30	29	28
72					44	42	40	39	37	36	34	33	32	31	30	29
74					45	43	41	39	38	37	35	34	33	32	3 I	30
76						44	42	40	39	37	36	35	33	32	31	30
78						44	43	41	39	38	37	35	34	33	32	31
80						45	43	42	40	39	37	36	35	34	33	32
82							44	42	4 I	39	38	37	35	34	33	32
84							45	43	41	40	39	37	36	35	34	33
88								44	42	4 4	39	38 39	37 37	36 36	35 35	33 34
90								45	43	42	4I					
92									44	43	4	40	39	37	36	35
94									45	43	42	41	39	38	37 38 38	36 36
98										44	43	42	40	39	3 S	37
100										45	44	42	4	40	39	38
102											44	43	42	40	39	38
104											45	43	42	4 I	40	39
108												44	43	41	4 4	39 40
110												45	44	43	41	
112													44	43	42	41
114													45	44	42	4 I
116														44	43	42
II8														45	43	42
120														45	44	43
122															44	43
124															45	44
126																44
128																45
130																45

TABLE 41.

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement $\left(90^{\circ}-\alpha\right)$.

n	DENOMINATOR OR NUMERATOR (d OR n).														
d.	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
50	21°	20°	20°	19°	18°	18°	17°	17°	16°	16°	16°	15°	15°	14°	14°
52	22	21	20	20	19	19	18	17	17	17	16	16	15	15	I5
54	22	22	21	20	20	19	19	18	18	17	17	16	16	15	15
56	23	23	22	21	20	20	19	19	18	IS	17	17	16	16	16
53	24	23	23	22	21	2 I	20	19	19	18	18	17	17	17	16
60	25	24	23	22	22	2 I	2 I	20	19	19	IS	IS	18	17	17
62	25	25	24	23	22	22	21	21	20	20	19	19	18	18	17
64	26	25	25	24	23	22	22	21	21	20	20	19	19	18	18
66	27	26	25	24	24	23	22	22	21	21	20	20	19	19	18
68	28	27	26	25	24	24	23	22	22	21	21	20	20	19	19
70	28	27	27	26	25	24	24	23	22	22	2 I	21	20	20	19
72	29	28	27	26	26	25	2.4	24	23	22	22	21	2 I	20	20
74	30	29	28	27	26	26	25	24	24	23	22	22	21	21	20
76	30	29	28	28	27	26	25	25	24	23	23	22	22	21	21
78	3 I	30	29	28	27	27	26	25	25	24	23	23	22	22	21
80	32	3 I	30	29	28	27	27	26	25	25	24	23	23	22	22
82	32	31	30	29	29	2 S	27	26	26	25	24	24	23	23	22
84	33	32	31	30	29	28	28	27	26	26	25	24	24	23	23
86	33	32	32	31	30	29	28	28	27	26	26	25	24	24	23
88	34	33	32	31	30	30	29	28	27	27	26	25	25	24	24
90	35	34	33	32	3 I	30	29	29	28	27	27	26	25	25	24
92	35	34	33	32	32	3 I	30	29	28	2 S	27	26	26	25	25
94	36	35	34	33	32	3 I	30	30	29	28	28	27	26	26	25
96	36	35	34	34	33	32	31	30	29	29	2 S	27	27	26	26
98	37	36	35	34	33	32	31	31	30	29	29	2 S	27	27	26
100	38	37	36	35	34	33	32	3 I	30	30	29	2 S	28	27	27
102	38	37	36	35	34	33	33	32	3 I	30	30	29	28	28	27
104	39	38	37	36	35	34	33	32	3 I	3 I	30	29	29	2 S	27
106	39	38	37	36	35	34	34	33	32	3 I	30	30	29	29	28
108	40	39	38	37	36	35	34	33	32	32	3 I	30	30	29	28
110	40	39	38	37	36	35	35	34	33	32	31	3 I	30	29	29
112	4 I	40	39	38	37	36	35	34	33	33	32	31	31	30	29
114	41	40	39	38	37	36	35	35	34	33	32	32	31	30	30
116	42	41	40	39	38	37	36	35	34	34	33	32	3 I	31	30
118	42	41	40	39	38	37	36	36	35	34	33	33	32	3 I	31
120	43	42	41	40	39	38	37	36	35	34	34	33	32	32	31
122	43	42	4 I	40	39	38	37	36	36	35	34	33	33	32	31
124	44	43	42	4 I	40	39	38	37	36	35	35	34	33	32	32
126	44	43	42	4 I	40	39	38	37	37	36	35	34	34	33	32
128	45	43	42	4 I	40	40	39	3 S	37	36	35	35	34	33	33
130	45	44	43	42	4 I	40	39	38	37	37	36	35	34	34	33
132		44	43	42	41	40	40	39	38	37	36	35	35	34	33
134		45	44	43	42	4 I	40	39	38	37	37	36	35	34	34
136			44	43	42	4 I	40	39	39	38	37	36	36	35	34
138			45	44	43	42	4 I	40	39	35	37	37	36	35	35
140			45	44	43	42	4 I	40	39	39	38	37	36	36	35
142				44	43	42	42	4 I	40	39	38	38	37	36	35
144				45	44	43	42	41	40	39	39	38	37	36	36
146					44	43	42	42	4 I	40	39	38	38	37	36
148					45	44	43	42	4 I	40	39	39	3^{8}	37	37
150					45	44	43	42	4 I	41	40	39	38	3 S	37

Table 42.
 RADIUS OF CRITICAL CURVATURE AND VELOCITIES OF CRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

English Measures.

$R_{c}=$ radius of critical curvature in miles. V_{c} High $=$ maximum speed in miles per hour on isobar of critical curvature. $V_{s}=$ speed along straight line isobars $=0.5 \mathrm{Vc} . \quad V$ Low $=$ speed in Low along isobar of curvature $R_{c} . V$ Low $=0.4142 V_{c}$.

The table is computed for a density of the air, $\rho=.0010$, which represents the conditions in the free air at an elevation of, roughly, one mile. Values for any other density can be readily found by dividing each or any of the tabulated values by the ratio of the densities, as, for example, for surface conditions divide by $1.2=\frac{.0010}{.0012}$ and so on.

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \end{aligned}$	d (miles)											
		100	125	150	175	200	250	300	400	500	600	800
10°	R_{c}	8160	6530	5440	4660	4080	3260	2720	2040	1630	1360	1020
	V_{c} High	372	298	248	212	I 86	149	124	93.0	74.4	62.0	46.5
	Vs	186	I49	124	106	93.0	74.4	62.0	46.5	37.2	31.0	23.2
	V Low	154	123	103	88.0	77.0	61.6	51.3	38.5	30.8	25.7	I9. 2
20	R_{c}	2100	1680	1400	1200	1050	841	701	526	420	350	263
	V_{c} High	189	151	126	108	94.4	75.5	62.9	47.2	37.8	31.5	23.6
	V_{s}	94.4	75.5	62.9	54.0	47.2	37.8	31.4	23.6	18.9	15.8	II. 8
	V Low	78.2	62.5	52. I	44.7	39.1	31.3	26.1	19.6	15.7	13.0	9.8
25		1380	1100	918	787	688	551	459	344	275	230	172
	V_{c} High	153	122	102	87.3	76.4	61.1	50.9	38.2	30.6	25.5	19.1
	Vs	76.4	61. 1	50.9	43.6	38.2	30.6	25.4	19.1	15.3	12.8	9.5
	V Low	63.3	50.6	42.2	36.2	31.6	25.3	21.1	15.8	12.7	10.6	7.9
30		984	787	656	562	492	393	328	246	197	164	123
	V_{c} High	129	103	86.1	73.8	64.5	51.6	43.0	32.3	25.8	21.5	16.1
	Vs	64.5	51.6	43.0	36.9	32.2	25.8	21.5	16.2	12.9	10.8	8. I
	V Low	53.5	42.8	35.7	30.6	26.7	21.4	17.8	13.4	10.7	8.9	6.7
35		747	598	498	427	374	299	249	187	150	125	93.4
	V_{c} High	${ }^{112}$	90.0	75.0	64.3	56.3	45.0	37.5	28.1	22.5	I8.8	14.1
	Vs	56.3	45.0	37.5	32.2	28.2	22.5	18.8	14.0	II. 2	9.4	7.0
	V Low	46.6	37.3	31. 1	26.6	23.3	18.6	15.5	II. 6	9.3	7.8	5.8
40		595	476	397	340	298	238	198	149	119	99.2	74.4
	$V_{c} c^{\text {High }}$	100	80.3	66.9	57.4	50. 2	40.2	33.5	25.1	20.1	16.7	12.6
	V s	50.2	40.2	33.4	28.7	25. I	20. I	16.8	I 2.6	10.0	8.4	6.3
	V Low	41.6	33.3	27.7	23.8	20.8	16.7	13.9	10.4	8.3	6.9	$5 \cdot 2$
45		492	393	328	281	246	197	164	123	98.4	82.0	6r. 5
	V_{c} High	91.3	73.0	60.9	52.2	45.6	36.5	30.4	22.8	18.3	15.2	Ir. 4
	Vs	45.6	36.5	30.4	26. I	22.8	18.2	15.2	11.4	9.2	7.6	$5 \cdot 7$
	V Low	37.8	30.2	25.2	21.6	18.9	15.1	12.6	9.4	7.6	6.3	$4 \cdot 7$
50		419	335	279	240	210	168	140	105	83.8	69.9	52.4
	V_{c} High	84.3	67.4	56.2	48.2	42.1	33.7	28. I	21.1	16.9	14.0	10.5
	V s	42.1	33.7	28. 1	24. I	21.0	16.8	14.0	10.6	8.4	7.0	5.3
	V Low	34.9	27.9	23.3	20.0	17:4	14.0	11.6	8.7	7.0	5.8	$4 \cdot 4$
55		366	293	244	209	183	147	122	91.6	73.3	61.1	45.8
	V_{c} c High	78.8	63.0	52.5	45.0	39.4	31.5	26.3	19.7	15.8	13.1	9.8
	Vs	39.4	31.5	26.2	22.5	19.7	15.8	13.2	9.8	7.9	6.6	4.9
	V Low	32.6	26. 1	21.7	18.6	16.3	13.0	10.9	8.2	6.5	$5 \cdot 4$	4. I
60		328	262	219	187	164	131	109	82.0	65.6	54.7	41.0
	Vc High	74.5	59.6	49.7	42.6	37.3	29.8	24.8	18.6	14.9	12.4	9.3
	V s	37.3	29.8	24.8	21.3	18.6	14.9	12.4	9.3	7.4	6.2	$4 \cdot 7$
	V Low	30.9	24.7	20.6	17.6	15.5	12.3	10.3	$7 \cdot 7$	6.2	5. I	3.9
65		299	240	200	171	150	120	99.8	74.8	59.9	49.9	37.4
	V_{c} High	71.2	57.0	47.5	40.7	35.6	28.5	23.7	17.8	14.2	11.9	8.9
	V_{s}	35.6	28.5	23.8	20.4	17.8	14.2	II. 8	8.9	7.1	6.0	4.4
	V Low	29.5	23.6	19.7	16.9	14.7	11.8	9.8	7.4	5.9	4.9	3.7

table 42.
RADIUS OF CRITICAL GURVATURE AND VELOCITIES OF GRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

English Measures.

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \\ & \phi \end{aligned}$	d (miles)											
		100	125	150	175	200	250	300	400	500	600	800
70°	R_{c}	278	223	186	159	139	III	92.8	69.6	55.7	46.4	34.8
	V_{c} High	68.7	55.0	45.8	39.3	34.3	27.5	22.9	17.2	13.7	II. 4	8.6
	V s	34.3	27.5	22.9	19.6	17.2	13.8	II. 4	8.6	6.8	5.7	4.3
	V Low	28.5	22.8	19.0	16.3	14.2	11.4	9.5	7.1	5.7	4.7	3.6
75		264	211	176	151	132	105	87.9	65.9	52.7	43.9	33.0
	$V_{c} \mathrm{High}$	66.8	53.5	44.6	38.2	33.4	26.7	22.3	16.7	I3.4	II. I	8.4
	V_{s}	33.4	26.8	22.3	19. 1	16.7	13.4	II. 2	8.4	6.7	5.6	4.2
	V Low	27.7	22.2	18.5	15.8	13.8	II. I	9.2	6.9	5.6	4.6	3.5
80	R_{C}	254	203	169	145	127	101	84.5	63.4	50.7	42.3	31.7
	V_{c} High	65.5	52.4	43.7	37.5	32.8	26.2	21.8	16.4	13.1	10.9	8.2
	V_{s}	32.8	26.2	21.8	I8.8	16.4	13. 1	10.9	8.2	6.6	5.4	4.1
	V Low	27.1	21.7	I8. I	I5.5	I3.6	10.9	9.0	6.8	5.4	4.5	3.4
85		248	198	165	142	124	99.1	82.6	62.0	49.6	41.3	31.0
	$V_{c} \mathrm{High}$	64.8	51.8	43.2	37.0	32.4	25.9	21.6	16.2	13.0	10.8	8. I
	V_{s}	32.4	25.9	21. 6	18.5	16.2	13.0	10.8	8.1	6.5	5.4	4.0
	V Low	26.8	21.5	17.9	15.3	I 3.4	10.7	8.9	6.7	$5 \cdot 4$	4.5	3.4
90		246	197	I64	140	123	98.4	82.0	61.5	49.2	41.0	30. 7
	$V_{c} \mathrm{High}$	64.6	51.6	43.0	36.9	32.3	25.8	21.5	16.1	12.9	10.8	8. I
	V s	32.3	25.8	21.5	18.4	16.2	12.9	10.8	8.0	6.4	5.4	4.0
	V Low	26.8	21.4	17.8	15.3	13.4	10.7	8.9	6.7	$5 \cdot 3$	4.5	$3 \cdot 3$

Table 43.
RADIUS OF CRITICAL CURVATURE AND VELOCITIES OF GRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

Metric Measures.

$R_{c}=$ radius of critical curvature in kilometers. V_{c} High $=$ maximum speed in meters per second on isobar of critical curvature. $V_{s}=$ speed along straight line isobars $=0.5 V_{c} . V$ Low $=$ speed in Low along isobar of curvature $R_{c} . V$ Lowv $=0.4142 V_{c}$.

The remarks in heading of Table 42 relative to the density of the air apply equally to Table 43 .

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \end{aligned}$	d (kilometers)											
		100	125	150	175	200	250	300	400	500	600	800
10°	R_{c}	8330	6660	5550	4760	4160	3330	2780	2080	1670	1390	1040
	V_{c} High	105	84.3	70.2	60.2	52.7	42.1	35. 1	26.3	21.1	17.6	13.2
	V_{s}	52.7	42.2	35. 1	30. I	26.4	21.0	17.6	13.2	10.6	8.8	6.6
	V Low	43.5	34.9	29.1	24.9	21.8	17.4	14.5	10.9	8.7	7.3	$5 \cdot 5$
20		2140	1710	1430	1220	1070	857	714	536	429	357	268
	V_{c} High	53.5	42.8	35.6	30.5	$26.7{ }^{\circ}$	21.4	17.8	13.4	10.7	8.9	6.7
	V s	26.7	21.4	17.8	15.2	13.4	10.7	8.9	6.7	$5 \cdot 4$	4.4	3.4
	V Low	22.2	17.7	14.7	12.6	II. 1	8.9	7.4	5.6	4.4	$3 \cdot 7$	2.8
25	R_{c}	1400	1120	936	802	702	562	468	351	28 I	234	175
	$V_{c} \mathrm{High}$	43.3	34.6	28.8	24.7	21.6	17.3	14.4	10.8	8.7	7.2	5.4
	V_{s}	21.6	17.3	14.4	12.4	10.8	8.6	7.2	5.4	4.4	3.6	2.7
	V Low	17.9	14.3	11.9	10.2	8.9	7.2	6.0	4.5	3.6	3.0	2.2
30		1003	802	669	573	5 d	401	334	251	201	167	125
	$V_{c} \mathrm{High}$	36.6	29.3	24.4	20.9	18.3	14.6	12.2	9.1	7.3	6.1	4.6
	Vs	18.3	14.6	12.2	10. 4	9.2	7.3	6.1	4.6	3.6	3.0	2.3
	V Low	15.2	12. I	10. I	8.7	7.6	6.0	5. I	3.8	3.0	2.5	I. 9

Smithsonian tables.

RADIUS OF CRITICAL CURVATURE AND VELOCITIES OF GRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

Metric Measúres.

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \end{aligned}$	d (kilometers)											
		100	125	150	175	200	250	300	400	500	600	800
35°	R_{c}	762	610	508	435	381	305	254	191	152	127	95.3
	V_{c} High	31.9	25.5	21.3	I8. 2	15.9	12.8	10. 6	8.0	6.4	5.3	4.0
	V_{s}	I5.9	12.8	10. 6	9.1	8.0	6.4	5.3	4.0	3.2	2.6	2.0
	V Low	13.2	10.6	8.8	$7 \cdot 5$	6.6	$5 \cdot 3$	$4 \cdot 4$	$3 \cdot 3$	2.7	2.2	1. 7
40	R_{c}	607	485	405	347	303	243	202	152	12 I	IOI	75.8
	V_{c} High	28.4	22.8	19.0	16.3	14.2	11.4	9.5	7.1	5.7	4.7	3.6
	V s	14.2	II. 4	9.5	8.2	7.1	$5 \cdot 7$	4.8	3.6	2.8	2.4	1.8
	V Low	II. 8	9.4	7.9	6.8	$5 \cdot 9$	4.7	3.9	2.9	2.4	1.9	1. 5
45		501	401	334	287	25 I	201	167	125	100	83.6	62.7
	V_{c} High	25.9	20.7	17.2	14.8	12.9	10. 3	8.6	6.5	5.2	4.3	3.2
	V_{s}	I 2.9	Io. 4	8.6	7.4	6.4	5.2	4.3	3.2	2.6	2.2	1. 6
	V Low	10.7	8.6	7.1	6.1	$5 \cdot 3$	4.3	3.6	2.7	2.2	1.8	1.3
50		427	342	285	244	214	171	142	107	85.5	71.2	53.4
	V_{c} High	23.9	19. I	15.9	13.6	II. 9	9.5	8.0	6.0	4.8	4.0	3.0
	V s	II. 9	9.6	8.0	6.8	6.0	4.8	4.0	3.0	2.4	2.0	I. 5
	V Low	9.9	$7 \cdot 9$	6.6	5.6	4.9	$3 \cdot 9$	$3 \cdot 3$	2.5	2.0	I. 7	I. 2
55		374	299	249	213	187	149	125	93.4	74.7	62.3	46.7
	V_{c} c High	22.3	17.9	14.9	12.8	II. 2	8.9	$7 \cdot 4$	5.6	4.5	3.7	2.8
	$V{ }^{\text {V }}$	II. 2	9.0	7.4	6.4	5.6	4.4	3.7	2.8	2.2	I. 8	I. 4
	V Low	9.2	7.4	6.2	$5 \cdot 3$	4.6	3.7	3.1	2.3	1.9	1. 5	1.2
60		334	267	223	191	167	134	III	83.6	66.9	55.7	41.8
	$V_{c} \mathrm{High}$	21.1	16.9	14.1	12. I	10.6	8.4	7.0	5.3	4.2	3.5	2.6
	$V_{s}{ }^{\text {sow }}$	10. 6	8.4	7.0	6.0	$5 \cdot 3$	4.2	3.5	2.6	2. I	1.8	I. 3
	V Low	8.7	7.0	5.8	5.0	4.4	$3 \cdot 5$	2.9	2.2	I. 7	1.4	I. I
65	R_{c}	305	244	204	174	153	122	102	76.3	61.0	50.9	38.2
	V_{c} High	20.2	16. I	13.4	II. 5	10.1	S. I	6.7	5.0	4.0	3.4	2.5
	V_{s} s	IO. I	8.0	6.7	5.8	5.0	4.0	3.4	2. 5	2.0	I. 7	I. 2
	V Low	8.4	6.7	5.6	4.8	4.2	3.4	2.8	2.1	I. 7	1.4	1.0
70		284	227	189	162	142	114	94.6	71.0	56.8	$47 \cdot 3$	
	V_{c} c High	19. 5	15.6	13.0	II. I	$9 \cdot 7$	7.8	6.5	4.9	3.9	3.2	2.4
	V_{s}	9.7	7.8	6.5	5.6	4.8	3.9	3.2	2.4	2.0	I. 6	I. 2
	V Low	8. I	6.5	$5 \cdot 4$	4.6	4.0	3.2	2.7	2.0	1.6	1.3	I. 0
75		269	215	179	154	I34	107	89. 6	67.2	53.7	44.8	33.6
	$V_{c} \mathrm{High}$	18.9	15.1	I2. 6	10.8	9.5	7.6	6.3	4.7	3.8	3.2	2.4
		9.5	7.6	6.3	5.4	4.8	3.8	3.2	2.4	I. 9	I. 6	I. 2
	V Low	7.8	6.3	5.2	$4 \cdot 5$	3.9	3.1	2.6	1.9	1.6	1.3	I. 0
80		259	207	172	148	129	103	86.2	64.6	51.7	43. I	32.3
	V c High	18.6	14.9	12.4	10.6	9.3	$7 \cdot 4$	6.2	4.6	3.7	3.1	2.3
	V_{s}	$9 \cdot 3$	7.4	6.2	53	4.6	3.7	3. 1	2.3	r. 8	I. 6	I. 2
	V Low	$7 \cdot 7$	6.2	5.1	$4 \cdot 4$	$3 \cdot 9$	3.1	2.6	1.9	I. 5	1.3	1.0
85		25.3	202	168	144	126	101	84.2	63.2	50.5	42. I	31.6
	V_{c} High	I8.4	14:7	I2. 2	10. 5	9.2	$7 \cdot 3$	6.1	4.6	3.7	3. 1	2.3
	V_{s}	9.2	7.4	6.1	5.2	4.6	3.6	3.0	2.3	I. 8	I. 6	I. 2
	V Low	7.6	6.1	5. I	$4 \cdot 3$	3.8	3.0	2.5	I. 9	I. 5	I. 3	I. 0
90			201	167	I43	125	100			50. I	41.8	31.3
	V_{c}^{c} High	18.3	14.6	12.2	10.4	9.1	7.3	6.1	4.6	3.7	3.0	2.3
	V_{s}	9.1	7.3	6.1	5.2	4.6	3.6	3.0	2.3	I. 8	I. 5	I. 2
	V Low	7.6	6.0	5. I	$4 \cdot 3$	3.8	3.0	2.5	I. 9	I. 5	I. 2	I. 0

$\mathbb{R} E D U C T I O N$ OF TEMPERATURE TO SEA LEVEL.

English measures Table 44
Metric measures Table 45

REDUCTION OF TEMPERATURE TO SEA LEVEL. ENGLISH MEASURES.

Tabular values are to be added to the observed temperature to obtain
the temperature at sea level.

REDUCTION OF TEMPERATURE TO SEA LEVEL. METRIC MEASURES.

Rate of decrease of temper- ature. o ${ }^{\circ} \mathrm{C}$. for every		DIFF	RENC	BETWEEN THE TEMPERATURE AT ANY ALTITUDE AND AT SEA LEVEL.								
	ALTITUDE IN METERS.											
	100	200	300	400	500	600	700	800	900	1000	2000	3000
m.					c.	c.		c.				
100	1.00	2.00	3.00	$4: 00$	5.00	6.00	7.00	8.oo	9.00	10.00	20.00	30.00
102	0.98	1.96	2.94	3.92	4.90	5.88	6.86	7.84	8.82	9.80	I9.6I	29.41
104	0.96	1.92	2.88	3.85	4.81	5.77	6.73	7.69	8.65	9.62	19.23	28.85
106	0.94	I. 89	2.83	3.77	4.72	5.60́	6.60	7.55	8.49	9.43	18.87	28.30
108	0.93	1.85	2.78	3.70	4.63	5.56	6.48	7.41	8.33	9.26	18.52	27.78
110	0.91	I. 82	2.73	3.64	4.55	5.45	6.36	7.27	8. 18	9.09	18.18	27.27
115	0.87	1.74	2.61	3.48	4.35	5.22	6.09	6.96	7.83	8.70	17.39	26.09
120	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50	8.33	16.67	25.00
125	0.80	1.60	2.40	3.20	4.00	4.80	5.60	6.40	7.20	8.00	16.00	24.00
130	0.77	1.54	2.31	3.08	3.85	4.62	5.38	6. 15	6.92	7.69	15.38	23.08
135	0.74	1.48	2.22	2.96	3.70	4.44	5.19	5.93	6.66	7.41	14.81	22.22
140	0.71	I. 43	2.14	2.86	3.57	4.29	5.00	5.71	6.43	7.14	14.29	21.43
145	0.69	1.38	2.07	2.76	3.45	4. 14	4.83	5.52	6.21	6.90	13.79	20.69
150	0.67	1.33	2.00	2.67	3.33	4.00	4.67	$5 \cdot 33$	6.00	6.67	13.33	20.00
155	0.65	1.29	1.94	2.58	3.23	3.87	4.52	5.16	5.81	6.45	12.90	19.35
160	0.62	1.25	1.87	2.50	3.12	3.75	4.37	5.00	5.62	6.25	12.50	18.75
170	0.59	1. 18	1.76	2.35	2.94	3.53	4.12	4.70	5.29	5.88	11.76	17.65
180	0.56	I.II	1.67	2.22	2.78	3.33	3.89	4.44	5.00	5.56	II. II	16.67
190	0.53	1.05	1.58	2.10	2.63	3.16	3.68	4.2 I	4.74	5.26	10.53	15.79
200	0.50	1.00	I. 50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	10.00	15.00
210	0.48	0.95	1.43	1.90	2.38	2.86	3.33	3.81	4.29	4.76	9.52	14.29
220	0.45	0.91	1. 36	1.82	2.27	2.73	3.18	3.64	4.09	4.55	9.09	13.64
230	0.43	0.87	I. 30	1.74	2.17	2.61	3.04	3.48	3.91	4.35	8.70	13.04
240	0.42	0.83	I. 25	1.67	2.08	2.50	2.92	3.33	3.75	4.17	8.33	12.50
250	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	4.00	8.00	12.00
260	0.38	0.77	I. 15	1.54	I. 92	2.31	2.69	3.08	3.46	3.85	7.69	II. 54
270	0.37	0.74	I. II	1.48	1. 85	2.22	2.59	2.96	3.33	3.70	7.41	II. II
280	0.36	0.71	1.07	1.43	1.79	2.14	2.50	2.86	3.21	3.57	7.14	10.71
290	0.34	0.69	I. 03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	6.90	10.34
300	0.33	0.67	1.00	1.33	1. 67	2.00	2.33	2.67	3.00	3.33	6.67	10.00
320	0.31	0.62	0.94	1.25	1.56	1.87	2.19	2.50	2.8 I	3. 12	625	9.37
340	0.29	0.59	0.88	I. 18	1. 47	1.76	2.06	2.35	2.65	2.94	5.88	8.82
360	0.28	0.56	0.83	I.II	1.39	1.67	1.94	2.22	2.50	2.78	5.56	8.33
380	0.26	0.53	0.79	1.05	I. 32	1.58	I. 84	2.10	2.37	2.63	5.26	7.89
400	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	5.00	7.50
420	0.24	0.48	0.71	0.95	I. 19	I. 43	1.67	1.90	2.14	2.38	4.76	7.14
440	0.23	0.45	0.68	0.91	I. 14	I. 36	1.59	1.82	2.05	2.27	4.55	6.82
460.	0.22	0.43	0.65	0.37	1.09	1.30	1.52	1.74	7.96	2. 17	4.35	6.52
480	0.21	0.42	0.62	0.83	1.04	1.25	I. 46	1.67	1.87	2.08	4.17	6.25
500	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	4.00	6.00

Tabular values are to be added to the observed temperature to obtain
the temperature at sea level.

BAROMETRICAL TABLES.

Reduction of the barometer to standard temperature -
English measures
Metric measures Table 46
Reduction of the mercurial barometer to standard gravity.
Direct reduction from local to standard gravity Table 48
Reduction through variation with latitude -
English measures TABLE 49
Metric measures Table 50
Determination of heights by the barometer. English measures.
Values of $60368(\mathrm{I}+0.0010195 \times 36) \log \frac{29.90}{B}$. . . . Table 5I
Term for temperature Table 52
Correction for gravity and weight of mercury Table 53
Correction for average degree of humidity Table 54
Correction for the variation of gravity with altitude . . Table 55
Determination of heights by the barometer - Metric and dynamic measures.
Values of $18400 \log \frac{760}{B}$. Table 56
Values for $18400 \log \frac{\text { IOI } 3.3}{B}$. Table 57
Temperature correction factor TABLE 58
Temperature correction $(0.00367 \theta \times Z)$. Table 59
Correction for humidity Table 60
Correction for humidity. Auxiliary to Table 58 Table 6i
Correction for gravity and weight of mercury Table 62
Correction for the variation of gravity with altitude . . Table 63
Difference of height corresponding to a change of o.i inch in the
barometer - English measures Table 64
Difference of height corresponding to a change of I millimeter in the barometer - Metric measures

Table 65
Determination of heights by the barometer.
Formula of Babinet
Table 66
Barometric pressures corresponding to the temperature of the
boiling point of water -
English measures Table 67
Metric measures Table 68

ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	*22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 0.0 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.050 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.05 \mathrm{I} \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.052 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.053 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.055 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.056 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.057 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.059 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.060 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.06 \mathrm{I} \end{gathered}$
$+0.5$	+0.049	+0.050	$+0.051$	+0.053	+0.054	+0.055	+0.056	+0.05S	+0.059	+0.060
1.0	. 048	. 049	. 050	. 052	. 053	. 054	. 055	. 057	. 058	. 059
1.5	. 047	. 048	. 049	.05I	. 052	. 053	. 054	. 056	. 057	. 058
2.0	. 046	. 047	. 049	. 050	.05I	. 052	. 053	. 055	. 056	. 057
2.5	. 045	. 046	. 048	. 049	. 050	.05I	. 052	. 054	. 055	. 056
3.0	+0.044	$+0.046$	+0.047	+0.048	+0.049	+0.050	$+0.051$	+0.053	+0.054	+0.055
3.5	. 043	. 045	. 046	. 047	. 048	. 049	. 050	. 051	. 053	. 054
4.0	. 043	. 044	. 045	. 046	. 047	. 048	. 049	. 050	. 052	. 053
4.5	. 042	. 043	. 044	. 045	. 046	. 047	. 048	. 049	.05I	. 052
5.0	. 041	. 042	. 043	. 044	. 045	. 046	. 047	. 048	. 049	.05I
5.5	+0.040	+0.041	+0.042	+0.043	+0.044	+0.045	+0.046	+0.047	+0.048	+0.049
6.0	. 039	. 040	.04I	. 042	. 043	. 044	. 045	. 046	. 047	. 048
6.5	. 038	. 039	. 040	. 041	. 042	. 043	. 044	. 045	. 046	. 047
7.0	. 037	. 03 S	. 039	. 040	. 041	. 042	. 043	. 044	. 045	. 046
7.5	. 037	. 038	. 038	. 039	. 040	. 041	. 042	. 043	. 044	. 045
8.0	+0.036	+0.037	+0.038	+0.038	+0.039	+0.040	+0.04I	+0.042	+0.043	+0.044
8.5	. 035	. 036	. 037	. 038	. 038	. 039	. 040	. 041	. 042	. 043
9.0	. 034	. 035	. 036	. 037	. 038	. 038	. 039	. 040	. 041	. 042
9.5	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039	. 040	.041
10.0	. 032	. 033	. 034	. 035	.036	. 036	.037	.03S	. 039	. 040
10.5	to.031	+0.032	+0.033	+0.034	+0.035	+0.035	+0.036	+0.037	+0.038	+0.039
11.0	. 030	. 031	. 032	. 033	. 034	. 034	. 035	. 036	. 037	. 038
11.5	. 030	. 030	.03I	. 032	. 033	. 034	. 034	. 035	. 036	. 037
12.0	. 029	. 030	. 030	.03I	. 032	. 033	. 033	. 034	. 035	. 036
12.5	. 028	. 029	. 029	. 030	. 031	. 032	. 032	. 033	. 034	.c34
13.0	+0.027	+0.028	+0.028	+0.029	+0.036	$+0.031$	$+0.031$	+0.032	+0.033	+0.033
13.5	. 026	. 027	. 028	. 028	. 029	. 030	. 030	.03I	. 032	. 032
14.0	. 025	. 026	. 027	. 027	. 028	. 029	. 029	. 330	.031	. 031
14.5	. 024	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 030	. 030
15.0	. 024	. 024	. 025	. 025	. 026	. 027	. 027	:02S	. 029	. 029
15.5	+0.023	+0.023	+0.024	$+0.024$	+0.025	$+0.026$	+0.026	+0.027	+0.027	+0.028
16.0	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026	.c26	. 027
16.5	. 02 I	. 022	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026
17.0	. 020	. 02 I	. 021	. 022	. 022	. 023	. 023	. 02.4	. 024	. 025
17.5	. 019	. 020	. 020	. 021	. 021	. 022	. 022	. 023	. 023	. 024
18.0	+0.018	+0.019	+0.019	$+0.020$	+0.020	+0.021	+0.021	+0.022	+0.022	+0.023
18.5	. 017	. 018	. 018	. 019	. 019	. 020	. 020	. 021	. 021	. 022
19.0	. 017	. 017	. 018	. 018	. 018	. 019	. 019	. 020	. 020	. 021
19.5	. 016	. 016	. 017	. 017	. 017	. 018	. 018	. 019	. 019	.02C
20.0	. 015	. 015	. 016	. 016	. 016	. 017	. 017	. 18	. 018	. 018
20.5	+0.014	to.014	+0.015	+0.015	+0.016	+0.016	+0.016	+0.017	+0.017	+0.017
21.0	. 013	. 014	. 014	. 014	. 015	. 015	. 015	. 016	. 016	. 1016
21.5	. 012	. OI 3	. 013	. 013	. 014	. 014	. 014	. 015	. 115	. 015
22.0	. OII	. 012	. 012	. 012	. OI 3	. OI 3	. OI 3	. 014	. 014	. 014
22.5	. OI I	. OII	. 01 I	. OII	. OI 2	. 012	. 012	. 013	. 013	. 013
23.0	+0.010	+0.010	+0.010	+0.010	+0.01I	+0.011	+0.011	+0.012	$+0.012$	+0.012
23.5	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. OII	. OI 1	. 011
24.0	. 008	. 008	. 008	. 009	. 009	. 009	. 009	. 010	. 010	. 010
24.5	. 007	. 007	. 008	. 008	. 008	. 008	. 008	. 009	. 009	. 009
25.0	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahrenheit.	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{gathered} \text { F. } \\ 25^{\circ} .5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.005 \end{gathered}$	$\left.\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.006 \end{array}$	$\begin{gathered} \text { Inch. } \\ -0.006 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.006 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.007 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$
26.0	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 006
26.5	. 004	. 004	.004	. 004	. 004	. 004	. 004	. 004	. 004	. 005
27.0	. 003	. 003	.003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
27.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
28.0	+0.001	+0.001	+o.001	+0.001	+0.001	+0.00r	+0.001	+0.001	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 002	. 002	. 002	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	-0.003	-0.003	-0.003	-0.003	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
31.0	. 004	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 005
31.5	. 005	. 005	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 006
32.0	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.5	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008	. 008	. 008
33.0	-0.008	-0.008	-0.008	-0.008	0.008	-0.009	-0.009	-0.009	-0.009	-0.009
33.5	. 008	. 009	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. 010
34.0	. 009	. 010	. 010	. 010	. 010	. 010	. 111	. OII	. OII	. OII
34.5	. 010	. 010	. 011	. OII	. OII	. OI I	. 012	. 012	. OI 2	. 13
35.0	. OrI	. OII	. 012	. 012	. 012	. 12	. 013	. 013	. 013	. 014
35.5	-0.012	-0.012	-0.012	-0.013	-0.013	-0.013	-0.014	-0.014	-0.014	-0.015
36.0	. 013	. 013	. 013	. 014	. 014	. 014	. 015	. O 5	.oI5	. 016
36.5	. 014	. 014	. 114	. 015	. OI 5	. 115	. 016	. 016	. 016	. 017
37.0	.OI4	. 015	. 15	.or6	. 016	. 016	. 017	. 017	. 017	. 18
37.5	. 015	. 016	. 016	. 017	. 017	. 017	. 018	. 018	. 019	. 019
38.0	-0.016	-0.017	-0.017	-0.017	-0.018	-0.018	-0.019	-0.019	-0.020	-0.020
38.5	. 017	. 17	.oi8	. 018	. 019	. 19	. 020	. 020	. 021	. 021
39.0	. 018	. 018	. 019	.OI9	. 020	. 020	. 02 I	. 02 I	. 022	. 022
39.5	. 19	. 019	. 020	. 020	. 02 I	. 021	. 022	. 022	. 023	. 023
40.0	. 020	. 020	. 02 I	. 02 I	. 022	. 022	. 023	. 023	. 024	. 024
40.5	-0.020	-0.021	-0.022	-0.022	-0.023	-0.023	-0.024	-0.024	-0.025	-0.025
41.0	. 02 I	. 022	. 022	. 023	. 024	. 024	. 025	. 025	. 026	. 026
41.5	. 022	. 023	. 023	. 024	. 025	. 025	. 026	. 026	. 027	. 027
42.0	. 023	. 024	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 029
42.5	. 024	. 025	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 030
43.0	-0.025	-0.025	-0.026	-0.027	-0.027	-0.028	-0.029	-0.029	-0.030	-0.031
43.5	. 026	. 026	. 027	. 028	. 028	. 029	. 030	. 030	. 031	. 032
44.0	. 026	. 027	. 028	. 029	. 029	. 030	. 03 I	. 03 I	. 032	. 033
44.5	. 027	. 028	. 029	. 030	. 030	.03I	. 032	. 032	. 033	. 034
45.0	. 028	. 029	. 030	. 030	. 03 I	. 032	. 033	. 033	. 034	. 035
45.5	-0.029	-0.030	-0.03I	-0.031	-0.032	-0.033	-0.034	-0.034	-c.035	-0.036
46.0	. 030	. 031	. 031	. 032	. 033	. 034	. 035	. 035	. 036	. 037
46.5	. 031	. 032	. 032	. 033	. 034	. 035	. 036	. 036	. 037	. 038
47.0	. 032	. 032	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039
47.5	. 033	. 033	. 034	. 035	. 036	. 037	. 038	. 038	. 039	. 040
48.0	-0.033	-0.034	-0.035	-0.036	-0.037	-0.038	-0.039	-0.040	-0.040	-0.04I
48.5	. 034	. 035	. 036	. 037	. 038	. 039	. 040	.04I	. 041	. 042
49.0	. 035	. 036	. 037	. 038	. 039	. 040	. 041	. 042	. 042	. 043
49.5	. 036	. 037	. 038	. 039	. 040	. 041	. 044	. 043	. 044	. 044
50.0	. 037	. 038	. 039	.040	. 041	. 042	. 043	. 044	0.45	. 046

table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 50.5 \end{array}$	$\left\lvert\, \begin{gathered} \text { Inch. } \\ -0.038 \end{gathered}\right.$	$\begin{gathered} \text { Inch. } \\ -0.039 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.040 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.04 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.042 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.043 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.044 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Inch. } \\ -0.045 \end{gathered}\right.$	$\begin{gathered} \text { Inch. } \\ -0.046 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.047 \end{gathered}$
51.0	. 039	. 040	. 0.41	. 042	. 043	. 044	. 045	. 046	0.47	. 048
51.5	. 039	. 040	. 041	. 042	. 044	. 045	. 046	. 047	. 048	. 049
52.0	. 040	. 041	. 042	. 043	. 044	. 046	. 047	. 048	. 049	. 050
52.5	. 041	. 042	. 043	. 044	. 045	. 047	. 048	. 049	. 050	.05I
53.0	-0.042	-0.043	-0.044	-0.045	-0.046	-0.047	-0.049	-0.050	-0.05I	-0.052
53.5	. 043	. 044	. 045	. 046	. 047	. 048	. 050	. 051	. 052	. 053
54.0	. 044	. 045	. 046	. 047	. 048	. 049	.05I	. 052	. 053	. 054
54.5	. 045	. 046	. 047	. 048	. 049	. 050	. 052	. 053	. 054	. 055
55.0	. 045	. 047	. 048	. 049	. 050	.051	. 053	. 054	. 055	. 056
55.5	-0.046	-0.047	-0.049	-0.050	-0.051	-0.052	-0.054	-0.055	-0.056	-0.057
56.0	. 047	. 048	. 050	.05I	. 052	. 053	. 055	. 056	. 057	. 058
56.5	. 048	. 049	. 050	. 052	. 053	. 054	. 056	. 057	.058	. 059
57.0	. 049	. 050	.051	. 053	. 054	. 055	. 057	. 058	. 059	. 060
57.5	. 050	.051	. 052	. 054	. 055	.056	. 058	. 059	. 060	.06I
58.0	-0.051	-0.052	-0.053	-0.055	-0.056	-0.057	-0.059	-0.060	-0.06I	-0.063
58.5	.051	. 053	. 054	. 055	. 057	. 058	. 060	.06I	. 062	. 064
59.0	. 052	. 054	. 055	. 056	. 058	. 059	. 061	. 062	. 063	. 065
59.5	. 053	. 055	. 056	. 057	. 059	. 060	.06I	. 063	. 064	. 066
60.0	. 054	. 055	. 057	. 058	. 060	. 061	. 062	. 064	. 065	. 067
60.5	-0.055	-0.056	-0.058	-0.059	-0.061	-0.062	-0.063	-0.065	-0.066	-0.068
61.0	. 056	. 057	. 059	. 060	. 062	. 063	. 064	. 066	. 067	. 069
61.5	. 057	. 058	. 060	. 061	. 062	. 064	. 065	. 067	. 068	. 070
62.0	. 057	. 059	. 060	. 062	. 063	. 065	. 066	. 068	. 069	. 071
62.5	. 058	. 060	. 061	. 063	. 064	. 066	. 067	. 069	. 071	. 072
63.0	-0.059	-0.061	-0.062	-0.064	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073
63.5	. 060	. 062	. 063	. 065	. 066	0.68	. 069	. 071	. 073	. 074
64.0	. 061	. 062	. 064	. 066	. 067	. 069	. 070	. 072	. 074	. 075
64.5	. 062	. 063	. 065	. 067	. 068	.070	. 071	. 073	. 075	.076
65.0	. 063	. 064	. 066	. 067	. 069	. 071	. 072	. 074	. 076	. 077
65.5	-0.063	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073	-0.075	-0.077	-0.078
66.0	. 064	. 066	. 068	. 069	. 071	. 073	. 074	. 076	. 078	. 079
66.5	. 065	. 067	. 069	. 070	. 072	. 074	. 075	. 077	. 079	.08I
67.0	. 066	. 068	. 069	. 07 I	. 073	. 075	. 076	. 078	.080	. 082
67.5	. 067	. 069	. 070	. 072	. 074	. 076	. 077	. 079	.08I	. 083
68.0	-0.068	-0.069	-0.07I	-0.073	-0.075	-0.077	-0.078	-0.080	-0.082	-0.084
68.5	. 069	. 070	. 072	. 074	. 076	. 078	. 079	.081	.083	. 085
69.0	. 069	. 071	. 073	. 075	. 077	. 079	. 080	. 082	. 084	. 086
69.5	. 070	. 072	. 074	. 076	. 078	. 079	.08I	.083	. 085	. 087
70.0	.071	. 073	. 075	. 077	. 079	. 080	. 082	.084	. 086	. 088
70.5	-0.072	-0.074	-0.076	-0.078	-0.080	-0.08I	-0.083	-0.085	-0.087	-0.089
71.0	. 073	. 075	. 077	. 079	. 080	. 082	. 084	. 086	. 088	. 090
71.5	. 074	. 076	. 078	. 079	.081	.083	. 085	. 087	.089	. 091
72.0	. 075	. 076	. 078	. 080	.082	. 084	. 086	. 088	. 090	. 092
72.5	. 075	. 077	. 079	.08I	. 083	. 085	. 087	.089	. 091	. 093
73.0	-0.076	-0.078	-0.08o	-0.082	-0.084	-0.086	-0.088	-0.090	-0.092	-0.094
73.5	. 077	. 079	. 081	. 083	. 085	. 087	. 089	.09I	. 093	. 095
74.0	. 078	. 080	. 082	. 084	. 086	. 088	. 090	. 092	. 094	. 096
74.5 75.0	.079 .080	.081	.083	. 085	. 087	.089	. 091	. 093	. 095	. 097
75.0	. 080	. 082	.084	. 086	. 088	. 090	. 092	. 094	. 096	. 099

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 75: 5 \end{array}$	$\left\lvert\, \begin{gathered} \text { Inch. } \\ -0.08 I \end{gathered}\right.$	$\begin{aligned} & \text { Inch. } \\ & -0.083 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.085 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.087 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{o.0S9} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Inch. } \\ -\mathrm{o.09I} \end{gathered}\right.$	$\begin{gathered} \text { Iuch. } \\ -0.093 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.095 \end{gathered}$	Inch. -0.097	Inch. $\text { -0. } 100$
76.0	.OSI	. 084	. 086	. 088	. 090	. 092	. 094	. 096	. 098	IOI
76.5	.082	.084	. 087	. 089	.091	. 093	. 095	. 097	. 100	. 102
77.0	.083	. 085	. 087	. 090	. 092	. 094	. 096	. 098	. 101	. 103
77.5	. 084	.os6	. 088	.091	. 093	. 095	. 097	. 099	. 102	. 104
78.0	-0.085	-0.087	-0.089	-0.09I	-0.094	-0.096	-0.098	-0.100	-0.103	-0.105
78.5	. 086	. 088	. 090	. 092	. 095	. 097	. 099	. 101	. 104	. 106
79.0	. 086	.089	.09I	. 093	. 096	. 098	. 100	. 102	. 105	. 107
79.5	. 087	. 090	. 092	. 094	. 097	. 099	. 101	. 103	. 106	. 108
80.0	. 088	.09I	. 093	. 095	. 097	. 100	. 102	. 104	. 107	. 109
80.5	-0.089	-0.09I	-0.094	-0.096	-0.098	-O.10I	-0.103	-0.105	-0.108	-0.110
81.0	.090	. 092	. 095	. 097	. 099	. 102	. 104	. 106	. 109	. 111
8 I .5	.09I	. 093	. 096	. 098	. 100	. 103	. 105	.107	. 110	. 112
82.0	. 092	. 094	. 096	. 099	. 101	. 104	. 106	. 108	. 11 I	. 113
82.5	. 092	. 095	. 097	. 100	. 102	. 105	. 107	. 109	. 112	. 114
83.0	-0.093	-0.096	-0.098	-0.101	-0.103	-0.106	-0.108	-O.111	-0.113	-0.115
83.5	. 094	. 097	. 099	. 102	. 104	. 107	. 109	. 112	. 114	. 117
84.0	. 095	. 098	. 100	. 103	. 105	. 108	. 110	. 113	. 115	. 118
84.5	. 096	. 098	. 101	. 103	. 106	. 108	. III	. 114	. 116	. 119
85.0	. 097	. 099	. 102	. 104	. 107	. 109	. 112	I I5	. II 7	. 120
85.5	-0.098	-0.100	-0.103	-0.105	-0.108	-0. 110	-0.113	-0.116	-0.118	-0.121
86.0	. 098	IOI	. 104	. 106	.109	. 11 I	. 114	. 117	. 119	. 122
86.5	. 099	. 102	. 105	. 107	. 110	. 112	. 115	. 118	. 120	.123
87.0	. 100	. 103	. 105	. 108	. III	. II3	. 116	. 119	. 121	. 124
87.5	. 101	. 104	. 106	. IO9	. 112	. 114	. 117	. 120	. 122	. 125
88.0	-0.102	-0.105	-0.107	-0.110	-0.113	-O.115	-0.118	-0.121	-0.123	-0.126
88.5	. 103	. 105	. 108	. 11 I	. 114	. 116	. 119	. 122	. 124	. 127
89.0	. 104	. 106	. 109	. 112	. 114	. 117	. 120	. 123	. 125	. 128
89.5	. 104	. 107	. 110	. 113	. 115	. 18	. 121	. 124	. 126	. 129
90.0	. 105	. 108	. 111	. 114	. 116	. 119	. 122	. 125	. 127	. 130
90.5	-0.106	-0. 109	-0.112	-0.114	-0. 117	-0.120	-0.123	-0.126	-0.12S	-0.131
91.0	. 107	110	. 13	. II5	. 118	. 121	. 124	. 127	. 129	. 132
91.5	. 108	, III	. 113	. 116	. 119	. 122	. 125	. 128	. 131	. 133
92.0	.109	. 112	. 114	. 117	. 120	. 123	. 126	. 129	. 132	. 134
92.5	. 110	. 112	. 115	. II8	. 121	. 124	. 127	. 130	. 133	. 135
93.0	-0.110	-0.113	-0.116	-0.119	-0.122	-0.125	-0.128	-0.131	-0.134	-0.137
93.5	. III	. 114	. 117	. 120	. 123	. 120	. 129	. 132	. 135	. 138
94.0	. 112	. 115	. 118	. 121	. 124	. 127	. 130	. 133	. 136	. 139
94.5	. 113	. 116	. 119	. 122	. 125	. 128	. 131	. 134	. 137	. 140
95.0	. 114	. 117	. 120	. 123	. 126	. 129	.132	. 135	. 138	. 141
95.5	-0.115	-0.118	-0.121	-0.124	-0.127	-0.130	-0.133	-0.136	-0.139	-0.142
96.0	. 115	. 119	. 122	. 125	. 128	. 131	. 134	. 137	. 140	. 143
96.5	. 116	. 119	. 122	. 126	. 129	. 132	. 135	. 138	. 141	. 144
97.0	. 117	. 120	. 123	. 126	. 130	. 133	. 136	. 139	. 142	. 145
97.5	. 118	. 121	. 124	. 127	. 130	. 134	. 137	. 140	. 143	. 146
98.0	-0.119	-0. 122	-0. 125	-0.128	-0.13 1	-0.135	-0.138	-0.141	-0.144	-0.147
98.5	. 120	. 123	. 126	. 129	. 132	. 135	. 139	. 142	. 145	. 148
99.0	. 121	. 124	. 127	. 130	. 133	. 136	. 140	. 143	. 146	. 149
99:5	. 121	. 125	. 128	. 131	. 134	. 137	.14I	. 144	. 147	. 150
100.0	. 122	. 126	. 129	. 132	. 135	. 388	. 142	. 145	. 148	. 151

Table 46.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

 ENGLISH MEASURES.| Attached Thermometer Fahrenheit. | HEIGHT OF THE BAROMETER IN INCHES. | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 24.0 | 24.2 | 24.4 | 24.6 | 24.8 | 25.0 | 25.2 | 25.4 | 25.6 | 25.8 |
| $\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.063 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.063 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +\mathrm{o} .065 \end{gathered}$ | $\begin{array}{r} \text { Inch. } \\ +0.065 \end{array}$ | $\begin{gathered} \text { Inch. } \\ +0.066 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.066 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.067 \end{gathered}$ | $\begin{gathered} \text { Inch. } \\ +0.067 \end{gathered}$ |
| +0.5 | +0.06I | +0.062 | +0.063 | +0.063 | +0.064 | +0.064 | +0.065 | +0.065 | +0.066 | +0.066 |
| 1.0 | . 060 | .06I | .06I | . 062 | . 062 | . 063 | . 063 | . 064 | . 064 | . 065 |
| 1.5 | . 059 | . 060 | . 060 | .06I | .06I | . 062 | . 062 | . 063 | . 063 | . 664 |
| 2.0 | . 058 | . 059 | . 059 | . 050 | . 060 | .06I | .06I | . 062 | . 062 | . 063 |
| 2.5 | . 657 | . 058 | .058 | . 059 | . 059 | . 059 | . 060 | . 060 | .06I | . 061 |
| 3.0 | +0.056 | +0.056 | +0.057 | +0.057 | +0.058 | +0.058 | +0.059 | +0.059 | +0.060 | $+0.060$ |
| 3.5 | . 055 | . 055 | .055 | . 056 | . 057 | . 057 | . 058 | . 058 | . 059 | . 059 |
| 4.0 | . 054 | . 054 | . 055 | . 055 | .056 | . 056 | . 057 | . 057 | . 057 | . 058 |
| 4.5 | . 053 | . 053 | . 054 | . 054 | . 054 | . 055 | . 055 | . 056 | . 056 | . 057 |
| 5.0 | . 052 | . 052 | .052 | .053 | . 053 | . 054 | . 054 | . 055 | . 055 | . 056 |
| 5.5 | +0.05I | +0.05 1 | +0.051 | +0.052 | +0.052 | +0.053 | +0.053 | +0.053 | +0.054 | +0.054 |
| 6.0 | . 049 | . 050 | . 050 | . 051 | . 051 | . 052 | . 052 | . 052 | . 053 | . 053 |
| 6.5 | .048 | . 049 | . 049 | . 050 | .050 | . 050 | . 051 | . 051 | . 052 | .052 |
| 7.0 | . 047 | . 048 | . 048 | . 048 | . 049 | . 049 | . 050 | . 050 | . 050 | .051 |
| 7.5 | . 046 | . 047 | . 047 | . 047 | . 048 | . 048 | . 048 | . 049 | . 049 | . 050 |
| 8.0 | +0.045 | +0.045 | +0.046 | +0.046 | +0.047 | +0.047 | +0.047 | +0.048 | +0.04S | +0.048 |
| 8.5 | . 044 | . 044 | . 045 | . 045 | . 045 | . 046 | . 046 | . 047 | . 047 | . 047 |
| 9.0 | . 043 | . 043 | . 044 | . 044 | . 044 | . 045 | . 045 | . 045 | . 046 | . 046 |
| 9.5 | . 042 | . 042 | . 042 | . 043 | . 043 | . 044 | . 044 | . 044 | . 045 | . 045 |
| 10.0 | . 041 | . 041 | . 041 | . 042 | . 042 | . 042 | . 043 | . 043 | . 043 | . 044 |
| 10.5 | +0.040 | +0.040 | +0.040 | +0.04I | +0.041 | +0.041 | +0.042 | +0.042 | +0.042 | +0.043 |
| 11.0 | . 039 | . 039 | . 039 | . 039 | . 040 | . 040 | . 040 | . 041 | . 041 | . 041 |
| 11.5 | . 037 | . 038 | . 038 | . 038 | . 039 | . 039 | . 039 | . 040 | . 040 | . 040 |
| 12.0 | . 036 | . 037 | . 037 | . 037 | . 038 | . 038 | .03S | . 039 | . 039 | . 039 |
| 12.5 | . 035 | . 036 | . 036 | . 036 | . 036 | . 037 | .037 | . 037 | . 038 | . 038 |
| 13.0 | +0.034 | +0.034 | +0.035 | +0.035 | +0.035 | +0.036 | +0.036 | +0.036 | +0.036 | +0.037 |
| 13.5 | . 033 | . 033 | . 034 | . 034 | . 034 | . 034 | . 035 | . 035 | . 035 | . 036 |
| 14.0 | . 032 | . 032 | . 032 | . 033 | . 033 | . 033 | . 034 | . 034 | . 034 | . 034 |
| 14.5 | . 031 | .031 | . 03 ! | . 032 | . 032 | . 032 | . 032 | . 033 | . 033 | . 033 |
| 15.0 | . 030 | . 030 | . 030 | . 030 | . 031 | . 03 I | . 03 I | . 03 I | . 032 | . 032 |
| 15.5 | +0.029 | +0.029 | +0.029 | +0.029 | +0.030 | +0.030 | +0.030 | +0.030 | +0.031 | +0.03I |
| 16.0 | . 028 | . 02 S | . 02 S | . 028 | . 028 | . 029 | . 029 | . 029 | . 029 | . 030 |
| 16.5 | . 026 | . 027 | . 027 | . 027 | . 027 | .02S | . 028 | . 02 S | . 028 | . 028 |
| 17.0 | . 025 | . 026 | . 026 | . 026 | . 026 | . 026 | . 027 | . 027 | . 027 | . 027 |
| 17.5 | . 024 | . 024 | . 025 | . 025 | . 025 | . 025 | . 026 | . 026 | . 026 | :026 |
| 18.0 | +0.023 | +0.023 | +0.024 | +0.024 | +0.02. | +0.024 | +0.024 | +0.025 | +0.025 | +0.025 |
| 18.5 | . 022 | . 022 | . 022 | . 023 | . 023 | . 023 | . 023 | . 023 | . 024 | . 024 |
| 19.0 | . 021 | . 022 | . 021 | . 022 | . 022 | . 022 | . 022 | . 022 | . 022 | . 023 |
| 19.5 | . 020 | . 020 | . 020 | . 020 | . 021 | . 021 | . $\mathrm{O2I}$ | . 021 | . 02 I | . 02 I . |
| 20.0 | . 019 | . 019 | . 019 | . 019 | . 019 | . 020 | . 020 | . 020 | . 020 | . 020 |
| 20.5 | +0.018 | +0.018 | +0.018 | +0.018 | +0.018 | +o.018 | +0.019 | +0.019 | +0.019 | +0.019 |
| 21.0 | . 017 | . 017 | . 017 | . 017 | . 017 | . 017 | . 017 | . 018 | . 018 | . 018 |
| 21.5 | . 016 | . 016 | . 016 | . 016 | .016 | . 1016 | . 016 | .016 | . 017 | . 017 |
| 22.0 | . 014 | . OI | . 015 | . 015 | .015 | . 15 | . 015 | . 015 | . 15 | . 016 |
| 22.5 | . 013 | . 013 | . 014 | . 014 | . 014 | . 014 | . 014 | .014 | . 014 | . 014 |
| 23.0 | +0.012 | +0.012 | +0.012 | +0.013 | +0.013 | +0.013 | +0.013 | +0.013 | +0.013 | +0.013 |
| 23.5 | . OI I | . 11 I | . 111 | . OII | . 1212 | . 1212 | . O 2 | . 012 | . 012 | . 012 |
| 24.0 | . 010 | . 010 | . 010 | . 010 | . 010 | . 111 | . OII | . 011 | . 011 | . 011 |
| 24.5 | . 009 | . 009 | . 009 | . 009 | . 009 | . 009 | .or9 | . 010 | . 010 | . 010 |
| 25.0 | .008 | .008 | .008 | . 008 | .008 | .008 | . 08 | .008 | . 008 | . 009 |

TABLE 46.
REDUCT:ON OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	IN INCHES.									
Fahren- heit.	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} \text { F. } \\ 25.5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.007 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.007 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & \text { +o.007 } \end{aligned}$
26.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
27.5	. 002	. 002	. 003	.003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
31.0	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 006	. 006
31.5	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.0	. 007	. 007	. 007	.008	.008	. 008	. 008	.008	. 008	. 008
32.5	.008	. 009	. 009	.009	. 009	. 009	. 009	. 009	. 009	. 009
33.0	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010
33.5	. 011	. OII	. 011	. OI 1	. OI 1	. OI 1	. 011	. 011	. OII	. OI 1
34.0	.012	. 012	. 012	. 012	. 012	. 012	. 012	. 012	. 012	. 013
34.5	. 013	. 013	.O13	. 013	. 113	.O13	.013	. 014	.OI4	. 014
35.0	. 014	. 014	. 014	. 014	.014	. 014	. 1015	. 015	. OI 5	. 015
35.5	-0.015	-0.015	0.015	-0.015	-0.015	0.016	0.016	-0.016	-0.016	-0.016
36.0	. 016	. 016	. 016	. 016	. 017	. 017	. 017	. 017	. 017	. 017
36.5	. 017	. OI 7	. 017	. 018	. 018	. 1818	. 1818	. 1018	. 018	. 018
37.0	. 18	.or8	.019	. 019	.OI9	.O19	.019	. 019	. 019	. 019
37.5	. 019	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 021	. 02 I
38.0	0.020	-0.021	-0.02 J	-0.021	-0.021	-0.021	-0.021	-0.022	-0.022	-0.022
38.5	. 021	. 022	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023
39.0	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024	. 024
39.5	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025
40.0	. 025	. 025	.025	. 025	. 026	. 026	. 026	. 026	. 026	. 027
40.5	0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027	-0.027	-0.028	-0.028
41.0	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 029	. 029	. 029
4I. 5	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 030	. 030	. 030
42.0	. 029	. 029	. 030	. 030	. 030	. 030	. 031	. 031	.031	. 031
42.5	. 030	.030	. 031	. 031	. 031	.031	. 032	. 032	. 032	. 032
43.0	-0.031	-0.032	-0.032	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	-0.034
43.5	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 035	. 035
44.0	. 033	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036
44.5	. 035	.035	. 035	. 035	. 036	.036	.036	. 037	. 037	. 037
45.0	. 036	. 036	. 036	. 037	.037	. 037	. 037	. 038	. 038	. 038
45.5	-0.037	-0.037	-0.037	-0.038	-0.038	-0.038	-0.039	-0.039	-0.039	-0.039.
46.0	. 038	.038	. 038	. 039	. 039	. 039	. 0.40	. 0.40	. 040	.0.41
46.5	.039	.039	. 040	. 040	. 040	. 041	.041	. 0.41	. 041	. 042
47.0	. 040	. 040	. 041	. 041	. 041	. 042	. 042	. 0.42	. 043	. 043
47.5	. 0.41	. 041	. 042	. 0.42	. 042	. 0.43	. 043	. 0.43	. 044	. 0.44
48.0	-0.042	-0.042	-0.043	-0.043	-0.044	-0.044	-0.044	-0.045	-0.045	-0.045
48.5	. 043	. 044	. 044	. 044	. 045	. 045	. 0.45	. 046	. 046	. 0.46
49.0	. 044	. 045	. 045	. 045	. 046	.0.46	. 0.47	. 047	. 047	. 048
49.5	. 045	. 046	. 046	. 047	. 047	. 0.47	. 048	. 048	. 048	. 049
50.0	. 046	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050

Table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahren heit.	HEIGHT OF THE BAROMETER IN INCHES.									
	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} F . \\ 50.5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.048 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.048 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.048 \end{gathered}$	Inch. -0.049	Inch. -0. 049	Inch. -0.050	Inch. -0.050	Inch. -0.050	Inch. -0.051	Inch. -0.051
51.0	. 049	. 049	. 049	. 050	. 050	. 051	. 051	. 051	. 052	. 052
51.5	. 050	. 050	.051	. 051	. 051	. 052	. 052	. 053	. 053	. 053
52.0	.051	. 051	. 052	.052	. 053	. 053	. 053	. 054	. 054	. 055
52.5	. 052	.052	. 053	. 053	. 054	. 054	. 055	. 055	. 055	. 056
53.0	-0.053	-0.053	-0.054	-0.054	-0.055	-0.055	-0.056	-0.056	-0.057	-0.057
53.5	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 058	. 058
54.0	. 055	. 056	. 056	. 057	. 057	. 057	.058	.058	. 059	. 059
54.5	. 056	. 057	. 057	. 058	. 053	. 059	. 059	.060	. 060	. 060
55.0	. 057	. 058	.058	. 059	. 059	. 060	. 060	.061	.06r	. 062
55.5	-0.058	-0.059	-0.059	-0.060	-0.060	-0.061	-0.06I	-0.062	-0.062	-0.063
56.0	. 060	. 060	. 060	.06I	.06I	. 062	. 062	. 063	. 063	. 064
56.5	. 061	.06I	. 062	. 062	. 063	. 063	. 064	.064	. 065	. 065
57.0	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066
57.5	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066	. 067	. 067
58.0	-0.064	-0.064	-0.065	-0.065	-0.066	-0.066	-0.067	-0.068	-0.068	-0.069
58.5	. 065	. 065	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 070
59.0	. 066	. 067	. 067	. 068	. 068	. 069	.069	. 070	. 070	. 071
59.5	. 067	. 068	. 068	. 069	. 069	. 070	.070	. 071	. 072	. 072
60.0	. 068	. 069	. 069	. 070	. 070	. 071	. 072	. 072	. 073	. 073
60.5	-0.069	-0.070	-0.070	-0.071	-0.072	-0.072	-0.073	-0.073	-0.074	-0.074
61.0	. 070	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 076
61.5	. 071	. 072	. 073	. 073	. 074	. 074	. 075	. 076	. 076	. 077
62.0	. 073	. 073	. 074	. 074	. 075	. 076	. 076	. 077	. 077	. 078
62.5	. 074	. 074	. 075	. 075	. 076	. 077	. 077	. 078	. 078	. 079
63.0	-0.075	-0.075	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.080	-0.080
63.5	. 076	. 076	. 077	. 078	. 078	. 079	. 080	. 080	.08I	. OSI
64.0	. 077	. 077	. 078	. 079	. 079	. 080	.081	.081	. 082	. 082
64.5	. 078	. 079	. 079	. 080	.081	.OSI	.082	.082	. 083	. 084
65.0	. 079	. 080	.oSo	.08I	. 082	.082	. 083	.084	. 084	. 085
65.5	-0.0So	-0.08I	-0.081	-0.082	-0.083	-0.083	-0.084	-0.085	-0.085	-0.086
66.0	.08I	. 082	.083	. 083	.o84	. 085	. 085	. 050	. 087	.087
66.5	.082	. 083	.084	.o84	. 085	. 086	. 086	. 087	. 088	. 088
67.0	. 083	.084	. 085	. 085	. 086	.087	. 087	. 088	.089	. 090
67.5	.084	.085	. 086	. 087	. 087	. $\mathrm{oS8}$.089	.089	. 090	.091
68.0	-0.085	-0.086	-0.087	-0.088	-0.088	-0.089	-0.090	-0.090	-0.091	-0.092
68.5	. 087	. 087	. 088	.089	.089	. 090	. 091	. 092	. 092	. 093
69.0	. 088	.o8s	.o89	. 090	.09I	. 091	. 092	. 093	. 093	.094
69.5	.089	.089	. 090	. 091	.092	. 092	. 093	. 094	. 095	. 095
70.0	. 090	.09I	.091	. 092	. 093	. 094	. 094	. 095	. 096	. 097
70.5	-0.091	-0.092	-0.092	-0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.098
71.0	. 092	. 093	. 094	. 09.4	. 095	. 096	. 097	. 097	.098	. 099
71.5	. 093	. 094	. 095	. 095	.096	. 097	. 098	.098	. 099	. 100
72.0	. 094	. 095	. 096	. 096	. 097	.098	. 099	. 100	. 100	. 101
72.5	. 095	. 096	. 097	.098	.ogS	. 099	. 100	. 101	. 102	. 102
73.0	-0.096	-0.097	-0.098	-0.099	-0.100	-0.100	-0.101	-0.102	-0.103	-0.104
73.5	. 097	.098	. 099	. 100	. 101	. 101	. 102	. 103	. 104	. 105
74.0	. 098	. 099	. 100	. 101	. 102	. 103	. 103	. 104	. 105	. 106
74.5	. 100	.100	. IOI	. 102	.103	.104	. 105	.105	. 106	.107
75.0	. IOI	. 101	. 102	. 103	.104	. 105	. 106	. 106	.107	. 108

Smithsonian Tables.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	TT OF THE BAROMETER IN INCHES.									
Fahren- heit.	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{array}{r} \text { F. } \\ 75^{\circ} .5 \end{array}$	Inth.	Inch.	$\begin{gathered} \text { Inch. } \\ -0.103 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.104 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.105 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & \text {-o. } 106 \end{aligned}$	$\begin{gathered} \text { Iuch. } \\ -0.107 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.10 S \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.108 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.109 \end{aligned}$
76.0	. 103	. 104	. 104	. 105	. 106	. 107	. 108	. 109	. 110	. 110
76.5	. 104	. 105	. 106	. 106	. 107	. 108	. 109	. 110	. 111	. 112
77.0	. 105	. 106	. 107	. 108	. 108	. 109	. 110	. 111	. 112	. II3
77.5	. 106	. 107	. 108	. 109	. 110	. 1 IO	. 111	. 112	. 113	. II4
78.0	-0.107	-0.108	-0.109	-0.110	-O. 111	-0.112	-0.112	-0.113	-0.114	-0.115
78.5	. 108	. 109	. 110	. 111	. 112	. 113	. II4	. 114	. 15	. 116
79.0	.109	. 110	. 111	. 112	. II3	. 114	. 115	. 116	. 117	. II 7
79.5	. 110	. 111	. 112	. 113	. 114	. II5	.116	. 117	. II 8	. 119
80.0	. I I I	. 112	. 113	. 114	. 115	. 116	. 117	. 118	. 119	. 120
80.5	0.112	-O. II3	O. 114	O. I 15	-0.116	-0. 117	-0.118	-0.119	-0.120	-0.121
Si.o	. 114	. 115	. 115	. 116	. 117	. 18	. 119	. 120	. 121	. 122
81.5	. 115	. 116	. 117	. 118	. 118	. 119	. 120	. 212	. 122	. 123
82.0	. 116	. 117	. 118	. 119	. 120	. 121	. 122	. 122	. 123	. 124
82.5	. 117	. 118	. 119	.120	. 121	. 122	. 123	. 124	. 125	. 126
83.0	O. 118	-O.119	0. 120	O. 121	-0.122	-0.123	-0. 124	-0.125	-0.126	-0.127
83.5	. 119	. 120	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128
84.0	. 120	. 12 I	. 122	.123	. 124	. 125	. 126	. 127	. 128	. 129
84.5	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 130
85.0	. 122	. 123	. 124	.125	. 126	. 127	-. 128	. 129	. 130	.131
85.5	-0.123	-0.124	-0. 125	-0.126	-0.127	-0.12S	-0.129	-0.130	-0.131	-0. 133
86.0	. 124	. 125	. 126	. 127	. 128	. 130	. 131	. 132	. 133	. 134
86.5	. 125	. 126	. 128	. 129	. 130	. 131	.132	. 133	. 134	. 135
87.0	. 126	. 128	. 129	. 130	. 131	. 132	. 133	. 134	. 135	. 136
87.5	. 128	. 129	. 130	. 131	.132	. 133	. 134	. 135	. 136	. 137
88.0	-0.129	-0.130	-0.131	-0.132	-O. 133	-0.134	-O. I35	-0.136	-0.137	-0.138
88.5	. 130	.131	. 132	. 133	. 134	. 135	.136	. 137	. 138	. 139
S9.0	. 131	.132	. 133	. 134	. 135	. 136	. 137	. 138	. 140	.141
89.5	.132	. 133	. 34	. 135	. 136	. 137	. 138	. 140	. 141	. 142
90.0	. 133	. 134	. 135	. 136	. 137	. 138	. 140	. 141	. 142	. 143
90.5	-0.134	-0.135	-0.136	-0.137	-01. 39	-0.140	-0.141	-0.142	-0.143	-0.144
91.0	. 135	. 136	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145
91.5	. 136	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145	. 146
92.0	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 148
92.5	. 138	. 139	.141	. 142	. 143	. 144	. 145	. 146	. 148	. 149
93.0	-0.139	-0.141	-0.142	-0.143	-0. 144	-0.145	-0.146	-0.14S	-0.149	-0.150
93.5	. 140	. 142	. 143	. 144	. 145	. 146	. 148	. 149	. 150	. 51
94.0	. 142	. 143	. 144	. 145	. 146	. 147	. 149	. 150	. 151	. 152
94.5	. 143	. 144	. 145	. 146	. 147	. 149	. 150	. 151	. 152	. 53
95.0	. 144	. 145	. 146	. 147	. 149	. 150	. 151	. 152	. 153	. 154
95.5	-0.145	-0.146	-0.147	-0.148	-0.150	-0.15I	-0.152	-0.153	-0.154	-0.156
96.0	. 146	. 147	. 148	.150	. 151	. 152	. 153	. 154	. 156	. 157
96.5	. 147	. 148	. 149	. 151	. 55	. 53	. 154	. 156	. 157	. 158
97.0	. 148	. 149	. 150	. 152	. 553	. 154	. 55	.157	. 158	. 159
97.5	. 149	. 150	. 152	. 153	. 154	. 155	. 157	. 158	. 159	. 160
98.0	-0.150	-0. I5I	-0. 153	-0.154	-0.155	-0.156	-0.158	-0.159	-0.160	-0.161
98.5	.151	. 153	. 154	. 155	. 156	. 158	. 159	. 160	. 161	. 163
99.0	. 152	. 154	. 155	. 156	. 157	. 559	. 160	. 161	. 162	. 164
99.5 100.0	.153 .154	. 155	-156	157 .158	.159 .160	. 160	.161	. 162	. 164	. 165
100.0	. 154	. 156	. 157	. 158	. 160	.161	. 162	. 163	. 165	. 166

table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahren. heit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} \text { F. } \\ 0: 0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +-0.068 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.068 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.069 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text { f-0.069 } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$
+0.5	+0.067	+0.067	+0.068	+-0.068	+0.069	+0.069	+0.070	+0.070	+0.071	+0.071
1.0	. 065	. 066	. 066	. 067	. 067	. 668	. 068	. 069	. 069	. 070
1.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069
2.0	. 063	. 064	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067
2.5	. 062	. 062	. 063	. 063	.064	. 064	. 065	. 065	. 066	. 066
3.0	+0.061	+0.05I	+0.062	+0.062	+0.063	+0.063	+0.063	+0.064	+0.064	$+0.065$
3.5	. 059	. 060	. 060	.06I	. 06 I	. 062	. 062	. 063	. 053	. 064
4.0	. 058	. 059	. 059	. 060	. 060	.06I	.06I	. 061	. 052	. 062
4.5	. 057	. 058	. 058	. 058	. 059	. 059	.060	. 060	.061	.061
5.0	. 056	. 056	. 057	. 057	.058	. 058	. 059	. 059	. 059	. 060
5.5	+0.055	+-0.055	+0.056	+0.056	+0.056	+0.057	+0.057	+0.058	+0.058	+0.059
6.0	. 054	. 054	. 054	. 055	. 055	. 056	. 056	. 056	. 057	. 057
6.5	. 052	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056
7.0	.05I	.052:	. 052	.052	. 053	. 053	. 054	. 054	. 054	. 055
7.5	. 050	. 050	.051	. 051	.052	.052	.052	. 053	. 053	. 053
8.0	+0.049	+0.049	+0.050	+0.050	+0.050	+0.051	+0.051	+0.051	+0.052	+0.052
8.5	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 051	.051
9.0	. 046	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050
9.5	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	.048	. 048
10.0	. 044	. 044	. 045	. 045	. 045	. 045	. 046	. 046	. 047	. 047
10.5	+0.043	+0.043	+0.044	+0.044	+0.044	+0.045	+0.045	+0.045	+0.046	+0.046
11.0	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 045
11.5	. 041	.04I	. 041	. 041	. 042	. 042	. 042	. 043	. 043	. 043
12.0	. 039	. 040	. 040	. 040	. 041	. 041	. 041	. 041	. 042	. 042
12.5	. 038	.038	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041
13.0	+0.037	+0.037	+0.038	+0.038	+0.038	+0.038	+0.039	+0.039	+0.039	+0.040
13.5	. 036	. 036	.036	. 037	. 037	. 037	. 037	. 038	. 038	. 038
14.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 937	. 037
14.5	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036
15.0	. $03{ }^{2}$. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
15.5	+0.031	+0.031	+0.032	+0.032	+0.032	+0.032	$+0.032$	+0.033	+0.033	+0.033
16.0	. 030	. 030	. 030	.03I	. 03 I	.03I	. 331	. 03 I	. 032	. 032
16.5	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030	. 030	. 031
17.0	. 027	. 028	. 02 S	. 028	. 028	. 029	. 029	. 029	. 029	. 029
17.5	. 026	. 027	. 027	. 027	. 027	. 027	. 023	. 028	. 028	. 028
18.0	+0.025	+0.025	+0.026	$+0.025$	+0.026	+0.026	+0.026	$+0.026$	+0.027	+0.027
18.5	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 026
19.0	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024	. 024
19.5	. 022	. 022	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023
20.0	. 025	. 02 I	. 0221	. 02 I	. 022	. 021	. 02 I	. 021	. 022	. 022
20.5	+u.019	+0.019	+0.020	+0.020	+0.020	+0.020	$+0.020$	+0.020	+0.020	+0.021
21.0	. 018	. 018	. 018	. 018	. 019	. 019	. 019	. 019	. 019	. 019
21.5	. 017	. 017	.017	. 017	. 017	. 017	. 018	. 018	. 018	. 018
22.0	. 016	. 016	. 016	. 016	. 016	. 016	. 016	. 017	. 017	. OI7
22.5	. 014	. 015	. 015	. 015	. 015	. 015	. 015	. 015	. 015	. 015
23.0	+0.013	+0.013	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014
23.5	. 012	. O 2	. 012	. 012	. 012	. 013	. 013	. 013	. OI 3	.or3
24.0	. 111	. OII	. OI	.OII	. 111	. OI	. OI I	. 012	. 012	. OI 2
24.5	.OIO	. 010	. 010	. 010	. 010	. 010	.OIO	. 010	. 010	. 110
25.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009

ENGLI®H MEASURES.

Attached Thermometer Fahren. heit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} \text { F. } \\ 25^{\circ} .5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +-0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.00 S \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text { to.00S } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$
26.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	. 004	. 004	. 004	. 004	. 004	.004	. 004	. 004	. 004	. 004
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+.0.001	+0.001	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	.003	. 003	. 003
30.5	0.004	-0.004	-0.004	-0 005	-0.005	-0.005	-0.005	-0.005	-0.005	0.005
31.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
31.5	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007
32.0	. 008	. 008	.008	. 008	. 008	. 008	. 008	. 008	. 008	. 009
32.5	. 009	. 009	.009	. 009	. 009	.009	. 010	. 010	. 010	. 010
33.0	-0.010	-0.010	-0.010	-0.011	-0.01 1	-0.011	-0.011	-0.011	-0.011	0.011
33.5	. OII	. 012	. 012	. 012	. 012	. 012	. OI 2	. 012	. 012	. OI 2
34.0	. 013	. 013	. 013	. 013	. 013	.OI3	. OI 3	. 013	. 013	. Or 4
34.5	. 014	.OI4	. 114	. 014	. 014	. 014	. 014	. 015	. 015	. 015
35.0	. 015	. 015	. 015	. 015	. 015	.016	. 016	. 016	. 016	. 016
35.5	-0.016	-0.016	-0.016	-0.017	-0.017	-0.017	-0.017	-0.017	-0.017	0.017
36.0	. 017	. 018	.or8	. 018	. 018	. 018	. 018	. 018	. 018	. 019
36.5	. 019	.019	.or9	. 019	. 019	. 19	. OI 9	. 020	. 020	. 020
37.0	. 020	. 020	. 020	. 020	. 020	. 02 I	. 021	. 02 I	. 022	. 021
37.5	. 02 I	. 021	. 021	.02I	. 022	. 022	. 022	. 022	. 022	. 022
38.0	-0.022	-0.022	-0.022	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.024
38.5	. 023	. 023	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025
39.0	. 024	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
39.5	. 026	. 026	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027
40.0	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028	. 029
40.5	-0.028	-0.028	-0.028	-0.029	-0.029	-0.029	-0.029	-0.030	-0.030	0.030
41.0	. 029	. 029	. 030	. 030	. 030	. 030	.03I	. 331	. 031	.031
4 I .5	. 030	. 031	. 031	. 031	. 031	. 032	. 032	. 032	. 032	. 032
42.0	. 032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033	. 034
42.5	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035
43.0	-0.034	-0.034	-0.034	-0.035	-0.035	-0.035	-0.035	-0.036	-0.036	-0.036
43.5	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037	. 037	. 037
44.0	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038	. 039
44.5	. 037	.038	. 038	. 038	. 039	. 039	. 039	. 039	. 040	. 040
45.0	. 039	. 039	. 039	. 039	. 040	. 040	. 040	.04I	. 041	. 041
45.5	-0.040	-0.040	-0.040	-0.04I	-0.04I	-0.04I	-0.042	-0.042	-0.042	-0.043
46.0	. 041	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044
46.5	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 045	. 045
47.0	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046
47.5	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048
48.0	-c.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.048	-0.048	-0.048	-0.049
48.5	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050
49.0	. 048	. 048	. 049	. 049	. 049	. 050	. 050	.05I	. 051	.051
49.5	. 049	. 050	. 050	. 050	.05I	.05I	.051	. 052	. 052	. 053
50.0	. 050	. 051	.05I	.052	. 052	. 052	. 053	. 053	. 053	. 054

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attachenl lher:	HGICHT O									
Fahren hell.	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	tuch.	luch.	Inch,	Inch.	luch.	tuch.	Inch.	men.	Inch.	Inch.
50.5	-0.0.52	-0,052	-0.052	-0.05.3	-0.053	-0.05.1	-0.0.5-1	-0,05.4	-0.055	-0.055
51.0	.053	.053	. 0.54	. 05.1	. 0.5 .4	. 055	.05.5	. 055	. 0.56	.056
51.5	.05. 1	. 0.5 .1	.0.55	.055	.056	. 056	.056	. 057	. 1.57	. .058
52.0	. 1155	. 055	.056	. 0.56	.1957	.057	. 058	. 0.53	.058	. 059
52.5	. 056	. 057	. 057	.058	.055	.053	.059	.059	.06\%	.060
53.0	-0.057	-0.058	-0.0.58	-0.059	-0.059	$-0,060$	-0.060	-0.061	-0.061	-0.061
53.5	. 0.59	.0.59	. 059	. 060	.060	.061	.061	.062	.062	.063
5.4 .0	. 060	. 060	.061	. 060	. 062	.062	.063	.063	.063	.06. 1
5.4.5	. 061	.061	.062	.062	.063	.063	.06. 1	.06. 1	.065	. 065
55.0	.062	.063	.063	. 06.1	. 06.4	.06.1	.065	. 065	.066	.066
55.5	-0.063	-0.06. 1	-0.06. 4	-0.065	-0.065	-0.066	-0.066	-0.067	-0.067	-0.06S
56.0	. 06.1	.065	.065	.066	. 066	.067	.067	.068	$.168{ }^{\circ}$.069
56.5	.066	. 060	.067	. 067	. 068	.065	.069	. 069	. 070	. 070
57.0	.067	.067	. 065	. 068	.069)	. 069	.070	. 070	. 071	. 071
57.5	.068	.069)	. 069	. 070	.070	.071	. 071	. 072	.672	.073
58.0	-0.069	-0.070	-0.070	-0.071	-0.071	-0.072	-0.072	-0.073	$-0.07 .3$	-0.07.
5 S .5	.070	. 071	. 071	.072	.072	.073	.07.1	. 074	. 175	. 075
59.0	.1972	.072	. 073	.073	.07.	. 071	.075	.075	.070	.076
59.5	.073	. 073	.07. 4	. 07.4	. 075	.075	.076	. 077	. 077	.078
60.0	. 07.1	.074	. 075	.076	.076	.077	. 077	.078	. 178	. 079
60.5	-0.075	-0.076	-0.076	-0.077	-0.077	-0.078	-0.07S	-0.079	-0.0.50	-0.08o
611.0	. 076	. 077	.0.7	. 07 S	. 079	. 079	. otio	. 0 in	.Nは1	.os'
61.5	.197	.075	.079	. 079	.0so	.050	. osi	-032	.082	. OS_{3}
62.11	. 079	.079	. ABo	. 0 So	.osi	.os?	.082	. 083	. NS	.os.t
62.5	. ato	. 050	. 081	.082	. 063	.083	.083	.0S. 1	.015	.0S5
63.0	-0.0251	-0.083	-0.082	-0.083	-0.083	-0.08. 1	-0.0.85	-0.085	- 3.0 .086	-0.0.96
63.5	. SH_{2}	. $0 \mathrm{SH}_{3}$. S3	.03.1	. 045	. $0 \mathbf{3} 5$.0.56	. OS6	.087	.os3
6.4 .0	. 023	.03.1	.085	. 085	. 0 ¢ía	- osio	.087	- 0 Sis	. 1885	.089
6.1 .5	.08. 1	.0S5	.0s6	.086	. 037	. 083	. 0.58	.089	.090	. 090
65.0	.056	. 050	.057	. 035	.085	.059	.090	.090	.(1)1	.092
65.5	-0.087	-0.087	0.058	-0.0.5)	-0,089	-0.090	-0.091	-0.09) 1	-0.092	-0.093
6.6 .0	. os's	.OȦ)	. onic	.090	.091	. 9) 1	.09:	.(0). ${ }^{\text {a }}$. 0903	.09.1
66.5	.OB9	. 090	.(9) 0	.0y) 1	.092	.(0)3	.093	.(9). 1	. 00.5	.095
67.0	.090	.091	.092	.092	-(4)3	.09. 1	. 00.4	. 095	.(0) (\%	.097
67.5	.(y) 2	.092	.093	.09) 1	.09.4	. \times) 5	.096	.096	.697	.0ys
68.0	-0.093	-0,093	-0.09.1	-0.09) 5	-0.095	-0.096	-0.097	-0.099	-0.098	-0.099
68.5	.09) 4	.095	.04) 5	. 096	.097	(0)7	.09S	.099	. 100	. 100
60. 01	.005	. (9)6 6	. (x) 6	.09) 7	(0)S	(0)9	. 099	- $1(x)$. 101	.102
69. 5	.096	.(6)7	.00)	.09) ${ }^{\text {S }}$.0699	. 1 (x)	.101	.101	. 102	.103
70.0	. 097	.093	.099	- 100	. 100	. 101	. 102	. 103	.103	. 10.4
70.5	-0.098	-0,099	-0.100	-0,101	-0.101	-0, roz	-0.103	-0. 10,	-0.105	-0.105
71.0	- If \times)	. $1(0)$. 101	. 102	. 103	. 103	. 104	. 105	.106	. 107
71.5	. 101	.102	. 102	. 103	- 104	. 105	. 105	. 106	. 107	. 105
72.0	. 102	. 103	-10, 1	. 104	- 105	-106	. 107	. 107	. 105	.109
72.5	.103	. 10.4	. 105	.106	. 100	. 107	. 103	. 109	. 109	.110
73.0	-0.101	-0.105	-0.106	-0.107	-0, 103	-0.10S	$\rightarrow 0.109$	-0. 110	-0. III	-0.112
73.5	. 105	. IOC	. 107	. 103	.109	. 110	.110	. 111	. 112	.113
7-1.0	.107	. 107	. 108	. 109	. 110	. 111	. 112	.112	.113	. 11.4
7.1.5	. 103	.109	.109	.110	. 111	. 112	. 113	.114	11.1	. 115
75.0	.109	.110	.111	. 112	.112	.113	.II4	. 115	116	. 117

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGIT OF TIIE BAROMETER IN INCIEES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	Inch.	ch.	ch.	Inch.	neh.	nch.	ch	Inch.	Iuch.	Inch.
75.5	-0.110	-O.11 I	-0.112	-0. II3	-0.114	$\bigcirc 0.114$	-0.115	-0.116	-0.117	-0.118
76.0	. 111	. 112	. 113	. 114	. 115	. 116	. 116	. 117	. 118	. 119
76.5	. 113	. 113	. 114	. 115	. 116	. 117	. 118	. 119	.119	. 120
77.0	. I14	. 115	. 15	. 116	. 117	. 118	. 119	. 120	. 121	. 122
77.5	. 115	. 116	. 117	.117	. 118	. 119	. 120	. 12 I	. 122	. 123
78.0	-0.116	-0.117	-0.118	-0.119	-0.120	-0.120	-0.121	-0.122	-0.123	-0.124
78.5	. 117	. 118	. 119	. 120	. 121	. 122	.123	. 123	. 124	. 125
79.0	. 118	. 119	. 120	. 121	. 122	. 123	. 124	. 125	. 126	. 127
79.5	. 120	.120	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128
80.0	. 121	. 122	. 123	. 123	. 124	. 125	. 126	. 127	. 128	. 129
80.5	-0.122	-0.123	-0.124	-0.125	-0.126	-0.127	-0.127	-0.128	-0.129	-0.130
81.0	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 130	.131	. 132
81.5	. 124	. 125	. 126	. 127	. 128	. 129	. 130	. 131	. 132	. 133
82.0	. 125	. 126	. 127	. 128	. 129	. 130	. 31	. 132	. 33	. 134
82.5	. 127	. 128	. 128	. 129	. 130	. 131	. 132	. 133	. 134	- 135
83.0	-0.128	-0.129	-0.130	-0.131	-0.132	-0.133	-0.134	-0.135	-0.136	-0.137
83.5	.129	. 130	. 31	. 132	. 133	. 134	. 135	. 136	. 137	. 138
84.0	. 130	. 131	. 132	. 133	. 134	. 135	. 136	- 137	. 38	. 139
84.5	.131	. 32	. 133	. 134	. 35	. 136	. 137	. 138	- 139	. 140
85.0	.132	. 133	. 134	. 135	. 35	. 137	. 138	. 139	. 141	. 142
85.5	-0.134	-0.135	-0.136	-0.137	-0.138	-0. 139	-0.140	-0.141	-0.142	-0. 143
86.0	. 135	. 136	. 137	. 138	. 139	. 140	.141	. 142	. 143	. 144
86.5	. 136	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 144	. 145
87.0	. 137	. 138	- 39	. 140	. 141	. 142	.143	. 144	. 145	. 147
87.5	.138	. 139	. 140	. 141	. 142	. 144	. 145	. 146	. 147	. 148
88.0	-0.139	-0.140	-0.142	-0.143	-0.144	-0.145	-0.146	-0.147	-0.148	-0.149
88.5	. 141	. 142	. 143	. 144	. 145	.146	.147	. 148	. 149	. 150
89.0	. 142	. 143	. 144	. 145	.146	. 147	. 148	. 149	. 150	. 552
89.5	. 143	. 144	. 145	. 146	.147	.148	. 149	. 151	. 152	. 55
90.0	. 144	. 145	.146	. 147	.148	- 150	. 151	.152	. 153	. 154
90.5	-0.145	-0.146	-0.147	-0.149	-0.150	-0.15I	-0.152	-0.153	-0.154	-0.155
91.0	. 146	. 147	. 149	. 150	.151	. 152	. 153	. 154	. 55	. 157
91.5	. 148	. 149	. 150	. 151	. 152	. 153	. 154	. 55	. 157	. 58
92.0	. 149	. 150	. 151	. 152	. 153	- 154	. 156	. 57	. 158	. 1.59
92.5	. 150	. 151	. 152	. 153	. 154	. 156	. 157	. 58	. 59	. 160
93.0	-0.151	-0.152	-0.153	-0.155	-0.156	-0.157	-0.158	-0.159	-0.160	-0.161
93.5	. 52	.153	. 155	.156	. 157	. 158	. 159	. 160	. 162	.163
94.0	. 153	. 155	. 156	. 157	. 158	. 159	. 160	. 162	.163	. 16.4
9.4.5	. 155	.156	. 157	. 158	. 159	. 160	.162	.163	.164	. 165
95.0	.156	.157	. 158	.159	. 160	. 162	.163	. 164	.165	. 166
95.5	-0.157	-0.158	-0.159	-0.160	-0.162	-0.163	-0.164	-0.165	-0.167	-0.168
96.0	. 158	. 159	. 160	. 162	.163	. 164	. 165	. 167	. 168	. 169
96.5	. 55	. 160	. 162	.163	. 164	. 165	. 167	. 168	. 169	. 170
97.0	. 160	. 162	. 163	. 164	. 165	. 167	. 168	.169	. 170	.171
97.5	.162	. 163	. 164	.165	. 166	. 168	. 169	.170	.171	. 173
98.0	-0.163	-0.164	-0.165	-0.166	-0.168	-0.169	-0.170	-0.171	-0.173	-0.174
98.5	. 164	.165	. 166	. 168	. 169	.170	. 171	. 173	.174	. 175
99.0	.165	. 166	. 168	. 169	. 170	. 171	. 173	.174	.175	. 176
99.5 100.0	.166 .167	. 167	. 169	.170	. 171	. 173	. 174	. 175	. 176	. 178
100.0	.167	.169	. 170	.171	. 172	. 174	. 175	.176	.178	. 179

Table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.073 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.077 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.077 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.078 \end{array}$
$+0.5$	+0.072	+0.072	+0.073	+0.073	+0.074	+0.074	+0.075	+0.075	$+0.076$	+0.076
1.0	. 070	. 071	. 07 I	. 072	. 072	. 073	. 073	. 074	. 074	. 075
1.5	. 069	. 070	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074
2.0	. 068	. 068	. 069	. 069	. 070	. 070	. 07 I	. 07 I	. 072	. 072
2.5	. 067	. 067	. 068	. 068	. 069	. 069	. 069	. 070	. 070	.071
3.0	+0.065	+0.066	+0.066	+0.067	+0.067	+0.068	+0.068	+0.069	+0.069	+0.070
3.5	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
4.0	. 063	. 063	. 064	. 064	. 065	. 065	. 065	. 066	. 066	. 067
4.5	. 062	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065	. 065
5.0	. 060	.06I	.06I	. 062	. 062	. 062	. 063	. 063	. 064	. 064
5.5	+0.059	+0.059	+0.060	+0.060	+0.06I	+0.06I	+0.062	+0.062	+0.062	$+0.063$
6.0	. 058	. 058	. 059	. 059	. 059	. 060	. 060	.06I	. 061	.06I
6.5	. 056	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060
7.0	. 055	. 056	.056	. 056	. 057	. 057	. 057	. 058	. 058	. 059
7.5	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 057
8.0	+0.053	+0.053	+0.053	+0.054	+0.054	+0.054	+0.055	+0.055	+0.056	+0.056
8.5	. 051	. 052	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 055
9.0	. 050	. 050	. 051	.051	. 051	.052	. 052	. 053	. 053	. 053
9.5	. 049	. 049	. 049	. 050	. 050	. 050	. 051	.051	. 052	. 052
10.0	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050	. 050	. 051
10.5	+0.046	+0.047	+0.047	+0.047	+0.048	+0.048	+0.048	+0.049	+0.049	+0.049
11.0	. 0.45	. 045	. 046	. 046	. 0.46	. 047	. 047	. 047	. 047	. 048
11.5	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	. 046
12.0	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 044	. 045	. 045
12.5	.04I	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044
13.0	+0.040	+0.040	+0.040	+0.041	+0.041	+0.04I	+0.042	+0.042	+0.042	+0.042
13.5	. 039	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041	. 041
14.0	. 037	. 038	. 038	. 038	. 038	. 039	. 039	. 039	. 039	. 040
14.5	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038
15.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037
15.5	+0.033	+0.034	+0.034	+0.034	+0.034	+0.035	+0.035	+0.035	+0.035	+0.036
16.0	. 032	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
16.5	. 03 I	. 031	. 031	. 032	. 032	. 032	. 032	. 032	. 033	. 033
17.0	. 030	. 030	. 030	. 030	. 030	. 031	. 031	. 031	. 031	. 032
17.5	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030
18.0	+0.027	+0.027	+0.027	+0.028	+0.028	+0.028	+0.028	+0.028	+0.029	+0.029
18.5	. 026	. 026	. 025	. 026	. 027	. 027	. 027	. 027	. 027	. 027
19.0	. 025	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
19.5	. 023	. 023	. 024	. 024	. 024	. 024	. 024	. 024	. 025	. 025
20.0	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023	. 023	. 023
20.5	+0.021	+0.021	+0.021	+0.021	+0.021	+0.02I	+0.022	+0.022	+0.022	+0.022
21.0	.OI9	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 021	. 021
21.5	. 18	.or8	. 018	. 019	. 019	. 019	. 019	. 019	.OI9	.OI9
22.0	. 017	. 017	. 017	. 017	. 1017	. 017	. 018	. 1818	. OIS	. 18
22.5	.oI6	. 016	. 016	. 016	. 1016	. 016	. 016	. 016	. 016	. 017
23.0	+o.014	+0.014	+0.015	+0.015	+0.015	+0.015	+o.015	+0.015	+0.015	+0.015
23.5	. 013	.013	. 013	. 013	. 013	. 014	. 014	. 014	. 014	. 014
24.0	. 012	. 012	. 012	. 012	.or2	. 012	. 012	. 012	. 012	. 013
24.5	. OII	. 111	. 121	.OII	.OII	. 011	. OII	. OII	. 11	.OII
25.0	. 009	.009	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. 010

TABLE 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahren. heit.	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
$\begin{array}{r} \text { F. } \\ 25.5 \end{array}$	$\begin{gathered} \text { Inch. } \\ +\mathrm{O} .008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$
26.0	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007
26.5	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 006	. 006	. 006
27.0	. 004	. 004	. 004	.004	. 004	. 004	. 004	. 004	. 004	. 004
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
30.5	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
31.5	. 007	. 007	. 007	. 007	. 008	. 008	. 008	. 008	.ooS	.008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	009	. 009	. 009
32.5	. 010	. 010	. 010	. 010	. 010	. 010	. 010	. 010	. 10	. 010
33.0	-0.01 I	-0.01 I	-0.01 1	-0.01 1	-0.01 I	-0.012	-0.012	-0.012	-0.012	-0.012
33.5	. 012	. OI 2	. 013	. 013	. 013	.OI3	. 1213	. 013	.OI 3	. .OI3
34.0	. 014	.O14	. 014	. 014	. 014	. 014	. 014	. 114	. 014	. O 5
34.5	. 015	. 15	.OI 5	.OI 5	. 015	. 015	.or6	. 016	. 016	.oi6
35.0	. 016	. 016	. 016	. 017	. 017	. 017	. 17	. 1017	. 017	. 017
35.5	-0.017	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.019
36.0	. 019	. 019	. 019	. 019	. 019	. 19	. 020	. 020	. 020	. 020
36.5	. 020	. 020	. 020	. 020	. 02 I	. 02 I	. 021	. 02 I	. 021	. 021
37.0	. 021	. 02 I	. 022	. 022	. 022	. 022	. 022	. 022	. 022	. 023
37.5	. 023	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024
38.0	-0.024	-0.024	-0.024	-0.024	-0.024	-0.025	-0.025	-0.025	-0.025	-0.025
38.5	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026	. 027	. 027
39.0	. 026	. 027	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028
39.5	. 028	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029
40.0	. 029	. 029	. 029	. 030	.030	. 030	. 030	. 030	. 031	. 031
40.5	-0.030	-0.030	-0.03 I	-0.03I	-0.03 I	-0.031	-0.03 I	-0.032	-0.032	-0.032
41.0	. 031	. 032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033
41.5	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035
42.0	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036	. 036
42.5	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037	. 037	. 037
43.0	-0.036	-0.037	-0.037	-0.037	-0.038	-0.038	-0.038	-0.038	-0.039	-0.039
43.5	. 038	. 038	. 038	. 039	. 039	. 039	. 039	. 040	. 040	. 040
44.0	. 039	. 039	. 040	. 040	. 040	. 040	. 041	. 041	. 041	. 042
44.5	. 040	.0.41	. 041	. 041	. 041	. 042	. 042	. 042	. 043	. 043
45.0	. 042	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044
45.5	-0.043	-0.043	-0.043	-0.044	-0.044	-0.044	-0.045	--0.045	-0.045	-0.046
46.0	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047
46.5	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048
47.0	. 047	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050
47.5	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 050	. 05 I	. 051
48.0	-0.049	-0.050	-0.050	-0.050	-0.05I	-0.05I	-0.05I	-0.052	-0.052	-0.052
48.5	. 050	. 051	. 051	. 052	. 052	. 052	. 053	. 053	. 053	. 054
49.0	.052	.052	. 052	. 053	. 053	. 054	. 054	.054	. 055	. 055
49.5	. 053	. 053	. 054	. 054	. 054	. 055	. 055	.056	. 056	. 056
50.0	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058

table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	. HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
F. 50.5	Inch. 0.055	Inch. -0.056	$\begin{gathered} \text { Iuch. } \\ -0.056 \end{gathered}$	Inch.	Jnch.	$\begin{gathered} \text { Inch. } \\ -0.057 \end{gathered}$	Inch. -0.05S	$\begin{gathered} \text { Inch. } \\ -0.058 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.059 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.059 \end{gathered}$
51.0	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060	. 060
51.5	. 058	. 058	. 059	. 059	. 060	. 060	.06I	.06I	. 061	. 062
52.0	. 059	. 060	. 060	.06I	.06I	.061	. 062	.062	. 063	. 063
52.5	.06I	.06I	.06I	. 062	. 062	. 063	. 063	. 064	. 064	. 064
53.0	-0.062	-0.062	-0.063	-0.063	-0.064	-0.064	-0.064	-0.065	-0.065	-0.066
53.5	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066	. 067	. 067
54.0	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 068
54.5	. 066	. 066	. 067	. 067	. 067	. 068	. 068	. 069	. 069	. 070
55.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 071	. 071
55.5	-0.068	-0.069	-0.069	-0.070	-0.070	-0.07J	-0.071	-0.072	-0.072	-0.073
56.0	. 069	. 070	. 070	. 07 I	. 071	. 072	. 072	. 073	. 073	. 074
56.5	. 071	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075
57.0	. 072	. 072	. 073	. 073	. 074	. 075	. 075	. 076	. 076	. 077
57.5	. 073	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078
58.0	-0.074	-0.075	-0.076	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.079
58.5	. 076	. 076	. 077	. 077	. 078	. 078	. 079	. 080	.080	. .08I
59.0	. 077	. 078	. 078	. 079	. 079	.080	. OSo	.081	.081	. 082
59.5	. 078	. 079	. 079	. 080	.081	.08I	. 082	. 082	. 083	. 083
60.0	.080	. OSo	.08I	.08I	. 082	. 082	. 083	. 084	. 084	. 085
60.5	-0.08I	-0.08I	-0.082	-0.083	-0.083	-0.084	-0.084	-0.085	-0.085	-0.086
61.0	. 082	. 083	. 083	. 084	. 084	. 085	. 086	. 086	. 087	. 087
61.5	. 083	.oS4	. 085	. 085	. 086	. 086	. 087	. 087	. 088	. 089
62.0	. 085	.oS5	. 086	. 086	. 087	. 088	. 088	.089	.089	. 090
62.5	. 086	. 036	. 087	.088	. 088	.089	. 090	. 090	.091	. 091
63.0	-0.087	-0.088	-0.088	-0.089	-0.090	-0.090	-0.09I	-0.091	-0.092	-0.093
63.5	. 088	.089	. 090	. 090	. 091	. 092	. 092	. 093	. 093	. 094
64.0	.090	. 090	.091	. 092	. 092	. 093	. 093	. 094	. 095	. 095
64.5	. 091	. 092	. 092	. 093	. 093	. 094	. 095	. 095	. 096	. 097
65.0	. 092	. 093	. 093	. 094	. 095	. 095	. 096	. 097	. 097	. 098
65.5	-0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.097	-0.098	-0.099	-0.099
66.0	. 095	. 095	. 096	. 097	. 097	. 098	. 099	. 099	. 100	. 101
66.5	. 096	. 097	. 097	. 098	. 099	. 099	. 100	. 101	. 101	. 102
67.0	. 097	. 098	. 099	. 099	. 100	. 101	. IOI	. 102	. 103	.103
67.5	. 098	. 099	. 100	. IOI	. IOI	. 102	. 103	.103	.104	. 105
68.0	-0.100	-0.100	-0.101	-0.102	-0.103	-0.103	-0.104	-0.105	-0.105	-0.106
68.5	. IOI	02	. 102	. 103	. 104	. 105	. 105	. 106	. 107	. 107
69.0	. 102	. 103	. 104	. 104	. 105	. 106	. 107	.107	. 108	. 109
69.5	. 104	. 104	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110
70.0	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110	.III	. 112
70.5	-0.106	-0.107	-0.108	-0.108	-0.109	-0.110	-0.111	-0.111	-0.112	-0.113
71.0	. 107	. 108	. 109	. 110	. 110	. III	. 112	. 113	. 113	. 114
71.5	. 109	.109	. 110	. 111	. 112	. 112	. 113	. 114	. 115	. 116
72.0	. IIO	. III	.III	. 112	. 113	. 114	. 115	.115	. 116	. 117
72.5	. III	. 112	. 113	. 113	.114	. 115	. 116	. 117	.117	. 118
73.0	-0.112	-0.113	-0. II4	-0.115	-0.176	-0.116	-0.117	-0.118	-0.119	-0.120
73.5	. 114	. 114	. 115	. 116	. 117	. 118	. 118	. 119	. 120	. 121
74.0	. 115	. 116	. 117	.117	. 118	.119	. 120	. 121	. 121	. 122
74.5	. 116	. 117	. 118	. 119	. 119	. 120	. 121	. 122	. 123	. 124
75.0	. 117	. 118	. 119	. 120	. 121	. 122	. 122	. 123	. 124	. 125

TABLE 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Ther-	TT OF THE BAROMETER IN INCHES.									
Fahren- heit.	28.0	28.2	28.4	286	288	29.0	29.2	29.4	29.6	29.8
F. 75.5	$\begin{aligned} & \text { Inch. } \\ & -0.119 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & \text {-0. II9 } \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.120 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} .12 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.122 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.123 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.124 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.125 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ -0.125 \end{array}$	$\begin{gathered} \text { Inch. } \\ -0.126 \end{gathered}$
76.0	. 120	. 121	22	. 122	. 123	. 124	. 125	. 126	. 127	. 128
76.5	. 12 I	. 122	.123	. 124	. 125	. 125	. 126	. 127	. 128	. 129
77.0	. 122	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 129	. 130
77.5	. 124	. 125	.125	. 126	. 127	. 128	. 129	. 130	. 131	. 132
78.0	-0.125	-0.126	-0.127	-0.12S	-0.129	-0.129	-0.130	-0.13I	-0.132	-0.133
78.5	. 126	. 127	. 128	. 129	. 30	. 13 I	. 132	. 133	. 133	. 134
79.0	. 127	. 128	.129	. 130	. 131	. 132	. 133	. 134	. 135	. 136
79.5	. 129	. 130	. 131	.13I	. 132	. 133	. I 34	. 135	. I36	. 137
80.0	. 130	. 31	. 32	. 133	. 134	. 135	. 136	. 136	. 137	. 138
80.5	-0.131	-0.132	-0.133	-0.134	-0.135	-0.136	-0.137	-0.13S	-0.139	-0.140
8 I .0	.132	. 133	. I34	. I35	.136	. 137	. 138	. 139	. I40	. 141
81.5	. 134	. 135	. 36	. 137	. 138	. 139	- 139	. 140	. 141	. 142
82.0	. 135	. 136	. 137	. 138	. 139	. 140	. 141	. 142	. 143	.144
82.5	. 136	. 137	. 138	. 139	. 140	.141	. 142	.143	. 144	. 145
83.0	-0.138	-0.139	-0.I39	-0.140	-0.14I	-0.142	-0.143	-0.144	-0.145	-0.146
83.5	. 139	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148
84.0	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149
84.5	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150
85.0	. 143	. 144	. 145	. 146	.147	. 148	. 149	. 150	. 151	. 152
85.5	-0.144	-0.145	-0.146	-0.147	-0.148	-0.149	-0.150	-0.15I	-0.152	-0.153
86.0	. 145	. 146	. 147	. 148	. 149	. 150	. 151	. 152	. 153	. 154
86.5	. 146	. 147	. 148	. 149	. 151	. 152	. 153	. 154	. 155	. 156
87.0	. 148	. 149	. 150	.151	. 152	. 153	. 54	. 55	. 156	. 157
87.5	. 149	. 150	. 515	. 552	. 153	. 154	. 155	. 156	. 157	. 158
88.0	-0.150	-0.15I	-0.152	-0.153	-0.154	-0.155	-0.157	-0.158	-0.159	-0.160
88.5	. 151	. 152	. 554	. 155	. 156	. 157	.158	. 159	. 160	. 161
89.0	. 153	. 154	. 155	. 156	-157	. 158	. 159	. 160	. 161	. 162
89.5	. 554	. 155	. 156	. 57	. 158	. 159	. 160	. 162	. 163	. 164
90.0	. 155	. 156	. 157	. 158	. 160	. 161	. 162	.163	. 164	. 165
90.5	-0.156	-0.157	-0.159	-0.160	-0.161	-0.162	-0.163	-0.164	-0.165	-0.166
91.0	. 158	. 159	. 160	. 161	. 162	.163	. 164	.166	. 167	. 168
91.5	. 159	. 160	.161	. 162	. 163	.165	. 166	.167	. 168	. 169
92.0	. 160	.16I	.162	. 164	. 165	. 166	.167	. 168	.169	. 170
92.5	.16I	.163	. 164	.165	. 166	.167	. 168	.169	. 771	. 172
93.0	-0.163	-0.164	-0.165	-0.166	-0.167	-0.168	-0.170	-0.171	-0.172	-0. 173
93.5	. 164	. 165	. 166	.167	. 169	. 170	. 171	. 172	. 173	. 174
94.0	. 165	. 166	. 168	. 169	. 170	. 171	. 172	. 773	. 75	. 176
94.5	. 166	. 168	.169	. 170	.171	. 172	. 174	. 175	. 176	. 177
95.0	. 168	. 169	. 170	.171	. 172	.174	. 175	. 176	. 177	. 178
95.5	-0.169	-0.170	-0.171	-0.173	-0.174	-0.175	-0.176	-0.177	-0.179	-0.180
96.0	. 170	.171	. 773	. 174	. 175	.176	. 777	. 179	. 180	. 181
96.5	.171	. 173	. 174	.175	. 176	.178	. 779	. 180	. 181	. 182
97.0	. 173	. 174	.175	. 176	-. 178	.179	. 180	. 181	. 183	. 184
97.5	. 174	. 175	. 176	.178	.179	. 1 So	.18I	.183	. IS4	. 185
98.0	-0.175	-0.176	-0.178	-0.179	-0.18o	-0.18I	-0.183	-0.184	-0.185	-0.186
98.5	.176	. 178	. 179	. ISo	. ISI	.183	. 184	. 185	. 187	. 188
99.0	. 178	.179	. 180	. 182	. IS3	. 184	.185	. 187	. 188	.189
99.5	. 179	. 180	.182	. r_{3}	.184	.185	. 187	. 188	. 189	. 190
100.0	. ISo	. 182	.183	.184	. 185	.187	. 188	.189	. 191	. 192

Table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGIT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.078 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.078 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.079 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.079 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.080 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.0 \text { So } \end{aligned}$	$\begin{gathered} \text { Inch. } \\ \text { to.0SI } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.08 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.082 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.082 \end{gathered}$
0.5	+0.076	+0.077	+0.077	+0.07S	+0.078	+0.079	+0.079	+o.08o	+0.08o	+0.08I
1.0	. 075	. 076	. 076	. 077	. 077	. 078	. 078	. 079	. 079	. 080
1.5	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078	. 078
2.0	. 072	. 073	. 073	. 074	. 074	. 075	. 075	. 076	. 076	. 077
2.5	. 07 I	.071	. 072	. 072	. 073	. 073	.074	. 074	. 075	. 075
3.0	+0.070	+0.070	+0.070	+0.071	+0.071	+0.072	+0.072	+0.073	+0.073	+0.074
3.5	. 068	. 069	. 069	. 070	. 070	. 070	. 071	. 071	. 072	. 072
4.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 070	. 071
4.5	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 069
5.0	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
5.5	+0.063	+0.063	+0.064	+0.064	+0.064	+0.065	+0.065	+0.066	+0.066	+0.067
6.0	.06I	.062	. 062	. 063	. 063	. 063	. 064	. 064	. 065	. 065
6.5	. 060	. 060	.06r	. 061	. 062	. 062	. 062	. 063	. 063	. 064
7.0	. 059	. 059	. 059	. 060	. 060	.061	.06I	. 061	. 062	. 062
7.5	. 057	. 058	. 058	.05S	. 059	. 059	. 060	. 060	. 060	.06I
8.0	+0.056	+0.056	+0.057	+0.057	+0.057	+0.058	+0.058	+0.059	+0.059	+0.059
8.5	. 055	. 055	. 055	. 056	. 056	. 056	. 057	. 057	. 058	. 058
9.0	. 053	. 054	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 056
9.5	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 054	. 055	. 055
10.0	.05I	. 051	. 051	.052	.052	.052	. 053	. 053	. 053	. 054
10.5	+0.049	+0.049	+0.050	+0.050	+0.050	+0.051	+0.051	+0.051	+0.052	+0.052
11.0	. 048	. 048	. 048	. 049	. 049	. 049	.050	. 050	. 050	. 051
11.5	.046	. 047	. 047	.047	. 048	. 048	.048	. 049	. 049	. 0.49
12.0	. 045	. 045	. 046	. 046	. 046	. 0.47	. 047	. 047	. 048	. 048
12.5	. 044	. 044	. 044	. 045	. 045	. 045	. 045	. 046	. 046	. 046
13.0	+0.0.42	+0.043	+0.043	+0.043	+0.044	+0.0.44	+0.044	+0.044	+0.045	+0.045
13.5	. 041	. 041	. 042	.042	. 0.42	. 042	. 043	. 043	. 043	. 043
14.0	. 040	. 040	. 040	. 040	.04I	. 041	. 041	. 042	. 0.42	. 042
14.5	. 038	. 039	. 039	. 039	. 039	. 040	. 040	. 040	. 0.40	.041
15.0	. 037	. 037	. 037	. 038	. 038	.038	. 038	. 039	. 039	. 039
15.5	+0.036	+0.036	+0.036	$+0.036$	+0.037	+0.037	+0.037	+0.037	+0.037	+0.038
16.0	. 034	. 034	.035	. 035	. 035	. 035	. 036	. 036	. 036	. 036
16.5	. 033	. 033	. 033	. 034	. 034	. 034	.034	. 034	. 035	. 035
17.0	. 032	. 032	. 032	. 032	.032	. 033	. 033	. 033	. 033	. 033
17.5	. 030	. 830	.03I	. 031	.031	.03I	. 031	.032	. 032	. 032
18.0	+0.029	+0.029	+0.029	+0.029	+0.030	+0.030	+0.030	+0.030	+0.030	+0.031
18.5	. 027	. 028	. 02 S	. 028	. 028	. 02 S	. 029	. 029	. 029	. 029
19.0	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027	. 027	. 028
19.5	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026
20.0	. 023	. 024	. 024	. 024	. 024	. 024	. 024	. 024	. 025	. 025
20.5	+0.022	+0.022	+0.022	+0.022	+0.023	+0.023	+0.023	+0.023	+0.023	+0.023
21.0	. 021	. 021	. 021	. 021	. 021	. 02 I	. 022	. 022	. 022	. 022
21.5	. 019	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 020
22.0	. 18	.oIS	. 018	. 018	. 018	. 019	. 019	. 019	. 019	. 019
22.5	. 017	.017	. 017	. 017	.017	. 017	. 017	.017	. 017	.ors
23.0	to.015	+o.015	+o.015	+0.016	+0.016	+0.016	+0.016	$+0.016$	+0.016	+0.016
23.5	. 014	. 121	. 014	. 014	. 014	. 014	. 014	. 015	. 015	. O 5
24.0	.OI 3	.OI 3	.OI3	. 013	. 013	. 013	. 13	. 013	. 013	.oI3
24.5	. 11	. 011	. OII	.OII	. 011	. 012	. 12	. 12	. 012	. 012
25.0	. 010	. 010	. 010	. 010	. 010	. 010	. 010	. 010	0. 10	. OI

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahren. heit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{array}{r} \text { F. } \\ 25.5 \end{array}$	$\begin{array}{r} \text { Inch. } \\ +0.008 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Iuch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Iuch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	Inch. -0.009	Inch. $+0.009$
26.0	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 008	. 008
26.5	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
27.0	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	$+0.002$	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
30.5	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 007	. 007
31.5	.008	.008	. 008	. 008	. 008	. 008	. 008	. 008	.00S	.008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. 010
32.5	. 010	. 011	. OII	. OI I	. 011	. OI I	. 011	. 017	. 111	. 111
33.0	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.013
33.5	. 123	. 12	. 013	. OI 3	. 014	. 174	. 014	. 014	. 014	. 014
34.0	. 015	. 015	. 015	. 015	.015	. 015	. 015	. 015	.015	. 015
34.5	. 016	. 016	. 016	. 016	. 016	. 016	. 017	. 1917	. 117	. 017
35.0	. 017	. 017	. 017	. OI 8	. 018	. 018	. 018	. 018	. 018	. 018
35.5	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.020	-0.020
36.0	. 020	. 020	. 020	. 020	. 020	. 02 I	. 021	. 021	. 021	. 021
36.5	. 021	. 021	. 022	. 022	. 022	. 022	. 022	. 022	. 022	. 023
37.0	. 023	. 023	.023	. 023	. 023	. 023	.024	. 024	. 024	. 024
37.5	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 025
38.0	-0.025	-0.026	-0.026	-0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027
38.5	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028
39.0	. 0228	. 02 S	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030
39.5	. 029	. 030	. 030	. 030	.030	.030	. 031	.031	. 031	. 031
40.0	.03I	. 03 I	. 031	. 31	.032	.032	.032	.032	. 032	. 033
40.5	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	-0.033	-0.034	-0.034	-0.034
41.0	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 035
41.5	. 035	. 035	. 035	. 035	. 036	. 036	. 036	.036	. 037	. 037
42.0	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038
42.5	. 037	. 035	. 038	. 038	. 038	. 039	. 039	.039	. 040	. 040
43.0	-0.039	-0.039	-0.039	-0.040	-0.040	-0.040	-0.040	-0.041	-0.04I	-0.04I
43.5	. 040	. 040	. 041	. 0.41	. 041	. 042	. 042	. 042	. 042	. 043
44.0	. 042	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044	. 044
44.5	. 043	.043	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 045
45.0	. 044	. 045	. 045	.045	. 045	. 046	. 046	. 046	. 047	. 047
45.5	-0.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.047	-0.048	-0.048	--0.048
46.0	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 049	. 050
46.5	. 048	. 049	. 049	. 049	. 050	. 050	. 050	. 051	. 051	. 051
47.0	. 050	. 050	. 050	.05I	.051	.05I	. 052	. 052	. 052	. 053
47.5	. 051	.05I	.052	.052	.052	. 053	. 053	. 053	. 054	. 054
48.0	-0.052	-0.053	-0.053	-0.053	-0.054	-0.054	-0.054	-0.055	-0.055	-0.055
48.5	. 054	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057
49.0	. 055	. 055	. 056	. 056	.057	. 057	.057	. 058	. 058	. 058
49.5	.056	. 057	. 057	. 058	. 058	. 558	. 059	. 059	. 059	. 060
50.0	.058	. 058	.058	. 059	. 059	. 060	. 060	. 060	. 061	.06I

Table 46.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahrenheit.	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{gathered} F \\ 50.5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.059 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.059 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.060 \end{gathered}$	Inch.	$\begin{gathered} \text { Inch. } \\ -\mathrm{o.06I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.06 I \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ -0.06 \mathrm{I} \end{array}$	$\left\|\begin{array}{c} \text { Inch. } \\ -0.062 \end{array}\right\|$	$\begin{gathered} \text { Inch. } \\ -0.062 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.063 \end{gathered}$
51.0	. 060	.061	. 061	. 062	. 062	. 062	. 063	. 063	. 064	. 064
51.5	. 062	. 062	. 063	. 063	. 063	. 064	. 064	. 065	. 065	. 065
52.0	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066	. 066	. 067
52.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 067	. 068	. 068
53.0	-0.066	-0.066	-0.067	-0.067	-0.068	-0.068	-0.06S	-0.069	-0.069	-0.070
5.3 .5	. 067	. 068	. 068	. 069	. 069	. 069	. 070	. 070	. 07 I	. 071
54.0	. 068	. 069	. 069	. 070	. 070	. 071	. 071	. 072	. 072	. 073
54.5	.070	. 070	.07I	. 071	. 072	. 072	. 073	. 073	. 074	. 074
55.0	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075	. 075
55.5	-0.073	-0.073	-0.074	-0.074	-0.074	-0.075	-0.075	-0.076	-0.076	-0.077
56.0	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078	. 078
56.5	. 075	. 076	.076	. 077	. 077	. 078	. 078	. 079	. 079	. 080
57.0	. 077	. 077	. 078	.078	. 079	. 079	.080	. 080	.08I	.08I
57.5	. 078	.078	. 079	. 079	. 080	.08I	.08I	. 082	.082	. 083
58.0	-0.079	-0.08o	-0.08o	-0.08I	-0.08I	-0.082	-0.082	-0.083	-0.084	-0.084
58.5	.08I	.08I	. 082	. 082	.083	. 083	. 084	. 084	. 085	. 085
59.0	.082	. 083	.083	.084	. 084	.085	.085	.oS6	.086	.087
59.5	. 083	. 084	.084	. 085	. 086	. 086	.087	.087	. 088	. 088
60.0	. 085	. 085	. 086	.086	. 087	. 087	. 088	.089	.o89	. 090
60.5	-0.086	-0.087	-0.087	-0.088	-0.088	-0.089	-0.089	-0.090	-0.091	-0.091
61.0	. 087	. 088	.089	.089	. 090	.090	.09I	. 09 r	. 092	. 093
61.5	. 089	.o89	. 090	. 090	.09I	. 092	. 092	. 093	. 093	. 094
62.0	. 090	.09I	.091	. 092	. 092	. 093	. 094	. 094	. 095	. 095
62.5	.09I	. 092	. 093	. 093	. 094	. 094	. 095	. 096	. 096	. 097
63.0	-0.093	-0.093	-0.094	-0.095	-0.095	-0.096	-0.096	-0.097	-0.098	-0.098
63.5	. 094	. 095	. 095	. 096	. 097	. 097	. 098	. 098	. 099	. 100
64.0	. 095	. 096	. 097	. 097	.09S	. 099	. 099	. 100	. IOI	. IOI
64.5	. 097	. 097	.098	. 099	. 099	. 100	. 101	. IOI	. 102	. 103
65.0	. 098	. 099	. 099	. 100	. 101	. 101	. 102	. 103	. 103	. 104
65.5	-0.099	-0.100	-0. 101	-0.101	-0.102	-0.103	-0.103	-0.104	-0.105	-0.105
66.0	. 101	.ror	. 102	. 103	. 103	. 104	. 105	. 106	. 106	. 107
66.5	. 102	. 103	.103	. 104	. 105	. 106	. 106	. 107	. 108	. 108
67.0	. 103	. 104	. 105	. 106	. 106	. 107	. 108	. 108	. 109	. IIO
67.5	. 105	. 106	. 106	. 107	. 108	. 108	. 109	. 110	. 110	. 111
68.0	-0.106	-0.107	-0.108	-0.108	-0.109	-0.110	-0.110	-O.111	-0.112	-0.113
68.5	. 107	. 108	. 109	. 110	. 110	. III	. I12	.113	. 113	. 114
69.0	. 109	. 110	. 110	. 111	. 112	. 112	. 113	. 114	. 115	. 115
69.5	. 110	. III	. 112	. 112	.113	.114	. 115	.115	.116	. 117
70.0	. 112	. II2	. 113	. II4	. 115	.115	. 116	. 117	. II7	. 118
70.5	-0.113	-0.114	-0.114	-0.115	-0.116	-0.117	-0.117	-0.118	-0.119	-0.120
71.0	. II4	. II5	. 116	. 116	. 117	. 118	. 119	. 120	. 120	. 121
71.5	. I16	. II6	. 117	. II8	. 119	. 119	.120	. 121	. 122	. 123
72.0	. 117	. IIS	.II8	. 119	. 120	. 121	. 122	. 122	. 123	. 124
72.5	. 118	. 119	. 120	. 121	. 121	. 122	. 123	. 124	. 125	. 125
73.0	-0.120	-0.120	-0.121	-0.122	-0.123	-0.124	-0. 124	-0.125	-0.126	-0.127
73.5	. 121	. 122	.123	. 123	. 124	. 125	. 126	. 127	. 127	. 128
74.0	. 122	. 123	. 124	. 125	. 126	. 126	. 127	. 128	. 129	. 130
74.5	. 124	. 12.4	. 125	. 126	.127	. 128	. 129	. 129	. 130	.13I
75.0	. 125	. 126	. 127	. 127	. 128	.129	.130	. 131	. 132	. 132

Table 46.
ZEDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

tached Ther-	T OF THE BAROMETER IN INCHES.									
heit.	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
F.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
75.5	-0.126	-0.127	-0.128	-0.129	-0.130	-0.131	-0.13I	-0.132	-0. 133	-0.134
76.0	. 128	. 128	. 129	. 130	. 131	. 132	. 133	. 134	. 134	. 135
76.5	. 129	. 130	. 131	. 132	. 132	. 133	. 134	. 135	. 136	. 137
77.0	. 130	.13I	. 132	. 133	. 134	. 135	. 136	. 136	. I37	. 138
77.5	. 132	. 133	. 133	. 134	. 135	. 136	. 137	. 138	. 139	. 140
78.0	-0. 133	-0.134	-0.135	-0.136	-0.137	-0.137	-0.138	-0.139	-0.140	-0.141
78.5	. 34	. 135	. 136	. 137	. 38	. 139	. 140	. 141	. 142	. 142
79.0	. 136	. 137	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 144
79.5	- 137	. 138	- 139	. 140	. 141	. 142	. 143	. 143	. 144	. 145
80.0	. 138	. 139	. 140	.14I	. 142	. 143	. 144	. 145	. 146	. 147
80.5	-0.140	-0.141	-0.142	-0.142	-0.143	-0.144	-0.145	-0.146	-0.147	-0.148
81.0	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150
Si. 5	. 142	. 143	. 144	. 145	. 146	. 147	.14S	. 149	. 150	. 151
82.0	. 144	. 145	. 146	. 147	. 148	. 149	. 149	. 150	. 151	. 152
82.5	. 145	. 146	. 147	. 148	. 149	. 150	. 151	. 152	. 153	. 154
83.0	-0.146	-0.147	-0.148	-0.149	-0.150	-0.15I	-0.152	-0.153	-0. I54	-0. 155
83.5	. 148	. 149	. 150	. 15 I	. 152	. 53	. 154	. 155	. 156	. 157
84.0	. 149	. 150	. 151	. 152	. 153	. 154	. 155	. 156	. 157	. 158
84.5	. 150	. 151	- 552	. 153	. 154	. 155	. 156	. 157	. 158	. 159
85.0	. 152	. 153	. 154	. 155	. 156	. 157	. 158	. 159	. 160	.16I
85.5	-0.153	-0.154	-0.155	-0.156	-0.157	-0.158	-0.159	-0.160	-0.16I	-0.162
86.0	. 154	. 155	. 556	. 158	. 159	. 160	. 161	. 162	. 163	. 164
86.5	. 156	. 157	. 58	. 159	. 160	. 161	. 162	. 163	. 164	. 165
87.0	. 157	. 158	. 159	. 160	.16I	. 162	. 163	. 164	. 166	. 167
87.5	. 158	. 159	.16I	.162	.163	. 164	.165	. 166	.167	. 168
88.0	-0.160	-0.161	-0.162	-0.163	-0.164	-0.165	-0.166	-0.167	-0.168	-0.169
88.5	. 161	. 162	. 163	. 164	. 165	. 166	. 168	. 169	. 770	. 771
89.0	. 162	. 164	. 165	. 166	. 167	. 168	. 169	. 170	. 171	. 172
89.5	. 164	.165	. 166	.167	. 168	. 169	. 170	. 171	. 173	. 174
90.0	. 165	. 166	. 167	. 168	.170	. 171	. 172	. 173	. 174	. 175
90.5	-0.166	-0.168	-0.169	-0.170	-0.17 1	-0.172	-0.173	-0.174	-0. 175	-0.176
91.0	. 168	. 169	. 170	. 171	. 172	. 173	. 175	. 176	. 177	. 178
91.5	. 169	. 170	. 77	. 173	. 174	. 175	.176	. 177	.178	. 179
92.0	. 170	. 172	. 173	. 174	. 175	. 176	. 177	. 178	. ISo	.I8I
92.5	. 172	. 173	. 174	. 175	. 176	.178	. 179	. 180	.18I	.182
93.0	-0. 173	-0.174	-0.175	-0.177	-0.178	-0.179	-0.180	-0.18I	-0.182	-0. IS4
93.5	. 174	. 176	. 177	. 178	. 179	. 180	. 181	. 183	. I84	. 185
94.0	. 176	-177	. 178	. 179	. ISo	. 182	. 183	. I84	. 185	. I86
94.5	. 177	. 178	.179	. 181	. 182	. 183	. 184	. 185	. 187	. 188
95.0	. 178	. ISo	.181	. 182	. 183	. 184	. 186	. 187	. 188	.IS9
95.5	-0.18o	-0.181	-0.182	-0.183	-0.185	-0.186	-0.187	-0.188	-0.189	-0.191
96.0	. 181	. 182	. 184	. 185	. 186	. 187	. 188	. 190	. 19 I	. 192
96.5	. 182	. 184	. 185	. 186	.187	. 189	. 190	. 191	. 192	. 193
97.0	. IS4	. 185	. 186	. 187	.189	. 190	. 191	. 192	. 194	. 195
97.5	. 185	. 156	. 188	.189	. 190	. 191	. 193	. 194	. 195	. 196
98.0	-0.186	-0. 188	-0.189	-0.190	-0.191	-0.193	-0.194	-0.195	-0.196	-0.198
9S. 5	. 158	. 189	. 190	. 192	. 193	. 194	. 195	. 197	. 198	. 199
99.0	. 189	. 190	. 192	. 193	. 994	. 195	. 197	. 198	. 199	. 201
99.5	. 190	. 192	. 193	. 194	. 196	. 197	. 198	. 199	. 201	. 202
100.0	. 192	. 193	. 194	. 196	. 197	. 198	. 200	. 201	. 202	. 203

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR tEmperatures above 0° Centigrade, the correction to be subtracted.

Attached Thermometer Centigrade.	HEIGHT OF the barometer in millimeters.												
	440	450	460	470	480	490	500	510	520	530	540	550	560
c.	trm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm	mm.
$0: 0$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 0.4	. 04	. 04	. 04	. 04	. 05
1.0	. 07	. 07	. 08	. 08	. 08	. 08	. 08	. 08	. 08	. 09	. 09	. 09	. 09
1.5	. 11	. 11	. I	. 12	. 12	. 12	. 12	. 12	. 13	. 13	. 13	. 13	. 14
2.0	.14	. 15	. 15	. 15	. 16	. 16	. 16	. 17	. 17	. 17	. 18	. 18	. 18
2.5	0. 18	0.18	0.19	0. 19	0.20	0.20	0.20	0.21	0.21	0.22	0.22	0.22	0.23
3.0	. 22	. 22	. 23	. 23	. 24	. 24	. 24	. 25	. 25	. 26	. 26	. 27	. 27
3.5	. 25	. 26	. 26	. 27	. 27	. 28	. 29	. 29	. 30	. 30	. 31	. 31	. 32
4.0	. 29	. 29	. 30	. 31	. 31	. 32	. 33	. 33	. 34	. 35	. 35	.36	. 37
4.5	. 32	. 33	- 34	. 35	. 35	. 36	. 37	. 37	. 38	- 39	. 40	. 40	.41
5.0	0.36	0.37	0.38	0.38	0.39	0.40	0.41	0.42	0.42	0.43	0.44	0.45	0.46
5.5	. 40	. 40	. 41	. 42	. 43	. 44	. 45	. 46	. 47	. 48	. 48	. 49	. 50
6.0	. 43	. 44	. 45	. 46	. 47	. 48	. 49	. 50	. 51	. 52	. 53	- 54	. 55
6.5	. 47	.48	. 49	. 50	. 51	. 52	. 53	. 54	. 55	. 56	. 57	. 58	. 59
7.0	. 50	. 51	. 53	. 54	. 55	. 56	. 57	. 5^{8}	. 59	. 61	. 62	. 63	. 64
7.5	0.54	0.55	0.56	0.58	0.59	0.60	0.61	0.62	0.64	0.65	0.66	0.67	0.69
8 o	. 57	. 59	. 60	. 61	. 63	. 64	. 65	. 67	. 68	. 69	. 70	. 72	. 73
8.5	.61	. 62	. 6.4	. 65	. 67	. 68	. 69	. 71	. 72	. 73	. 75	. 76	. 78
9.0	.65	. 66	. 68	. 69	. 70	. 72	. 73	. 75	. 76	. 78	. 79	. 81	. 82
9.5	. 65	. 70	. 71	. 73	. 74	. 76	. 77	. 79	. 81	. 82	. 84	. 85	. 87
10.0	0.72	0.73	0.75	0.77	0.78	0.80	0.82	0.83	0.85	0.86	0. 88	0.90	0.91
10.5	. 75	. 77	. 79	. 80	. 82	. 84	. 86	. 87	. 89	. 91	. 92	. 94	. 96
11.0	. 79	.81	. 83	. 8.4	. 86	. 88	. 90	. 91	. 93	. 95	. 97	. 99	1.00
11.5	. 83	. 84	. 86	. 88	. 90	. 92	. 94	. 96	. 98	. 99	I.OI	1.03	1.05
12.0	. 86	. 88	-90	. 92	. 94	. 96	. 98	1.00	I. 02	1.04	1.06	1.08	I. 10
13.0	0.93	0.95	0.97	1.00	1.02	1.04	1.06	1.08	I. 10	1.12	I. 14	1.17	I. 19
14.0	1.00	1.03	1.05	1.07	1.10	I. 12	I. 14	1.16	I. 19	I. 21	1.23	1.25	1.28
15.0	1.08	110	1.12	I. 15	I. 17	1.20	1.22	1.25	1.27	1.30	1.32	1.34	1.37
16.0	I. 15	I. 17	1.20	1.23	I. 25	1.28	1.30	I. 33	I. 36	1.38	1.41	1.43	146
17.0	1.22	1.25	1.27	I. 30	1.33	1.36	1.38	I. 41	1.44	1.47	I. 50	1.52	I. 55
18.0	I. 29	1. 32	1.35	1.38	1.4I	I. 44	1.47	1. 50	1.52	1. 55	I. 58	1.61	I. 64
19.0	1.36	1.39	1.42	1.45	1.49	I. 52	I. 55	I. 58	1.61	1.64	I. 67	1.70	1.73
20.0	I. 43	I. 47	1.50	1.53	I. 56	1.60	1.63	1. 66	1.69	1.73	1.76	1.79	1.82
21.0	1.50	I. 54	1.57	1.61	1.64	1.67	1.71	1. 74	1.78	1.81	I. 85	1.88	1.91
22.0	1.58	1.61	1.65	1.68	1.72	1.75	1.79	1.83	I. 86	1.90	I. 93	1.97	2.01
23.0	1. 65	1.68	1.72	1.76	1. 80	1.83	I. 87	1.91	1.95	I. 98	2.02	2.06	2. 10
24.0	1.72	1.76	1. So	1.84	1.87	1.91	I. 95	1.99	2.03	2.07	2.11	2.15	2.19
25.0	1.79	I. 83	1.87	1.91	1.95	1.99	2.03	2.07	2.11	2.16	2.20	2.24	2.28
26.0	1.56	1.90	1.95	1.99	2.03	2.07	2. II	2.16	2.20	2.24	2.28	2.33	2.37
27.0	I. 93	1.98	2.02	2.06	2. II	2.15	2.20	2.24	2.28	2.33	2.37	2.41	2.46
28.0	2.00	2.05	2.09	2. 14	2.18	2.23	2.28	2.32	2.37	2.41	2.46	2.50	2.55
29.0	2.07	2.12	2.17	2.22	2.26	2.31	2.36	2.45	2.45	2.50	2.55	2.59	2.64
30.0	2.15	2.19	2.24	2.29	2.34	2.39	2.44	2.49	: 54	2.58	2.63	2.68	2.73
- 31.0	2.22	2.27	2.32	2.37	2.42	2.47	2.52	2.57	2.62	2.57	2.72	2.77	2.82
32.0	2.29	2.34	2.39	2.44	2.50	2.55	2.60	2.65	2.70	2.76	2.81	286	2.91
33.0	2.36	2.41	2.47	2.52	2.57	2.63	2.68	2.73	2.79	2.84	2.89	2.95	3.00
34.0	2.43	2.48	2.54	2.60	2.65	2.71	2.76	2.82	2.87	2.93	2.95	3.04	3.09
35.0	2.50	2.55	2.61	2.67	2.73	2.78	2.84	2.90	2.96	3.01	. 3.07	3.13	3.18

'Table 47. REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	height of the baroneter 560 mm .					height of the barometer 570 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0:8
c.	mm .	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.05	0.07	0.00	0.02	0.04	0.06	0.07
1	. 09	. 11	. 13	. 15	. 16	. 09	. I 1	. 13	. 15	. 17
2	. 18	. 20	. 22	. 24	. 26	. 19	. 20	. 22	. 24	. 26
3	. 27	. 29	. 31	. 33	. 35	. 28	. 30	.32	. 34	. 35
4	. 37	.38	. 40	. 42	. 44	. 37	. 39	. 41	. 43	. 45
5	0.46	0.48	0.49	0.51	0.53	0.47	0.48	0.50	0.52	0.54
6	. 55	. 57	. 58	. 60	. 62	. 56	. 58	. 60	.61	. 63
7	. 64	. 66	. 68	. 69	. 71	. 65	. 67	. 69	. 71	. 73
8	. 73	. 75	.77	. 79	. 80	. 74	. 76	. 78	. 80	. 82
9	. 82	. 84	. 86	. 88	. 90	.84	. 86	. 87	. 89	.91
10	0.91	0.93	0.95	0.97	0.99	0.93	0.95	0.97	0.99	1.00
11	1.00	1.02	1.04	1.06	1.08	1.02	1. 04	1.06	1.0S	I. 10
12	1. 10	I. II	I. I3	1.15	1.17	1.12	I. I3	I. 15	1.17	I. 59
13	1. 19	1.20	I. 22	I. 24	1.26	I. 21	1.23	1.25	1.26	I. 28
14	1. 28	1.30	1.31	1.33	1.35	1.30	I. 32	1.34	I. 36	5.37
15	1.37		I. 41	1.42	I. 44	1.39	I. 41	I. 43	I. 45	I. 47
16	1.46	1.48	I. 50	I. 51	I. 53	1. 49	1.50	1.52	I. 54	I. 56
17	I. 55	1.57	I. 59	I. 61	1.62	1.58	1.60	1.62	1.63	1.65
18	1.64	I. 66	1.68	1.70	1.71	1.67	1.69	1.71	1.73	1.75
19	1.73	1.75	1.77	1.79	1.81	1.76	1.78	1.80	1.82	I. 84
20	1. 82	1.84	I. 86	1.88	1.90	I. 86	1.87	I. 89	1.91	1.93
21	1.91	1.93	1.95	I. 97	1.99	1.95	1.97	I. 99	2.00	2.02
22	2.01	2.02	2.04	2.06	2.08	2.04	2.06	2.08	2. 10	2.11
23	2.10	2.11	2.13	2.15	2.17	2.13	2.15	2.17	2.19	2.21
24	2.19	2.20	2.22	2.24	2.26	2.23	2.24	2.26	2.28	2.30
25	2.28	2.30	2.31	2.33	2.35	2.32	2.34	2.35	2.37	2.39
26	2.37	2.39	2.40	2.42	2.44	2.41	2.43	2.45	247	2.48
27	2.46	2.48	2.49	2.51	2.53	2.50	2.52	2.54	2.56	2.58
28	2.55	2.57	2.59	2.60	2.62	2.59	2.61	2.63	2.65	2.67
29	2.64	2.66	2.68	2.69	2.71	2.69	2.71	2.72	2.74	2.76
30	2.73	2.75	2.77	2.78	2.80	2.78	2.80	2.82	$2.83{ }^{\text {- }}$	2.85
31	2.82	2.84	2.86	2.87	2.89	2.87	2.89	2.91	2.93	2.94
32	2.91	2.93	2.95	2.97	2.98	2.96	2.98	3.00	3.02	3.04
33	3.00	3.02	3.04	3.06	3.07	3.06	3.07	3.09	3.11	3. 13
34	3.09	3.11	3.13	3.15	3.16	3.15	3.17	3.18	3.20	3.22
35	3.18	3.20	3.22	3.24	3.25	3.2 .4	3.26	3.28	3.29	$3 \cdot 31$

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	height of tile barometer 580 mm .					LIEIGHT		THE 0 m	ROME	
Attached Thermometer.	0%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.		mm.	mm.	mm .	mm.	mm.	
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 09	. II	. 13	. 15	. 17	. 10	. 12	. 13	. 15	. 17
2	. 19	. 21	. 23	. 25	. 27	. 19	. 21	. 23	. 25	. 27
3	. 28	. 30	. 32	. 34	. 36	. 29	. 31	. 33	. 35	. 37
4	.38	. 40	. 42	. 44	. 45	- 39	. 40	. 42	. 44	. 46
5	0.47	0.49	0.51	0.53	0.55	0.48	0.50	0.52	0.54	0.56
6	. 57	. 59	.6I	. 62	. 64	. 58	. 60	. 62	. 64	. 65
7	. 66	. 68	. 70	. 72	. 74	. 67	. 69	. 7 SI	. 73	. 75
8	.76	. 78	. 79	.81	. 83	. 77	. 79	. 81	. 83	. 85
9	.85	. 87	. 89	.91	. 93	. 87	. 59	. 90	.92	. 94
10	0.95	0.96	0.98	1.00	1.02	0.96	0.98	1.00	1.02	1.04
II	1.04	I. 06	1.08	I. 10	1.12	1.06	I. OS	I. 10	1.12	I. 14
12	I. 13	I. 15	1.17	I. 19	I. 21	I. 15	I. 17	I. 19	I. 21	I. 23
13	1.23	I. 25	1.27	I. 29	1.30	I. 25	1.27	1.29	I.3I	I. 33
14	1.32	I. 34	1.36	1.38	1.40	1.35	1.37	1.38	1.40	I. 42
15	1.42	1.44	1.46	1.47	I. 49	1.44	1.46	1.48	1.50	1.52
16	1.51	I. 53	1. 55	I. 57	I. 59	I. 54	1. 56	1.58	1.60	1.61
17	1.61	1.62	1.64	1.66	1.68	I. 63	I. 65	1.67	I. 69	1.71
18	1.70	1.72	1.74	I. 76	1.78	1.73	I. 75	1.77	1.79	1.81
19	1.79	I. $\mathrm{SI}^{\text {I }}$	1.83	I. 85	1.87	1.83	I. 84	I. 86	I. 83	1.90
20		I.9I	1.93	1.95	1.96	1.92	1.94	1.96	1.98	2.00
2 I	1.98	2.00	2.02	2.04	2.06	2.02	2.04	2.06	2.07	2.09
22	2.08	2.10	2.11	2.13	2.15	2.11	2.13	2.15	2.17	2.19
23	2.17	2.19	2.21	2.23	2.25	2.21	2.23	2.25	2.27	2.28
24	2.26	2.28	2.30	2.32	2.34	2.30	2.32	2.34	2.36	2.38
25	2.36	2.38	2.40	2.41	2.43	2.40	2.42	2.44	2.46	2.48
26	2.45	2.47	2.49	2.51	2.53	2.49	2.51	2.53	2.55	2.57
	2.55	2.57	2.58	2.60	2.62	2.59	2.61	2.63	2.65	2.67
28	2.64	2.66	2.68	2.70	2.72	2.69	2.70	2.72	2.74	2.76
29	2.73	2.75	2.77	2.79	2.81	2.78	2.80	2.82	2.84	2.56
30	- 2.83	2.85	2.87	2.88	2.90	2.88	2.90	2.91	2.93	2.95
31	2.92	2.94	2.96	2.98	3.00	2.97	2.99	3.01	3.03	3.05
32	3.02	3.03	3.05	3.07	3.09	3.07	3.09	3.11	3.12	3.14
33	3.11	3.13	3.15	3.16	3.1S	3.16	3.18	3.20	3.22	3.24
34	3.20	3.22	3.24	3.26	3.28	3.26	3.28	3.30	3.31	3.33
35	$3 \cdot 30$	3.3 I	3.33	$3 \cdot 35$	3.37	$3 \cdot 35$	$3 \cdot 37$	3.39	3.4 I	3.43

8mithsonian Tableg.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTEO.

	HEIGIIT OF THE BAROMETER 600 mm .					HeIGHT OF TIIE BAROMETER 605 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 18	. 10	.12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 25	. 27	. 20	. 22	. 24	. 26	. 2 S
3	. 29	.31	. 33	. 35	. 37	. 30	. 32	. 34	. 36	. 3 S
4	. 39	. 41	. 43	. 45	. 47	. 40	. 41	. 43	. 45	. 47
5	0.49	0.51	0.53	0.55	0.57	0.49	0.51	0.53	0.55	0.57
6	. 59	.6I	. 63	. 65	. 67	. 59	. 61	. 63	. 65	. 67
7	. 69	. 70	.72	. 74	. 76	. 69	. 71	. 73	. 75	. 77
8	.78	. So	. 82	. 84	. 56	. 79	. 81	. 83	. 85	. 87
9	. 88	.90	. 92	. 94	.96	. 89	. 91	. 93	. 95	. 97
10	0.98	1.00	1.02	1.04	1.06	0.99	1.01	1.03	1.05	1.07
11	I. 0 S	I. 10	1.12	I. 13	I. 15	1.09	I. 10	1.12	I. 14	I. 16
12	I. 17	1.19	1.21	1.23	I. 25	1.18	1.20	1.22	I. 24	1.26
1.3	I. 27	1.29	1.35	1.33	I. 35	I. 28	1.30	1.32	1.34	1.36
14	I. 37	I. 39	I. 41	I. 43	I. 45	1.38	I. 40	1. 42	I. 44	I. 46
15	1.47	1.49	1.51	1.53	1.54	1.48	1.50	1.52	1.54	I. 56
16	I. 56	1. 58	1.60	1.62	1. 64	1.58	1.60	1. 62	I. 64	I. 66
17	I. 66	I. 68	1.70	1.72	1.74	I. 68	1.70	1.71	1.73	1.75
18	I. 76	1.78	1. So	1.82	1.84	1.77	1.79	I. SI	I. S	1.85
19	I. $\mathrm{S6}$	I. 88	1.90	I.91	1.93	I. 87	1.89	I.9I	I. 93	1.95
20	1.95	1.97	1.99	2.01	2.03	I. 97	1.99	2.01	2.03	2.05
21	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2. I3	2.15
22	2.15	2.17	2. 19	2.21	2.23	2.17	2.19	2.21	2.23	2.24
23	2.25	2.26	2.28	2.30	2.32	2.26	2.28	2.30	2.32	2.34
24	2.34	2.36	2.38	2.40	2.42	2.36	2.38	2.40	2.42	2.44
25	2.44	2.46	2.48	2.50	2.52	2.46	2.48	2.50	2.52	2.54
26	2.54	2.56	2.58	2.60	2.61	2.56	2.58	2.60	2.62	2.64
27	2.63	2.65	2.67	2.69	2.71	2.66	2.68	2.70	2.71	2.73
28	2.73	2.75	2.77	2.79	2.81	2.75	2.77	2.79	2.81	2.83
29	2.53	2.85	2.87	2.59	2.91	2.55	2.87	2.89	2.91	2.93
30	2.93	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
31	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3. 13
32	3.12	3.14	3.16	3.18	3.20	3.15	3.16	3.18	3.20	3.22
33	3.22	3.24	3.25	3.27	3.29	3.24	3.26	3.28	3.30	$3 \cdot 32$
34	3.3 I	3.33	$3 \cdot 35$	3.37	3.39	$3 \cdot 34$	3.36	$3 \cdot 38$	3.40	3.42
35	3.41	3.43	3.45	3.47	3.49	3.44	3.46	3.48	3.50	3.52

Smithbonian Tables.

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° Centigrade, the correction is to be subtracted.

	height of tile barometer 610 mm .					HEIGHT OF THE BAROMETER 615 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mim.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	.12	. 14	. 16	. 18	. 10	. 12	.I4	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 26	. 28
3	. 30	. 32	. 34	. 36	. 38	. 30	.32	. 34	. 36	.38
4	. 40	.42	. 44	. 46	.48	. 40	.42	. 44	. 46	.48
5	0.50	0.52	0.54	0.56	0.58	0.50	0.52	0.54	0.56	0.58
6	. 60	. 62	. 64	. 66	. 68	. 60	. 62	. 64	. 66	. 68
7	. 70	. 72	.74	. 76	. 78	. 70	. 72	. 74	. 76	. 78
8	. 80	. 82	. 84	. 86	. 88	. 80	. 82	. 84	. 86	. 88
9	. 90	. 92	. 94	.96	.98	. 90	. 92	.94	. 96	.98
10	0.99	1.01	1.03	1.05	1.07	1.00	1.02	1.04	1.06	1.08
II	1.09	I.II	I. 13	1. 15	1.17	I. IO	1.12	1.14	1. 16	1.18
12	I. 19	1.21	1.23	1.25	1.27	1.20	1.22	1.24	1.26	1.28
13	1.29	1.3I	1.33	1.35	1.37	I. 30	1.32	1.34	1.36	1.38
14	I. 39	I. 41	I. 43	I. 45	1.47	1.40	I. 42	1.44	I. 46	1.48
15	1.49	1.51	1.53	1.55	1.57	1.50	1.52	I. 54	I. 56	1.58
16	I. 59	1.6I	1.63	1.65	1.67	1.60	1.62	1.64	1.66	1.68
17	1. 69	1.71	1.73	1.75	1.77	1.70	I. 72	1.74	1.76	1. 78
18	1.79	1.8I	1.83	1.85	1.87	1.80	1.82	1.84	1.86	I. 88
19	I. 89	1.91	1.93	1.95	1.97	1.90	1.92	1.94	1.96	1.98
20	I. 99	2.01	2.03	2.05	2.07	2.00	2.02	2.04	2.06	2.08
21	2.09	2.10	2.12	2.14	2.16	2.10	2.12	2.14	2.16	2.18
22	2.18	2.20	2.22	2.24	2.26	2.20	2.22	2.24	2.26	2.28
23	2.28	2.30	2.32	2.34	2.36	2.30	2.32	2.34	2.36	2.38
24	2.38	2.40	2.42	2.44	2.46	2.40	2.42	2.44	2.46	2.48
25	2.48	2.50	2.52	2.54	2.56	2.50	2.52	2.54	2.56	2.58
26	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
27	2.68	2.70	2.72	2.74	2.76	2.70	2.72	2.74	2.76	2.78
28	2.78	2.80	2.82	2.84	2.86	2.80	2.82	2.84	2.86	2.88
29	2.88	2.90	2.91	2.93	2.95	2.90	2.92	2.94	2.96	2.98
30	2.97	2.99	3.01	3.03	3.05	3.00	3.02	3.04	3.06	3.08
31	3.07	3.09	3.11	3.13	3.15	3.10	3.12	3.14	3.16	3. I8
32	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.28
33	3.27	3.29	3.3 I	3.33	3.35	3.30	3.32	3.34	3.36	3.38
34	3.37	3.39	3.4 I	3.43	3.45	3.40	3.42	3.44	3.46	$3 \cdot 48$
35	3.47	3.49	3.5 I	3.53	3.55	3.49	3.51	3.53	3.55	3.57

Emithsonian Tablee.

Table 47.

REDUCIION OF THE BAROMETER TO STANDARD TEMPERATURE.

 METRIC MEASURES.FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGIIT OF THE BAROMETER 620 mm .					HEIGHT OF THE BAROMETER 625 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0%	0.2	0.4	0:6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 27	. 29
3	.30	. 32	. 34	. 36	.38	. 31	. 33	. 35	. 37	. 39
4	. 40	. 43	. 45	. 47	. 49	. 41	. 43	. 45	. 47	. 49
5	0.51	0.53	0.55	0.57	0.59	0.51	0.53	0.55	0.57	0.59
6	.61	. 63	. 65	. 67	. 69	. 61	. 63	. 65	. 67	. 69
7	. 71	. 73	. 75	. 77	. 79	. 71	. 73	. 75	. 78	. 80
8	. 81	. 83	. 85	. 87	. 89	. 82	. 84	. 86	. 88	. 90
9	. 91	. 93	. 95	- 97	. 99	. 92	. 94	. 96	.98	1.00
10	1.01	1.03	1.05	1.07	1.09	1.02	1.04	I. 06	1.08	I. 10
II	I. 11	I. I3	1.15	1.17	1. 19	1.12	1.14	1.16	1.18	1.20
12	I. 21	1.23	1.25	1.27	1.29	1.22	1.24	1.26	1.28	1.30
13	I. 31	1.33	1.35	1.37	1.39	I. 32	1.34	I. 37	1.39	1.41
14	1.41	I. 43	I. 46	1.48	I. 50	1.43	I. 45	1.47	1.49	1.51
15	I. 52	1. 54	I. 56	1.58	1.60	1.53	1.55	1.57	1.59	1.61
16	1.62	1.64	1.66	1.68	1.70	1.63	1. 65	1.67	1.69	1.71
17	1.72	1.74	1.76	1.78	1.80	1.73	1.75	1.77	1.79	1.81
18	1.82	1.84	1.86	1.88	1.90	1.83	1. 85	1.87	I. 99	1.91
19	1.92	1.94	1. 96	1.98	2.00	1.93	1.95	1.97	1.99	2.01
20	2.02	2.04	2.06	2.08	2.10	2.04	2.06	2.08	2.10	2.12
21	2.12	2.14	2.16	2.18	2.20	2.14	2.16	2.18	2.20	2.22
22	2.22	2.24	2.26	2.28	2.30	2.24	2.26	2.28	2.30	2.32
23	2.32	2.34	2.35	2.38	2.40	2.34	2.36	2.38	2.40	2.42
24	2.42	2.44	2.46	2.48	2.50	2.44	2.46	2.48	2.50	2.52
25	2.52	2.54	2.56	2.58	2.60	2.54	2.56	2.58	2.60	2.62
26	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
27	2.72	2.74	2.76	2.78	2.80	2.74	2.76	2.78	2.80	2.82
28	2.82	2.84	2.86	2.88	2.90	2.85	2.87	2.89	2.91	2.93
29	2.92	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
30	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3.13
31	3.12	3.14	3.16	3.18	3.20	3.15	3.17	3.19	3.21	3.23
32	3.22	3.24	3.26	3.28	3.30	3.25	3.27	3.29	3.31	3.33
33 .34	3.32 3.42	3.34	3.36	3.38	3.40 3.50	3.35	3.37	3.39	3.41	3.43
- 34	3.42	3.44	3.46	3.48	3.50	3.45	3.47	3.49	3.51	3.53
35	3.52	3.54	3.56	3.58	3.60	3.55	3.57	3.59	3.61	3.63

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED

	HEIGHT OF THE BAROMETER 630 mm .					HEIGHT OF TIIE BAROMETER 635 mm .				
Attached Thermometer.	0%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm .	mm .	mm.	mm.	mm .	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
I	. 10	. 12	. 14	. 16	. 19	. 10	. 12	. 15	. 17	. 19
2	. 21	. 23	. 25	. 27	. 29	. 21	. 23	.25	. 27	. 29
3	. 31	. 33	. 35	. 37	-39	. 31	- 33	. 35	. 37	. 39
4	. 41	. 43	. 45	. 47	. 49	. 41	. 44	. 46	. 48	. 50
5	0.51	0.53	0.56	0.58	0.60	0.52	0.54	0.56	0.58	0.60
6	. 62	. 64	. 66	. 68	. 70	. 62	. 64	. 66	. 68	. 70
7	.72	. 74	.76	. 78	. 80	. 73	.75	. 77	. 79	. 81
8	. 82	. 84	. 86	. 88	. 90	. 83	. 85	. 87	. 89	.91
9	. 92	. 95	. 97	. 99	1.01	. 93	. 95	. 97	. 99	1.02
10	1.03	1.05	1.07	1.09	I.II	1.04	1.06	1.08	I. 10	1.12
II	I. 13	I. 15	I. 17	1.19	I. 21	I. 14	I. 16	I. 18	1.20	1.22
12	1.23	1.25	I. 27	1.29	I. 31	1.24	I. 26	I. 28	1.30	1.33
13	I. 34	1. 36	I. 38	1.40	1.42	1.35	I. 37	1.39	I. 41	1.43
14	1. 44	I. 46	I. 48	I. 50	I. 52	1.45	I. 47	I. 49	1.51	I. 53
15	I. 54	1.56.	1.58	1.60	1.62	I. 55	1.57	1.59	1.61	1.63
16	I. 64	1.66	1.65	1.70	1.72	1.66	I. 68	1.70	1.72	1.74
17	1.74	1.77	I. 79	I. 81	I. 83	1.76	1.78	I. So	I. 82	1.84
18	I. 35	I. 87	I. 89	I.9I	I. 93	I. 56	I. 88	I. 90	1.92	1.94
19	I. 95	1.97	I. 99	2.01	2.03	1.96	I. 99	2.01	2.03	2.05
20	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2.13	2.15
21	2.15	2. 17	2.19	2.21	2.24	2.17	2.19	2.21	2.23	2.25
22	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.31	2.34	2.36
23	2.36	2.38	2.40	2.42	2.44	2.38	2.40	2.42	2.44	2.46
24	2.46	2.48	2.50	2.52	2.54	2.48	2.50	2.52	2.54	2.56
25	2.56	2.58	2.60	2.62	2.64	2.58	2.60	2.62	2.64	2.66
26	2.66	2.68	2.70	2.73	2.75	2.69	2.71	2.73	2.75	2.77
27	2.7%	2.79	2.81	2.83	2.85	2.79	2.81	2.83	2.85	2.87
28	2.87	2.89	2.91	2.93	2.95	2.89	2.91	2.93	2.95	2.97
29	2.97	2.99	3.01	3.03	3.05	2.99	3.01	3.03	3.05	3.08
30	3.07	3.09	3. II	3. 13	3.15	3.10	3.12	3.14	3.16	3.18
3 I	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.25
32	3.28	3.30	3.32	$3 \cdot 34$	$3 \cdot 36$	3.30	$3 \cdot 32$	3.34	3.36	3.38
33	3.35	3.40	$3 \cdot 42$	3.44	3.46	3.40	3.42	3.44	3.47	3.49
34	3.48	3.50	3.52	3.54	3.56	$3 \cdot 51$	3.53	3.55	3.57	3.59
35	3.58	3.60	3.62	3.64	3.66	3.61	3.63	3.65	3.67	3.69

Smitheonian Tables.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 640 mm .					HEIGHT OF TIIE BAROMETER 645 mm .				
Attached Thermometer.	$0: 0$	0.2	0.4	0.6	$0: 8$	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm.	mm.	mm.	mm .	mm.	mm .	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 13	. 15	. 17	. 19	. 11	. 13	. 15	. 17	. 19
2	. 21	. 23	. 25	. 27	. 29	. 21	. 23	.25	. 27	. 29
3	. 31	- 33	. 36	. 38	. 40	- 32	. 34	. 36	. 38	. 40
4	. 42	. 44	. 46	. 48	. 50	. 42	. 44	. 46	. 48	. 51
5	0.52	0.54	0.56	0.59	0.6I	0.53	0.55	0.57	0.59	0.61
6	. 63	. 65	. 67	. 69	. 71	. 63	. 65	. 67	. 69	. 72
7	.73	. 75	. 77	. 79	. 81	. 74	. 76	. 78	. 80	. 82
8	. 84	. 86	. 88	. 90	. 92	. 84	. 86	. 88	. 90	. 93
9	. 94	. 96	.98	1.00	1.02	. 95	. 97	. 99	I. OI	I. 03
10	1.04	1.06	1.09	1.11	1.13	1.05	1.07	1.09	1.12	I. 14
II	1.15	1.17	1.19	I. 21	1.23	I. 16	1.18	I. 20	1.22	I. 24
12	1.25	1.27	1.29	I. 31	1.34	1.26	1.28	1.30	1.32	I. 35
13	I. 36	1.38	1.40	I. 42	I. 44.	I. 37	1.39	1.41	I. 43	I. 45
14	I. 46	I. 48	1.50	1.52	1. 54	I. 47	I. 49	I. 51	I. 53	I. 56
15	1.56	1.59	1.61	1.63	1. 65	1.58	1. 60	1.62	1.64	1.66
16	1.67	1.69	1.71	1.73	1. 75	I. 68	1.70	1.72	1.74	1.77
17	1.77	I. 79	1.81	I. 83	1. 86	1.79	1.81	1.83	I. S_{5}	I. 87
18	1.88	1.90	1.92	1.94	1.96	1. 89	1.91	1.93	1.95	1.97
19	1.98	2.00	2.02	2.04	2.06	2.00	2.02	2.04	2.06	2.08
20	2.08	2.10	2.13	2. 15	2.17	2.10	2.12	2. 14	2.16	2. 18
21	2.19	2.21	2.23	2.25	2.27	2.20	2.23	2.25	2.27	2.29
22	2.29	2.31	2.33	2.35	2.37	2.31	2.33	2.35	2.37	2.39
23	2.40	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
24	2.50	2.52	2.54	2.56	2.58	2.52	2.54	2.56	2.58	2.60
25	2.60	2.62	2.64	2.66	2.69	2.62	2.64	2.66	2.69	2.71
26	2.71	2.73	2.75	2.77	2.79	2.73	2.75	2.77	2.79	2.81
27	2.51	2.83	2.85	2.87	2.89	2.83	2.55	2.87	2.89	2.92
2 S	2.91	2.93	2.95	2.98	3.00	2.94	2.96	2.98	3.00	3.02
29	3.02	3.04	3.06	3.08	3.10	3.04	3.06	3.08	3.10	3.12
30	3.12	3.14	3.16	3.18	3.20	3. 14	3.17	3.19	3.21	3.23
31	3.22	3.24	3.27	3.29	3.31	3.25	3.27	3.29	3.31	3.23 3.33
32	3.33	3.35	3.37	$3 \cdot 39$	3.41	3.35	3.37	3.39	3.42	3.44
33	3.43	3.45	3.47	3.49	3.51	3.46	3.48	3.50	3.52	3.54
34	3.53	3.55	3.58	360	3.62	3.56	3.58	3.60	3.62	3.64
35	3.64	3.66	3.68	3.70	3.72	3.67	3.69	3.71	3.73	3.75

8mithsonian Tables.

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 650 mm .					HEIGHT OF THE BAROMETER 655 mm .				
Attached Thermometer.	0.0	0:2	0.4	0.6	0.8	0%	0.2	0.4	0.6	0:8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.09
I	. II	. 13	. 15	. 17	. 19	. II	. 13	. 15	. 17	. 19
2	. 21	. 23	. 25	. 28	- 30	. 21	. 24	. 26	. 28	. 30
3	. 32	. 34	. 36	. 38	. 40	. 32	. 34	. 36	-39	. 41
4	.42	. 45	. 47	. 49	. 51	. 43	. 45	. 47	. 49	. 51
5	0.53	0.55	0.57	0.59	0.62	0.53	0.56	0.58	0.60	0.62
6	. 64	. 66	. 68	. 70	. 72	. 64	. 66	. 68	. 71	. 73
7	. 74	.76	. 73	.81	. 83	. 75	. 77	. 79	.81	. 83
8	. 85	. 87	. 89	.91	. 93	. 85	. 88	. 90	. 92	. 94
9	. 95	. 98	1.00	1.02	1.04	. 96	. 98	1.00	1.03	1.05
10	1.06	1.08	1.10	I. 12	1.14	1.07	1.09	I. II	1.13	1.15
II	I. 17	I. 19	1.21	I. 23	1.25	1.17	1.20	1.22	1.24	1.26
12	1.27	1.29	1.31	I. 34	1.36	1.28	1.30	I. 32	1.35	1.37
13	1. 38	I. 40	I. 42	I. 44	1.46	1.39	1.41	1.43	1.45	1.47
14	1.48	1.50	1.53	1.55	1.57	1.49	I. 52	1.54	1.56	1.58
15	1.59	1.61	1. 63	1. 65	1.67	1.60	1.62	1.64	1.66	1.69
16	1.69	1.72	1.74	1.76	1.78	1.71	1.73	1.75	1.77	1.79
17	1.80	I. 82	I. 84	1.86	1.88	1.81	1.84	1. 86	1.88	1.90
18	1.91	1.93	1.95	1.97	1.99	1.92	1.94	1.96	1.98	2.01
19	2.01	2.03	2.05	2.07	2.10	2.03	2.05	2.07	2.09	2.11
20	2.12	2.14	2.16	2.18	2.20	2.13	2.15	2.18	2.20	2.22
21	2.22	2.24	2.26	2.29	2.31	2.24	2.26	2.28	2.30	2.32
22	2.33	2.35	2.37	2.39	2.41	2.35	2.37	2.39	2.41	2.43
23	2.43	2.45	2.47	2.50	2.52	2.45	2.47	2.49	2.52	2.54
24	2.54	2.56	2.58	2.60	2.62	2.56	2.58	2.60	2.62	2.64
25	2.64	2.66	2.69	2.71	2.73	2.66	2.68	2.71	2.73	2.75
26	2.75	2.77	2.79	2.81	2.83	2.77	2.79	2.81	2.83	2.85
27	2.85	2.87	2.90	2.92	2.94	2.88	2.90	2.92	2.94	2.96
28	2.96	2.98	3.00	3.02	3.04	2.98	3.00	3.02	3.05	3.07
29	3.06	3.08	3.11	3.13	3.15	3.09	3.11	3.13	3.15	3.17
30	3.17	3.19	3.21	3.23	3.25	3.19	3.21	3.24	3.26	3.28
31	3.27	3.30	$3 \cdot 32$	$3 \cdot 34$	3.36	$3 \cdot 30$	$3 \cdot 32$	3.34	3.36	3.38
32	3.38	3.40	3.42	3.44	3.46	3.41	3.43	$3 \cdot 45$	$3 \cdot 47$	3.49
33	3.48	3.51	3.53	3.55	3.57	3.51	3.53	3.55	3.57	3.60
34	3.59	3.61	3.63	3.65	3.67	3.62	3.64	3.66	3.68	3.70
35	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81

Smithsonian Tableg.
for temperatures above 0° centigrade, the correction is to be subtracted.

	HEIGHT OF THE BAROMETER 660 mm .					HEIGHT OF THE BAROMETER 665 mm .				
Attached Thermometer.	0:0	0.2	0.4	0.6	$0: 8$	0.0	0.2	0.4	0.6	0:8
c.	mm .	mm.	mm .	mm.	mm.	mm .	mm .	mm .	mm .	mm.
0°	0.00	0.02	0.04	0.06	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 15	. 17	. 19	. I	. 13	. 15	.17	. 20
2	. 22	. 24	. 26	. 28	. 30	. 22	. 24	. 26	. 28	. 30
3	. 32	. 34	. 37	. 39	. 41	. 33	. 35	. 37	. 39	. 41
4	. 43	. 45	. 47	. 50	.52	. 43	. 46	. 48	. 50	. 52
5	0.54	0.56	0.58	0.60	0.62	0.54	0.56	0.59	0.61	0.63
6	. 65	. 67	. 69	. 71	. 73	. 65	. 67	. 69	. 72	.74
7	. 75	. 78	. 80	. 82	. 84	. 76	. 78	. 80	. 82	. 85
8	. 86	. 88	. 90	. 93	. 95	. 87	. 89	.91	. 93	. 95
9	. 97	. 99	I.OI	1.03	1.05	. 98	1.00	1.02	1.04	1.06
10	1.08	I. 10	1.12	1.14	I. 16	1.08	I. II	I. 13	I. 15	1.17
11	I. 18	I. 21	1.23	1.25	1.27	1.19	I. 21	1.24	1.26	1.28
12	1.29	1.31	1.33	1.36	1.38	1.30	I. 32	1.34	1.37	1.39
13	1.40	1.42	I. 44	1.46	1.48	I. 41	1.43	1.45	1.47	1.50
14	1. 51	I. 53	L. 55	1. 57	1. 59	1. 52	I. 54	1.56	1. 58	I. 60
15	1.61	1.63	I. 66	1.68	1.70	1.63	1.65	I. 67	1. 69	1.71
16	1.72	1.74	1.76	1.78	1.81	1.73	1.76	1.78	1.80	1.82
17	1.83	1.85	1.87	1.89	I.9I	I. 84	I. 86	1.88	1.91	1.93
18	1.93	1.96	1.98	2.00	2.02	1.95	1.97	1.99	2.01	2.04
19	2.04	2.06	2.08	2.11	2.13	2.06	2.08	2. 10	2.12	2.14
20	2.15	2.17	2. 19	2.21	2.23	2.17	2.19	2.21	2.23	2.25
21	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.32	2.34	2.36
22	2.36	2.38	2.41	2.43	2.45	2.38	2.40	2.42	2.45	2.47
23	2.47	2.49	2.51	2.53	2.56	2.49	2.51	2.53	2.55	2.57
24	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
25	2.68	2.71	2.73	2.75	2.77	2.70	2.73	2.75	2.77	2.79
26	2.79	2.81	2.83	2.85	2.88	2.81	2.83	2.85	2.88	2.90
	2.90	2.92	2.94	2.96	2.98	2.92	2.94	2.96	2.98	3.01
28	3.00	3.03	3.05	3.07	3.09	3.03	3.05	3.07	3.09	3.11
29	3.11	3.13	3.15	3.18	3.20	3.13	3.16	3.18	3.20	3.22
30	3.22	3.24	3.26	3.28	3.30	3.24	3.26	3.29	$3 \cdot 3 \mathrm{I}$	3.33
31	3.32	3.35	3.37	3.39	3.41	3.35	3.37	3.39	$3 \cdot 4 \mathrm{I}$	3.44
32	3.43	3.45	3.47	3.49	3.52	3.46	3.48	3.50	3.52	3.54
33	3.54	3.56	3.58	3.60	3.62	3.56	3.59	3.61	3.63	3.65
34	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.71	3.74	3.76
35	3.75	3.77	3.79	3.81	3.84	3.78	3.80	3.82	3.84	3.86

table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGIIT OF TIIE B.AROMETER 670 mm .					HEIGHT OF THE BAROMETER 675 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0:8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 15	. 18	. 20	. 11	. 13	. 15	. 18	. 20
2	. 22	. 24	. 26	. 28	. 31	. 22	. 24	. 26	. 29	. 31
3	.33	. 35	. 37	. 39	. 42	- 33	. 35	- 37	. 40	. 42
4	. 44	. 46	. 48	. 50	. 53	. 44	. 46	. 48	. 51	. 53
5	0.55	0.57	0.59	0.61	0.63	0.55	0.57	0.60	0.62	0.64
6	. 66	. 68	. 70	. 72	. 74	. 66	. 68	. 71	. 73	. 75
7	. 77	. 79	. 81	. 83	. 85	. 77	. 79	. 82	. 84	. 86
8	. 87	. 90	. 92	. 94	. 96	. 88	. 90	. 93	. 95	. 97
9	. 98	I.OI	1.03	1.05	1.07	. 99	I.OI	1.04	1.06	1.08
10	1.09	I.II	1.14	I. 16	1.18	1.10	1. 12	I. 14	1.17	I. 19
II	1.20	1.22	I. 25	1.27	1.29	I. 21	I. 23	I. 25	1.28	1.30
12	1.31	1.33	I. 35	1. 38	I. 40	1.32	I. 34	I. 36	1.39	I. 41
13	1. 42	I. 44	I. 46	I. 49	I. 51	I. 43	I. 45	1.47	1.50	1.52
14	I. 53	บ. 55	1.57	I. 59	1.62	I. 54	I. 56	I. 58	1.61	1.63
15	1.64	1.66	I. 68	1.70	1.72	r. 65	1.67	I. 69	1.72	1.74
16	1.75	1.77	I. 79	1.81	1.83	1.76	I. 78	I. So	I. 83	1.85
17	I. 86	1. 88	1.90	1.92	1.94	1.87	1.89	I. 91	1.94	1.96
IS	I. 96	1.99	2.01	2.03	2.05	1.98	2.00	2.02	2.04	2.07
19	2.07	2.09	2.12	2. 14	2.16	2.09	2.11	2.13	2.15	2.18
20	2.18	2.20	2.23	2.25		2.20	2.22	2.24	2.26	2.29
21	2.29	2.31	2.33	2.36	2.38	2.31	2.33	2.35	2.37	2.39
22	2.40	2.42	2.44	2.46	2.49	2.42	2.44	2.46	2.48	2.50
23	2.51	2.53	2.55	2.57	2.59	2.53	2.55	2.57	2.59	2.61
24	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
25	2.72	2.75	2.77	2.79	2.81	2.74	2.77	2.79	2.81	2.83
26	2.83	2.85	2.88	2.90	2.92	2.85	2.88	2.90	2.92	2.94
27	2.94	2.96	2.98	3.01	3.03	2.96	2.99	3.01	3.03	3.05
28	3.05	3.07	3.09	3.11	3.14	3.07	3.09	3.12	3.14	3.16
29	3.16	3.18	3.20	3.22	3.24	3. 18	3.20	3.23	3.25	3.27
30	3.27	3.29	3.31	3.33	3.35	3.29	$3 \cdot 31$	3.33	3.36	3.38
31	3.37	3.40	3.42	3.44	3.46	3.40	3.42	3.44	3.47	3.49
33	3.48	3.50	3.53	3.55		3.51	3.53	3.55	3.57	3.60
33	3.59	3.61	3.63	3.66	3.68	3.62	3.64	3.66	3.68	3.71
34	3.70	3.72	3.74	3.76	3.79	3.73	3.75	3.77	3.79	3.81
35	3.81	3.83	3.85	3.87	3.89	3.84	3.86	3.88	3.90	3.92

Smithaonian Tableg.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF TIIE BAROMETER 680 mm .					HEIGHT OF THE BAROMETER 685 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0:8	0.0	0.2	0. 0	0.6	0:8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 16	. 18	. 20	. I I	. 13	. 16	. 18	. 20
2	. 22	. 24	. 27	. 29	. 31	. 22	. 25	.27	. 29	. 31
3	. 33	. 36	.38	. 40	. 42	. 34	. 36	. 38	. 40	. 43
4	. 44	. 47	. 49	.51	. 53	. 45	. 47	. 49	.5I	. 54
5	0.56	0.58	0.60	0.62	0.64	0.56	0.58	0.60	0.63	0.65
6	. 67	. 69	. 71	. 73	. 75	. 67	. 69	. 72	. 74	. 76
7	. 78	. 50	. 82	. 84	. 87	. 78	. 80	.83	. 85	. 87
S	. 89	. 91	. 93	. 95	. 98	. 89	. 92	. 94	. 96	. 98
9	1.00	1.02	1.04	1.06	1.09	I. Or	I. 03	1.05	1.07	1.09
10	I. II	I. 13	I. 15	1.18	1.20	I. 12	I. 14	1.16	I. 18	1.21
II	1.22	I. 24	1.26	1.29	1.31	1.23	1.25	1.27	1.30	I. 32
12	I. 33	I. 35	r. 37	I. 40	1.42	1.34	1. 36	1.38	I.4I	1.43
13	1. 44	I. 46	I. 49	1.51	1.53	I. 45	I. 47	1.50	1.52	I. 54
14	I. 55	1.57	1.60	1.62	1.64	1.56	1.59	1.61	1.63	1. 65
15	1.66	1.68	1.71	1.73	1.75	1.6'7	1.70	1.72	1.74	1.76
16	1.77	I. 79	1.82	1.84	1.86	1.79	1.81	1.83	1.85	1.87
17	1.88	1.91	1.93	1.95	1.97	1.90	1.92	1.94	1.96	1.99
18	1.99	2.02	2.04	2.06	2.08	2.01	2.03	2.05	2.07	2.10
19	2.10	2.13	2.15	2.17	2.19	2.12	2.14	2.16	2.19	2.21
20	2.21	2.24	2.26	2.28	2.30	2.23	2.25	2.27	2.30	2.32
21	2.32	2.35	2.37	2.39	2.41	2.34	2.36	2.39	2.41	2.43
22	2.43	2.46	2.48	2.50	2.52	2.45	2.47	2.50	2.52	2.54
23	2.54	2.57	2.59	2.61	2.63	2.56	2.59	2.61	2.63	2.65
24	2.66	2.68	2.70	2.72	2.74	2.67	2.70	2.72	2.74	2.76
25	2.77	2.79	2.81	2.83	2.95	2.79	2.81	2.83	2.85	2.87
26	2.88	2.90	2.92	2.94	2.96	2.90	2.92	2.94	2.96	2.99
27	2.99	3.01	3.03	3.05	3.07	3.01	3.03	3.05	3.07	3.10
28	3.10	3.12	3.14	3.16	3.18	3.12	3.14	3.16	3.18	3.21
29	3.21	3.23	3.25	3.27	3.29	3.23	3.25	3.27	$3 \cdot 30$	3.32
30	3.32	3.34	3.36	3.38	3.40	$3 \cdot 34$	3.36	3.38	3.41	3.43
3 I	3.43	3.45	3.47	3.49	3.51	3.45	3.47	3.49	3.52	3.54
32	3.54	3.56	3.58	3.60	3.62	3.56	3.58	3.61	3.63	3.65
33	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.72	3.74	3.76
34	3.75	3.78	3.80	3.82	3.84	3.78	3.80	3.83	3.85	3.87
35	3.86	3.89	3.91	3.93	3.95	3.89	3.91	3.94	3.96	3.98

8mithoonian Tables.

Table 47.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

 METRIC MEASURES.FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF TIIE BAROMETER 690 mm.					HEIGHT OF THE BAROMETER 695 mm .				
Attached Thermometer.	0:0	0.2	0.4	0.6	0.8	0%	0.2	0.4	0.6	0.8
c.	mm .	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.
$0{ }^{3}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
I	. II	. 14	. 16	. 18	. 20	. II	. 14	. 16	. 18	. 20
2	. 23	. 25	. 27	. 29	. 32	. 23	. 25	. 27	. 30	. 32
3	. 34	. 36	. 38	. 41	. 43	- 34	. 36	- 39	.41	. 43
4	. 45	. 47	. 50	. 52	. 54	. 45	. 48	. 50	.52	. 54
5	0.56	0.59	0.61	0.63	0.65	0.57	0.59	0.61	0.64	0.66
6	. 68	. 70	.72	. 74	. 77	. 68	. 70	. 73	. 75	. 77
7	. 79	. 81	. 83	. 86	. 58	. 79	. 82	. 84	. 86	. 88
8	. 90	. 92	. 95	. 97	. 99	. 91	. 93	. 95	. 98	1.00
9	1.OI	1.04	1.06	1.08	1. 10	1.02	1.04	1.07	1.09	I. 11
10	I. 13	I. 15	I. 17	1.19	1.22	1.13	1.16	1.18	1.20	1.22
II	1.24	I. 26	1.28	1.31	1.33	I. 25	1.27	I. 29	I. 31	1.34
12	I. 35	I. 37	1.39	I. 42	1.44	I. 36	1.38	I.4I	1.43	I. 45
13	1.46	1.48	1.51	1.53	I. 55	1.47	1.50	1.52	I. 54	I. 56
14	1. 57	1.60	1.62	I. 64	1.66	1.59	1.61	1.63	I. 65	1.68
15	1.69	1.71	1.73	1.75	1.78	1.70	1.72	1.74	1.77	1. 79
16	1. So	I. 82	1.84	1.87	1.89	I. 81	1.83	I. 86	I. 88	1.90
17	1.91	1.93	1.96	1.98	2.00	1.92	1.95	1.97	1.99	2.01
18	2.02	2.05	2.07	2.09	2.11	2.04	2.06	2.08	2.11	2.13
19	2.13	2.16	2.18	2.20	2.22	2.15	2.17	2.20	2.22	2.24
20	2.25	2.27	2.29	2.31	2.34	2.26	2.29	2.31	2.33	2.35
21	2.36	2.38	2.40	2.43	2.45	2.38	2.40	2.42	2.44	2.47
22	2.47	2.49	2.52	2.54	2.56	2.49	2.51	2.53	2.56	2.58
23	2.58	2.60	2.63	2.65	2.67	2.60	2.62	2.65	2.67	2.69
24	2.69	2.72	2.74	2.76	2.78	2.71	2.74	2.76	2.73	2.80
25	2.81	2.83	2.85	287	2.90	2.83	2.85	2.87	2.89	2.92
26	2.92	2.94	2.96	2.99	3.01	2.94	2.96	2.98	3.01	3.03
27	3.03	3.05	3.07	3.10	3.12	3.05	3.07	3.10	3.12	3.14
28	3.14	3.16	3.19	3.21	3.23	3.16	3.19	3.21	3.23	3.25
29	3.25	3.27	3.30	$3 \cdot 32$	3.34	3.28	3.30	3.32	3.34	3.37
30	3.36	$3 \cdot 39$	3.41	3.43	3.45	3.39	3.41	3.43	3.46	3.48
31	3.48	3.50	3.52	3.54	3.56	3.50	3.52	3.55	3.57	3.59
32	3.59	3.61	3.63	3.65	3.68	3.61	3.64	3.66	3.68	3.70
33	3.70	3.72	3.74	3.77	3.79	3.73	3.75	3.77	3.79	3.81
34	3.81	3.83	3.85	3.88	3.90	3.84	3.86	3.88	3.90	3.93
35	3.92	3.94	3.97	3.99	4.01	3.95	3.97	3.99	4.02	4.04

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGIIT OF TIIE BAROMETER 700 mm .					HEIGIIT OF THE BAROMETER 705 mm .				
Attached Thermometer.	0%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	$0: 8$
c.	mm .	mm.	mm.	mm.	mm.	mim.	mm .	mm .	mm.	mm.
0°	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. II	. 14	. 16	. 18	. 21	. 12	. 14	. 16	. 18	. 21
2	. 23	. 25	. 27	. 30	. 32	. 23	.25	. 28	. 30	.32
3	- 34	. 37	. 39	. 41	. 43	- 35	. 37	. 39	. 41	. 44
4	. 46	. 48	. 50	. 53	. 55	. 46	. 48	. 51	. 53	. 55
5	0.57	0.59	0.62	0.64	0.66	0.58	0.60	0.62	0.64	0.67
6	. 69	. 71	. 73	. 75	. 78	. 69	. 71	. 74	. 76	. 78
7	. 80	. 82	. 85	. 87	. 89	.8r	. 83	. 85	. 87	. 90
8	. 91	. 94	. 96	. 98	1.00	. 92	. 94	. 97	. 99	1.01
9	1.03	1.05	1.07	I. 10	I. 12	I. 04	1.06	1.08	I. 10	I. 13
10	1. I4	I. 16	1.19	1.21	1.23	1. 15	1.17	1.20	I. 22	1.24
II	1.26	1.28	1.30	1.32	1.35	1.26	1.29	1.31	1.33	1.36
12	1.37	I. 39	1.42	I. 44	I. 46	I. 38	1.40	1.43	I. 45	1.47
13	1.48	1.5I	1.53	1.55	1.57	I. 49	1.52	1. 54	I. 56	I. 59
14	1.60	1.62	1.64	I. 67	1.69	I.6I	I. 63	I. 65	1.68	1.70
15	1.71	1.73	1.76	1.78	1.80	1.72	1.75	1.77	1.79	1.81
16	I. S_{2}	1.85	I. 87	I. 89	1.92	1.84	1.86	1.88	1.91	1.93
17	I. 94	1.96	1.98	2.01	2.03	1.95	1.98	2.00	2.02	2.04
18	2.05	2.07	2.10	2.12	2.14	2.07	2.09	2.11	2.14	2. 16
19	2.17	2.19	2.21	2.23	2.26	2.18	2.20	2.23	2.25	2.27
20	2.28	2.30	2.32	2.35	2.37	2.30	2.32	2.34	2.36	2.39
21	2.39	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
22	2.51	2.53	2.55	2.57	2.60	2.52	2.55	2.57	2.59	2.62
23	2.62	2.64	2.67	2.69	2.71	2.64	2.66	2.68	2.71	2.73
24	2.73	2.76	2.78	2.80	2.82	2.75	2.78	2.80	2.82	2.84
	2.85		2.89	2.91	2.94	2.87	2.89	2.91	2.94	2.96
26	2.96	2.98	3.01	3.03	3.05	2.98	3.00	3.03	3.05	3.07
27	3.07	3.10	3.12	3.14	3.16	3.10	3.12	3.14	3.16	3. 19
28	3.19	3.21	3.23	3.25	3.28	3.21	3.23	3.25	3.28	3.30
29	3.30	332	$3 \cdot 34$	$3 \cdot 37$	3.39	3.32	3.35	$3 \cdot 37$	3.39	3.41
30	3.41	3.44	3.46	3.48	3.50	3.44	3.46	3.48	3.51	3.53
3 I	3.53	3.55	3.57	3.59	3.62	3.55	3.57	3.60	3.62	3.64
32	3.64	3.66	3.68	3.71	3.73	3.66	3.69	3.71	3.73	3.76
33	3.75 .	3.77	3.80	3.82	3.84	3.78	3.80	3.82	3.85	3.87
34	3.87	3.89	3.91	3.93	3.96	3.89	3.92	3.94	3.96	3.98
35	3.98	4.00	4.02	4.05	4.07	4.01	4.03	4.05	4.07	4.10

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	height or the barometer 710 mm .					HELGILT OF THE BAROMETER 715 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	n112.	mm.	mm.	mm.	$1 \mathrm{mm}$.	mu.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
-	.12	. 14	. 16	. 19	. 21	. 12	. 14	. 16	. 19	. 21
2	. 23	. 26	. 28	. 30	.32	. 23	. 26	. 2 S	. 30	. 33
3	. 35	. 37	. 39	. 42	. 44	. 35	. 37	. 40	. 42	. 44
4	. 46	. 49	.51	. 53	. 56	. 47	. 49	.51	. 54	. 56
5	0.58	0.60	0.63	0.65	0.67	0.58	0.61	0.63	0. 65	0.68
6	. 70	. 72	. 74	.76	. 79	. 70	. 72	. 75	. 77	. 79
7	. 81	. 83	. 86	. 88	. 90	. S_{2}	. 84	. 86	. 59	. 91
8	. 93	. 95	. 97	1.00	1.02	. 93	. 96	. 98	1.00	1.03
9	1.04	1.07	1.09	1. II	I. 13	1.05	1.07	1.10	1.12	1.14
10	1. 16	1.18	1.20	1.23	1.25	1.17	1.19	1.21	1.24	1.26
II	1.27	1.30	1.32	1.34	1.37	1.28	1.31	1.33	1.35	1.38
12	1.39	1.41	1.44	1.40	1.48	1.40	1.42	1.45	1.47	1.49
13	1.50	1.53	1.55	1.57	1.60	1.52	1.54	1. 56	1.58	1.61
14	1.62	1.64	1.67	1.69	1.71	1.63	1.65	1.68	1.70	1.72
15	1.74	1.76	1.78	1. So	1. S_{3}	1.75	1.77	1.79	1.82	1.84
16	1. S_{5}	1.87	1.90	1.92	1.94	1.86	1.89	1.91	1.93	1.96
17	1.97	1.99	2.01	2.04	2.06	1.98	2.00	2.03	2.05	2.07
IS	2.08	2.10	2.13	2.15	2.17	2.10	2.12	2.14	2.17	2.19
19	2.20	2.22	2.24	2.27	2.29	2.21	2.24	2.26	2.28	2.30
20	2.31	2.33	2.36	2.38	2.40	2.33	2.35	2.37	2.40	2.42
21	2.43	2.45	2.47	2.50	2.52	2.44	2.47	2.49	2.51	2.54
22	2.54	2.57	2.59	2.61	2.63	2.56	2.58	2.61	2.63	2.65
23	2.66	2.68	2.70	2.73	2.75	2.68	2.70	2.72	2.75	2.77
24	2.77	2.80	2.82	2.84	2.56	2.79	2.81	2.84	2.56	$2 . \mathrm{SS}$
25	2.89	2.91	2.93	2.96	2.98	2.91	2.93	2.95	2.98	3.00
26	3.00	3.03	3.05	3.07	3.09	3.02	3.05	3.07	3.09	3.12
27	3.12	3.14	3. 16	3.19	3.21	3.14	3.16	3.19	3.21	3.23
28	3.23	3.25	3.25	3.30	3.32	3.25	3.2 S	3.30	3.32	3.35
29	3.35	$3 \cdot 37$	3.39	3.42	3.44	3.37	3.39	3.42	3.44	3.46
30	3.46	3.48	3.51	$3 \cdot 53$	3.55	3.49	3.51	3.53	3.56	
31	3.58	3.60	3.62	3.65	3.67	3.60	3.62	3.65	3.67	3.69
32	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81
33	3.81	3.83	3.55	3.87	3.90	3.83	3.56	3.88	3.90	3.92
34	3.92	3.94	3.97	3.99	4.01	3.95	3.97	$\therefore .99$	4.02	4.04
35	4.03	4.06	4.08	4.10	4.13	4.06	4.09	4. II	4. 13	4.16

Smithgonian Tableg.

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracted.

	fieIgilt of tile barometer 720 mm .					HEIGHT OF TIIE BAROMETER 725 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	$0 \% 8$
c.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. 12	. 14	. 16	. 19	. 21	. 12	. 14	. 17	. 19	. 21
2	. 24	. 26	. 28	. 31	. 33	. 24	. 26	. 28	. 31	. 33
3	. 35	.38	. 40	. 42	. 45	.36	. 38	. 40	. 43	. 45
4	. 47	. 49	. 52	. 54	. 56	. 47	. 50	. 52	. 54	. 57
5	0.59	0.61	0.63	0.66	0.68	0.59	0.62	0.64	0.66	0.69
6	. 71	. 73	. 75	. 78	. So	. 71	. 73	. 76	. 78	. So
7	. 82	. 85	. 87	. 89	. 92	. 83	. 85	. 88	. 90	. 92
8	. 94	. 96	. 99	I. OI	1.03	. 95	. 97	. 99	1.02	1.04
9	1.06	1.08	1.10	1.13	1.15	1.06	1.09	I. II	1.14	I. 16
10	I. 17	1.20	1.22	1.24	1.27	I. I8	I. 21	1.23	1.25	1.28
II	1.29	1. 31	1.34	1.36	1.39	1.30	1.32	1.35	1.37	1.39
12	1.41	I. 43	1.46	1.48	1.50	1.42	1.44	1.47	1.49	1.51
13	I. 53	I. 55	I. 57	1.60	1.62	1.54	I. 56	1.58	1.61	1.63
14	1.64	1.67	1.69	1.71	1. 74	I. 65	1.68	1.70	1.73	I. 75
15	1.76	1.78	1.8 r	1.83	I. S_{5}	1.77	I. So	1.82	I. 84	r. 87
16	I. SS	1.90	1.92	1.95	1.97	1.89	1.91	1.94	1.96	1.98
17	I. 99	2.02	2.04	2.06	2.09	2.01	2.03	2.05	2.08	2.10
18	2.11	2.13	2.16	2.18	2.20	2. 13	2.15	2.17	2.20	2.22
19	2.23	2.25	2.27	2.30	2.32	2.24	2.27	2.29	2.31	2.34
20	2.34	2.37	2.39	2.41	2.44	2.36	2.38	2.41	2.43	2.45
21	2.46	2.48	2.51	2.53	2.55	2.48	2.50	2.53	2.55	2.57
22	2.58	2.60	2.62	2.65	2.67	2.60	2.62	2.64	2.67	2.69
23	2.69	2.72	2.74	2.76	2.79	2.71	2.74	2.76	2.78	2.81
24	2.81	2.83	2.86	2.88	2.90	2.83	2.85	2.88	2.90	2.92
25	2.93	2.95	2.97	3.00	3.02	2.95	2.97	3.00	3.02	3.04
26	3.04	3.07	3.09	3.11	3.14	3.07	3.09	3.11	3 I4	3.16
27	3.16	3.18	3.21	3.23	3.25	3.18	3.21	3.23	3.25	3.28
28	3.28	3.30	3.32	3.35	3.37	3.30	3.32	3.35	3.37	3.39
29	$3 \cdot 39$	3.42	3.44	3.46	3.49	3.42	3.44	3.46	3.49	3.51
30	3.51	3.53	3.56	3.58	3.60	3.53	3.56	3.58	3.50	3.63
31	3.63	3.65	3.67	3.70	3.72	3.65	3.68	3.70	3.72	3.75
32	3.74	3.77	3.79	3.81	3.84	3.77	3.79	3.82	3.84	3.86
33	3.86	3.88	3.91	3.93	3.95	3.59	3.91	3.93	3.96	3.98
24	3.98	4.00	4.02	4.05	4.07	4.00	4.03	4.05	4.07	4. 10
35	4.09	4.11	4.14	4.16	4.18	4.12	4.14	4.17	4.19	4.21

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE. THE CORRECTION IS TO BE SUBTRACTED.

	height of tile barometer 730 mm .					HeIGIT OF THE BAROMETER 735 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mı.	mm.	mm.	mm.
0°	0.00	0.02	0.05	0.07	0. 10	0.00	0.02	0.05	0.07	0. 10
1	. 12	. 14	. 17	. 19	. 21	. 12	. 14	. 17	. 19	. 23
2	. 24	. 26	. 29	-31	. 33	. 24	. 26	. 29	. 31	. 34
3	. 36	. 38	. 41	. 43	. 45	. 36	. 38	. 41	. 43	. 46
4	. 48	. 50	. 52	. 55	. 57	.48	. 50	. 53	. 55	. 58
5	0.60	0.62	0.64	0.67	0.69	0.60	0.62	0.65	0.67	0.70
6	. 71	. 74	. 76	. 79	.81	.72	. 74	. 77	. 79	. 82
7	. 83	. 86	. 88	. 91	. 93	. 84	. 86	. 89	. 91	. 94
8	. 95	. 98	1.00	1.02	1.05	. 96	. 98	I. OI	1.03	1.06
9	1.07	I. 10	1.12	1.14	I. 17	I. 08	1.10	I. 13	I. 15	1.17
10	1. 19	1.21	1.24	1.26	1.29	1. 20	1.22	1.25	1.27	1.29
11	I. 31	1.33	I. 36	1.38	I. 40	1.32	1.34	I. 37	1.39	1.41
12	1.43	I. 45	1. 48	1.50	1.52	I. 44	I. 46	I. 49	I. 51	r. 53
13	I. 55	I. 57	I. 59	I. 62	1.64	I. 56	1.58	I. 61	1.63	1.65
14	1.67	1.69	1.71	I. 74	1.76	1.68	1.70	1.72	1.75	1.77
15	1.78	1.81	1.83	1.86	1.88	1.80	1. 82	I. 84	I. 87	1.89
16	1.90	1.93	1.95	1.97	2.00	1.92	1.94	1.96	1.99	2.01
17	2.02	2.05	2.07.	2.09	2.12	2.04	2.06	2.08	2. I I	2.13
18	2. 14	2.16	2.19	2.21	2.23	2.15	2. I8	2.20	2.23	2.25
19	2.26	2.28	2.31	2.33	2.35	2.27	2.30	2.32	2.35	2.37
20	2.38	2.40	2.42	2.45	2.47	2.39	2.42	2.44	2.46	2.49
21	2.50	2.52	2.54	2.57	2.59	2.51	2.54	2.56	2.58	2.61
22	2.61	2.64	2.66	2.68	2.71	2.63	2.66	2.68	2.70	2.73
23	2.73	2.76	2.78	2.80	2.83	2.75	2.77	2.80	2.82	2.85
24	2.85	2.87	2.90	2.92	2.94	2.87	2.89	2.92	2.94	2.97
25	2.97	2.99	3.02	3.04	3.06	2.99	3.01	3.04	3.06	3.08
26	3.09	3.II	3.13	3.16	3.18	3.11	3.13	3.16	3.18	3.20
27	3.20	3.23	3.25	3.28	3.30	3.23	3.25	3.27	3.30	3.32
28	$3 \cdot 32$	3.35	3.37	$3 \cdot 39$	3.42	3.35	3.37	3.39	3.42	3.44
29	3.44	3.46	3.49	3.51	3.54	3.46	3.49	3.51	3.54	3.56
30	3.56	3.58	3.61	3.63	3.65	3.58	3.61	3.63	3.65	3.68
31	3.68	3.70	3.72	3.75	3.77	3.70	3.73	3.75	3.77	3.80
32	3.79	3.82	3.84	3.87	3.89	3.82	3.84	3.87	3.89	3.92
33	3.91	3.94	3.96	3.98	4.01	3.94	3.96	3.99	4.01	4.03
34	4.03	4.05	4.08	4.10	4. 12	4.06	4.08	4.II	4. I3	4. I5
35	4.15	4.17	4.20	4.22	4.24	4. 18	4.20	4.22	4.25	4.27

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 740 mm.					HEIGIIT OF TIIE BAROMETER 745 mm .				
Attached Thermometer.	0.0	0:2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.05	0.07	0. 10	0.00	0.02	0.05	0.07	0.10
I	. 12	. 15	. 17	. 19	. 22	. 12	. 15	. 17	. 19	. 22
2	. 24	. 27	. 29	. 31	. 34	. 24	. 27	. 29	. 32	. 34
3	. 36	. 39	. 41	. 44	. 46	- 37	. 39	. 41	. 44	. 46
4	. 48	. 51	. 53	. 56	. 58	. 49	. 51	. 54	. 56	. 58
5	0.60	0.63	0.65	0.68	0.70	0.61	0.63	0.66	0.68	0.71
6	. 72	. 75	. 77	. 80	. 82	. 73	. 75	. 78	. 80	. 83
7	. 85	. 87	. 89	. 92	. 94	. 85	. 88	. 90	. 92	. 95
8	. 97	. 99	I. 1 I	1.04	I. 06	. 97	1.00	1.02	1.05	1.07
9	1.09	I. II	I. I3	1. 16	I. 18	1.09	I. 12	1.14	1.17	1.19
10	I. 21	I. 23	I. 26	1.28	I. 30	1.22	1.24	1.26	1.29	1.31
II	1.33	1. 35	I. 38	1.40	I. 42	I. 34	1.36	1. 38	1.41	1.43
12	1.45	1. 47	I. 50	1.52	I. 54	I. 46	I. 48	1.51	1.53	1.55
13	1.57	I. 59	1.62	1.64	1.66	1.58	1.60	1.63	1.65	1.68
14	1.69	1.71	1.74	1.76	1.78	1.70	1.72	1.75	1.77	1.80
15	1.81	I. 83	I. 86	I. 88	1.90	1.82	1. 85	1.87	I. 89	1.92
16	1.93	1.95	1.98	2.00	2.03	I. 94	1.97	1.99	2.01	2.04
17	2.05	2.07	2. 10	2.12	2. 15	2.06	2.09	2.11	2.14	2. 16
18	2.17	2.19	2.22	2.24	2.27	2.18	2.21	2.23	2.26	2.28
19	2.29	2.31	2.34	2.36	2.39	2.31	2.33	2.35	2.38	2.40
20	2.41	2.43	2.46	2.48	2.51	2.43	2.45	2.47	2.50	2.52
21	2.53	2.55	2.58	2.60	2.63	2.55	2.57	2.59	2.62	2.64
22	2.65	2.67	2.70	2.72	2.75	2.67	2.69	2.72	2.74	2.76
23	2.77	2.79	2.82	2.84	2.87	2.79	2.81	2.84	2.86	2.88
24	2.89	2.91	2.94	2.96	2.99	2.91	2.93	2.96	2.98	3.01
25	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3. 13
26	3.13	3.15	3.18	3.20	3.22	3.15	3.17	3.20	3.22	3.25
27	3.25	3.27	3.30	3.32	3.34	3.27	3.29	3.32	3.34	3.37
28	3.37	3.39	3.42	3.44	3.46	$3 \cdot 39$	3.42	3.44	3.46	3.49
29	3.49	3.51	$3 \cdot 54$	3.56	3.58	$3 \cdot 51$	3.54	3.56	3.58	3.61
30	3.61	3.63	3.66	3.68	3.70	3.63	3.66	3.68	3.70	3.73
31	3.73	3.75	3.78	3.80	3.82	3.75	3.78	3.80	3.82	3.85
32	3.85	3.87	3.89	3.92	3.94	3.87	3.90	3.92	3.95	3.97
33	3.97	3.99	4.01	4.04	4.06	3.99	4.02	4.04	4.07	4.09
34	4.09	4.II	4.13	4.16	4.18	4.11	4.14	4.16	4. 19	4.21
35	4.21	4.23	4.25	4.28	4.30	4.23	4.26	4.28	4.3 I	4.33

Smitheonian Tablee.

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
for temperatures above 0° Centigrade, the correction is to be subtracted.

	HEIGHT CF THE BAROMETER 750 mm .					heigir of tile baroneter 755 mm .				
Attached Thermomoter.	0.0	0.2	0.4	0.6	$0: 8$	0.0	0.2	0.4	0\%6	0:8
c.	mm .	mm.	mm .	mm .	mm .	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.05	0.07	-. 10	0.00	0.02	0.05	0.07	o. 10
I	. 12	. 15	. 17	. 20	. 22	. 12	. 15	.17	. 20	. 22
2	. 25	. 27	. 29	. 32	. 34	.25	. 27	. 30	. 32	. 35
3	. 37	. 39	. 42	. 44	. 47	. 37	. 39	. 42	. 44	. 47
4	. 49	. 51	- 54	. 56	-59	. 49	. 52	. 54	. 57	. 59
5	0.61	0.64	0.66	0.69	0.71	0.62	0.64	0.67	0.69	0.71
6	. 73	. 76	.78	. 81	. 83	. 74	. 76	. 79	.81	. 84
7	. 86	. 88	. 91	. 93	. 95	. 86	. 89	.91	. 94	. 96
8	. 98	I.OO	1.03	1.05	1.08	. 99	I.OI	1.03	1.06	1.08
9	1. 10	1.13	I. I5	I. 17	1.20	I. II	I. 13	1. 16	1. 18	I. 21
10	I. 22	1.25	I. 27	1.30	1. 32	1.23	I. 26	I. 28	1.31	1.13
II	1.35	I. 37	1. 39	I. 42	1.44	1. 35	1.38	1.40	1.43	1.45
12	1.47	1. 49	I. 52	I. 54	1. 56	1.48	1.50	I. 53	I. 55	I. 58
13	1. 59	I. 61	1. 64	1.66	1.69	I. 60	1.62	I. 65	1.67	I. 70
14	1.71	1.74	1.76	1.78	1.81	1.72	1.75	1.77	1.80	1.82
15	1.83	I. 86	I. 88	1.91	1.93	1. S_{5}	1.87	1.89	1.92	1.94
16	1.96	1.98	2.00	2.03	2.05	1.97	1.99	2.02	2.04	2.07
17	2.08	2.10	2.13	2.15	2.17	2.09	2. 12	2.14	2.16	2.19
IS	2.20	2.22	2.25	2.27	2.30	2.21	2.24	2.26	2.29	2.31
19	2.32	2.34	2.37	2.39	2.42	2.34	2.36	2.38	2.41	2.43
20	2.44	2.47	2.49	2.52	2.54	2.46	2.48	2.51	2.53	2.56
21	2.56	2.59	2.61	2.64	2.66	2.58	2.61	2.63	2.65	2.63
22	2.69	2.71	2.73	2.76	2.78	2.70	2.73	2.75	2.78	2.80
23	2.81	2.83	2.86	2.58	2.90	2.83	2.85	2.87	2.90	2.92
24	2.93	2.95	2.98	3.00	3.03	2.95	2.97	3.00	3.02	3.05
25	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
26	3. 17	3.20	3.22	3.24	3.27	3.19	3.22	3.24	3.27	3.29
27	3.29	3.32	3.34	3.37	3.39	$3 \cdot 31$	3.34	3.36	3.39	3.41
28	3.41	3.44	3.46	3.49	3.51	3.44	3.46	3.49	3.51	3.53
29	3.54	3.56	3.58	3.61	3.63	3.56	3.58	3.61	3.63	3.66
30	3.66	3.68	3.7 I	3.73	3.75	3.68	3.71	3.73	3.75	3.78
31	3.78	3.80	3.83	3.85	3.87	3.80	3.83	3.85	3.88	3.90
32	3.90	3.92	3.95	3.97	4.00	3.92	3.95	3.97	4.00	4.02
33	4.02	4.04	4.07	4.09	4.12	4.05	4.07	4.10	4.12	4.14
34	4.14	4.17	4.19	4.21	4.24	4.17	4. 19	4.22	4.24	4.27
35	4.26	4.29	4.3 I	$4 \cdot 33$	$4 \cdot 36$	4.29	$4 \cdot 31$	4.34	4.36	4.39

Smitheonian Trbles.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracted.

	HEIGHT OF TIIE BAROMETER 760 mm .					HEIGHT OF THE BAROMETER 765 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4 .	0.6	0.8
c.	mm.	mm.	mı.	mm .	mm.	mm.	mm.	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.10	0.00	0.03	0.05	0.07	0. 10
1	. 12	. 15	. 17	. 20	. 22	. 13	. 15	. 17	. 20	. 22
2	. 25	. 27	. 30	. 32	. 35	. 25	. 27	. 30	. 32	. 35
3	. 37	. 40	. 42	. 45	. 47	. 37	. 40	. 42	. 45	. 47
4	. 50	. 52	. 55	. 57	. 60	. 50	. 52	. 55	. 57	. 60
5	0.62	0.65	0.67	0.69	0.72	0.62	0.65	0.67	0.70	0.72
6	. 74	. 77	. 79	. 82	. 84	. 75	. 77	. 80	. 82	. 85
7	. 87	. 89	. 92	. 94	. 97	. 87	. 90	. 92	. 95	. 97
8	. 99	1.02	1.04	1.07	1.09	1.00	1.02	1.05	1.07	1.10
9	I. 12	I. 14	I. 17	I. 19	I. 21	I. 12	I. 15	I. 17	1.20	1.22
10	I. 24	I. 26	1.29	1.3I	1. 34	1.25	1.27	1.30	1.32	1.35
II	I. 36	I. 39	I. 41	I. 44	I. 46	I. 37	1.40	1.42	I. 45	1.47
12	I. 49	1.51	I. 54	I. 56	1.59	1.50	1.52	I. 55	1.57	1.60
13	1.61	I. 64	I. 66	1.68	1.71	1.62	I. 65	1.67	1.70	1.72
14	1.73	1.76	I. 78	I. 81	1.83	1.75	1.77	1.80	1.82	1.85
15	I. 86	I. 88	I.9I	1.93	1.96	1.87	1.89	1.92	1.94	1.97
16	I. 98	2.01	2.03	2.06	2.08	1.99	2.02	2.04	2.07	2.09
17	2. 10	2.13	2.15	2.18	2.20	2.12	2.14	2.17	2.19	2.22
18	2.23	2.25	2.28	2.30	2.33	2.24	2.27	2.29	2.32	2.34
19	2.35	2.38	2.40	2.43	2.45	2.37	2.39	2.42	2.44	2.47
20	2.47	2.50	2.52	2.55	2.57	2.49	2.52	2.54	2.57	2.59
21	2.60	2.62	2.65	2.67	2.70	2.62	2.64	2.66	2.69	2.71
22	2.72	2.75	2.77	2.80	2.82	2.74	2.76	2.79	2.81	2.84
23	2.84	2.87	2. 59	2.92	2.94	2.86	2.89	2.91	2.94	2.96
24	2.97	2.99	3.02	3.04	3.07	2.99	3.01	3.04	3.06	3.09
25	3.09	3.12	3.14	3.16	3.19	3.11	3.14	3.16	3.19	3.21
26	3.21	3.24	3.26	3.29	3.31	3.23	3.26	3.28	3.31	3.33
27	3.34	3.36	3.39	3.4 I	3.43	$3 \cdot 36$	3.38	3.41	343	3.46
28	3.46	3.48	3.5 I	3.53	3.56	3.48	3.51	3.53	3.56	3.58
29	3.58	3.61	3.63	3.66	3.68	3.61	3.63	3.66	3.68	3.70
30	3.71	3.73	3.75	3.75	3.80	3.73	3.75	3.78	3.80	3.83
31	3.83	3.85	3.58	3.90	3.93	3.85	3.88	3.90	3.93	3.95
32	3.95	3.98	4.00	4.02	4.05	3.98	4.00	$4: 03$	4.05	4.08
33	4.07	4.10	4. 12	4.15	4.17	4. 10	4.13	4.15	4.17	4.20
34	4.20	4.22	4.25	4.27	4.29	4.22	4.25	4.27	$4 \cdot 30$	$4 \cdot 32$
35	4.32	4.34	4.37	4.39	4.42	4.35	4.37	4.40	4.42	4.45

Gmithsonian Tableg.

TABLE 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR temperatures above 0° Centigrade, the correction is to be subtracted.

	heigit of tie barometer 770 mm .					HEIGIIT OF TIIE BAROMETER 775 mm .				
Attached Thermometer.	0%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0:8
c.	mm .	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.03	0.05	0.08	0. 10	0.00	0.03	0.05	0.08	0. 10
1	. 13	. 15	. 18	. 20	. 23	. 13	. 15	. 18	. 20	. 23
2	. 25	. 28	. 30	. 33	. 35	. 25	. 28	. 30	. 33	. 35
3	. 38	. 40	. 43	. 45	. 48	- 38	. 40	. 43	. 46	. 48
4	. 50	. 53	. 55	. 58	. 60	. 51	. 53	. 56	. 58	.61
5 6	0.63 .75	0.65 .78	0.68 .80	0.70 .83	0.73 .85	0.63 .76	0.66 .78	0.68	0.71 .83	0.73 .86
6	. 75	. 78	. 80	. 83	. 85	. 76	. 78	. 81	. 83	. 86
8	I. OI	1.03	1. 06	1.08	I. II	1.01	1.04	I. 06	1.09	I. 1.
9	I. 13	1.16	1.18	I. 21	1.23	1.14	1.16	I. 19	1.21	1.24
10	I. 26	1.28	1.31	1.33	1.36	1.26	1.29	1.31	1.34	1.36
II	1.38	I. 41	1.43	1.46	1.48	1.39	1.42	1.44	1.47	1.49
12	1.51	1.53	1. 56	1.58	1.61	1.52	1.54	1.57	1.59	1.62
13	1.63	1.66	1.68	1.71	1.73	1.64	1.67	1.69	1.72	1.74
14	1.76	1.78	1.81	1.83	1.86	1.77	1.79	1.82	1.84	1.87
15	I. 88	1.91	1.93	1.96	1.98	1.89	1.92	1.94	1.97	2.00
16	2.01	2.03	2.06	2.08	2.11	2.02	2.05	2.07	2.10	2.12
17	2.13	2.16	2.18	2.21	2.23	2.15	2.17	2.20	2.22	2.25
18	2.26	2.28	2.31	2.33	2.36	2.27	2.30	2.32	2.35	2.37
19	2.38	2.41	2.43	2.46	2.48	2.40	2.42	2.45	2.47	2.50
20	2.51	2.53	2.56	2.58	2.61	2.52	2.55	2.57	2.60	2.62
21	2.63	2.66	2.68	2.71	2.73	2.65	2.67	2.70	2.72	2.75
22	2.76	2.78	2.81	2.83	2.86	2.77	2.80	2.83	2.85	2.88
23	2.88	2.91	2.93	2.96	2.98	2.90	2.93	2.95	2.98	3.00
24	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3.13
25	3.13	3.16	3.18	3.21	3.23	3.15	3.18	3.20	3.23	3.25
26	3.26	3.28	3.31	3.33	3.36	3.28	3.30	3.33	3.35	3.38
27	3.38	3.41	3.43	3.46	3.48	3.40	3.43	3.45	3.48	3.50
28	3.51	3.53	3.56	3.58	3.60	3.53	3.55	3.58	3.60	3.63
29	3.63	3.65	3.68	3.70	3.73	3.65	3.68	3.70	3.73	3.75
30	3.75	3.78	3.80	3.83	3.85	3.78	3.80	3.83	3.85	3.88
31	3.88	3.90	3.93	3.95	3.98	3.90	3.93	3.95	3.98	4.00
32	4.00	4.03	4.05	4.08	4. 10	4.03	4.05	4.08	4.10	4.13
33	4.13	4. 5	4.18	4.20	4.23	4.15	4.18	4.20	4.23	4.25
34	4.25	4.28	4.30	4.33	4.35	4.28	4.30	4.33	4.35	4.38
35	$4 \cdot 38$	4.40	4.43	4.45	4.48	4.40	4.43	4.45	4.48	4.50

Smithsonian Tableg.

Table 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, the CORrECTION IS TO BE SUBTRACTED.

	height of tile baroneter 780 mm .					heigit of tile barometer 785 mm .				
Altached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	$0: 8$
c.	mm.	mm .	mm.	mm .	mm.	mm.	mm.	mm .	mm.	mm.
0°	0.00	0.03	0.05	0.08	0. 10	0.00	0.03	0.05	0.08	0.10
I	. 13	. 15	. 18	. 20	. 23	. 13	. 15	. 18	. 21	. 23
2	.25	. 28	. 31	. 33	. 36	. 26	. 28	. 31	. 33	. 36
3	. 38	. 41	. 43	. 46	. 48	.38	. 41	. 44	. 46	. 49
4	. 51	. 53	. 56	. 59	.6I	. 51	. 54	. 56	. 59	. 62
5	0.64	0.66	0.69	0.71	0.74	0.64	0.67	0.69	0.72	0.74
6	. 76	. 79	. 81	. 84	. 87	. 77	. 79	. 82	. 85	. 87
7	. 59	. 92	. 94	. 97	. 99	. 90	. 92	. 95	. 97	1.00
8	1.02	I. 04	1.07	1.09	I. 12	1.02	1.05	1.08	I. 10	I. I 3
9	I. 15	I. 17	1.20	1.22	1.25	I. 15	I. 18	1.20	1.23	I. 25
10	1.27	1.30	1.32	1.35	1.37	I. 28	1.31	1.33	1.36	1.38
11	1.40	1. 42	1. 45	1.48	1.50	1.41	1.43	1.46	I. 48	I. 51
12	1.53	1.55	I. 58	1.60	1.63	1.54	1.56	I. 59	1.61	I. 64
13	I. 65	1.68	1.70	1.73	1.75	I. 66	1. 69.	1.71	1.74	1.77
14	1.78	1.8I	1.83	1.86	1.88	1.79	1.82	I. 84	1.87	I. 89
15	1.91	1.93	1.96	1.98	2.01	1.92	1.94	1.97	2.00	2.02
16	2.03	2.06	2.08	2.11	2.13	2.05	2.07	2.10	2.12	2. 15
17	2. 16	2. 19	2.21	2.24	2.26	2.17	2.20	2.22	2.25	2.28
18	2.29	2.31	2.34	2.36	2.39	2.30	2.33	2.35	2.38	2.40
19	2.41	2.44	2.46	2.49	2.51	2.43	2.45	2.48	2.51	2.53
20	2.54	2.57	2.59	2.62	2.64	2.56	2.58	2.61	2.63	2.66
21	2.67	2.69	2.72	2.74	2.77	2.68	2.71	2.73	2.76	2.79
22	2.79	2.82	2.84	2.87	2.89	2.81	2.84	2.86	2.89	2.91
23	2.92	2.94	2.97	3.00	3.02	2.94	2.96	2.99	3.01	3.04
24	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
25	3.17	3.20	3.22	3.25	3.27	3.19	3.22	3.24	3.27	3.29
26	3.30	$3 \cdot 32$	3.35	3.37	3.40	$3 \cdot 32$	$3 \cdot 34$	3.37	3.40	3.42
27	3.42	3.45	3.47	3.50	3.53	3.45	3.47	3.50	3.52	3.55
28	3.55	3.58	3.60	3.63	3.65	3.57	3.60	3.62	3.65	3.67
29	3.68	3.70	3.73	3.75	3.78	3.70	3.73	3.75	3.78	3.80
30	3.80	3.83	3.85	3.88	3.90	3.83	3.85	3.88	3.90	
3 I	3.93	3.95	3.98	4.00	4.03	3.95	3.98	4.00	4.03	4.06
32	4.05	4.08	4.11	4.13	4.16	4.08	4. II	4. I3	4.16	4.18
33	4. I8	4.21	4.23	4.26	4.28	4.21	4.23	4.26	4.28	4.31
34	4.31	4.33	$4 \cdot 36$	4.38	4.41	4.33	4.36	4.39	4.4 I	4.44
35	4.43	4.46	4.48	4.51	4.53	4.46	4.49	4.51	4.54	4.56

Smithbonian Tasleg.

7 able 47.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	heigit of the barometer 790 mm .					IIEIGIIT OF TIIE BAROMETER 795 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm.	mm .
0°	0.00	0.03	0.05	0.08	0.10	0.00	0.03	0.05	0.08	0. 10
I	. 13	. 15	. 18	. 21	. 23	. 3	. 16	. 18	. 21	. 23
2	. 26	. 28	. 31	. 34	. 36	. 26	. 29	. 31	. 34	.36
3	. 39	.4I	. 44	. 46	. 49	- 39	. 42	. 44	. 47	. 49
4	. 52	. 54	. 57	. 59	. 62	. 52	. 55	. 57	. 60	. 62
5	0.64	0.67	0.70	0.72	0.75	0.65	0.67	0.70	0.73	0.75
6	. 77	. 80	. 83	. S_{5}	. 88	. 78	. 80	. 83	. 86	. 88
7	. 90	. 93	. 95	. 98	I. OI	. 91	. 93	. 96	. 99	1.01
8	1.03	1. 06	1.08	I. II	I. 13	1. 04	1.06	1.09	1.12	I. 14
9	I. 16	I. 19	I. 21	1.24	I. 26	1.17	1.19	1.22	I. 24	I. 27
10	1. 29	1.31	1. 34	1.37	1.39	1.30	1.32	1.35	I. 37	I. 40
II	1.42	1.44	1. 47	I. 49	I. 52	I. 43	1.45	I. 48	1.50	I. 53
12	I. 55	1.57	1.60	I. 62	1.65	1.56	1.58	1.61	1.63	1.66
13	1. 67	1.70	1.73	I. 75	1.78	I. 68	1.71	1.74	1.76	1.79
14	I. So	1.83	1.85	1.88	1.91	1.81	1.84	1.87	1.89	1.92
15	1.93	1.96	I. 98	2.01	2.03	1.9 .4	1.97	1.99	2.02	2.05
16	2.06	2.09	2.11	2.14	2.16	2.07	2.10	2.12	2.15	2.18
17	2.19	2.21	2.24	2.26	2.29	2.20	2.23	2.25	2.28	2.30
18	2.32	2.34	2.37	2.39	2.42	2.33	2.36	2.38	2.41	2.43
19	2.44	2.47	2.50	2.52	2.55	2.46	2.49	2.51	2.54	2.56
20	2.57	2.60	2.62	2.65	2.67	2.59	2.61	2.64	2.67	2.69
21	2.70	2.73	2.75	2.78	2. So	2.72	2.74	2.77	2.79	2.82
22	2.83	2.85	2.88	2.91	2.93	2.55	2.87	2.90	2.92	2.95
23	2.96	2.98	3.01	3.03	3.06	2.98	3.00	3.03	3.05	3.08
24	3.08	3.11	3.14	3.16	3.19	3.10	3.13	3.16	3.18	3.21
25	3.2 I	3.24	3.26	3.29	3.31	3.23	3.26	3.28	$3 \cdot 31$	3.34
26	3.34	3.37	3.39	3.42	3.44	3.36	3.39	3.41	3.44	3.46
27	3.47	3.49	3.52	3.54	3.57	3.49	$3 \cdot 52$	3.54	3.57	3.59
28	3.60	3.62	3.65	3.67	3.70	3.62	3.6 .4	3.67	3.70	3.72
29	3.72	3.75	3.77	3.80	3.83	3.75	3.77	3.80	3.82	3.85
30	3.85	3.88	3.90	3.93	3.95	3.88	3.90	3.93	3.95	3.98
31	3.98	4.00	4.03	4.06	4.08	4.00	4.03	4.06	4.08	4.11
32	4. II	4.13	4.16	4.18	4.21	4. 13	4. 16	4.18	4.21	4.24
33	4.23	4.26	4.29	4.31	4.34	4.26	4.29	4.31	$4 \cdot 34$	4.36
34	4.36	4.39	4.41	4.44	4.46	4.39	4.42	4.44	4.47	4.49
35	4.49	4.51	4.54	4.57	4.59	4.52	4.54	4.57	4.59	4.62

Smithsc nian Tables. GRAVITY.

$$
C=\frac{\left(g_{l}-g\right)}{g} B
$$

(WITH $\mathrm{g}_{\iota}<\mathrm{g}$ THE CORRECTION IS TO BE SUBTRACTED ; WITH $\mathrm{g}_{\imath}>\mathrm{g}_{\mathrm{g}}$, IT IS TO BE ADDED.)

$g_{l}-g$	BAROMETER READING B.									
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Dynes.										
0.1	0.00010	0.00020	0.00031	0.00041	0.00051	0.00061	0.00071	0.00082	0.00092	0.00102
0.2	00020	00041	00061	00082	00102	00122	00143	00163	00184	00204
0.3	00031	00061	00092	00122	00153	00184	00214	00245	00275	00306
0.4	00041	00082	00122	00163	00204	00245	00286	00326	00367	00408
0.5	00051	00102	00153	00204	00255	00306	00357	00408	00459	00510
0.6	0.00061	0.00122	0.00184	0.00245	0.00306	0.00367	0.00428	0.00489	0.00551	0.00612
0.7	00071	00143	00214	00286	00357	00428	00500	0057 I	00642	00714
0.8	00082	00163	00245	00326	00.408	00489	00571	00653	00734	00816
0.9	00092	00184	00275	00367	00459	00551	00642	00734	00826	00918
1.0	00102	00204	00306	00408	00510	00612	00714	00816	00918	- 1020
1.1	0.00112	0.00224	0.00337	0.00449	0.00561	0.00673	0.00785	0.00897	0.01010	0.01122
I. 2	00122	00245	00367	00489	00612	00734	00857	00979	OIIOI	01224
1.3	00133	00265	00398	00530	00663	00795	00928	01061	O1193	01326
1. 4	00143	00286	00428	00571	00714	00857	00999	OII42	O1285	01428
I. 5	00153	00306	00459	00612	00765	00918	01071	O1224	01377	-1530
1.6	0.00163	0.00326	0.00489	0.00653	0.00816	0.00979	0.01142	0.01305	0.01468	0.01632
1.7	00173	00347	00520	00693	00867	01040	O1213	OI 387	01560	01734
I. 8	00184	00367	00551	00734	00918	OIIOI	O1285	Or 468	01652	01835
1.9	00194	00387	00581	00775	00969	01162	-1356	OI550	01744	01937
2.0	00204	00.408	00612	00816	01020	OI224	OI 428	01632	-1835	02039
2.1	0.00214	0.00428	0.00642	0.00857	0.01071	0.01285	0.01499	0.01713	0.01927	0.02141
2.2	00224	00449	00673	00897	01122	01346	Or 570	01795	02019	02243
2.3	00235	00469	00704	00938	01173	01407	Or642	01876	02111	02345
2.4	00245	00489	00734	00979	01224	O1468	01713	-1958	02203	02447
2.5	00255	00510	00765	-1020	O1275	Or 530	or 785	02039	02294	02549
2.6	0.00265	0.00530	0.00795	0.01061	0.01326	0.01591	0.01856	0.02121	0.02386	0.02651
2.7	00275	00551	00826	orior	01377	01652	-1927	02203	02478	02753
2.8	00286	00571	00857	OII42	O1428	01713	-1999	02284	02570	02855
2.9	00296	00591	00887	ori83	-1479	-1774	02070	02366	02661	02958
3.0	00306	00612	00918	O1224	01530	-1835	02141	02447	02753	03059
3.1	0.00316	0.00632	0.00048	0.01264	0.01581	0.01897	0.02213	0.02529	0.02845	
3.2	00326	00653	00979	01305	01632	-1958	02284	02610	02937	03263
$3 \cdot 3$	00337	00673	ororo	01346	01683	02019	02356	02692	03029	03365
$3 \cdot 4$	00347	00693	01040	01387	01734	02080	02427	02774	03120	03467
3.5	00357	00714	0107 I	01428	01785	02141	02498	02855	03212	03569
3.6	0.00367	0.00734	0.01101	0.01468	0.01835	0.02203	0.02570	0.02937	0.03304	0.03671
	00377	00755	O1132	01509	01886	02264	02641	03018	03396	03773
3.8	00387	00775	-1162	-1550	01937	02325	02712	03100	03487	$\bigcirc 3875$
3.9	00398	00795	OII93	Or 591	-1988	02386	02784	03182	03579	03977
4.0	00408	00816	01224	01632	02039	02447	02855	03263	03671	04079

Smithsonian tables.

Table 49.

REDUCTION OF THE BAROMETER TO STANDARD GRAVITY. ENGLISH MEASURES.

FROM LATITUDE 0° TO 45°, THE CORRECTION IS TO BE SUBTRACTED.

Latitude.	HEIGHT OF THE BAROMETER IN INCHES:											
	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
0°	-0.051	-0.054	-0.056	-0.059	-0.062	-0.064	-0.067	-0.070	-0.072	-0.075	-0.078	-0.080
5	-0.050	-0.053	-0.055	-0.058	-0.06I	-0.063	-0.066	-0.069	-0.071	-0.074	-0.077	-0.079
6	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	0.079
	0.049	0.052	0.055	0.057	0.060	0.062	0.065	0.068	0.070	0.073	0.075	0.078
8	0.049	0.052	0.054	0.057	0.059	0.062	0.064	0.067	0.070	0.072	0.075	0.077
9	0.048	0.051	0.054	0.056	0.059	0.06 I	0.064	0.066	0.069	0.071	0.074	0.076
10	-0.048	-0.050	-0.053	-0.055	-0.058	-0.060	-0.063	-0.066	-0.068	-0.071	-0.073	-0.076
II	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070	0.072	0.075
12	0.047	0.049	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.07 I	0.074
13	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.072
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	0.071
15	-0.044	-0.047	-0.049	-0.051	-0.053	-0.056	-0.058	-0.060	-0.063	-0.065	-0.067	-0.070
16	0.043	0.046	0.048	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.068
17	0.042	0.045	0.047	0.049	0.051	0.053	0.056	0.058	0.060	0.062	0.065	0.067
18	0.04 I	0.044	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063	0.065
19	0.040	0.042	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.062	0.064
20	-0.039	-0.04 1	-0.043	-0.045	-0.047	-0.050	-0.052	-0.054	-0.056	-0.058	-0.060	-0.062
21	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058	0.060
22	0.037	0.039	0.041	0.043	0.045	0.047	0.049	0.050	0.052	0.054	0.056	0.058
23	0.036	0.038	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.054	0.056
24	0.034	0.036	0.038	0.040	0.042	0.043	0.045	0.047	0.049	0.051	0.052	0.054
25	-0.033	-0.035	-0.037	-0.038	-0.040	-0.042	-0.043	-0.045	-0.047	-0.049	-0.050	-0.052
26	0.032	0.033	0.035	0.037	0.038	0.040	0.042	0.043	0.045	0.047	0.048	0.050
27	0.030	0.032	0.033	0.035	0.037	0.038	0.040	0.04 I	0.043	0.045	0.046	0.048
28	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.04 I	0.043	0.044	0.046
29	0.027	0.029	0.030	0.032	0.033	0.035	0.036	0.037	0.039	0.040	0.042	0.043
30	-0.026	-0.027	-0.029	-0.030	-0.031	-0.033	-0.034	-0.035	-0.037	-0.038	-0.040	-0.041
31	0.024	0.026	0.027	0.028	0.030	0.031	0.032	0.033	0.035	0.036	0.037	0.038
32	0.023	0.024	0.025	0.026	0.028	0.029	0.030	0.031	0.032	0.034	0.035	0.036
33	0.021	0.022	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.034
34	0.020	0.02 I	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.03 I
35	-0.018	-0.019	-0.020	-0.021	-0.022	-0.023	-0.024	-0.025	-0.026	-0.027	-0.027	-0.028
36	0.016	0.017	0.018	0.019	0.020	0.02 I	0.022	0.022	0.023	0.024	0.025	0.026
37	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.020	0.021	0.022	0.022	0.023
38	0.013	0.014	0.014	0.015	0.016	0.016	0.017	0.018	0.018	0.019	0.020	0.020
39	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017	0.018
40	-0.010	-0.010	-0.01 1	-0.01 I	-0.012	-0.012	-0.013	-0.013	-0.014	-0.014	-0.015	-0.015
41	0.008	0.008	0.009	0.009	0.009	0.010	0.010	0.011	0.011	0.012	0.012	0.012
42	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	0.010
43	0.004	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.007	0.007
44	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
	. 01	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001

Smithsonian tables.

TABLE 49.

REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.
ENGLISH MEASURES.
FROM LATITUDE 46° TO 90° THE CORRECTION IS TO BE ADDED.

Latitude.	HEIGHT OF THE BAROMETER IN INCHES.											
	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
45°	-0.00 1	-0.001	-0.001	-0.001	-0.001	1	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+Q.00I	+0.001	+0.001	+0.001
47	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
48	0.004	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.007	0.007
49	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	0.010
50	0.008	0.008	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.012
51	+0.010	+0.010	+0.011	+0.011	+0.012	+0.012	+0.013	+0.013	+0.014	+0.014	+0.015	+0.015
52	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.016	0.017	0.018
53	0.013	0.014	0.014	0.015	0.016	0.016	0.017	0.018	0.018	0.019	0.020	. 020
54	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.020	0.021	0.022	0.022	0.023
55	0.016	0.017	0.018	0.019	0.020	0.021	0.021	0.022	0.023	0.024	0.025	0.026
56	+0.018	+0.019	+0.020	+0.021	+0.022	+0.023	+0.024	+0.024	+0.026	+0.026	+0.027	+0.028
57	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
58	0.021	0.0	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.033
59	0.023	0.024	0.025	0.026	0.028	0.029	0.030	0.031	0.032	0.033	0.035	0.036
60	0.024	0.026	0.027	0.028	0.029	0.03 I	0.032	0.033	0.034	0.036	0.037	0.038
61	26	+0.027	+0.028	+0.030	+0.031	+0.033	+0.034	+0.035	+0.037	+0.038	+0.039	+0.041
62	0.027	0.029	0.030	0.032	0.033	0.034	0.036	0.037	0.039	0.040	0.042	0.043
63	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.042	0.044	0.045
64	0.030	0.032	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.044	0.046	0.047
65	0.031	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.045	0.046	0.048	0.050
66	+0.033	+0.034	+0.036	+0.038	+0.040	+0.041	+0.043	+0.045	+0.047	+0.048	+0.050	+0.052
67	0.034	0.036	0.038	0.039	0.041	0.043	0.045	0.047	0.048	0.050	0.052	0.054
68	0.035	0.037	0.039	0.041	0.043	0.045	0.046	0.048	0.050	0.052	0.054	0.056
69	0.036	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058
70	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.053	0.055	0.057	0.059
71	+0.039	+0.04 1	+0.043	+0.045	+0.047	+0.049	+8.051	+0.053	+0.055	+0.057	+0.059	+0.061
72	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063
73	0.041	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.060	0.062	0.064
74	0.042	0.044	0.046	0.048	0.051	0.053	0.055	0.057	0.059	0.062	0.064	0.066
75	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.061	0.063	0.065	0.067
76	+0.044	+0.046	+0.048	+0.050	+0.053	+0.055	+0.057	+0.060	+0.062	+0.064	+0.066	+0.069
77	0.044	0.047	0.049	0.051	0.054	0.056	0.058	0.061	0.063	0.065	0.068	0.070
78	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	0.071
79	0.046	0.048	0.05 I	0.053	0.055	0.058	0.060	0.063	0.065	0.067	0.070	0.072
80	0.046	0.049	0.051	0.054	0.056	0.059	0.061	0.063	0.066	0.068	0.071	0.073
81	+0.047	+0.049	+0.052	+0.054	+0.057	+0.059	+0.062	+0.064	$+0.067$	+0.069	+0.072	+0.074
82	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070	0.072	0.075
83	0.048	0.050	0.053	0.056	0.058	0.061	0.063	0.066	0.068	0.071	0.073	0.076
84	0.048	0.051	0.053	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	0.076
85	0.049	0.051	0.054	0.056	0.059	0.061	0.064	0.067	0.069	0.072	0.074	0.077
90	+0.049	+0.052	+0.055	+0.057	+0.060	+0.062	+0.065	+0.068	+0.070	+0.073	+0.075	+0.078

SMITHSONIAN TABLES, METRIC MEASURES.
FROM LATITUDE 0° TO 45 , THE CORRECTION IS TO BE SUBTRACTED.

$\begin{aligned} & \text { Lati- } \\ & \text { tude. } \end{aligned}$	HEIGHT OF THE BAROMETER IN MILLIMETERS.													
	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	m.	mm.	m.	mm.	mm.	mm.	mm.	mm.	m.			mm.	mm.	n.
0°	-1.39	-1.45	-1.50	-1.55	-1.6I	-1.66	-1.71	-1.77	-1.82	-1.87	-1.93	-1.98	-2.04	-2.09
5	-1.37	-1. 42	-1.48	-1.53	-1.58	-I. 64	- 1. 69	-1.74	-1.79	-1.85	-1.90	-I. 95	-2.00	-2.06
6	1.36	1.42	1.47	I. 52	1.57	1.63	1.68	1.73	1.78	1.83	1.89	1.94	1.99	2.04
7	I. 35	1.40	I. 46	1.51	I. 56	I. 61	I. 66	1.72	1.77	1.82	1.87	1.92	1.98	2.03
8	I. 34	1. 39	I. 44	1.49	1.55	1.60	1.65	1.70	1.75	1.80	1.85	I.91	I. 96	2.01
9	1.33	1.38	1.43	I. 48	1. 53	I. 58	1.63	1.68	I. 73	1.78	1.84	1. 89	1.94	1.99
10	-1.31	-1.36	-1.41	-1.46	-1.51	-I. 56	-1.6I	-1.66	-1.71	-1.76	-1.81	-1.86	-1.92	- I. 97
II	1.29	I. 34	I. 39	1.44	1.49	I. 54	1.59	1. 64	1.69	1.74	1.79	1.84	I. 89	I. 94
12	1.27	1.32	1.37	I. 42	1.47	I. 52	1.57	1.62	1. 67	1.72	1.76	1.85	1.86	I.91
13	1.25	1.30	1.35	1.40	1.45	1.50	I. 54	I. 59	I. 64	1.69	1.74	1.78	1.83	I. 88
14	1.23	1.28	I. 33	I. 38	1.42	1.47	I. 52	1.56	I. 61	1.66	1.71	1.75	1.80	I. 85
15	-1.2I	-1.26	-1.30	-1.35	-1.40	-1.44	-1.49	-1.54	-1.58	-1. 63	-1. 67	-1.72	-1.77	$-\mathrm{I} .81$
16	1.19	1.23	1. 28	1.32	1.37	1.41	1.46	1.50	I. 55	1.60	1.64	1.69	1.73	1. 78
17	1.16	1.20,	1.25	I. 29	1.34	I. 38	1.43	1.47	I. 52	1.56	I. 60	I. 65	1.69	1.74
18	1.13	1.18	1.22	1.26	1.31	1.35	I. 39	I. 44	1.48	1.52	1.57	I. 61	1.65	1.70
19	I.IO	1.15	I. 19	1.23	1.27	1.32	I. 36	1.40	I. 44	I. 48	1.53	1.57	1.61	1.65
20	-1.07	-1.11	-1.16	-1.20	-1.24	-1.28	-1. 32	-1.36	- 1.40	- 1.44	-1. 49	-I. 53	-1.57	-1.61
21	4	8	2	16	1.20	I. 24	1.28	1.32	I. 36	1.40	I. 44	1.48	1.52	1. 56
22	1.01	1.05	1.09	I.I3	1.16	1.20	I. 24	I. 28	1.32	1.36	I. 40	1.44	1.48	1.51
23	0.98	1.01	1.05	1.09	1.13	1.16	I. 20	1.24	1.28	1.31	I. 35	I. 39	1.43	1.46
24	0.94	0.98	1.01	1.05	1.08	12	I.16	I.19	I. 23	1.27	1.30	I. 34	1.37	I. 41
25	-0.90	-0.94	-0.97	-1.01	-1.04	-1.08	-I.II	-1.15	-1.18	- 1.22	-1.25	-1.29	-1.32	-1.36
26	0.87	0.90	0.93	0.97	∞	1.03	1.07	1.10	1.13	1.17	1.20	1.23	1.27	1.30
27	0.83	0.86	0.89	0.92	0.96	0.99	1.02	1.05	1.08	1.12	1.15	1.18	1.21	I. 24
28	0.79	0.82	0.85	0.88	0.91	0.94	0.97	1.00	1.03	1.06	1.09	I. 12	1.15	1.18
29	0.75	0.78	0.81	0.84	0.86	0.89	0.92	0.95	0.98	I.OI	1.04	1.07	1.10	1.12
30	-0.71	-0.74	-0.76	-0.79	-0.82	-0.85	-0.87	-0.90	-0.93	-0.95	-0.98	-1.01	-1.04	-1.06
31	0.67	0.69	0.72	0.74	0.77	0.80	0.82	0.85	0.87	0.90	0.92	0.95	0.98	1.00
32	0.62	0.65	0.67	0.70	0.72	0.74	0.77	0.79	0.82	0.84	0.86	0.89	0.91	0.94
33	0.58	0.60	0.63	0.65	0.67	0.69	0.72	0.74	0.76	0.78	0.80	0.83	0.85	0.87
34	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.79	0.81
35	-0.49	-0.51	-0.53	-0.55	-0.57	-0.59	-0.6I	-0.63	-0.64	-0.66	-0.68	-0.70	-0.72	-0.74
36	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.62	0.64	0.65	0.67
37	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
38	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53
39	0.31	0.32	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.46
40	-0.26	-0.27	-0.28	-0.29	-0.30	-0.31	-0.32	-0.33	-0.34	-0.35	-0.36	-0.37	-0.38	-0.39
41	0.21	0.22	0.23	0.24	0.25	0.26	0.26	0.27	- 28	0.29	0.30	0.30	0.31	0.32
42	0.17	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.22	0.23	0.24	0.24	0.25
43	0.12	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.16	0.16	0.16	0.17	0.17	0.18
44	0.07	0.07	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.10	10	0.10	0.10	O.II
45	-0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04

Smithsonian Tables.

Table 50. REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.

METRIC MEASURES.
FROM LATITUDE 46° TO 90°, THE CORRECTION IS TO BE ADDED.

	HEIGHT O													
Latltude.	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.		mm.										
45°	0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04
46	-1-0.02	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.04	+0.04
47	0.07	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.11
48	0.12	0.12	0.13	0.13	0.14	0.14	0.I 5	0.15	0.16	0.16	0.17	0.17	0.18	0.18
49	0.17	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.25
50	0.22	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.3 I	0.31	0.32
51	+0.26	+0.27	+0.28	+0.29	+0.30	+0.3I	+0.32	+0.33	+0.34	+0.35	+0.36	+0.37	+0.38	+0.39
52	0.31	0.32	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.46
53	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53
54	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
55	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.62	0.64	0.65	0.67
56	+0.49	+0.51	+0.53	+0.55	+0.57	+0.59	+0.60	+0.62	+0.64	+0.66	+0.68	+0.70	+0.72	+0.74
57	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.78	0.80
58	0.58	0.60	0.62	0.65	0.67	0.69	0.71	0.74	0.76	0.78	0.80	0.82	0.85	0.87
59	0.62	0.65	0.67	0.69	0.72	0.74	0.77	0.79	0.81	0.84	0.86	0.89	0.91	0.93
60	0.66	0.69	0.72	0.74	0.77	0.79	0.82	0.84	0.87	0.89	0.92	0.94	0.97	1.00
61	+0.71	+0.73	+0.76	+0.79	+0.8I	+0.84	+0.87	+0.89	$+0.92$	+0.95	+0.98	+1.00	$+1.03$	+1.06
62	0.74	0.77	0.80	0.83	0.85	0.88	0.91	0.94	0.97	1.00	1.02	1.05	1.08	I. II
63	0.78	0.81	0.85	0.88	0.91	0.94	0.97	1.00	1.03	1.06	1.09	I.I2	1.I5	I. 18
64	0.82	0.85	0.89	0.92	0.95	0.98	1.01	1.04	1.08	1.II	1.14	I.I 7	1.20	1.23
65	0.86	0.89	0.93	0.96	0.99	1.03	1.06	1.09	1.13	1. 16	I.I9	1.22	I. 26	I. 29
66	+0.90	+0.93	+0.97	+1.00	+1.0.4	+1.07	+1.10	+ I. 14	+1.17	+1.21	+1.24	+1.28	+1.3I	+1.35
67	0.93	0.97	1.00	1.04	1.08	I.II	1.15	I. 18	I. 22	1.25	1.29	1.33	1.36	1.40
68	0.97	1.00	1.04	1.08	I. II	I.I5	I.19	1.23	I. 26	1.30	1.34	1.37	I. 41	1.45
69	1.00	1.04	I. 08	I.II	I.I 5	I.19	1.23	I. 27	I. 3 I	1. 34	1.38	1.42	1.46	1.50
70	1.03	1.07	I. II	I.I5	1.19	1.23	1.27	1.3 I	I. 35	I. 39	1.43	1.47	1.5 I	1.55
71	+1.06	+1.10	+1.14	+1.18	+1.22	+1.26	+1.3I	+1.35	+I. 39	+1.43	+1.47	+1.5I	+1.55	+1.59
72	1.09	I. 13	I. 17	1.22	1.26	1.30	I. 34	1. 38	I. 42	1.47	1.51	I. 55	1.59	1.63
73	1.12	1.16	I. 20	I. 25	1.29	1.33	1.37	1.42	I. 46	1.50	1. 55	I. 59	1.63	I. 67
74	1.14	I.19	1.23	1.28	1. 32	I. 36	1.41	1.45	1.50	I. 54	1.58	1.63	1.67	1.72
75	I.I7	I. 21	I. 26	I. 30	I. 35	I. 39	1.44	I. 48	I. 53	1. 57	1.62	1. 66	1.71	1.75
76	+I.I9	+1.24	+1.28	+1.33	+1.37	+1.42	+1.47	+1.51	+1.56	+1.60	+1.65	+1.70	+1.74	+1.79
77	I. 21	I. 26	1.31	I. 35	1.40	I. 45	I. 49	I. 54	I. 59	1.63	1.68	1.73	1.77	I. 82
78	1.23	1.28	I. 33	1. 38	I. 42	I. 47	I. 52	1.57	I. 61	1.66	1.71	1.76	1.80	1.85
79	I. 25	I. 30	I. 35	1.40	I. 45	I. 49	1.54	1.59	1.64	1.69	1.73	1.78	1.83	1.88
80	1.27	I. 32	I. 37	1.42	.147	I. 5 I	1. 56	1.61	1.66	1.71	1.76	1.81	I. 86	1.90
81	+1.29	+1.33	+1.38	+1.43	+1.48	+1.53	+1.58	+1.63	+1.68	+1.73	+1.78	+1.83	+r.88	+1.93
82	1.30	I. 35	1.40	1.45	1.50	I. 55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95
83	1.3I	I. 36	I. 41	1.46	I. 5 I	1.56	1.61	1.67	1.72	1.77	1.82	1.87	1.92	1.97
84	1.32	1.37	I. 42	I. 48	1.53	I. 58	1.63	1.68	1.73	1.78	1.83	1.88	1.93	1.98
85	1.33	1. 38	I. 43	1.49	I. 54	1.59	1.64	1.69	1.74	1.79	1.84	1.90	1.95	2.00
90	+1.35	+1.4 I	+1.46	+1.51	+1.56	+1.6I	$+1.67$	+1.72	+1.77	$+\mathrm{I} .82$	+1.87	+1.93	$+1.98$	$+2.03$

Table 51.

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.

Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{9}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Fee	Fe	Feet.	F	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
12.00	24814	24791	24769	24746	24723	24701	24678	24656	24633	24611
12.10	24588	24566	24543	24521	24499	24476	24454	2443 I	24409	24387
12.20	24365	24342	24320	24298	24276	24253	24231	24209	24187	24165
12.30	24143	24121	24098	24076	24054	24032	24010	23988	23966	23944
12.40	23923	23901	23879	23857	23835	23813	23791	23770	23748	23726
12.50	23704	23682	23661	23639	23617	23596	23574	23552	23531	23509
12.60	23488	23466	23445	23423	23402	23380	23359	23337	23316	23294
12.70	23273	23251	23230	23209	23187	23166	23145	23123	23102	23081
12.80	23060	23038	23017	22996	22975	22954	22933	22911	2.2890	22869
12.90	22848	22827	22806	22785	22764	22743	22722	22701	22680	22659
13.00	22638	22617	22596	22576	22555	22534	22513	22492	22471	22451
13.10	22430	22409	22388	22368	22347	22326	22306	22285	22264	2224.4
I 3.20	22223	22203	22182	22162	22141	22121	22100	22080	22059	22039
I 3.30	22018	21998	21977	21957	21937	21916	21896	21876	21855	21835
13.40	21815	21794	21774	21754	21734	21713	21693	21673	21653	21633
13.50	21612	21592	21572	21552	21532	21512	21492	21472	21452	21432
13.60	21412	21392	21372	21352	21332	21312	21292	21272	21252	21233
13.70	21213	21193	21173	21153	21134	21114	21094	21074	21054	21035
13.80	21015	20995	20976	20956	20936	20917	20897	20878	20553	20838
13.90	20819	20799	20780	20760	20741	2072 I	20702	20682	20663	20643
14.00	20624	20605	20585	20566	20546	20527	20508	20488	20469	20450
14.10	2043 I	204II	20392	20373	20354	20334	20315	20296	20277	20258
14.20	20238	20219	20200	20181	20162	20143	20124	20105	20056	20067
14.30	20048	20029	20010	19991	19972	19953	19934	19915	19596	19877
14.40	19858	19839	19821	19802	19783	19764	19745	19727	19708	19689
14.50	19670	19651	19633	19614	19595	19577	19558	19539	19521	19502
14.60	19483	19465	19446	19428	19409	19390	19372	19353	19335	19316
14.70	19298	19279	19261	19242	19224	19206	19187	19169	19150	19132
14.80	19114	19095	19077	19059	19040	19022	19004	18985	15967	I S949
14.90	18931	18912	18894	18876	18858	18840	18821	ISSO3	18785	18767
15.00	18749	18731	18713	18694	18676	I 8658	18640	I8622	18604	I 8586
15.10	18568	18550	18532	18514	18496	18478	IS460	18442	18425	18407
15.20	18389	18371	18353	18335	18317	18300	18282	18264	18246	18228
15.30	18211	18193	18175	18157	18140	1 SI22	18104	ISo86	íSo69	ISo5I
15.40	18033	18016	17998	17981	17963	17945	17928	17910	17893	17875
15.50	17858	17840	17823	17805	17788	17770	17753	17735	17718	17700
15.60	17683	17665	17648	17631	17613	17596	17578	17561	17544	17526
15.70	17509	17492	17474	17457	17440	17423	17405	17388	17371	17354
15.80	17337	17319	17302	17285	17268	17251	17234	17216	17199	17182
15.90	17165	17148	17131	17114	17097	17080	17063	17046	17029	17012
16.00	16995	16978	16961	16944	16927	16910	16893	16876	16859	16842
16.10	16525	16808	16792	16775	$1675{ }^{\text {S }}$	16741	16724	16707	16691	16674
16.20	16657	16640	16623	16607	16590	16573	16557	16540	16523	16506
16.30	16490	16473	16456	16440	16423 16257	16406	16390	16373 16208	16357 16191	16340 16175
16.40	16324	16307	16290	16274	16257	16241	16224	16208	16191	16175
16.50	16158	16142	16I25	16109	16092	16076	16060	16043	16027	16010
16.60	15994	I5978	15961	15945	15929	15912	15896	15880	15863	15847
16.70	15831	I5815	15798	15782	15766	15750	15733	15717	15701	15685
16.So	15669	15652	15636	15620	15604	15588	15572	15556	15539	15523
16.90	15507	I5491	15475	15459	15443	15427	15411	15395	15379	15363
17.00	15347	15331	15315	15299	I 5283	15267	15251	15235	15219	15203

DETERMINATION OF HEIGHTS BY THE EAROMETER.

ENGLISH MEASURES.

	Values		f 60368 [1		$0.0010195 \times 36] \log \frac{29.90}{B}$					
Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
17.00	I5347	I 533 I	I53I5	I5299	15283	I5267	15251	I5235	I5219	15203
17.10	15187	I5I72	I 5156	15140	I5I24	15108	15092	15076	15061	15045
17.20	15029	15013	14997	14982	14966	14950	14934	14919	14903	14887
17.30	14871	14856	14840	14 S 24	14809	14793	14777	14762	14746	14730
17.40	14715	14699	14684	14668	14652	14637	14621	14606	14590	14575
17.50	I4559	14544	14528	14512	I4497	14481	I4466	1445	14435	14420
17.60	14404	14389	14373	14358	14342	14327	14312	14296	14281	14266
17.70	14250	I4235	14219	14204	14189	14173	14158	14143	14128	14112
17.80	14097	14082	14067	14051	14036	14021	14006	13990	I 3975	13960
17.90	I 3945	13930	13914	13899	13884	13869	1.3854	13839	I3824	13808
18.00	13793	13778	13763	13748	工 3733	13718	13703	13688	I 3673	13658
18.10	13643	I3628	13613	13598	I 3583	13568	13553	13538	13523	13508
18.20	13493	13478	13463	13448	13433	13418	13404	13389	13374	13359
18.30	13j14	13329	13314	13300	I 3285	13270	I3255	13240	13226	132 II
18.40	13196	I3I8I	13166	I3I52	13137	13122	13107	13093	13078	13063
18.50	13049	13034	13019	13005	12990	12975	12961	12946	12931	12917
18.60	12902	12888	12873	12858	12844	12829	12815	12800	12785	12771
18.70	12756	12742	12727	12713	12698	12684	12669	12655	12640	12626
18.80	126II	I2597	12583	12568	12554	I2539	12525	12510	12496	12482
18.90	12467	12453	12438	12424	12410	12395	12381	12367	12352	12338
19.00	12324	12310	12295	I228I	12267	12252	12238	12224	12210	12195
19.10	12181	12167	12153	12138	12124	12110	12096	12082	12068	12053
19.20	12039	12025	12011	I1997	11983	II969	11954	I 1940	I 1926	11912
19.30	I IS98	I I S84	11870	I 1856	IIS42	IIS28	11814	11800	11786	11772
19.40	I 1758	I I744	11730	11716	11702	11688	I 1674	I I 660	I 1646	11632
19.50	116I8	I 1604	11590	11576	1 1562	I I548	I I534	II520	I 1507	I I493
19.60	11479	I 1465	II45	II437	II423	II4 10	I I 396	II3S2	I I 368	I 1354
19.70	II 340	II327	11313	I I299	11285	11272	I I 258	I I 244	I 1230	II2I7
19.80	11203	IIIS9	III75	III62	III48	I I I 34	III2I	IIIO7	11093	I IO80
19.90	11066	11052	I IO39	I 1025	IIOII	10998	10984	10970	10957	10943
20.00	10930	10916	10903	10889	10875	10862	10848	10835	10821	10So8
20.10	10794	10781	10767	10754	10740	10727	10713	10700	I0686	10673
20.20	10659	10646	10632	10619	10605	10592	10579	10565	10552	10538
20.30	10525	10512	10498	I3485	10472	10458	10445	10431	10418	10405
20.40	10391	10378	10365	10352	10338	10325	10312	10298	10285	10272
20.50	10259	10245	10232	10219	10206	IOI92	10179	IOI66	IOI 53	IOI39
20.60	10126	IOI 13	10100	10087	10074	10060	10047	10034	1002 I	10008
20.70	9995	9982	9968	9955	9942	9929	9916	9903	9890	9877
20.80	9864	9851	9838	9825	9812	9799	9786	97.2	9759	9746
20.90	9733	9720	9707	9694	9681	9668	9655	9642	9629	9617
21.00	9604	9591	9578	9565	9552	9539	9526	9513	9500	9487
21.10	9474	9462	9449	9436	9423	9410	9397	9384	9372	9359
21.20	9346	9333	9320	9307	9295	9282	9269	9256	9244	9231
21.30	9218	9205	9193	9180	9167	9154	9142	9129	9116	9103
21.40	9091	9078	9065	9053	9040	9027	9015	9002	8989	8977
21.50	8964	8951	8939	8926	8913	8901	8888	8876	8863	8850
21.60	8838	8825	8813	8800	8788	8775	8762	8750	8737	8725
21.70	8712	8700	8687	8675	8662	8650	8637	8625	8612	8600
21.80	8587	8575	8562	8550	8538	8525	8513	8500	8488	8475
21.90	8463	8451	8438	8426	8413	8401	8389	8376	8364	8352
22.00	8339	8327	8314	8302	8290	8277	8265	8253	8240	8228

Table 51.

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.

Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.										
Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
ch	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
22.00	8339	8327	8314	8302	8290	S277	8265	8253	8240	822 S
22.10	8216	8204	8191	8179	8167	8154	8142	$8{ }^{13} 3$	8IIS	8105
22.20	So93	808I	8069	8056	8044	So32	So20	Soos	7995	7983
22.30	7971	7959	7947	7935	7922	7910	7898	7886	7874	7862
22.40	7849	7837	7825	7813	7801	7789	7777	7765	7753	7740
22.50	7728	7716	7704	7692	7680	7668	7656	7644	7632	7620
22.60	7608	7596	7584	7572	7560	7548	7536	7524	7512	7500
22.70	7488	7476	7464	7452	7440	7428	7416	7404	7392	7380
22.50	7368	7356	7345	7333	7321	7309	7297	7285	7273	7261
22.90	7249	7238	7226	7214	7202	7190	7178	7166	7155	7143
23.00	7131	7119	7107	7096	7084	7072	7060	7048	7037	7025
23.10	7013	7001	6990	6978	6966	6954	6943	6931	6919	6907
23.20	6896	6884	6872	6861	6849	6837	6825	6514	6802	6790
23.30	6779	6767	6755	6744	6732	6721	6709	6697	6686	6674
23.40	6662	6651	6639	6628	6616	6604	6593	6581	6570	6558
23.50	6546	6535	6523	6512	6500	6489	6477	6466	6454	6443
23.60	6431	6420	6408	6397	6385	6374	6362	6351	6339	6328
23.70	6316	6305	6293	6282	6270	6259	6247	6236	6225	6213
23.80	6202	6190	6179	6167	6156	${ }^{61} 45$	6133	6122	6110	6099
23.90	6088	6076	6065	6054	6042	603 I	6020	6008	5997	5986
24.00	5974	5963	5952	5940	5929	5918	5906	5895	5884	5872
24.10	5861	5850	5839	5827	5816	5805	5794	5782	5771	5760
24.20	5749	5737	5726	5715	5704	5693	5681	5670	5659	5648
24.30	5637	5625	5614	5603	5592	558 I	5570	5558	5547	5536
24.40	5525	5514	5503	5492	5480	5469	5458	5447	5436	5425
24.50	5414	5403	5392	5381	5369	5358	5347	5336	5325	5314
24.60	5303	5292	5281	5270	5259	5248	5237	5226	5215	5204
24.70	5193	5182	5171	5160	5149	5138	5127	5116	5105	5094
24.80	5083	5072	5061	5050	5039	5028	5017	5006	4995	4985
24.90	4974	4963	4952	4941	4930	4919	4908	4897	4886	4876
25.00	4865	4854	4843	4832	4821	4810	4800	4789	4778	4767
25.10	4756	4745	4735	4724	4713	4702	4691	4681	4670	4659
25.20	4648	4637	4627	4616	4605	4594	4584	4573	4562	4551
25.30	4540	4530	4519	4508	4498	4487	4476	4465	4455	4444
25.40	4433	4423	4412	4401	4391	4380	4369	4358	4348	4337
25.50	4326	4316	4305	4295	4284	4273	4263	4252	4241	4231
25.60	4220	4209	4199	4188	4178	4167	4156	4146	4135	4125
25.70	4114	4104	4093	4082	4072	406 I	4051	4040	4030	4019
25.80	4009	3998	3988	3977	3966	3956	3945	3935	3924	3914
25.90	3903	3893	3882	3872	3861	3851	3841	3830	3820	3809
26.00	3799	3788	3778	3767	3757	3746	3736	3726	3715	3705
26.10	3694	3684	3674	3663	3653	3642	3632	3622	3611	3601
26.20	3590	3580	3570	3559	3549	3539	3528	3518	3508	3497
26.30 26.40	3487	3477	3466	3456	3446	3435	3425	3415	3404	3394
26.40	3384	3373	3363	3353	3343	3332	3322	3312	3301	3291
26.50	3281	3270	3260	3250	3240	3230	3219	3209	3199	3189

Smithboniar -ableg.

Table 51.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
26.50	3281	3270	3260	3250	3240	3230	3219	3209	3199	3189
26.60	3179	3168	3158	3148	3138	3128	3117	3107	3097	3087
26.70	3077	3066	3056	3046	3036	3026	3016	3005	2995	2985
26.80	2975	2965	2955	2945	2934	2924	2914	2904	2894	2884
26.90	2874	2864	2854	2843	2833	2823	2813	2 SO 3	2793	2783
27.00	2773	2763	2753	2743	2733	2723	2713	2703	2692	2682
27.10	2672	2662	2652	2642	2632	2622	2612	2602	2592	2582
27.20	2572	2562	2552	2542	2532	2522	2512	2502	2493	2483
27.30	2473	2463	2453	2443	2433	2423	2413	2403	2393	2383
27.40	2373	2363	2353	2343	2334	2324	2314	2304	2294	2284
27.50	2274	2264	2254	2245	2235	2225	2215	2205	2195	3185
27.60	2176	2166	2156	2146	2136	2126	2116	2107	2097	2087
27.70	2077	2067	2058	2048	2038	2028	2018	2009	1999	1989
27.80	1979	1970	1960	1950	1940	1930	1921	I9II	1901	1891
27.90	1882	1872	I 862	1852	1843	1833	I823	1814	1804	1794
28.00	1784	1775	1765	I755	1746	1736	1726	1717	1707	1697
28.10	1688	1678	1668	1659	1649	1639	1630	1620	1610	1601
28.20	1591	1581	1572	1562	1552	1543	1533	1524	1514	I 504
28.30	1495	1485	1476	1466	1456	1447	1437	1428	1418	1408
28.40	1399	1389	1380	1370	1361	I 351	1342	1332	1322	1313
28.50	1303	1294	1284	1275	1265	1256	1246	1237	1227	1218
28.60	1208	1199	1189	1180	1170	1161	1151	1142	1132	1123
28.70	1113	1104	1094	1085	1075	1066	1057	1047	1038	1028
28.80	1019	1009	1000	990	981	972	962	953	943	934
28.90	925	915	906	896	887	878	868	859	849	840
29.00	831	821	812	803	793	784	775	765	756	746
29.10	737	728	718	709	700	690	681	672	663	653
29.20	644	635	625	616	607	597	588	579	570	560
29.30	55 I	542	532	523	514	505	495	486	477	468
29.40	458	449	440	43 I	421	412	403	394	384	375
29.50	366	357	348	338	329	320	311	302	292	283
29.60	274	265	256	247	237	228	219	210	201	192
29.70	182	173	164	155	146	137	128	118	109	100
29.80	+91	+82 +89	$\begin{array}{r}\text { a } \\ +73 \\ \hline-18\end{array}$	+64 $+\quad 27$	+55	+ 45	+36 $+\quad 55$	+ 27	+ 18 $+\quad 73$	$+\quad 9$
29.90	0	- 9	- I8	- 27	- 36	- 45	-55	- 64	- 73	-82
30.00	- 91	- 100	- 109	-118	- 127	$-\mathrm{r} 36$	- I45	- I54	-163	- 172
30.10	- 181	- 190	- I99	- 208	-217	-226	-235	-244	-253	- 262
30.20	-271	- 28o	- 289	-298	-307	-316	-325	-334	-343	-352
30.30	-361	-370	-379	-388	- 397	-406	-415	-424	-433	-442
30.40	-45I	-460	-469	-478	-486	-495	-504	-513	- 522	-53I
30.50	- 540	- 549	- 553	- 567	- 576	-585	- 593	-602	-611	-620
30.60	-629	-638	-647	-656	-665	-673	-682	-691	- 700	-709
30.70	-718	-727	-735	-744		-762	-771	-780	-788	-797
30.80	- 806	-S15	- 824	-833	-841	-850	-859	-868	- 877	-885

Table 52.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.
For temperatures $\left\{\right.$ above $50^{\circ} \mathrm{F}$. \} the values are to be $\{$ added.
below $50^{\circ} \mathrm{F}$. \} the subtracted.

Mean Temperature. θ.		APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLE 51.												
		20	40	60	80	100	200	300	400	500	600	700	800	900
F.	F.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
49°	51°	0	\bigcirc	-	\bigcirc	\bigcirc	-	I	1	1	1	1	2	2
48	52	\bigcirc	-	-	-	-	I	1	2	2	2	3	3	4
47	53	\bigcirc	\bigcirc	\bigcirc	-	I	1	2	2	3	4	4	5	6
46	54	\bigcirc	\bigcirc	\bigcirc	I	I	2	2	3	4	5	6	7	7
45	55	\bigcirc	\bigcirc	I	I	1	2	3	4	5	6	7	8	9
44	56	\bigcirc	\bigcirc	I	I	I	2	4	5	6	7	9	10	11
43	57	0	I	I	I	1	3	4	6	7	9	10	11	13
42	58	\bigcirc	I	I	I	2	3	5	7	8	10	11	13	15
41	59	\bigcirc	I	I	I	2	4	6	7	9	II	13	15	17
40	60	0	1	1	2	2	4	6	8	10	12	14	16	18
39	61	\bigcirc	I	I	2	2	4	7	9	11	13	16	18	20
38	62	0	1	I	2	2	5	7	10	12	15	17	20	22
37	63	1	1	2	2	3	5	8	II	13	16	19	21	24
36	64	1	I	2	2	3	6	9	II	14	17	20	23	26
35	65	I	1	2	2	3	6	9	12	15	18	21	24	28
34	66	I	I	2	3	3	7	10	13	16	20	23	26	29
33	67	1	I	2	3	3	7	10	14	17	21	24	28	31
32	68	I	1	2	3	4	7	II	15	18	22	26	29	33
3 I	69	1	2	2	3	4	8	12	15	19	23	27	31	35
30	70	I	2	2	3	4	8	12	16	20	24	29	33	37
29	71	1	2	3	3	4	9	13	17	21	26	30	34	39
2 S	72	1	2	3	4	4	9	13	18	22	27	31	36	40
27	73	I	2	3	4	5	9	14	19	23	2 S	33	38	42
26	74	I	2	3	4	5	10	15	20	24	29	34	39	44
25	75	I	2	3	4	5	10	15	20	25	31	36	4 I	46
24	76	1	2	3	4	5	II	16	21	27	32	37	42	48
23	77	1	2	3	4	6	II	17	22	28	33	39	44	50
22	78	1	2	3	5	6	II	17	23	29	34	40	46	5 I
21	79	I	2	4	5	6	12	18	24	30	35	41	47	53
20	80	I	2	4	5	6	12	IS	24	31	37	43	49	55
19	SI	I	3	4	5	6	I 3	19	25	32	38	44	5 I	57
18	82	1	3	4	5	7	I 3	20	26	33	39	46	52	59
17	83	I	3	4	5	7	13	20	27	34	40	47	54	61
16	84	1	3	4	6	7	14	21	28	35	42	49	55	62
15	85	I	3	4	6	7	14	21	29	36	43	50	57	64
14	86	1	3	4	6	7	15	22	29	37	44	5 I	59	66
13	87	2	3	5	6	8	15	23	30	35	45	53	60	68
12	88	2	3	5	6	8	15	23	31	39	46	54	62	70
II	89	2	3	5	6	8	16	24	32	40	48	56	64	72
10	90	2	3	5	7	8	16	24	33	41	49	57	65	73
	91	2	3	5	7	S	17	25	33	42	50	59	67	75
8	92	2	3	5	7	9	17	26	34	43	51	60	69	77
7	93	2	4	5	7	9	IS	26	35	44	53	61	70	79
6	94	2	4	5	7	9	18	27	36	45	54	63	72	SI
5	95	2	4	6	7	9	18	28	37	46	55	64	73	83
4	96	2	4	6	8	9	19	28	38	47	56	66	75	84
3	97	2	4	6	8	10	19	29	38	48	57	67	77	S6
2	98	?	4	6	8	10	20	29	39	49	59	69	78	88
1	99	2	4	6	8	10	20	30	40	50	60	70	So	90
0	100	2	4	6	8	10	20	31	41	51	6 I	7 I	82	92

Smithionian Tableb.

Table 52.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } 50^{\circ} \mathrm{F} . \\ \text { below } 50^{\circ} \mathrm{F}\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtrac }\end{array}\right.$

Mean Temperature. θ.		APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLE 61.										
		1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
F.	F.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
49°	51°	2	4	6	8	10	12	14	16	I8	20	41
4 S	52	4	8	12	16	20	24	29	33	37	41	S2
47	53	6	12	18	24	31	37	43	49	55	6 I	122
46	54	S	16	24	33	4 I	49	57	65	73	S2	163
45	55	10	20	3 I	41	5 I	6I	71	82	92	102	204
44	56	12	24	37	49	61	73	86	98	110	122	245
43	57	14	29	43	57	71	S6	100	114	128	143	2 S 5
42	58	16	33	49	65	S2	98	114	130	147	163	326
41	59	18	37	55	73	92	110	12 S	147	I65	IS4	367
40	60	20	4 I	61	82	102	122	143	163	IS4	204	408
39	61	22	45	67	90	112	I 35	157	179	202	224	449
3 S	62	24	49	73	98	122	147	171	196	220	245	459
37	63	27	53	So	106	133	159	IS6	212	239	265	530
36	64	29	57	86	II4	143	171	200	228	257	285	571
35	65	31	61	92	122	153	IS4	214	245	275	306	612
34	66	33	65	98	130	163	196	228	26 I	294	326	652
33	67	35	69	104	I 39	173	208	243	277	312	347	693
32	68	37	73	110	147	IS4	220	257	294	330	367	734
31	69	39	77	116	155	194	232	271	310	349	387	775
30	70	41	S2	122	163	204	245	2 S 5	326	367	408	Si6
29	71	43	S6	128	171	214	257	300	343	$3{ }^{\text {S }} 5$	42 S	856
2 S	72	45	90	135	179	224	269	314	359	404	449	S97
27	7.3	47	94	141	188	234	2 SI	32 S	375	422	469	93 S
26	74	49	98	147	196	245	294	343	391	440	489	979
25	75	51	102	153	204	255	306	357	408	459	510	1020
24	76	53	106	I59	212	265	318	37 I	42.4	477	530	1060
23	77	55	110	165	220	275	330	385	440	495	551	I 101
22	78	57	I I4	171	228	2 S 5	343	400	457	514	571	II42
2 I	79	59	118	177	236	296	355	4I4	473	532	591	IIS3
20	80	61	122	I84	2.45	306	367	428	489	55 I	612	1223
19	SI	63	126	190	253	316	379	442	506	569	632	1264
18	S2	65	130	196	261	326	391	457	522	587	652	1305
17	83	67	135	202	269	336	404	471	538	606	673	I 346
16	S4	69	139	208	277	347	416	485	555	624	693	I387
15	85	71	143	214	285	357	428	500	57 I	642	714	1427
14	S6	73	147	220	294	367	440	514	587	66 I	734	1465
13	S7	75	151	226	302	377	453	528	604	679	754	1509
12	SS	77	155	232	310	3 S 7	465	542	620	697	775	I 550
11	S9	So	159	239	318	398	477	557	636	716	795	1590
10	90	S2	163	245	326	408	489	571	652	734	Si6	1631
9	91	S4	167	25 I	334	418	502	$5{ }^{5} 5$	669	752	S36	1672
S	92	S6	171	257	343	428	514	599	685	771	S56	1713
	93	SS	175	263	351	438	526	6 I 4	701	7 - 0	S77	I754
6	94	90	I79	269	359	449	538	62 S	718	So7	S97	I794
5	95	92	IS4	275	367	459	55 I	642	734	S26	9 IS	IS35
4	96	94	ISS	281	375	469	563	657	750	S44	938	IS76
- 3	97	96	192	287	383	479	575	67 I	767	S62	958	1917
2	98	98	196	294	391	489	5 S 7	685	783	SSI	979	1957
1	99	100	200	300	400	500	599	699	799	S99	999	1998
0	100	102	204	306	408	510	612	714	SI6	918	1020	2039

Table 53.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Correction for Gravity and Weight of Mercury : $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Latitude. ϕ	APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLES 51-52.										
	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
0°	+3	+5	+8	+10	+13	+15	+18	+20	+23	+25	+28
2	3	5	8	10	13	15	18	20	23	25	28
4	3	5	8	10	13	15	18	20	23	25	28
6	3	5	8	10	13	15	18	20	23	25	28
8	2	5	7	10	12	15	17	20	22	25	27
10	+2	$+5$	+7	+10	+12	+15	+17	+20	$+22$	+25	+27
12	2		7	10	12	15	17	19	22	24	27
14	2	5	7	10	12	14	17	19	21	24	26
16	2	5	7	9	12	14	16	19	21	23	26
18	2	5	7	9	II	14	16	18	21	23	25
20	+2	+4	+7	$+9$	+II	+13	+16	+18	$+20$	+22	+24
22	2	4	6	9	11	13	15	17	19	22	24
24	2	4	6	8	10	13	15	17	19	21	23
26	2	4	6	8	10	12	14	16	18	20	22
28	2	4	6	8	10	12	14	16	18	20	2 I
30	+2	+4	$+6$	$+8$	$+9$	+11	+13	+15	+17	+19	+21
32	2	4	5		9	II	13	14	16	18	20
34	2	3	5	7	9	10	12	14	15	17	19
36	2	3	5	6	8	10	II	13	15	16	18
38	2	3	5	6	8	9	II	12	14	15	17
40	+1	+3	+4	+ 6	$+7$	$+9$	+10	+12	+13	+14	+16
42	I		4	5			9	11	12	13	15
44	I	3	4	5	6	8	9	10	II	13	14
45	+1	+2	+4	+ 5	+ 6	$+7$	$+9$	+10	+II	+12	+13
46	+1	+2	+4	$+5$	$+6$	$+7$	$+8$	$+9$	+11	+12	+13
48	I	2	3	4	5		8	9	10	11	12
50	I	2	3	4	5	6	7	8	9	10	II
52	+I	+2	+3	$+4$	+ 4	$+5$	$+6$	$+7$	$+8$	$+9$	+10
54	I	2	2	3	4	5	6		7	8	9
56	1	I	2	3	4	4	5	6	7	7	8
58	I	I	2	3	3	4	4	5	6	6	7
60	1	I	2	2	3	3	4	4	5	6	6
62	\bigcirc	+1	+1	+ 2	+ 2	$+3$	+ 3	$+4$	$+4$	$+5$	$+5$
64	\bigcirc	I	I	2	2	2	3	4	3	4	4
66	-	1	1	1	2	2	2	3	3	3	3
68	\bigcirc	1	I	I	1	2	2		2	3	3
70	\bigcirc	\bigcirc	I	I	1	1	I	2	2	2	2
72	\bigcirc	\bigcirc	\bigcirc	\bigcirc	+ 1	$+1$	$+1$	$+1$	+ 1	$+1$	$+1$
74	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			1	1	1	1
76	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
78	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
80	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Smithsonian tables.

Correction for Gravity and Weight of Mercury : $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Latitude. ϕ	APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLES 51-52.										
	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	20000
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
0°	+30	+35	+4I	+46	$+51$	+56	+6I	+66	+71	+76	+ioi
2	30	35	40	46	51	56	61	66	71	76	IOI
4	30	35	40	45	50	55	61	66	71	76	101
6	30	35	40	45	50	55	61	66	71	76	100
8	30	35	40	45	50	55	60	65	70	75	99
10	+29	+34	+39	+44	+49	+54	+59	+64	+69	+74	+98
12	29	34	39	44	48	53	58	63	68	73	97
14	29	33	38	43	48	52	57	62	67	71	95
16	28	33	37	42	47	51	56	61	65	70	93
18	27	32	37	41	46	50	55	59	64	68	91
20	$+27$	$+31$	$+36$	+40	+45	+49	$+53$	+58	+62	$+67$	$+89$
22	26	30	35	39	43	48	52	56	61	65	87
24	25	29	34	38	42	46	50	55	59	63	84
26	24	28	32	37	41	45	49	53	57	61	81
28	23	27	31	35	39	43	47	51	55	59	78
30	+23	+26	$+30$	$+34$	$+38$	$+41$	+45	+49	+53	$+56$	+ 75
32	22	25	29	32	36	40	43	47	50	54	72
34	21	24	27	31	34	38	41	44	48	51	68
36	20	23	26	29	32	36	39	42	46	49	65
38	18	22	25	28	31	34	37	40	43	46	61
40	+17	+20	+23	+26	+29	$+32$	+35	$+38$	+41	$+43$	+ 57
42	16	19	22	24	27	30	33	35	38	41	54
44	15	18	20	23	25	28	30	33	35	38	50
45	+15	+17	+19	+22	+24	+27	+29	$+32$	+34	$+37$	$+49$
46	+14	+16	+19	+21	+23	+26	+28	$+30$	$+33$	+35	$+46$
48	13	15	17	19	22	24	26	28	30	32	43
50	12	14	16	18	20	22	24	26	28	30	40
52	+II	+13	+14	+16	+18	$+20$	+22	$+23$	+25	+27	$+36$
54	10	11	13	15	16	18	19	21	23	24	32
56	9	10	12	13	14	16	17	19	20	22	29
58	8	9	10	11	13	14	15	17	18	19	26
60	7	8	9	10	II	12	13	14	16	17	22
62	+ 6	+ 7	+8	$+9$	$+10$	+11	+11	+12	+13	+14	+ 19
64	5	6		7	8	9	10	10	11	12	16
66	4	5	5	6	7	7	8	9	9	10	13
68	3		4	5	5	6	6	7	7	8	11
70	2	3	3	4	4	4	5	5	6	6	8
72	$+2$	+ 2	$+2$	$+3$	$+3$						
74	+ I	+ I	$+2$	+ 2	+ 2						
76	+1	+ 1	+1	+1	+1						
80	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- I						

Tanle 64.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

 ENGLISH MEASURES.Corroction for an Avorago Degree of Humldity.

Moan rumper. nturo.												
	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
1.	lind.	licel	lind	lierl.	lical.	Vicel.	licel.	licel.	lied.	lient.	lied	ficel.
-20'	${ }^{1}$	(1)	0	*	${ }^{1}$	-	${ }^{\prime}$	+1	1.1	1.1	+1	$+2$
- 16	0	\square	0	$+1$	+1	+1	$+1$	1	2	2	2	1
-12	0	0	+1	1	:	2	2	2	3	3	3	6
- 88	0	0	1	1	2	2	3	3	4	4	1	9
- 6	\bigcirc	0	1	1	2	2	3	3	4	4	5	10
-1	()	1.1	1	2	2	3	3	4	1	5	6	11
- 2	0	1	1	2	2	3	4	4	5	6	6	12
0	0	1	1	2	3	3	1	5	5	6	7	1.4
12	0	1	1	2	3	4	4	5	6	7	7	15
	0	1	2	2	3	4	5	6	7	7	8	16
1	0	1	2	3	4	1	5	6	7	8	9	18
:	0	1	2	3	1	5	6	7	8	9	10	19
10	+1	1	2	3	1	5	6	7	8	9	10	21
12	,	1	2	3	1	6	7	8	9	10	11	22
11	1	1	2	4	5	6	7	8	1)	11	12	2.1
16	1	1	3	1	5	6	S	9	10	11	13	25
13	1	1	3	4	5	7	8	9	11	12	13	27
20	1	1	3	,	6	7	9	111	11	13	1.1	2)
22	1	2	3	5	6	8	9	11	12	1.1	15	31
21	1	2	3	5	7	8	110	11	1.3	15	16	3.3
$2{ }^{\text {2 }}$	1	2	3	5	7	9	10	12	1.1	16	17	3.5
$2{ }^{3}$	1	2	1	6	7	9	11	1.3	1.5	17	$11)$	37
30	1	2	1	6	8	11	12	1.1	16	18	20	11
32	1	2	1	7	9	11	1.3	16	18	20	22	1.1
3.1	1	2	5	7	10	12	15	17	$11)$	22	2.1	4)
$3(1)$	1	3	5	8	11	1.3	110	11)	\because	2.1	27	5.3
$3{ }^{3}$	1	3	6	9	12	15	13	21	23	26	2)	59)
40	2	3	6	10	13	16	$11)$	2.3	26	29)	32	6.7
12	2	.	7	11	1.4	18	21	2.5	$2{ }^{3}$	32	3.5	71
1.1	2	1	8	12	1.5	$11)$	23	27	31	35	3)	77
16	2	1	8	13	17	21	2.5	$21)$	3.1	$3{ }^{3}$	12	8.1
$4{ }^{\prime}$	2	5	9	1.1	18	2.3	27	32	37	.11	.16	92
50	2	5	10	15	20	2.5	. 30	3.5	40	1.5	50	99
52	3	5	11	16	21	27	32	37	1.3	.18	5.3	10%
51	3	(1)	11	17	2.3	29	3.1	(1)	16	. 51	57	11.1
56	3	6	12	14	21	30	37	13.3	11	55	61	122
53	3	6	13	19	26	32	39	15	52	. 58	6.5	1,50
60	3	7	1.1	21	27	3.1	11	18	55	62	(i)	1,37.
62	1	7	1.1	22	2)	36	43	, 51	53	05	72	1.15
6.1	1	8	1.5	23	30	38	16	5.3	61	(i)	76	1.52
66	1	8	111	2.1	32	4^{\prime}	48	56	6.1	72	So	$1(x)$
6.5	1	8	17	2.5	3.1	12	50	59	67	76	Sil	168
70	1	9	18	26	3.5	4.1	53	61	70	79	88	175
72	5	9	15	27	37	.16	55	6.1	7.3	H 2	91	183
76	5	10	20	$3{ }^{\circ}$	fo	49	59	69	79	S)	90	19^{8}
80	5	11	21	32	13	53	6.4	75	3	() 6	106	21.3
8.1	6	11	2.3	3.4	. 16	57	68	Sos	91	10	11.1	22 S
SS	1	12	21	37	19	61	73	S5	97	110	122	21.3
92	6	13	20	$3)$	52	65	78	91	10	116	129	259)
(0)	7	1.4	27	11	55	65	82	96	110	123	1.37	274

Smithiunian Tableb.

Table 55.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

ENGLISH MEASURES.
Correction for the Variation of Gravity with Altitude: $\frac{z\left(z+2 h_{0}\right)}{h^{?}}$.

Approx. Imate	HEIGGIT OF LOWER © PATION IN FIEFS (h_{0}) .											
of height. 2.	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	12000
Feet.	I'cet.	rect.	Feet.	Fect.	Feet.	Fect.	Fect.	Feet.	Feet.	Feet.	Feet.	Feet.
500	0	\bigcirc	-	0	0	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	+1
1000	0	-	-	-	-	+1	+ I	+ I	+ I	+ I	+ I	I
1500	-	-	-	+ I	+ I	1	1	I	I	1	2	2
2000	0	0	+ I	I	I	I	I	2	2	2	2	2
2500	0	+ I	I	I	1	1	2	2	2	2	3	3
3000	-	1	I	1	2	2	2	2	3	3	3	4
3500	+1	1	1	2	2	2	3	3	3	4	4	5
4000	1	I	2	2	2	3	3	3	4	4	5	5
4500	1	I	2	2	3	3	4	4	4	5	5	6
5000	I	2	2	3	3	4	4	5	5	6	6	7
5500	1	2	3	3	4	4	5	5	6	6	7	8
6000	2	2	3	3	4	5	5	6	6	7	7	9
6500	2	3	3	4	5	5	6	6	7	8	8	9
7000	2	3	4	4	5	6	6	7	8	8	9	10
7500	3	3	4	5	6	6	7	8	8	9	10	11
8000	3	4	5	5	6	7	8	8	9	10	II	12
8500	3	4	5	6	7	8	8	9	10	II	12	13
9000	4	5	6	6	7	8	9	10	II	12	12	14
9500	4	5	6	7	8	9	10	I I	12	13	13	15
10000	5	6	7	8	9	10	II	II	12	13	14	16
11000	6	7	8	9	10	II	12	I3	14	15	16	18
12000	7	8	9	10	II	13	14	15	16	17	18	21
13000	8	9	II	12	13	14	16	17	18	19	21	23
14000	9	I I	12	13	15	16	17	19	20	21	23	25
15000	II	12	14	15	17	18	19	2 I	22	24	25	28
16000	12	14	15	17	18	20	21	23	25	26	28	31
17000	14	15	17	19	20	22	24	25	27	28	30	
18000	16	17	19	21	22	24	26	28	30	3 I		
19000	17	19	21	23	25	26	28	30	32			
20000	19	21	23	25	27	29	31					

Table 56.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Values of $18400 \log \frac{760}{B}$.

Barometric Pressure.	0	I	2	3	4	5	6	7	8	9
mm.	m.	m.	m.	m.	m.	m.	m.	m.	.	m.
300	7428	7401	7375	7348	7322	7296	7270	7244	7218	7192
310	7166	7140	7115	7089	7064	7038	7013	6987	6962	6937
320	6912	6887	6862	6838	6SI3	6789	6764	6740	6715	6691
330	6666	6642	6618	6594	6570	6546	6522	6498	6475	6451
340	6428	6405	6381	6358	6334	63 II	6288	6265	6242	6219
350	6196	6173	6 I 51	6128	6106	6083	6061	6038	6016	5993
360	5971	5949	5927	5905	5883	5861	5839	5817	5795	5773
370	5752	5730	5709	5687	5666	5644	5623	5602	558 I	5560
380	5539	5518	5497	5476	5455	5434	5414	5393	5373	5352
390	5332	531 I	5291	5270	5250	5229	5209	$5 \mathrm{IS9}$	5169	5149
400	5129	5109	50S9	5069	5049	5029	5010	4990	4971	4951
410	4932	4912	4893	4873	4854	4834	4815	4796	4777	4758
420	4739	4720	4701	4682	4663	4644	4625	4606	4588	4569
430	4551	4532	4514	4495	4477	4458	4440	4422	4404	4386
440	4368	4350	4332	4314	4296	4278	4260	4242	4224	4206
450	4188	4170	4152	4134	4117	4099	4082	4064	4047	4029
460	4 OI 2	3994	3977	3959	3942	3925	3908	3891	3874	3857
470	3840	3 S 23	3 So6	$37 \mathrm{S9}$	3772	3755	3738	3721	3705	3688
480	3672	3655	3639	3622	3606	3559	3573	3556	3540	3523
490	3507	3490	3474	3458	3442	3426	3410	3394	3378	3362
500	3346	3330	3314	3298	3282	3266	3250	3235	3219	3203
510	3188	3172	3157	3141	3126	3110	3095	3079	3064	3048
520	3033	3017	3002	2986	2971	2955	2940	2925	2910	2895
530	2880	2865	2850	2835	2820	2805	2790	2775	2760	2745
540	2731	2716	2701	2687	2672	2657	2643	2628	2613	2599
550	2584	2570	2555	2541	2526	2512	2497	2483	2468	2454
560	2440	2426	2411	2397	2383	2369	2355	234 I	2327	2313
570	2299	22 S 5	2271	2257	2243	2229	2215	2201	2188	2174
580	2160	2146	2133	2119	2105	2092	2078	2064	2051	2037
590	2023	2010	1996	1953	1969	1956	1942	1929	1915	1902
600	1889	1875	I 862	1848	1835	1822	1809	1796	1783	1770
610	1757	1744	1731	1718	1705	1692	1679	1666	1653	1640
620	1627	1614	1601	1588	1576	1563	1550	1537	I 525	1512
630	1499	1486	1474	1461	1448	1436	1423	1411	I 398	1386
640	1373	I361	I 348	1336	1323	I3II	1298	1286	1273	1261
650	1249	1236	1224	1212	1199	1187	1175	1163	1151	1139
660	1127	III5	1103	1091	1079	1067	1055	1043	1031	1019
670	1007	995	983	971	960	948	936	924	913	901
680	889	877	866	854	842	S3I	819	807	796	784
690	772	761	749	738	726	715	703	692	680	669
700	657	646	635	623	612	601	589	578	567	555
710	544	533	52 I	510	499	487	476	465	454	443
720	432	42 I	410	399	388	377	366	355	344	333
730	322	311	300	289	278	267	256	245	234	224
740	213	202	192	I8I	170	160	149	138	128	117
750	+ 106	+ 95	$+85$	$+74$	$+64$	$+53$	+ 43	$+32$	+ 22	+ II
760		- 10	- 21	- 31	- 42	- 52	-63	-73	-83	- 94
770	-104	- 115	- 125	- I36	- 146	- I 56	- 166	- I 77	$-\mathrm{I} 87$	-197

Table 57.

DETERMINATION OF HEIGHTS BY THE BAROMETER. DYNAMIC MEASURES.
Values of $18400 \log \frac{1013.3}{B}$

Barometric Pressure	0	1	2	3	4	5	6	7	8	9
mb.	m.	m.	m.	m.	m.	m,	m.	m.	m.	m.
0	∞	55306	49767	46527	44228	42445	40988	39756	38689	37748
10	36906	36144	35448	34809	34217	33666	33150	32665	32209	31777
20	31367	30977	30605	30250	29910	29584	29270	28969	28678	28397
30	28127	27865	27611	27365	27126	26895	26670	26451	26238	26031
40	25828	25630	25438	25250	25066	24887	24711	24539	24371	24206
50	24043	23886	23731	23579	23430	23283	23139	22998	22859	22722
60	22588	22456	22326	22198	22072	21948	21827	21706	21587	21471
70	21356	21242	21131	21021	20912	20805	20699	20594	20491	20389
80	20289	20189	20092	19995	19899	19804	19711	19618	19527	19437
90	19348	19259	19172	19086	19000	18916	18832	18749	18667	I8586
100	18506	18426	I 8347	18269	18192	18II6	18040	17965	17891	I7817
110	I7744	17672	17600	17529	17459	17389	17320	17251	17183	1715
120	17049	16982	16917	16851	16787	16722	16659	16596	I6533	16471
130	16409	16348	16287	16227	16167	16108	16048	15990	15932	15874
140	15817	I 5760	15703	I5647	15592	I 5536	I 5482	I5427	I 5373	15319
150	I 5266	15212	15160	15107	15055	15004	14952	14901	14850	14800
160	14750	14700	14650	14601	14553	14504	14456	14408	14360	14312
170	14265	14218	14172	14125	14079	14034	I 3988	13943	13898	13853
180	13809	13764	13720	13677	13633	13590	I 3547	13504	13461	13419
190	13377	I 3335	13293	13251	13210	13169	13128	13087	13047	13007
200	12967	I 2927	12887	12848	12808	12769	12730	I 2692	12653	I2615
210	12577	I2539	12501	12463	I 2426	12389	12352	12315	12278	12242
220	12205	12169	12133	12097	1 2061	12026	I 1990	11955	I 1920	I 1885
230	II850	II8I5	II781	I 1746	II712	11678	II644	I1610	II 577	I I 543
240	II5IO	11476	11443	II410	II378	I 1345	II3I 2	I I 280	I 1248	I 1216
250	11184	III 52	III 20	11088	I1057	IIO25	10994	10963	10932	IO90I
260	10870	10839	10809	10778	10748	10718	10688	10658	10628	10598
270	10569	10539	10510	10480	10451	10422	10393	10364	10335	10307
280	10278	IO249	10221	IOI93	IOI65	IOI37	10108	10081	10053	10025
290	9997	9970	9943	9915	9888	986 I	9834	9807	9780	9753
300	9727	9700	9674	9647	9621	9594	9568	9542	9516	9490
310	9465	9439	9413	9388	9362	9337	9311	9286	9261	9236
320	9211	9186	9161	9136	9111	9087	9062	9038	9014	8989
330	8965	8941	8917	8893	8869	8845	8821	8797	8773	8750
340	8726	8703	8679	8656	8633	8610	8587	8564	854 I	8518
350	8495	8472	8449	8427	8404	8381	8359	8336	8314	8292
360	8270	8247	8225	8203	8181	8159	8138	8ı16	8094	8073
370	8051	8029	8008	7986	7965	7943	7922	7901	7850	7859
380	7838	7817	7796	7775	7754	7733	7712	7692	7671	7651
390	7630	7610	7589	7569	7548	7528	7508	7488	7468	7448
400	7428	7408	7388	7368	7348	7328	7309	7289	7269	7250
410	7230	7211	7191	7172	7153	7133	7114	7095	7076	7057
420	7038	7019	7000	6981	6962	6943	6924	6906	6887	6868
430	6850	6831	6813	6794	6776	6757	6739	6721	6703	6684
440	6666	6648	6630	66I 2	6594	6576	6558	6540	6522	6504
450	6487	6469	6451	6433	6416	6398	6381	6363	6346	6328
460	6311	6294	6276	6259	6242	6225	6207	6190	6173	6156
470	6139	6122	6105	6088	6071	6055	6038	6021	6004	5987
480	5971	5954	5937	5921	5904	5888	5871	5855	5839	5822
490	5806	5790	5773	5757	5741	5725	5709	5693	5677	5661

Smithsonian Tables.

TAble 57.

DETERMINATION OF HEIGHTS BY THE BAROMETER. DYNAMIC MEASURES.

Values of $18400 \log \frac{1013.3}{B}$

Barometric Pressure	0	1	2	3	4	5	6	\cdots	8	9
mb .	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.
500	5645	5629	5613	5597	5581	5565	5549	5533	5518	5502
510	5486	547 I	5455	5439	5424	5408	5393	5377	5362	5346
520	5331	5316	5300	5285	5270	5255	5239	5224	5209	5194
530	5179	5164	5149	5134	5119	5104	5089	5074	5059	5044
540	5030	5015	5000	4985	4971	4956	4941	4927	4912	4898
550	4883	4868	4854	4839	4825	48 II	4796	4782	4768	4753
560	4739	4725	4710	4696	4682	4668	4654	4640	4626	4612
570	4508	4583	4569	4556	4542	4528	4514	4500	4486	4472
580	4459	4445	443 I	4417	4404	4390	4376	4363	4349	4335
590	4322	4308	4295	4281	4268	4254	424 I	4228	4214	4201
600	4188	4174	4161	4148	4134	4121	4108	4095	4082	406
610	4056	4042	4029	4016	4003	3990	3977	3964	3951	3939
620	3926	3913	3900	3887	3874	3861	3849	3836	3823	3810
630	3798	3785	3772	3760	3747	3735	3722	3709	3697	3684
640	3672	3659	3647	3635	3622	3610	3597	3585	3573	3560
650	3548	3536	3523	3511	3499	3487	3475	3462	3450	3438
660	3426	3414	3402	3390	3378	3366	3354	3342	3330	3318
670	3306	3294	3282	3270	3258	3246	3235	3223	3211	3199
680	3187	3176	3164	3152	3141	3129	3117	3106	3094	3082
690	3071	3059	3048	3036	3025	3013	3002	2990	2979	2967
700	2956	2944	2933	2922	2910	2899	2888	2876	2865	2854
710	2842	2831	2820	2809	2798	2786	2775	2764	2753	2742
720	2731	2720	2708	2697	2686	2675	2664	2653	2642	2631
730	2621	2609	2599	2588	2577	2566	2555	2544	2533	2523
740	2512	2501	2490	2479	2469	2458	2447	2437	2426	2415
750	2405	2394	2383	2373	2362	2351	2341	2330	2320	2309
760	2299	2288	2278	2267	2257	2246	2236	2225	2215	2205
770	2194	2184	2173	2163	2153	2142	2132	2122	2112	2101
780	2091	2081	2071	2060	2050	2040	2030	2020	2009	1999
790	1989	1979	1969	1959	1949	1939	1929	1919	1909	1899
800	1889	1879	1869	1859	1849	1839	1829	1819	1809	1799
810	I 789	1780	1770	1760	1750	1740	1731	1721	1711	1701
820	1692	1682	1672	1662	1653	1643	1633	1623	1614	1604
830	1595	1585	1575	I 566	1556	1547	1537	1527	1518	1508
840	1499	1489	1480	1470	1461	1451	1442	1433	1423	1414
850	1404	1395	1386	1376	1367	1357	1348	1339	1329	1320
860	I3II	1302	1292	I283	1274	I264	1255	1246	1237	1228
870	I218	1209	1200	1191	1182	1173	1164	II54	1145	II36
880	1127	1118	1109	1100	1091	1082	1073	1064	1055	1046
890	1037	1028	1019	IOIO	1001	992	983	974	965	956
900	948	939	930	92 I	912	903	894	886	877	868
910	859	850	842	833	824	815	807	798	789	781
920	772	763	755	746	737	729	720	711	703	694
- 930	686	677	668	660	651	643	634	626	617	608
940	600	592	583	575	566	558	549	54 I	532	524
950	516	507	499	490	482	474	465	457	448	440
960	432	424	415	407	399	390	382	374	365	357
970	349	341	332	324	316	308	300	292	283	275
-980	267	259	251	243	234	226	218	210	202	194
990	186	178	170	162	I 54	146	I38	130	122	II4
1000	106	98	90	82	74	66	58	50	42	34
IOIO		18	10	2	- 6	- 13	- 21	- 29	-37	- 45
1020	- 53	- 61	- 68	-76	- 84	- 92	- 100	-107	- 115	-123
1030	-I3I	-138	-146	-154	-162	-169	-177	- 185	-192	-200
1040	-208	-215	-223	-23I	-238	-246	-254	-261	-269	-277

Smithsonian tables.

METRIC MEASURES.

Temperature correction factor, $a=.00367 \theta$.
Multiply approximate altitudes, determined from table 56 or 57 . by values of a corresponding to mean temperature, θ, of air column. Add, if θ is above $\circ^{\circ} \mathrm{C}$; subtract, if below $\circ^{\circ} \mathrm{C}$.

Mean Temp. θ	. 0	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 9
${ }^{\circ} \mathrm{C}$.	a.	a.	a.	a.	a.	a.	a.	a.	a.	a.
0	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003
1	. 004	. 00.4	. 004	. 005	. 005	. 0.06	. 006	. 006	. 007	. 007
2	. 007	. 008	. 008	. 008	. 009	. 009	. 010	. 010	. 010	. 011
3	. 01 II	. 011	. 012	. 012	. 012	. 013	. 013	. 014	. 014	. 014
4	. 015	. 015	. 015	. 016	. 016	. 017	. 017	. 017	. 018	. 018
5	. 018	. 019	. 019	. 219	. 020	. 020	. 021	. 021	. 021	. 022
6	. 022	. 022	. 023	. 023	. 023	. 024	. 024	. 025	. 025	. 025
7	. 026	. 026	. 026	. 027	. 027	. 028	. 028	. 028	. 029	. 029
8	. 029	. 030	. 030	. 030	. 031	. 031	. 032	. 032	. 032	. 033
9	. 033	. 033	. 034	. 034	. 034	. 035	. 035	. 036	. 036	. 036
10	. 037	. 037	. 037	. 038	. 038	. 039	. 039	. 039	. 0.40	. 040
II	. 040	. 047	. 041	. 041	. 042	. 042	. 043	. 043	. 043	. 044
12	. 044	. 044	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047
13	. 048	. 048	. 048	. 049	. 049	. 050	. 050	. 050	. 051	. 051
14	. 051	. 052	. 052	.052	. 053	. 053	. 054	. 054	. 054	. 055
15	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058	. 058	. 058
16	. 059	. 059	. 059	. 060	. 060	. 061	. 061	. 061	. 062	. 062
17	. 062	. 063	. 063	. 063	. 064	. 064	. 065	. 065	. 065	. 066
18	. 066	. 066	. 067	. 067	. 068	. 068	. 068	. 069	. 069	. 069
19	. 070	. 070	. 070	. 071	. 071	. 072	. 072	. 072	. 073	. 073
20	. 073	. 074	. 074	. 075	. 075	. 075	. 076	. 076	. 076	. 077
21	. 077	. 077	. 078	. 078	.079	. 079	. 079	. 080	. 080	. 080
22	. 081	.081	. 081	. 082	. 082	. 083	. 083	. 083	. 084	. 084
23	. 084	. 085	. 085	. 086	. 086	. 086	. 087	. 087	. 087	. 088
24	. 088	. 088	. 089	.089	. 090	. 090	. 090	.091	. 091	. 091
25	. 092	. 092	. 092	. 093	. 093	. 094	. 094	. 094	. 095	. 095
26	. 095	. 096	. 096	. 097	. 097	. 097	. 098	. 098	. 098	.099
27	. 099	. 099	. 100	. 100	.101	. 101	.IO1	.102		. 102
28	. 103	. 103	. 103	. 104	. 104	.105	.105	. 105	. 106	. 106
29	. 106	. 107	. 107	. 108	. 108	. 108	. 109	. 109	. 109	. 110
30	. 110	. 110	.III	.III	.112	.112	. 112	. 113	. 113	. 113
31	. 114	. 114	. 115	.115	. 115	. 116	. 116	. 116	. 117	. 117
32	. 117	. 118	. 118	. 119	.119	.119	. 120	. 120	. 120	. 121
33	. 121	. 121	. 122	. 122	. 123	.123	. 123	. 124	. 124	. 124
34	. 125	. 125	. 126	. 126	. 126	. 127	. 127	. 127	. 128	. 128
35	. 128	. 129	.129	. 130	. 130	. 130	.13I	. 131	. 315	.132
36	. 132	.132	. 133	. I 33	.134	. 134	. 134	. 135	. 135	. 135
37	. 136	. 136	. 137	. 137	. 137	. 138	. 138	. 138	. 139	. 139
38	. 139	.140	. 140	. 141	.14 1	.14I	.142	.142	. 142	. 143
39	. 143	. 143	. 144	. 144	. 145	. 145	. 145	. 146	. 146	. 146
40	. 147	. 147	.148	. 148	.148	. 149	.149	. 149	. 150	. 150
41	. 150	. 151	. 151	.152	. 152	. 152	. 153	. 153	. 153	. 154
42	. 154	. 155	. 155	. 155	. 56	. 156	. 156	. 157	. 157	. 157
43	. 158	. 158	. 159	. 159	. 159	.160	.160	. 160	.161	.161
44	. 161	.162	. 162	. 163	.163	.163	. 164	. 164	. 164	. 165
45	.165	. 166	. 166	. 166	. 167	.167	. 167	. 168	. 168	. 168
46	. 169	. 169	. 170	. 170	. 170	.171	. 171	. 171	. 172	. 172
	. 172	. 173	. 173	. 174	. 174	. 174	. 175	. 175	. 175	. 176
48	. 176	. 177	. 177	. 177	. 178	. 178	. 178	. 179	. 179	. 179
49	. 180	. 180	.181	.181	.181	.182	. 182	. 182	. 183	.183
50	.184	. 184	. 184	. 185	. 185	. 185	. 186	. 186	. 186	. 187

table 59.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Term for Temperature : $0.00367 \boldsymbol{\theta} \times \mathbf{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } 0^{\circ} \mathrm{C} . \\ \text { below } 0^{\circ} \mathrm{C} .\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtract }\end{array}\right.$

Approximate difference of height. 2.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES ($\boldsymbol{\theta}$) .												
	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°	10°	20°	30°	40°
m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.
100	0	I	1	1	2	2	3	3	3	4	7	II	15
200	1	I	2	3	4	4	5	6	7	7	15	22	29
300	I	2	3	4	6	7	8	9	10	11	22	33	44
400	1	3	4	6	7	9	10	12	13	15	29	44	59
500	2	4	6	7	9	11	13	15	17	18	37	55	73
600	2	4	7	9	II	13	15	18	20	22	44	66	88
700	3	5	8	Io	13	15	18	21	23	26	5 I	77	103
800	3	6	9	12	15	18	2 I	23	26	29	59	88	117
900	3	7	10	13	17	20	23	26	30	33	66	99	132
1000	4	7	II	15	18	22	26	29	33	37	73	110	147
1100	4	8	12	16	20	24	28	32	36	40	81	121	161
1200	4	9	13	18	22	26	31	35	40	44	88	132	176
1300	5	10	14	19	24	29	33	38	43	48	95	143	191
1400	5	10	15	21	26	3 I	36	41	46	5 I	103	154	206
1500	6	II	17	22	28	33	39	44	50	55	110	165	220
1600	6	12	18	23	29	35	4 I	47	53	59	117	176	235
I700	6	12	19	25	3 I	37	44	50	56	62	125	187	250
I800	7	I3	20	26	33	40	46	53	59	66	132	198	264
1900	7	14	2 I	28	35	42	49	56	63	70	139	209	279
2000	7	15	22	29	37	44	51	59	66	73	147	220	294
2100	8	15	23	3 I	39	46	54	62	69	77	154	231	308
2200	8	16	24	32	40	48	57	65	73	81	161	242	323
2300	8	17	25	34	42	5 I	59	68	76	84	169	253	338
2400	9	18	26	35	44	53	62	70	79	88	176	264	352
2500	9	18	28	37	46	55	64	73	83	92	184	275	367
2600	10	19	29	38	48	57	67	76	86	95	191	286	382
2700	10	20	30	40	50	59	69	79	89	99	198	297	396
2800	10	21	3 I	41	51	62	72	82	92	103	206	308	4II
2900	II	2 I	32	43	53	64	75	85	96	106	213	319	426
3000	II	22	33	44	55	66	77	88	99	110	220	330	440
3100	II	23	34	46	57	68	80	91	102	114	228	341	455
3200	12	23	35	47	59	70	82	94	106	117	235	352	470
3300	12	24	36	48	61	73	85	97	109	12I	242	363	484
3400	12	25	37	50	62	75	87	100	II2	125	250	374	499
3500	13	26	39	51	64	77	90	103	116	128	257	385	514
3600	13	26	40	53	66	79	92	106	119	132	264	396	528
3700	14	27	41	54	68	8 I	95	109	122	I 36	272	407	543
3800	14	28	42	56	70	84	98	II2	126	${ }^{1} 39$	279	418	558
3900	14	29	43	57	72	86	100	II5	129	143	286	429	573
4000	15	29	44	59	73	88	103	117	132	147	294	440	587
5000	I8	37	55	73	92	110	128	147	165	183	367	551	734
6000	22	44	66	88	110	132	154	176	I98	220	440	66 I	881
7000	26	5 I	77	103	128	I54	180	206	231	257	5 I 4	771	1028

Table 60.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

 METRIC MEASURES.Correction for Humidity: Values of 10000β.
$\beta=0.378_{\bar{b}}^{e}=0.378 \frac{e_{1}+e_{0}}{B+B_{0}}$.

Mean Vapor				barometric		C			$\left(\frac{B+B_{0}}{2}\right)$.					
$e=\frac{e_{1}+e_{0}}{2}$	500	520	540	560	580	600	620	640	660	680	700	720	740	760
mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.	mm.
1	8	7	7	7	7	6	6	6	6	6	5	5	5	5
2	15	15	14	14	13	13	12	12	11	11	11	11	10	10
3	23	22	21	20	20	19	18	18	17	17	16	16	15	15
4	30	29	28	27	26	25	24	24	23	22	22	21	20	20
5	38	36	35	34	33	31	30	30	29	28	27	26	26	25
6	45	44	42	41	39	38	37	35	34	33	32	32	31	30
7	53	51	49	47	46	44	43	4 4	40	39	38	37	36	35
8	60	58	56	54	52	50	49	47	46	44	43	42	41	40
9	68	65	63	61	59	57	55	53	52	50	49	47	46	45
10	76	73	70	68	65	63	61	59	57	56	54	53	51	50
11	83	So	77	74	72	69	67	65	63	61	59	58	56	55
12	9 I	87	84	8 8	78	76	73	71	69	67	65	63	61	60
13	98	95	91	88	85	82	79	77	74	72	70	68	66	65
14	106	102	98	95	91	88	85	83	80	78	76	74	72	70
15	II3	109	105	101	98	95	91	89	86	83	81	79	77	75
16	12 I	116	112	108	104	101	98	94	92	89	86	84	82	80
17	129	124	119	115	III	107	104	100	97	94	92	89	87	85
18	136	131	126	122	117	113	110	106	103	100	97	95	92	90
19	144	138	133	128	124	120	116	II2	109	106	ro3	100	97	95
20	151	145	140	135	130	126	122	118	115	111	$10{ }^{\text {1 }}$	105	102	99
21	159	153	147	142	137	132	128	124	120	117	II3	110	107	104
22	166	160	154	149	143	139	134	130	126	122	If9	116	I12	109
23	174	167	161	155	150	145	140	I 36	132	128	124	121	117	I14
24	ISI	174	168	162	156	15 I	146	142	137	I33	İ30	126	123	119
25	189	182	175	169	163	157	152	148	143	I 39	135	131	128	124
26	197	I89	182	175	169	164	I 59	I 54	149	I45	140	137	133	129
27	204	196	189	182	176	170	165	159	155	150	146	142	I38	134
28	212	204	196	189	182	176	171	165	160	156	151	147	143	I 39
29	219	2II	203	196	189	183	177	171	166	161	${ }^{1} 57$	152	148	144
30	227	218	210	203	196	189	183	177	172	167	162	158	153	149
31	234	225	217	209	202	195	I89	183	178	172	167	163	158	154
32	242	233	224	216	209	202	195	189	183	178	173	168	163	159
33	249	240	231	223	215	208	201	195	189	I83	178	173	169	164
34	257	247	238	230	222	214	207	201	195	189	184	179	174	169
35	265	254	245	236	228	220	213	207	200	195	IS9	184	179	174
36	272	262	252	243	235	227	219	213	206	200	194	189	I84	179
37	280	269	259	250	241	233	226	219	212	206	200	194	189	184
38	287	276	266	257	248	239	232	224	218	211	205	200	194	189
39	295	283	273	263	254	246	238	230	223	217	2 II	205	199	194
40	302	291	280	270	261	252	244	236	229	222	216	210	204	199

Table 60.

DETERMINATION OF HEIGHTS BY THE BAROMETER.
 METRIC MEASURES.

Correction for Humidity: $10000 \beta \times z$.
Top argument: Values of 10000β obtained from page
Side argument: Approximate difference of height (z).

Approxima: Lifterence of Height$z .$	10000β.											
	25	50	75	100	125	150	175	200	225	250	275	300
m	m.	m.	m.		m.	m.	m.	m.			m.	m.
100	0.3	0.5	0. 8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0
200	0. 5	1.0	1. 5	. 0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	.
300	0.8	I. 5	2.3	3.0	3.8	4.5	$5 \cdot 3$	6.0	6.8	7.5	8.3	.
400	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
500	I. 3	2.5	3.8	5.0	6.3	7.5	8.8	10.0	11.3	12.5	13.8	15.0
600	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0
700	ז. 8	3.5	5.3	7.0	8.8	10.5	12.3	14.0	15.8	17.5	19.3	21.
800	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
900	2.3	4.5	6.8	9.0	11.3	13.5	15.8	18.0	20.3	22.5	24.8	27.0
1000	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0
1100	2.8	5.5	8.3	1 I.O	13.5	16.5	19.3	22.0	24.8	27.5	30.3	33.0
1200	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	33.0	36.0
1300	3.3	6.5	9.8	I3.0	16.3	19.5	22.8	26.0	29.3	32.5	35.8	39.0
1400	$3 \cdot 5$	7.0	IO. 5	14.0	17.5	21.0	24.5	28.0	31.5	35.0	38.5	42.0
1500	3.8	7.5	11.3	15.0	18.8	22.5	26.3	30.0	33.8	37.5	41.3	45.0
1600	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0
1700	4.3	8.5	12.8	17.0	21.3	25.5	29.8	34.0	38.3	42.5	46.8	51.0
1800	4.5	9.0	13.5	18.0	22.5	27.0	31.5	36.0	40.5	45.0	49.5	54.0
1900	4.8	9.5	14.3	19.0	23.8	28.5	33.3	38.0	42.8	47.5	52.3	57.0
2000	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0
2100	5.3	10.5	15.8	21.	26.3	31.5	36.8	42.0	47.3	52.5	57.8	63.0
2200	5.5	11.0	16.5	22.	27.5	33.0	38.5	44.0	49.5	55.0	60.5	66.0
2300	5.8	11.5	17.3	23.0	28.8	34.5	40.3	46.0	51.8	57.5	63.3	69.0
2400	6.0	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0	60.0	66.0	72.0
2500	6.3	12.5	18.8	25.0	31.3	37.5	43.8	50.0	56.3	62.5	68.8	75.0
2600	6.5	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5	65.0	71.5	78.0
2700	6.8	I 3.5	20.3	27.0	33.8	40.5	47.3	54.0	60.8	67.5	74.3	8 r .0
2800	7.0	14.0	21.0	28.0	35.0	42.0	49.0	56.0	63.0	70.0	77.0	84.0
2900	7.3	14.5	21.8	29.0	36.3	43.5	50.8	58.0	65.3	72.5	79.5	87.0
3000	7.5	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5	75.0	S2.5	90.0
3100	7.5	15.5	23.3	31.0	38.8	46.5	54.3	62.0	69.8	77.5	85.3	93.0
3200	S.0	16.0	24.0	32.0	40.0	48.0	56.0	64.0	72.0	So.o	88.0	96.0
3300	8.3	I6.5	24.8	33.0	41.3	49.5	57.8	66.0	74.3	82.5	90.8	99.0
3400	8.5	17.0	25.5	34.0	42.5	51.0	59.5	68.0	76.5	85.0	93.5	102.0
3500	8.8	17.5	26.3	35.0	43.8	52.5	61.3	70.0	78.8	87.5	96.3	105.0
3600	9.0	18.0	27.0	36.0	45.0	54.0	63.0	72.0	81.0	90.0	99.0	10S.0
3700	9.3	IS. 5	27.8	37.0	46.3	55.5	64.8	74.0	83.3	92.5	101.8	11 r.o
3800	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5	95.0	104.5	114.0
3900	9.8	19.5	29.3	39.0	48.8	58.5	68.3	78.0	87.8	97.5	107.3	117.0
4000	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0
5000	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0
6000	15.0	30.0	45.0	60.0	75.0	90.0	105.0	1200	135.0	150.0	165.0	180.0
7000	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5	175.0	192.5	210.0

METRIC MEASURES.

Correction for Humidity: Values of $\frac{1}{2}\left(\frac{0.378 \frac{6}{5}}{0.00367}\right)$
Top argument : Values of e.
Side argument : Values of b. Auxiliary to Table 58.

Air Pressure.	VAPOR PRESSURE mm.												
	0.5	1	2	3	4	5	6	7	8	9	10	20	30
mm.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{c}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.
780	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7	1.3	2.0
760	. 0	. 1	. 1	. 2	. 3	$\cdot 3$. 4	. 5	. 5	. 6	-7	1.4	2.0
740	. 0	. 1	. 1	. 2	-3	-4	. 4	. 5	. 6	. 6	. 7	1. 4	2.1
720	. 0	. 1	. 1	. 2	. 3	. 4	. 4	. 5	. 6	. 6	. 7	1.4	2.1
700	. 0	. 1	. 2	. 2	. 3	. 4	. 4	. 5	. 6	. 7	. 7	1.5	2.2
680	. 0	. 1	. 2	. 2	. 3	. 4	. 4	. 5	. 6	.7	. 8	1.5	
660	. 0	. 1	. 2	. 2	. 3	. 4	. 5	. 5	. 6	.7	. 8	I. 6	
640	.	. 1	. 2	. 2	. 3	. 4	. 5	. 6	. 6	. 7	. 8	1. 6	
620	. 0	. 1	. 2	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 8	1. 7	
600	. 0	. I	. 2	$\cdot 3$. 3	. 4	. 5	. 6	.7	. 8	. 9	1.7	
580	. 0	. 1	. 2	$\cdot 3$. 4	. 4	. 5	. 6	. 7	. 8	. 9		
560	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 5	.7	. 8	. 9		
540	. 0	. 1	. 2	$\cdot 3$. 4	. 5	. 6	.7	. 8	. 9	1.0		
520	. 0	. 1	. 2	. 3	4	. 5	. 6	. 7	. 8	. 9			
500	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9			
480	. 1	. 1	. 2	-3	. 4	. 5	. 6	. 8					
460	. 1	. 1	.2	. 3	. 4	. 6	. 7	. 8					
440	. 1	. 1	. 2	. 4	. 5	. 6	.7						
420	. 1	. 1	. 2	. 4	. 5	. 6	. 7						
400	. 1	. 1	-3	. 4	. 5	. 6							
380	.I	.I	$\cdot 3$. 4	. 5								
360	. 1	. 1	- 3	. 4	. 6								
340	. 1	. 2	-3	. 4									
320	. 1	. 2	-3	. 5									
300	. 1	. 2	. 3										
280	. 1	. 2	. 4										
260	I	. 2	. 4										
240	. 1	. 2	. 4										
220	. 1	. 2											
200	. 1	$\cdot 3$											
180	. 1	. 3			.								
160	. 2	$\cdot 3$											
140	. 2	-4											
120	. 2	. 4											
100	-3	. 5											
80	. 3												
60 40	. 4												
20	I. 3												
10	2.6												

table 61.
DETERMINATION OF HEIGHTS BY THE BAROMETER. DYNAMIC MEASURES.
Correction for Humidity: Values of $\frac{1}{2}\left(\frac{0.378 \frac{0}{b}}{0.00367}\right)$
Top argument: Values of e.
Side argument : Values of b. Auxiliary to Table 58.

Air Pressure.	VAPOR PRESSURE mb.													
	0.5	1	2	3	4	5	6	7	8	9	10	20	30	40
mb.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{c}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.
1080	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5	1.0	I. 4	1.9
1060	. 0	. 0	. 1	. 1	. 2	. 2	. 3	- 3	. 4	. 4	. 5	I. 0	I. 5	1.9
1040	. 0	. 0	. 1	. 1	. 2	. 2	. 3	. 3	. 4	. 4	. 5	1.0	I. 5	2.0
1020	. 0	. 1	. 1	. 2	. 2	. 3	- 3	. 4	. 4	. 5	. 5	1.0	I. 5	2.0
1000	. 0	. 1	. 1	.2	. 2	$\cdot 3$. 3	. 4	. 4	. 5	. 5	1.0	1.5	2.1
980	. 0	. 1	. 1	. 2	. 2	-3	. 3	. 4	. 4	. 5	-5	I.I	1.6	2.1
960	. 0	. 1	. 1	. 2	. 2	- 3	$\cdot 3$. 4	. 4	. 5	. 5	I.I	1.6	2.1
940	. 0	. 1	. 1	. 2	. 2	- 3	- 3	. 4	. 4	-5	. 5	I.I	ェ. 6	2.2
920	. 0	. 1	. 1	. 2	. 2	- 3	. 3	. 4	. 4	. 5	. 6	I.I	I. 7	2.2
900	. 0	. 1	. 1	. 2	. 2	-3	-3	. 4	. 5	. 5	. 6	1.1	1.7	2.3
880	. 0	. 1	. 1	. 2	. 2	-3	. 4	. 4	. 5	. 5	. 6	I. 2	1.8	2.3
860	. 0	. 1	. 1	. 2	.2	- 3	. 4	. 4	. 5	$\cdot 5$. 6	1.2	1.8	2.4
840	. 0	. 1	. 1	. 2	. 2	-3	. 4	. 4	. 5	. 6	. 6	I. 2	1.8	
820	. 0	. 1	. 1	. 2	- 3	-3	. 4	. 4	. 5	. 6	. 6	I. 3	I. 9	
800	. 0	. 1	. 1	. 2	. 3	. 3	. 4	. 5	. 5	. 6	. 6	1.3	1.9	
780	. 0	.I	. 1	. 2	-3	-3	. 4	. 5	. 5	. 6	$\cdot 7$	1.3	2.0	
760	. 0	. 1	. 1	. 2	-3	-3	. 4	. 5	. 5	. 6	.7	1.4		
740	. 0	. 1	. 1	. 2	- 3	- 3	. 4	. 5	. 6	. 6	. 7	I. 4		
720	. 0	. 1	. 1	. 2	- 3	. 4	. 4	. 5	. 6	. 6	. 7	1.4		
700	. 0	. 1	. 1	. 2	$\cdot 3$. 4	. 4	. 5	. 6	. 7	$\cdot 7$	1.5		
680	. 0	. 1	. 2	. 2	-3	. 4	-5	. 5	. 6	. 7	. 8			
660	. 0	. 1	. 2	. 2	- 3	. 4	. 5	. 5	. 6	. 7	. 8			
640	. 0	. 1	. 2	. 2	- 3	. 4	. 5	. 6	. 6	. 7	. 8			
620	. 0	. 1	. 2	. 2	. 3	. 4	. 5	. 6	. 7	. 7				
600	. 0	. I	. 2	$\cdot 3$	$\cdot 3$. 4	. 5	. 6	. 7	. 8				
580	. 0	.I	. 2	$\cdot 3$	-4	. 4	. 5	. 6	.7	. 8				
560	. 0	. 1	. 2	- 3	. 4	. 5	. 6	. 6	. 7					
540	. 0	. 1	. 2	- 3	. 4	. 5	. 6	. 7	. 8					
520	. 0	. 1	. 2	-3	. 4	. 5	. 6	. 7	. 8					
500	. 1	. 1	. 2	$\cdot 3$. 4	. 5	. 6	. 7						
480	. 1	. 1	. 2	-3	. 4	. 5	. 6	. 8					$\begin{aligned} & \text { PRE: } \\ & \mathrm{mb} . \end{aligned}$	SURE
460	. 1	. 1	. 2	. 3	. 4	. 6	. 7	. 8			Pres-			
440	. 1	. 1	. 2	. 4	. 5	. 6	. 7					0.5	1	2
420	. 1	. 1	. 2	. 4	. 5	. 6	. 7							
400	. 1	.I	$\cdot 3$. 4	. 5	. 6	. 8				mb.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.
380	.I	. 1	. 3	. 4	. 5	. 7					180	. 1	-3	. 6
360	. 1	. 1	. 3	. 4	. 6	. 7					160	. 2	- 3	. 6
340	. 1	. 2	. 3	. 5	. 6	. 8					140	. 2	. 4	
320	. 1	. 2	. 3	. 5	. 6						I20	. 2	. 4	
300	. 1	. 2	. 3	. 5	. 7						100	. 3	.5	
280	. 1	. 2	. 4	. 6	. 7				-		80	$\cdot 3$		
260	. 1	. 2	. 4	. 6							60	. 4		
240	. 1	. 2	. 4	. 6							40	. 6		
220	. 1	. 2	. 5	. 7							20	1.3		
200	. 1	$\cdot 3$. 5								10	2.6		

METRIC MEASURES.

Correction for Gravity and Weight of Mercury : $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Table 63.
DETERMINATION OF HEIGHTS BY THE BAROMETER. METRIC MEASURES.
Correction for the variation of gravity with altitude: $\frac{z\left(z+2 h_{0}\right)}{R}$

Approximate difference of height. 2.	height of Lower station in meters (h_{0})													
	0	200	400	600	800	1000	1200	1400	1600	1800	2000	2500	3000	4000
meters.	m.	m.	m.	m .	m.	m.	m.	m.	m.	m.	m.	m.	m .	m.
200	\bigcirc	-	\bigcirc	\bigcirc	-	o	\bigcirc	0	o	0	\bigcirc	\bigcirc	\bigcirc	o
300	-	-	-	-	-	-	-	-	o	\bigcirc	-	\bigcirc	-	-
400	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	1
500	0	-	-	-	-	\bigcirc	\bigcirc	o	o	\bigcirc	\bigcirc	\bigcirc	I	1
600	-	-	-	-	-	-	-	-	o	-	-	I	1	1
700	-	-	-	-	-	-	-	-	-	-	1	1	1	1
800	-	-	-	-	-	-	-	-	1	1	1	1	1	1
900	-	-	\bigcirc	-	-	\bigcirc	-	1	1	1	I	1	1	1
1000	-	-	-	\bigcirc	\bigcirc	-	1	1	1	1	1	1	1	1
1100	-	-	-	-	\bigcirc	I	1	1	1	1	1	I	I	2
1200	-	-	-	-	1	1	I	1	1	1	I	1	1	2
1300	-	-	-	I	I	1	1	1	1	1	1	I	1	2
1400	-	-	-	I	I	1	1	1	1	1	1	1	2	2
1500	-	-	I	I	I	1	1	1	1	1	1	2	2	2
1600	-	I	1	I	I	1	1	1	1	1	1	2	2	2
1700	-	1	1	I	I	1	1	1	1	1	2	2	2	3
I800	I	I	I	1	I	1	I	1	1	2	2	2	2	3
1900	1	1	I	I	1	1	1	1	2	2	2	2	2	3
2000	I	1	1	1	I	1	1	2	2	2	2	2	3	3
2100	1	I	I	I	I	1	1	2	2	2	2	2	3	3
2200	I	I	I	I	I	1	2	2	2	2	2	2	3	4
2300	I	I	I	I	I	2	2	2	2	2	2	3	3	4
2400	I	1	I	I	2	2	2	2	2	2	2	3	3	4
2500	I	I	I	1	2	2	2	2	2	2	3	3	3	4
2600	I		I	2	2	2	2	2	2	3	3	3	4	4
2700	I	I	I	2	2	2	2	2	3	3	3	3	4	5
2800	I	I	2	2	2	2	2	2	3	3	3		4	5
2900	1	2	2	2	2	2	2	3		3		4	4	5
3000	I	2	2	2	2	2	3	3	3	3	3	4	4	
3100	2	2	2	2	2	2	3	3	3	3	3	4	4	5
3200	2	2	2	2	2	3	3	3	3	3	4	4	5	
3300	2	2	2	2	3	3	3	3	3	4	4	4	5	6
3400	2	2	2	2	3	3	3	3	4	4	4	4	5	6
3500	2	2	2	3	3	3	3		4	4	4	5	5	6
3600	2	,	2	3	3	3	3	4	4	4	4	5	5	7
3700	2	2	3	3	3	3	4	4	4	4	4	5	6	7
3800	2	3	3	3	3	3	4	4	4	4	5	5	6	7
3900	2	3	3	3	3	4	4		4	5	5	5	6	7
4000	3			3			4	4				6	6	8
4500	3	3	4	4	4	5	5	5	5	6	6	7	7	9
5000	4	4	5	5	5	5	6	6	6	7	7	8	9	10
5500	5	5	5	6	6	6	7	7	8	8	8	9	10	12
6000	6	6	6	7	7	8	8	8	9	9	9	10	11	13
6500	7	7	7	8	8	9	9	9	10	10	11	12	13	15
7000	8	8	9	9	9	Io	10	11	II	12	12	13	14	16

Gmithsonian Tables.

Table 64.
DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF 0.1 INCH IN THE BAROMETER.

ENGLISH MEASURES.

Baro-	MEAN TEMPERATURE OF THE AIR IN FAHRENHEIT DEGREES											
sure.	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
22.0	119.2	120.5	L21.8	123.1	124.4	125.8	127.1	128.5	129.8	131.2	I 32.5	133.9
. 2	118.2	II9.4	120.7	122.0	123.3	124.7	126.0	127.3	128.7	130.0	131.3	I 32.7
. 4	117.1	IIS. 3	119.6	120.9	122.2	I23.6	124.9	126.2	127.5	128.8	I30.2	131.5
. 6	116.I	117.3	118.6	119.8	121.I	122.5	123.8	125. I	126.4	127.7	129.0	130.3
. 8	I 15.0	II 6.3	117.5	118.8	I20.I	121.4	122.7	124.0	125.3	126.6	127.9	129.2
23.0	II4.0	115.3	116.5	117.8	119.0	120.3	121.6	122.9	124.2	125.5	126.8	I2S. 1
. 2	II3.1	114.3	II 5.5	I16.8	118.0	I 19.3	120.6	121.8	123. 1	124.4	125.7	127.0
. 4	II2.1	113.3	114.5	115.8	117.0	118.3	119.5	120.8	I22.1	123.3	I24.6	125.9
. 6	III.I	II2.3	113.5	114.8	116.0	117.3	118.5	II9. 8	121.0	122.3	123.5	124.8
. 8	I 10.2	IIII. 4	II2.6	113.8	II5.I	116.3	117.5	118.8	120.0	121.3	122.5	123.8
24.0	109.3	110.5	III. 7	II2.9	II4. I	115.3	116.5	117.8	119.0	120.2	121.5	122.7
. 2	108.4	109.5	110.7	111.9	II3.I	114.4	115.6	116.8	I 18.0	119.2	120.5	121.7
. 4	107.5	108.6	109.8	III.O	II2.2	II3.4	114.6	II5.9	117.1	118.3	II9.5	120.7
. 6	106.6	107.8	108. 9	110.1	III. 3	I 12.5	113.7	II4.9	II6.I	117.3	II8.5	I 19.7
. 8	105.8	106.9	IOS. I	109.2	110.4	III. 6	112.8	I 14.0	I 15.2	I 16.4	I 77.6	II8.8
25.0	104.9	106.0	107.2	108.3	109.5	110.7	III. 9	II3.I	II4.2	115.4	II6.6	117.8
. 2	104. 1	105.2	106.3	107.5	108.7	109.8	III.O	II2.2	II3.3	114.5	II 5.7	II6.9
. 4	103.3	104.4	105.5	106.6	107.8	109.0	IIO. I	IIII. 3	112.4	II3.6	I 14.8	II6.0
. 6	102.5	103.6	104.7	105.8	107.0	10S. 1	109.3	110.4	111.6	112.7	113.9	II5.I
. 8	IOI. 7	102.8	103.9	105.0	106. I	107.3	108.4	109. 6	110.7	111.9	I 13.0	II4.2
26.0	100.9	102.0	103. I	104.2	105.3	106.4	107.6	108.7	109.9	IIt.o	II2.I	113.3
. 2	100. 1	101.2	102.3	103.4	104.5	105.6	106.8	107.9	109.0	IIO.I	I 11.3	II2.4
. 4	99.4	100.4	IOI. 5	102.6	103.7	104. 8	106.0	107. 1	108. 2	109.3	I 10.4	III. 6
. 6	98.6	99.7	100. 7	IOI. 8	102.9	104.0	105.2	106.3	107.4	108. 5	109.6	110.7
. 8	97.9	98.9	100.0	Ior. 1	102.2	103.3	104.4	105.5	106.6	107.7	108.8	109.9
27.0	97.1	98.2	99.2	100.3	101. 4	102.5	103.6	104.7	105.8	106.9	108.0	109. I
. 2	96.4	97.5	98.5	99.6	100.7	101. 8	102.8	103.9	105.0	106. I	107.2	108.3
. 4	95.7	96.8	97.8	98.9	99.9	IOI. 0	102. I	103.2	104.2	105.3	106.4	107.5
. 6	95.0	96.1	97.1	98.1	99.2	100.3	IOI. 3	102.4	103.5	104.6	105.6	106.7
. 8	$94 \cdot 3$	95.4	96.4	97.4	98.5	99.6	100. 6	101.7	102.7	103.8	104.9	105.9
28.0	93.7	94.7	95.7	96.7	97.8	98.8	99.9	101.0	102.0	103. I	104. I	105.2
. 2	93.0	94.0	95.0	96.1	97. I	98. I	99.2	100.2	IOI. 3	102.3	103.4	104.4
. 4	92.4	93.4	94.4	95.4	96.4	97.5	98.5	99.5	100. 6	IOI. 6	102.7	103.7
. 6	91.7	92.7	93.7	94.7	95.7	96.8	97.8	9 9. 8	99.9	100. 9	IOI. 9	103.0
. 8	91.I	92.I	93.1	94. I	95. I	96. 1	97. 1	98.2	99.2	100. 2	101.2	102.3
29.0	90.4	91.4	92.4	93.4	94.4	95.4	96.5	97.5	98.5	99.5	100.5	IOI. 6
. 2	89.8	90.8	91.8	92.8	93.8	94.8	95.8	96.8	97.8	95.8	99.9	100.9
. 4	S9.2	90.2	91.I	92.1	93.1	94.1	95.1	96.1	97. I	$9 \mathrm{S}$.	99.2	100.2
. 6	88.6	89.6	90.5	91.5	92.5	93.5	94.5	95.5	96.5	97.5	9 9.5	99.5
. 8	SS.0	89.0	S9.9	90.9	91.9	92.9	93.9	94.9	95.8	96.8	97.8	98.8
30.0	87.4	88.4	89.3	90.3	91.3	92.3	93.2	94.2	95.2	96.2	97.2	98.2
. 2	86.8	87.8	88.7	89.7	90.7	91.7	92.6	93.6	94.6	95.6	96.5	97.5
. 4	86.3	87.2	88.2	89.1	90.1	91.1	92.0	93.0	94.0	94.9	95.9	96.9
. 6	85.7	86.7	87.6	85.5	89.5	90.5	91.4	92.4	93.3	94.3	95.3	96.2
. 8	85.2	86.1	87.0	88.0	88.9	89.9	90.8	91.5	92.7	93.7	94.7	95.6

Table 65.
DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF 1 MILLIMETER IN THE BAROMETER.

METRIC MEASURES.

Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	-2°	0°	2°	4°	6°	8°	10°	12°	14°	16°
$\begin{aligned} & \mathrm{mm} . \\ & 760 \end{aligned}$	Meters. 10.48	Meters. 10.57	Meters. 10.65	Meters. 10.73	$\begin{aligned} & \text { Meters. } \\ & \text { IO. } \end{aligned}$	$\begin{aligned} & \text { Meters. } \\ & \text { Io. } 89 \end{aligned}$	Meters. 10.98	Meters. 11.06	Meters. II. 15	Meters. $\text { II. } 23$
750	10.62	10.71	10.79	10.87	10.95	II. 04	II. 13	II. 21	11.30	II. 38
740	10.77	10. 85	10.93	It. 02	If.io	11.19	11.28	I1. 36	II. 45	11.54
730	10.91	I 1.00	11.08	II.I7	II. 26	II. 35	11.43	II. 52	11.61	11.70
720	11.06	II.15	II. 24	II. 32	11.42	II.5I	II. 59	II. 68	11.77	II. 86
710	11.22	II. 3 I	I 1.40	II. 48	II. 5^{8}	11.67	11.75	II. 85	11.94	12.03
700	II. 38	I 1.47	11.56	II. 65	II. 74	11.83	11.92	12.02	I2.11	12.20
690	II. 55	11.63	11.72	11.82	11.91	12.00	12.09	12.19	12.28	12.38
680	11.72	II. So	1 I .89	11.99	12.08	12.18	12.27	12.37	12.46	12.56
670	1 I .89	11.98	12.07	12.17	12.26	12.36	12.46	12.55	12.65	12.75
660	12.07	12. 16	12.26	12.35	12.45	12.55	12.65	12.74	12.84	12.94
650	12.26	12.35	12.45	12.54	12.64	12.74	12.84	12.94	13.04	13.14
640	12.45	12.55	12.64	12.74	12.84	12.94	13.04	13.14	13.24	13.35
630	12.65	12.75	12.84	12.94	13.04	13.15	13.25	13.35	13.45	13.56
620	12.85	12.96	13.05	13.15	13.25	13.36	13.46	13.57	13.67	13.78
610	13.06	13.17	13.27	${ }^{1} 3.37$	13.47	I 3.58	13.68	13.79	13.89	14.01
600	13.28	13.39	13.49	13.59	13.70	13.80	13.91	14.02	14.13	14.24
590	13.51	13.62	13.72	13.82	13.93	14.03	14.15	14.26	14.37	14.48
5 So	I3.74	13.85	13.96	14.06	14.17	14.28	14.39	14.51	14.62	14.73
570	13.98	14.09	14.20	14.31	14.42	I4.53	14.64	14.76	14.88	14.99
560	14.23	14.34	14.45	14.57	14.68	14.79	14.90	15.02	15.14	15.25
Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°
$\begin{aligned} & \mathrm{mm} . \\ & 760 \end{aligned}$	Meters. 11.32	Meters. II. 41	Meters. $\text { II } .49$	Meters. II. 58	$\begin{array}{\|c\|} \hline \text { Meters. } \\ \text { II. } 66 \end{array}$	Meters. 11.75	Meters. $\text { II. } 84$	Meters. $\text { II. } 92$	Meters. 12.01	Meters. 12.10
750	I 1.47	II. 56	11.64	11.73	II. 82	II.9I	12.00	12.08	12.17	12.26
740	11.63	II. 72	11.80	11.89	11.98	12.07	12.16	12.24	12.33	12.42
730	11.79	11.88	11.96	12.05	12.15	12.23	12.32	12.41	12.50	12.59
720	11.95	12.04	12.13	12.22	12.32	12.40	12.49	12.58	12.68	12.77
710	12.12	12.21	12.30	12.39	12.49	12.58	12.67	12.76	12.86	12.95
700	12.29	12.39	12.48	12.57	12.67	12.76	12.85	12.94	13.04	13.13
690	12.47	12.57	12.66	12.75	12.85	12.94	13.04	I3. 13	13.23	13.32
680	12.66	12.75	12.85	12.94	I3.04	I3.I3	13.23	13.32	13.42	13.52
670	12.85	12.94	${ }^{1} 3.04$	13.14	13.23	13.33	13.43	13.52	13.62	13.72
660	13.04	13.14	13.24	13.34	13.43	13.53	13.63	13.73	13.83.	13.93
650	I3.24	13.34	13.44	13.54	13.64	13.74	13.84	13.94	14.04	14.15
640	I 3.45	13.55	13.65	13.75	13.85	13.96	14.06	14.15	14.26	14.37
630	I 3.66	13.76	I 3.87	${ }^{1} 3.97$	14.07	14.18	14.28	14.38	14.49	14.60
620	I 3.88	13.98	14.09	14.20	14.30	14.41	14.51	14.62	14.72	14.83
610	I4. 11	14.21	14.32	14.43	14.54	14.64	14.75	14.86	14.96	15.07
600	14.35	14.45	14.56	14.67	14.78	14.89	15.00	15. 11	15.21	15.32
590	I4.59	14.70	I4.8I	14.92	15.03	15.14	15.25	15.36	1547	I5.59
580	14.84	14.95	15.07	15.17	15.29	15.40	15.52	15.63	15.74	15.86
570	15.10	15.21	15.33	15.44	${ }^{1} 5.56$	15.67	15.79	15.91	16.02	16.14
560	15.37	15.48	15.60	15.72	15.84	I5.95	16.07	16.19	16.30	16.42

Bmithbonian Tableg.

Table 66.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet.

$$
z=C \frac{B_{0}-B}{B_{0}+B}
$$

C (in feet $)=52494\left[1+\frac{t_{0}+t-64}{900}\right]-$ English Measures.
$C($ in metres $)=16000\left[\mathrm{I}+\frac{2\left(t_{0}+t\right)}{1000}\right]-$ Metric Measures.
In which $Z=$ Difference of height of two stations in feet or metres.
$B_{0}, B=$ Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ Air temperatures at the lower and upper stations respectively.
Values of C.

ENGLISH MEASURES.

$1 / 2\left(t_{0}+t\right)$.	$\log C$.	C.
F.		Feet.
10°	4.69834	49928
15	. 70339	50511
20	. 70837	51094
25	. 71330	51677
30	.718i8	52261
35	4.72300	52844
40	. 72777	53428
45	. 73248	54011
50	. 73715	54595
55	.74177	55178
60	4.74633	55761
65	. 75085	56344
70	. 75532	56927
75	. 75975	57511
So	. 76413	58094
85	4.76847	58677
90	. 77276	59260
95	. 77702	59844
100	.78123	60427

METRIC MEASURES.

$1 / 2\left(t_{0}+t\right)$.	$\log C$.	C.
c.		Metres.
-10°	4.18639	15360
-8	. 19000	15488
-6	. 19357	15616
-4	. 19712	15744
-2	. 20063	15872
0	4.20412	16000
$+2$. 20758	16128
4	.21101	16256
6	. 21442	16384
8	.21780	16512
10	4.22115	16640
12	. 22448	16768
14	. 22778	16896
16	. 23106	17024
18	. 2343 I	17152
20	4.23754	17280
22	. 2.4075	17408
24	. 24393	17536
26	. 24709	17664
28	.25022	17792
30	4.25334	17920
32	. 25643	ISO48
34	. 25950	ISI76
36	. 26255	18304

BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

ENGLISH MEASURES.

$\begin{array}{\|c} \text { Tempera- } \\ \text { ture. } \end{array}$. 0	.1	.2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inches.	Inches.	Inçes.	inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
185°	17.075	17.112	17.150	17.187	17.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	17.564	17.602	17.641	17.679	17.717	17.756	17.794
187	17.832	17.871	17.910	17.948	17.987	I8.026	18.065	18. 104	18.143	18.182
188	18.221	18.261	18.300	18.340	18.379	18.419	18.458	18.498	18.538	18.578
189	18.618	18.658	18.698	18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.02 I	19.062	19.102	19.143	19.184	19.225	19.266	19.308	19.349	19.390
191	19.431	19.473	19.514	19.556	19.598	19.639	19.681	19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275	20.318	20.361	20.404	20.447	20.490	20.533	20.577	20.620	20.664
194	20.707	20.751	20.795	20.839	20.883	20.927	20.971	21.015	21.059	21.103
195	21.148	21.192	21.237	21.282	21.326	21.371	21.416	21.461	21.506	21.551
196	21.597	21.642	21.687	21.733	21.778	21.824	21.870	21.915	21.961	22.007
197	22.053	22.099	22.145	22.192	22.238	22.284	22.331	22.377	22.424	22.471
198	22.517	22.564	22.611	22.658	22.706	22.753	22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.181	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23.910
20	23.959	24.009	24.058	24.108	24.157	24.207	24.257	24.307	24.357	24.407
20	24.457	24.507	24.557	24.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963	25.014	25.065	25.116	25.168	25.219	25.271	25.322	25.374	25.426
204	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.319	26.373	26.426	26.480
206	26.534	26.587	26.641	26.695	26.749	26.803	26.857	26.912	26.966	27.021
207	27.075	27.130	27.184	27.239	27.294	27.349	27.404	27.460	27.515	27.570
208	27.626	27.681	27.737	27.793	27.848	27.904	27.960	28.016	28.073	28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	29.275
211	29.333	29.391	29.450	29.508	29.567	29.626	29.685	29.744	29.803	29.862
212	29.92 I	29.981	30.040	30.100	30.159	30.219	30.279	30.339	30.399	30.459
213	30.519	30.580	30.640	30.701	30.761	30.822	30.883	30.944	31.005	31.066
214	31.127	31.199	31.250	31.3 II	31.373	31.435	31.497	31.559	31.621	31.683

Table 68.

$\begin{gathered} \text { Tempera- } \\ \text { ture. } \end{gathered}$. 0	.1	. 2	.3	. 4	.5	. 6	. 7	. 8	. 9
C.	mm.	mm.	mm.	mm.	mm.		mm.			mm.
80°	355.40	356.84	358.28	359.73	361.19	362.65	364.11	365.58	367.06	368.54
81	370.03	371.52	373.01	374-5 I	376.02	377.53	379.05	380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	$39^{2.92}$	394.49	396.06	397.64	399.22
83	400.8 I	402.40	404.00	405.61	407.22	408.83	410.45	412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.71	435.41	437.12	438.83	440.55	442.28	444.01	445.75	447.49	449.24
86	450.99	452.75	454-5 1	456.28	458.06	459.84	461.63	463.42	465.22	467.03
87	468.84	470.66	472.48	474.31	476.14	477.99	479.83	481.68	483.54	485.41
88	487.28	489.16	491.04	492.93	494.82	496.72	498.63	500.54	502.46	504.39
89	506.32	508.26	510.20	512.15	514.17	516.07	518.04	520.01	521.99	523.98
90	525.97	527.97	529.98		534.01	536.04	538.07	540.11		
91	546.26	548.33	550.10	552.48	554.56	556.65	558.75	560.85	562.96	565.08
92	567.20	56 c .33	571.47	573.61	575.76	577.92	580.08	582.25	584.43	586.61
93	588.80	591.00	593.20	595.41	597.63	599.86	602.09	604.33	606.57	608.82
94	611.08	613.35	615.62	617.9®	620.19	622.48	624.79	627.09	629.41	631.73
95	634.06	636.40	638.74	641.09	643.45	645.82	648.19	650.57	652.96	655.35
96	657.75	660.16	662.58	665.00	667.43	669.87	672.32	674.77	677.23	679.70
97	682.18	684.66	687.15	689.65	692.15	694.67	697.19	699.71	702.25	704.79
98	707.35	709.90	712.47	715.04	717.63	720.22	722.81	725.42	728.03	730.65
90	733.28	735.92	738.56	741.2I	743.87	746.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	781.95	784.73

HYGROMETRICAL TABLES.

Pressure of aqueous vapor over ice - English measures . . . Table 69
Pressure of aqueous vapor over water - English measures . . Table 70
Pressure of aqueous vapor over ice - Metric measures . . . Table 71
Pressure of aqueous vapor over water - Metric measures . . Table 72
Weight of a cubic foot of saturated vapor - English measures Table 73
Weight of a cubic meter of saturated vapor - Metric measures Table 74

PRESSURE OF AQUEOUS VAPOR OVER ICE.
ENGLISH MEASURES.

Smithsonian Tables.

PRESSURE OF AQUEOUS VAPOR OVER WATER.

ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	.5	.6	.7	. 8	. 9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
32°	0.1803	0.1810	0.1818	0.1825	-. 1833	0.1840	0.1847	-.1855	0.1862	0.1870
33	.1877	.1885	.1893	. 1900	. 1908	.1915	. 1923	.1931	.1939	. 1946
34	. 1954	.1962	. 1970	. 1978	. 1986	.1994	. 2002	. 2010	. 2018	. 2026
35	. 2034	. 2042	. 2050	. 2059	.2067	. 2075	.2083	. 2091	. 2100	. 2108
36	. 2117	. 2125	. 2133	. 2142	. 2150	. 2159	. 2168	. 2176	. 2185	. 2193
37	. 2202	. 2211	. 2220	. 2228	. 2237	. 2246	. 2255	.2264	. 2273	. 2282
38	. 2291	. 2300	. 2309	. 2318	. 2327	. 2336	. 2345	. 2355	. 2364	. 2373
39	. 2382	.2392	. 2401	. 2410	. 2420	.2429	. 2439	. 2448	. 2458	. 2467
40	. 2477	.2487	.2496	.2506	.2516	.2526	.2536	. 2545	. 2555	.2565
41	. 2575	.2585	. 2595	. 2606	. 2616	. 2626	. 2636	. 2646	. 2656	. 2667
42	. 2677	.2687	. 2698	. 2708	. 2719	. 2729	. 2740	. 2750	. 2761	. 2771
43	.2782	.2793	. 2804	. 2814	. 2825	.2836	. 2847	. 2858	. 2869	. 2880
44	. 2891	.2902	. 2913	.2924	. 2935	. 2946	. 2958	.2969	.2981	.2992
45	. 3003	. 3014	. 3026	. 3037	. 3049	. 3061	. 3073	. 3084	.3096	.3108
46	. 3120	.3132	. 3144	. 3156	. 3167	. 3179	.3191	. 3203	. 3216	. 3228
47	. 3240	. 3252	. 3265	. 3277	. 3289	. 3301	.3314	. 3326	. 3339	. 3352
48	.3365	. 3377	. 3390	. 3402	. 3415	- 3428	. 3441	. 3454	. 3467	. 3480
49	. 3493	.3506	.3519	. 3532	. 3546	. 3559	. 3572	. 3585	-3599	. 3612
50	.3626	.3639	.3653	. 3666	. 3680	. 3694	. 3708	-3722	. 3736	-3749
51	. 3763	. 3777	. 3791	.3805	. 3820	. 3834	. 3848	. 3862	. 3876	. 3890
52	. 3905	. 3919	. 3934	. 3948	. 3963	. 3978	. 3993	. 4007	. 4022	. 4037
53	. 4052	. 4067	. 4082	. 4097	.4112	. 4127	. 4142	.4157	.4172	. 4187
54	. 4203	.4218	.4234	.4249	.4265	. 4280	.4296	. 43 I 2	. 4328	. 4343
55	. 4359	. 4375	. 4391	. 4407	. 4423	. 4439	. 4455	. 4471	.4488	. 4504
56	. 4521	. 4537	. 4554	. 4570	. 4587	. 4603	. 4620	. 4637	. 4654	. 4670
57	. 4687	. 4704	. 4721	. 4738	. 4755	. 4772	. 4790	. 4807	. 4824	. 484 I
58	. 4859	. 4876	. 4894	. 4912	. 4930	. 4947	.4965	.4983	. 5001	. 5019
59	. 5037	.5055	. 5073	. 5091	. 5110	. 5128	.5146	. 5164	. 5183	. 5201
60	. 5220	. 5239	. 5258	.5276	. 5295	. 5314	. 5333	. 5352	. 5371	. 5390
61	. 5409	. 5428	. 5448	. 5467	. 5486	. 5505	. 5525	. 5545	. 5565	. 5584
62	. 5604	. 5624	. 5644	. 5663	.5683	. 5703	. 5724	. 5744	. 5764	. 5784
63	. 5805	. 5825	. 5846	. 5866	.5887	. 5908	. 5929	. 5950	. 5971	. 5992
64	. 6013	. 6034	.6055	.6076	. 6097	.6118	. 6140	.616I	.6I83	. 6204
65	. 6226	. 6248	.6270	.6292	. 6314	. 6336	. 6358	.6380	.6402	. 6424
66	.6447	. 6469	. 6492	. 6514	. 6537	.6559	. 6582	. 6605	. 6628	. 6651
67 68	. 6674	-. 6697	. 6721	. 6744	.6767	. 6790	.6814	.6837	.686I	.6885
68	. 6909	.6932	. 6956	. 6980	. 7004	. 7028	.7053	. 7077	. 7101	. 7125
69	. 7150	. 7174	. 7199	.7224	.7249	. 7274	. 7299	-7324	.7348	.7373
70	. 7399	. 7424	. 7449	. 7474	.7500	.7526	.7552	. 7577	.7603	.7629
71	. 7655	. 7681	. 7707	. 7733	. 7760	. 7786	. 7813	. 7839	. 7866	. 7892
72	.7919	. 7946	. 7973	. 8000	. 8027	. 8054	. 8081	. 8 IoS	.8136	.8163
73	.8I9 I	. 8219	. 8247	. 8274	. 8302	. 8330	.8358	. 8386	.8414	. 8442
74	.847I	. 8499	. 8528	.8556	.8585	. 8614	. 8643	.8672	.8701	. 8730
75	. 8760	. 8789	.88I8	. 8847	.8877	.8907	. 8937	.8966	.8996	. 9026
76	.9056	. 9086	.9117	.9147	. 9178	. 9208	. 9239	.9269	. 9300	. 9331
77	. 9362	. 9393	. 9424	. 9455	.9487	. 9518	. 9550	.9581	. 9613	. 9645
78	. 9677	. 9709	. 9741	. 9773	.9805	. 9837	.9870	. 9902	. 9935	. 9968
79	1.0001	1.0033	1.0066	1.0099	1.0133	1.0166	1.0199	1.0232	1.0266	1.0300
80	1.0334	1.0367	I. O 401	1.0435	1.0470	1.0504	1.0538	1.0572	1.0607	1.0641

Smithsonian tables.

Table 70.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches,	Inches.
80°	1.0334	1.0367	1.0401	1.0435	1.0470	1.0504	1.0538	1.0572	1.0607	1.064I
81	I. 0676	1.0711	1.0746	1.0781	1.0816	1.0851	1.0887	1.0922	1.0958	1.0993
82	1.1029	1. 1065	I.IIOI	I.1137	1.1173	1.1209	1. 1246	1.1282	I.1319	1.1355
83	1.1392	1.1429	1.1466	1.1503	1.1540	I. 1577	I.1615	1.1652	1.1690	1.1727
84	1.1765	I.1803	1.1841	1.1879	1.1917	I. 1955	I. 1994	1.2032	1.2071	1.2110
85	1.2149	1. 2188	1.2227	I. 2266	1. 2305	I. 2344	1.2384	1.2423	1.2463	1.2503
86	1.2543	I. 2583	1.2623	I. 2663	1.2704	1. 2744	1.2785	1.2826	1.2867	1.2908
87	I. 2949	1. 2990	1.303 I	1.3072	1.3114	I. 3155	1.3197	I. 3239	I.3281	1.3323
88	1. 3365	1.3407	1.3450	I. $349{ }^{2}$	I. 3535	I. 3578	1.362I	I. 3664	I.3707	1.3750
89	I. 3794	1.3837	I.388I	1.3925	I. 3969	1.4013	1.4057	1.4101	1.4146	1.4190
90	I. 4234	1.4279	I. 4,324	1. 4369	1.4414	1. 4459	1.4505	1.4550	1.4596	1.4642
91	I. 4688	I. 4734	1.4780	1. 4826	1.4872	1.4918	I. 4965	1.5012	1. 5059	1.5106
92	I. 5153	I. 5200	1. 5247	I. 5294	I. 5342	1.5390	1. 5438	1.5486	I. 5534	1.5582
93	1.5630	1.5678	1.5727	1.5776	1.5825	I. 5874	I. 5923	1.5972	I. 6022	1.607 I
94	1.6121	1.6171	1.6221	1.6271	1.632	1.637 I	1.6422	1.6472	1.6523	1.6574
95	1.6625	1.6676	1.6728	1.6779	1.6831	1.6882	1.6934	r. 6986	1.7038	1.7090
96	1.7143	1.7195	1.7248	1.7301	1.7354	1.7407	1.7460	1.7513	I. 7567	1.7620
97	1. 7674	1.7728	1.7782	1.7836	1.7891	1.7945	1.8000	1.8055	1.8110	1.8155
98	1. 8220	1. 8275	1.8331	1.8386	I. 8442	1.8498	1.8554	1.8610	1. 8667	1.8723
99	1.8780	1.8837	I. 8894	1.8951	1.9008	1.9065	1.9123	1.9ISI	1.9239	1.9297
100	1.9355	1.9413	1.9472	1.9530	1.9589	1.9648	1.9707	1.9766	1.9826	I. 9885
101	1.9945	2.0005	2.0065	2.0125	2.0185	2.0245	2.0306	2.0367	2.0428	2.0489
102	2.0550	2.06 I I	2.0673	2.0735	2.0797	2.0859	2.0921	2.0983	2.1046	2.1108
103	2.1171	2.1234	2.1298	2.1361	2.1425	2.1488	2.1552	2.1616	2.1680	2.1744
104	2.1809	2.1874	2.1939	2.2004	2.2069	2.2134	2.2200	2.2265	2.2331	2.2397
105	2.2463	2.2529	2.2596	2.2663	2.2730	2.2797	2.2864	2.2931	2.2999	2.3067
106	2.3135	2.3203	2.3271	2.3339	2.3408	2.3477	2.3546	2.3615	2.3684	2.3753
107	2.3823	2.3893	2.3963	2.4033	2.4103	2.4173	2.4244	2.4315	2.4386	2.4457
108	2.4529	2.4600	2.4672	2.4744	2.4816	2.4888	2.4961	2.5033	2.5106	2.5179
109	2.5252	2.5325	2.5399	2.5473	2.5547	2.562 I	2.5695	2.5770	2.5845	2.5919
110	2.5994	2.6069	2.6145	2.6220	2.6296	2.6372	2.6448	2.6524	2.6601	2.6678
III	2.6755	2.6832	2.6909	2.6986	2.7064	2.7142	2.7220	2.7298	2.7377	2.7456
II2	2.7535	2.7614	2.7693	2.7772	2.7852	2.7932	2.8012	2.8092	2.8173	2.8253
113	2.8334	2.8415	2.8496	2.8577	2.8659	2.8741	2.8823	2.8905	2.8988	2.9070
114	2.9153	2.9236	2.9320	2.9403	2.9487	2.957 I	2.9655	2.9739	2.9823	2.9908
115	2.9993	3.0078	3.0163	3.0248	3.0334	3.0420	3.0506	3.0592	3.0679	3.0766
116	3.0853	3.0940	3.1027	3.1115	3.1203	3.1291	3.1379	3.1467 .	3.1556	3.1645
117	3.1734	3.1823	3.1913	3.2003	3.2093	3.2183	3.2273	3.2364	3.2455	3.2546
18	3.2637	3.2728	3.2820	3.2912	3.3004	3.3096	3.3189	$3 \cdot 3282$	3.3375	$3 \cdot 3468$
119	3.3562	3.3655	3.3749	3.3843	3.3938	3.4032	3.4127	3.4222	3.4318	3.4413
120	3.4509	3.4605	3.4701	3.4797	3.4894	3.4991	3.5088	3.5185	3.5283	3.538 I
121	3.5479	3.5577	3.5676	3.5774	3.5873	3.5972	3.6072	3.6172	3.6272	3.6372
122	3.6472	3.6573	3.6674	3.6775	3.6876	3.6977	3.7079	3.7181	3.7284	3.7386
123	3.7489	3.7592	3.7695	3.7799	3.7903	3.8007	3.81 II	3.8215	3.8320	3.8425
124	3.8530	3.8636	3.8742	3.8848	3.8954	3.9060	3.9167	3.9274	3.938 I	3.9488
125	3.9596	3.9704	3.9813	3.992 I	4.0030	4.0139	4.0248	4.0357	4.0467	4.0577
26	4.0687	4.0797	4.0908	4.1019	4.113 1	4.1242	4.1354	4.1466	4.1578	4.1690
127	4.1803	4.1916	4.2030	4.2143	4.2256	4.2370	4.2485	4.2599	4.2714	4.2829
128	4.2945	$4 \cdot 3061$	4.3177	4.3293	4.3410	4.3527	4.3645	4.3762	4.3880	4.3998
129	4.4116	$4 \cdot 4235$	$4 \cdot 4354$	4.4473	4.4592	4.47 II	$4 \cdot 483 \mathrm{I}$	4.4951	4.5072	4.5192
130	4.53 I 3	4.5434	$4 \cdot 5555$	4.5677	4.5798	4.5921	4.6043	4.6166	4.6289	4.6412

PRESSURE OF AQUEOUS VAPOR OVER WATER.

ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	.3	. 4	.5	. 6	. 7	. 8	. 9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
130°	4.53 I	4.543	4.556	4.568	4.580	4.592	4.604	4.617	4.629	4.641
131	4.654	4.666	4.678	4.691	4.703	4.716	4.728	4.74 I	4.754	4.766
132	4.779	4.792	4.804	4.817	4.830	4.843	4.855	4.868	4.88 I	4.894
I 33	4.907	4.920	4.933	4.946	4.959	4.972	4.985	4.998	5.012	5.025
13.7	5.038	5.051	5.065	5.078	5.091	5.105	5.118	5.132	5.145	5.158
135	5.172	5.186	5.199	5.2 I 3	5.226	5.240	5.254	5.268	5.28 I	5.295
I36	$5 \cdot 309$	$5 \cdot 323$	5.337	$5 \cdot 35 \mathrm{I}$	$5 \cdot 365$	5.379	$5 \cdot 392$	5.407	5.42 I	5.435
137	5.449	5.463	5.477	5.492	5.506	5.520	5.535	5.549	5.563	$5 \cdot 578$
138	5.592	5.607	5.621	5.636	5.650	5.665	5.680	5.694	5.709	5.724
139	5.739	5.754	5.768	5.783	5.798	5.813	5.828	5.843	5.858	5.873
140	5.889	5.904	5.919	5.934	5.949	5.965	5.980	5.995	6.011	6.026
141	6.041	6.057	6.072	6.088	6.104	6.119	6.135	6.151	6.166	6.182
142	6.198	6.214	6.229	6.245	6.261	6.277	6.293	6.309	6.325	6.341
143	6.358	6.374	6.390	6.406	6.422	6.439	6.455	6.472	6.488	6.504
144	6.52 I	6.537	6.554	6.571	6.587	6.604	6.621	6.637	6.654	6.67 I
145	6.688	6.705	6.722	6.739	6.756	6.773	6.790	6.807	6.824	6.841
146	6.858	6.876	6.893	6.910	6.928	6.945	6.962	6.980	6.997	7.015
147	7.032	7.050	7.068	7.085	7.103	7.12 I	7.139	7.156	7.174	7.192
148	7.210	7.228	7.246	7.264	7.282	7.300	7.319	$7 \cdot 337$	7.355	$7 \cdot 374$
149	7.392	7.410	7.429	$7 \cdot 447$	7.466	7.484	7.503	7.52 I	$7 \cdot 540$	7.559
150	7.577	7.596	7.615	7.634	7.653	7.672	7.691	7.710	7.729	7.748
151	7.767	7.786	7.805	7.824	7.844	7.863	7.882	7.902	7.921	7.941
152	7.960	7.9 So	8.000	8.019	8.039	8.059	8.078	8.098	8.118	8.138
153	8.158	8.178	8.198	8.218	8.238	8.258	8.278	8.298	8.319	8.339
154	8.360	8.3 So	8.400	8.42 I	8.441	8.462	8.482	8.503	8.524	8.545
155	8.565	8.586	8.607	8.628	8.649	8.670	8.691	8.712	8.733	8.754
156	8.776	8.797	8.8ı8	8.839	8.861	8.882	8.904	8.925	8.947	8.968
157	8.990	9.012	9.034	9.055	9.077	9.099	9.121	9.143	9.165	9.187
158	9.209	9.23 I	9.253	9.276	9.298	9.320	0.342	9.365	9.387	9.410
159	9.432	9.455	9.478	9.500	9.523	9.546	9.569	9.592	9.615	9.638
160	9.661	9.684	9.707	9.730	9.753	9.776	9.799	9.823	9.846	9.870
161	9.893	9.916	9.940	9.964	9.987	10.011	10.035	10.059	10.082	10.106
162	10.130	10.154	10.178	10.203	10.227	10.251	10.275	10.299	10.324	10.348
163	10.373	10.397	10.422	10.446	10.471	10.495	10.520	10.545	10.570	10.595
164	10.620	10.645	10.670	10.695	10.720	10.745	10.770	10.795	10.821	10.846
165	10.872	10.897	10.922	10.948	10.974	10.999	11.025	11.051	11.077	II.IO2
166	II.12S	II.I 54	11.180	II. 206	11.232	II. 258	II. 284	11.311	11.337	11.363
167	II. 390	11.417	II 444	II 470	II. 497	11.523	11.550	II. 577	11.604	11.63 x
168	11.658	11.685	11.712	11.739	11.766	II. 793	11.821	11.848	11.875	11.903
169	11.930	I 1.957	II.985	12.013	12.040	12.068	12.096	12.124	12.152	12.180
170	12.208	12.236	12.264	12.292	12.320	12.349	12.377	I 2.406	12.434	12.463
171	12.49 I	12.520	12.548	12.577	12.606	12.635	12.664	12.693	12.722	12.75 I
172	12.780	12.809	12.838	12.868	12.897	12.927	12.956	12.986	13.015	13.045
173	13.074	13.104	13.134	13.164	13.194	13.224	13.254	13.284	13.314	13.344
174	13.374	13.405	13.435	13.465	13.496	13.527	13.557	13.588	13.619	I 3.649
175	13.680	13.711	13.742	13.773	13.804	13.835	13.867	13.898	13.929	13.961
176	13.992	14.024	I 4.055	14.087	14.118	14.150	14.182	14.214	14.246	14.278
177	14.310	14.342	I4.374	14.406	14.438	14.47I	14.503	14.536	14.568	14.601
178 $\mathbf{1} 79$	14.633	14.666	14.699	14.731	14.764	14.797	14.830	14.864	14.897	14.930
179	14.963	14.996	15.030	15.063	15.097	15.130	15.164	15.197	15.231	15.265
180	15.299	15.333	15.367	15.401	15.435	15.469	15.504	15.538	15.572	15.607

Table 70.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
ENGLISH MEASURES.

$\begin{aligned} & \text { Tempera- } \\ & \text { ture. } \end{aligned}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
180°	15.299	15.333	15.367	15.401	15.435	15.469	15.504	15.538	15.572	15.607
181	15.641	15.676	15.710	15.745	15.780	15.815	15.850	15.885	15.920	15.955
182	15.990	16.025	16.060	16.096	16.131	16.167	16.202	16.238	16.274	16.309
183	16.345	16.381	16.417	16.453	16.489	16.525	16.561	16.598	16.634	16.670
184	16.707	16.743	16.780	16.817	16.853	16.890	16.927	16.964	17.001	17.038
185	17.075	17.112	17.150	17.187	17.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	17.564	17.602	17.641	17.679	17.717	17.756	I7.794
187	17.832	17.871	17.910	17.948	17.987	18.026	18.065	18.104	18.143	18.182
188	18.221	18.261	18.300	18.340	18.379	18.419	I 8.458	18.498	18.538	18.578
189	18.618	18.658	18.698	18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.021	19.062	19.102	19.143	19.184	19.225	19.266	19.308	19.349	19.390
191	19.431	19.473	19.514	19.556	19.598	19.639	19.68 1	19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275	20.318	20.361	20.404	20.447	20.490	20.533	20.577	20.620	20.664
194	20.707	20.751	20.795	20.839	20.883	20.927	20.97 I	21.015	21.059	21.103
195	21.148	21.192	21.237	21.282	21.326	21.371	21.416	21.461	21.506	21.551
r96	21.597	21.642	21.687	21.733	21.778	21.824	21.870	21.915	21.961	22.007
197	22.053	22.099	22.145	22.192	22.238	22.284	22.33 I	22.377	22.424	22.471
198	22.517	22.564	22.611	22.658	22.706	22.753	22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.18I	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23.910
201	23.959	24.009	24.058	24.108	24.157	24.207	24.257	24.307	24.357	24.407
202	24.457	24.507	24.557	24.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963	25.014	25.065	25.116	25.168	25.219	25.271	25.322	25.374	25.426
204	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.319	26.373	26.426	26.480
206	26.534	26.587	26.64 I	26.695	26.749	26.803	26.857	26.912	26.966	27.021
207	27.075	27.130	27.184	27.239	27.294	27.349	27.404	27.460	27.515	27.570
208	27.626	27.681	27.737	27.793	27.848	27.904	27.960	28.016	28.073	28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	29.275
2 II	29.333	29.391	29.450	29.508	29.567	29.626	29.685	29.744	29.803	29.862
212	29.921	29.981	30.040	30.100	30.159	30.219	30.279	30.339	30.399	30.459
213	30.519	30.580	30.640	30.701	30.761	30.822	30.883	30.944	31.005	31.066
214	31.127	31.189	31.250	3 I .311	31.373	31.435	31.497	31.559	31.62 I	31.683

SMITHSONIAN TABLES.

METRIC MEASURES.

Temperature.	Vapor Pressure.	$\begin{gathered} \text { Tempera- } \\ \text { ture. } \end{gathered}$	$\begin{aligned} & \text { Vapor } \\ & \text { Pressure. } \end{aligned}$	Temperature.	Vapor Pressure.	Temperature.		sure.	Temperature.	Vapor Pressure.
C.	mm.	C.	mm.	C.	mm,			mm.	C.	mm.
-70°	0.0018	-60°	0.0078	-50.0°	0.0291	I -45		537 -	-40.0°	0.0964
69	0.	59	0.0089	49.5	0.0308	844		570	39.5	O. 1020
68	0.0025	58	0.0102	49.0	0.0329	44		. 605	39.0	0. 1080
67	0.0028	57	0.0117	48.5	0.0350	- 43		. 642	38.5	0. 1143
66	0.0033	56	0.0134	48.0	0.0373	343		680	38.0	0. 1209
-65	0.0038	-55	0.0153	-47.5	0.0396	$6-42$. 721	-37.5	0. 1279
64	0.0044	54	0.0174	47.0	0.0421	I		. 765	37.0	-. 1352
63	0.0051	53	-. 0198	46.5	0.0448	8 4		081	36.5	0. 1430
62	0. 0059	52	0.0226	46.0	0.0476			. 859	36.0	0.1511
61	0.0068	51	0.0256	45.5	0.0506	6 40		910	35.5	0. 1596
Temperature.	. 0	. 1	. 2	. 3	. 4	.5	. 6	. 7	. 8	. 9
	mm	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
-35°	0.1686	0.1668	0.1650	0.1632	0.1614	0.1596	0.1579	0.1562	0.1545	0.1528
34	0.1880	0.1860	0.1840	0.1820	0.180	0.1781	0.1761	0.1742	0.1723	0.1705
33	0.2094	0.2072	0.2050	0.2028	0.2006	0.1984	0.1963	0.1942	0.1921	0.1901
32	0.2331	0.2306	0.228I	0.2257	0.2233	0.2209	0.2186	0.2163	0.2140	0.2117
31	0.2591	0.2564	0.2537	0.2510	0.2484	0.2458	0.2432	0.2406	0.2381	0.2355
-30	0.2878	0.2848	0.2818	0.2789	0.2760	0.273 I	0.2703	0.2674	0.2646	0.2619
29	0.3194	0.3161	0.3128	0.3096	0.3064	0.3032	0.3001	0.2970	0.2939	0.2908
28	0.354 I	0.3505	0.3469	0.3433	0.3398	0.3363	0.3329	0.3295	0.3261	0.3227
27	0.3923	0.3883	0.3843	0.3804	0.3766	0.3727	0.3689	0.3652	0.3615	0.3578
26	0.434 I	0.4297	0.4254	0.4211	0.4169	0.4127	0.4085	0.4044	0.4003	0.3963
-25	0.4800	0.4752	0.4705	0.4658	0.4611	0.4565	0.4519	0.4474	0.4429	0.4385
24	0.5303	0.5251	0.5199	0.5147	0.5096	0.5046	0.4996	0.4946	0.4897	0.4848
23	0.5854	0.5796	0.5739	0.5683	0.5628	0.5572	0.5517	0.5463	0.5409	0.5356
22	0.6456	0.6393	0.6331	0.6270	0.6209	0.6148	0.6088	0.6029	0.5970	0.5912
2 I	0.7115	0.7046	0.6978	0.69 I I	0.6844	0.6778	0.6713	0.6648	0.6583	0.6519
-20	0.7834	0.7759	0.7685	0.7611	0.7538	0.7466	0.7395	0.7324	0.7254	0.7184
19	0.8618	0.8537	0.8456	0.8376	0.8296	0.8217	0.8139	0.8062	0.7985	0.7909
18	0.9474	0.9385	0.9297	0.9209	0.9123	0.9037	0.8952	0.8867	0.8784	0.8701
17	I. 0406	1.0309	1.0213	1.0118	1.0024	0.9930	0.9837	0.9745	0.9654	0.9563
16	1.1421	1.1316	1.1211	1.1108	1.1005	1.0903	1.0802	1.0702	1.0602	1.0504
-15	1.2525	1.24 II	1.2297	1.2184	1.2072	1.1962	1.1852	I.1743	1.1635	1.1527
14	1.3726	1.3601	1.3477	1.3355	1.3233	1.3113	1.2993	1.2875	1.2757	1.264I
13	1.5029	1. 4894	1. 4759	1.4626	1. 4495	1.4364	I. 4234	I.4105	I. 3978	1.3851
12	I. 6444	I. 6297	1.615I	1. 6007	1.5864	1.5722	I.5581	1.544 1	1.5302	1.5165
II	1. 7979	1.7820	1.7662	1.7506	1.7350	1.7196	1.7043	1.6892	1.6741	1.6592
-10	1.9643	1. 9470	1.9299	1.9129	1.8961	1.8794	1. 8628	I. 8464	1.8301	1.8139
	2.1445	2.1258	2.1073	2.0889	2.0707	2.0526	2.0347	2.0168	1.999 ${ }^{2}$	1.9817
8	2.3395	2.3193	2.2993	2.2794	2.2596	2.2401	2.2206	2.2014	2.1823	2.1633
7	2.5505	2.5287	2.5070	2.4855	2.4642	2.4430	2.4220	2.4011	2.3804	2.3599
6	2.7785	2.7549	2.7315	2.7083	2.685^{2}	2.6623	2.6396	2.6171	2.5947	2.5725
- 5	3.0248	2.9993	2.9740	2.9489	2.9240	2.8993	2.8747	2.8504	2.8262	2.8023
4	3.2907	3.2632	3.2359	3.2088	3.1819	3.155^{2}	3.1287	3.1025	3.0764	3.0505
3	3.5775	3.5479	3.5184	3.4892	3.4602	$3.43 \mathrm{I4}$	3.4028	3.3745	3.3463	3.3184
2	3.8868	3.8548.	3.8230	3.7916	3.7603	3.7292	3.6985	3.6678	3.6375	3.6074
I	4.2199	4.1854	4.1513.	4.1174	4.0837	4.0502	4.0171	3.9841	I 3.9515	3.9190
- 0	4.5802	$4 \cdot 5428$	4.5057	4.4690	4.4325	4.3962	4.3604	4.3248	4.2896	4.2546

Smithsonian Tables.

METRIC MEASURES.

Tem- pera- ture.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
C.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0°	4.580	4.614	4.647	4.68 I	4.715	4.750	4.784	4.819	4.854	4.889
1	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.291	$5 \cdot 329$	$5 \cdot 368$	5.406	5.445	5.484	$5 \cdot 523$	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
6	7.012	7.06 r	7.110	7.159	7.209	7.259	7.309	7.360	7.410	7.462
7	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.991
8	8.045	8.100	8.156	8.211	8.267	8.324	8.380	8.437	S. 494	8.552
9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	9.210	9.272	9.334	$9 \cdot 397$	9.460	9.523	9.587	9.651	9.716	9.781
II	9.846	9.912	9.978	10.044	10.111	10.178	10.246	10.314	10.382	10.45 I
12	10.52 I	10.590	10.660	10.73 I	10.801	10.873	10.944	11.016	11.089	11.162
13	11.235	11.309	11.383	11.458	I I 5333	II. 608	I 1.684	I 1.761	11.837	11.915
14	11.992	12.070	12.149	12.228	12.307	12.387	12.468	I 2.549	12.630	12.712
15	12.794	12.877	12.950	13.043	13.127	13.212	13.297	13.383	13.469	13.555
16	13.642	13.729	13.817	13.906	13.995	14.084	14.174	14.265	14.356	14.447
17	14.539	14.632	14.725	14.818	14.912	15.007	15.102	15.197	15.293	15.390
18	15.487	15.585	15.683	15.782	15.882	15.981	16.082	16.183	16.285	16.387
19	16.489	16.593	16.696	16.801	16.906	17.011	17.117	17.224	17.331	$17 \cdot 4.39$
20	17.548	17.657	17.766	17.877	17.987	18.099	18.21 I	18.323	18.437	18.551
21	18.665	18.780	18.896	19.012	19.129	19.247	19.365	19.484	19.603	19.723
22	19.844	19.965	20.087	20.210	20.3 .33	20.457	20.582	20.707	20.833	20.960
23	21.087	21.215	21.344	21.473	21.604	21.734	21.866	21.998	22.131	22.264
24	22.398	22.533	22.669	22.805	22.942	23.080	23.219	23.358	23.498	23.638
25	23.780	23.922	24.065	24.209	24.353	24.498	24.644	24.791	24.938	25.086
26	25.235	25.385	25.535	25.687	25.839	25.991	26.145	26.299	26.455	26.610
27	26.767	26.925	27.083	27.242	27.402	27.563	27.725	27.887	28.051	28.215
28	28.380	28.546	28.712	28.880	29.048	29.217	29.387	29.558	29.730	29.903
29	30.076	30.25 I	30.426	30.602	30.779	30.957	3I.136	31.315	31.496	31.678
30	31.860	32.043	32.228	32.413	32.599	32.786	32.974	33.163	33.353	33.543
31	33.735	33.928	34.121	34.316	34.512	34.708	34.906	35.104	35.303	35.504
32	35.705	35.908	36.111	36.315	36.52 I	36.727	36.935	37.143	37.353	37.563
33	37.775	37.987	38.201	38.415	38.63 I	38.848	39.065	39.284	39.504	39.725
34	39.947	40.170	40.394	40.619	40.846	41.073	41.302	41.531	41.762	41.994
35	42.227	42.461	42.696	42.932	43.170	43.408	43.648	43.889	44.131	44.374
36	44.619	44.804	45. I I I	45.358	45.608	45.858	46.109	46.362	46.615	46.870
37	47.127	47.384	47.643	47.902	48.163	48.426	48.689	48.954	49.220	49.487
38	49.756	50.025	50.296	50.569	50.842	51.117	51.393	51.670	51.949	52.229
39	52.510	52.793	53.077	53.362	53.649	53.937	54.226	54.516	54.808	55.101
40	55.396	55.692	55.989	56.288	56.588	56.889	57.192	57.496	57.802	58.109
41	58.417	58.727	59.038	59.351	59.665	59.981	60.298	60.616	60.936	61.257
42	61.580	61.904	62.230	62.557	62.886	63.216	63.547	63.880	$6+.215$	64.551
43	64.889	65.228	65.569	65.91 I	66.255	66.600	66.947	67.295	67.645	67.997
44	68.350	68.704	69.061	69.419	69.778	70.139	70.502	70.866	71.232	71.599
45	71.968	72.339	72.712	73.086	73.461	73:839	74.218	74.598	74.981	75.365
46	75.751	76.138	76.527	76.918	77.311	77.705	78.101	78.499	78.898	79.300
47	79.703	80.107	80.514	80.922	8 I .332	81.744	82.158	82.573	82.990	83.409
48	83.830	84.253	84.677	85.104	85.532	85.962	86.394	86.828	87.263	87.701
49	88.140	88.581	89.024	89.470	89.916	90.365	90.816	91.269	91.723.	92.180
50	92.639	93.099	93.562	94.026	94.492	94.961	95.431	95.903	96.378	96.854

PRESSURE OF AQUEOUS VAPOR OVER WATER.
METRIC MEASURES.

$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture. } \end{aligned}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
C.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
50°	92.64	93.10	93.56	94.03	94.49	94.96	95.43	95.90	96.38	96.85
51	97.33	97.8 I	98.30	98.78	99.27	99.76	100.25	100.74	IOI. 23	101. 73
52	102.23	102.73	103.23	103.74	104.25	104.75	105.27	105.78	106.30	106.81
53	107.33	107.86	108.38	108.91	109.44	109.97	I 10.50	111.04	III. 57	II2.II
54	I I 2.66	113.20	113.75	114.30	II4.85	II5.40	II 5.96	116.51	117.07	117.64
55	118.20	118.77	I 19.34	II9.91	120.49	121.06	121.64	122.22	122.81	123.39
56	123.98	124.57	125.16	I 25.76	126.36	126.96	127.56	128.17	128.77	129.38
57	130.00	130.61	131.23	I31. 85	I32.47	133.10	133.73	134.36	134.99	135.62
58	136.26	I 36.90	I 37.54	I38.19	I 38.84	I 39.49	140.14	140.80	141.46	142.12
59	142.78	143.45	I44.12	144.79	I 45.46	146.14	146.82	147.50	148.19	148.88
60	149.57	150.26	150.95	151.65	152.35	153.06	153.77	154.48	155.19	155.90
61	I 56.62	157.34	158.07	158.79	159.52	160.26	160.99	161.73	162.47	163.2 I
62	163.96	164.71	165.46	166.22	166.98	167.74	168.50	169.27	170.04	170.81
63	171.59	172.37	173.15	173.93	174.72	175.51	176.31	177.10	177.91	I78.71
64	179.52	180.32	I8I.I4	181.95	182.77	183.59	184.42	185.25	186.08	186.91
65	187.75	188.59	189.44	190.28	191.13	191.99	192.85	193.71	194.57	195.44
66	196.31	197.18	198.06	198.94	199.82	200.71	201.60	202.49	203.39	204.29
67	205.19	206.10	207.01	207.92	208.84	209.76	210.68	211.61	212.54	213.47
68	214.41	215.35	216.30	217.24	218.20	219.15	220.11	221.07	222.04	223.01
69	223.98	224.96	225.94	226.92	227.91	228.90	229.89	230.89	231.89	232.90
70	233.9 I	234.92	235.94	236.96	237.98	239.01	240.04	241.08	242.12	243.16
71	244.2 I	245.26	246.31	247.37	248.43	249.50	250.57	251.64	252.72	253.80
72	254.88	255.97	257.07	258.16	259.27	260.37	261.48	262.59	263.71	264.83
73	265.96	267.08	268.22	269.35	270.50	271.64	272.79	273.94	275.10	276.26
74	277.43	278.60	279.77	280.95	282.13	283.32	284.51	285.71	286.90	288.1 1
75	289.32	290.53	291.74	292.97	294.19	295.42	296.65	297.89	299.13	300.38
76	301.63	302.89	304.15	305.4 I	306.68	307.95	309.23	310.51	$3 \mathrm{II} . \mathrm{So}^{\text {o }}$	313.09
77	314.38	315.68	316.99	318.30	319.61	320.93	322.25	323.58	324.91	326.25
78	327.59	328.93	330.28	331.64	333.00	334.36	335.73	337.10	33848	339.86
79	341.25	342.65	344.04	345.44	346.85	348.26	349.68	351.10	352.53	. 353.96
80	355.40	356.84	358.28	359.73	361.19	362.65	364.II	365.58	367.06	368.54
8 I	370.03	371.52	373.01	374.51	376.02	377.53	379.05	380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	392.92	394.49	396.06	397.64	399.22
83	400.8 I	402.40	404.00	405.61	407.22	408.83	410.45	412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.71	435.41	437.12	438.83	440.55	442.28	444.01	445.75	447.49	449.24
86	450.99	452.75	454.51	456.28	458.06	459.84	461.63	463.42	465.22	467.03
87	468.84	470.66	472.48	474.31	476.14	477.99	479.83	481.68	483.54	485.41
88	487.28	489.16	491.04	492.93	494.82	496.72	498.63	500.54	502.46	504.39
89	506.32	508.26	510.20	512.15	514.II	516.07	518.04	520.01	521.99	523.98
90	525.97	527.97	529.98	531.99	534.01	536.04	538.07	540.11	542.15	544.2 I
91	546.26	548.33	550.40	552.48	554.56	556.65	558.75	560.85	562.96	565.08
92	567.20	569.33	571.47	573.61	575.76	577.92	580.08	582.25	584.43	586.61
93	588.80	591.00	593.20	595.41	597.63	599.86	602.09	604.33	606.57	608.82
94	611.08	613.35	615.62	617.90	620.19	622.48	624.79	627.09	629.4 I	631.73
95	634.06	636.40	638.74	641.09	643.45	645.82	648.19	650.57	652.96	655.35
96	657.75	660.16	662.58	665.00	667.43	669.87	672.32	674.77	677.23	679.70
97	682.18	684.66	687.15	689.65	692.15	694.67	697.19	699.71	702.25	704.79
98	707.35	709.90	712.47	715.04	717.63	720.22	722.8 I	725.42	728.03	730.65
99	733.28	735.92	738.56	74 I .2 I	743.87	746.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	78 1. 95	784.73

TAble 72.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
METRIC MEASURES.

Temperature.	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°
C.	mi	mr	mm	mm	m	m	mm.	mm.	mm.	mm.
100°	760.0	787.5	815.9	845.0	875. 1	906.0	937.8	970.5	1004.2	1038.8
110	1074.4	IIII. 0	1148.6	1187.2	1226.9	1267.7	1309.6	1352.6	1396.8	1442. 1
20	1488.7	1536.4	1585.4	1635.7	1687.3	1740. 2	1794.4	1850.0	1907.0	1965.4
130	2025.2	2086.5	2149.3	2213.7	2279.6	2347.0	2416. I	2486.8	2559.2	2633.2
140	2709.0	2786.5	2865.8	2947.0	3029.9	3114.7	3201.4	3290.1	3380.7	$3473 \cdot 3$
150°	3567.9	3664.6	3763.3	3864.2	3967. 2	4072.4	4179.8	4289.5	4401.5	4515.7
160	4632.4	4751.4	4872.8	4996.7	5123.1	5252.0	5383.4	5517.5	5654.2	5793. 5
170	5935.6	6080. 4	6228.0	6378.4	6531.7	6687.8	6846.9	7009.0	7174.0	7342. I
180	7513.3	7687.7	7865.2	8045.9	8229.8	8417.0	8607.6	S801. 5	8998.9	9199.6
190°	9404	9612	9823	10038	10257	10479	10705	10935	11169	11407
200	11648	11894	12143	12397	12654	12916	13182	13452	13727	14006
210	14289	14577	14869	15165	15467	15772	16083	16398	16718	17043
220	17372	17707	18046	18391	18740	19095	19454	19819	20190	20565
230°	20946	21332	21724	22121	22524	22932	23347	23766	24192	24623
240	25061	25504	25953	26408	26870	27337	2781 I	28291	28778	29270
250	29770	30275	30787	31306	31832	32364	32903	33449	34002	34562
260	35128	35702	36283	36872	37467	38070	38680	39298	39923	40556
270	41197	41845	42501	43165	43836	445 ェ6	45204	45899	46603	47316
280°	48036	48765	49503	50248	51003	51766	52538	53318	54108	54906
290	55714	56530	57356	58191	59035	59888	60751	61624	62506	63398
300	64299	65211	66132	67063	68005	68956	69918	70890	71872	72865
310	73869	74883	75907	76943	77990	79047	80116	81195	82286	83389
320	84503	85628	86765	87913	89074	90246	91430	92626	93835	95056
330°	c6289	97534	98793	100060	10135°	102640	103950	105280	106610	107960
340	109320	110700	112090	I 13490	114910	I 16340	I 17780	I19240	120720	122210
350	123710	125220	126760	128310	129870	131440	133030	134640	136270	I37900
360	I 39560	141230	142920	144620	146340	148070	149820	151590	153380	155180
370	I 57000	158840	160690	162560	164450					

Table 73.
WEICHT OF A CUBIC FOOT OF SATURATED VAPOR.
ENGLISH MEASURES.

Temperature.		Temferature.	. 0	. 5	Temperaature.	. 0	. 2	. 4	. 6	. 8
	Grains		Grains	Grains		Grains	Grains	Grains	Grains	Grains
-30°	0.095	$+20^{\circ}$	I. 244	1. 273	$+70^{\circ}$	8.066	8.117	8.170	8.223	8.276
29	00	21	1. 301	1.332	71	8.329	8.383	8.437	8.49 I	8.546
28	0.106	22	1.362	1.393	72	8.600	8.656	8.71 I	8.766	8.823
27	0.112	23	1.425	1. 457	73	8.879	8.936	8.992	9.050	9.107
26	0.119	24	1.490	1.524	74	9.165	9.223	9.28 I	9.34 I	9.400
-25	0.126	+25	1. 558	1.593	+75	9.460	9.519	9.579	9.640	9.700
24	0.134	26	1.629	1. 666	76	9.761	9.823	9.885	9.947	10.009
23	0.141	27	1.703	r.741	77	10.072	10.135	10.199	10.263	10.327
22	0.150	28	1.779	1.819	78	10.392	10.457	10.52 I	10.587	10.653
21	0.158	29	1. 859	1.900	79	10.720	10.785	10.853	10.921	10.987
-20	0.167	$+30$	1.942	1.984	$+80$	I 1.056	II.I 24	11.193	11.262	11.331
19	-0.176	31	2.028	2.072	81	II.401	II.471	11.542	11.613	I1.685
18	0.187	32	2.118	2.159	82	II. 756	I 1.828	11.900	11.974	12.047
17	0.197	33	2.200	2.242	83	12.121	12.195	12.269	I 2.344	12.419
16	0.208	34	2.286	2.330	84	12.494	12.570	12.646	12.723	12.800
-15	0.220	+35	2.375	2.420	+85	12.878	12.956	13.034	13.113	13.192
14	0.232	36	2.466	2.513	86	13.272	13.351	13.432	I3.512	13.594
13	0.244	37	2.560	2.609	87	13.676	13.758	13.840	13.923	14.006
12	0.258	38	2.658	2.708	88	14.090	14.174	14.258	14.344	14.429
II	0.272	39	2.759	2.810	89	14.515	14.601	14.689	14.776	14.864
-10	0.286	+40	2.863	2.916	+90	14.951	15.040	15.129	15.219	15.309
9	0.302	41	2.970	3.026	91	15.400	15.490	15.58 I	I 5.673	15.766
8	0.318	42	3.082	3.138	92	15.858	15.951	16.045	I6.I39	16.234
7	0.335	43	3.196	3.254	93	16.328	16.423	16.520	16.616	16.713
6	0.353	44	3.315	3.374	94	16.810	16.909	17.007	17.106	17.205
- 5	0.371	$+45$	3.436	3.499	+95	17.305	17.406	17.506	17.607	17.709
4	0.391	46	3.563	3.627	96	17.812	17.914	18.018	18.121	18.226
3	0.41 I	47	3.693	3.759	97	18.330	18.436	18.542	18.648	18.755
2	0.433	48	3.828	3.895	98	18.863	18.971	19.079	19.188	19.298
- I	0.455	49	3.965	4.036	99	19.407	19.518	19.629	19.741	19.853
± 0	0.479	+50	4.108	4.181	$+100$	19.966	20.079	20.193	20.307	20.422
+ I	0.503	51	4.255	4.33 I	101	20.538	20.654	20.770	20.887	21.005
2	0.529	52	4.407	4.485	102	21.123	21.242	21.362	21.48 I	21.602
,	0.556	53	4.564	4.644	103	21.723	21.845	21.967	22.090	22.213
4	0.584	54	4.725	4.807	104	22.337	22.462	22.588	22.714	22.839
5	0.613	+55	4.89 I	4.976	+105	22.966	23.095	23.223	23.351	23.481
6	0.644	56	5.062	5.149	106	23.611	23.742	23.873	24.005	24.138
8	0.676	57	5.238	$5 \cdot 328$	107	24.271	24.405	24.539	24.673	24.809
8	0.709	58	5.420	5.513	108	24.946	25.082	25.220	25.358	25.597
9	0.744	59	5.607	5.703	109	25.636	25.776	25.917	26.058	26.201
10	0.780	+60	5.800	5.899	$+110$	26.343	25.486	26.630	26.775	26.920
11	0.818	61	5.999	6.099	III	27.066	27.213	27.360	27.508	27.657
12	0.858	62	6.203	6.306	112	27.807	27.956	28.107	28.259	28.4 I I
13	0.900	63	6.413	6.52 I	113	28.563	28.717	28.871	29.026	29.181
14	0.943	64	6.630	6.740	114	29.338	29.495	29.653	29.812	29.970
15	0.988	+65	6.852	6.966	$+115$	30.130	30.291	30.452	30.614	30.777
16	1.035	66	7.082	7.198	116	30.940	31.104	31.270	3 I .435	31.601
17	1.084	67	7.317	7.437	117	31.768	31.937	32.106	32.274	32.445
18	1.135	68	7.560	7.683	II8	32.616	32.787	32.960	33.133	33.307
+19	1.189	+69	7.809	7.937	+119	33.482	33.657	33.834	34.010	34.189

Table 74.
WEIGHT OF A CUBIC METER OF SATURATED VAPOR.
METRIC MEASURES.

Temperature.		Temperature.	. 0	. 5	Temperature.	. 0	. 2	. 4	. 6	. 8
C.	Grams.	C.	Grams.	Grams.		Grams.	Grams. .	Grams.	Grams.	Grams.
-29°	0.378	-170	1.174	I. 123	-5°	3.261	3.208	3.157	3.106	3.056
28	0.418	16	1.284	1.228	4	3.534	3.478	3.422	3.368	3.314
27	0.461	15	I. 403	1. 342	3	3.828	3.767	3.708	3.649	3.59 I
26	0.508	14	1.531	1. 466	2	4.144	4.078	4.015	3.95 I	3.889
25	0.559	13	1.671	I. 599	I	4.482	4.412	4.344	4.276	4.209
24	0.615	12	1.820	1.744	\bigcirc	4.847	4.77 I	4.697	4.624	4.553
-23	0.677	- 11	1.983	I. 900	+0	4.847	4.914	4.982	5.051	5.121
22	0.743	10	2.158	2.069	I	5.192	5.264	$5 \cdot 336$	5.409	5.483
21	0.816	9	2.347	2.251	2	5.559	5.634	5.711	5.789	5.868
20	0.894	8	2.551	2.447	3	5.947	6.028	6.110	6.192	6.275
19	0.980	7	2.770	2.658	4	6.360	6.445	6.532	6.619	6.708
18	1.073	6	3.006	2.886	5	6.797	6.888	6.979	7.072	7.166
Temperature.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 9
c.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams.
$+6^{\circ}$	7.261	7.309	7.357	7.405	7.453	7.502	7.552	7.601	7.65 I	7.701
7	7.751	7.802	7.853	7.904	7.956	8.007	8.059	8.112	8.164	8.217
8	8.271	8.324	8.378	8.432	8.487	8.542	8.597	8.652	8.708	8.764
9	8.821	8.877	8.934	8.991	9.049	9.106	9.165	9.223	9.282	9.34 I
+10	9.401	9.461	9.52 I	9.582	9.643	9.704	9.765	9.827	9.889	9.952
II	10.015	10.078	10.142	10.205	10.270	10.334	10.400	10.465	10.530	10.597
12	10.664	10.730	10.797	10.865	10.932	11.001	11.069	11.138	11.208	11.278
13	11.348	II.418	II 1.489	11.56I	11.632	11.704	11.777	11.850	11.922	I 1.997
14	12.070	12.144	12.219	12.295	12.370	12.446	12.523	12.600	12.677	12.754
$+15$	12.832	12.911	12.990	13.068	13.148	13.229	13.309	13.390	13.472	13.553
16	13.635	13.718	13.801	13.885	13.969	14.053	14.139	14.224	14.309	14.395
17	14.482	14.569	14.657	14.744	14.833	14.922	15.011	15.101	15.191	15.282
18	15.373	15.465	15.557	15.650	15.743	15.836	15.93 I	10.025	16.121	16.216
19	16.311	16.409	16.505	16.603	16.701	16.799	16.898	16.998	17.097	17.198
+20	17.300	17.401	17.503	17.606	17.708	17.812	17.917	18.021	18.126	18.232
21	18.338	18.445	18.553	18.660	18.768	18.878	18.987	19.097	19.207	19.319
22	19.430	19.542	19.655	19.769	19.882	19.996	20.112	20.227	20.343	20.461
23	20.578	20.695	20.814	20.933	21.053	21.173	21.295	21.416	21.538	21.660
24	21.783	21.907	22.032	22.157	22.282	22.409	22.536	22.663	22.791	22.920
+25	23.049	23.179	23.310	23.442	23.573	23.706	23.839	23.973	24.107	24.242
26	24.378	24.514	24.651	24.790	24.929	25.066	25.206	25.346	25.488	25.629
27	25.771	25.915	26.058	26.203	26.348	26.494	26.641	26.787	26.936	27.084
28	27.234	27.384	27.534	27.686	27.837	27.990	28.143	28.298	28.453	28.609
29	28.765	28.923	29.081	29.239	29.399	29.559	29.720	29.88I	30.044	30.207
+30	30.371	30.535	30.701	30.867	31.034	31.202	31.371	31.540	31.710	31.880
31	32.052	32.225	32.398	32.572	32.747	32.923	33.100	33.277	33.454	33.633
32	33.812	33.993	34.175	34.356	34.540	34.723	34.909	35.094	35.280	35.467
33	35.656	35.844	36.034	36.224	36.416	36.609	36.801	36.995	37.190	37.386
34	37.583	37.780	37.979	38.178	38.378	38.579	38.782	38.984	39.187	39.393
+35	39.599	39.805	40.013	40.221	40.430	40.640	40.85 I	41.064	41.277	41.49 I
36	41.706	41.921	42.139	42.356	42.575	42.795	43.015	43.237	43.459	43.683
37	43.908	44.134	44.360	44.587	44.815	45.046	45.277	45.507	45.740	45.973
38	46.208	46.443	46.680	46.918	47.156	47.396	47.636	47.878	48.121	48.365
39	48.609	48.855	49.103	49.350	49.600	49.850	50.101	50.353	50.606	50.86 I
+40	51.117	51.373	51.631	51.890	52.150	52.410	52.673	52.936	53.200	53.466

HYGROMETRICAL TABLES.

Reduction of psychrometric observations - English measures.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-3^{2}}{\mathrm{i}_{57 \mathrm{I}}}\right)$. Table 75
Relative humidity - Temperature Fahrenheit Table 76
Reduction of psychrometric observations - Metric Measures.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I} 5 t^{\prime}\right)$. Table 77
Relative humidity - Temperature Centigrade Table 78
Rate of decrease of vapor pressure with altitude TABLE 79
Reduction of snowfall measurements.
Depth of water corresponding to the weight of a cylindrical snow core 2.655 inches in diameter

Table 80
Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage Table 8I

Quantity of rainfall corresponding to given depths . . . TABLE 82

Table 75.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
Pressure of Saturated Aqueous Vapor, e.

Temperature.	0	1	2	3	4	5	6	7	8	9
F. -60°	Inches,	Inches.	Inchos.	Inches.	Inches	Inches.	Inches.	Inches.	Inches.	Inches.
50	20	. 0018	. 0017	.0016	. 0015	.0014	.0013	. 0012	. 0011	. 0011
40	38	36	33	31	29		26	24	23	21
30	71	66	62	59	55		49	46	43	40
20	. 0127	. 0120	. 0113	. 0107	. 0101.	. 0095	. 0090	. 0084	. 0080	. 0075
$\begin{gathered} e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right) \\ B=30.0 \text { inches } \end{gathered}$										
t^{\prime}	$t-t^{\prime}$									
	. 0	. 2	. 4	. 6	. 8	1.0	1.2	1.4	1.6	1.8
	Inches.	Inches.			Inches,	Inches,	Inches.	Inches.	Inches,	Inches.
-20°	. 0127	. 0106	. 0085	. 0063	. 0042	. 0021				
19	135	113	92	71	49	28	. 0007			
18	143	121	. 0100	79	57	36	.0015			
17	151	130	108	87	66	44	23	. 0002		
16	160	138	117	96	74	53	32	. 0010		
15	169	148	126	.0105	84	62	4 I	19		
14	179	157	I 36	115	93	72	50	29	. 0008	
13	189	168	146	125	.0103	82	61	39	. 0018	
12	200	178	157	136	114	93	71	50	29	. 0007
II	2 II	190	168	147	125	. 0104	83	61	40	. 0018
10	223	202	180	159	137	116	94	73	52	30
	236	214	193	171	150	128	. 0107	85	64	43
8	249	227	206	184	163	141	120	98	77	56
7	263	241	220	198	177	155	134	.OII2	91	69
6	277	256	234	213	191	170	148	127	. 0105	84
5	292	271	249	228	206	185	163	142	120	. 0099
4	308	287	265	244	222	201	179	158	136	. OI 15
3	325	304	282	261	239	218	196	175	153	132
2	343	321	300	278	257	235	214	192	171	149
1	361	340	318	297	275	254	232	210	189	167
± 0	38 I	359	338	316	294	273	25 I	230	208	187
+ I	401	380	358	337	315	293	272	250	229	207
2	423	401	379	358	336	315	293	271	250	228
3	445	423	402	380	359	337	315	294	272	250
4	468	447	425	404	382	360	339	317	295	274
5	493	47 I	450	428	407	385	363	342	320	298
6	519	497	476	454	432	411	389	367	346	324
7	546	524	503	48 I	459	438	416	394	373	351
8	574	552	531	509	487	466	444	422	401	379
9	604	582	560	539	517	495	+ 474	45^{2}	430	408
10	. 0635	.0613	. 0591	. 0569	. 0548	. 0526	.0504	. 0483	. 0461	. 0439
$\left.\begin{array}{l}-20 \\ +10\end{array}\right\}$	$\Delta e \times \Delta B$	+.0001	+.0001	+.0002	+.0003	+.0004	+.0004	+.0005	+.0006	+.0007

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $e=c^{\prime}-0.000367 B\left(l-t^{\prime}\right)\left(\mathrm{I}+\frac{i^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.0$ inches

t^{\prime}	$t-t^{\prime}$									
	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
F.	Inches. .000	Inches,	Inches.	Inches,	Inches.	Inches.	Inches.	Inches.	Inches.	Incheo.
8	34	. 0013								
	48		. 0005							
6	62	41	. 0019							
5	77	56	34	. 0013						
4	93	72	50	29	. 0007					
3	.0110	88	67	45	. 0024	. 0002				
	127	. 0106	84	63		. 0020				
I	146	124	.0103	81		38	. 0016			
± 0	165	144	122	. 0100	79		36	. 0014		
+1	185	104	142	121	99	78	56	34	. 0013	
2	207	185	16.3	142	. 0120	. 0009	77	55	34	. 0012
3	229	207	186	164	142	. 0121	90	78	56	34
4	252	231	209	187	160	144	.0122	. 0101	79	58
5	277	255	233	212	190	168	147	125	.0104	82
6	302	281	259	237	216	194	172	151	129	.0107
7	329	308	286	264	24.3	22 I	199	178	156	134
8	357	3.36	314	292			227	205	184	162
	387	365	343	322	300	278	257	235	213	191
$\left.\begin{array}{l} -10 \\ +10 \end{array}\right\} \Delta c \times \Delta B$. 0417	.0396	$\begin{array}{r} .0374 \\ +.0009 \end{array}$	$\begin{array}{r} .0352 \\ +.0000 \end{array}$	$\begin{array}{r} .0331 \\ +.0010 \end{array}$. 0309	.0287 +.0012	.0266 +.0012	.0244 +.0013	$\begin{array}{r} .0222 \\ +.0014 \end{array}$
		+.0008		$+.0009$	$+.0010$	+.0011			$+.0013$	$+.0014$
t^{\prime}	$1-l^{\prime}$									
	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8
	Inches.	Inches.	Inches.	Inches.	Inches.	Incheo.	Incheo.	Inches.	Inches.	Inches.
	$.0013$	-0014								
5	60	39	. 0017							
6	86	64	42	. 0021						
7	.0113 140	91 .0119	69 97	47 75	. 0026	.0004 32	. 0010			
9	170	148	. 0126	. 0105		61		. 0018		
10	. 0200	. 0179	. 0157	. 0135	. 0114	. 0092	. 0070	. 0048	. 0027	. 0005
$+10 \Delta c \times \Delta B$	+.0014	+.0015	+.0016	+.0017	+.0017	+.0018	+.0019	+.0020	+.0020	+.0021

Table 75.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

$$
\begin{gathered}
\text { Values of } e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{x}+\frac{t^{\prime}-3^{2}}{\mathrm{I} 57 \mathrm{I}}\right) \\
B=30.0 \text { inches }
\end{gathered}
$$

t^{\prime}	$t-t^{\prime}$									
	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
$\begin{aligned} & \text { F } \\ & 10^{\circ} \end{aligned}$	$\begin{gathered} \text { Inches. } \\ \Delta e \times \Delta B \end{gathered}$	$\begin{array}{r} \text { Inches. } \\ +.0004 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0007 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.00 I I \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0014 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0018 \end{array}$	$\begin{aligned} & \text { Inches. } \\ & +.0022 \end{aligned}$	$\begin{array}{r} \text { Inches. } \\ +.0025 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0029 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0033 \end{array}$
10°	0.063	0.053	0.042	0.031	0.020	0.009				
II	67	56	45	34	23	. 012	0.002			
12	70	59	48	37	27	16	8			
13	74	63	52	4 I	30	19	8			
14	77	66	56	45	34	23	. 012	0.001		
15	81	70	59	49	38	27	16	5		
16	85	74	63	53	42	31	20	9		
17	89	79	68	57	46	35	24	. 013	0.002	
18	94	83	72	61	50	39	28	18		
19	. 099	88	77	66	55	44	33	22	11	0.000
20	. 103	92	81	71	60	49	38	27	- 16	. 005
21	. 108	97	86	76	65	54	43	32	21	. 010
22	.114	. 103	92	8 8	70	59	48	37	26	15
23	. 119	. 108	97	86	75	64	53	42	32	21
24	. 125	. 114	. 103	92	8 I	70	59	48	37	26
25	.13I	. 120	. 109	98	87	76	65	54	43	32
26	.137	. 126	. 115	. 104	93	82	71	60	49	38
27	. 143	. 133	. 122	. 111	. 100	89	78	67	56	45
28	. 150	. 139	. 128	. 117	. 106	95	84	73	62	51
29	. 57	. 146	. 135	. 124	. 113	.102	91	80	69	58
30	.165	. 154	. 143	.132	. 121	. 110	99	88	77	66
31	. 172	.161	. 150	. 139	. 128	.117	. 106	95	84	73
32	. 180	. 169	. 158	. 147	. 136	. 125	. 114	. 103	92	81
33	. 188	. 177	. 166	. 155	. 144	. 133	. 122	. 111	.100	89
34	. 195	.184	. 173	. 162	. 151	. 140	. 129	.118	. 107	96
35	. 203	.192	.181	.170	. 159	. 148	. 137	. 126	.115	.104
3^{6}	. 212	. 201	. 190	. 179	. 168	. 157	. 145	. 134	. 123	.112
37	. 220	. 209	. 198	. 187	. 776	.165	.154	. 143	. 132	.121
38	. 229	.218	. 207	. 196	.185	. 774	.163	. 152	. 141	. 130
39	. 238	. 227	. 216	. 205	. 194	. 183	. 172	.161	. 150	. 139
40	. 248	. 237	. 226	. 215	. 203	. 192	.181	. 170	. 159	. 148
41	. 258	. 246	. 235	. 224	. 213	. 202	.191	. 180	. 169	.158
42	. 268	. 257	. 246	. 234	. 223	. 212	. 201	. 190	. 179	. 168
43	. 278	. 267	. 256	. 245	. 234	. 223	. 212	. 201	. 190	. 178
44	. 289	. 278	. 267	. 256	. 245	. 234	. 223	. 211	. 200	. 189
45	. 300	. 289	. 278	. 267	. 256	. 245	. 234	. 223	. 211	. 200
46	. 312	-301	. 290	. 279	. 268	. 256	. 245	. 234	. 223	. 212
	. 324	. 313	. 302	. 291	. 280	. 268	.257	. 246	. 235	. 224
48	. 336	. 325	. 314	. 303	. 292	.281	. 270	. 259	.248	.236
49	. 349	-338	. 327	. 316	. 305	. 294	. 283	. 271	. 260	. 249
50	. 363	-351	-340	. 329	. 318	-307	. 296	. 285	. 274	. 262
51	. 376	. 365	. 354	. 343	-332	-321	. 309	. 298	. 287	. 276
52	. 390	-379	-368	-357	. 346	. 335	. 324	. 312	. 301	. 290
53	. 405	-394	. 383	. 372	.361	. 349	. 338	-327	-316	. 305
54	. 420	. 409	-398	. 387	-376	. 364	-353	-342	. 331	. 320
55	. 436	. 425	. 414	. 402	-391	. 380	. 369	-358	. 347	. 335
56	. 452	.441	. 430	.419	. 407	. 396	. 385	-374	. 363	-352
57	. 469	. 458	. 446	. 435	. 424	. 413	. 402	-390	- 379	-368
58	. 486	. 475	. 464	.452 .470	. 441	. 430	. 419	. 408	. 396	. 385
59	. 504	. 493	.48I	. 470	.459	. 448	.437	. 425	. 414	. 403
60	0.522	0.511	0.500	0.488	0.477	0.466	0.455	0.444	0.432	-0.421
60	$\Delta e \times \Delta B$	+.0004	$+.0007$	+.001 1	+.0015	+.0019	+.0022	+.0026	+.0030	+.0034

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

$$
\text { Values of } e=e^{\prime}-0.000367 B^{\prime}\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-3^{2}}{\mathrm{I}^{\prime} 57 \mathrm{I}}\right)
$$

$$
B=30.00
$$

t^{\prime}	$t-t^{\prime}$									
	10	11	12	13	14	15	16	17	18	19
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$30^{\circ} \Delta e \times \Delta B$	$+.0037$	+.0040	+.0044	+.0048	+.005 1	+.0055	+.0059	+.0062	+.0066	+.0070
22°	0.004									
23	. 010									
24	15									
25	21	0.010								
26	27	16	0.005							
27	34	23	. 012	0.001						
28	40	29	18	7						
29	47	36	25	. 014	0.003					
30	55	44	33	22	. 011	0.000				
31	62	5 I	40	29	18	. 007				
32	70	59	48	37	26	. 015	0.004			
33	78	67	55	44	33	22	11	0.000		
34	85	74	63	52	4 I	30	19	. 008		
35	93	82	71	60	49	38	27	. 016	0.005	
36	.101	90	79	68	57	46	35	24	. 013	0.002
37	. 110	99	88	77	66	55	43	32	21	. 010
38	. 119	. 108	96	85	74	63	52	4 I	30	19
39	. 128	. 117	. 105	94	83	72	61	50	39	28
40	. 137	. 126	. 115	.IO4	93	82	71	60	49	37
4 I	. 147	. 136	. 125	. 114	. 103	91	80	69	58	47
42	. 157	. 146	. 135	. 124	.113	. 101	90	79	68	57
43	. 167	. 156	. 145	. 134	. 123	.II 2	.IOI	90	79	68
44	.r 78	.167	. 156	. 145	. 134	. 123	. 112	.100	89	78
45	. 189	. 178	.167	. 156	. 145	. 134	. 123	. 112	. 100	89
46	. 201	. 190	. 179	. 168	. 156	. 145	. 134	. 123	. 112	.101
47	. 213	. 202	.191	. 180	. 168	. 157	. 146	. 135	. 124	.113
48	. 225	. 214	. 203	. 192	. 181	. 170	. 159	. 147	. 136	. 125
49	. 238	. 227	. 216	. 205	. 193	. 182	.171	.160	. 149	. 138
50	. 251	. 240	. 229	. 218	. 207	.196	. 184	.173	. 162	.151
51	. 265	. 254	. 243	. 231	. 220	. 209	. 198	.187	.176	.165
52	. 279	. 268	. 257	. 246	. 234	. 223	. 212	. 201	. 190	. 179
53	. 294	. 282	. 271	. 260	. 249	. 238	. 227	. 216	. 204	. 193
54	. 309	. 297	. 286	. 275	. 264	. 253	.242	. 231	. 219	. 208
55	-324	. 313	. 302	. 291	. 280	. 268	. 257	. 246	. 235	. 224
56	. 340	-329	. 318	. 307	. 296	. 285	. 273	. 262	.251	. 240
57	. 357	. 346	- 334	. 323	. 312	. 301	. 290	. 279	. 267	. 256
58	-374	. 363	. 352	-340	. 329	. 318	. 307	. 296	.284	. 273
59	. 392	. 38 I	. 369	. 358	. 347	.336	. 325	. 313	. 302	. 291
60	0.410	0.399	0.388	0.376	0.365	0.354	0.343	0.331	0.320	0.309
$60 \Delta e \times \Delta B$	+.0037	+.0041	+. 0045	+.0049	+.0052	+.0056	$+.0060$	+.0064	+.0067	+.0071

TABLE 75.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{1_{57}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$							-		
	20	21	22	23	24	25	26	27	28	29
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$40^{\circ} \Delta e \times \Delta B$	+.0074	+.0077	+.0081	+.0085	+.0089	+.0092	+.0096	+.0100	+.o103	+.0107
38°	0.008									
39	. 017	0.006								
40	26	. 015	0.004							
41	36	25	. 014	0.003						
42	46	35	24	. 013	0.002					
43	56	45	34	23	. 12	0.001				
44	67	56	45	34	23	. 012	0.001			
45	78	67	56	45	34	23	. 012	0.001		
46	90	79	68	57	45	34	23	. OI 2	0.001	
47	. 102	91	79	68	57	46	35	24	I3	0.002
48	. 114	. 103	92	81	70	58	47	36	25	. 014
49	. 127	. 116	. 104	93	82	71	60	49	38	27
50	. 140	. 129	.118	.ro6	95	84	73	62	51	40
51	. 153	. 142	. 131	. 120	. 109	98	87	75	64	53
52	. 167	. 156	. 145	. 134	. 123	.II2	.101	89	78	67
53	. 182	. 171	. 160	. 149	. 137	. 126	.115	. 104	93	82
54	. 197	. 186	. 175	. 164	.152	.14I	. 130	. 119	. 108	97
55	. 212	. 201	. 190	. 179	. 168	. 157	.145	. 134	. 123	. 112
56	. 229	. 218	. 206	. 195	. 184	. 173	. 162	.150	. 139	. 128
57	. 245	. 234	. 223	. 211	. 200	.189	.178	.167	. 156	.144
58	. 262	. 251	. 240	. 228	. 217	. 206	. 195	. 184	. 173	. 161
59	. 280	. 269	. 257	. 246	. 235	. 224	. 213	. 201	. 190	. 179
60	0.298	0.287	0.275	0.264	0.253	0.242	0.231	0.219	0.208	0.197
$60 \Delta \varepsilon \times \Delta B$	$+.0075$	+.0078	+.0082	+.0086	+.0090	+.0093	+.0097	+.0101	+.0105	+. 0108
t^{\prime}	$t-t^{\prime}$									
	30	31	32	33	34	35	36	37	38	39
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
$50^{\circ} \Delta e \times \Delta B$	+.01 II	+.0115	+.0119	+.0122	+.0126	+.0130	+.0134	+.0137	+.0141	+.0145
48°	0.003									
49	. 015	. 004								
50	29	. 017	0.006							
5 I	42	31	. 020	0.009						
52	56	45	34	. 023	0.011	0.000				
53	70	59	48	37	26	.015	0.004			
54	85	74	63	52	4 I	30	. 018	0.007		
55	. I 1	90	78	67	56	45	34	. 023	0.011	0.000
56	. 117	. 106	95	83	72	61	50	39	28	. 016
57	. 133	. 122	. 111	. 100	88	77	66	55	44	32
58	. 150	. 139	. 128	. 117	. 105	94	83	72	61	49
59	. 168	. 157	. 145	. 134	. 123	.II 2	. 101	89	78	67
60	0.186	0.175	0.163	0.152	0.141	0.130	0.119	0.107	0.096	0.085
$60 \Delta e \times \Delta B$	+.0112	+.0116	+.0120.	+.0123	+.0127	+.0131	+.0134	+.0138	+.0142	+.0146
t^{\prime}	$t-t^{\prime}$									
	40	41	42	43	44	45	46			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
56°	0.005									
57	. 021	0.010								
58	38	27	0.016	0.005						
59	56	45	33	. 022	0.011	0.000				
60	0.074	0.063	0.051	0.040	0.029	0.018	0.007			
$60 \Delta e \times \Delta B$	+.0149	+.0153	+.0157	+.0161	+.0164	+.0168	+.0172			

REDUCTION OF PSYCHROMETRIC OBSERVATION. ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ches.	ches.
60°	$\Delta e \times \Delta B$	+.0004	+.0007	+.0011	+.0015	+.0019	+.0022	+.0026	+.0030	+.0034	+. 0037
60°	0.522	0.511	0.500	0.488	0.477	0.466	0.455	0.444	0.432	0.42 I	0.410
61	. 541	. 530	- 518	. 507	. 496	. 485	. 474	. 462	. 451	. 440	. 429
62	. 560	- 549	. 538	. 527	. 516	. 504	. 493	. 482	. 471	. 459	. 448
63	. 580	569	. 558	. 547	. 536	. 524	. 513	. 502	. 491	. 479	. 468
64	. 601	. 590	. 579	. 568	. 556	. 545	. 534	. 523	. 511	. 500	. 489
65	. 623	.6II	. 600	. 589	. 578	. 566	. 555	. 544	. 533	. 52 I	. 510
66	. 645	. 633	. 622	. 611	. 600	. 588	. 577	. 566	. 555	. 543	. 532
67	. 667	. 656	. 645	. 634	. 622	. 611	. 600	. 589	. 577	. 566	. 555
68	. 691	. 680	. 668	. 657	. 646	. 635	.623	. 612	. 601	. 590	. 578
69	. 715	. 704	. 692	.681	. 670	. 659	. 647	. 636	. 625	. 614	. 602
70	. 740	. 729	. 717	. 706	. 695	. 684	. 672	. 661	. 650	. 638	. 627
71	. 766	. 754	. 743	. 732	. 720	. 709	. 698	. 687	. 675	. 664	. 653
72	. 792	. 781	. 769	. 758	. 747	. 735	. 724	. 713	. 702	. 690	. 679
73	. 819	. 808	. 797	. 785	. 774	. 763	.751	. 740	. 729	. 717	. 706
74	. 847	. 836	. 824	. 813	. 802	. 791	. 779	. 768	. 757	. 745	. 734
75	. 876	. 865	. 853	. 842	. 831	.819	. 808	. 797	. 786	. 774	. 763
76	. 906	. 894	. 883	. 872	. 860	. 849	. 838	. 826	. 815	. 804	. 792
77	. 936	. 925	. 914	. 902	. 891	. 880	. 868	. 857	. 846	. 834	. 823
78	. 968	. 956	. 945	. 934	. 922	. 911	. 900	. 888	. 877	. 866	. 854
79	1.000	. 989	. 977	. 966	. 955	. 943	. 932	. 921	. 909	. 898	. 887
80	1.033	1.022	1.011	. 999	. 988	. 977	. 965	. 954	. 943	. 031	. 920
81	. 068	. 056	. 045	1.034	1.022	1.011	. 999	. 988	. 977	. 965	. 954
82	. 103	. 092	. 080	. 069	. 057	. 046	1.035	1.023	I.OI2	1.001	. 989
83	. 139	. 128	. 116	. 105	. 094	. 082	. 071	. 060	. 048	. 037	1.026
84	. 176	. 165	. 154	.142	. 131	. 120	. 108	. 097	. 086	. 074	. 063
85	1.215	1.204	1.192	I.I8I	I. 569	I. 158	1.147	1.135	I. 124	I.112	I. ior
86	. 254	. 243	. 232	. 220	. 209	. 197	. 186	.175	. 163	. 152	. 140
87	. 295	. 284	. 272	. 261	. 249	. 238	. 227	. 215	. 204	. 192	. 181
88	. 336	. 325	. 314	. 302	. 291	. 279	. 268	. 257	. 245	. 234.	. 222
89	. 379	. 368	-357	. 345	. 334	. 322	. 311	. 300	. 288	. 277	. 265
90	1. 423	1.412	I. 401	1. 389	1. 378	I. 366	I. 355	1. 343	1. 332	1.321	1.309
91	. 469	. 457	. 446	. 435	. 423	. 412	. 400	. 389	. 377	. 366	. 355
92	. 515	. 504	. 492	-48I	. 470	. 458	. 447	. 435	. 424	. 412	. 401
93	. 563	. 552	- 540	. 529	. 517	. 506	. 494	.483	. 47 I	. 460	. 449
94	. 612	. 601	. 589	. 578	. 566	. 555	. 543	. 532	. 521	. 509	. 498
95	1.662	1.651	1. 640	1.628	1.617	1. 605	1.594	1. 582	1.571	1.559	
96	. 714	. 703	. 691	. 680	. 668	. 657	. 646	. 634	. 623	. 611	. 600
	. 767	. 756	. 744	. 733	. 722	. 710	. 699	. 687	. 776	. 664	. 653
98	. 822	. 811	. 799	. 788	. 776	. 765	. 753	. 742	. 730	. 719	. 707
99	. 878	. 867	. 855	. 844	. 832	. 821	. 809	. 798	. 786	. 775	. 763
100	1. 936	I. 924	1.913	1.901	1. 890	1.878	1. 867	1.855	1.844	1. 832	1.821
101	. 994	. 983	. 972	. 960	. 949	. 937	. 926	. 914	. 903	.891	. 880
102	2.055	2.043	2.032	2.020	2.009	. 997	. 986	. 974	.963	. 951	. 940
103	.117	. 106	. 094	. 083	. 071	2.060	2.048	2.037	2.025	2.014	2.002
104	.18I	.169	. 158	. 146	. 135	. 123	. 112	. 100	. 089	. 077	. 066
105	2.246	2.235	2.223	2.212	2.200	2.189	2.177	2.166	2. 154	2.143	2.131
106	. 314	. 302	. 290	. 279	. 267	. 256	. 244	. 233	. 221	. 210	.198
107	. 382	-371	-359	-348	. 336	. 325	. 313	. 302	. 290	. 278	. 267
108	. 453	. 441	-430	. 418	. 407	. 395	. 384	. 372	. 361	- 349	. 337
109	. 525	. 514	. 502	.491	. 479	. 467	. 456	. 444	. 433	. 42 I	.410
110	2.599	2.588	2.576	2.565	2.553	2.542	2.530	2.519	2.507	2.495	2.484
110	$\Delta e \times \Delta B$	+.0004	+.0008	+.0012	+.015	+.0019	+.0023	+.0027	+.003 1	+.0035	+.0039

Table 75.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

> Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
> $B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	11	12	13	14	15	16	17	18	19	20
F.	Inches.	Inches.	Inches.	Inches.	Inches.		Inches.			Inches.	Inches.
60°	$\Delta e \times \Delta B$	+.004 I	+.0045	+.0049	+.0052	+.0056	+.0060	+.0063	+.0067	+.0071	+.0075
60°	0.522	0.399	0.388	0.376	0.365	0.354	0.343	0.331	0.320	0.309	0.298
61	. 541	0.418	. 406	. 395	. 384	. 373	. 361	- 350	. 339	. 328	. 317
62	. 560	. 437	. 426	. 415	. 403	- 39^{2}	. 381	- 370	-358	- 347	. 336
63	. 580	. 457	. 446	. 435	. 423	. 412	. 401	-390	-378	. 367	. 356
64	. 601	. 478	. 466	. 455	. 444	. 433	. 422	. 410	-399	. 388	. 377
65	. 623	-499	. 488	. 476	. 465	-454	. 443	. 431	. 420	. 409	. 398
66	. 645	. 52 I	. 510	. 498	. 487	. 476	. 465	. 453	. 442	.43I	. 420
67	. 667	. 544	. 532	. 52 I	. 510	. 499	. 487	. 476	. 465	. 454	. 442
68	. 691	. 567	. 556	. 544	. 533	. 522	. 511	. 499	. 488	. 477	. 466
69	. 715	-591	. 580	. 568	-557	. 546	. 535	. 523	. 512	. 501	. 490
70	. 740	. 616	. 605	- 593	. 582	. 571	. 559	. 548	. 537	. 526	. 514
71	. 766	. 641	. 630	.619	. 608	. 596	. 585	. 574	. 562	- 551	. 540
72	. 792	. 668	. 656	. 645	. 634	. 623	. 611	. 600	. 589	. 577	. 566
73	. 819	. 695	. 684	. 672 .	. 661	. 650	. 638	. 627	. 616	. 604	. 593
74	. 847	. 723	. 711	. 700	. 689	. 678	. 666	. 655	. 644	. 632	. 621
75	. 876	.752	-740	. 729	. 718	. 706	. 695	. 684	. 672	.661	. 650
76	. 906	. 781	. 770	. 758	. 747	. 736	. 725	. 713	. 702	.691	. 679
77	. 936	.812	. 800	. 789	. 778	. 766	. 755	. 744	. 732	. 721	. 710
78	. 968	. 843	. 832	. 820	. 809	. 798	. 786	. 775	. 764	. 752	.741
79	1.000	. 875	. 864	. 853	. 84 I	. 830	.819	. 807	. 796	. 785	. 773
80	1.033	. 909	. 897	. 886	. 875	. 863	. 852	. 841	. 829	. 8 I 8	. 806
81	. 068	. 943	. 931	. 920	. 909	. 897	. 886	. 875	. 863	. 852	. 841
82	. 103	. 978	. 967	-955	. 944	. 932	. 9221	. 910	. 898	. 887	. 876
83	. 139	1.014	1.003	.991	.980	. 969	. 957	. 946	. 935	. 923	. 912
84	. 176	.05I	. 040	1.029	1.017	1.006	. 995	. 983	. 972	. 960	. 949
85	1.215	1.090	1.078	1.067	1.056	1.044	1.033	1.02 I	1.010	. 999	. 987
86	. 254	. 129	. 118	. 106	. 095	. 083	. 072	. 061	. 049	1.038	1.027
87	. 295	. 170	. 158	. 147	. 135	.124	. 113	. 101	. 090	. 078	. 067
88	. 336	. 211	. 200	. 188	. 177	. 165	. 154	. 143	. 131	. 120	. 108
89	. 379	. 254	. 242	. 231	. 220	. 208	. 197	.185	. 174	. 163	. 151
90	1.423	1. 298	1.286	1.275	1.264	I. 252	1.241	1. 229	1.218	1. 206	1.195
91	. 469	. 343	. 332	. 320	. 309	. 297	. 286	. 275	. 263	. 252	. 240
92	. 515	. 390	. 378	. 367	-355	- 344	. 332	- 321	- 310	. 298	. 287
93	.563	. 437	. 426	. 414	. 403	-39I	-380	-369	-357	- 346	. 334
94	. 612	. 486	. 475	. 463	. $45^{2} 2$. 440	. 429	. 418	. 406	. 395	. 383
95	1.662	1.537	1.525	1.514	1.502	I.491	I. 479	1. 468	1.456	1. 445	1.433
96	. 714	. 588	. 577	. 565	. 554	-542	. 531	. 520	. 508	. 497	. 485
	. 767	. 641	. 630	. 618	. 607	. 595	. 584	. 572	. 561	. 550	. 538
98	. 822	. 696	. 684	. 673	. 66 I	. 650	. 638	. 627	. 615	. 604	. 593
99	. 878	. 75^{2}	. 740	. 729	. 717	. 706	. 694	. 683	. 671	. 660	. 648
100	1.936	1.809	1.798	1.786	1.775	1. 763	1. 752	1.740	1.729	1.717	1.706
101	. 994	. 868	. 857	. 845	. 834	. 822	.8II	. 799	. 788	. 776	. 765
102	2.055	. 928	.917	. 905	. 894	. 882	. 87 I	. 859	. 848	.836	. 825
103	. 117	. 991	. 979	. 968	. 956	. 944	. 933	. 921	. 910	. 898	. 887
104	. 181	2.054	2.043	2.031	2.020	2.008	. 997	.985	. 974	. 962	. 951
105	2.246	2.120	2.108	2.097	2.085	2.073	2.062	2.050	2.039	2.027	2.016
106	. 314	. 187	. 175	. 164	. 152	. 141	. 129	. 118	. 106	. 094	. 083
107	.382	. 255	. 244	. 232	. 221	. 209	. 198	. 186	. 175	. 163	. 152
108	. 453	- 326	. 314	. 302	. 291	. 280	. 268	. 257	. 245	. 234	. 222
109	. 525	. 398	. 387	. 375	. 364	-352	. 340	. 329	. 317	. 306	. 294
110	2.599	2.472	2.461	2.449	2.438	2.426	2.414	2.403	2.391	2.380	2.368
110	$\Delta e \times \Delta B$	+.0042	+.0046	+.0050	+.0054	+.0058	+.0062	+.0065	+.0069	+.0073	+.0077

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	21	22	23	24	25	26	27	28	29	30
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inc
60°	$\Delta e \times \Delta B$	+.0078	82	+.0086	+.0090	+.0093	+.0097	+.0101	+.0105	+. 108	+.0112
60°	0.522	0.287	0.275	0.264	0.253	0.242	0.231	0.219 -238	0.208	0.197	0.186
$\begin{aligned} & 61 \\ & 62 \end{aligned}$. 541	0.305	. 294	. 283	. 272	. 261	. 249	. 238	. 227	. 216	. 205
62 63	. 560	. 325	. 314	. 302	. 291	. 280	. 269	. 257	. 246	. 235	. 224
63	. 580	. 345	. 334	. 322	. 311	. 300	. 289	. 277	. 266	. 255	. 244
64	. 601	. 365	- 354	. 343	-332	. 320	. 309	. 298	. 287	. 276	. 264
65	. 623	. 387	. 375	. 364	. 353	. 342	. 330	. 319	. 308	. 297	. 285
66	. 645	. 408	. 397	. 386	-375	. 363	. 352	. 341	. 330	. 319	. 307
67	. 667	. 431	. 420	. 409	-397	. 386	. 375	. 364	. 352	. 341	. 330
68	. 691	. 454	. 443	.432	. 421	. 409	. 398	. 387	. 376	. 364	. 353
69	. 715	. 478	. 467	456	. 445	. 433	. 422	.41I	. 399	. 388	. 377
70	. 740	. 503	. 492	. 481	. 469	. 458	. 447	. 435	. 424	. 413	. 402
71	. 766	. 529	. 517	. 506	. 495	. 483	. 472	. 461	. 450	. 438	. 427
72	. 792	. 555	. 544	. 532	. 521	. 510	. 498	. 487	. 476	. 464	. 453
73	. 819	. 582	. 571	. 559	. 548	. 537	. 525	. 514	. 503	. 491	. 480
74	. 847	. 610	. 598	. 587	. 576	. 564	. 553	. 542	53 r	. 519	. 508
75	. 876	. 638	. 627	. 616	. 605	. 593	. 582	. 571	. 559	. 548	
76	. 906	. 668	. 657	. 645	. 634	. 623	. 611	. 600	. 589	. 577	. 566
77	. 936	. 698	. 687	. 676	. 664	. 653	. 642	. 630	. 619	. 608	. 596
78	. 968	. 730	. 718	. 707	. 696	. 684	. 673	. 662	. 650	. 639	. 628
79	1.000	.762	.751	. 739	. 728	. 717	. 705	. 694	. 683	. 671	. 660
80	1.033	. 795	. 784	. 772	.761	. 750	. 738	. 727	. 716	. 704	. 693
8 I	. 068	. 829	. 818	. 806	. 795	. 784	. 772	. 761	. 750	. 738	. 727
82	. 103	. 864	. 853	. 842	. 830	. 819	. 808	:796	. 785	. 773	. 762
83	. 139	. 900	. 889	. 878	. 866	. 855	. 844	. 832	.82I	. 810	. 798
84	. 176	. 938	. 926	.915	. 904	.892	. 881	. 869	. 858	. 847	. 835
85	1.215	. 976	. 965	. 953	. 942	. 930	. 919	. 908	. 896	. 885	. 873
86	. 254	1.015	1.004	. 992	.981	. 970	. 958	. 947	. 935	. 924	. 913
87	. 295	. 056	. 044	1. 033	1. 021	1.010	. 999	. 987	. 976	. 964	. 953
88	. 336	. 097	. 086	. 074	. 063	. 051	1.040	1.029	1.017	I. 006	. 994
89	. 379	. 140	. 128	. 117	. 106	. 094	. 083	. 071	. 060	. 049	1.037
90	1. 423	1.184	1.172	I.161	I. 149	I. 138	1.127	1.115	1.104	1.092	1.08r
91	. 469	. 229	. 217	. 206	. 195	. 183	. 172	. 160	. 149	. 138	. 126
92	. 515	. 275	. 264	. 252	. 241	. 230.	. 218	. 207	. 195	. 184	. 172
93	. 563	. 323	. 311	. 300	. 288	. 277	. 266	. 254	. 243	. 231	. 220
94	.612	. 372	. 360	- 349	. 337	- 326	. 315	-303	. 292	. 280	. 269
95	1. 662	I. 422	1.4 II	1.399	1. 388	1.376	I. 365	1.353	r. 342	1.330	1.319
96	. 714	. 474	. 462	. 451	$\cdot 439$. 428	. 416	. 405	- 393	. 382	- 37 r
97	. 767	. 527	. 515	. 504	. 492	. 481	. 469	. 458	. 446	. 435	. 423
98		.581	. 570	. 558	. 547	. 535	. 524	. 512	. 501	. 489	. 478
99	. 878	. 637	. 625	. 614	. 602	. 591	. 580	. 568	. 557	. 545	. 534
100	1. 936	1. 694	1. 683	1.671	1. 660	1. 648	1. 637	1. 625	1.614	1. 602	1.591
101	. 994	. 753	. 742	. 730	. 719	. 707	. 696	. 684	. 673	. 661	. 650
102	2.055	. 813	. 802	. 790	. 779	. 767	. 756	. 744	. 733	. 721	. 710
103	.117	. 875	. 864	. 852	.841	. 829	. 818	. 806	. 795	. 783	. 772
104	.181	. 939	. 928	.916	. 905	. 893	. 882	. 870	. 858	. 847	. 835
105	2.246	2.004	I. 993	1.981	1.970	1.958	1.947	I. 935	1.924	1.912	I.901
106	. 314	. 071	2.060	2.048	2.037	2.025	2.OI4	2.002	. 991	. 979	. 968
107	. 382	. 140	. 129	. 117	.105	. 094	. 082	. 071	2.059	2.048	2.036
108	. 453	. 211	. 199	. 187	.176	. 164	. 153	. 141	. 30	.118	. 107
109	. 525	. 283	. 271	. 260	. 248	. 236	. 225	. 213	. 202	. 190	. 179
110	2.599	2.357	2.345	2.334	2.322	2.310	2.299	2.287	2.276	2.264	2.253
110	$\Delta e \times \Delta B$	+.co81	+.0085	+.0089	+.0092	+.cog6	+.oroo	+.0104	+.0108	+.0112	+.0116

Smithsonian tables.

Table 75.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	31	32	33	34	35	36	37	38	39	40
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
60°	$\Delta e \times \Delta B$	+.0116	+. 0120	+.C123	+.012 ${ }^{2}$	+.0131	+.0134	+.0138	+.0142	+.0146	+. 0149
60°	0.522	0.175	o. 163	0.152	0.141	0.130	O.II9	0.107	0.096	0.085	0.074
61	. 541	. 193	. 182	. 171	. 160	. 148	. 137	. 126	. 115	. 104	. 092
62	. 560	. 213	. 201	. 190	. 79	. 168	. 156	. 145	. 134	. 123	.112
63	. 580	. 232	. 221	. 210	. 199	. 188	. 176	. 165	. 154	. 143	. 131
64	. 601	. 253	. 242	. 231	. 219	. 208	. 197	. 186	. 174	. 163	. 152
65	. 623	. 274	. 263	. 252	. 240	. 229	. 218	. 207	. 195	. 184	. 173
66	. 645	. 296	. 285	. 274	. 262	. 251	. 240	. 229	. 217	. 206	. 195
67	. 667	. 318	. 307	. 296	. 285	. 273	. 262	. 251	. 240	. 228	. 217
68	.691	. 342	. 330	. 319	. 308	. 297	. 285	. 274	. 263	. 252	. 240
69	. 715	. 366	. 354	- 343	. 332	. 32 I	. 309	. 298	. 287	. 275	. 264
70	. 740	. 390	. 379	. 368	. 357	. 345	. 334	. 323	. 311	. 300	. 289
71	. 766	. 416	. 404	-393	-382	-371	-359	-348	. 337	- 325	. 314
72	. 792	. 442	. 431	. 419	. 408	. 397	. 385	- 374	-363	-352	-340
73	.819	. 469	. 458	. 446	. 435	. 424	. 412	. 401	-390	-379	-367
74	. 847	. 496	. 485	. 474	. 463	.45I	. 440	. 429	. 418	. 406	-395
75	. 876	. 525	. 514	. 503	.491	.480	. 469	. 457	. 446	. 435	. 424
76	. 906	. 555	. 543	. 532	.52I	. 509	. 498	. 487	. 476	. 464	. 453
77	. 936	. 585	. 574	. 562	. 551	. 540	. 529	. 517	. 506	. 495	. 483
78	. 968	. 616	. 605	. 594	. 582	. 571	. 560	. 548	. 537	. 526	. 514
79	1.000	. 649	. 637	. 626	. 615	. 603	. 592	. 58 I	. 569	-558	. 547
80	1.c33	. 682	. 670	. 659	. 648	. 636	. 625	.614	. 602	. 59 I	. 580
81	. 068	. 716	. 704	. 693	. 682	. 670	. 659	. 648	. 636	. 625	. 613
82	. 103	. 751	. 739	. 728	. 717	.705	. 694	. 683	. 671	- 660	. 648
83	. 139	. 787	. 775	. 764	. 753	.741	.73c	. 719	. 707	. 696	. 685
84	. 176	. 824	. 813	. 801	. 790	. 778	. 767	. 756	. 744	. 733	. 722
85	1.215	. 862	. 851	. 839	. 828	. 817	. 805	. 794	. 782	. 771	. 760
86	. 254	.901	. 890	. 878	. 867	. 856	. 844	. 833	. 822	. 810	. 799
87	. 295	. 942	. 930	. 919	. 907	. 896	. 885	. 873	. 862	. 850	. 839
88	. 336	. 983	. 972	. 960	. 949	. 937	. 926	. 915	.903	. 892	. 880
89	. 379	1.026	1.014	1.003	.991	. 980	. 969	. 957	. 946	. 934	. 923
90	1.423	1.069	1.058	1.C47	1.035	1.024	1.012	1.001	. 990	. 978	967
91	. 469	. 115	. 103	. 092	.08c	. 069	. 058	. 046	1.035	1.023	1.OI2
92	. 515	.161	. 150	.138	. 127	. 115	. 104	. 092	. 081	. 070	. 058
93	. 563	. 208	. 197	. 186	. 174	. 163	. 151	. 140	. 128	. 117	. 105
94	. 612	. 257	. 246	. 234	. 223	. 212	. 200	. 189	. 177	. 166	. 154
95	1. 662	1.308	1. 296	I. 285	1.273	I. 262	1. 250	1.239	1. 227	1.216	1.204
96	. 714	- 359	-348	. 3.36	. 325	.313	. 302	. 290	. 279	. 267	. 256
97	. 767	. 412	. 401	. 389	- 378	. 366	-355	. 343	. 332	-320	. 309
98	. 822	. 466	. 455	. 443	. 432	. 420	. 409	- 398	. 386	-375	. 363
99	. 878	. 522	. 5 II	. 499	. 488	. 476	. 465	. 453	. 442	. 430	. 419
100	1.936	1.579	1. 568	1.556	1.545	I. 533	1.522	1. 510	1. 499	I. 488	1.476
101	. 994	. 638	. 627	. 615	. 604	. 592	.58I	. 569	. 558	. 546	. 535
102	2.055	. 698	. 687	. 675	. 664	. 652	. 641	. 629	. 618	. 606	. 595
103	. 117	. 760	. 749	. 737	. 726	. 714	.703	. 691	. 680	. 668	. 657
104	. 181	. 824	. 812	. 801	. 789	. 778	.766	. 755	-. 743	. 732	. 720
105	2.246	1.889	1. 878	1.866	1.855	т. 843	1. 832	1.820	1.808	1.797	1.785
106	. 314	. 956	. 945	. 933	. 922	. 910	. 898	. 887	. 875	. 864	. 852
107	. 382	2.025	2.013	2.002	. 990	. 979	. 967	. 955	. 944	. 932	.921
108	. 453	. 095	. 084	. 072	2.660	2.049	2.037	2.026	2.014	2.003	.991
109	2.525	2.167	2.156	2.144	2.133	2.121	2.109	2.098	2.086	2.075	2.063
110	$\Delta e \times \Delta B$	+.0119	+.0123	+.0127	+.0131	+.0135	+.0139	+.0143	+.0146	+.0150	+. 0154

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{r}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	41	42	43	44	45	46	47	48	49	50
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
60°	$\Delta e \times \Delta B$	+. 0153	+.c157	+.0161	+.0164	+. 0168	+.0172	+.0176	+. 0179	+.0183	+.0187
60°	0.522	0.063	0.051	0.040	0.029	0.018	0.007				
61	. 541	. 081	. 070	. 059	. 048	. 036	. 025	0.014	0.003		
62	. 560	. 1	.c89	. 078	. 067	. 055	. 044	. 033	. 022	0.011	
63	. 580	. 120	. 109	.c98	. 087	. 075	. 064	. 053	. 042	. 030	0.019
64	.601	. 141	. 129	. 118	. 107	. 096	. 085	. 073	.c62	. 051	. 040
65	. 623	.162	. 150	. 139	. 128	. 117	. 105	. 094	. 083	. 072	.06ı
66	. 645 ,	. 184	. 172	.161	. 150	. 139	. 127	. 116	. 105	. 094	. 082
67	. 667	. 206	. 195	. 183	. 172	.161	. 150	. 138	. 127	. 116	. 105
68	.691	. 229	. 218	. 207	. 195	. 184	. 173	.162	. 150	. 139	. 128
69	. 715	. 253	. 242	. 230	.219	. 208	. 197	. 185	. 174	. 163	. 152
70	. 740	. 278	. 266	. 255	. 244	. 232	. 221	. 210	. 199	. 187	. 176
71	. 766	. 303	. 292	. 280	. 269	. 258	. 246	. 235	. 224	. 213	. 201
72	.792	. 329	. 318	. 306	. 295	. 284	. 273	. 261	. 250	. 239	. 227
73	. 819	. 356	. 345	. 333	. 322	. 311	. 299	. 288	.277	. 266	. 254
74	. 847	. 384	. 372	. 361	. 350	. 338	. 327	-316	. 304	. 293	. 282
75	. 876	. 412	. 401	. 390	. 378	. 367	. 356	- 344	. 333	. 322	. 310
76	.906	. 442	. 430	. 419	. 408	. 396	- 385	. 374	. 362	. 351	-340
77	. 936	. 472	. 461	. 449	. 438	. 427	. 415	. 404	- 393	. 381	- 370
78	. 968	. 503	. 492	. 480	. 469	. 458	. 446	. 435	. 424	. 412	. 401
79	1.000	. 535	. 524	.513	. 501	. 490	. 478	. 467	-456	. 444	. 433
80	1.033	. 568	. 557	. 546	. 534	. 523	. 511	. 500	. 489	. 477	. 466
8 I	. 068	. 602	. 591	. 579	. 568	. 557	. 545	. 534	. 523	. 511	. 500
82	.ro3	. 637	. 626	. 614	. 603	. 592	. 580	. 569	. 558	. 546	. 535
83	. 139	. 673	. 662	. 650	. 639	. 628	. 616	. 605	. 594	. 582	. 578
84	. 176	. 710	. 699	. 687	. 676	. 665	. 653	. 642	. 631	. 619	. 608
85	1.215	. 748	. 737	. 725	. 714	. 703	.691	. 680	. 669	. 657	. 646
86	. 254	. 787	. 776	. 765	. 753	. 742	. 730	. 719	. 708	. 696	. 685
87	. 295	. 828	. 816		. 793	. 782	. 771	. 759	. 748	. 737	. 725
88	. 336	. 869	. 858	. 846	. 835	. 823	. 812	.801	.789	. 778	. 766
89	. 379	.912	. 900	. 889	. 877	. 866	. 855	. 843	. 832	. 820	. 809
90	1. 423	. 955	. 944	. 932	. 921	. 910	. 898	. 887	. 875	. 864	. 853
91	. 469	1.000	. 989	. 978	. 966	. 955	. 94.3	. 932	. 920	. 909	. 898
92	. 515	. 047	1.035	r. 024	1.012	1.001	. 989	. 978	. 967	. 955	. 944
93	. 563	. 094	. 083	. 071	.c60	. 048	1.037	1.025	I.OI4	ז. 003	.991
94	. 612	. 143	. 131	. 120	. 109	. 097	. 086	.c74	. 063	. 051	1. 040
95	ェ. 662	1.193	1.182	1.170	1.159	I. 147	1.136	I. 124	I.113	I.ICI	1.090
96	. 714	. 244	. 233	. 222	. 210	. 199	. 187	.176	. 164	. 153	. 141
97	. 767	. 297	. 286	. 274	. 263	. 251	. 240	. 229	. 217	. 206	. 194
98	.822 .878	. 352	- 340	. 329	. 317	. 306	. 294	. 283	. 271	. 260	. 248
99	1. 878	I. 407	I. 396	1.384	I. 373	1.361	1.350	1. 338	I. 327	I. 316	I. 304
100	$\Delta e \times \Delta B$	+.0157	. 0161	+.0165	+.0168	+.0172	+.0176	+0.180	+.0184	+.0188	+.0191

Table 75.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

$$
\begin{gathered}
\text { Values of } e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-3^{2}}{1_{571}}\right) \\
B=30.00
\end{gathered}
$$

t	$t-t^{\prime}$										
	0.0	51	52	53	54	55	56	57	58	59	60
$\begin{aligned} & \text { F. } \\ & 70^{\circ} \end{aligned}$	$\begin{gathered} \text { Inches. } \\ \Delta e \times \Delta B \end{gathered}$	$\begin{aligned} & \text { Inches. } \\ & +.0192 \end{aligned}$	$\begin{aligned} & \text { Inches, } \\ & \text { t.OI95 } \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0199 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0203 \end{aligned}$	$\left\|\begin{array}{l} \text { Inches. } \\ +.0207 \end{array}\right\|$	$\begin{aligned} & \text { Inches. } \\ & +.0210 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0214 \end{aligned}$	Inches. $+.0218$	$\begin{aligned} & \text { Inches. } \\ & +.0222 \end{aligned}$	$\begin{aligned} & \text { Iches. } \\ & +.0226 \end{aligned}$
${ }_{63}^{62^{\circ}}$	$\begin{array}{r} 0.560 \\ .580 \end{array}$	0.008									
64	. 601	0.028	0.017	0.006							
65	. 623	. 049	. 038	. 027	0.016	0.004					
66	. 645	. 071	. 060	. 049	.037 .060 .0	. 026	0.015	0.004			
68	. 691	. 1156	. 105	. 094	. 083	. 0771	. 060	. 0249	$\left\lvert\, \begin{array}{r} 0.015 \\ .038 \end{array}\right.$	$\begin{array}{r} 0.003 \\ .026 \end{array}$	0.015
69	. 715	. 140	. 129	.118	. 106	. 095	. 084	. 073	. 061	. 050	. 039
70	. 740	.165	. 154	. 142	.131	. 120	. 108	. 097	. 086	. 075	. 063
71	. 766	. 190	. 179	. 167	.156	. 145	. 134	. 122	. 111	. 100	. 089
72	. 792	. 216	. 205	. 194	.182	. 171	. 160	. 148	. 137	. 126	.114
73	. 819	. 243	. 232	. 220	. 209	. 198	. 186	. 175	. 164	. 153	. 141
74	. 847	. 27 I	. 259	. 248	. 237	. 225	. 214	. 203	.191	. 180	. 169
75	. 876	. 299	. 288	. 276	. 265	. 254	. 243	. 231	. 220	. 269	. 197
76	.906	. 328	. 317	. 306	. 294	. 283	. 272	. 260	. 249	. 238	. 226
77	. 936	. 359	. 347	. 336	. 325	. 313	. 302	. 291	. 279	. 268	. 257
78	. 968	. 390	. 378	. 367	. 356	. 344	. 333	. 322	. 310	. 299	. 288
79	1.000	. 422	. 410	. 399	- 388	. 376	-365	-354	. 342	.33I	. 320
80	т.033	455	. 443	. 432	. 421	. 409	-398	. 387	. 375	. 364	. 353
81	. 068	. 489	. 477	. 466	. 455	. 443	. 432	. 420	. 409	- 398	. 386
82	.183	. 524	. 512	. 501	. 489	. 478	. 467	. 455	. 444	. 433	. 421
83	. 139	. 559	. 548	. 537	. 525	. 514	. 503	. 49 I	. 480	. 469	. 457
84	. 176	. 596	. 585	. 574	. 562	.551	. 540	. 528	. 517	. 505	. 494
85	1. 215	. 634	. 623	. 612	. 600	. 589	. 578	. 566	. 555	. 543	. 532
86	. 254	. 673	. 662	. 651	. 639	. 628	. 617	. 605	. 594	. 582	. 571
87	. 295	. 714	. 702	. 691	. 680	. 668	. 657	. 645	. 634	. 623	. 611
88	. 336	. 755	. 744	. 732	. 721	. 709	. 698	. 687	. 675	. 664	. 652
89	1. 379	0.798	0.786	0.775	0.763	0.752	0.740	0.729	0.718	0.706	0.695
90	$\Delta e \times \Delta B$	+.0194	+. 0198	+. 0202	+. 0205	+0209	. 0213	+.0217	+.022 1	+. 0225	+. 0228

Smithsonian tables.

RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{gathered} \text { Air } \\ \text { Temper- } \\ \text { aturb. } \end{gathered}$	RELATIVE HUMIDIty, or percentage of saturation.									
	10	20	30	40	50	60	70	80	90	100
F.	Vapor pressure (inches).									
-30°	0.0007	0.0014	0.0021	0.0028	0.0035	0.0042	0.0049	0.0056	0.0063	0.0071
29	. 0007	. 0015	. 0022	. 0030	. 0037	. 0045	. 0052	. 0060	. 0067	. 0075
28	. 0008	.0016	. 0024	.0032	. 0040	. 0048	. 0056	. 0064	. 0072	. 0080
27	. 0008	. 0017	. 0025	. 0034	.0042	. 0051	. 0059	. 0068	. 0076	. 0084
26	. 0009	.0018	. 0027	. 0036	. 0045	. 0054	. .063	. 0072	. 0081	. 0090
-25	0.0010	0.0019	0.0029	0.0038	0.0048	0.0057	0.0067	0.0076	0.0086	0.0095
24	.0010	. 0020	. 0030	. 00.40	. 0050	. 0060	.0071	.0081	. 0091	. 0101
23	. 0011	. 0021	.0032	. 0043	. 0053	. 0064	. 0075	. 0086	. 0096	. 0107
22	.001 1	. 0023	. 0034	. 0045	. 0057	. 0068	. 0079	.009 1	. 0102	.OII3
21	. 0012	. 0024	.0036	. 0048	. 0060	. 0072	. 0084	.0096	. 0108	. 0120
-20	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076	0.0089	0.0102	0.0114	0.0127
19	. 0013	. 0027	. 0040	. 0054	. 0067	. 0081	. 0094	. 0108	. 0121	. 0135
18	. 0014	. 0029	. 0043	. 0057	.0071	. 0086	. 0100	. 0114	. 0128	. 0143
17	.0015	. 0030	. 0045	. 0060	. 0076	. 0091	. 0106	. 0121	. 0136	. 0151
16	. 0016	. 0032	. 0048	. 0064	.0080	.0096	. 0112	. 0128	. 0144	. 0160
-15	0.0017	0.0034	0.0051	0.0068	0.0084	0.0101	0.0118	0.0135	0.0152	0.0169
14	. 0018	.0036	. 0054	. 0071	. 0089	. 0107	. 0125	. 0143	. 0161	. 0179
13	. 0019	. 0038	.0057	. 0076	. 0094	. 0113	.0132	.0151	. 0170	. 0189
12	. 0020	. 0040	. 0060	. 0080	. 0100	. 0120	. 0140	. 0160	. 0180	. 0200
11	. 0021	. 0042	. 0063	. 0084	. 0106	. 0127	. 0148	. 0169	. 0190	. 021 I
-10	0.0022	0.0045	0.0067	0.0089	0.0112	0.0134	0.0156	0.0178	0.0201	
9	. 0024	. 0047	.0071	. 0094	. 0118	. 0141	. 0165	. 0188	. 0212	. 0236
8	. 0025	. 0050	. 0075	. 0099	. 0124	. 0149	. 0174	. 0199	. 0224	. 0249
7	. 0026	. 0053	. 0079	. 0105	. 0131	. 0158	. 0184	. 0210	. 0236	. 0263
6	. 0028	. 0055	. 0083	. 0111	. 0139	. 0166	. 0194	. 0222	. 0249	. 0277
- 5	0.0029	0.0058	0.0088	0.0117	0.0146	0.0175	0.0205	0.0234	0.0263	0.0292
4	. 0031	. 0062	. 0093	. 0123	. 0154	. 0185	. 0216	. 0247	. 0278	. 0308
3	. 0033	. 0065	.0098	. 0130	. 0163	. 0195	. 0228	. 0260	. 0293	. 0325
	. 0034	. 0069	. 0103	.0137	. 0171	. 0206	. 0240	. 0274	. 0309	. 0343
1	. 0036	. 0072	. 0108	. 0145	.0181	. 0217	. 0253	. 0289	. 0325	. 0361
± 0	0.0038	0.0076	0.01 14	0.0152	0.0190	0.0229	0.0267	0.0305	0.0343	0.038I
1	. 0040	. 0080	. 0120	. 0161	. 0201	. 024 I	.0281	.0321	. 0361	. 0401
2	. 0042	. 0085	. 0127	. 0169	. 0211	. 0254	. 0296	.0,338	. 0380	. 0423
3	. 0044	. 0089	. 0134	. 0178	. 0222	. 0267	. 0312	. 0356	. 0400	. 0445
4	. 0047	. 0094	. 0141	. 0187	. 0234	. 0281	. 0328	. 0375	. 0422	. 0468
5	0.0049	0.0099	0.0148	0.0197	0.0247	0.0296	0.0345	0.0394	0.0444	0.0493
6	. 0052	. 0104	. 0156	. 0208	. 0259	. 0311	. 0363	. 0415	. 0467	. 0519
7	. 0055	. 0109	. 0164	. 0218	. 0273	. 0328	. 0382	. 0437	. 0491	. 0546
8	. 0057	. 0115	. 0172	. 0230	. 0287	. 0344	. 0402	. 0459	.0517	. 0574
9	. 0060	. 0121	.0181	. 0241	. 0302	. 0362	. 0423	. 0483	. 0543	. 0604
10	0.0063	0.0127	0.0190	0.0254	0.0317	0.0381	0.0444	0.0508	0.0571	0.0635
I I	. 0067	. 0133	. 0200	. 0267	. 0334	. 0400	. 0467	. 0534	. 0600	. 0667
12	.0070	. 0140	. 0210	. 0280	. 0350	. 042 I	. 0491	. 0561	. 0631	. 0701
13	. 0074	. 0147	. 0221	. 0295	. 0368	. 0442	.0515	.0589	. 0663	. 0736
14	. 0077	. 0155	. 0232	. 0309	. 0387	. 0464	. 0541	.0619	. 0696	. 0773
15	0.008 I	0.0162	0.0244	0.0325	0.0406	0.0487	0.0568	0.0650	0.0731	0.0812
16	. 0085	. 0170	. 0256	. 0341	. 0426	. 0512	. 0597	. 0682	. 0767	. 0852
17	. 0089	. 0179	. 0268	. 0358	. 0447	. 0537	. 0626	. 0716	. 0805	. 0895
18	. 0094	. 0188	. 0282	. 0376	. 0470	. 0563	. 0657	. 0751	. 0845	. 0939
19	. 0099	. 0197	. 0296	. 0394	. 0493	. 059 I	. 0690	. 0788	. 0887	. 0985
20	0.0103	0.0207	0.0310	0.0413	0.0517	0.0620	0.0723	0.0827	0.0930	0.1033

Smithsonian tables.

Table 76.
RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{gathered} \text { Air } \\ \text { Temper- } \end{gathered}$	Relative humidity, or percentage of Saturation.									
	10	20	30	40	50	60	70	- 80	90	100
F.	Vapor pressure (inches).									
20°	0.010	0.021	0.031	0.041	0.052	0.062	0.072	0.083	0.093	0.103
2 I	. OII	. 022	. 033	. 043	. 054	. 065	. 076	. 087	. 098	. 108
22	. OII	. 023	. 034	. 045	. 057	. 068	. 080	. 091	. 102	. 114
23	. 012	. 024	. 036	. 048	. . 060	. 071	. 083	. 095	. 107	. 119
24	. 012	. 025	. 037	. 050	. 062	. 075	. 087	. 100	. 112	. 125
25	0.013	0.026	0.039	0.052	0.065	0.078	0.092	0.105	0.118	0.131
26	. 014	. 027	. 041	. 055	. 068	. 082	. 096	. 110	. 123	. 137
27	. 014	. 029	. 043	. 057	. 072	. 086	. 100	. 115	. 129	. 143
28	. 015	. 030	. 045	. 060	. 075	. 090	. 105	. 120	. 135	. 150
29	. 016	. 031	. 047	. 063	. 079	. 094	. 110	. 126	. 142	. 157
30	0.016	0.033	0.049	0.066	0.082	0.099	0.115	0.132	0.148	0.165
31	. 017	. 034	. 052	. 069	. 086	. 103	. 121	. 138	. 155	. 172
32	. 018	. 036	. 054	. 072	. 090	. 108	. 126	. 144	. 162	. 180
33	. 019	. 038	. 056	. 075	. 094	.113	. 131	. 150	. 169	. 188
34	. 020	. 039	. 059	. 078	. 098	.117	. 137	.156	. 176	. 195
35	0.020	0.041	0.061	0.081	0.102	0.122	0.142	0.163	0.183	0.203
36	. 021	. 042	. 064	. 085	. 106	. 127	. 148	. 169	.191	. 212
37	. 022	. 044	. 066	. 088	. 110	. 132	. 154	. 176	. 198	. 220
38	. 023	. 046	. 069	.092	. 115	. 137	. 160	.183	. 206	. 229
39	. 024	. 048	. 071	. 095	. 119	. 143	. 167	.191	. 214	. 238
. 40	0.025	0.050	0.074	0.099	0.124	0.149	0.173	0. 198	0.223	0.248
41	. 026	. 052	. 077	. 103	. 129	. 155	. 180	. 206	.232	. 258
42	. 027	. 054	. 080	. 107	. 134	. 161	. 187	. 214	. 241	. 268
43	. 028	. 056	. 083	. 111	. 139	.167	. 195	. 223	. 250	.278
44	. 029	.058	. 087	. 116	. 145	. 173	. 202	. 231	. 260	. 289
45	0.030	0.060	c.090	0.120	0.150	0.180	0.210	0.240	0.270	0.300
46	. 031	. 062	. 094	. 125	. 156	. 187	. 218	. 250	. 281	. 3 I 2
47	. 032	. 065	. 097	. 130	. 162	. 194	. 227	. 259	. 292	. 324
48	. 034	. 667	. 101	. 135	. 168	. 202	.236	. 269	. 303	. 336
49	. 035	. 070	.105	. 140	. 175	. 210	. 245	. 279	. 314	. 349
50	0.036	0.073	0.109	0.145	0.181	0.218	0.254	0.290	0.326	0.363
51	. 038	. 075	. 113	.151	. 188	. 226	. 263	. 301	. 339	. 376
52	. 039	. 078	.117	. 156	. 195	. 234	. 273	. 312	-351	. 390
53	. 041	.081	. 122	. 162	. 203	. 243	. 284	. 324	. 365	. 405
54	. 042	. 084	. 126	. 168	. 210	.252	. 294	. 336	. 378	. 420
55	0.044	0.087	0.131	0.174	0.218	0.262	0.305	0.349	0.392	0.436
56	. 045	. 090	.136	.181	. 226	. 271	. 316	. 362	. 407	. 45^{2}
57	. 047	. 094	. 141	.187	. 234	. 281	. 328	. 375	. 422	. 469
58	. 049	. 097	. 146	. 194	. 243	.292	. 340	. 389	. 437	. 486
59	. 050	. 101	. 151	. 201	.252	. 302	. 353	. 403	. 453	. 504
60	0.052	0.104	0.157	0.209	0.261	0.313	0.365	0.418	0.470	0.522
61	. 054	. 108	. 162	. 216	. 270	. 325	. 379	. 433	. 487	. 541
62	. 056	.112	. 168	. 224	. 280	. 336	. 392	. 448	. 504	. 560
63	. 058	. 116	. 174	.232	. 290	. 348	. 406	. 464	. 522	. 580
64	. 060	. 120	. 180	. 241	. 301	. 361	. 421	.48I	. 541	.601
65	0.062	0.125	0.187	0.249	0.311	0.374	0.436	0.498	0.560	0.623
66	. 064	. 129	. 193	. 258	. 322	. 387	. 451	. 516	. 580	. 645
67	. 067	. 133	. 200	. 267	. 334	. 400	. 467	. 534	.601	. 667
68	. 069	.138	. 207	. 276	. 345	415	. 484	. 553	. 622	.691
69	. 072	. 143	. 214	. 286	. 358	. 429	. 500	. 572	. 644	. 715
70	0.074	0.148	0.222	0.296	0.370	0.444	0.518	0.592	0.666	0.740

RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{aligned} & \text { Air } \\ & \text { Temper- } \\ & \text { ature. } \end{aligned}$	Relative humidity, or Percentage of Saturation.									
	10	20	30	40	50	60	70	80	90	100
F.	Vapor pressure (inches).									
70°	0.074	0.148	0.222	0.296	0.370	0.444	0.518	0.592	0.666°	0.740
71	. 077	. 153	. 230	. 306	.383	. 459	. 536	. 612	. 689	. 766
72	. 079	. 158	. 238	. 317	- 396	. 475	. 554	. 634	. 713	. 792
73	. 082	.164	. 246	. 328	. 410	. 491	. 573	. 655	. 737	.819
74	. 085	.169	. 254	. 339	. 424	. 508	. 593	. 678	. 762	. 847
75	0.088	0.175	0.263	0.350	0.438	0.526	0.613	0.701	0.788	0.876
76	. 091	. 181	. 272	. 362	. 453	. 543	. 634	. 724	. 815	. 906
77	. 094	.187	. 281	. 374	. 468	. 562	. 655	. 749	. 843	. 936
78	. 097	. 194	. 290	. 387	. 484	. 58 I	. 677	. 774	. 871	. 968
79	. 100	. 200	. 300	. 400	. 500	. 600	. 700	. 800	. 900	1.000
80	0.103	0.207	0.310	0.413	0.517	0.620	0.723	0.827	0.930	1.033
8 I	. 107	. 214	. 320	. 427	. 534	. 641	. 747	. 854	.961	1.068
82	. 110	. 221	. 331	. 441	. 551	. 662	. 772	. 882	. 993	1. 103
83	. 114	. 228	. 342	. 456	. 570	. 684	. 797	.91I	1.025	1.139
84	. 118	. 235	. 353	. 471	. 588	. 706	. 824	.94I	1.059	1.176
85	0.121	0.243	0.364	0.486	0.607	0.729	0.850	0.972	1.093	1.215
86	. 125	. 251	. 376	. 502	. 627	. 753	. 878	1.003	1.129	1.254
87	. 129	. 259	. $388{ }^{\circ}$. 518	. 647	. 777	. 906	1.036	1.165	1. 295
88	. 134	. 267	.401	. 535	. 668	. 802	. 936	1.069	1.203	1. 336
89	. 138	. 276	. 414	. 552	. 690	. 828	. 966	1. 104	1.241	1.379
90	0.142	0.285	0.427	0.569	0.712	0.854	0.996	I.I39	I.28I	1.423
91	. 147	. 294	. 44 I	. 588	. 734	.88I	1.028	1.175	1.322	1.469
92	. 152	. 303	. 455	. 606	. 758	. 909	1.061	1.212	I. 364	1.515
93	. 156	. 313	. 469	. 625	. 782	. 938	1.094	1.250	1.407	1.563
94	.161	-322	. 484	. 645	. 806	.967	1.128	1.290	1.451	1.612
95	0.166	0.332	0.499	0.665	0.831	0.998	1. 164	1.330	1.496	1. 662
96	.171	. 343	. 514	. 686	. 857	1.029	1. 200	1.371	1.543	1.714
97	. 177.	-353	. 530	. 707	. 884	1.060	1.237	1.414	I.59I	1.767
98	. 182	. 364	. 547	. 729	.911	1.093	1.275	1. 458	1.640	1.822
99	. 188	. 376	. 563	.751	. 939	1.127	1.315	1.502	1. 690	1.878
100	0.194	0.387	0.581	0.774	0.968	1.161	1.355	1.548	1.742	1.936
IOI	. 199	. 399	. 598	. 798	. 997	1.197	I. 396	1. 596	1.795	1.994
102	. 206	.411	. 616	. 822	1.028	1.233	1.438	1.644	1.850	2.055
103	. 212	. 423	. 635	. 847	I. 059	I. 270	r. 482	1.694	1.905	2.117
104	. 218	. 436	. 654	. 872	1.090	1.309	1.527	1.745	1.963	2.181
105	0.225	0.449	0.674	0.899	1.123	1. 348	1.572	1.797	2.022	2.246
106	. 231	. 463	. 694	. 925	I.I57	1. 388	1.619	1.851	2.082	2.314
107	. 238	. 476	. 715	. 953	1.191	1. 429	1. 668	1.906	2.144	2.382
108	. 245	.491	. 736	.98I	1.226	1.472	1.717	1.962	2.208	2.453
109	. 253	. 505	. 758	1.010	1. 263	1.515	1.768	2.020	2.273	2.525
110	0.260	0.520	0.780	1.040	1.300	1.560	1.820	2.080	2.339	2.599
III	. 268	. 535	. 803	1.070	1.338	1.605	1.873	2.140	2.408	2.676
II 2	. 275	. 551	. 826	I.IOI	1.377	1. 652	1.027	2.203	2.478	2.754
II3	. 283	. 567	. 850	1.133	1.417	1.700	1.983	2.267	2.550	2.833
II4	. 292	. 583	. 875	I. 166	1.458	1.749	2.041	2.332	2.624	2.915
115	0.300	0.600	0.900	1.200	1.500	1.800	2.100	2.399	2.699	2.999
I 16	. 309	.6I7	. 926	1.234	1. 543	I. 851	2.160	2.468	2.777	3.085
117	-317	. 635	. 952	1.269	1.587	1.904	2.221	2.539	2.856	3.173
r18	. 326	. 653	. 979	1.305	1.632	r. 958	2.285	2.611	2.937	3.264
I19	.336	. 671	1.007	1. 342	1. 678	2.014	2.349	2.685	3.021	3.356
120	0.345	0.690	1.035	1.380	1.725	2.071	2.416	2.761	3.106	3.45 I

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$

Temperature.	PRESSURE OF AQUEOUS VAPOR, e.										
	0	1	2	3	4	5	.	6	7	8	9
C. -50 40 30	mm. 0.029 0.096 0.288	mm. 0.026 0.086 0.259	mm. 0.023 0.076 0.233	mm. 0.020 0.068 0.209	mm 0.017 0.060 0.188	7 mm 7 0.01 0.05 0.16	1 m 5 0. 54 0.0 69 0.	mm. 0.013 0.048 0.151	mm. 0.012 0.042 0.135	mm. 0.010 0.037 0.121	$\begin{gathered} \mathrm{mm} . \\ 0.009 \\ 0.033 \\ 0.108 \end{gathered}$
$\begin{gathered} e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00 \mathrm{II} 5 t^{\prime}\right) \\ B=760 \mathrm{~mm} \end{gathered}$											
t^{\prime}	$t-t^{\prime}$										
	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	. 9	1.0
$\begin{gathered} c \\ -30^{\circ} \end{gathered}$	$\left.\right\|_{\Delta e \times \Delta B} ^{\mathrm{mm} .}$	$\begin{gathered} \mathrm{mm} . \\ +0.000 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.013 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.019 \end{gathered}$	mm. +0.025	mm. +0.032	mm. +0.038	8 mm.	5 mm.	mm. +0.057	$\begin{gathered} \mathrm{mm} . \\ +0.064 \end{gathered}$
-30°	0.288	0.239	0.19I	0.143	0.004	0.046					
29	. 319	. 271	. 222	. 174	. 125	. 077	0.028				
28	-354	. 306	. 257	. 208	.160	. 111	. 063	$3 \quad 0.014$			
27	- 39^{2}	- 344	. 295	. 246	.198	. 149		1.052	20.003		
26	. 434	. 385	-337	. 288	. 239	.191	.142	2.093	31.045		
-25	0.480	0.431	0.383	c. 334	0.285	0.236	0. 188	$8 \quad 0.139$	0.090	0.042	
24	. 530	. 482	. 433	. 384	. 335	. 286	. 238	8 . 189	. 140	. 091	0.043
23	. 585	. 537	. 488	. 439	. 390	-34I	. 292	2.244	4.195	. 146	. 097
22	. 646	. 597	.548	. 499	. 450	. 401	. 352	2.303	3 . 254	. 206	. 157
21	. 712	. 663	. 614	. 565	. 516	.467	. 418	8 -369	9.320	. 271	. 222
-20	0.783	0.734	0.685	0.636	0.587	0.538	0.480	9.440	0.391	-0.342	0.293
19	. 862	. 813	. 764	. 715	. 666	. 616	. 567	7 . 518	8. 469	. 420	. 371
18	. 947	. 898	. 849	. 800	. 751	. 702	. 653	3.604	4.554	. 505	. 456
17	1.04I	. 991	. 942	. 893	. 844	. 795	. 746	6.696	6.647	. 598	. 549
16	I. 142	1.093	1.044	. 994	. 945	. 896	. 847	7 . 797	$7{ }^{\text {P }}$. 699	. 650
-15	1. 252	1.203	1.154	1. 105	1.055	1.006	0.957	$7 \quad c .907$	70.858	c. 809	0.760
14	1.373	1.323	1.274	1.225	1.175	1.126	1.076	1.027	7.978	. 928	. 879
13	1.503	1.453	1.404	1.355	1.305	I. 256	1.206	I.157	1.108	I. 058	1.009
12	1. 644	1.595	1. 545	I. 496	I. 447	1.397	1. 348	1.298	I. 249	1.199	I. 150
II	1. 798	1.748	1.699	1.649	1.600	I. 550	1.501	I.45 I	$1 \quad 1.402$	1. 35^{2}	1.303
-10	1. 964	1.915	1. 865	1.816	1.766	1.716	1.667	1.617	1.568	1.518	1. 468
9	2. 144	2.095	2.04 .5	1.996	1.946	1.896	1. 847	1.797	1.747	1. 698	1.648
8	2.340	2.290	2.240	2.190	2.14 I	2.091	2.041	1.992	21.942	1.892	1. 843
7	2.550	2.501	2.45 I	2.401	2.35 I	2.302	2.252	2.202	2.152	2.103	2.053
6	2.778	2.729	2.679	2.629	2.579	2.529	2.480	2.430	2.380	2.330	2.280
-5	3.025	2.975	2.925	2.875	2.825	2.775	2.726	2.676	2.626	2.576	2.526
-5	$\Delta e \times \Delta B$	+0.007	+0.013	+0.020	+0.026	+0.033	+0.039	+0.046	+0.052	+0.059	+0.066

smithsonian tables.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I} 5 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
$\begin{gathered} \text { C. } \\ -20^{\circ} \end{gathered}$	$\stackrel{\mathrm{mm}}{\Delta c \times \Delta B}$	$\begin{gathered} \mathrm{mm} \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +0.077 \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +0.084 \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +0.090 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.097 \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +\mathrm{o} .103 \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +\mathrm{O} .11 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.116 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.123 \end{gathered}$	mm +0.129
	0.480										
	. 530	- 048									
	. 646	. 108	0.059	0.010							
	.712	. 773	. 124	. 075	0.026						
-20	.783	. 244	.195	.146	.097	0.048					
19	. 862	.322	.273	.224	.175	. 126	0.077	0.028			
18	. 947	. 407	. 358	. 309	. 260	. 211	.161	. 112	0.063	0.014	
17	1.041	.500	. 450	. 401	. 352	. 303	. 254	.205	. 155	. 106	0.057
	I.142	. 600	. 55 r	.502	.453	.404	. 354	.305	.256	.207	. 157
-15	I. 252	. 710	.66I	.612	. 562	. 513	.464	. 414	.365	. 316	.267
14	1.373	.830	.78 c	. 73 I	. 682	.632	.583	. 534	.484	. 435	.386
13	1.503	.959	.910	. 86 I	.8II	.762	. 712	. 663	. 614	. 564	. 515
12	1.644	1. 100	1.05 I	1.001	.952	. 902	. 853	. 803	. 754	.705	. 655
II	1.798	1.253	1.204	I. 154	1.105	1.055	1.005	.956	.906	.857	. 807
-10	+1.964	1.419	1.369	1.320	1.270	1.22 I	1.171	1.121	1.072	1.022	.973
9	2.144	1.598	I. 549	I. 499	1.450	1.400	1.350	1.301	1.251	I. 201	1.152
8	2.340	1.79 .3	1.743	1.693	1.644	I. 594	1.544	I. 495	1.445	1.395	1. 346
76	2.550	2.003	1.953	1.904	I. 854	1.804	1.754	1.705	1. 655	1.605	1. 5.55
	2.778	2.23 I	2.181	2.13 I	2.081	2.03 I	1.98 I	1.932	1.882	1.832	1.782
-5	3.025	2.476	2.426	2.376	2.327	2.277	2.227	2.177	2.127	2.077	2.027
-5	$\Delta e \times \Delta B$	+0.072	+0.079	+0.085	+0.092	+0.098	+0.105	+0.112	+0.118	+0.125	+0.131
t^{\prime}	$t-t^{\prime}$										
	0.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
$\begin{gathered} 0 \\ -15^{\circ} \end{gathered}$	$\stackrel{\mathrm{mm}}{\Delta e \times \Delta B}$	$\left\lvert\, \begin{gathered} \mathrm{mm} \\ +0.136 \end{gathered}\right.$	$\begin{gathered} \mathrm{mm} . \\ +0.143 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{mm} . \\ +0.149 \end{gathered}\right.$	$\begin{gathered} \mathrm{mm} . \\ +0.156 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.162 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.169 \end{gathered}$	$\begin{gathered} \text { mm. } \\ +0.175 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.182 \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ +0.188 \end{gathered}$	$\begin{gathered} \text { mm. } \\ +0.195 \end{gathered}$
$\begin{gathered} -17^{\circ} \\ 16 \end{gathered}$	1.041 1.142	0.008 0.108	0.059	0.010							
-15	1.252	0.217	. 168	. 119	0.069	0.020					
14	1.373	.336	.287	.237	. 188	. 139	0.089	0.040			
13	1.503	.465	. 416	. 366	. 317	. 268	. 218	. 169	-.119	0.070	0.021
12	1.644	. 606	. 556	.507	. 457	. 408	. 358	.309	. 259	. 210	. 160
II	1.798	.758	.708	.659	. 609	. 560	.510	.46 I	.41 I	.362	.312
-10	1.964	.923	. 873	. 824	. 774	.725	.675	.626	.576	.526	. 477
9	2.144	1.102	1.052	1.003	. 953	.903	.854	. 804	.755	. 70.5	. 655
8	2.340	I. 296	1. 246	1.196	1.147	1.097	1.047	. 998	. 948	. 898	. 849
7	2.550	1.506	I. 456	1.406	I. 356	1.307	1.257	1.207	1.157	1.108	1.058
	2.778	1.732	1.683	I. 633	I. 583	1.533	1.483	I. 434	1. 384	1.334	1. 284
-5	3.025	1.977	1.928	1.878	1.828	1.778	1.728	1. 678	1.628	1.579	1.529
-5	$\Delta e \times \Delta B$	+0.138	+0.144	+0.151	+0.157	+o.164	+0.17 7	+0.177	+0.184	+o.190	+0.197

Table 77.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$									
	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
$\begin{aligned} & \text { C. } \\ & -10^{\circ} \Delta e \times \Delta B \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ +0.202 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.209 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.215 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.222 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.228 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.235 \end{gathered}$	mm.	$\begin{gathered} \mathrm{mm} . \\ +0.248 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.254 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.26 \mathrm{I} \end{gathered}$
-12° 11	0.111 .263	0.061 .213	0.012 .164	0.114	0.065			.		
-10	. 427	. 378	. 328	. 278	. 229	. 179	0.130	0.080	0.031	
9	. 606	. 556	. 506	. 457	. 407	- 357	. 308	. 258	. 209	0.159
8	. 799	. 749	. 699	. 650	. 600	. 550	. 501	. 451	. 401	-3.52
7	1.008	. 958	909	. 859	. 809	. 759	. 710	. 680	. 610	. 560
6	I. 234	1.184	1.135	1.085	1.035	. 985	. 935	. 886	. 836	. 786
-5	1.479	I. 429	1.379	1. 329	1.279	1.229	1.180	1.130	1.080	1.030
$-5 \Delta e \times \Delta B$	+0.203	+0.210	+0.217	+0.223	$+0.230$	+0.236	+0.243	+0.249	+0.256	+0.262
t^{\prime}	$t-t^{\prime}$									
	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
c. $-8^{\circ} \Delta e \times \Delta B$	$\begin{gathered} \mathrm{mm} . \\ +0.268 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.275 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.28 \mathrm{r} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.288 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.294 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.301 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.307 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.314 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.320 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.327 \end{gathered}$
-9°	0.109	0.060	0.010							
8	0.302	0.252	. 202	0.153	0.103	0.053	0.004			
7	.510 .736	. 4686	. 411	. 3681	.311 .537	. 2628	. 212	0.162 .387	0.112 .338	0.063 .288
	. 736	. 686	. 63	-587	. 537	. 48	. 437			
-5	0.980	0.930	0.880	0.830	0.781	0.73 I	0.68 I	0.63 I	0.581	0.531
$-5 \Delta e \times \Delta B$	+0.269	+0.276	+0.282	+0.289	to. 295	+0.302	+0.308	+0.315	+0.322	+0.328
t^{\prime}	$t-t^{\prime}$									
	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0
c.	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm.	mm.	mm.
6	. 238	0.188	0.138	0.089	0.039					
-5	0.48 I	0.43 I	0.382	0.332	0.282	0.232	0.182	0.132	0.082	0.033
$-5 \Delta e \times \Delta B$	+0.335	+0.34 I	+0.348	+0.354	+0.361	+0.367	+0.374	+0.38I	+0.387	+0.394

Smithsonian Tables.

Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0	1	2	3	4	5	6	7	8	9	10
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm.		mm.	mm.	mm.
-5°	$\Delta e \times \Delta B$	+0.07	+0.13	+0.20	+0.26	+0.33	+0.39	+0.46	+0.52	+0.59	+0.66
-5°	3.02	2.53	2.03	1.53	1.03	0.53	0.03				
4	3.29	2.79	2.29	1. 79	I. 29	0.79	0.29				
3	3.58	3.08	2.58	2.08	I. 58	1.08	0.58	0.08			
2	3.89	3.39	2.89	2.39	1. 89	1.38	0.88	0.38			
1	4.22	3.72	3.22	2.72	2.22	r. 71	. 21	0.71	0.21		
± 0	4.58	4.08	3.58	3.08	2.57	2.07	1.57	1.07	0.57	0.07	
+1	4.92	4.42	3.92	3.42	2.92	2.41	r.91	1.41	0.91	0.40	
2	5.29	4.79	4.29	3.78	3.28	2.78	2.27	1.77	1.27	0.77	0.26
3	5.68	5.18	4.68	4.17	3.67	3.17	2.66	2.16	1.66	I. 15	0.65
4	6.10	5.59	5.09	4.59	4.08	3.58	3.07	2.57	2.07	1.56	1.06
5	6.54	6.03	5.53	5.03	4.52	4.02	3.5 I	3.01	2.51	2.00	1.50
6	7.01	6.51	6.00	5.50	4.99	4.49	3.98	3.48	2.97	2.47	1.96
	7.51	7.01	6.50	6.00	5.49	4.98	4.48	3.97	3.47	2.96	2.46
8	8.05	7.54	7.03	6.53	6.02	5.51	5.01	4.50	4.00	3.49	2.98
9	8.61	8.10	7.60	7.09	6.58	6.08	5.57	5.06	4.56	4.05	3.54
10	9.2 I	8.70	8.20	7.69	7.18	6.67	6.17	5.66	5.15	4.64	4.14
11	9.85	9.34	8.83	8.32	7.81	7.3 I	6.80	6.29	5.78	5.27	4.77
12	10.52	10.01	9.50	9.00	8.49	7.98	7.47	6.96	6.45	5.94	5.44
13	11.24	10.73	10.22	9.71	9.20	8.69	8.18	7.67	7.16	6.65	6.14
14	11.99	11.48	10.97	10.46	9.95	9.44	8.93	8.42	7.91	7.41	6.90
15	12.79	12.28	11.77	II. 26	10.75	10.24	9.73	9.22	8.7 I	8.20	7.69
16.	13.64	13.13	12.62	12.11	11.60	11.09	10.58	10.07	9.56	9.04	8.53
17	14.54	14.03	13.52	13.00	12.49	11.98	11.47	10.96	10.45	9.94	9.42
18	15.49	14.98	14.46	13.95	13.44	12.93	12.42	11.90	II 1.39	10.88	10.37
19	16.49	15.98	15.46	14.95	14.44	13.93	13.41	12.90	12.39	11.88	II. 36
20	17.55	17.03	16.52	16.01	15.50	14.98	14.47	13.96	13.44	12.93	12.42
21	18.66	18.15	17.64	17.12	16.61	16.10	15.58	15.07	14.56	14.04	13.53
22	I9.84	19.33	18.82	18.30	17.79	17.27	16.76	16.24	15.73	15.22	14.70
23	21.09	20.57	20.06	19.54	19.03	18.51	18.00	17.48	16.97	16.45	15.94
24	22.40	21.88	21.37	20.85	20.34	19.82	19.31	18.79	18.27	17.76	17.24
25	23.78	23.26	22.75	22.23	21.72	21.20	20.68	20.17	19.65	19.14	18.62
26	25.24	24.72	24.20	23.69	23.17	22.65	22.14	21.62	21.10	20.59	20.07
27	26.77	26.25	25.73	25.22	24.70	24.18	23.66	23.15	22.63	22.11	21.60
28	28.38	27.86	27.34	26.83	26.31	25.79	25.27	24.76	24.24	23.72	23.20
29	30.08	29.56	29.04	28.52	28.00	27.48	26.97	26.45	25.93	25.41	24.89
30	31.86	31.34	30.82	30.30	29.78	29.27	28.75	28.23	27.71	27.19	26.67
31	33.74	33.22	32.70	32.18	31.66	31.14	30.62	30.10	29.58	29.06	28.54
32	35.70	35.18	34.66	34.14	33.62	33.10	32.58	32.06	31.54	31.02	30.50
33	37.78	37.25	36.73	36.21	35.69	35.17	34.65	34.13	33.61	33.09	32.57
34	39.95	39.43	38.90	38.38	37.86	37.34	36.82	36.30	35.78	35.26	34.73
35	42.23	41.71	41.18	40.66	40.14	39.62	39.10	38.57	38.05	37.53	37.01
36	44.62	44.10	43.57	43.05	42.53	42.01	41.48	40.96	40.44	39.92	39.40
37	47.13	46.60	46.08	45.56	45.04	44.51	43.99	43.47	42.94	42.42	41.90
38	49.76	49.23	48.71	48.19	47.66	47.14	46.6 I	46.09	45.57	45.04	44.52
39	52.51	51.99	51.46	50.94	50.41	49.89	49.37	48.84	48.32	47.79	47.27
40	55.40	54.87	54.35	$53.8 z$	53.30	52.77	52.25	51.72	51.20	50.67	50.15
41	58.42	57.89	57.37	56.84	56.32	55.79	55.27	54.74	54.21	53.69	53.16
42	61.58	61.05	60.53	60.00	59.48	58.95	58.43	57.90	57.37	56.85	56.32
43	64.89	64.36	63.84	63.3 I	62.78	62.26	6 I .73	61.20	60.68	60.15	59.62
44	68.35	67.82	67.30	66.77	66.24	65.72	65.19	64.66	64.13	63.61	63.08
45	71.97	71.44	70.91	70.39	69.86	69.33	68.80	68.28	67.75	67.22	66.69
45	$\Delta e \times \Delta B$	+0.07	+0.14	to.21	+0.28	+0.35	+0.42	+0.49	+0.56	+o.62	+0.69

Smithsonian Tableg.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
METRIC MEASURES.
Values of $c=c^{\prime}-0.000660 B\left(t-l^{\prime}\right)\left(1+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0	11	12	13	14	15	16	17	18	19	20
$\begin{gathered} c \\ +5^{\circ} \end{gathered}$	$\mathrm{S}_{\bar{e} \times \Delta B}^{\mathrm{mm}}$	$\begin{gathered} \mathrm{mm} . \\ +0.73 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.80 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.86 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.93 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.00 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.06 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.13 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.19 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +\mathrm{x} .26 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.33 \end{gathered}$
$+3^{\circ}$	5.68	0.15									
4	6.10	0.56	0.05								
5	6.54	0.99	0.49								
6	7.01	1.46	0.95	0.45							
7	8.51	1.05	1.45	0.94	0.43						
8	8.05	2.48	1.97	1.46	0.96	0.45					
9 10	S.61	3.04 3.63	2.53 3.12	2.02 2.61	1.52 2.11	1.01 1.60	0.50 1.00	0.58	0.08		
10	9.21	3.63	3.12	2.61	2.11			0.58			
11	9.85	4.26	3.75	3.24	2.73	2.23	1.72	1.21	0.70	0.20	
12	10.52	4.93	4.42	3.91	3.40	2.89	2.38	1.88	1.37	0.86	0.35
13	II. 24	5.63	5.13	4.62	4.11	3.60	3.09	2.58	2.07	1.56	1.05
$1+$	11.99	6.39	5.88	5.37	4.86	4.35	3.84	3.33	2.82	2.31	1.80
15	12.59	7.18	6.67	6.16	5.65	5.14	4.63	4.12	3.61	3.10	2.59
16	13.64	8.02	7.51	7.00	6.49	5.98	5.47	4.96	4.45	3.94	3.43
17	14.54	8.91	8.40	7.89	7.38	6.87	6.36	5.85	5.33	4.82	4.31
15	15.49	9.86	9.34	8.83	8.32	7.81	7.30	6.78	6.27	5.76	5.25
19	16.49	10.85	10.34	9.83	9.31	8.80	8.29	7.78	7.26	6.75	6.24
20	17.55	11.90	I 1.39	10.58	10.36	9.85	9.34	S. S_{2}	8.31	7.80.	7.29
21	18. 66	13.01	12.50	11.99	II. 47	10.96	10.45	9.93	9.42	8.90	8.39
22	19.84	14.19	13.67	13.16	12.64	12.13	11.62	II.IO	10.59	10.07	9.56
23	21.09	15.42	14.91	14.39	13.58	13.36	12.85	12.33	II. 82	11.30	10.79
24	22.40	16.73	10.21	15.70	15.18	14.67	14.15	13.64	13.12	12.60	12.00
25	23.78	IS.10	17.59	17.07	16.56	16.04	15.52	15.01	14.49	13.98	13.46
26	25.24	19.55	10.04	18.52	18.00	17.49	16.97	16.45	15.94	15.42	14.90
27	26.77	21.08	20.56	20.04	19.53	19.01	18.49	17.98	17.46	16.94	16.42
28	2 S .38	22.68	22.17	21.65	21.13	20.61	20.10	19.58	19.06	18.54	18.02
29	30.08	${ }^{2}+3.37$	23.86	23.34	22.82	22.30	21.78	21.26	20.75	20.23	19.71
30	31.86	26.15	25.63	25.11	24.60	24.08	23.56	23.04	22.52	22.00	21.48
31	33.74	28.02	27.50	26.98	26.46	$25.9+$	25.42	24.90	24.38	23.86	23.34
32	35.70	29.9 S	29.46	28.94	28.42	27.90	27.38	26.56	26.34	25.82	25.30
33	37.78	32.05	31.53	31.01	30.49	29.97	29.44	28.92	28.40	27.88	27.36
34	39.95	34.21	33.69	33.17	32.65	32.13	31.61	31.09	30.57	30.44	29.52
35	+2.23	36.49	35.97	35.44	34.92	34.40	33.88	$33 \cdot 36$	32.83	32.31	31.79
36	44.62	38.87	3 S. 35	37.83	37.31	36.78	36.26	35.74	35.22	34.69	34.17
37	47.13	41.37	40.85	40.33	39.8 I	39.28	38.76	38.24	37.71	37.19	36.67
35	40.76	44.00	43.47	42.95	42.43	41.90	41.38	40.86	40.33	30.81	39.29
39	52.51	46.74	46.22	45.70	45.17	44.65	44.12	43.60	43.08	42.55	42.03
$+0$	55.40	49.62	49.10	4 S .5 S	48.05	47.53	47.00	46.48	45.95	45.43	44.90
41	58.42	52.64	52.11	51.59	51.06	50.54	50.01	49.49	48.96	48.44	47.91
42	61.58	55.80	55.27	54.74	54.22	53.69	53.17	52.64	52.12	51.59	51.06
43	$6_{4}+$. 89	50.10	58.57	$5 \mathrm{S.05}$	57.52	56.99	56.47	55.94	55.41	54.89	54.36
4.	68.35	62.55	62.03	61.50	60.97	60.45	50.92	59.39	58.S6	$58.3+$	57.81
45	71.97	66.16	65.64	65.11	64.58	64.05	63.53	63.00	62.47	61.94	61.42
45	$\Delta c \times \Delta B$	+0.76	+0.83	+0.90	+0.97	+1.04	+1.11	+1.18	+1.25	+1.32	+1.39

SMITHSONIAN TABLES,

METRIC MEASURES.

Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{x}+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0	21	22	23	24	25	26	27	28	29	30
C. $+15^{\circ}$	$\stackrel{\mathrm{mm}}{\Delta e \times \Delta B}$	$\left\|\begin{array}{c} \mathrm{mm} . \\ +0.14 \mathrm{I} \end{array}\right\|+$	$\begin{gathered} \mathrm{mm} . \\ +0.148 \end{gathered}$	$\begin{array}{r} \mathrm{mm} . \\ +0.154 \end{array}$	$\begin{gathered} \mathrm{mm} . \\ +0.16 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.168 \end{gathered}$	$\begin{gathered} \mathrm{mm.} \\ +0.175 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.18 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.188 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.195 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.20 \mathrm{I} \end{gathered}$
13°	11.24	0.54	0.03								
14	11.99	1.29	0.78	0.27							
15	12.79	2.08	1.57	1.06	0.55	0.04					
+16	13.64	2.91	2.40	I. 89	1.38	0.87	0.36				
17	14.54	3.80	3.29	2.78	2.27	1.75	1.24	0.73	0.22		
18	15.49	4.74	4.22	3.71	3.20	2.69	2.18	บ. 66	1.15	0.64	0.13
19	16.49	5.73	5.21	4.70	4.19	3.68	3.16	2.65	2.14	1.62	1.11
20	17.55	6.77	6.26	5.75	5.23	4.72	4.21	3.69	3.18	2.67	2.15
$+21$	18.66	7.88	7.36	6.85	6.34	5.82	$5 \cdot 31$	4.79	4.28	3.77	3.25
22	19.84	9.04	8.53	8.02	7.50	6.99	6.47	5.96	5.44	4.93	4.42
23	21.09	10.27	9.76	9.25	8.73	8.22	7.70	7.19	6.67	6.16	5.64
24	22.40	11.57	11.06	10.54	10.03	9.51	9.00	8.48	7.97	7.45	6.93
25	23.78	12.94	12.43	11.91	II. 40	10.88	10.36	9.85	9.33	8.82	8.30
+26	25.24	14.39	13.87	13.35	12.84	12.32	11.80	11.29	10.77	10.25	9.74
27	26.77	15.91	15.39	14.87	14.35	13.84	13.32	12.80	12.29	11.77	11.25
28	28.38	17.5 I	16.99	16.47	15.95	15.44	14.92	14.40	13.88	13.37	12.85
29	30.08	19.19	18.67	18.15	17.64	17.12	I 6.60	$\tau 6.08$	1.5.56	15.04	14.53
30	31.86	20.96	20.44	19.93	19.41	18.89	18.37	17.85	17.33	10.81	16.29
+31	33.74	22.83	22.31	21.79	21.27	20.75	20.23	19.71	19.19	18.67	18.15
32	35.70	24.78	24.26	23.74	23.22	22.70	22.18	21.66	21.14	20.62	20.10
33	37.78	26.84	26.32	25.80	25.28	24.76	24.24	23.72	23.20	22.68	22.16
34	39.95	29.00	28.48	27.96	27.44	26.92	26.40	25.87	2.5 .35	24.83	24.31
35	42.23	31.27	30.75	30.23	29.70	29.18	28.66	28.14	27.62	27.10	26.57
+36	44.62	33.65	33.13	32.60	32.08	31.56	31.04	30.52	29.99	29.47	28.95
37	47.13	36.15	3.5 .62	35.10	34.58	34.05	33.53	33.01	32.48	31.96	31.44
38	49.76	38.76	38.24	37.72	37.19	36.67	36.14	35.62	35.10	34.57	34.05
39	52.51	41.50	40.98	40.46	39.93	39.41	38.88	38.36	37.84	37.31	36.79
40	55.40	44.38	43.85	43.33	42.80	42.28	4 I .75	41.23	40.71	40.18	39.66
+40	$\Delta e \times \Delta B$	+0.145	+0.152	+0.159	+0.166	+0.173	+0.179	+0.186	+0.193	+0.200	+0.207
t^{\prime}	$t-t^{\prime}$										
		31	32	33	34	35	36	37	38	39	40
$\begin{gathered} c \\ +20^{\circ} \end{gathered}$	$\Delta e \times \Delta B$	$\begin{gathered} \mathrm{mm} . \\ +0.209 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.216 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.223 \end{gathered}$	$3+\begin{gathered} \mathrm{mm} . \\ +0.230 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.236 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.243 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.250 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.257 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.263 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.270 \end{gathered}$
$\begin{aligned} & 19^{\circ} \\ & 20 \end{aligned}$		$\begin{aligned} & 0.60 \\ & \mathrm{I} .64 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 1.13 \end{aligned}$	0.61	0.10						
21		2.74	2.23	1.71	1.20	0.69	0.17				
22		3.90	3.39	2.87	2.36	1.84	1.33	0.82	0.30		
23		5.13	4.61	4.10	3.58	3.07	2.55	2.04	1.52	1.01	0.49
24		6.42	5.90	$5 \cdot 39$	4.87	4.36	3.84	3.33	2.81	2.30	1.78
25		7.78	7.27	6.75	6.24	5.72	5.20	4.69	4.17	3.66	3.14
+26		9.22	8.70	8.19	7.67	7.15	6.64	6.12	5.60	5.09	4.57
27		10.73	10.22	9.70	9.18	8.67	8.15	7.63	7.11	6.60	6.08
28		I 2.33	11.8r	11.29	10.78	10.26	9.74	9.22	8.71	8.19	7.67
29		14.01	13.49	12.97	12.45	II. 93	11.42	10.90	10.38	9.86	9.34
30		15.77	15.26	14.74	14.22	13.70	13.18	12.66	12.14	11.62	II.10
+30	$\Delta e \times \Delta B$	+0.212	+0.218	+0.225	+0.232	+0.239	+0.246	+0.253	+0.259	+0.266	+0.273

Air Temperature.	RELATIVE HUMIDITY, OR PERCENTAGE OF SATURATION.									
	10	20	30	40	50	60	70	80	90	100
c.	Vapor pressure (millimeters).									
-45°	0.01	0.01	0.02	0.02	O.c3	0.03	0.04	0.04	0.05	0.05
44	0.01	0.01	0.02	0.0	0.03	0.04	0.04	0.05	0.05	0.06
43	0.01	0.01	0.02	0.03	0.03	0.04	c. 05	0.05	0.06	0.07
42	0.01	0.02	0.02	0.03	0.04	0.05	0.05	0.06	0.07	0.08
41	0.01	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-40	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0. 09	0. 10
39	0.01	0.02	0.03	0.04	0.05	0.06	0.08	0.09	-. Io	0. 11
38	0.01	0.02	0.0 .4	0.05	0.06	0.07	0.08	0. 10	O. II	0. 12
37	0.01	0.03	0. 04	0.05	0.07	0.08	0.09	O. II	0. 12	-. 14
36	0.02	0.03	0.05	0.06	0.08	0.09	O. II	0. 12	0. 14	-. 15
-35	0.02	0.03	0.05	0.07	0.08	O. 10	0. 12	-. 13	-. 15	0. 17
34	0.02	0.04	0.06	0.08	0.09	O. II	-. 13	0. 15	O. 17	-. 19
33	0.02	0. 04	0.06	0.08	0. 10	-. 13	-. 15	O. 17	-. 19	0. 21
32	0.02	0.05	0.07	0.09	0. 12	0. 14	-. 16	O. 19	0. 21	0.23
31	0.03	0.05	0.08	0. 10	-. 13	-. 16	0.18	0. 21	0.23	0. 26
-30	0.03	0.06	0.09	O. 12	-. 14	-. 17	0. 20	0. 23	0. 26	0. 29
29	0.03	0.06	0. 10	-. 13	-. 16	-. 19	0. 22	0. 26	0.29	0. 32
28	0.04	0.07	0. 11	0. 14	-. 18	0.21	0. 25	0. 28	0.32	0. 35
27	0.04	0.08	0. 12	0. 16	0.20	0.24	0.27	0.31	0.35	-. 39
26	0.04	0.09	O. 13	-. 17	0. 22	0.26	-. 30	0.35	0.39	0.43
-25	0.05	-. 10	O. 14	o. 19	0. 24	0. 29	-. 34	-. 38	0.43	0.48
24	0.05	O. II	-. 16	0. 21	0.27	0.32	0. 37	0.42	0.48	-. 53
23	0.06	. 12	-. 18	-. 23	0. 29	0.35	0.41	0.47	-. 53	-. 59
22	0.06	-. 13	0. 19	-. 26	0.32	-. 39	0. 45	-. 52	-. 58	0.65
21	0.07	0. 14	0. 21	-. 28	0.36	0.43	-. 50	-. 57	0.64	0. 71
-20	0.08	-. 16	0. 24	0. 31	-. 39	0.47	-. 55	0.63	0.71	0. 78
19	-. 89	0. 17	0. 26	0. 34	0.43	0. 52	0. 60	0.69	0. 78	0.86
18	0.09	-. 19	0. 28	-. 38	0.47	0.57	-. 66	0.76	0.85	0.95
17	0. 10	0.21	0.31	0.42	-. 52	0.62	0. 73	0.83	0.94	1.04
16	o. II	0. 23	0.34	0.46	0.57	0.69	0. 80	0.91	1. 03	1. 14
- 15	0.13	0. 25	0.38	0. 50	0.63	0. 75	-. 88	1.00	I. 13	1.25
14	O. 14	0. 27	0.41	-. 55	0.69	0.82	0.96	I. 10	I. 24	1.37
13	-. 15	0. 30	0.45	0.60	0.75	0.90	1. 05	I. 20	I. 35	1. 50
12	-. 16	0.33	0.49	0.66	0.82	0.99	I. 15	I. 32	I. 48	1.64
II	-. 18	0.36	-. 54	0. 72	0.90	I. 08	I. 26	I. 44	I. 62	1.80
- 10	0. 20	0. 39	0. 59	0. 79	0.98	1. 18	1. 38	1.57	1. 77	1.96
9	0. 21	0.43	0. 64	0.86	1.07	I. 29	1. 50	I. 72	I. 93	2.14
8	0. 23	0.47	0. 70	0.94	I. 17	I. 40	1. 64	1.87	2. 11	2.34
	-. 26	0. 51	0.77	1.02	I. 28	I. 53	1. 79	2.04	2.30	2.55
6	0. 28	0. 56	0.83	I. II	I. 39	1.67	1.94	2.22	2. 5 C	2.78
- 5	0.30	0.60	0.91	I. 21	I. 51	I. 81	2. 12	2.42	2.72	3.02
4	-. 33	0.66	0.99	1. 32	1. 65	I. 97	2.30	2.63	2.96	3.29
3	-. 36	0. 72	1.07	I. 43	1. 79	2. 15	2. 50	2.86	3.22	3.58
	-. 39	0. 78	1. 17	1. 55	I. 94	2.33	2.72	3.11	$3 \cdot 50$	3.89
1	0. 42	0.84	1.27	1. 69	2. II	2.53	2.95	$3 \cdot 38$	3.80	4.22
± 0	0.46	0.92	1.37	I. 83	2.29	2.75	3.21	3.66	4. 12	4.58
+ I	0.49	0.98	1. 48	1.97	2.46	2.95	3.45	3.94	4.43	4.92
	-. 53	1. 06	1. 59	2. 12	2.65	3.17	3.70	4.23	4.76	5.29
3	0.57	I. 14	I. 70	2.27	2.84	3.41	3.98	4.55	5. 11	5.68
4	0.61	I. 22	1.83	2.44	3.05	3.66	4.27	4.88	5.49	6.10
+ 5	0.65	1.3I	1.96	2.62	3.27	3.92	$4 \cdot 58$	5.23	5.89	6.54

Smithsoialan Tables.

RELATIVE HUMIDITY.
TEMPERATURE CENTIGRADE.

Air Temperature.	RELATIVE HUMIDITY, OR PERCENTAGE OF SATURATION.									
	10	20	30	40	50	60	70	80	90	100
C.	Vapor pressure (millimeters).									
5°	0.7	I. 3	2.0	2.6	$3 \cdot 3$	3.9	4.6	5.2	5.9	6.5
6	0.7	I. 4	2.1	2.8	$3 \cdot 5$	4.2	4.9	5.6	6.3	7.0
7	0.8	I. 5	2.3	3.0	3.8	4.5	$5 \cdot 3$	6.0	6.8	7.5
8	0.8	1.6	2.4	3.2	4.0	4.8	5.6	6.4	7.2	8.0
9	0.9	1. 7	2.6	3.4	4.3	5.2	6.0	6.9	$7 \cdot 7$	8.6
10	0.9	1.8	2.8	3.7	4.6	5.5	6.4	7.4	8.3	9.2
II	1.0	2.0	3.0	$3 \cdot 9$	4.9	5.9	6.9	$7 \cdot 9$	8.9	9.8
12	I. I	2.1	3.2	4.2	$5 \cdot 3$	6.3	7.4	8.4	9.5	10.5
13	I. I	2.2	3.4	$4 \cdot 5$	5.6	6.7	7.9	9.0	10.1	II. 2
14	1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0
15	I. 3	2.6	3.8	5.1	6.4	7.7	9.0	10.2	II. 5	12.8
16	I. 4	2.7	4.1	5.5	6.8	8.2	9.5	10.9	12.3	13.6
17	1.5	2.9	4.4	5.8	7.3	8.7	10.2	11.6	13.1	14.5
18	I. 5	3.1	4.6	6.2	7.7	9.3	10.8	12.4	13.9	15.5
19	1.6	$3 \cdot 3$	4.9	6.6	8.2	9.9	II. 5	13.2	14.8	16.5
20	1.8	$3 \cdot 5$	$5 \cdot 3$	7.0	8.8	10.5	12.3	14.0	15.8	17.5
21	1.9	3.7	5.6	$7 \cdot 5$	9.3	II. 2	13. 1	14.9	16.8	18.7
22	2.c	4.0	6.0	$7 \cdot 9$	9.9	11.9	13.9	15.9	17.9	19.8
23	2.1	4.2	6.3	8.4	10.5	12.7	14.8	16.9	19.0	21.1
24	2.2	4.5	6.7	9.0	11.2	13.4	15.7	17.9	20.2	22.4
25	2.4	4.8	7.1	9.5	11.9	14.3	16.6	19.0	21.4	23.8
26	2.5	5.0	7.6	10. 1	12.6	15.1	17.7	20.2	22.7	25.2
27	2.7	5.4	8.0	10.7	13.4	16. 1	18.7	21.4	24. I	26.8
28	2.8	5.7	8.5	11. 4	14.2	17.0	19.9	22.7	25.5	28.4
29	3.0	6.0	9.0	12.0	15.0	18.0	21. I	24. 1	27.1	30. 1
30	3.2	6.4	9.6	12.7	15.9	19. I	22.3	25.5	28.7	31.9
31	3.4	6.7	10. I	13.5	16.9	20.2	23.6	27.0	30.4	33.7
32	3.6	7.1	10.7	14.3	17.9	21.4	25.0	28.6	32.1	35.7
33	3.8	7.6	II. 3	15.1	18.9	22.7	26.4	30.2	34.0	37.8
34	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	39.9
35	4.2	8.4	12.7	16.9	2 I . I	25.3	29.6	33.8	38.0	42.2
36	$4 \cdot 5$	8.9	13.4	17.8	22.3	26.8	31.2	35.7	40.2	44.6
37	4.7	9.4	14. I	18.9	23.6	28.3	33.0	37.7	42.4	47.1
38	5.0	10.0	14.9	19.9	24.9	29.9	34.8	39.8	44.8	49.8
39	$5 \cdot 3$	10.5	15.8	21.0	26.3	31.5	36.8	42.0	47.3	52.5
40		II. I	16.6	22.2	27.7	33.2	38.8	44.3	49.9	55.4
4 I	5.8	II. 7	17.5	23.4	29.2	$\begin{array}{r}33.1 \\ \times 35 \\ \hline\end{array}$	40.9	46.7	52.6	58.4
42	6.2	12.3	18.5	24.6	30.8	+36.9	43. I	49.3	55.4	61.6
43	6.5	13.0	19. 5	26.0	32.4	38.9	45.4	51.9	58.4	64.9
44	6.8	13.7	20.5	27.3	34.2	41.0	47.8	54.7	61.5	68.4
45	7.2	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8	72.0
46	7.6	15.2	22.7	30.3	37.9	45.5	53.0	60.6	68.2	75.8
47	8.0	15.9	23.9	31.9	39.9	47.8	55.8	63.8	71.7	79.7
48	8.4	16.8	25. I	33.5	41.9	50.3	58.7	67.1	75.4	83.8
49	8.8	17.6	26.4	$35 \cdot 3$	44. I	52.9	61.7	70.5	79.3	88.1
50	9.3	18.5	27.8	37. I	46.3	55.6	64.8	74.1	83.4	92.6
51	9.7	19.5	29.2	38.9	48.7	58.4	68.1	77.9	87.6	97.3
52	10.2	20.4	30.7	40.9	51.1	61.3	7 7 .6	81.8	92.0	102.2
53	10.7	21.5	32.2	42.9	53.7	64.4	75.1	85.9	96.6	107.3
54	11.3	22.5	33.8	45. I	56.3	67.6	78.9	90.1	101.4	II2. 7
55	11.8	23.6	35.5	47.3	59.1	70.9	82.7	94.6	106.4	II8.2

Smithsonian tableb.

Table 79.
RATE OF DECREASE OF VAPOR PRESSURE WITH ALTITUDE FOR MOUNTAIN STATIONS.
(According to the empirical formula of Dr.J. Hann.)

$$
\frac{e}{e_{0}}=10^{-\frac{h}{6200}}
$$

$e, e_{0}=$ Vapor pressures at an upper and a lower station respectively.
$h=$ Difference of altitude in meters.

Difference of Altitude.		$\frac{e}{e}$.	Differense of Altitude.		$\frac{e}{e_{0}}$.	Difference of Altitude.		$\frac{e}{e}{ }_{0}$
Meters. 200	Feet. 656		Meters. I800	Feet. 5905	0.52	Meters. 3400	Feet.	
400	1312	. 86	2000	6562	. 48	3600	11811	0.29 .27
600	1968	. 80	2200	7218	. 45	3800	12467	25
800	2625	. 75	2400	7874	. 42	4000	13123	. 23
1000	3281	0.69	2600	8530	0.39	4500	14764	O. 19
1200	3937	. 64	2800	9186	. 36	5000	16404	. I6
1400	4593	. 60	3000	9842	. 33	5500	18045	. 13
1600	5249	. 56	3200	10499	. 31	6000	19685	II

Table 80.
DEPTH OF WATER CORRESPONDING TO THE WEIGHT OF A
CYLINDRICAL SNOW CORE 2.655 INCHES IN DIAMETER.
(One-fifth pound equals i inch.)

Weight lbs.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
. 0	0.00	0.05	0.10	-. 15	0.20	0. 25	0.30	0.35	0.40	0.45
. 1	0.50	-. 55	0.60	0.65	0. 70	0.75	-. 80	0.85	0.90	0.95
. 2	1. 00	I. 05	I. 10	I. 15	1. 20	1. 25	1.30	1.35	I 40	1.45
. 3	1. 50	1. 55	1.60	1. 65	1.70	1.75	1. 80	I. 85	1.90	1.95
. 4	2.00	2.05	2. 10	2. 15	2.20	2.25	2.30	2.35	2.40	2.45
. 5	2. 50	2.55	2.60	2.65	2.70	2.75	2.80°	2.85	2.90	2.95
. 6	3.00	3.05	3.10	3.15	3.20	3.25	3.30	3.35	3.40	3.45
. 7	3.50	3.55	3.60	3.65	3.70	3.75	3.80	3.85	3.90	3.95
. 8	4.00	4.05	4.10	4.15	4.20	4.25	4.30	4.35	4.40	4.45
. 9	4.50	4.55	4.60	4.65	4. 70	4.75	4.80	4.85	4.90	4.95
1.0	5.00	5.05	5.10	5.15	5.20	5.25	5.30	5.35	5.40	5.45
I. I	5.50	$5 \cdot 55$	5.60	5.65	5.70	5.75	5.80	5.85	5.90	5.95
I. 2	6.00	6.05	6.10	6.15	6.20	6.25	6.30	6.35	6.40	6.45
I. 3	6.50	6.55	6.60	6.65	6.70	6.75	6.80	6.85	6.90	6.95
1.4	7.00	7.05	7.10	7.15	7.20	7.25	7.30	7.35	7.40	7.45
1.5	$7 \cdot 50$	7.55	7.60	7.65	7.70	7.75	7.80	7.85	7.90	7.95
1.6	8.00	8.05	8.10	8.15	8.20	8.25	8.30	8.35	8.40	8.45
1.7	8.50	8.55	8.60	8.65	8.70	8.75	8.80	8.85	8.90	8.95
1.8	9.00	9.05	9.10	9.15	9.20	9.25	9.30	9.35	9.40	9.45
1.9	9.50	9.55	9.60	9.65	9.70	9.75	9.80	9.85	9.90	9.95
2.0	10.00	10.05	10.10	10.15	10.20	10.25	10.30	10.35	10.40	10.45
2.1	10.50	10. 55	10.60	10.65	10.70	10. 75	10.80	10.85	10.90	10.95
2.2	II. 00	II. 05	11. 10	II. 15	II. 20	II. 25	II. 30	11. 35	II. 40	II. 45
2.3	II. 50	II. 55	11.60	11.65	I1. 70	II. 75	11.80	II. 85	II. 90	II. 95
2.4	12.00	12.05	12.10	12.15	12. 20	12. 25	12.30	12.35	12.40	12.45
2.5	12.50	12.55	12.60	12.65	12.70	12.75	12.80	12.85	12.90	12.95
2.6	13.00	13.05	13.10	13.15	13.20	13.25	13.30	13.35	13.40	13.45
2.7	13.50	13.55	13.60	13.65	13.70	13.75	13.80	13.85	13.90	13.95
2.8	14.00	14.05	14.10	14.15	14. 20	14.25	14.30	14.35	14.40	14.45
2.9	14.50	14. 55	14.60	14.65	14.70	14.75	14.80	14.85	14.90	14.95

Smithsonian Tables.

Table 81.
DEPTH OF WATER CORRESPONDING TO THE WEIGHT OF SNOW (OR
RAIN) COLLECTED IN AN 8-INCH GAGE. (One pound equals 0.5507 incb.$)$

| Weight
 Pounds. | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. | Inch. |
| .0 | .00 | .01 | .01 | .02 | .02 | .03 | .03 | .04 | .04 | .05 |
| .1 | .06 | .06 | .07 | .07 | .08 | .08 | .09 | .09 | .10 | .10 |
| .2 | .11 | .12 | .12 | .13 | .13 | .14 | .14 | .15 | .15 | .16 |
| .3 | .17 | .17 | .18 | .18 | .19 | .19 | .20 | .20 | .21 | .22 |
| .4 | .22 | .23 | .23 | .24 | .24 | .25 | .25 | .26 | .26 | .27 |
| .5 | .28 | .28 | .29 | .29 | .30 | .30 | .31 | .31 | .32 | .33 |
| .6 | .33 | .34 | .34 | .35 | .35 | .36 | .36 | .37 | .38 | .38 |
| .7 | .39 | .39 | .40 | .40 | .41 | .41 | .42 | .43 | .43 | .44 |
| .8 | .44 | .45 | .45 | .46 | .46 | .47 | .47 | .48 | .49 | .49 |
| .9 | .50 | .50 | .51 | .51 | .52 | .52 | .53 | .54 | .54 | .55 |

Table 82.
QUANTITY OF RAINFALL CORRESPONDING TO GIVEN DEPTHS.

Depth of rainfall, inches.	Cubic inches per acre.	Cubic feet per acre.	Gallons per acre.		Tons per acre (2000 pounds). ($62^{\circ} \mathrm{F}$.)
			United States or Queen Anne.	Imperial (British).	
0.01	62726.4	36.3	271.5	226	1. I
0.02	125453.	72.6	543.	452	2.3
0.03	188179.	108.9	815.	678	$3 \cdot 4$
0.04	250905.	145.2	1086.	904	4.5
0.05	313632.	181. 5	1358.	1130	5.6
0.06	376358.	217.8	1629.	1356	6.8
0.07	439084.	254.1	1900.	1582	7.9
0. 08	501810.	290.4	2171.	1808	9.0
0.09	564536.	326.7	2442.	2034	IO. I
0. 10	627264.	363.0	2715.	2261	11.3
0.25	1568160.	907.5	6789.	5652	28.
0. 50	3136320.	1815.	13577.	11303	56.
0. 75	4704480.	2722.	20366.	16955	85.
1.00	6272640.	3630.	27154.	22607	113.
1. 25	7840800.	4538.	33943.	28259	141.
1. 50	9408960.	5445.	40371.	33911	170.
1. 75	10977120.	6352.	47520.	39563	198.
2.00	12545280.	7260.	54309.	45214	226.
2.25	14113440.	8168.	61097.	50866	255.
2.50	15681600.	9075.	67866.	56517	283.
2.75	17249760.	0982.	74674.	62169	311.
3.00	18817920.	10890.	81463.	6782 I	339.
4.co	25090560.	14520.	108617.	90428	452.
5.00	31363200.	18150	135772.	113035	565.
6.00	37635840 .	21780.	162926.	135642	678.

Smithsonian Tables.

GEODETICAL TABLES.

Value of apparent gravity on the earth at sea level Table 83
Relative acceleration of gravity at different latitudes Table 84
Length of one degree of the meridian at different latitudes Table 85
Length of one degree of the parallel at different latitudes Table 86
Duration of sunshine at different latitudes Table 87
Declination of the sun for the year 1899 Table 88
Duration of astronomical twilight Table 89
Duration of civil twilight Table 90Relative intensity of solar radiation at different latitudes.Mean intensity for 24 hours of solar radiation on a hori-zontal surface at the top of the atmosphereTable 9I
Relative amounts of solar radiation received during theyear on a horizontal surface at the surface of the earthTable 92
Air mass, m, corresponding to different zenith distances of thesunTable 93
Relative illumination intensities Table 94

Table 83.
VALUE OF GRAVITY ON THE EARTH AT SEA LEVEL.
$g_{\phi}=978.039\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$
$=980.621\left(\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ϕ \& g_{ϕ} \& ϕ \& g_{ϕ} \& ϕ \& g_{ϕ} \& ϕ \& g_{ϕ} \& ϕ \& g_{ϕ}

\hline - \& Dynes. \& $\bigcirc \quad 1$ \& Dynes. \& \bigcirc - \& Dynes. \& \bigcirc, \& Dynes. \& - ' \& Dynes.

\hline \bigcirc \& 978.039 \& 2000 \& 978.642 \& 3700 \& 979.908 \& 5400 \& 981.422 \& 7100 \& 982.665

\hline 10 \& . 04 I \& 20 \& . 661 \& \& . 937 \& 20 \& . 450 \& 20 \& . 684

\hline 20 \& . 045 \& 40 \& .681 \& 40 \& . 966 \& 40 \& . 479 \& 40 \& . 702

\hline 30 \& . 053 \& 2100 \& . 701 \& 3800 \& . 995 \& 5500 \& . 507 \& 7200 \& . 720

\hline $4 \bigcirc$ \& . 064 \& 20 \& . 721 \& 20 \& 980.024 \& 20 \& . 535 \& 20 \& . 738

\hline \& \& 40 \& . 742 \& 40 \& . 054 \& 40 \& . 564 \& 40 \& . 755

\hline 500 \& . 078 \& 2200 \& . 762 \& 3900 \& . 083 \& 56 00 \& . 592 \& 7300 \& . 772

\hline 20 \& . 084 \& 20 \& . 783 \& \& . II 3 \& 20 \& . 620 \& 20 \& . 789

\hline 40 \& . 089 \& 40 \& . 805 \& 40 \& . 142 \& 40 \& . 647 \& 40 \& . 805

\hline 600 \& .095 \& 2300 \& . 826 \& 4000 \& . 172 \& 5700 \& . 675 \& 7400 \& . 822

\hline 20 \& . 102 \& 20 \& . 848 \& 20 \& . 201 \& 20 \& . 703 \& 20 \& . 837

\hline 40 \& . 108 \& 40 \& . 870 \& 40 \& . 231 \& 40 \& . 730 \& 40 \& . 853

\hline 700 \& . 115 \& 2400 \& . 892 \& 4100 \& . 261 \& 58 00 \& . 757 \& 7500 \& . 868

\hline 20 \& . 123 \& 20 \& . 914 \& 20 \& . 291 \& 20 \& . 784 \& 20 \& . 883

\hline 40 \& . 131 \& 40 \& . 937 \& 40 \& . 321 \& 40 \& .8II \& 40 \& . 898

\hline 800 \& . 139 \& $2500{ }^{\text {a }}$ \& . 960 \& 4200 \& . 350 \& 5900 \& . 838 \& 7600 \& . 912

\hline 20 \& . 147 \& 20 \& . 983 \& 20 \& . 380 \& 20 \& . 865 \& 20 \& . 926

\hline 40 \& . 156 \& 40 \& 979.006 \& 40 \& . 410 \& 40 \& . 891 \& 40 \& . 940

\hline 900 \& . 165 \& 2600 \& . 030 \& 4300 \& . 440 \& $60 \quad 00$ \& . 917 \& 7700 \& . 953

\hline 20 \& . 174 \& 20 \& . 054 \& 20 \& . 471 \& 20 \& . 943 \& 20 \& . 966

\hline 40 \& . 184 \& 40 \& . 077 \& 40 \& . 501 \& 40 \& . 969 \& 40 \& . 979

\hline 1000 \& . 194 \& 2700 \& . 102 \& 4400 \& . 531 \& 6100 \& . 995 \& 7800 \& . 992

\hline 20 \& . 205 \& 20 \& . 126 \& 20 \& . 561 \& 20 \& 982.020 \& 20 \& 983.004

\hline 40 \& . 215 \& 40 \& . 151 \& 40 \& . 591 \& 40 \& . 046 \& 40 \& . 016

\hline 1100 \& . 227 \& 2800 \& . 175 \& 4500 \& . 621 \& 6200 \& . 071 \& 7900 \& . 027

\hline 20 \& . 238 \& 20 \& . 201 \& 20 \& . 651 \& 20 \& . 096 \& 20 \& . 039

\hline 40 \& . 250 \& 40 \& . 226 \& 40 \& .681 \& 40 \& . 121 \& - 40 \& . 049

\hline 1200 \& . 262 \& 2900 \& . 251 \& 4600 \& . 711 \& 6300 \& . 145 \& 8000 \& . 060

\hline 20 \& . 274 \& 20 \& . 277 \& 20 \& . 741 \& 20 \& .169 \& 20 \& . 070

\hline 40 \& . 287 \& 40 \& . 302 \& 40 \& . 772 \& 40 \& . 194 \& 8. 40 \& 080

\hline 1300 \& . 300 \& 3000 \& . 328 \& 4700 \& . 802 \& 6400 \& . 217 \& 81 00 \& . 090

\hline 20 \& - 313 \& 20 \& . 354 \& 20 \& . 832 \& 20 \& . 241 \& 20 \& . 099

\hline 40 \& . 327 \& 40 \& . 381 \& +40 \& . 862 \& 6 40 \& . 265 \& 8 40 \& . 108

\hline 1400 \& . 341 \& 3 I \& . 407 \& 4800 \& . 892 \& 6500 \& . 288 \& 8200 \& . 116

\hline 20 \& - 355 \& 20 \& . 434 \& 20 \& . 922 \& 20 \& . 311 \& 20 \& . 124

\hline 40 \& . 369 \& 40 \& . 460 \& 40 \& . 952 \& \& . 334 \& \& - 132

\hline 1500 \& . 384 \& 3200 \& . 487 \& 4900 \& .981 \& 66 00 \& . 356 \& 8300 \& . 140

\hline 20 \& . 399 \& 20 \& . 515 \& 20 \& 981. 011 \& 20 \& -379 \& 20 \& . 147

\hline 40 \& . 415 \& 40 \& . 542 \& 40 \& . 041 \& 6740 \& . 401 \& \& . 153

\hline 1600 \& . 430 \& 3300 \& . 569 \& $50 \quad 00$ \& . 071 \& 67 00 \& .423 \& 8400 \& -160

\hline 20 \& . 447 \& 20 \& . 597 \& 20 \& . 100 \& 20 \& . 445 \& 20 \& . 166

\hline 40 \& . 463 \& 40 \& . 624 \& 40 \& . 130 \& \& . 466 \& \& . 172

\hline 1700 \& .479 \& 3400 \& . 652 \& 5100 \& . 160 \& 68 00 \& . 487 \& 8500 \& 177
-182

\hline 20 \& .496 \& 20 \& . 680 \& 20 \& . 189 \& 20 \& . 508 \& 20 \& . 182

\hline 40 \& . 514 \& 40 \& . 708 \& 40 \& . 218 \& 40 \& . 528 \& 40 \& . 187

\hline 1800 \& . 531 \& 3500 \& . 736 \& 5200 \& . 248 \& 6900 \& . 549 \& \&

\hline 20 \& . 549 \& 20 \& . 765 \& 20 \& . 277 \& 20 \& - 560 \& \& - 192

\hline 40 \& . 567 \& 40 \& . 793 \& 40 \& - 306 \& 40
7000 \& .589
.608 \& 8700
8800 \& .203
.210

\hline $19 \cdot 0$ \& .585
.604 \& 36

20 \& . 822 \& 5300
20 \& .335
.364 \& $70 \quad 00$
20 \& . 608 \& 8800
8900 \& .210
.215

\hline 40 \& 978.623 \& 40 \& 979.879 \& 40 \& 981. 393 \& 40 \& 982.647 \& 9000 \& 983.217

\hline
\end{tabular}

Smithsonian tables.

Table 84.
relative acceleration of gravity at different latitudes.
Ratio of the acceleration of gravity at sea level for each Io^{\prime} of latitude, to its acceleration at latitude 45°.

$$
\frac{g_{\phi}}{g_{45}}=1-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi
$$

Latitude.	0^{\prime}	10^{\prime}	20'	30^{\prime}	40^{\prime}	50^{\prime}
0°	0.997367	-0.997367	0.997367	0. 997367	0.997368	0. 997368
1	-997369	-997369	. 997370	. 997371	. 997371	- 997372
2	- 997373	-997374	. 997376	- 997377	. 997378	. 997380
3	- 99738I	. 997383	. 997385	. 997387	. 997388	. 997390
4	-997393	. 997395	. 997397	. 997399	. 997402	. 997404
5	0.997407	-. 997410	-0.997412	0. 997415	0.997418	0.99742 I
6	. 997424	. 997428	997431	. 997434	. 997438	. 997441
7	- 997445	-997449	997453	-997456	-997460	-997465
8	. 997469	-997473	997477	. 997482	. 997486	. 99749 I
9	. 997496	-997500	. 997505	. 997510	-997515	-997520
10	0. 997525	0.997531	0. 997536	-. 997541	- 0.997547	0.997553
11	- 997558	. 997564	. 997570	-997576	- 997582	-997588
12	. 997594	. 997600	. 997607	. 997613	. 997620	. 997626
13	. 997633	-997640	. 997646	-997653	- 997660	. 997667
14	. 997674	-997682	. 997689	. 997696	- 997704	. 9977 II
15	0.997719	-0.997727	-. 997734	-0.997742	-. 997750	-0.997758
16	-997766	. 997774	. 997783	.997791	. 997799	. 997808
17	. 997816	. 997825	. 997833	. 997842	. 997851	. 997860
18	. 997869	. 997878	. 997887	. 997896	. 997905	. 997915
19	-997924	. 997934	. 997943	. 997953	. 997962	. 997972
20	-0.997982	-0.997992	0.998002	-. 998012	0.998022	-. 998032
21	-998042	. 998052	. 998063	-998073	-998084	-998094
22	. 998104	-998115	. 998126	. 998137	. 998148	. 998159
23	. 998170	-998181	. 998192	. 998203	-998214	. 998225
24	. 998237	. 998248	. 998260	. 99827 I	. 998283	. 998294
25	-. 998306	-0.998318	-0.998330	-. 99834 I	-. 998353	-0.998365
26	. 998377	. 998389	. 998402	-998414	. 998426	. 998438
27	. 998451	- 998463	- 998476	- 998488	. 998501	. 998513
28	. 998526	. 998539	. 998551	. 998564	. 998577	-998590
29	. 998603	. 998616	. 998629	. 998642	. 998655	. 998669
30	0. 998682	0. 998695	-. 998708	-0.998722	-. 998735	-0.998749
31	. 998762	. 998776	. 998789	. 998803	. 998817	. 998830
32	- 998844	- 998858	. 998872	-998886	-998899	. 998913
33	. 998927	-998941	. 998956	. 998970	. 998984	. 998998
34	. 999012	. 999026	. 99904 I	. 999055	-999069	-999084
35	-. 999098	-. 9991 I2	0.999127	-0.99914I	-. 999156	-0.999170
36	. 999185	. 999199	. 999214	. 999229	. 999243	. 999258
37	. 999273	-999288	. 999302	. 999317	. 999332	. 999347
38	. 999362	. 999377	. 999392	-999406	. 999421	. 999436
39	. 999451	- 999466	. 999482	-999497	. 999512	. 999527
40	-0.999542	0. 999557	0. 999572	0. 099587	0.999602	0.999618
4 I	. 999633	. 999648	. 999663	. 999678	. 999694	- 9999709
42	. 999724	. 999739	. 999755	. 999770	. 999785	. 999801
43	. 999816	-999831	. 999847	. 999862	. 999877	. 999893
44	-999908	- 999923	. 999939	. 999954	. 999969	. 999985
45	1.000000	1.000015	I. 00003 I	1. 000046	I. 000061	1. 000077

Table 84.
RELATIVE ACCELERATION OF GRAVITY AT DIFFERENT LATITUDES.
Ratio of the acceleration of gravity at sea level for each 10^{\prime} of latitude, to its acceleration at latitude 45°.
$\frac{g_{\phi}}{g_{45}}=1-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi$

Latitude. ϕ	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40'	50^{\prime}
45	1.c00000	1.000015	1.000031	1.000046	1. 000061	1.000077
46	092	108	123	138	153	169
47	184	200	215	230	246	261
48	276	291	307	322	337	352
49	368	383	398	413	428	444
50	1. 000459	1.000474	I. 000489	I. 000504	1.000519	1. 000534
51	549	564	579	594	609	624
52	639	654	669	684	699	713
53	728	743	758	773	787	802
54	816	83 I	846	860	875	889
55	I. 000904	1.000918	1.000933	1. 000947	1.000961	1. 000976
56	0990	1004	1018	1033	1047	1061
57	1075	1089	1103	1117	1131	1145
58	1159	1173	1186	1200	1214	1227
59	1241	1255	I 268	1282	1295	1308
60	1. 001322	1.0013.35	1.001348	1. 001362	I. 001375	1.001388
61	1401	1414	1427	1440	1453	1466
62	1478	1491	1504	1517	1529	1542
63	1554	1567	1579	1591	1604	1616
64	1628	I640	1652	1664	1676	1688
65	1.001700	1.001712	1. 001723	1.001735	I. $\cos 747$	1. $\cos 75^{8}$
66	1770	1781	1792	180.4	18 r 5	1826
67	1837	1848	1859	1870	1881	1892
68	1903	1913	1924	1935	1945	1955
69	1966	1976	1986	1996	2007	2017
70	1.002026	1.002036	1.002046	1. 002056	1. 002066	I. 002075
71	2085	2094	2104	2113	2122	2131
72	2140	2149	2158	2167	2176	2185
73	2194	2202	2211	2219	2227	2236
74	2244	2252	2260	2268	2276	2284
75	1. 002292	1.002299	1.002307	1.002314	二. 002322	1.002329
76	2336	2344	2351	2358	2365	2372
77	2378	2385	2392	2398	2405	24 II
78	2418	2424	2430	2436	2442	2448
79	2454	2460	2465	2471	2476	2482
80	1. 002487	1. 002492	1.002497	1. 002502	1. 002507	1.002512
81	2517	2522	2527	2531	2536	2540
82	2544	2548	2553	2557	2561	2564
83	2568	2572	2576	2579	2582	2586
84	2589	2592	2595	2598	2601	2604
85	1. 002607	1. 002609	1. 002612	1.002614	1. 002617	1.002619
86	2621	2623	2625	2627	2629	2631
87	2632	2634	2636	2637	2638	2639
88	2641	2642	2643	2643	2644	2645
89	2645	2646	2646	2647	2647	2647
90	1. 002647					

Smithsonian Tables.

LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Meters.	Stadute M.les.	Geograph c Miles. 1^{\prime} of the Eq.	Latitude.	Meters.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.
0°	I 10568.5	68.703	59.594	45°	III I32.I	69.054	59.898
1	I Io 568.8	68.704	59.594	46	III I 51.9	69.067	59.908
2	I 10569.8	68.705	59.595	47	III 171.6	69.079	59.919
3	I 10571.5	68.706	59.596	48	111191.3	69.091	59.929
4	110573.9	68.707	59.597	49	III 210.9	69.103	59.940
5	I 10577.0	68.709	59.598	50	I I I 230.5	69.115	59.95 I
6	110580.7	68.71 I	59.600	51	I I I 249.9	69.127	59.961
7	I 105 S 5.1	68.714	59.603	52	III 269.2	69. 39	59.972
8	110590.2	68.717	59.606	53	1 II 288.3	69.151	59.9S2
9	I 10595.9	68.72 I	59.609	54	I I I $307 \cdot 3$	69.163	59.992
10	110602.3	68.725	59.612	55	111326.0	69.175	60.002
11	1 I 0609.3	68.729	59.616	56	I II 344.5	69. IS6	60.012
12	110617.0	68.734	59.620	57	I II 362.7	69.198	60.022
13	110625.3	68.739	59.625	58	1113 3So. 7	69.209	60.032
14	110634.2	68.745	59.629	59	I I I 398.4	69.220	60.041
15	I 10643.7	68.75 I	59.634	60	111415.7	69.230	60.051
16	I 10653.8	68.757	59.640	61	III 432.7	69.241	60.060
17	1 Io 664.5	68.763	59.646	62	I I I 449.4	69.251	60.069
18	110675.7	68.770	59.652	63	I II 465.7	69.261	60.077
19	110687.5	68.778	59.658	64	III 48I. 5	69.271	60.086
20	I 10699.9	68.786	59.665	65	I II 497.0	69.281	60.094
21	I 10712.8	68.794	59.672	66	III 512.0	69.290	60.102
22	I 10726.2	68.802	59.679	67	III 526.5	69.299	60.110
23	I 10 740.1	68.810	59.686	68	III 540.5	69.308	60.118
24	I 10 754.4	68.819	59.694	69	1 I 1554.1	69.316	60.125
25	I 10 769.2	68.829	59.702	70	111567.1	69.324	60.132
26	110784.5	68.838	59.710	71	111579.7	69.332	60.139
27	1 Io Soo. 2	68.548	59.719	72	III 591.6	69.340	60.145
28	110 SI6.3	65.858	59.727	73	II 1903.0	69.347	60.151
29	1 Io S32.8	68.568	59.736	74	1111613.9	69.354	60.157
30	110849.7	68.879	59.745	75	111624.1	69.360	60.163
3 I	I 10866.9	68.889	59.755	76	I I I 633.8	69.366	60.168
32	I 10884.4	68.900	59.764	77	III 642.8	69.372	60.173
33	110902.3	68.911	59.774	78	III 651.2	69.377	60.177
34	I 10920.4	68.923	59.784	79	I I I 659.0	69.382	60.182
35	I 10938.8	68.934	59.794	80	II 11666.2	69.386	60.186
36	110957.4	68.946	59.804	81	I II 672.6	69.390	60.189
37	110976.3	68.957	59.814	S2	111678.5	69.394	60.192
38	$110995 \cdot 3$	68.969	59.824	83	III 683.6	69.397	60.195
39	III OI4.5	68.98 I	59.834	84	I II 688. 1	69.400	60.197
40	111033.9	68.993	59.845	85	111691.9	69.402	60.199
4 I	I I I 053.4	69.005	59.855	86	111695.0	69.404	6 c .201
42	111073.0	69.017	59.866	87	III 697.4	69.405	67.202
43	II I 092.6	69.029	59.876	88	II I 699.2	69.407	60.203
44	II I II 2.4	69.042	59.887	89	I I I 700.2	69.407	60.204
45	III I32.I	69.054	59.898	90	111700.6	69.407	60.204

Table 86.

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

Latitude.	Meters.	Statute Miles.	Geographic Miles. I^{\prime} of the Eq.	Latitude.	Meters.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.
0°	III 32 I .9	69.171	60.000	$45^{\text {a }}$	78850.0	48.995	42.498
1	I II 30.5 .2	69.162	59.991	46	77466.5	48. 135	41.753
2	I I I 254.6	69.130	59.964	47	76059.2	47.26I	40.994
3	I II I70.4	69.078	59.918	48	74628.5	46.372	40.223
4	III O52.6	69.005	59.855	49	73174.9	45.469	39.440
5	IIOgoI. 2	68.91 I	59.773	50	71698.9	44.552	3 S .644
6	110716.2	68.796	59.673	5 I	70200.8	43.621	37. S37
7	110497.7	68.660	59.556	52	68681. 1	42.676	37.018
8	110245.8	68.503	59.420	53	67140.3	41.710	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63 997. I	39.766	34.493
11	109 290. t	67.909	58.905	56	62395.7	38.771	33.630
12	108 905.2	67.670	58.697	57	60775.1	37.764	32.757
13	108487.3	67.4 I I	58.472	58	59135.7	36.745	31.873
14	108036.6	67.13I	58.229	59	57478.1	35.715	30.979
15	107553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	61	54110.2	33.622	29.164
17	106488.5	66.169	57.395	62	52400.9	32.560	28.243
18	105907.7	65.80 S	57.082	63	50675.4	31.488	27.313
19	105294.7	65.427	56.751	64	$48934 \cdot 3$	30.406	26.374
20	104649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103 973.2	64.606	56.039	66	45 407. 1	2 S .215	24.473
22	103 265.a	64.166	55.657	67	43622.2	27. 106	23.511
23	102525.4	63.706	55.259	68	41823.8	25.988	22.542
24	IOI 754.6	63.227	54.843	69	40012.4	24.862	21.566
25	$100953 . 亡$	62.729	54.411	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593
27	99257.8	61.676	53.498	72	34506.2	21.44 I	18.598
28	98364.8	6 I .121	53.016	73	32648.6	20.287	17.597
29	9744 I .9	60.548	52.519	74	30780.9	19.126	16.590
30	96489.3	59.956	52.006	75	28903.6	17.960	15.578
31	$\bigcirc 5507.3$	59.345	51.476	76	27017.4	16.788	14.562
32	94496.2	58.717	50.931	77	25122.8	15.611	13.541
33	93456.3	58.071	50.371	78	23220.4	14.428	12.515
34	92387.9	57.407	49.795	79	2 I 310.8	13.242	11.456
35	91291.3	56.726	49.204	80	19 394.6	12.051	10.453
36	90166.8	56.027	48.598	SI	17472.4	10.857	9.417
37	89014.8	55.311	47.977	82	I5 544.7	9.659	8.378
3 S	S7 835.6	54.578	47.341	8_{3}	13612.2	8.458	7.337
39	86629.6	53.829	46.691	84	I I 675.5	7.255	6.293
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247
41	S4 538.4	52.28 I	45.349	86	7791.7	4.84 I	4.200
42	82854.0	51.483	44.656	87	5845.9	3.632	3.151
43	SI 544.2	50.669	43.950	S8	3898.3	2.422	2. 101
44	So 209.4	49.840	43.231	89	1949.4	I. 211	1.051
45	78850.0	48.995	42.498	90	0.0	0.000	0.000

8mithbonian Tableb.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

Decilination of the Sun.	LATITUDE NORTH.								
	0°	5°	10°	85°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-23^{\circ} 27^{\prime}$	127	II 50	II 32	II 14	1055	1035	1013	948	919
-2320	127	II 50	II 32	II I4	10 56	1036	1014	949	920
-230	127	II 50	II 33	II I5	IO 57	1037	10 I5	95 I	923
-2240	127	II 50	II 33	II 16	10 58	10 38	1017	953	926
-22 20	127	II 51	II 34	II 17	Io 59	Io 40	10 I9	955	929
220	127	II 5I	II 34	II I8	II 0	1041	1020	958	931
-2140	127	1151	II 35	II I9	II	IO 43	1022	100	934
-21 20	127	1152	II 35	II I9	II	1044	IO 24	10	937
210		II 5^{2}	II 36	II 20	II 4	1046	10 26	104	940
-2040	12	II 52	II 37	1121	II	1047	10 28	106	942
-20 20	127	II 52	II 37	II 22	II 6	1049	1029	108	945
20 0	127	II 53	II 38	II 23	II 7	10 50	1031	10 II	947
- 1940	127	II 53	II 38	II 23	118	1051	1033	1013	950
- 1920	127	II 53	II 39	II 24	II 9	1053	10 35	10 I5	953
- 190	127	II 53	II 39	II 25	II 10	10 54	10 37	1017	955
-1840	127	II 54	II 40	II 26	II II	1055	1038	1019	958
- I8 20	127	II 54	II 40	II 27	II 12	1057	1040	1021	IO I
- j8 o	127	II 54	II 41	II 28.	II I3	Io 58	1042	1023	103
-1740	127	II 54	II 41	II 28	II 14	10 59	10 43	1026	10 5
-1720	127	II 55	II 42	II 29	II 15	II 1	IO 45	10 28	108
-17 0	127	II 55	II 42	II 30	II 16	II	IO 47	1030	1010
-1640	127	II 55	II 43	1131	If 17	114	10 49	1032	Io 13
- 1620	127	II 55	II 43	II 31	II I8	II 5	Io 50	Io 34	Io 16
- I6 0	127	II 56	II 44	II 32	II 19	II 6	1052	1036	10 18
- 1540	127	II 56	II 44	II 33	II 20	II 8	Io 53	10 38	1020
- I5 20	127	II 56	II 45	II 34	II 21	II 9	Io 55	10 40	1023
- I5 0	127	II 56	II 45	II 34	II 22	II 10	10 57	IO 42	1025
- 1440	127	II 57	II 46	II 35	II 23	II II	1059	1044	Io 28
-14 20	127	II 57	II 46	II 36	II 25	II 13	II 0	1046	10 30
-14 0	127	II 57	II 47	II 37	II 26	II I4	II	IO 48	1032
-1340	127	II 57	II 47	1137	II 27	II' 16	II	1050	Io 35
- I3 20	127	II 58	II 48	1138	II 28	1117	II 5	1052	10 37
- I3 0	127	II 58	II 48	II 39	II 29	II I8	II 7	IO 54	Io 40
- 1240	127	II 58	II 49	II 40	II 30	1119	II 8	10 56	10 42
- 1220	127	II 58	II 49	1140	II 31	II 21	II 10	1058	10 44
120	127	II 58	II 50	II 41	II 32	II 22	II II	II 0	Io 47
- 1140	127	II 59	II 50	II 42	II 33	1123	1113	II 2	Io 49
- II 20	127	II 59	II 51	II 43	II 34	II 25	II I5	II 4	1052
- II O	127	II 59	II 5 I	II 43	II 35	II 26	II 16	II 6	1054
- 1040	127	II 59	II 52	II 44	11136	II 27	II 18	II 8	1056
1020	127	120	II 52	II 45	II 37	II 28	II 20	II 10	IO 59
100	127	120	II 53	II 46	II 38	II 30	II 2I	II 12	II I
- 940	127	120	II 53	II 46	II 39	1131	II 23	II 14	II 3
- 920	127	120	II 54	II 47	II 40	II 32	II 24	II 16	$\begin{array}{ll}\text { II } & 5\end{array}$
-90	127	12 I	II 54	II 47	II 41	II 34	II 26	II 17	II 8
- 840	127	12 I	II 55	II 48	II 42	II 35	II 28	II 19	II 10
-- 820	127	12 I	I I 55	II 49	II 43	II 36	II 29	II 21	II 12
- 8 o	127	12 I	II 56	II 50	II 44	II 37	II 3I	II 23	II 14

Table 87.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. mi.	h. m.	h. m.	h. m.	h. m.
$-23^{\circ} 27^{\prime}$	97	853	838	822	84	744	722	656	627	552
-2320	98	$\bigcirc 54$	839	823	85	745	724	658	629	554
-230	9 II	S 58	843	828	8 Io	750	729	74	636	$6 \quad 2$
-22 40	914	9 I	S 46	S 3 I	814	755	734	710	643	69
-22 20	917	94	850	835	8 IS	80	739	716	649	6 I7
220	920	97	853	838	822	84	744	722	655	625
-2140	923	9 Io	857	S 42	826	8	749	727	$7 \quad 1$	632
-2120	926	9 I3	9 I	S 46	830	8 I 3	754	732	78	638
- 210	928	9 I7	94	S 50	834	8 I8	759	738	714	646
-2040	931	920	97	853	838	822	88	743	720	652
-20 20	934	923	9 II	857	842	826	88	749	725	659
-20 0	937	926	914	9 I	846	83 I	513	754	731	75
-1940	940	929	917	94	850	835	8 18	759	737	712
- 1920	943	932	920	97	854	S 39	823	84	743	718
-19 0	946	935	924	9 II	858	843	827	89	748	725
-18 40	948	938	927	915	92	847	832	814	754	731
- I8 20	951	94 I	930	919	96	S 52	S 36	819	759	737
- I8 o	954	944	934	922	910	856	841	824	85	743
-1740	956	947	937	925	913	9 0	S 45	829	810	749
-1720	959	950	940	929	9 I7	94	S 50	834	815	755
-170	IO 2	953	943	932	921	98	854	838	S 20	8 I
- 1640	105	956	946	935	925	912	858	843	826	86
- 1620	107	959	949	939	928	916	92	847	831	812
- 16 o	10 Io	IO 1	952	943	932	920	97	852	S 36	8 I7
-- 1540	1012	104	955	946	935	924	9 II	857	84 I	823
-- 1520	1015	107	958	949	939	928	915	92	846	829
-- 150	10 IS	1010	IO I	952	943	931	919	96	85 I	834
-1440	IO 20	1013	IO 4	956	946	935	923	9 II	856	840
-1420	1023	10 16	10 7	959	949	939	925	9 I5	9 I	845
-14 o	IO 26	IO 19	10 Io	102	953	943	932	919	96	850
-1340	IO 28	1021	10 I3	105	956	947	936	924	9 II	S 56
-1320	IO 31	IO 24	1016	108	100	950	940	928	916	9 I
-130	10 33	10 26	$10 \quad 19$	10 II	103	954	944	933	920	96
- 1240	Io 36	1029	1022	1015	107	958	948	937	925	9 II
- 1220	Io 38	10 32	10 25	1018	1010	10 I	952	94 I	930	917
120	1041	10 35	1028	1021	10 I3	105	956	946	935	922
- 1140	10 44	1038	1031	1025	IO I7	109	10 O	950	939	927
- II 20	Io 46	1040	10 34	10 28	1020	1013	IO 4	955	944	932
- II O	IO 49	IO 43	1037	1031	1023	10 16	IO 8	959	949	937
- 1040	1051	1046	1040	1034	IO 27	Io 19	1012	103	953	942
- 1020	10 53	Io 49	1043	Io 37	1031	IO 23	1016	IO 7	95^{8}	947
10	10 56	10 5 I	10 46	10 40	10 34	1027	10 19	10 II	103	952
- 940	1059	1054	1049	1043	1037	1031	1023	10 16	107	957
- 920	II I	Io 56	10 52	1046	1040	1034	1027	IO 20	10 II	102
-90	113	1059	Io 55	1049	IO 44	10 37	1031	1024	1016	107
- 840	$\begin{array}{ll}\text { II } & 6\end{array}$	II 2	1057	1052	IO 47	1041	1034	IO 2 S	1020	10 II
- 820	II8	II 4	II 0	1055	1050	1044	10 38	Io 32	IO 25	1016
- 80	II 10	II 7	II 3	Io 58	10 53	Io 48	10 42	Io 36	IO 29	1021

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Dac:ination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. mi.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	127	12 I	II 55	II 50	II 44	II 37	II 3 I	II 23	II I4
-740	127	I2	II 56	II 50	II 45	II 38	II 32	II 25	$\begin{array}{lll}\text { II } & 17\end{array}$
-720	127	12	II 56	1151	II 46	II 40	II 34	II 27	II 19
$-7 \quad 0$	127	12	I I 57	II 52	II 47	II 41	II 35	II 29	II 22
-6 40	127	12	II 57	II 53	II 48	II 42	II 37	II 31	II 24
-6 20	127	122	II 58	II 53	II 49	II 43	II 38	II 32	II 26
-6 o	127	12	II 58	II 54	II 50	II 45	II 40	II 34	
-5 40	127	123	II 59	II 55	II 51	II 46	II 41	$\begin{array}{ll}\text { II } & 36\end{array}$	$\begin{array}{ll}\text { II } & 31 \\ \text { II }\end{array}$
-5 20	127	123	II 59	II 55	II 52	II 47	II 43	II 38	II 33
-5	127	123	120	II 5^{6}	II 53	II 49	II 44	II 40	II 35
-4 40	127	123	120	II 57	II 54	II 50	II 46	II 42	II 37
-4 20	127	124	12	II 58	II 55	1151	II 47	II 44	II 40
-4 0	127	124	12 I	II 5^{8}	II 56	II 5^{2}	II 49	II 46	II 42
-3 40	127	124	122	II 59	II 57	II 53	II 5 I	II 47	II 44
-3 20	127	124	$12 \quad 2$	120	II 5^{8}	II 55	II 52	II 49	II 46
-3 0	I2 7	125	I2 3	12	II 58	II 56	II 54	II 51	II 49
-2 40	127	125	123	12	II 59	II 5^{8}	II 55	II 53	II 51
220	127	125	124	122	12 o	II 59	II 57	II 55	II 53
20	127	125	I2 4	123	12	120	II 5^{8}	II 57	II 55
-140	127	125	124	124	122	12 I	120	II 59	II 5^{8}
I 20	127	126	125	124	123	122	$12 \quad 2$	12 I	120
- 10	127	126	125	125	124	124	123	122	122
-0 40	127	126	126	125	125	125	125	I2 4	$\begin{array}{ll}12 & 4\end{array}$
-0 20	127	126	126	126	126	126	126	126	127
00	127	127	127	127	127	127	12 S	12 S	129
+o 20	127	127	127	128	128	12 S	129	1210	12 II
- 40	127	127	128	128	129	1210	12 II	12 I 2	12 I 3
10	127	127	128	129	1210	12 II	12 I3	1214	$\begin{array}{lll}12 & 15\end{array}$
120	127	12 S	129	1210	12 II	1213	1214	1216	1217
140	127	128	129	12 IO	12 I2	1214	1216	1217	1220
20	127	128	1210	12 II	1213	12 I 5	12 I7	1219	1222
220	127	128	1210	1212	1214	1216	1219	1221	1225
240	127	129	12 II	1213	1215	1217	1220	1223	1227
30	127	129	12 II	12 I 3	1216	1219	1222	1225	$\begin{array}{ll}12 & 29\end{array}$
320	127	129	1212	1214	1217	1220	1223	1227	1231
340	127	129	1212	1215	12 IS	1221	1225	1229	1233
40	127	1210	12 I 3	1216	1219	12 22	1226	1231	1235
420	127	1210	1213	1216	1220	1223	12 L	1232	123^{1}
440	127	1210	1214	1217	1221	1225	1229	1234	1240
50	127	1210	1214	12 I	1222	1226	1231	1236	1243
520	127	1210	1215	12 I9	1223	1228	$\begin{array}{ll}12 & 32 \\ 12\end{array}$	1238	1245
540	127	12 II	1215	1219	1224	1229	1234	1240	1247
60	127	12 II	1216	1220	1225	1230	$\begin{array}{ll}12 & 35 \\ 12\end{array}$	1242	1249
620	127	12 II	1216	1221	1226	1231	1237	1244	1252
640	127	12 II	1216	1222	1227	1232	1239	1246	1254
70	127	1212	12 I 7	1222	1228	1234	1240	1248	1256
720	127	1212	12 17	1223	1229	1235	1242	1250	1258
740	127	$12 \quad 12$	I2 IS	1223	1230	1236	1243	1252	13 I
80	127	12 I 3	1218	1224	1231	1238	1245	1253	133

Table 87.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	II II	II 7	II 3	II 58	Io 53	IO 48	1043	10 36	IO 30	10 21
-740	1113	II 10	II 5	II	IO 57	1052	10 46	1040	IO 34	IO 26
-720	II 16	1112	II 8	II 4	II 0	10 55	10 50	10 44	10 38	Io 31
$-7 \quad 0$	II 19	II 15	II II	II 7	II 3	Io 59	IO 54	1048	IO 42	10 35
-640	II 21	II 17	II I4	II 10	II 7	II	1058	Io 52	1047	10 40
-6 20	II 23	II 20	II 17	1113	II 10	II 5	II	10 56	Io 51	10 45
-6 o	II 26	II 23	II 20	II 16	II I3	II 9	II 5	II 0	IO 55	10 50
-5 40	$\begin{array}{ll}\text { II } & 28\end{array}$	II 25	II 23	II 19	II 16	II 13	II 8	II	10 59	10 55
-5 20	1131	II 28	II 25	II 22	II 19	II 16	II 13	II 8	II 4	Io 59
-5	II 33	1131	II 28	II 25	II 23	II 19	II 16	II 12	II 8	II 4
-4 40	II 35	1133	II 3I	II 28	II 26	II 23	II 20	II 16	II 1	II 8
-420	II 38	II 36	II 34	II 31	II 29	II 26	II 23	II 20	II 17	II 13
-4 o	II 40	II 3^{8}	If 37	II 34	II 32	II 30	II 27	II 24	II 21	II 18
-3 40	II 43	II 41	II 39	I1 37	II 35	II 33	II 31	II 28	II 26	II 22
-320	II 45	II 43	II 42	II 40	II 38	II 37	II 35	II 32	II 30	II 27
-3	II 47	II 46	II 45	II 43	II 42	II 40	II 38	II 3^{6}	II 34	II 32
-240	II 50	II 49	II 47	II 46	II 45	II 44	II 42	II 40	II 3^{8}	II 37
220	II 52	II 51	II 50	II 49	II 48	II 47	II 46	II 44	II 43	II 41
-2	II 55	II 54	II 53	II 52	II 52	II 50	II 49	II 48	II 47	II 46
-140	I I 57	II 56	II 55	1155	II 55	II 54	II 53	1152	II 51	II 50
I 20	II 59	II 59	II 58	1158	II 58	II 57	II 57	II 56	I I 56	II 55
10	$12 \quad 2$	122	12 I	12 I	12 I	12 I	12	120	120	II 59
-0 40		124	124	124	124	124	12	12		124
- 20		127	127	127	127	127	128	128	12 S	129
+00	129	129	1210	12 IO	1210	12 II	12 II	1212	12 ll	1213
- 20	12 II	12 I 2	1213	12 I 3	1214	1214	1215	1216	$12 \quad 17$	12 IS
- 40	12 I 4	1214	1215	1216	1217	1217	1219	1220	1221	1223
10	1216	1217	12 l	I2 19	1220	1221	1222	1224	1225	1227
120	1219	1220	1220	1222	1223	1225	1226	1228	1229	1232
140	1221	1222	1223	1225	1226	1228	1230	1232	1234	1237
20	1223	1225	I2 26	1228	1229	1231	1234	1236	1238	1241
220	1226	1228	1229	1231	1232	1235	1237	1240	1243	1246
240	1228	1230	1232	1234	1236	1238	1241	1244	1247	1250
30	1231	1232	I2 35	1237	I2 39	1241	1244	1248	1251	1255
320	1233	1235	1237	1240	1242	1245	1248	1252	1255	130
340	1235	1238	1240	1243	1246	1249	1252	1256	130	I3 4
40	1238	1240	1243	I2 46	1249	1252	1256	130	134	13 9
420	1240	1243	1246	1249	1252	1255	1259	I3 4	138	I3 14
440	1243	1246	1249	1252	1255	1259	$13 \quad 3$	138	13	$\begin{array}{ll}13 & 19\end{array}$
50	1245	1248	1251	I2 55	1258	I3 2	13	1312	$\begin{array}{ll}13 & 17\end{array}$	I3 23
520	1247	1251	1254	1258	132	136	13 I	1316	I3 22	1328
540	1250	1253	1257	131	13	1310	1314	1320	I3 26	I3 33
60	1253	I2 56	1259	I3 4	138	1313	13 IS	1324	1331	1338
620	1255	1259	132	137	13 II	1316	1322	1328	1335	I3 43
640	1258	I3 I	135	1310	1314	I3 20	$\begin{array}{ll}13 & 26\end{array}$	$13 \quad 32$	1339	13 47
70	13 o	134	$\begin{array}{ll}13 & 8\end{array}$	1313	1318	1323	I3 29	$13{ }^{1} 36$	1344	1352
720	13	13	13 II	I3 16	1321	1327	1333	1340	1345	1357
740	135	I3 9	1314	1319	1325	1331	13 37	1344	1353	142
80	137	I3 12	1317	I3 22	1328	I3 34	1341	1348	13 57	$14 \quad 7$

8mithsonian Tables.

$\begin{aligned} & \text { Declination } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	127	12 I 3	1218	1224	1231	1238	1245	1253	133
820	127	1213	1219	1225	1232	I2 39	1247	1255	135
840	127	12 I3	1219	1226	1233	1240	1248	1257	138
90	127	1213	1220	1226	1234	1241	1250	1259	1310
920	127	1213	1220	1227	1235	1243	1252	13 I	1313
940	127	1214	1221	1228	1236	1244	1253	I3 3	1314
100	127	1214	1221	1229	1237	1245	I2 55	135	1317
1020	127	1214	1222	1229	1238	1247	1256	137	I3 19
1040	127	1214	1222	1230	1239	1248	1258	139	1322
110	127	12 I 5	1223	1231	1240	1249	1259	13 II	1324
II 20	127	12 I5	1223	1232	1241	1250	I3 I	1313	I3 26
II 40	127	1215	1224	1232	1242	1252	132	1315	I3 29
120	127	1215	1224	1233	1243	1253	I3 4	1317	1331
1220	127	1216	1225	1234	1244	1255	136	1319	I 334
1240	127	1216	1225	1235	1245	1256	I3 8	1321	I3 36
130	127	1216	1226	1235	1246	1257	I3 9	1323	1338
1320	127	1216	1226	1236	1247	1258	13 II	I3 25	1341
1340	127	1217	1227	1237	1248	130	1313	I3 27	I3 43
140	127	1217	1227	1238	1249	131	1314	1329	I3 46
1420	127	1217	1228	1239	1250	132	1316	13 3I	I3 48
1440	127	1217	1228	1240	1251	I3 4	1317	1333	13 51
150	127	$\mathrm{I}_{2} 18$	1229	1240	1252	135	1319	1335	I3 53
1520	127	1218	1229	1241	1253	137	1321.	1337	I3 56
1540	127	1218	1230	1241	1254	I3 8	1323	1339	1358
160	$\begin{array}{ll}12 & 7\end{array}$	1219	1230	1242	1255	139	1325	1341	14 I
1620	127	1219	1231	1243	1256	13 II	I3 26	1343	143
1640	127	1219	1235	1244	1258	1312	1328	1345	146
170	127	1219	1232	1245	1259	1313	1329	1347	148
1720	127	1220	1232	1246	130	1315	${ }^{1} 3$ 3I	1350	14 II
1740	12%	1220	1233	1246	13 I	1316	1333	1352	I4 I4
180	7	1220	1233	1247	13	1317	1335	1354	1416
1820	127	1220	1234	1248	13	1319	1337	I3 56	1419
1840	127	1221	1234	1249	134	I3 20	I 338	1358	1422
190	127	12 2I	1235	1250	135	1322	1340	140	1424
1920	127	12 2I	1235	1251	136	I3 23	1342	142	1426
1940	127	1222	1236	1252	I3 7	I3 25	1344	145	1429
200	127	1222	1236	1252	138	1326	1346	147	1432
2020	127	1222	1237	1253	13 Io	1328	I3 47	1410	1435
2040	127	1222	1237	1254	13 II	1329	I3 49	1412	1437
210	127	1223	123^{8}	1255	13 12 12	I3 31	13 5I	14 14	1440
2 I 20	127	1223	1239	1256	1313	1332	1353	1416	1443
2140	127	1223	1239	1256	1314	1334	I3 55	1419	1446
220	$\begin{array}{ll}12 & 7\end{array}$	1224	1240	1257	1316	I3 35	I3 56	1421	I4 49
$22 \quad 20$	127	1224	1241	1258	13 17 18	I 337	I3 58	1423	1452
2240	127	1224	1241	1259	1318	1338	14 -	1425	1454
230	127	1225	1242	130	1319	1340	142	1428	1457
2320	$\begin{array}{ll}12 & 7\end{array}$	1225	1242	13 I	1320	1341	14 4 	1430	150
$23 \quad 27$	127	1225	1243	13 I	I3 20	13 4I	145	1431	15 I

[^18]Table 87.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES

$\begin{aligned} & \text { Declination } \\ & \text { the of Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	137	1312	1317	1322	1328	1334	1341	I3 49	1358	$14 \begin{array}{ll}14 & 7\end{array}$
820	1310	1314	I3 20	1325	13 31	1338	1345	I3 53	142	1412
840	1312	1317	1323	1328	1334	1341	I3 49	1357	146	1417
90	1315	1320	1325	13 31	133^{8}	1345	1353	14	14 II	1422
920	1317	1323	1328	1334	1341	1349	1356	145	14 I5	1426
940	I3 20	1325	13 3I	1338	I3 44	1352	140	14 Io	I4 20	1431
100	I3 22	1328	I3 34	1341	1348	1356	14	1414	1425	1436
1020	I3 25	13 31	1337	1344	1351	1359	I4	1418	I4 29	1441
1040	I3 28	1334	I3 40	1347	I3 55	143	1412	1422	1434	1447
110	1330	1336	1343	1350	1358	147	1416	1427	1438	I4 52
II 20	1332	1339	1346	1353	14 I	1410	I4 20	I4 31	1443	1457
II 40	1335	1341	I3 49	1356	145	1414	I4 24	1435	1448	$15 \quad 2$
120	1338	1344	I3 52	14 o	148	1418	$14 \quad 28$	1440	1453	158
1220	I3 40	1347	1355	143	1412	1422	I4 32	I4 44	1458	15 I3
1240	I3 43	1350	I3 58	146	1416	1425	1437	I4 49	$15 \quad 2$	15 I8
130	I3 46	1353	14	14 Io	1419	1429	1441	1453	$\begin{array}{ll}15 & 7\end{array}$	$15 \quad 23$
1320	I3 48	1356	144	14 I3	1422	1433	1445	1453	1513	1529
1340	I3 50	1358	147	1416	1426	1437	1449	$15 \quad 2$	1517	1535
140	1353	14	1410	1419	1429	1441	1453	15	1522	1540
1420	1356	144	1413	1423	1433	1445	1457	15 II	$15 \quad 28$	1546
1440	I3 59	147	1416	1426	1437	14 49	$15 \quad 2$	1516	1533	1551
150	14	1410	1419	1429	1440	1452	156	1521	1538	1557
1520	144	1413	1422	I4 33	1444	1456	1510	1526	1543	$16 \quad 2$
1540	147	1416	1426	1436	1448	I5 0	1514	1530	1548	168
160	1410	1419	1429	1440	1452	154	1519	1535	1553	1614
1620	1412	1422	1432	I4 43	1455	15 8	1523	1540	1559	1620
1640	1415	1425	1435	1446	1459	1513	$15 \quad 28$	1545	164	1626
170	1417	1428	1438	1450	15	1517	I5 32	1550	16 Io	1632
1720	1420	1431	1441	1453	15	15 21	I5 37	I5 55	$16 \quad 15$	1638
1740	1423	1434	1445	1457	15 IO	I5 25	1541	16 o	1620	1645
	1426	1437	1448		1514	I5 29	I5 46	165	1626	1651
1820	14. 29	1440	1452	I5 4	15 IS	1534	I5 50	1610	1632	1658
I8 40	1432	I4 43	1455	158	1522	1538	I5 55	1615	1638	I7 4
190	1435	1446	145^{8}	15 II	I5 26	1542	16 0	1620	1644	17 II
1920	1437	I4 49	15 I	1515	I5 30	1546	16	1625	1650	1717
1940	1440	1452	$15 \quad 5$	1519	I5 34	1551	1610	1631	1656	I7 24
200	1443	1455	158	1522	$15 \quad 38$	1555	1615	1637	$17{ }^{1} 7$	1731
2020	1446	1458	I5 II	1526	I5 42	160	1620	1642	178	1738
2040	14 49	$15 \quad 2$	I5 15	1530	1546	164	1625	1647	1714	1746
210	1452	15	1519	1534	1550	16	1630	1653	1720	1753
2120	1455	158	$15 \quad 22$	1538	1555	1613	1635	1659	$\begin{array}{ll}17 & 27 \\ 17\end{array}$	18
2140	1458	15 II	$15 \quad 26$	1542	1559	1618	1640	175	I7 34	I8 8
220	15	15 I4	1529	1546	163	1623	1645	17 II	1740	18 16
2220	I5 4	1518	1533	1549	167	1628	1650	1717	1747	I8 24
2240	157	1522	I5 37	1553	1612	1632	1656	1723	1754	I8 32
230	1510	1525	I5 40	1557	1616	1637	17 i	1729	18 I	1841
2320	${ }_{15} \mathrm{I}_{3}$	1528	1544	16 I	1621	1642	177	1735	I8 8	1849
$23 \quad 27$	${ }_{15} 14$	1529	1546	163	1623	1644	179	I7 37	18 II	IS 52

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h.m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	, m.	h.m.
$-23^{\circ} 27^{\prime}$	552	531	5 S	442	4 II	334	246	I 29			
- 2320	555	534	512	446	416	340	253	141			
-230	62	543	52 I	456	428	353	3 II	2 II			
-22 40	6 Io	551	530	56	439	47	327	235	- 59		
-22 20	617	559	539	516	450	420	343	256	I 43		
- 220	625	67	547	525	5 I	432	35^{8}	3 I 4	2 I 3		
-2140	632	614	556	534	5 II	443	4 II	331	238	1 I	
-21 20	639	622	64	543	520	455	424	347	259	I 45	
- 210	646	629	612	552	530	55	436	4 I	318	216	
-20 40	652	637	620	6 I	540	516	448	416	335	241	12
- 2020	659	644	627	69	549	526	459	429	351	32	I 47
20 0	75	651	634	617	558	535	510	44 I	46	322	219
- 1940	712	658	642	625	66	545	521	453	420	339	244
- 1920	718	74	649	633	614	554	531	55	434	355	36
- 190	725	711	656	64 I	623	63	541	516	447	4 II	326
- 1840	731	717	74	648	631	612	551	526	459	425	344
- IS 20	737	724	7 10	655	639	620	6 I	537	5 II	439	4 I
- 18 o	743	731	717	73	647	629	610	547	522	452	416
-1740	749	737	724	7 10	655	638	619	557	5.33	55	431
-1720	755	743	731	717	72	646	628	67	543	517	445
- 17 o	8 I	749	737	724	79	653	636	616	554	52 S	458
-16 40	$\begin{array}{ll}8 & 6\end{array}$	755	744	731	717	7 I	644	626	64	540	5 II
-1620	S 12	8 I	750	738	724	79	652	635	6 I4	551	523
- 160	S 17	87	756	744	731	717	7 I	644	624	62	535
-1540	S 23	SI_{13}	8	751	738	725	$\begin{array}{ll}7 & 9\end{array}$	652	634	612	547
- 1520	S 29	819	8 S	758	745	732	717	7 I	643	622	559
-150	83.4	825	S 15	84	752	739	725	79	652	632	610
-14 40	840	$\mathrm{S}_{8} 31$	821	810	759	746	732	717	7 I	642	620
- 1420	845	836	827	S 17	85	753	740	726	710	651	631
-14 0	850	842	833	823	812	8 I	747	734	718	7 I	64 I
- 1340	S 56	S 47	$\mathrm{S}_{3} 8$	829	819	87	755	741	726	710	651
- 1320	91	853	844	S 35	825	814	8	749	735	719	7 I
- 130	96	858	850	S 41	832	821	810	757	743	728	710
- 1240	9 II	94	856	847	838	828	817	S 5	751	737	720
- 1220	917	9 Io	92	853	844	834	824	S 12	759	745	729
- I2 0	922	915	97	S 59	850	841	831	820	87	753	738
- 1140	927	920	9 I3	95	S 56	S 47	838	S 27	$\mathrm{S}_{1} 15$	8	747
II 20	932	925	919	9 II	93	S 54	S 44	S 34	823	810	756
II 0	937	931	924	917	99	90	85 I	84 I	83 I	8 IS	S 5
-1040	942	936	929	922	915	97	858	849	838	S 26	814
- 1020	947	941	935	928	921	913	95	S 56	S 46	834	822
10 O	952	946	940	934	927	919	9 II	93	S 53	S 42	831
- 940	957	951	946	940	933	926	918	910	90	850	S 39
- 920	IO 2	956	951	945	939	932	925	916	98	858	847
- 90	10 7	102	956	950	944	938	93 I	923	915	95	855
- 840	10 II	107	IO 2	956	950	944	937	930	922	9 I3	93
- S 20	IO I6	IO 12	IO 7	IO 2	956	950	944	937	929	921	9 II
- 80	10 2I	10 17	10 12	10 7	102	956	950	943	936	928	919

Table 87.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	$69^{\text {c }}$	70°
	h.	h.	h.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	1021	10 I7	1012	10 7	102	956	950	943	936	928	919
-740	Io 26	1022	1017	IO 13	108	10 2	956	950	943	935	927
-7 20	10 31	10 27	1023	IO 18	1013	Io 8	Io 3	957	950	943	935
-7 0	1035	10 32	IO 28	1023	1019	1014	109	104	957	950	943
-640	1040	IO 37	1033	1029	10 25	IO 20	1015	1010	IO 4	957	951
-6 20	10 45	IO 42	10 3^{8}	10 34	1031	Io 26	1022	1016	1011	Io 5	958
6 o	1050	IO 47	Io 43	1040	Io 36	Io 32	1028	1023	1018	1012	106
-5 40	1055	IO 52	IO 49	IO 45	1041	10 38	10 34	1029	10 25	Io 19	Io 14
-5 20	Io 59	Io 56	10 54	10 50	10 47	Io 44	10 40	1036	1031	Io 26	IC 21
-5	II 4	II I	1059	IO 56	1053	Io 50	IO 46	10 42	1038	IO 34	10 29
-4 40	118	II 6	II 4	II	10 5^{8}	10 55	10 52	1049	1045	10 4I	10 36
420	1113	II 11	II 9	II 7	114	II 1	10 5^{8}	IO 55	1052	1048	Io 44
-4 0	II IS	JI 16	II I4	II I2	II Io	II 7	II 4	II I	1058	Io 55	1051
-3 40	II 22	II 21	II 19	II 17	II I5	II 13	II IO	II 8	II 5	II 2	10 59
320	II 27	II 26	II 24	II 22	II 20	II 19	II 16	II 14	II II	II 9	II 6
-3 0	II 32	II 31	II 29	II 28	II 26	II 24	II 22	II 20	II I8	II 16	II I3
-240	II 37	II 35	II 34	II 33	1131	II 30	II 28	II 27	II 25	II 23	II 21
20	II 41	II 40	II 39	II 38	II 37	II 36	II 34	II 33	II 32	II 30	II 28
20	II 46	II 45	II 44	II 43	II 43	II 4I	II 40	I. 140	II 3^{8}	II 37	I I 35
- 140	II 50	II 50	II 49	II 49	1148	II 47	II 46	II 46	II 45	II 44	II 43
I 20	II 55	II 55	II 54	II 54	II 53	II 53	II 52	II 52	II 52	II 51	II 50
I	I I 59	II 59	II 59	II 59	II 59	II 59	II 58	1158	II 58	II 58	II 58
-0 40	124	124	124	124	124	124	124	124	125	125	125
020	129	129	129	1210	1210	1210	1210	12 II	12 II	1212	12 I 2
00	1213	1214	1214	1215	1215	1216	1216	1217	12 I 8	1219	1219
+o 20	12 I8	1219	1219	1220	1220	12	12	1223	1225	1226	1227
- 40	1222	1223	1224	1225	1226	1227	1228	1229	1231	1233	I2 34
10	1227	1228	1229	1231	1232	1233	1234	1236	1238	1240	1241
I 20	1232	1233	1234	1236	1237	1239	1240	1242	1244	1247	1249
I 40	1237	1238	1239	1241	1243	1244	1246	1249	1251	1254	1256
20	1241	1243	I2 44	1246	1248	1250	1252	1255	1258	13	134
220	1246	1247	1249	1252	I2 53	1256	1259	I3	134	138	I3 II
240	1250	1252	1254	1257	1259	132	I3 5	137	13 II	1315	1319
30	1255	1257	1259	I3 2	I3 5	13 S	I3 II	1314	1317	1322	I3 26
320	130	± 32	135	137	I3 IO	1313	1317	I3 20	1324	1329	I3 34
340	134	137	I3 Io	1313	I3 16	1319	I3 23	1327	I3 3I	1336	1341
40	139	1312	1315	1318	1322	1325	1329	1333	1338	1343	I3 49
420	1314	I3 17	1320	1323	I3 27	1331	I3 35	1340	I3 45	1350	1356
440	1319	1322	I3 25	1329	I3 32	I3 37	1341	I3 46	I3 52	1358	144
50	1323	1327	1330	1334	1338	1343	1347	1353	I3 58	14	I4 II
520	1328	I3 32	I3 35	1340	I3 44	I3 49	1354	1359	145	1412	1419
540	1333	1337	134 I	I3 45	1350	I3 55	140	146	1412	1419	1427
60	1338	1342	1346	1350	1355	I4 I	146	1413	1419	1426	1435
620	1343	1347	I3 51	1356	14 I	14 7	1412	1419	1426	1434	1443
640	1347	I3 52	1356	14 I	I4 7	1413	1418	1426	I4 33	1442	1451
70	I 352	1357	14 I	$14 \quad 7$	1412	1419	1425	1432	1440	1449	1459
720	I3 57	142	147	1413	1418	1425	1431	1439	I4 48	1457	157
740	142	147	1412	I4 IS	1424	14 31	1438	I4 46	1455	I5 4	I5 I5
80	14 7	I4 12	1417	1423	1430	1437	1445	145^{2}	$15 \quad 2$	1512	± 523

table 87.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

Declination of the Sun.	LATITUDE NORTH.									
	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	910	859	847	833	817	758	737	710	638	556
-740	9 I8	908	856	843	828	8 II	750	726	656	618
-720	926	917	96	853	839	823	84	7 41	714	638
-7	935	926	916	93	850	835	817	756	731	658
-640	943	934	925	914	9 I	847	830	8 II	747	717
-6 20	951	$\bigcirc 43$	934	924	912	859	8.43	825	83	736
6 o	959	952	943	934	923	9 II	856	839	819	754
-5 40	10 7	10 I	953	944	934	922	99	853	834	8 II
-5 20	1015	$10 \quad 9$	10 2	953	944	934	922	97	850	828
-5 0	IO 23	1017	IO II	103	955	945	934	920	95	846
-4 40	10 31	1026	IO 20	1013	IO 5	956	946	934	919	$9 \quad 2$
-420	10 39	10 34	IO 29	1022	1015	107	958	947	934	918
-4 0	Io 47	1043	10 38	10 32	IO 26	10 18	Io 10	IO O	949	934
-340	Io 55	10 51	Io 46	1041	Io 36	1029	Io 22	1013	Io 3	950
-320	II 3	Io 59	Io 55	10 5I	IO 46	1040	IO 34	10 26	Io 17	106
-3	II II	II 8	II 4	110	Io 56	1051	10 45	10 39	Io 31	1022
-240	II 19	II 16	II 13	II 10	II 6	II 2	Io 57	10 52	Io 45	1037
220	II 26	II 24	II 22	1119	II 16	II I3	II S	II 4	1059	1052
2	II 34	II 32	II 3I	II 28	II 26	II 23	II 20	II 17	II I3	II 8
-140	II 42	II 41	II 39	II 38	II 36	II 34	II 32	11 29	II 26	II 23
I 20	II 49	II 49	II 48	II 47	II 46	II 45	II 43	II 42	II 40	II 38
10	II 57	II 57	II 56	II 56	II 56	II 55	II 55	II 55	II 54	II 53
-040	125	125	125	125	126	126	$12 \quad 7$	127	128	128
020	1213	12 I 3	1214	12 I 5	1216	1217	1218	1220	1221	1223
00	1220	1222	I2 22	1224	12. 26	$12 \quad 28$	1229	1232	1235	1238
+020	1228	1230	1231	1234	I2 36	1238	1241	1244	1249	1253
- 40	1236	1238	1240	I2 43	I2 46	1249	1253	1257	I3 2	13 9
10	1244	1246	1249	$12{ }^{2}$	1256	130	135	1310	1316	1324
120	1252	1255	1258	$13 \quad 2$	I3 6	13 II	1316	I3 23	1330	1340
140	1259	133	I3 7	13 II	1316	1322	I3 28	I3 36	I3 44	1355
20	I3 7	13 II	1316	1320	1326	$13 \quad 32$	1340	1349	I3 59	I4 II
220	13 I5	1319	I3 25	1330	I3 36	1343	1352	141	14 I3	1427
240	I3 23	I3 28	1333	I3 40	I3 46	I3 54	144	1414	1428	1443
30	1331	1336	13 42	1349	I3 57	145	1416	1428	1442	1459
320	I3 39	I3 44	I3 51	I3 59	147	1417	1428	1441	1456	1516
340	I3 47	I3 53	I4 I	148	1417	1428	1440	1455	I5 II	I5 33
40	I3 55	$14 \quad 2$	14 Io	14 IS	1428	1440	1453	158	1527	1550
420	143	14 Iq	1419	1428	1438	1451	$15 \quad 5$	1522	1543	167
440	14 II	1419	1428	I4 38	1449	$15 \quad 2$	15 I8	I5 36	I5 58	I6 25
50	14*19	1428	1437	1448	15 0	1514	15 3I	1550	1614	1644
520	1427	1437	1446	I4 58	15 II	I5 26	1544	165	1631	I7 3
540	1435	I4 45	1456	I5 8	15. 22	1538	1557	I6 20	1647	1722
60	1444	1454	$15 \quad 5$	1519	1533	1550	16 II	1635	175	I7 43
620	1452	15	15 15 15	$15 \quad 29$	1544	16	1625	1651	1723	I8 5
640	15 I	1512	I5 25	I5 40	1556	1616	1639	$17 \quad 7$	1741	I8 27
70	15 Io	I5 22	1535	1550	168	1629	1653	1723	18 I	I8 50
720	1518	1231	1545	16 I	1620	1642	178	1740	1821	19 I6
740	1527	I5 40	1555	1612	1632	I6 55	1723	1758	I8 42	I9 44
80	I5 35	1550	$16 \quad 5$	I6 23	1644	179	1739	IS 16	I9 5	2015

$\begin{aligned} & \text { Declination } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	147	1412	1417	1423	1430	1437	1445	1453	$15 \quad 2$	1512	1523
820	1412	14 1\%	1423	1429	1436	1443	145^{2}	150	1510	1520	1532
840	1417	1422	1428	1435	1442	1450	145^{8}	I5 7	1517	1528	I5 40
90	1422	1427	1434	1441	1448	1456	$15 \quad 5$	1514	1525	1536	1549
920	1427	1432	1439	1446	1454	152	15 II	1521	1532	I 544	1557
940	1432	1438	14 45	1452	150	159	1518	1528	1540	1552	166
100	1437	1443	I4 50	1458	156	1515	I5 25	I5 35	1547	160	1615
1020	1442	1449	1456	I5 4	1513	1522	1532	1543	I5 55	168	1624
1040	1447	1454	$15 \quad 2$	I5 10	I5 19	1528	I5 39	I5 50	163	1617	1633
110	1452	1459	157	1516	1525	1535	15 46	1558	16 II	1626	1642
II 20	1457	$15 \quad 5$	1513	I5 22	1531	1541	I5 53	16	1619	1634	1652
II 40	$15 \quad 2$	1510	1519	1528	I5 3^{8}	1548	16 0	16 I3	1627	1643	17 I
120	158	1516	I5 25	I5 34	1544	1555	167	1621	1635	1652	17 II
1220	1513	1521	1531	1540	1550	162	I6 I5	1629	1644	17 I	1721
1240	15 IS	I 527	1536	1546	1557	169	1622	1637	1653	17 II	1731
130	1523	I5 33	1542	1553	164	1616	1630	1645	172	1720	1741
1320	1529	I5 39	1548	1559	16 II	1623	1637	1653	1710	1730	1752
1340	1535	I5 44	1555	165	1617	1631	1645	17 I	1719	1740	IS 3
140	I5 40	1550	16 I	1612	1624	1638	1653	1710	I7 29	1750	1814
1420	I5 46	1556	167	1619	1631	1646	17	1719	1738	180	IS 26
1440	1551	162	1613	1625	1638	1653	179	1728	1748	IS II	1838
150	1557	16 8	1619	1632	1646	17 I	1717	1737	1758	1822	IS 50
$15 \quad 20$	162	1614	1626	1639	1653	179	1726	1746	IS 8	IS 33	I9 3
I5 40	16 S	1620	1632	1646	17 1	1717	1735	1755	IS 18	1845	1916
160	1614	1626	1639	1653	17 S	1725	I7 44	I8 5	IS 29	1857	1930
1620	1620	1632	1646	$17 \times$	1716	1733	1753	I8 15	I8 40	1910	I9 45
1640	1626	1639	1652	$17 \quad 7$	1723	1741	IS 2	I8 25	IS 51	1923	20 I
170	1632	1645	1659	1714	1731	1750	18 II	IS 35	193	1936	2017
1720	1638	1652	176	1722	1739	1759	1821	IS 46	1915	1950	2035
1740	1645	1658	1713	1729	I7 47	18 S	1831	I8 57	I9 28	206	2055
	1651	$17 \quad 5$	1720	1737	1756	1817	184 I	198	I9 4I	2022	2117
IS 20	1658	1712	1728	1745	IS 5	1826	I8 52	I9 20	1955	2040	2142
1840	174	1719	1735	1753	1814	IS 36	193	I9 33	2010	2059	22 I3
190	17 II	1726	1743	$18 \quad 2$	1823	1846	1914	1946	2026	2120	2258
1920	1717	1733	1751	1810	1832	IS 56	1925	200	2044	2145	
1940	1724	I7 4I	1759	1819	IS 41	197	1937	2014	213	2216	
200	1731	1748	187	1828	1851	1919	1950	2030	2123	2259	
$20 \quad 20$	1738	1756	1815	1837	19 I	1930	204	2047	2447		
2040	1745	I8 4	IS 23	${ }_{18} 86$	1912	I9 42	2019	215	2217		
210	1752	18 II	1832	1856	1923	1925	2034	2126	23 I		
2120	180	1820	1841	196	1934	208	2050	2150			
2140	188	1828	1850	19 I6	1946	2022	218	22 19			
220	1816	IS 37	19 0	1927	1955	2037	21 29	$23 \quad 2$			
$22 \quad 20$	IS 24	IS 46	19 Io	1938	20 II	2053	2152				
2240	1832	IS 55	1920	1950	2025	21 II	2221				
230	I8 4 I	194	1931	$20 \quad 2$	2040	2131	$23 \quad 3$				
2320	IS 49	1913	194 I	2014	2056	2I 54					
$23 \quad 27$	I8 52	1917	1946	2019	212	223					

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

Declination of the Sun.	LATITUDE NORTH.				
	71°	72°	73°	74°	75°
$+8^{\circ} 0^{\prime}$	h. m.	h. m.	h. m.	h. m.	h. m.
	1535	I5 50	165	1623	1644
820	1544	I5 59	1616	I6 35	1657
40	I5 53	I6 9	1626	I6 46	1710
90	163	16 19	1637	16 58	1723
920	1612	1629	1648	17 Io	1737
940	1622	I6 39	1659	1723	1751
100	1631	1650	17 II	I7 35	$18 \quad 5$
1020	1641	170	1722	1749	1820
Io 40	1650	17 II	1734	182	I8 36
110	17	1722	1747	1816	1852
II 20	17 II	1734	1759	1831	199
II 40	1722	1745	18 I3	I8 46	19 27
120	1732	1757	1826	19 I	1946
1220	1743	189	I8 40	1918	207
1240	1755	I8 22	IS 55	I9 35	$20 \quad 29$
130	186	I8 35	I9 II	1954	2055
1320	18 IS	I8 49	I9 26	2014	2123
1340	I8 30	192	1943	2035	21 59
140	IS 43	1917	$20 \quad 1$	210	2250
1420	1856	1933	2020	2128	
1440	1910	1949	204 I	$22 \quad 2$	
150	I9 24	$\begin{array}{ll}20 & 7\end{array}$	$\begin{array}{rrr}21 & 5 \\ 21 & 32\end{array}$	2252	
1520	1940	2026	2132		
1540	19 55	2046	225		
160	2013	2110	2254		
1620	2031	2136			
1640	2051				
170	$\begin{array}{lll}21 & 13 \\ 21 & 39\end{array}$	2256			
1720	$\begin{array}{lll}21 & 39 \\ 22 & \text { I I }\end{array}$				
174	76°	77°	78°	79°	80°
$+8^{\circ} 0^{\prime}$	179	1739	1816	195	20 I5
820	1723	1755	1835	1929	2050
840	1738	1812	I8 56	I9 5^{6}	2133
90	1753	1830	1917	2025	2235
920	18 S	1848	1941	2059	
940	I8 25	198	206	2140	
100	1841	1928	2031	2239	
1020	1859	1950	216		
1040	1918	2015	2146		
110	1938	2041	2243		
II 20	I9 59	21.13			
1140	2023	2150			
120	2049	2246			
1220	21 19				
1240	21 55				

Day of Month.	Jqn.	$F e b$.	Mar.
1	- $23^{\circ} \mathrm{o}^{\prime}$	$-17^{\circ} \quad 4^{\prime}$	$-7^{\circ} 33^{\prime}$
4	-22 44	$16 \quad 12$	$6 \quad 24$
7	$22 \quad 22$	$15 \quad 16$	$5 \quad 14$
Io	2157	$14 \quad 19$	44
13	$21 \quad 28$	1319	253
16	2055	$12 \begin{array}{ll}18\end{array}$	I 42
19	$20 \quad 19$	115	-0 31
21	1953	1031	+o 16
24	19 II	925	127
27	1826	818	238
30	$17 \quad 38$		348
	Apr.	May.	June.
1	$+4^{\circ} 34^{\prime}$	$+15^{\circ} 6^{\prime}$	$+22^{\circ} 4^{\prime}$
4	543	I5 59	$22 \quad 27$
7	6 51	1650	2246
Io	758	1738	23 I
13	94	$18 \quad 24$	2313
16	109	197	$23 \quad 22$
19	112	1947	$23 \quad 26$
2 I	II 53	$20 \quad 12$	$23 \quad 27$
24	1253	$20 \quad 47$	$23 \quad 25$
27	1351	219	2320
30	1448	2147	23 11
	July.	Aug.	Sept.
1	$+23^{\circ} 7^{\prime}$	+15 $\mathrm{I}^{\circ} \mathrm{I}^{\prime}$	$+8^{\circ} 17^{\prime}$
4	2253	$17 \quad 15$	7 II
7	2236	1626	64
10	22 15	1534	456
13	2150	1440	347
16	$21 \quad 22$	1344	38
19	20 51	1246	128
21	$20 \quad 29$	127	+ o 42
24	1952	116	- 29
27	1913	104	I 39
30	18 3I		249
	Oct.	Nov.	Dec.
- 4	$-3^{\circ} 12^{\prime}$	$-14^{\circ} 27^{\prime}$	$-21^{\circ} 50^{\prime}$
	422	$15 \quad 24$	22 16
	31	$16 \quad 18$	2238
10	640	17 10	$22 \quad 56$
13	7 4S	18	2310
16	855	1846	$23 \quad 20$
19	10 0	1929	$23 \quad 26$
21	1043	$19 \quad 56$	$23 \quad 27$
24	1147	$20 \quad 35$	$23 \quad 26$
27	1248	219	$23 \quad 20$
30	I3 49	2140	2310

DURATION OF ASTRONOMICAL TWILICHT.
(Interval between sunrise or sunset and the time when the true position of the sun's center is 18°. below the horizon.)

Date,	NORTH LATITUDE.														
	0°	10°	20°	25°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°
	h. m.	h. m.	m.	m.	h.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
Jan.		15	1 I 8	121	I 26	128	I 29	131	I 34	1 37	I 41	I 45	I 49	153	159
	1 I 4	1 I	1 I8	121	125	127	129	131	I 33	I 36	I 39	I 43	147	152	I 57
21	113	$1{ }^{1} 3$	$1{ }^{1} 7$	I 20	123	I 25	I 28	I 30	I 32	I 34	I 38	I 41	I 45	I 49	I 54
Feb.	112	1 I 2	15	118	I 22	I 24	I 26	I 28	I 30	I 33	I 36	I 39	I 43	I 47	I 52
	1 II	112	114	117	121	I 23	I 25	I 27	I 29	I 32	I 34	I 37	I 41	I 45	I 49
	1 Io		$1{ }^{1} 3$	I 16	I 20	I 22	I 24	126	I 28	I 3I	I 33	I 36	I 40	144	I 48
Mar. 1	I 10	1 II	I 13	I 16	I 20	121	I 23	I 25	I 28	I 30	I 33	I 36	I 39	I 43	148
	$1{ }_{1} 09$	110	I 13	I 16	I 19	121	I 23	I 25	128	I 30	I 33	I 36	I 39	I 43	I 48
21	109	1 IO	113	116	I 20	122	I 24	I 26	129	13 I	I 34	I 37	I 4 I	I 45	I 50
Apr. I	10°	1 II	114	I 17	121	I 23	125	I 27	130	I 33	1 36	I 40	144	I 49	1 54
	I 10	1 II	I 15	118	122	I 24	I 27	I 30	I 33	I 36	I 39	I 43	148	I 54	200
1	I 11	112	116	120	I 24	I 27	I 29	132	I 36	I 39	I 43	I 48	I 54	2 OI	208
May I	112	$1{ }^{1} 3$	118	122	I 27	I 30	133	I 36	139	I 43	I 48	154	2 OI	210	220
	113	114	119	124	I 30	I 33	I 36	I 40	I 43	I 48	I 54	2 Or	210	220	235
21	I 13	115	121	I 26	I 32	I 36	I 39	I 43	I 48	I 54	2 OI	210	220	235	258
June I	I 14	1 I6	123	I 28	I 35	I 38	141	I 46	I 52	I 59	207	218	231	254	
11	I 15	117	I 24	I 29	I 36	I 40	I 44	I 49	I 55	202	212	223	240	3 II	
21	115	I IS	I 24	I 29	I 37	I 41	I 45	I 50	I 56	203	213	225	244	319	
July I	1 I 5	117	I 24	I 29	1 36	I 40	144	I 49	155	202	212	223	240	310	
	I I4	1 I 6	123	128	I 35	I 38	14 I	I 46	152	I 59	207	218	231	254	
21	I 13	1 I5	121	I 26	I 32	I 36	I 39	I 43	I 48	I 54	2 OI	210	22 I	236	300
Aug. I	1 I 3	1 I 4	I 19	124	130	I 33	136	I 40	I 44	I 48	I 54	202	210	220	235
II	112	1 I 3	I 18	122	127	I 30	I 33	I 36	I 39	I 43	I 48	I 54	2 OI	210	220
21	I II	112	I 16	I 20	I 24	I 27	I 30	I 33	I 36	I 39	I 43	148	I 54	2 Or	209
Sept. I	110	1 II	114	118	I 22	I 24	I 27	I 30	I 33	I 36	I 39	1 43	I 48	I 53	200
II	$1 \quad 09$	1 II	$1{ }^{1} 3$	1 I 7	121	I 23	I 25	I 27	I 30	I 33	I 36	I 39	I 44	I 49	I 54
21	109	110	I 13	116	I 20	I 22	I 24	I 26	I 29	131	I 34	I 37	I 41	I 45	I 50
Oct. I	109	110	113	116	I 19	12 I	123	I 25	I 28	I 30	I 33	I 36	I 39	I 43	148
II	110	1 II	I 13	1 t 6	I 19	12 I	I 23	I 25	128	130	I 33	I 36	I 39	143	I 48
21	110	1	I 13	1 I 6	I 20	I 22	I 24	I 26	I 28	I 3I	I 33	136	I 40	I 44	I 48
Nov. I	1 II	112	114	117	121	I 23	I 25	I 27	I 29	I 32	I 34	I 38	141	I 46	I 49
II	112	11	116	1 I 8	I 22	I 24	I 26	I 28	I 30	133	136	140	I 43	I 47	152
2 I	113	113	1 I 7	I 20	I 24	I 26	128	I 30	132	I 35	I 38	I 42	I 46	I 49	I 55
Dec. I	1 I 4	114	188	I. 21	I 25	I 27	I 29	I 31	I 33	I 36	I 40	I 44	I 47	I 52	157
II	114	115	118	122	I 26	I 28	I 30	I 32	I 34	I 37	I 41	145	I 49	I 53	I 59
21	115	1 I6	I 19	122	I 26	I 28	I 30	I 32	I 35	I 38	I 41	145	I 49	I 54	I 59

Smithsonian tables.

Table 90,
DURATION OF CIVIL TWILIGHT.
(Interval between sunrise or sunset and the time when the true position of the sun's center is 6° below the horizon.)
[Minutes.]

Date.	NORTH LATITUDE.														
	0°	10°	20°	25°	30°	32°	34°	36°	38°	40°	42°	44°	46'	48°	50°
Jan. I	22	22	24	25	27	27	28	28	29	30	32	33	34	36	39
II	22	22	24	25	26	27	28	28	29	30	31	32	33	35	38
2 I	22	22	23	24	26	26	27	27	28	29	30	32	33	34	37
Feb. I	22	22	23	24	25	26	27	27	27	28	29	31	32	34	35
II	22	22	22	23	25	26	26	27	27	28	29	30	31	33	34
21	21	22	22	23	24	25	25	26	27	28	28	29	30	32	33
Mar. I	21	22	22	23	24	24	25	26	27	28	28	29	30	31	33
	21	21	22	23	24	24	25	26	26	27	27	29	30	31	32
21	21	21	22	23	24	24	25	26	26	27	27	28	30	31	33
Apr. I	2 I	21	22	23	24	25	25	26	27	28	28	29	30	32	33
	21	22	22	23	24	25	26	26	27	28	28	29	31	32	34
21	22	22	22	23	25	25	26	27	28	28	29	30	32	34	35
May I	22	22	23	24	25	26	27	28	28	29	30	32	33	35	36
	22	22	23	24	26	27	28	29	29	30	31	33	35	36	39
21	22	22	24	25	27	28	28	29	30	31	33	35	36	38	4 I
June I°	22	22	24	25		28	28	29	31	32	34	36	37	4 c	43
II	22	23	24	26	28	28	29	30	31	33	34	36	38	41	44
21	22	23	25	26	28	29	29	30	31	33	34	36	38	42	44
July I	22	23	24	26	28	28	29	30	31	33	34	36	38	4 I	44
	22	22	24	25	27	28	28	29	31	32	34	36	37	40	43
21	22	22	24	25	27	28	28	29	30	31	33	35	36	38	4 I
Aug. I	22	22	23	24	26	27	28	29	29°	30	31	33	35	36	39
II	22	22	23	24	25	26	27	28	28	29	30	32	33	35	36
2 I	22	22	22	23	25	25	26	28	28	28	29	30	32	34	35
Sept. I	21	22	22	23	24	25	26	26	27	28	28	29	31	32	34
II	21	2 I	22	23	24	25	25	26	27	28	28	29	30	31	33
21	2 I	2 I	22	23	24	24	25	26	26	27	27	29	30	3 I	3^{2}
Oct. I	2 I	21	22	23	24	24	25	26	26	27	27	29	30	31	32
II	21	22	22	23	24	24	25	26	27	28	28	29	30	31	33
21	21	22	22	23	24	25	25	26	27	28	28	29	30	32	33
Nov. I	22	22	22	23	25	25	26	27	28	28	29	30	31	33	34
1 I	22	22	23	24	25	26	27	28	28	29	30	31	32	33	35
21	22	22	23	24	26	26	27	28	28	29	30	32	33	34	37
Dec. 1	22	22	24	25	26	27	28	28	29	30	31	33	34	35	38
II	22	22	24	25	27	27	28	28	29	30	32	33	34	36	39
21	22	23	24	25	27	27	28	28	29	31	32	33	34	37	39

Smithsonian tables.

RELATIVE INTENSITY OF SOLAR RADIATION,
hean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar constant A, in terms of the mean solar constant A_{0}.

Date.	Longitude of the Sun.	Relative										$\frac{A}{A_{0}}$.
		LATITUDE NORTH.										
		0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Jan. I	0.99	0.303	0.265	0.220	0. 169	0. 117	0.066	0.018				1.0335
16	15.78	. 307	. 271	. 229	. ISo	. 129	. 078	. 028				1.0324
Feb. I	31.54	. 312	. 2 S 2	. 244	. 200	. 150	. 100	. 048	0.006			1.0288
15	45.34	. 317	. 293	. 261	. 223	. 177	. 118	. 075	. 027			1.0235
Mar. I	59.14	. 320	. 303	. 279	. 245	. 204	. 158	. 108	. 056	0.013		1.0173
16	73.93	. 32 I	. 313	. 296	. 270	. 236	$\because 95$. 148	. 097	. 057		1.0096
Apr. I	89.70	. 317	-319	-312	. 295	. 269	. 235	. 195	. 148	. 101	0.082	1.0009
16	104.49	. 3 II	. 321	. 323	. 315	. 297	. 27 I	.238	. 201	. 175	. 177	0.9923
May I	119.29	. 303	. 318	- 330	. 329	-320	-302	. 278	. 253	. 255	. 259	0.9841
16	134.05	. 294	. 318	. 333	. 339	. 337	. 327	. 312	. 298	. 317	. 322	0.9772
June I	${ }^{1} 49.82$. 287	. 315	- 334	- 345	- 349	. 345	. 337	- 344	. 360	. 366	0.9714
16	164.60	. 283	.313	- 334	. 348	-354	- 353	. 348	. 361	. 378	. 3 S 4	0.9679
July I	179.39	. 283	-312	- 333	- 347	-352	-351	- 345	. 356	- 373	. 379	0.9666
16	194.13	. 287	. 314	. 332	. 342	. 345	. 340	. 329	. 331	. 347	. 352	0.9674
Aug. I	209.94	. 294	. 316	. 330	- 334	-330	. 318	. 300	.282	. 295	. 300	0.9709
16	224.73	. 303	. 3 I8	. 325	. 322	. 310	. 291	. 264	. 234	. 227	. 231	0.9760
Sept. I	240.50	-310	. 318	. 316	-305	. 285	. 256	. 220	. 180	. 139	. 140	0.9828
16	255.29	- 315	. 315	. 305	. 284	. 256	. 220	.178	. 130	. 107	. 043	0.9909
Oct. I	270.07	. 317	. 308	. 289	. 261	. 225	. 183	. 135	. 084	. 065		0.9995
	284. 86	.316	. 298	. 27 I	. 236	. 194	. 147	. 097	. 047	. OI 5		1.00So
Nov. I	300.63	. 312	. 286	. 251	. 211	. 164	. 114	. 063	. OIS			1.0164
16	315.42	. 308	. 276	. 235	. 190	. 140	.o89	. 040				1.0235
Dec. I	330.19	. 304	. 267	. 224	. 175	. 124	. 072	. 024				1.02SS
	344.98	. 302	. 263	. 218	. 167	. 115	. 064	. 016				1.0323
Year....		0.305	0.301	0.289	0.268	0.24 I	0.209	O. 173	0. 144	0. 133	0. 126	

Table 92.
RELATIVE AMOUNTS OF SOLAR RADIATION RECEIVED ON A HORIZONTAL SURFACE DURING THE YEAR AT DIFFERENT LATITUDES.

Latitude. (North.)	atmospheric transmission coefficient.				
	1.0	0.9	0.8	- 0.7	0.6
Equator.	439	374	316	262	2 3 3
10°	43.3	368	310	257	209
20°	416	350	293	242	195
30°	386	322	266	213	171
40°	347	284	231	185	144
50°	301	239	190	149	114
60°	249	191	148	II3	84
70°	207	152	113	83	60
80°	192	134	94	64	43
90°	18 r	125	85	56	35

Table 93.
AIR MASS, M, CORRESPONDING TO DIFFERENT ZENITH DISTANCES OF THE SUN.

SUN'S ZENITH DISTANCE.

Sun's zenith distance.	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°
	AIR MASS.									
0	1.00									
10	1.02					1.04				
20	1.06	1.07	1.08	1.09	1.09	1. 10	I. 11	1. 12	1. 13	1. 14
30	I. I 5	I. 17	1. 18	1. 19	1.20	1.22	I. 24	I. 25	I. 27	1.28
40	1. 30	I. 32	I. 34	1. 37	I. 39	I. 41	I. 44	I. 46	1. 49	1. 52
50	1. 55	I. 59	1. 62	1. 66	1. 70	I. 74	1. 78	1. 83	1. 88	I. 94
60	2.00	2.06	2.12	2.20	2.27	2.36	2.45	2.55	2.65	2.77
70	2.90	3.05	3.21	3.39	3.59		4.08	4.37	4.72	5.12
80	5.60	6. 18	6.88	7.77	8.90	10.39	12.44	${ }^{1} 5 \cdot 36$	19.79	26.96

table 94.
RELATIVE ILLUMINATION INTENSITIES.

Source of iilumination.	Intensity.	Ratio to zenithal full moon.
Zenithal sun.	Foot-candles. 9600.0	465000.0
Sky at sunset.	33.00	1650.0
Sky at end of civil twilight.	0.40	20.0
Zenithal full moon.	0.02	1.0
Quarter moon	0. 002	0. I
Starlight. . .	0.00008	0.004

MISCELLANEOUS TABLES.

Weight in grams of a cubic centimeter of air:
English measures - Temperature term Table 95
Humidity term; auxiliary table Table 96
Humidity and pressure terms, com- bined Table 97
Metric measures - Temperature term Table 98
Humidity term; auxiliary table . . Tabie 99
Humidity and pressure terms, com- bined Table 100
Atmospheric water-vapor lines in the visible spectrum Table ioi
Atmospheric water-vapor bands in the infra-red spectrum Table ioz
Transmission percentages of radiation through moist air Table 103
International Meteorological Symbols Table 104
International Cloud Classification Table 105
Beaufort Weather Notation Table io6
List of meteorological stations Table 107

Table 95.

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.

Temperature term: $\delta_{t}=\frac{0.00129305}{1+0.0020389\left(t-32^{\circ}\right)}$. Fahrenheit temperatures.
1 cubic centimeter of dry air at the temperature $32^{\circ} \mathrm{F}$. and pressure 760 mm ., under the standard value of gravity, weighs 0.00129305 gram.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Temperature. \& δ_{t} \& $\log \delta_{t}$ \& Temperature. \& δ_{1} \& $\log \delta_{t}$ \& Temper. ature. \& δ_{t} \& $\log \delta_{t}$

\hline F. \& 0.00 \& - 10 \& F. \& 0.00 \& - 10 \& F. \& 0.00 \& - 10

\hline -45° \& I 5339 \& 7.18579 \& 30° \& 12983 \& 7.11339 \& 75° \& I I888 \& 7.07512

\hline -40 \& I5I55 \& . ISo56 \& 31 \& 12957 \& . II250 \& 76 \& IIS66 \& . 07430

\hline -35 \& 14977 \& . 17541 \& 32 \& 12931 \& . 11 I 62 \& 77 \& 11844 \& . 07349

\hline -30 \& 14802 \& .1703 1 \& 33 \& I2904 \& . 11073 \& 78 \& 11822 \& . 07268

\hline -25 \& 14631 \& .16527 \& 34 \& 12878 \& .10985 \& 79 \& 11800 \& . 07187

\hline \& 0.00 \& \& \& 0.00 \& \& \& 0.00 \&

\hline -20 \& 14464 \& 7.16029 \& 35 \& 12 S 52 \& 7.10897 \& 80 \& 11778 \& 7.07107

\hline - IS \& 14398 \& .15831 \& 36 \& 12826 \& . 10809 \& 8 I \& I1756 \& . 07026

\hline - 16 \& 14333 \& . 15634 \& 37 \& 12 SoO \& .1072I \& S2 \& 11734 \& . 06946

\hline - 14 \& 14269 \& - I5439 \& 3 S \& 12774 \& . 10633 \& 83 \& 11713 \& . 06865

\hline - 12 \& 14205 \& . 15244 \& 39 \& 12749 \& . 10546 \& 84 \& II69I \& . 06785

\hline \& 0.00 \& \& \& 0.00 \& \& \& 0.00 \&

\hline -10 \& 14142 \& 7.15050 \& 40 \& 12723 \& 7.10459 \& 85 \& 11670 \& 7.06705

\hline - 8 \& 14079 \& . 14856 \& 41 \& 12698 \& . 10372 \& 86 \& I 1648 \& . 06625

\hline - 6 \& 14017 \& . 14664 \& 42 \& 12672 \& . 10285 \& S7 \& 11627 \& . 06546

\hline - 4 \& 13955 \& . 14472 \& 43 \& 12647 \& . 10198 \& 88 \& 11605 \& . 06466

\hline - 2 \& 13894 \& . 14282 \& 44 \& 12622 \& . 10112 \& 89 \& 11584 \& . 06387

\hline \& 0.00 \& \& \& 0.00 \& \& \& 0.00 \&

\hline $+0$ \& ${ }_{13} \mathrm{~S}_{33}$ \& 7.14092 \& 45 \& 12597 \& 7.10025 \& 90 \& 11563 \& 7.06307

\hline \& 13503 \& . 13997 \& 46 \& 12572 \& . 09939 \& 91 \& 11542 \& . 06228

\hline 2 \& 13773 \& . 13903 \& 47 \& 12547 \& . 09853 \& 92 \& II52I \& . 06149

\hline 3 \& 13743 \& . 13 SoS \& 48 \& 12522 \& . 09767 \& 93 \& 11500 \& . 06070

\hline 4 \& 13713 \& . 13714 \& 49 \& 12497 \& .09682 \& 94 \& 11479 \& . 05992

\hline \& 0.00 \& \& \& 0.00 \& \& \& \&

\hline 5 \& 13684 \& 7. I362I \& 50 \& 12473 \& 7.09596 \& 95 \& II458 \& 7.05913

\hline 6 \& 13654 \& . 13527 \& 51 \& 12448 \& . 09511 \& 96 \& 11438 \& . 05835

\hline 7
8 \& I3625 \& - I3434 \& 52 \& 12424 \& . 09426 \& 97 \& 11418 \& . 05757

\hline 8 \& 13596
13567 \& - 3334
.13247 \& 53 \& 12400 \& . 09341 \& 98 \& 11397 \& .05678

\hline 9 \& ${ }^{13567}$ \& . 13247 \& 54 \& 12375 \& . 09256 \& 99 \& ${ }_{0}^{11376}$ \& . 05600

\hline 10 \& 13538 \& 7.13I55 \& 55 \& 12351 \& 7.09171 \& 100 \& II356 \& 7.05523

\hline 11 \& 13509 \& . 13062 \& 56 \& 12327 \& . 09087 \& 101 \& 11336 \& . 05445

\hline 12 \& 13480 \& . 12970 \& 57 \& 12303 \& . 09002 \& 102 \& II3I5 \& . 05367

\hline 13 \& 13452 \& . 12877 \& 58 \& 12280 \& .08918 \& 103 \& I I 295 \& . 05290

\hline 14 \& 13423 \& . 12785 \& 59 \& 12256 \& .08834 \& 104 \& 11275 \& . 05213

\hline \& 0.00 \& \& \& 0.00 \& \& \& 0.00 \&

\hline \& 13395 \& 7.12694 \& 60 \& 12232 \& 7.08750 \& 105 \& I 1255 \& 7.05136

\hline 16 \& 13367 \& . 12602 \& 61 \& 12209 \& . 08667 \& 106 \& I1235 \& . 05058

\hline 17 \& 13338 \& . 12510 \& 62 \& 12185 \& . 08583 \& 107 \& 11215 \& . 04982

\hline 18 \& 13310 \& . 12419 \& 63 \& 12162 \& .08500 \& 108 \& 11196 \& . 04905

\hline 19 \& 13282 \& . 12328 \& 64 \& 12138 \& .08416 \& 109 \& 111776 \& . 04828

\hline \& 0.00
I 3255 \& \& \& 0.00 \& \& \& 0.00 \&

\hline 20 \& I 3255 \& 7.12237 \& 65 \& 121 15 \& 7.08334 \& 110 \& III56 \& 7.04752

\hline 21 \& 13227

13200 \& .12147
.12056 \& 66 \& 12092
12069 \& .0825I \& II2 \& 11117
I1078 \& . 04599

\hline 23 \& 13172 \& . 11966 \& 68 \& 12046 \& . O SoS5 \& I16 \& I 1040 \& . 04296

\hline 24 \& 13145 \& . 11896 \& 69 \& 12023 \& . oSOO 3 \& I I8 \& 11001 \& . 04145

\hline \& 0.00
13118 \& \& \& 0.00 \& \& \& 0.00 \&

\hline 25 \& 13118 \& 7.11786 \& 70 \& 12001 \& 7.07921 \& 120 \& 10963 \& 7.03994

\hline 26 \& 13091
13064 \& . 11696 \& 71 \& 11978
11956 \& .07539
.07757 \& 125 \& 10870 \& . 03621

\hline 28 \& 13037 \& . 11517 \& 73 \& 11933 . \& . 07675 \& I 35 \& 10686 \& .02S83

\hline 29 \& 13010 \& . 11428 \& 74 \& 11910 \& . 07593 \& 140 \& 10597 \& . 02518

\hline
\end{tabular}

Smithsonian Tableg.

Table 96.

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.

Humidity term: Values of 0378 e. $e=$ Vapor pressure in inches.

Auxiliary to Table 97.
(See Tables 69 and $; 0$. .)

Temperature by normal hydrogen thermometer. .

DewPoint.		0.378 e	DewPoint.	Vapor Pressure. (*)	0.378 e	DewPoint.	Vapor Fressure. (Water.)	0.378 e	DewFoint.	Vapor Pressure. (Water.)	0.378 e
F.	Inch.	Inch.		Inch.	Inch.	F.	Inch.	Inch.	F.	Inches.	Inches.
-60°	0.0010	0.000	-10°	0.0223	0.008	40°	0.2477	0.094	90°	I. 423	0.538
59	O0II	. 000	9	. 0236	. 009	41	. 2575	. 097	91	1.469	. 555
58	. 0011	. 000	8	. 0249	. 009	42	. 2677	. 101	92	1.515	. 573
57	. 0012	. 000	7	. 0263	. 010	43	. 2782	. 106	93	I. 563	.591
56	. 0013	. 0	6	. 0277	. 010	44	.2S91	. 109	94	1.612	. 609
-55	0.0014	0.001	5	0.0292	0.011	45	0.3003	0.114	95	1.662	0.628
54	. 0015	. 001	4	. 0308	. 012	46	. 3120	. 118	96	1.714	. 648
53	. 0016	. 001	3	. 0325	. 01	77	. 3240	. 122	97	1.767	. 668
52	. 0017	. 001	2	. 0343	. 013	48	. 3365	. 127	98	1.822	. 689
51	.0018	. 001		. 0361	. 014	49	. 3493	. 132	99	т. 878	. 710
-50	0.0020	0.001	± 0	0.0381	0.014	50	0.3626	0.137	100	1.936	0.732
49	. 0021	. 001	+ I	. 0401	. 015	51	. 3763	. 142	101	1.994	. 754
48	. 0023	. 001	2	. 0423	. 016	52	. 3905	. 147	102	2.055	. 777
47	. 0024	. 001	3	. 0445	. 017	53	. 4052	. 153	103	2.117	. 800
46	. 0026	. 001	4	. 0468	. 018	54	. 4203	. 59	104	2.181	. 824
-45	0.0028	0.001	+ 5	0.0493	0.019	55	0.4359	0.165	105	2.246	0.849
44	. 0029	. 001	6	. 0519	. 020	56	. 4521	. 171	106	2.314	. 875
43	. 0031	. 001	7	. 0546	. 221	57	. 4687	. 177	107	2.382	. 900
42	. 0033	. 001	8	. 0574	. 022	58	. 4859	.184	108	2.453	. 927
41	. 0036	. 001	9	. 0604	. 023	59	. 5037	. 190	109	2.525	. 954
-40	0.0038	0.001	$+10$	0.0635	0.024	60	0.5220	0.197	110	2.599	0.982
39	. 0040	. 002	11	. 0667	. 025	61	. 5409	. 204	III	2.676	1.012
38	. 0043	. 002	12	. 0701	. 027	62	. 5604	. 212	II 2	2.754	1.04I
37	. 0046	. 002	13	. 0736	. 028	63	. 5805	. 219	113	2.833	1.071
36	. 0049	. 002	14	. 0773	. 029	64	. 6013	. 227	II4	2.915	I. 102
-35	0.005^{2}	0.002	$+15$	0.0812	0.03 I	65	0.6226	0.235	115	2.999	1. 134
34	. 0055	. 002	16	. 0852	. 032	66	. 6447	. 244	116	3.085	1. 166
33	. 0059	. 002	17	.0895	. 034	67	. 6674	. 252	117	3.173	I. 199
32	. 0062	. 002	18	. 0939	. 035	68	. 69 cg	. 261	118	3.264	1. 234
31	. 0066	. 003	19	. 0985	. 037	69	. 7150	. 270	119	3.356	I. 269
-30	0.0070	0.003	+20	0.1033	0.039	70	0.7399	0.280	120	3.451	I. 304
29	. 0075	. 003	21	. 1084	. 041	71	. 7655	. 289	12 I	3.548	I. 34 I
28	. 0080	. 003	22	.1136	. 043	72	. 7919	. 299	122	3.647	I. 379
27	. 0084	. 003	23	.1191	. 045	73	. 8191	. 310	123	3.749	1.417
26	. 0090	. 003	24	. 1248	. 047	74	. 8471	. 320	124	3.853	1. 456
-25	0.0095	0.004	+25	0.1308	0.049	75	0.8760	0.331	125	3.960	
24	. 0101	. 004	26	. 1370	. 052	76	. 9056	. 343	126	4.069	1.538
23	. 0107	. 004	27	. 1435	. 054	77	. 9362	. 354	127	4.1So	1. 580
22	.OII3	. 004	28	. 1502	. 057	78	. 9677	. 366	128	4.294	1. 623
21	. 0120	. 005	29	. 1573	. 059	79	1.0001	. 378	129	4.412	1. 668
-20	0.0127	0.005	+30	0.1646	0.062	80	1.0334	0.391	130	4.531	1.713
19	. 0135	. 005	31	. 1723	. 065	81	1.0676	. 404	131	4.654	1.759
18	. 0143	. 005	32	.1803	. 068	82	1.1029	. 417	132	4.779	1. 806
17	. 0151	. 006	33	. 1877	. 071	83	1.1392	. 431	133	4.907	ı. 855
16	. 0160	. 006	34	. 1954	. 074	84	1.1765	. 445	134	5.038	1.904
-15	0.0169	0.006	+35	0.2034	0.077	85	1.2149	0.459	135	5.172	1.955
14	. 0179	. 007	36	. 2117	. 080	86	I. 2543	. 474	136	$5 \cdot 309$	2.007
13	. 0189	. 007	37	. 2202	. 083	87	1.2949	. 489	137	5.449	2.060
12	. 0200	. 008	38	. 2291	. 087	88	1.3365	. 505	138	5.592	2.114
11	. 0211	. 008	39	.2382	. 090	89	1. 3794	. 52 I	139	5.739	2.169
10	0.0223	0.008	40	0.2477	0.094	90	1. 4234	0.538	140	5.889	2.226

[^19]Table 97.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined: $\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
$B=$ Barometric pressure in inches; $e=$ Vapor pressure in inches.

h.	$\frac{h}{29.92 \mathrm{I}}$.	$\log \frac{h}{29.92 \mathrm{I}}$.	h.	$\frac{h}{29.291}$.	$\log \frac{h}{29.92 \mathrm{I}}$.	h.	$\frac{h}{29.92 \mathrm{I}}$.	$\log \frac{h}{29.92 I}$
Inch's.		- Io	Inches.		- 10	Inches.		10
10.0	0.3342	9.52402	15.0	0.5013	9.70012	20.0	0.6684	9.82505
10. 1	. 3376	. 52835	${ }^{15} 5.1$. 5047	. 70300	20.1	. 6718	. 82722
10.2	. 3409	. 53262	15.2	. 5080	. 70587	20.2	.675I	. 82938
10.3	. 3442	. 53686	15.3	. 5113	.70871	20.3	. 6784	. 83152
10.4	. 3476	. 54106	15.4	.5147	.71154	20.4	.68ı8	. 83365
10.5	0.3509	9.5452 I	15.5	0. 5180	9.71435	20.5	0.6851	9.83578
10.6	. 3543	. 54933	15.6	. 5214	. 7175	20.6	. 6885	. 83789
10.7	. 3576	. 55341	15.7	. 5247	. 71992	20.7	. 6918	. 83999
10.8	. 3609	. 55745	15.8	.5281	. 72268	20.8	. 6952	. 84209
10.9	. 3643	. 56145	15.9	. 5314	. 72542	20.9	. 6985	. 84417
11.0	0.3676	9.56542	16.0	0.5347	9.72814	21.0	0.7018	9.84624
II. I	. 3710	. 56935	16. 1	.538I	. 73085	21.1	. 7052	. 84831
II. 2	. 3743	. 57324	16.2	. 5414	. 73354	21.2	. 7085	. 85036
II. 3	. 3777	. 57710	16.3	. 5448	. 73621	21.3	.7119	. 85240
II. 4	-3810	. 58093	16.4	. 5481	. 73887	21.4	.7152	. 85444
11.5	0.3843	9.58472	16.5	0.5515	9.74151	21.5	0.7186	9.85646
11.6	. 3877	. 58848	16.6	. 5548	. 74413	21.6	. 7219	. 85848
11.7	-3910	-5922I	16.7	.558x	. 74674	21.7	.7252	. 86048
II. 8	. 3944	-59591	16.8	.56I5	. 74933	21.8	. 7286	. 86248
II. 9	. 3977	. 59957	16.9	. 5648	.75191	21.9	.7319	. 86447
12.0	0.4011	c. 6032I	17.0	0.5682	9.75447	22.0	0.7353	9.86645
12.1	. 4044	. 60681	17.1	. 5715	. 75702	22.1	. 7386	. 86842
12.2	. 4077	.61038	17.2	. 5748	. 75955	22.2	. 7420	. 87038
12.3	.4III	.61393	17.3	. 5782	. 76207	22.3	. 7453	. 87233
12.4	. 4144	.61745	17.4	.58i5	.76457	22.4	. 7486	. 87427
12.5	0.4178	9.62093	17.5	0.5849	9.76706	22.5	0.7520	9.87621
12.6	. 4211	. 62.439	17.6	. 5882	. 76954	22.6	. 7553	. 87813
12.7	. 4244	. 62782	17.7	. 5916	. 77200	22.7	. 7587	. 88005
12.8	. 4278	. 63123	17.8	. 5949	. 77444	22.8	. 7620	. 88196
12.9	.43II	. 63461	17.9	. 5982	. 77687	22.9	.7653	. 88386
13.0	0.4345	9.63797	18.0	0.6016	9.77930	23.0	0.7687	
13. 1	. 4378	. 6413°	18.1	. 6049	. 78170	23.1	. 7720	. 88764
I 3.2	.4412	. 64460	18.2	. 6083	. 78410	23.2	. 7754	. 88951
13.3	. 4445	. 64788	18.3	.6II6	. 78648	23.3	. 7787	. 89138
I 3.4	. 4478	. 65113	18.4	.6149	. 78884	23.4	. 782 I	. 89324
13.5	0.4512	9.65436	18.5	0.6183	9.79120	23.5	0.7854	9.89509
13.6	. 4545	. 65756	I8.6	. 6216	. 79354	23.6	. 7887	. 89693
13.7	. 4579	. 66074	18.7	. 6250	. 79587	23.7	. 7921	. 89877
13.8	.4612	. 66390	18.8	. 6283	.798I8	23.8	. 7954	. 90060
13.9	. 4646	. 66704	18.9	. 6317	. 50049	23.9	. 7988	. 90242
14.0	0.4679	9.67015	19.0	0.6350	9.80278	24.0	0. 8021	9.90424
14. 1	. 4712	. 67324	19.1	. 6383	. 80506	24.1	. 8054	. 90604
14.2	. 4746	. 67631	19.2	. 6417	. 80733	24.2	-. 8088	. 90784
14.3	. 4779	. 67936	19.3	.6450	. 80958	24.3	. $\mathrm{SILI}^{\text {S }}$. 90963
14.4	. 4813	. 68239	19.4	. 6484	. 81183	24.4	.8I55	.91141
14.5	0.4846	9.68539	19.5	0.6517	9.81406	24.5	0.8188	
14.6	. 4 S 79	. 68837	19.6	. 6551	. 81628	24.6	. 8222	. 91496
14.7	. 4913	. 69134	19.7	. 6584	. 81849	24.7	. 8255	. 91672
14.8	. 4946	. 69429	19.8	.6617	. 82069	24.8	. 8289	.91848
14.9	.4980	.6972 I	19.9	. 6651	. 82288	24.9	. $\mathrm{S}_{3} 22$. 92022

WEICHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined: $\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
$B=$ Barometric pressure in inches; $e=$ Vapor pressure in inches.

h.	$\frac{\mathrm{h}}{29.92 \mathrm{I}}$	$\log \frac{h}{\text { h }}$ (92I	h.	$\frac{h}{29.92 I}$	$\log \frac{h}{29.92 I}$	h.	$\frac{h}{29.92 I}$	$\log \frac{h}{29.92 \mathrm{I}}$.
Inches.		- 10	Inches.		- 10	Inches.		- 10
25.00	0.8355	9.92196	27.25	0.9107	9.95939	29.50	0.9859	9.99385
25.05	. 8372	. 92283	27.30	. 9124	. 96019	29.55	. 9576	-99458
25.10	.83S9	. 92370	27.35	.9141	.96008	29.60	.9S93	. 99532
25. 15	. 8405	. 92456	27.40	.9157	.96I77	29.65	-9909	. 99605
25.20	. 8422	. 92542	27.45	.9174	. 96256	29.70	. 9926	. 99678
25.25	0.8439	9.92628	27.50	0.9191	9.96336	29.75	0.9943	9.99751
25.30	. 8456	. 92714	27.55	. 9208	. 96414	29.80	. 9960	. 99824
25.35	. 8472	. 92 Soo	27.60	. 9224	. 96493	29.85	. 9976	. 99897
25.40	. $\mathrm{S} 4 \mathrm{S9}$. 92886	27.65	. 9241	. 96572	29.90	. 9993	. 99970
25.45	. 8506	. 9297 I	27.70	. 9258	.96650	29.95	1.0010	0.00042
25.50	0.8522	9.93056	27.75	0.9274	9.96728	30.00	1.0026	0.00115
25.55	. 8539	. 93141	27.80	. 9291	. 96807	30.05	1.0043	. 00187
25.60	. 8556	. 93226	27.85	. 9308	.96SS5	30.10	1.0060	. 00259
25.65	. 8573	. 933 I	27.90	. 9325	. 96963	30.15	1.0076	. 0033 I
25.70	.85S9	. 93396	27.95	.934I	-97040	30.20	1.0093	. 00403
25.75	0.8606	9.93480	28.00	0.9358	9.97118	30.25	I. 0110	0.00475
25.80	. 8623	. 93564	$2 \mathrm{S}$.	. 9375	. 97195	30.30	1.0127	. 00547
25.85	. 8639	. 93648	2S. 10	. 9391	. 97273	30.35	1.0143	. 00618
25.90	. 8656	. 93732	28.15	. 9408	. 97350	30.40	1.0160	. 00690
25.95	. 8673	.93816	2 S .20	. 9425	. 97427	30.45	1.0177	.00761
26.00	0.8690	9.93900	28.25	0.9441	9.97504	30.50	1.0193	0.00832
26.05	. 8706	. 93983	28.30	. 9458	. 975 SI	30.55	1.0210	. 00903
26.10	. 8723	. 94066	$2 \mathrm{S}$.	. 9475	. 97657	30.60	1.0227	. 00975
26. I5	. 8740	-9.9149	28.40	. 9492	. 97734	30.65	I. 0244	. 01045
26.20	. 8756	. 94233	28.45	. 9508	.97810	30.70	1.0260	. 11116
26.25	0. 8773	9.94315	28.50	0.9525	9.97887	30.75	1.0277	0.01187
26.30	. 5790	. 94398	28.55	. 9542	. 97963	30.80	1.0294	. 01257
26.35	. 8506	. 94480	28.60	. 9553	.9So39	30.85	1.0310	. 01328
26.40	. 8823	. 94563	28.65	. 9575	.98II5	30.90	1.0327	. 01398
26.45	. SS40	. 94645	2 S .70	. 9592	.9SI9I	30.95	1.0344	. 01468
26.50	0.8857	9.94727	28.75	0.9609	9.98266	31.00	1.0361	0.01539
26.55	. 8873	. 94809	2 2 . So	. 9625	. 98342	31.05	1.0377	. 01608
26.60	. 8890	. 94891	28.85	. 9642	.98417	3 I . 10	1.0394	.01678
26.65	. 8907	- .94972	28.90	. 9659	.98492	3 I .15	1.04II	. 01748
26.70	. 8924	. 95054	28.95	. 9675	.98567	31.20	I. 0427	.01818
26.75	0.8940	9.95135	29.00	0.9692	9.98642	31.25	I. 0444	0.01887
26.80	. 8957	. 95216	29.05	. 9709	. 98717	31.30	1.0461	. 01957
26.85	. 8974	. 95297	29.10	. 9726	. 98792	3 I .35	1.0478	. 02026
26.90	. 8990	-95378	29.15	. 9742	-98866	31.40	1.0494	. 02095
26.95	.9007	. 95458	29.20	. 9759	.9894I	31.45	1.0511	. 02164
27.00	0.9024	9.95539	29.25	0.9776	9.99015	31.50	1.0528	0.02233
27.05	. 9040	. 95619	29.30	. 9792	. 990 S9	3155	1.0544	. 02302
27.17	. 9057	. 95699	29.35	. 9809	. 99163	31.60	1.0561	. 02371
27. 55	. 9074	-95779	29.40	. 9826	. 99237	31.65	I. 0578	. 02439
27.20	. 9091	. 95859	29.45	. 9843	.993II	31.70	1.0594	. 02508

Table 98.

WEICHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Temperature term: $\delta_{t, 760}=\frac{0.00129305}{1+0.003670}{ }^{i}$. Centigrade temperature.
1 cubic centimeter of dry air at the temperature $0^{\circ} \mathrm{C}$. and pressure 760 mm ., under the standard value of gravity, weighs 0.00129305 gram.

t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$
c.	0.00	- 10	c.	0.00	- IO	c.	0.00	- 10
-34°	14774	7.16950	-4.5	I3148	7. IISS 5	18.0	12129	$7.083 \mathrm{~S}_{3}$
-33	14712	. 16768	-4.0	13123	. 11804	IS. 5	12108	8309
-32	14651	.165S7	-3.5	I 3099	. II 723	19.0	12085	S234
-31	14590	. 16407	- 3.0	13074	. 11642	19.5	12067	8160
	0.00			0.00			0.00	
-30	$\dot{1} 4530$	7.16227	-2.5	I3050	7.11562	20.0	12046	7.08085
-29	14471	. 16049	2.0	I3026	. 1148 I	20.5	12026	Soli
-28	14412	. 15871	- 1.5	13002	. 11401	21.0	12005	7937
-27	14353	. 15693	- 1.0	12978	.11321	21.5	11985	7863
-26	14295	. 15517	-0.5	12954	. 11241	22.0	11965	7789
	0.00			0.00			0.00	
-25	14237	7.15341	0.0	12931	7. 111162	22.5	11944	7.07716
-24	14179	. 15166	$+0.5$	12907	. IIOS2	23.0	I 1924	7642
-23	14123	. 14991	I. 0	I2SS4	. 11006	23.5	11904	7569
-22	14066	. 14818	1.5	12860	. Iog23	24.0	IISS4	7496
-21	14010	. 14645	2.0	12836	. 10844	24.5	IIS64	7422
	0.00			0.00			0.00	
-20.0	13955	7.14472	2.5	12813	7.10765	25.0	11844	7.07349
- 19.5	13927	. 14386	3.0	12790	. 10686	25.5	11824	7276
- 19.0	13900	. 14301	3.5	12766	. 10607	26.0	11504	7204
- IS.5	13872	. 14215	4.0	12744	. 10529	26.5	11784	7131
-18.0	13845	.14130	4.5	12720	. 10450	27.0	11765	7058
	0.00			0.00			0.00	
- 17.5	${ }^{1} 3 \mathrm{SI} 8$	7.14044	5.0	12698	7.10372	27.5	11745	7.06986
-17.0 -16.5	13791 13764	- 13959	5.5	12675	. 10294	28.0	11726	6913
-16.5 -16.0	13764 13737	.13574 .13790	6.0	12652 12629	. 10216	28.5 29.0	11706	6841
- I5.5	13710	. 13705	7.0	12607	. 10069	29.0 29.5	11667	6697
	0.00			0.00			0.00	
-15.0	13684	7.13621	7.5	12584	7.09982	30.0	11648	7.06625
- 14.5	13657	. 13536	8.0	12562	9905	30.5	11629	6554
- I4.0	13631	-13452	8.5	12539	9828	31.0	11610	6482
$-\mathrm{I} 3.5$	13604	. 13368	9.0	12517	9750	3 I .5	11591	64 II
- I3.0	13578	. 13285	9.5	12495	9673	32.0	11572	6340
	0.00			0.00			0.00	
-12.5	13552	7.13201	10.0	12473	7.09596	32.5	II 553	7.06268
- 12.0	I 3526	-13117	10.5	12451	9519	33.0	11534	6197
- II.5	I 3500	-13034	11.0	12429	9443	33.5	11515	6126
- 11.0	13473	. 12951	II. 5	12407	9366	34.0	11496	6055
- 10.5	I3449	. 12868	12.0	12355	9290	34.5	11477	5984
	0.00			0.00			0.00	
-10.0	13423	7.12785	12.5	12363	7.09214	35.0	11459	7.05913
- 9.5	13398	. 12703	13.0	12342	9137	35.5	II440	5843
- 9.0	13372	. 12620	13.5	12320	9061	36.0	11421	5772
-8.5	13347	. 12538	14.0	12299	8986	36.5	11403	5702
- 8.0	13322	. 12456	14.5	12277	8910	37.0	11385	5632
-7.5	0.00			0.00			0.00	
	13297	7.12374	15.0	12256	7.08834	37.5	I I366	7.05562
-7.0 -6.5	13271 13246	.12292 .12210	15.5	12235	8759	38.0	11348	5492
- 6.0	13222	. 12128	16.5	12213	8683	38.5 39.0	11330 II3II	5422 5352
-5.5	13197	. 12047	17.0	12171	8533	39.5	I 12.93	52 S 2
-5.0	$\begin{aligned} & 0.00 \\ & 13172 \end{aligned}$	7.11966	17.5	0.00 I2 150	7.08458	40.0	0.00 I 1275	7.05213

Smithsonian Tableg.

Table 98.

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Temperature term. (Continued.)

t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{\mathbf{t}, 760}$
c.	0.00	-IC	c.	0.00	-10	c.	0.00	-10
40°	11275	7.05213	50°	10926	7.03845	60°	10597	7.02518
4 I	11239	. 05074	51	10892	. 03710	61	10565	. 02388
42	11204	. 04936	52	10858	. 03576	62	10534	. 02258
43	11168	. 04798	53	10825	. 03443	63	10502	. 02128
44	11133	. 04660	54	10792	. 03309	64	10471	. 01999
	0. 00			0.00			0. 00	
45	11098	7.04523	55	10759	7.03177	65	10440	7.01870
46	11063	. 04387	56	10726	. 03044	66	10409	. 01742
47	11028	. 04251	57	10694	. 02912	67	10379	. 01614
48	10994	. 04115	58	10661	. 02780	68	10348	. 01486
49	10960	. 03980	59	10629	. 02649	69	10318	. 01358

Table 99.
Humidity term : Values of 0.378 e. Auxiliary to Table 100.
$e=$ Vapor pressure in mm .
(See Tables 71 and 72.)

Dewpoint.	$\stackrel{e}{\text { Vapor Pressure }}$ (Ice).	$0.378 e$	Dewpoint.	Vapor Pressure (Water).	$0.378 e$	Dewpoint.	Varor Fie-s:re (Watu).	$0.378 e$
C.	mm.	mm.	6.	mm.	mm .	C.	mm.	mm.
-50	0.029	O. 01	0°	4.580	I. 73	20°	31.860	12.04
-45	0. 054	0.02	I	4.924	I. 86	31	33.735	12.75
-40	0. 096	0.04	2	5.291	2.00	32	35. 705	13.50
-35	-. 169	0.06	3	5.682	2. 15	33	37.775	14.28
-30	0. 288	O. II	4	6.098	2.3I	34	39.947	15.10
-25	0.480	-. 18	5	6.54 I	2.47	35	42.227	15.96
24	0. 530	0. 20	6	7. 012	2.66	36	44.619	16.87
23	0. 585	0. 22	7	7.513	2.84	37	47. 127	17.81
22	0.646	-. 24	8	8.045	3.04	38	49.756	18.81
2 I	0. 712	O. 27	9	8.610	3.25	39	52.510	19.85
-20	0. 783	0.30	10	9.210	$3 \cdot 48$	40	$55 \cdot 396$	20.94
19	-. 862	0.33	II	9.846	3.72	41	58.417	22.08
18	0.947	0. 36	12	10. 521	3.98	42	61.580	23.28
17	1.041	-. 39	13	11.235	4.25	43	64.889	24.53
16	1. 142	0. 43	14	11.992	4.53	44	68.350	25.84
-15	1. 252	0.47	15	12.794	4.84	45	71.968	27.20
14	1.373	0. 5^{2}	16	13.642	5.16	46	75.751	28.63
13	1.503	0. 57	17	14.539	$5 \cdot 50$	47	79.703	30.13
12	1. 644	0.62	18	15.487	5.85	48	83.830	31.69
11	1. 798	0.68	19	16.489	6.23	49	88.140	33.32
-10	I. 964	0. 74	20	17.548	6.63	50	92.64	35.02
9	2. 144	0.81	21	18.665	7.06	51	97.33	36.79
8	2.340	0.88	22	19.844	7.50	52	102.23	38.64
	2.550	0.96	23	21.087	7.97	53	107.33	40.57
6	2.778	1. 05	24.	22.398	8.47	54	112.66	42.59
-5	3.025	1. 14	25	23.780	8.99	55	118.20	44.68
4	3.291	1. 24	26	25.235	9.54	56	123.98	46.86
3	3. 578	1. 35	27	26.767	10. 12	57	130.00	49.14
2	3.887	1. 47	28	28.380	10.73	58	136.26	5 I .51
I	4.220	1. 60	29	30.076	11.37	59	142.78	53.97
0	$4 \cdot 580$	1. 73	30	31.860	12.04	60	149.57	56.54.

Smithsonian Tables.

Table 100.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined : $\frac{\delta}{\delta_{0}}=\frac{h}{760}=\frac{B-0.378 e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760}$.	$\log _{760}{ }^{\text {h }}$.	h.	$\frac{h}{760}$.	$\log _{760^{\circ}}$	h.	$\stackrel{h}{760} .$	$\log \frac{h}{760}$.
mm.		- 10	mm.		- 10	mm.		-10
300	0.3947	9.59631	400	0.5263	9.72125	450	0.5921	9.77240
302	- 3974	. 59919	401	. 5276	. 72233	451	. 5934	. 77336
304	. 4000	. 60206	402	. 5289	. 7234 I	452	. 5947	. 77432
306	.4026	. 60491	403	. 5303	. 72.449	453	. 5961	. 77528
308	. 4053	. 60774	404	. 5316	. 72557	454	. 5974	. 77624
310	0.4079	9.61055	405	0.5329	9.72664	455	0.5987	9.77720
312	.4105	.61334	406	. 5342	. 72771	456	. 6000	.77815
314	. 4132	.61612	407	. 5355	. 72878	457	. 6013	. 77910
316	. 4158	.6IS87	408	. 5369	. 72985	45^{8}	. 6026	.78005
318	.4184	.62161	409	. 5382	.73091	459	. 6040	. 78100
320	0.421 I	9.62434	410	0.5395	9.73197	460	0.6053	9.78194
322	.4237	. 62704	411	. 5408	. 73303	461	. 6066	. 78289
324	.4263	. 62973	412	. 542 I	. 73408	462	. 6079	. 78383
326	. 4289	. 63240	413	. 5434	.73514	463	. 6092	. 78477
328	.4316	. 63506	414	. 5447	.73619	464	.6105	. 78570
330	0.4342	9.63770	415	0.5461	9.73723	465	0.6118	9.78664
332	. 4368	. 64032	416	. 5474	. 73828	466	.6132	. 78757
334	.4395	. 64293	417	. 5487	. 73932	467	.6145	. 78850
336	. 442 I	. 64552	418	. 5500	. 74036	468	. 6158	. 78943
338	. 4447	. 64810	419	. 5513	. 74140	469	.6171	. 79036
340	0.4474	9.65066	420	0.5526	9.74244	470	0.6184	9.79128
342	. 4500	. 65321	421	. 5540	. 74347	47 I	. 6197	. 79221
344	. 4526	. 65574	422	. 5553	. 74450	472	. 6210	. 793 I 3
346	. 4553	. 65 S 26	423	. 5566	. 74553	473	. 6224	. 79405
348	. 4579	. 66076	424	. 5579	. 74655	474	. 6237	. 79496
350	0.4605	9.66325	425	0.5592	9.74758	475	0.6250	9.79588
352	.4632	. 66573	426	. 5605	. 74860	476	. 6263	. 79679
354	. 4658	.66819	427	. 5618	. 74961	477	. 6276	. 79770
356	. 4684	. 67064	428	. 5632	.75063	478	. 6289	. 79861
358	.4711	. 67307	429	. 5645	.75164	479	.6303	. 79952
360	0.4737	9.67549	430	0.5658	9.75265	480	0.6316	9.80043
362	. 4763	. 67790	431	. 5671	. 75366	481	. 6329	. 80133
364	. 4789	. 68029	432	. 5684	. 75467	482	. 6342	. 80223
366	.4816	. 68267	433	. 5697	. 75567	483	. 6355	. So 313
368	. 4842	. 68503	434	. 57 I I	. 75668	484	. 6368	. 80403
370	0.4868	9.68739	435	0.5724	9.75768	485	0.6382	9.80493
372	. 4895	. 68973	436	. 5737	. 75867	486	. 6395	. 80582
374	. 4921	. 69206	437	. 5750	. 75967	487	. 6408	. 80672
376	. 4947	. 69437	438	. 5763	. 76066	488	. 6421	. 80761
378	. 4974	. 69668	439	. 5776	.76165	489	. 6434	. 80S50
380	0.5000	9.69897	440	0.5790	9.76264	490	0.6447	9.80938
382	. 5026	. 70125	441	. 5803	. 76362	491	.646I	. 81027
384	. 5053	. 70352	442	. 5816	. 76.461	492	. 6474	. 8rirs
386	. 5079	. 70577	443	. 5829	. 76559	493	-. 6487	. 81203
388	. 5105	. 70 So 2	444	. 5842	.76657	49.4	. 6500	.81291
390	0.5132	9.71025	445	0.5855	9.76755	495	0.6513	9.81379
392	. 5158	. 71247	446	. 5868	. 76852	496	. 6526	. 81467
394	-5184	. 71468	447	. 5882	. 76949	497	. 6540	. 81556
396	. 5211	. 71688	448	. 5895	. 77046	498	. 6553	. 81642
398	. 5237	.71907	449	. 5908	.77143	499	. 6566	.81729

Smithaonian Tadleg.

Table 100.
WEICHT INGRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined : $\frac{i}{\delta_{0}}=\frac{h}{760}=\frac{B-0.378 e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{h}{760}$	h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{h}{760}$
mm.		- 10	mm.		- 10	mm.		- 10
500	0. 6579	9.81816	550	0.7237	9.85955	600	0.7895	9.89734
501	. 6592	.81902	551	. 7250	. 86034	601	. 7908	. 89806
502	. 6605	.8r989	552	. 7263	.86II2	602	. 7921	. 89878
503	.66I8	. 82075	553	. 7276	.86191	603	. 7934	. 89950
504	. 6632	. 82162	554	. 7290	. 86270	604	. 7947	. 90022
505	0.6645	9.82248	555	0.7303	9.86348	605	0.7961	9.90094
506	. 6658	. 82334	556	. 7316	. 86426	606	. 7974	. 90166
507	. 6671	. 82419	557	. 7329	. 86504	607	. 7987	. 90238
508	. 6684	. 82505	558	. 7342	. 86582	608	. 8000	. 90309
509	. 6697	. 82590	559	. 7355	. 86660	609	. 8013	.90380
510	0.6711	9.82676	560	0.7368	9.86737	610	0.8026	9.90452
511	. 6724	. 82761	561	. 7382	.868I5	611	. 8040	. 90523
512	. 6737	. 82846	562	. 7395	. 86892	612	. $\mathrm{So53}$. 90594
513	. 6750	. 82930	563	. 7408	. 86969	613	. 8066	-90665
514	. 6763	. 83015	564	. 7421	. 87046	614	. 8079	. 90735
515	0.6776	9.83099	565	0.7434	9.87123	615	0.8092	9.90806
516	. 6789	. 83184	566	. 7447	. 87200	616	.8105	. 90877
517	. 6803	. 83268	567	. 7461	. 87277	617	.8iI8	-90947
518	. 6816	. 83352	568	.7474	. 87353	618	. 8132	. 91017
519	. 6829	. 83435	569	. 7487	. 87430	619	.8145	.91088
520	0.6842	9.83519	570	0.7500	9.87506	620	0.8158	9.91158
521	. 6855	. 83602	571	. 7513	. 87582	621	.8171	-91228
522	. 6869	. 83686	572	. 7525	. 87658	622	.8184	. 91298
523	. 6882	.83769	573	. 7540	. 87734	623	.8197	. 91367
524	. 6895	. 83852	574	. 7553	.87810	624	.82II	. 91437
525	0.6908	9.83934	575	0.7566	9.87885	625	0.8224	9.91507
526	. 6921	. 84017	576	. 7579	. 87961	626	. 8237	. 91576
527	. 6934	. 84100	577	. 7592	. 88036	627	. 8250	. 91645
528	. 6947	. 84182	578	. 7605	.881 II	628	. 8263	. 91715
529	. 6961	. 84264	579	. 7618	.88186	629	. 8276	.91784
530	0.6974	9.84346	580	0.7632	9.88261	630	0.8289	9.91853
531	. 6987	. 84428	581	. 7645	. 88336	631	. 8303	.91922
532	. 7000	. 84510	582	. 7658	.884II	632	. 8316	. 91990
533	.7013	. 84591	583	. 7671	. 88486	633	. 8329	. 92059
534	. 7026	. 84673	584	. 7684	.88560	634	. 8342	.92128
535	0.7040	9.84754	585	0.7697	9.88634	635	0.8355	9.92196
536	. 7053	. 84835	586	.7711	. 88708	636	. 8368	. 92264
537	. 7066	. 84916	587	. 7724	. 88782	637	. 8382	. 92332
538	. 7079	. 84997	588	. 7737	. 88856	638	. 8395	.92401
539	. 7092	. 85078	589	. 7750	. 88930	639	. 8408	. 92469
540	0.7105	9.85158	590	0.7763	9.89004	640	0.842I	9.92537
541	.7118	. 85238	591	. 7776	. 89077	641	. 8434	. 92604
542	. 7132	. 85318	592	. 7789	. 89151	642	. 8447	. 92672
543	. 7145	. 85399	593	. 7803	. 89224	643	. 8461	. 92740
544	. 7158	. 85478	594	.7816	. 89297	644	. 8474	.92807
545	0.7171	9.85558	595	0.7829	9.89370	645	0.8487	9.98875
546	.7184	. 85638	596	. 7842	. 89443	646	. 8500	. 92942
547	. 7197	. 85717	597	.7855	. 89516	647	. 8513	.93009
548	. 7211	. 85797	598	. 7868	. 89589	648	. 8526	. 93076
549	. 7224	.85876	599	.7882	. 89662	649	. 8539	.93143

Table 100.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined : $\frac{\delta}{\delta_{0}}=\frac{h}{760}=\frac{B-0.378 e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760}$.	$\log _{760} \frac{h}{60}$	h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{h}{760}$	$\log \frac{h}{760}$.
mm.		-10	mm .		- 10	mm.		- 10
650	o. 8553	9.93210	700	0.9211	9.96428	750	0.9868	9.99425
651	. 8566	. 93277	701	. 9224	. 96490	751	. 9882	. 99483
652	. 8579	. 93341	702	. 9237	. 96552	752	. 9895	. 99540
653	. 8592	. 93410	703	. 9250	. 96614	753	. 9908	. 99598
654	. 8605	. 93476	704	. 9263	. 96676	754	.992I	. 99656
655	0.8618	9.93543	705	0.9276	9.96738	755	0.9934	9.99713
656	. 8632	. 93609	706	. 9289	. 96799	756	. 9947	. 99771
657	. 8645	. 93675	707	. 9303	. 96860	757	. 9961	. 99828
658	. 8658	. 93741	708	. 9316	. 96922	758	. 9974	. 99886
659	. 8671	.93807	709	. 9329	. 96983	759	. 9987	. 99943
660	0.8684	9.93873	710	0.9342	9.97044	760	1.0000	0.00000
66 I	. 8697	. 93939	711	. 9355	. 97106	761	. 0013	. 00057
662	.8711	. 94004	712	. 9368	. 97167	762	. 0026	. 00114
663	. 8724	. 94070	713	. 9382	. 97228	763	. 0039	.00171
664	. 8737	. 94135	714	. 9395	. 97288	764	. 0053	. 00228
665	0.8750	9.94201	715	0.9408	9.97349	765	1.0066	0.00285
666	. 8763	. 94266	716	. 942 I	. 97410	766	. 0079	. 00342
667	. 8776	. 94331	717	. 9434	. 97470	767	. 0092	. 00398
668	. 8790	. 94396	718	. 9447	. 9753 I	768	. 0105	. 00455
669	. 8803	. 9446 I	719	. 9461	. 97592	769	. 0118	. 005 I I
670	0.8316	9.94526	720	0.9474	9.97652	770	I.O132	0.00568
671	. 8829	. 94591	721	. 9487	. 97712	771	. 0145	. 00624
672	. 8842	. 94556	722	. 9500	. 97772	772	. 0158	. 00680
673	. 8855	. 94720	723	.9513	. 97832	773	. 0171	. 00736
674	. 8869	. 94785	724	. 9526	. 97892	774	.oI84	. 00793
675	0.8852	9.94849	725	0.9539	9.97952	775	I. 0197	0.00849
676	. 8895	. 94913	726	. 9553	. 98012	776	. 02 I	. 00905
677	. 8908	. 94978	727	. 9566	. 9 So72	777	. 0224	.0096r
678	. 8921	. 95042	728	. 9579	.98I32	778	. 0237	. 01017
679	. 8934	.95106	729	. 9592	.98i91	779	.0250	. 01072
680	0.8947	9.95170	730	0.9605	9.98250	780	1.0263	0.01128
68I	. 8960	. 95233	731	.9618	. 98310	781	. 0276	. 01184
682	. 8974	.95297	732	. 9632	. 98370	782	. 0289	. 01239
683	. 8987	.95361	733	. 9645	. 98429	783	. 0303	. 01295
68.4	. 9000	. 95424	734	. 9658	. 98488	784	. 0316	. O1350
685	0.9013	9.95488	735	0.9671	9.98547	785	I. 0329	0.01406
686	. 9026	.9555I	736	. 9684	. 98606	786	. 0342	. 01461
687	. 9039	. 95614	737	. 9697	. 98665	787	. 0355	. 01516
688	. 9053	. 95677	738	.97II	. 98724	788	. 0368	.or571
689	. 9066	. 95740	739	. 9724	. 98783	789	. 0382	. 01626
690	0.9079	9.95804	740	0.9737	9.98842	790	1.0395	0.01681
691	.9092	. 95866	741	. 9750	. 98900	791	. 0408	. OI736
692	. 9105	-95929	742	. 9763	. 9 S959	792	. 042 I	. 01791
693	.9118	. 95992	743	. 9776	. 99018	793	. 0434	. 121846
694	.9132	. 96054	744	. 9789	. 99076	794	. 0447	. orgor
695	0.9145	9.96117	745	0.9803	9.99134	795	I. 0461	0.01955
696	. 9158	. 96180	746	. 9816	. 99192	796	. 0474	. 02010
697	.9171	. 96242	747	. 9829	. 99251	797	. 0487	. 02064
698	-9184	. 96304	748	. 9842	. 99309	798	. 0500	. 02119
699	.9197	. 96366	749	. 9855	. 99367	799	. 0513	. 02173

Table 101.
ATMOSPHERIC WATER-VAPOR LINES IN THE VISIBLE SPECTRUM.

Wave lengths in \AA Ingströms.	Number of lines.	Intensity.	Wave lengths in Ångströms.	Number of lines.	Intensity.
5292.3-5296.0	4?	00	5915.146.		I
5861.8-5870.0.	7	00	5915650.		I
5870.864.		I	5915.840.		I
5871.3-5876 o	8	00	5916.0-5918.2.	6	00
5876.33S		I	5918.635.		4
5S76.6-5879.4	4	Oo	5919.175.		000
5879.820	.	I	5.919 .276.		5
5879.945		1	5919.860.		7
5S80.7-5SSI.O	2	o	5920.395.		Oo
5S8I.147		1	5920.776.		I
5 SSI .320.		0	5921.3 5922.6.	3	0
5882.084		1	5922.735		2
5882.2-5883 2...	3	0	5922.9-5923.4.	2	\bigcirc
5884 I 20.		5	5923.865.		I
5884.4-5885.8	3	00	5924.040.		2
5886.193		5	5924.490.		4
5886.560		1	5924.975.		000
5886.6-5886.9	2	0	5925.220		2
5887.445		5	5926.835.		000
5887.880		3	5928 510.		2
5888.056	-	00	5929.0-5931.2.	5	00
5888920.		2	5932.306.		5
5889.303		co	5932998.		2
5899 S55.		3	5933.2-5940 2.	14	000
5890.100.		2	5940.640.		I
5890.4-5890.9	2	00	594 I .091.		00
5891398		I	594 I .290.		5
5891.720.		-	5941.470.		000
5891.878.		4	594 I. 845		2
5892.608		3	5942.500.		$0: 0$
5893.268		-	5942.635		I
$5^{89} 93.725$		I	5942789		3
5894.6-5S96.6..	5	-	59.44 .530.		I
5896710		1	5944.945.		1
5897.047		2	5945.4-5915 5.	2	00
$5897.3-5898.2$	4	00	5945.865		1
5898.378		4	5946.223.		3
$5898.6-5899.0$ 5899.215	2	OO	$59+6.864$		000
5899.215		2	5947.062.		1
5899.752.		00	5947.283.		2
5900 I 35. 5900.260		2	$5947.6-5949.2 .$. 5949.390	4	000
5900 6-5901.5.	3	00	5949.8-5954.6..	II	00
5901.682		6	595.5.170.		I
5902.238		000	5956.0-5956.6.	4	000
5902.363		I	5958 ogS .		1
$5903 \bigcirc 35$		000	59.58 .460.		1
5903748		I	5961.6-5966 6	5	Oo
5903.9-590.7.	13	00	5966.885.		I
5908070		1	5967540.		00
5908.425		1	5968.058.		2
5909.213		3	5968.280.		000
5909668.		00	5968.495.		2
5910.398		I	5969.2-5970.9.	3	00
5910.5-5910.9	3	-0	5971557.		I
5910.987		2	5475330.		1
5911.1-5912.9.	7	00	5976.694.		00
5913.212		3	$5977.252 .$		I
5914.430.		6	5977.6-6479.7...	73	000

Table 101.
ATMOSPHERIC WATER-VAPOR LINES IN THE VISIBLE SPECTRUM.

Wave lengths in Ångströms.	Number of lines.	Inten1sity.	Wave lengths in \AA Angströms.	Number of lines.	Intensity.
6480.285		I	6941.260....		000
64So.4-6483.3 ..	4	0000	6941.475.		1
6450.4 6483.468 .	4	1	$6942.402 .$.		2
64 S3.6-6490 9... $^{\text {a }}$	II	000	6942.630.		I
6491 O15		1	6944.060.		3
6493.1-6493 5..	2	00	6947.782		5
6194.725.		1	6947.863.		00
6496082.		2	6949.240.		1
6497.S-6514.5...	7	00	6949310.		I
$6514.956 \ldots$		2	6951010.		1
6516 OSO 6516.750		000	6954.0-6955.9...	2	00
6516.750 6516.855		I	$6956.660\}$		4
6517.3-6519.4	3	OO	6956.746		1
6519.682.		I	6959.704.		3
6522.1-6523.9.	4	0000	6961.515.		4
6524.080		τ	6964.812.		I
6526.0-6530 8.	2	000	6971.135.		0
6532.595		1	6977.715.		3
6534.172		2	6981.722.		
6534.8-6542.6	3	000	6985.220. 6986.833.		
6544.140		2	6988 I25.		-
$\begin{array}{r} 6546.0-6547.9 \\ 6548.855 \end{array}$	2	00	69S9.237..		3
6552365.		1	6990.632.		1
6554 O25		oo?	6993.776.		2
6556.308		oo?	6994.360.		1
6557.4-6558 4..	2	0	6998.978.		\bigcirc
6560 800		1 ?	6999.223.		2
6563.7-6569.0	4	00	7004.575.		0
6572.3:0		I	7004.995		2
6575.085		I	7005.3-7010 I.	2	0
65So.4-6929.6.	II	000	7011.590.		2
6934.075		2	7016.330.		1
6937957.		2	7016.675		3
6938.520		1	7023.770.		2
6939875		2	7027.2 I 3.		0
6940.436...		2	7027.740.		2

Table 102.
ATMOSPHERIC WATER-VAPOR BANDS IN THE INFRA-RED SPECTRUM.

TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

Range of Wave-lengths.		PRECIPITABLE WATER IN CENTIMETERS.												
μ	μ	. 001	. 003	. 006	. 01	. 03	. 06	. 10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to	1.0				100	99	99	98	97	95	93	90	83	78
1.0	1.25				99	99	98	97	95	92	89	85	74	69
1.25	1.5				96	92	84	80	66	57	51	44	31	28
1.5	2.0				98	97	94	88	79	73	70	66	60	57
* 2.	3.	96	92	87	84	77	70	64						
3.	4.	95	88	84	78	72	66	63						
* 4 .	5.	92	83	76	71	65	60	53						
5.	6.	95	82	75	68	56	5 I	47	35					
6.	7.	85	54	50	31	24	8	4	3	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	8.	94	84	76	68	57	46	35	16	10	2	-	-	\bigcirc
8.	9.	100	100	100	99	98	96	94	65					
$\dagger 9$.	10.	100	100	100	100	100	100	100	100	100	100	100		
\dagger †o.	11.	100	100	100	100	100	100	100	100	100	100	100		
11.	12.	100	100	100	100	100	99	98	96	95	93			
12.	13.	100	100	100	100	99	99	97	86	82				
${ }^{1} 3$.	14.	100	100	100	99	97	94	90	80	60				
${ }^{*} 14$.	15.			96	93	80	75	50	15	0	o	0	0	0
* 15.	16.					70	55	70	0	0	0	0	o	0
16.	17.						50	20	0	\bigcirc	\bigcirc	-	-	\bigcirc
17.	18.						25	10	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18.		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-

[^20]F. Paschen gives (Annalcu d. Physik. u. Chemie, 5I, p. 14, 1894) the absorption of the radiation from a blackened strip at $500^{\circ} \mathrm{C}$. by a layer 33 centimeters thick of water vapor at $100^{\circ} \mathrm{C}$. and atmospheric pressure as follows:

Wave length...................	μ $2.20-3.10$	μ $5.33-7.67$	μ $7.67-10(?)$
Percentage absorption...	80	94	$94-13$

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at $100^{\circ} \mathrm{C}$. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dewpoint at sea-level is $10^{\circ} \mathrm{C}$. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave length.	$\begin{gathered} \mu \\ 7.0 \end{gathered}$	$\begin{gathered} \mu \\ 8.0 \end{gathered}$	$\begin{gathered} \mu \\ 9.0-12.0 \end{gathered}$	$\begin{gathered} \mu \\ 12.4 \end{gathered}$	$\begin{gathered} \mu \\ .12 .8 \end{gathered}$	$\begin{gathered} \mu \\ \mathrm{I} 3.4 \end{gathered}$	$\begin{gathered} \mu \\ 14.0 \end{gathered}$
Percentage absorption.	75	40	6	20	13	28	22
Wave length.	$\begin{gathered} \mu \\ 14.3 \end{gathered}$	$\begin{gathered} \mu \\ 15.0 \end{gathered}$	$\begin{gathered} \mu \\ 15.7 \end{gathered}$	${ }^{\mu} 6.0$	$\begin{gathered} \mu \\ 17.5 \end{gathered}$	$\begin{gathered} \mu \\ 18.3 \end{gathered}$	$\begin{gathered} \mu \\ 20.0 \end{gathered}$
Percentage absorption.	43	35	65	52	88	80	100

The International Meteorological Symbols were adopted at the Vienna meteorological congress of 1873 . A few additions and modifications have been made at subsequent international meteorological meetings. The forms of these symbols are more or less flexible. Those shown in the accompanying table are the forms which have generally been used in the United States, and with two exceptions ("wet fog" and "zodiacal light") are identical with those used by the Prussian Meteorological Institute and given in the German editions of the International Meteorological Codex. The principal variants found in the meteorological publications of the different countries are given in the Monthly Weather Review (Wash., D.C.), May, 1916, p. 268.

Exponents. - An exponent added to a symbol indicates the degree of intensity, ranging from ${ }^{\circ}$ weak (light, etc.) to ${ }^{2}$ strong (heavy, etc.). Thus, Θ°, light rain; 0^{2}, heavy rain. German and French observers use the exponent ${ }^{1}$ to denote medium intensity, in accordance with the German and French versions of the report of the Vienna congress, and the German editions of the Codex. The English version of the above-mentioned report and the English edition of the Codex provide for the use of only two exponents, ${ }^{\circ}$ and ${ }^{2}$; hence in Englishspeaking countries the omission of the exponent indicates medium intensity.

Time of occurrence. - When hours of occurrence are added to symbols, the abbreviation a is used for a.m., and p for p.m. Thus, 0 roa -4 p denotes "rain from ro a.m. to 4 p.m." $12 a=$ noon; $12 p=$ midnight. The abbreviation n means "during night." Stations taking tri-daily observations may use a to mean between the first and second observation; p, between the second and third; and n, between the third and the first.

For further information concerning the International Symbols and other meteorological symbols, see "Meteorological Symbols," by C. Fitzhugh Talman, Monthly Weather Review (Wash., D.C.), May, 1916, pp. 265-274.

INTERNATIONAL METEOROLOGICAL SYMBOLS.

The International Conference of Metcorologists held at Munich in 1891 recommended the following classification of clouds, claborated by Messrs. Abercromby and Hildebrandsson:
a. Detached clouds with rounded upper outlines (most frequent in dry weather).
b. Clouds of great horizontal extent suggesting a layer or sheet (wet weather).
A. Upper Clouds, average altitude 9000^{m}.
a. 1. Cirrus.
b. 2. Cirro-stratus.
B. Intermediate Clouds, between 3000^{m} and 7000^{m}.
a. $\{$ 3. Cirro-cumulus.
a. $\left\{\begin{array}{l}\text { 4. Alto-cumulus. }\end{array}\right.$
b. 5. Allo-stralus.
C. Lower Clouds, below 2000^{m}.
a. 6. Strato-cumulus.
b. 7. Nimbus.
D. Clouds of diurnal ascending currents.
a. 8. Cumulus; top 1800 m ; base 1400^{m}.
b. 9. Cumulo-nimbus; top 3000^{m} to 8000 m ; base 1400 m .
E. High Fogs, under 1000^{m}.
10. Stratus.

DEFINITIONS AND DESCRIPTIONS OF CLOUD FORMS.

1. Cirrus (Ci.). - Dctached clouds of delicate and fibrous appearance, often showing a fcatherlike structure, generally of a whitish color. Cirrus clouds take the most varied shapes, such as isolated tufts, thin filaments on a blue sky, threads spreading out in the form of feathers, curved filaments ending in tufts, sometimes called Cirrus uncinus, ctc.; they are sometimes arranged in parallel belts which cross a portion of the sky in a great circle, and by an effect of perspective appear to converge towards a point on the horizon, or, if sufficiently extended, towards the opposite point also. (Ci.-St. and $\mathrm{Ci} .-\mathrm{Cu}$., etc., are also sometimes arranged in similar bands.)
2. Cirro-stratus (Ci.-St.). - A thin, whitish sheel of clouds sometimes covering the sky completely and giving it only a milky appearance (it is then called Cirro-nebula), at other times presenting, more or less distinctly, a formation like a tangled web. This sheet often produces halos around the Sun and Moon.
3. Cirro-cumulus (Ci.-Cu.). Mackerel sky. - Small globular masses or white flakes without shadows, or showing very slight shadows, arranged in groups and often in lincs.
4. Alto-stratus (A.-St.). - A thick shect of a gray or bluish color, sometimes forming a compact mass of dark gray color and fibrous structure. At other times the sheet is thin, resembling thick $\mathrm{Ci} .-\mathrm{St}$., and through it the Sun or the Moon may be seen dimly gleaming as through ground glass. This form exhibits all changes peculiar to Ci .-St., but from measurements its average altitude is found to be about one half that of Ci .-St.
5. Alto-cumulus (A.-Cu.). - Largish globular masses, white or grayish, partially shaded, arranged in groups or lines, and oftcn so closely packed that their cdges appcar confuscd. The detached masses are generally larger and more compact (resembling St.-Cu.) at the center of the group, but the thickness of the layer varies. At times the masses spread themselves out and assume the appearance of small waves or thin slightly curved plates. At the margin they form into finer flakes (resembling Ci.-Cu.). They often spread themselves out in lines in one or two directions.
6. Strato-cumulus (St.-Cu.). - Large globular masses or rolls of dark clouds often covering the whole sky, especially in winter. Generally St.-Cu. presents the appearance of a gray layer irregularly broken up into masses of which the edge is often formed of smaller masses, often of wavy appearance resembling A.- Cu . Sometimes this cloud-form presents the characteristic appearance of great rolls arranged in parallel lines and pressed close up against one another. In their centers these rolls are of a dark color. Blue sky may be seen through the intervening spaces which are of a much lighter color. (Roll-cumulus in England, Wulstcumulus in Germany.) St.-Cu. clouds may be distinguished from Nb. by their globular or rolled appearance, and by the fact that they are not gencrally associated with rain.
7. Nimbus (Nb.), Rain Clouds. - A thick layer of dark clouds, without shape and with ragged cdges, from which sleady rain or snow usually falls. Through the openings in these clouds an upper layer of Ci .-St. or A.-St. may be seen almost invariably. If a layer of Nb .
separates up in a strong wind into shreds, or if small loose clouds are visible floating underneath a large Nb., the cloud may be described as F'racto-nimbus (l'r.-Nb.) ("Scud " of sailors).
8. Cumulus (Cu.), Wool pack Clouds. - Thick clouds of which the upper surface is dome-shaped and cxhibits protubcrances while the base is horizontal. These clouds appear to be formed by a diurnal ascensional movement which is almost always noticeable. When the cloud is opposite the Sun, the surfaces facing the observer have a greater brilliance than the margins of the protuberances. When the light falls aslant, as is usually the case, these clouds throw deep shadows; when, on the contrary, the clouds are on the same side of the observer as the Sun, they appear dark with bright edges.

True cumulus has well defined upper and lower limits, but in strong winds a broken cloud resembling Cumulus is often seen in which the detached portions undergo continual change. This form may be distinguished by the name Fracto-cumulus (l'r.-Cu.).
9. Cumulo-nimbus (Cu.-Nb.), The Thunder-Cloud; Shower-Cloud.-Heavymasses of cloud rising in the form of mountains, hurrets or anvils, generally surmounled by a shecl or screcn of fibrous appearance (false Cirrus) and having al its base a mass of cloud similar to nimbus. From the base local showers of rain or snow (occasionally of hail or soft hail) usually fall. Sometimes the upper edges assume the compact form of cumulus, and form massive peaks round which delicate" false Cirrus" floats. At other times the edges themselves separate into a fringe of filaments similar to Cirrus clouds. This last form is particularly common in spring showers.

The front of thunder-clouds of wide extent frequently presents the form of a large are spread over a portion of a uniformly brighter sky.
10. Stratus (St.). - 1 uniform layer of cloud rescmbling a fog lut not resting on the ground. When this sheet is broken up into irregular shreds in a wind, or by the summits of mountains, it may be distinguished by the name Fracto-stratus (Fr.-St.).

During summer all low clouds tend to assume forms resembling Cumulus, and may be described accordingly as Stratus cumuliformis, Nimbus cumuliformis, etc.

The term Mammato-cumulus is applied to a cloud having a mammillated lower surface, occurring especially in connection with severe local storms.

The ovoid form, with sharp edges, assumed by certain clouds, particularly during the occurrence of sirocco, mistral or fochn, is indicated by the adjective lenticularis, e.g., Cumulus lenticularis (Cu. lenl.), Stratus lenlicularis (Sl. lent.). Such clouds frequently show iridescence.

For pictures of typical cloud forms see "International Cloud Atlas," 2 d ed., Paris, 19 Io; also U.S. Weather Bureau, "Classification of Clouds for the Guidance of Observers," Washington, D.C., r9Ir, and Gt. Britain, Metcorological Office, "Observer's Handbook," London (annual).

Especially intended for the use of mariners, but sometimes used at land stations. The original notation was devised in 1805 by Admiral Sir F. Beaufort; it has since been slightly altered and amplified by British and American meteorologists. The following svmbols are used by the marine observers of the U.S. Weather Bureau: -

Upper Atmosphere:
b. - Blue sky.
c. - Cloudy sky.
o. - Overcast sky.

Lower Atmosphere:
v. - Visibility (exceptionally clear).
z. - Haze.
m. - Mist.
f. - Fog.

Precipitation:
d.- Drizzling.
p. - Passing showers.
r. - Rain.
s. - Snow.
h. - Hail.

Electric phenomena:
l. - Lightning.
t. - Thunder.

Wind: q. Squally.

The British Meteorological Office also uses the following: e. - Wet air without rain.
g. - Gloom.
u. - Ugly or threatening appearance of the weather.
w. - Dew.
"The letters b, c, o are intended to refer only to the amount of cloud visible, and not to its density, form or other quality. They have gradually come to be regarded as corresponding to the following cloud amounts in the scale $0-10: b=0$ to $3 ; b c$ or $c b=4$ to $6 ; c=7$ or 8 ; $o=9$ or 10." - Marine Observer's Handbook, Lond., 1915, p. 82 .
U.S. Weather Bureau Observers use a line (light or heavy) under the symbol, British observers a dot or two dots, to indicate great intensity. Thus, U.S., \underline{r} heavy rain, \underline{r}, very heavy rain. British, r, heavy rain; r, very heavy rain.

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the " Réseau Mondial" of the British Meteorological Office for 1912 . (London, 1917.)

NORTH AMERICA.	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
*Angmagsalik.	65°	$37^{\prime} \mathrm{N}$.		$34^{\prime} \mathrm{W}$	104	32
*Godthaab.	64			44	30	9
Ivigtut.	61	12		10	16	5
*Jacobshavn.	69	13		2	4 I	13
*North Star Bay.		30		55	2	0.6
*Upernivik. .	72	47	56	7	44	19
ICELAND.						
*Berufjord..... . . .		40 N.		19 W.	59	18
*Grimsey (Akureyri)		33	17	58	22	7
*Stykkisholm.	65	5	22	46	37	II
*Vestmanno.		26	20.	15	23	8
FÄRO ISLANDS. *Thorshavn.	62	3 N.	6	45 W.	30	26
ALASKA.						
*Dutch Harbor..	53	55 N .	166	32 W.	13	4
*Eagle.	64	46	141	12	835	255
Juneau.	58	18	134	24	So	24
*Nome.	64	30	165	24	23	7
*Sitka...	57	4	135	20	63	19
*Tanana	65	10	152.	6	220	67
*Valdez.		7	146	16	23	7
CANADA AND NEWFOUNDLAND:						
Banff	51	10 N .	115	34 WV .	4521	1378
*Barkerville	53	2	12 I	35	4180	1274
*Belle Isle.	51	55	55	20	436	133
*Berens River.	52	18	97	23	709	216
*Calgary.		2	II4	2	3389	1033
*Carcross..		II	134	34	2172	662
*Davis Inlet	55	50	60	50		?
*Dawson. . . .	64	4	139	20	1053	321
Father Point.	48	31	68	19	20	6
*Fort Chipewyan.	58	42	III	10	715	218
*Fort Hope.	5 I	32	87	48		?
*Fort Resolution.	61	00	113	$\bigcirc 0$	787	240
*Fort Simpson.	61	52	120	43	423	129
Fredericton. .		57	66	36	164	50
Halifax ..	44	39	63	36	88	29
*Hay River	60	51	II5	20	525	161
*Hebron (Labrador).	58	12	62	21	49	16
*Kamloops.	50	41	120	29	1243	379
*Mingston.	44	13	76	29	285	87
*Minnedosa.	49	44	II, 3	24	3130	954
Montreal.	45	15 30	99	50 .35	1699 187	518 57
*Moose Factory..	51	16	So	56	30	9
*Nain.......	56	33	61	4 I	13	4
Parry Sound.	45	19	So	00	63.5	193
*Point Riche.		42		25	36	II
*Prince Albert		27	89	12	643	196
*Prince Rupert.			106		1430 17 I	436 52

Smathsonian tables.
table 107.

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the 'Réseau Mondial" of the British Meteorological' Office for 1912. (London, 1917.)

CANADA. (Continued.)	Latitude.	Longitude Greenwich.	Helght.	
			Feet.	m.
*Qu'Appelle	$50^{\circ} 30^{\prime} \mathrm{N}$.	$103{ }^{\circ} 47^{\prime} \mathrm{W}$.	2116	645
Quebec.	$46 \quad 48$	7 I 13	296	90
*Sable Island.	$43 \quad 57$	606	26	8
${ }_{*}^{*}$ St. John, N.B.	$45 \quad 17$	664	119	36
*St. Johns, Newfoundland.	4734	5242	125	38
*S.V. Point, Anticosti.	$49 \quad 24$	6335	30	9
Sydney.	46 10	60 10	48	11
*Toronto.	$43 \quad 40$	7924	379	116
*Victoria.	$48 \quad 24$	123 19	230	70
*Winnipeg.	$49 \quad 53$	97	760	232
Woodstock.	438	8047	980	299
*York Factory.	57 -	$92 \quad 28$	36	11
UNITED STATES.				
*Abilene.	$32 \begin{array}{ll}32 & \\ \text { N. }\end{array}$	9940 W.	1738	530
Albany	4239	7345	97	30
Alpena.	455	8330	609	186
Amarillo.	$35 \quad 13$	IOI 50	3676	1120
Asheville.	$\begin{array}{ll}35 & 36\end{array}$	8232	2255	. 687
Atlanta.	3345	8423	1174	358
Atlantic City	$39 \quad 22$	$74 \quad 25$	52	16
Augusta.	3328	8 81 54	180	55
Baltimore.	$\begin{array}{ll}39 & 17\end{array}$	76 75	123	37
Binghamton.	426	$75 \quad 55$	871	265
*Bismarck.	$46 \quad 47$	10038	1674	510
Block Island.	4110	7136	26	8
Blue Hill.	$42 \quad 12$	716	640	195
Boise. .	$43 \quad 37$	116	2739	835
Boston.	$42 \quad 21$	71	125	38
Buffalo.	4: 53	$78 \quad 53$	767	234
Cairo.	37	89	356	108
Cape Henry.	$36 \quad 56$	76 -	18	5
*Charleston.	3247	$79 \quad 56$	- 48	15
Charlotte.	3513	80 51	- 779	237
Chattanooga	354	${ }_{85} 14$	762	232
*Cheyenne.	418	104 48	6088	1855
* Chicago.	4153	8737	823	251
Cincinnati.	396	8430	628	191
Cleveland.	4130	8 I 42	762	232
Columbia, Mo.	3857	9220	784	239
Columbia, S.C.	$34{ }^{\circ}$	81 83 83	351	107
Columbus.	$39 \quad 58$	830	824	251
Concord.	4312	7132	288	88
Corpus Christi	$27 \quad 49$	$97 \quad 25$	20	6
Davenport.	4130	9038	606	185
*Denver.	3945	1050	5291	1613
Des Moines.	4135	8337	861	262
Detroit.	$42 \quad 20$	83	730	222
Dudge City.	3745	100	2509	765
Drexel.	4120	96 16	1299	396
Dubuque	4230	9044	698	213
*Duluth.	$46 \quad 47$	926	1133	345
Eastport.	4454	$66 \quad 59$	76	23
Elkins.	3853	$79 \quad 49$	1947	593
El Paso.	3147	10630	3762	1147
Erie.	427	805	714	217

LIST OF METEOROLOCICAL STATIONS.
Note. - Stations with asterisk appear in the "Résaau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

UNITED STATES. (Continued.)	Latitude.	Longitude Greenwich	Height.	
			Feet.	m.
Escanaba.	$45^{\circ} 48^{\prime} \mathrm{N}$.	$87^{\circ} 5^{\prime} \mathrm{W}$.	612	187
Eureka.	$40 \quad 48$	124 II	62	19
Evansville.	$37 \quad 58$	8733	43 I	131
Fort Smith.	$35 \quad 22$	$94 \quad 24$	457	139
Fort Worth.	3243	9715	670	204
Fresno.	3643	II9 49	330	roi
*Galveston.	29 18	$94 \quad 50$	54	16
Grand Haven.	435	86	632	193
Grand Junction.	394	10834	4602	1403
Green Bay.	44 3r	88 -	617	188
Harrisburg.	4016	$76 \quad 52$	374	114
Hartford.	4186	7240	159	48
Havre. .	4834	rog 40	2505	764
*Helena.	$46 \quad 34$	II2 4	4110	1253
Houghton.	477	88. 34	668	204
Houston.	$29 \quad 47$	$95 \quad 24$	138	42
Huron.	44 21	98 14	1306	398
Indianapolis.	3946	86 1о	822	251
Ithaca. .	$42 \quad 27$	$76 \quad 29$	836	255
Jacksonville.	$30 \quad 20$	$8 \mathrm{8I} 3$	43	13
Kalispell.	48 10	11425	2973	906
Kansas City.	395	9437	963	293
*Key West.	$24 \quad 33$	8148	22	7
Knoxville.	$35 \quad 56$	$83 \quad 58$	996	304
La Crosse.	4349	91 15	714	218
Lander.	4250	10845	5372	1637
Lansing.	4244	$84 \quad 26$	878	268
Lewiston.	46	117	757	${ }^{231}$
Lexington.	$38 \quad 2$	8433	989	301
Lincoln.	4049	$96 \quad 45$	1189	362
Little Rock.	3445	$92 \quad 16$	357	109
Los Angeles.	$\begin{array}{ll}34 & 3 \\ 38\end{array}$	$\begin{array}{rll}118 & 15 \\ 85 & \end{array}$	3.38	103
Louisville.	$\begin{array}{ll}38 \\ 38 \\ 37 & 15\end{array}$	8545	555	160
Lynchburg.	3725	79 9	681	207
Macon..	3250	8338	370	113
Madison.	435	89	974	297
Marquette.	46	87	734	224
Memphis. .	$\begin{array}{lll}35 & 9\end{array}$	${ }^{90} 83$	399	122
Meridian Milwaukee	$\begin{array}{rrr}32 & 21 \\ 43 & 2\end{array}$	$\begin{array}{ll}88 & 40 \\ 87 & 54\end{array}$	375 681	114 207
Minneapolis.	$44 \quad 59$	93	918	280
*Mobile. .	3041	88	57	17
Montgomery	$32 \quad 23$	86	223	68
Moorhead. .	$46 \quad 52$	$96 \quad 44$	940	287
Mount Tamalpais.	$37 \quad 56$	12235	2375	724
Mount Weather.	394	$77 \quad 53$	1725	526
Nantucket.	417	$70 \quad 6$	12	4
*Nashvi'le.	36	$\begin{array}{ll}86 & 47 \\ 72 & 56\end{array}$	546	166
New Haven.	418	$72 \quad 56$	106	32
*New Orleans.	$29 \quad 57$	904	53	16
*New York.	4043	74 -	314	III
Norfolk	$36 \quad 51$	7617	91	28
North Head.	46	124	211	64
*North Platte	4108	10045	2821	860
Northfield.	44 IO	7241	876	267
Oklahoma City	$35 \quad 26$	9733	1214	370
Omaha.	418	$95 \quad 56$	1105	337

Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

UNITED STATES. (Continued.)	Latitude.		Longituds from Greenwich.		Height.	
					Feet.	m.
Oswego.	43°	$29^{\prime} \mathrm{N}$.	76°	$35^{\prime} \mathrm{W}$	335	102
Parkersburg				36	638	194
Pensacola.		25			56	17
Philadelphia.		57		9	117	36
Phoenix.		28	112	\bigcirc	1108	338
Pike's Pcak		50	105	2	14134	4308
Pittsburgh		32	So	2	842	257
Pocatello.		52	112	29	4477	1365
Port Huron.	43	\bigcirc		26	638	194
Portland, Me.		39		15	103	31
*Portland, Oreg.		32	122	41	153	47
Providence. . .		50		25	160	49
Pueblo.		18	104	36	4685	1428
Raleigh.		45		37	376	115
Richmond		32		27	144	44
Rochester.	43	8		42	523	159
Roseburg.		13	123	20	510	155
Sacramento	38	35	121	30	69	21
*St. Louis.		38		12	568	173
St. Paul.		58	93	3	837	255
Salt Lake City		46	111	54	4360	1329
San Antonio.		27		28	693	211
*San Dicgo.		43	117	10	87	26
Sandusky.		25		40	629	192
*San Francisco.		48	122	26	155	47
*Santa Fé.	35	41	105	57	7013	2138
Sault Ste. Maric.	46	30	84	21	614	187
Savannah.	32	5	81	5	65	20
Scranton.		24		42	So5	245
Seattle.	47	3^{8}	122	20	125	38
Shreveport	32	30	93	40	249	76
Spokane.	47	40	117	25	1929	588
Springficld, Ill . .	39	48		39	630	194
Springfield, Mo.	37	12		18	1324	403
Syracuse. . .	43	2	76	10	597	182
Tacoma.	47	16	122	23	213	65
Tampa.	27	57		27	35	11
Tatoosh Island.		23	124	44	86	26
Taylor.	30	35		20	583	178
Toledo.	41	40		34	628	191
Topeka.	39	3		41	987	301
Valentine.	42	50	100	32	2598	792
Vicksburg.	32	22		53	247	75
*Washington	38	54	77	3	112	34
Wichita.		41	97	20	1358	414
Williston.	48	9		35	1878	572
Wilmington.		14		57	78	24
Wytheville.		56		5	2304	702
Yankton. .		54		28	1233	376
MEAICO, CENTRAL AMERICA AND WEST INDIES.						
*Barbados (Windward Islands)		8 N.		36 W.	180	55
Basseterre (St. Kitts).		18		43	29	9
*Belize (Brit. Honduras)		29		12	6	2
*Bermuda (Fort Prospect)		17		46	151	46

Note. - Stations with asterisk appear in the "Réscau Mondial" of the British Metcorological Office for 1912. (London, 1917.)

MEXICO, CENTRAL AMERICA AND WEST INDIES. (Continucd.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
Bridgetown (Barbados).	13°	$4^{\prime} \mathrm{N}$.	59°	$37^{\prime} \mathrm{W}$	30	9
Camp Jacob (Guadcloupe)			62	2	1650	503
Cienfuegos (Cuba) Montserrat.		II		33	52	16
Colon (Panama)...		23		53	36	11
*Culebra (Panama)		10			404	123
Fort de France (Martinique)		36		5	13	4
Grand Turk (Turks Is.)....	21	21	71	7	11	3
*Grenada (Richmond Hill).		3	61	45	508	155
Guanajuato (Mexico)....		-	Ior	15	6640	2024
Guatemala.	14	37	90	31	4888	1490
*Havana (Cuba).		9	82	21	74	23
*Jamaica (Negril Point)		15	78	23	33	10
Kingston (Jamaica)	17	58	76	48	24	7
*Leon (Mexico) . . .		7	101	41	5899	1799
Mazatlan (Mexico)		11		25	25	8
*Mexico (Mexico)	19	26	99	8	7480	2280
*Morelia (Mexico).	19	14	100	7	6342	1933
*Nassau (Bahamas)	25	5	77	21	26	8
*Oaxaca (Mexico).	17	4	96	44	5128	1563
*Port au Prince (Haiti)	18	34	72	22	118	37
Port of Spain (Trinidad)		35	61	30	40	12
Puebla (Mexico)	19	2	98	II	7116	2169
Puerto Principe (Cuba)	21	23		56	352	107
Roseau (Dominica)....	15	17	61	23	25	8
*St. Croix (Christiansted)		45	64	42	23	7
St. Thomas (Virgin Is.).		23	64	55	24	7
*Salina Cruz (Mcxico). .	16	12	95	16	184	56
Saltillo (Mexico). . .		25	100	56	5399	1645
San Domingo (San Domingo)		28	69	53	65	20
San José (Costa Rica).	9	56	34	8	3724	1135
San Juan (Porto Rico)...	18	29	66	07	82	25
San Luis Potosi (Mexico)	22	5	100	59	6200	1890
*San Salvador (Central America)	13	44	89	9	2155	657
Santiago de Cuba (Cuba).	19	55	75	50	82	25
'Tacubaya (Mexico).	19	24	99	12	7621	2323
Vera Cruz (Mexico).	19	12	96	8	23	7
Willemstad (Curaçao)	12	6	68	56	75	23
*Zacatecas (Mexico).		47	102	35	8015	2610
*Zapotlan (Mexico).		38	103	37	5016	1529
SOUTH AMERICA.						
Andalgalá (Argentina)	27	30 S .	66	26 W.	3517	1072
Aracajú (Brazil).....	10	55	37	4	14	4
*Arcquipa (Peru) . . .	16	22	71	33	8041	2451
Asuncion (Paraguay) . . .	25	32	57	48	312	95
* Bahía Blanca (Argentina)	38	45	62	15	82	25
Bello Horizonte (Brazil) Bogotá (Colombia). . .	19	54	43	30	2812	857
Bogotá (Colombia)	4	35 N.	74	14	8579	2615
*Buenos Aires (Argentina). Caldera (Chile)	34	36 S .	58	22	72	22
*Caracas (Venezuela).	27	${ }_{31} \mathrm{~N}$.	70	53	98	30
Catamarca (Argentina)	10	37 N. 27	65	56 47	3419 1673	1042 510
* Cayenne (French Guiana)	4	56 N.	52	2 I	20	6
Ceres (Argentina).	29	55 S .	61	58	285	87
Chaco (Paraguay)		23		25	361	110
Concordia (Argentina).	3 I	23	58	2	79	24

Note. - Stations with asterisk appear in the " Réseau Mondial" of the British Meteorological Office for Igi2. (London. 1917.)

Smithsonian tables.

Note. - Stations with asterisk appear in the " Réseau Mondial" in the British Meteorological Office for 1912. (London, 1917.)

NORWAY AND SWEDEN. (Continued.)	Latitude.		Longitude Greenwich		Height.	
Doure (Norway)					Feet.	m.
Florö (Norway).	61	36			2113 26	644
*Gjesvaer (Norway)	71		25	22	20	6
*Haparanda (Sweden)		50	24	9	30	9
Härnösand (Sweden)		37	17	57	66	20
*Mehavn (Norway).	71	1	27	47	20	6
Skudenes (Norway)	59	9		16	12	4
Stockholm (Sweden)		21	18	4	144	44
*Trondhjem (Norway)	63	26		25	131	40
*Upsala (Sweden).	59	51	17	38	79	24
*Vardö (Norway).	70	22	31	8	33	10
RUSSIA. (With Siberia and Finland.)						
Akhtuba.	48	$18^{\circ} \mathrm{N}$.	46	9 E .	16	5
*Akmolinsk.			71	23	? 1138	?347
*Arkhangelsk	64	33	40	32	22	7
Askhabad.	37	57	58	23	741	226
*Astrakhan	46	21	48	2	-46	-14
*Barnaoul.	53	20	83	47	558	170
Batoum.	4 I	40	4 I	38	10	3
Belagatchskoe Zimovie.		\bigcirc	80	18	1043	318
*Berezov.	63	56	65	4	131	40
*Blagovyeshchensk	50	I5	127	38	? 525	? 160
*Blagovyeshchensk Priisk.	58	Io	114	17	? 1608	P490
Bogoslovsk	59	45	60	1	636	194
Choucha.	39	46	46	45	4487	1368
Dorpat.	58	22	26	43	243	74
Derkoulskoe verderie	49	3	39	48	499	152
*Doudinka.	69	7	87	\bigcirc	P66	? 20
*Ekaterinburg.	56	50	60	38	948	289
Elatma.	54	58	4 I	45	459	140
Elisavetgrad	48	31	32	17	403	123
*Eniseisk.	58	27	92.	II	276	84
*Fort Alexandrovsk.	44	31	50	16	79	24
Golooustnoe	52	I	105	27	1529	466
Goudaour.	42	28	44	28	7231	2204
${ }^{*}$ Helsingfors.	60	Io	24	57	38	12
*Iakoutsk	62	I	129	43	354	? 108
${ }^{*}$ *rgiz.	48	37	61	16	367	112
*Irkutsk	52	16	104	19	1532	467
*Jurjev.	58	23	26	43	246	75
Kamenaïa Steppe.	51	3	40	42	623	190
Kansk.	56	12	95	39	715	218
Kargopol.	61	30	38	57	420	128
Kars.	40	37	43	5	5731	1747
Kazalinsk	45	46	62	7	230	70
*Kazan.	55	47	49	8	262	80
Kem.	64	57	34	39	4 I	13
Kerki.	37	50	65	13	804	245
*Kharkov (University)	50	\bigcirc	36	14	459	140
${ }_{\text {* }}^{\text {* Kiev. }}$. ${ }^{\text {Kirensk }}$	50	27	30	30	600	183
*Kirensk	57 68	47 53	108 3	7 1	886	270
*Krasnovodsk.	40	-0	52	59	-49	-15

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological
Office for 1912. (London, 1917.)

RUSSIA. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
*Kuopio.	62°	$54^{\prime} \mathrm{N}$		40' E.	328	100
Kursk.				12	774	236
*Lenkoran					-62	- 9
Libava.				1	16	5
Lubny (Gymnasium)		1	33	22	541	165
Lugansk.	48	35	39	20	148	45
Magaratch		32		13	262	80
*Malye Karmakouly .		23		43	. 48	15
Mariupolskoe verderie.		39	37	30	919	280
Mezen.		50	44	16	53	16
*Minousinsk		43	91	41	837	?255
*Moscow. .		45	37	34	512	156
*Narynskoe	41	26	76	2	?6611	?2015
*Nertchinsk.		59	- 116	35	1588	484
Nertchinski Zavod	51	19	119	37	2041	622
Nijni Novgorod. . . .		20	44	\bigcirc	518	${ }^{1} 88$
*Nikolaevsk-sur-Amour.	53	8	140	45	69	21
Nikolaief		58		58	64	20
Nikolsk.		32	45	27	508	156
Novaia Alexandria.		25	21	57	482	147
*Novorossiisk.		40		49	121	37
*Obdorsk		3 I		35	86	24
*Odessa (University)		29		46	213	65
*Okhotsk.	59	21		17	20	6
*Olekminsk		22	120	26	?663	?202
*Omsk.		58		23	289	88
Orel.		5^{8}	36	4	600	183
*Orenburg		45	55	6	374	114
*Oust-Maïskoe.		25	134	29	? 328	? 100
*Oust-Tsylma.		27	52	10	? 82	? 25
*Paikanskii Sklad	50	II	130	7	? 551	? 168
Pamirski Post.	38	II	74	2	? 11942	? 3640
Pavlovsk.	59	41		29	130	40
Pensa.	53	II	45	1	706	215
*Perm.	58	I		I5	535	163
Pernov.		23	24	30	32	IO
*Petrograd.		56	30	16	16	5
*Petropavlosk.		53	158	47	285	87
*Petrozavodsk.		47	34	23	128	39
Pinsk.		7	26	6	466	142
Ploti		57		10	468	143
Polibino.		44		56	355	108
Povenets.	62	51		49	141	43
Rostov on Don.	47	13	39	43	161	49
Rykovskoe		47	142	55	410	125
Saguny....		3^{6}	39	43	685	209
Samarkand	39	39	66	57	2369	722
Sarapul.	56	28		49	397	121
*Saratov.	51	32	46	3	197	60
Smolensk.	54	47	32	4		241
Sodankylä.		25		36	590	180
*Sourgout. .		I 5			? 131	? 40
Stavropol.	45	3	41	59	1909	582
*Tachkent.		20		18	1568	478
*Tchita.			113		2211	674

Smithsonian Tables.

Note. - Stations with asterisk appear in the "Réseau Mondial " of the British Meteorological Office for 1912. (London, 1917.)

Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

FRANCE. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
Pic du Midi de Bigorre	42°	$5^{\prime}{ }^{\prime} \mathrm{N}$.	0°	$8^{\prime} \mathrm{E}$.	9380	2859
Puy de Dome (Plain)			3	5	1309	399
Puy de Dome (Summit).		46	2	57	4813	1467
Sainte-Honorine-du-Fay		5	\bigcirc	30 W.	387	118
Toulouse.		37	I	27 E .	636	194
GERMANY.						
Aachen (Prussia).		47 N.	6	6 E .	672	205
Ansbach (Bavaria).		18		33	1437	438
Altenberg (Saxony).		46	13	46	2481	756
Augsburg (Bavaria)	48	22	10	54	1640	500
Bad Elster (Saxony)		17	12	I5	1644	501
Bamberg (Bavaria).	49	53	10	53	943	288
Bautzen (Saxony).	51	II	14	26	669	20.4
Bayreuth (Bavaria)	49	57	II	34	1190	363
Berlin (Prussia).	52	30	13	25	125	38
Borkum (Prussia)	53	35	6	40	26	8
Bremen.	53	5	8	48	52	16
Breslau (Prussia)	51	7	17	2	482	147
Brocken (Prussia)		47	10	37	3766	1148
Bromberg (Prussia)	53	8	18	-	177	54
Chemnitz (Saxony)	50	50	12	55	1092	333
Dresden (Saxony)	51	3	13	44	361	110
Erfurt (Prussia).		58	II	4	718	219
Freiberg (Saxony)	50	55	13	21	1336	407
Friedrichshafen (Württemberg)	47	39	37	55	1338	408
Grosser Belchen (Alsace)	47	53	7	6	4573	1394
*Hamburg.	53	33	9	59	85	26
Helgoland (North Sea).	54	10	7	51	144	44
Höchenschwand (Baden).	47	44	8	10	3296	1005
Hohenheim (Württemberg)..	48	43	9	14	1319	402
Hohenspeissenberg (Bavaria)	47	48	II	I	3261	994
Kahl a. M. (Bavaria).......	50	4	9	1	374	114
Kaiserlautern (Bavaria)	49	27	7	46	794	242
Karlsruhe (Baden).	49	I	8	25	416	127
Keitum (Prussia).	54	54	8	22	26	8
Kiel (Prussia).	54	20	10	9	155	47
Königsberg (Prussia)	54	43	20	30	33	10
Landshut (Bavaria).	48	32	12	10	1305	398
Leipzig (Saxony).	51	20	12	23	391	119
Ludwigshafen (Bavaria)	49	29		26	329	'100
Magdeburg (Prussia)..	52	8	II	38	177	54
Memel (Prussia)..	55	43	21	7	33	10
München (Bavaria).	48	9	11	34	1726	526
Münster (Westfalen).	51	58	7	37	210	64
Neufahrwasser (Prussia)	54	24	18	40	15	5
Nürnberg (Bavaria).	49	27	II		1014	309
Passau (Bavaria).	48	34		28	1015	309
Posen (Prussia)	52	25		56	216	66
*Potsdam observatory (Prussia).	52	23	13	4	279	85
Regensburg (Bavaria).	49	1		7	1161	354
Reitzenhain (Saxony)	50	34	13	14	2551	778
Rügenwaldermünde (Prussia)	54	26	16	23	10	3
Schneeberg (Saxony)... .		36		38	1452	443
Schneekoppe (Prussia).	50	44	15	44	5282	1610

GERMANY. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
Strassburg (Alsace)	48°	$35^{\prime} \mathrm{N}$.		4^{\prime} E.	47 I	144
Stuttgart (Württemberg)		47		11	883	269
Swinemünde (Prussia)		56		16	33	10
Villingen (Baden).		4	8	27	2342	714
Wiesbaden (Prussia).		5	8	14	374	114
Wilhelmshaven (Oldenburg)		32	8	9	28	8
Würzburg (Bavaria).		48		56	588	179
Wustrow (Mecklenburg)		21		24	23	7
Zittau (Saxony)...		54		49	827	252
HOLLAND.						
Amsterdam.	52	23 N.	4	5.5 E	9	2
*De Bilt.	52	6.		II	45	3
Groningen.		13		33	29	9
Helder.		58		45	18	6
Maastricht.		51		4 I	167	61
Kotterdam.		54		29	66	4
Vlissingen.		26		34	26	8
BELGIUM.						
Arlon..		40 N.	5	48 E .	1450	442
Bruxelles		5 I			131	40
Furnes.	51	4		40	20	6
Liége. . .		37		34	246	75
Maeseyck	5 I	6			115	35
*Uccle. . .		14		55	23	7
					32	100
BRITISH ISLES.						
*Aberdeen	57	10 N.	2	6 W.	88	27
Armagh.	54	21		39	200	61
Ben Nevis.		48			4405	1343
Bidston (Liverpool)		24			188	- 57
Deerness, Orkney Is	58	56		45	164	50
Falmouth. . .	50	9			167	51
Fort William.	56	49			39	12
Glasgow.	55	53		18	180	55
*Greenwich	51	28		∞	157	48
Holyhead (Harbour office)	53	18		29	57	17
*Lew....	51	28		19	18	6
*Lerwick . ${ }^{\text {a }}$.	60	9		8	59	18
London (Westminster)		30		8	76	23
Malin Head.	55	23		24	208	63
Oxford.	51	46		16	208	63
Scilly Islands, St. Mary's Shields North..........	49	56	6	18	131	40
Shields North.	55	-		27	96	29
Southport.	53	39		59	37	II
Stonyhurst College	53	51		28	375	114
Stornoway . . .		II		22	51	16
*Valencia. . . .		51		17	I 12	34
Yarmouth.		56 37		${ }^{15} 5 \mathrm{E}$.	46	14
				43 E .	17	5

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the " Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

ITALY. (Continued.)	Latitude		Longitude from Greenwich		Height.	
					Feet.	m.
Pistoia.	43°	$55^{\prime} \mathrm{N}$.		$95^{\prime} \mathrm{E}$	282	86
Prato					246	75
Reggio, Calabria	38	8		39	48	15
Riposto.		41		12	46	14
Roca di Papa		46		43	2493	760
*Rome, Collegio Romano	4 I	54		29	207	63
Rovigo.	45	3		47	69	21
Salo.		36		29	328	100
Sassari.		44		34	735	224
Sestola.		15		46	3585	1092
Siena.		19	II	20	1143	348
Syracuse (Sicily)	37	3		I5	76	23
Teramo.	42	40		43	945	288
Turin.	45	4	7	41	907	276
Venice.		26		20	70	2 I
SWITZERLAND.						
Alstätten.		23 N.	9	33 E .	1476	450
Altdorf.	46	53	8	39	1493	455
Basel		33	7	. 35	909	277
Bern.	46	57	7		1877	572
Castasegna.		20	9	31	2297	700
Chaumont.	47	I		59	3698	1127
Davos Platz.		48		49	5118	1561
Geneva.	46	12	6	9	1329	405
Lugano..	46	\bigcirc	8	57	902	275
Neuchâtel.	47	\bigcirc	6	57	1601	488
Pilatus-Kulm.		59	8	16	6781	2067
Rigi-Kulm.	47	3	8	30	5863	1787
Säntis. .		15		20	8202	2500
Sils-Maria. .		26		46	5951	1814
St. Bernhard		52		11	8123	2476
*Zürich.		23		33	1687	493
AUSTRIA-HUNGARY.						
					298	91
Aussig a.d. Elbe.		40	14	2	528	161
Bielitz.	49	49	19	3	1125	343
Bruck a.d. Mur.		25		17	1591	485
Brünn.					679	207
Bucheben.	47	8		58	3947	1203
*Budapest.		30	19	2	369	112
Dobogókö		44		54	2290	698
Döllach.		58		54	3359	1024
Görz.		57		37	308	94
Graz.	47	4		28	1211	369
Gries b. Bozen	46	30		20	932	284
Gyertyó-Szt. Miklos.					2670	814
Herény. .		16		36	744	227
Innsbruck. .		16		24	1903	580
Klagenfurt I.				18	1476	450
Krakau.					722	220
Kremsmünster.		4		8	1260	384
Lesina.......				26	62	19
Lussinpiccolo.					10	3

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the "Réseau Mondial " of the British Meteorological Office for 1912. (London, I917.)

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the "Réseau Mondial " of the British Meteorological Office for 1912. (London, I917.)

	Latitude.		Longitude from Greenwich.		Height.	
MEDITERRANEAN.					Feet.	m.
Canea (Crete).		$30^{\prime} \mathrm{N}$.		00^{\prime} E.	105	32
*Gibraltar.				2 IW .	52	16
Kyrenia (Cyprus)		21		19 E.	52	16
Mahon (Minorca)		53		18	141	43
*Malta.		54		31	194	59
*Nicosia (Cyprus).		12		24	72	22
ASIA.						
INDIA (WITH NEIGHBORING COUNTRIES).						
*Aden (Arabia)		45 N.		3 E .	94	29
Agra. . . .	27	10		5	555	169
Ajmer.		27		44	1632	497
Akola.		42		4	930	283
*Akyab (Burma)		II		56	20	6
*Allahabad.		25		51	298	91
Amini Divi (Lakkadives).		6		45	13	4
Bangalore.		58		37	2982	909
Batticaloa (Ceylon).		43		44	26	8
Belgaum. .	15	52		34	2524	769
Bellary .		9	76	57	1455	443
Berhampore		18		51	67	20
*Bombay.		54		49	37	II
Burdwan.		16	87	54	102	31
*Bushire (Persia).		59		53	14	4
*Calcutta.		36		23	20	6
*Cherrapunji		15		42	4308	1313
Chittagong.		21		53	87	26
Cochin..........	9	58		17	10	3
* Colombo (Ceylon)	6	54		53	23	7
*Cothin.		\bigcirc		21	10	3
Cuttack.		48		54	80	24
Dacca.	23	43		26	35	II
Darjeeling.	27	3		18	6960	2121
Deesa.	24	14		13	474	144
*Dehra Dun.		20	78	-0	2234	68 I
Dhurbi.	26	2		2	$1{ }^{5}$	35
Diamond Island (Burma).		52		19	4 I	12
Durbhunga............. .	26	10		-	166	51
Enzeli (Persia).		30		28	69	2 I
False Point..	20	20		46	20	6
Galle (Ceylon).	6	1		14	48	15
*Gauhati.	26	8		4 I	194	59
Hambantota (Ceylon)	6	7		7	40	12
Hazaribagh.	23	59		25	2014	614
Hoshangabad.	22	46		45	1004	305
*Hyderabad.	25	24		18	95	29
Jacobabad.....	28	24		18	186	57
J Jaffna (Ceylon)		40		56	9 1431	3 436
		56		52 47	1431 13	436
*Jask (Persia) .	25	10		47	13 1337	4 408
*Kandy (Ceylon)		18		40	1654	504
Karwar.		48		11	44	13
Katmandu.	27	42	85	12	4388	1337

LIST OF METEOROLOGICAL STATIONS.
Note. - Stations with asterisk appear in the "Réseau Mondial " of the British Meteorological Office for 1912. (London, 1917.)

INDIA. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
Khandwa.		$50^{\prime} \mathrm{N}$.		23^{\prime} E.	1037	316
*Kodaikanal Observatory.				28	7688	2343
*Kurrachee.		53		57	13	4
*Lahore.		34		20	732	223
*Leh. . . .		10	77	42	11503	3506
Lucknow.		55		59	369	112
Ludhiana.		55	75	54	806	246
*Madras. ${ }^{\text {Malacca }}$ (Straits Settlements)		4		14	22	7
Malacca (Straits Settlements)		12		14	23	7
Meerut.		1		45	738	225
Mercara		26	75	47	3721	II34
Mergui.		27		35	96	29
*Meshed (Persia)		16		35	3105	946
Mooltan		12		3 I	420	128
Mount Abu.		36	72	45	3945	1202
Murree.		55	73	27	6333	1930
*Mysore.		18		40	2520	768
*Nagpur.	21	8	79	5	1017	310
Nuwara Eliya (Ceylon)	6	46		47	6240	1902
Nowgong	25	3		30	757	231
Patna.		42	83	Io	179	54
*Penang (Straits Set tlements)		34	100	20	16	5
Periyakulam Observatory.	10	9		32	944	288
Peshawar.	34	2		37	IIIO	338
Poona.	18	31		55	1992	607
*Port Blair (Andaman Is.)		40		40	59	18
Province Wellesley (Straits Settlements	5	2 I		25	57	17
*Quetta (Baluchistan).	30	11	67	3	5502	1677
Raipur.	21	15	81	41	970	296
*Rangoon.		46		48	20	6
Ranikhet.	29	40		33	6069	1850
Ratnagiri	17	8	73	19	110	34
Roorkee.	29	52	77	53	887	270
Salem.	11	39	78	12	940	286
Saugor Island.	21	40	88	10	6	2
Secunderabad.	17	27	78	33	1787	54.5
*Seychelles.	4	37 S.		27	16	5
*Shillong.	25	33 N.	91	48	4921	1500
Sholapur.	17	40	75	56	1585	483
Sibsagar.	26	59	94	41	333	101
Silchar.	24	50	92	51	89	27
*Simla	31	7	77	8	7224	2204
*Singapore (Straits Settlements)	I	17	103	51	6	2
Sutna.	24	34	80	55	1040	317
Trichinopoli.	10	50	78	46	272	83
Trincomalee (Ceylon).	8	33	8 I	15	12	4
Vizagapatam.	17	42	83	20	30	9
*Waltair. . .	17	45		16	3^{30}	9
Wellington		22	76	50	-6200	1890
CHINA AND INDO-CHINA.						
Cap-Saint Jacques (Indo-China)..					607	
*Hang Kow (China).		35		17	121	37
Hanoi (Indo-China).	21	2	105	50	43	13
Harbin (China).		43	${ }^{1} 26$	28	502	153

LIST OF METEOROLOGICAL STATIONS.
Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

CHINA AND INDO-CHINA. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
*Hong Kong (China).	22°	$18^{\prime} \mathrm{N}$.	II $4{ }^{\circ}$	10' E.	108	33
Kashgar (China)		25	76	7	3999	1219
Lang-biam (Indo-China)	I2	2	108	20	4606	1404
*Moncay (China)		31		51	33	IO
*Mukden (China).		48		23	144	44
*Nha-Trang (Indo-China)		16	109	12	23	7
Pekin (China).		57		28	125	38
*Phu Lien (China)		48		37	380	I 16
Pnom-Penh (Indo-China)	11	35		56	26	8
Pulo-Condor (Indo-China)	8	16	106	35	21	6
*Saigon (Indo-China).		46	106	42	36	II
*Shanghai (China) Zi-Ka-IVei.	31	12		26	23	
*Tiensin (China)	39	10		10	16	5
Tsingtau (Kiao-chau)	36	4		19	259	79
Urga (China)		55	106	50	? 4447	? 1325
JAPAN AND KOREA.						
* Chemulpo (Korea)	37	29 N.		32 E .	223	68
Fusan (Korea).	35	7		5	40	r 5
Hakodate.	4 I	46	140	44	10	3
Hirosima.	34	23		27	Io	3
Hukuoka.	33	35	130	25	20	6
*Joshin (Korea).	40	40		II	13	4
*Kioto.	35	I		46	161	49
Kobe. . . .	34	41	135	II	Ig I	58
Kumamoto.	32	49	130	42	129	39
Matsuyama	33	50		45	106	32
*Miyako.	39	38	141	59	98	30
*Nagasaki.	32	44	129	52	436	133
*Naha. .	26	13	127	41	34	10
Nagoya.	35	10	136	55	50	15
*Nemuro.	43	20	145	35	87	27
*Ochiai.	47	20	142	44	50	15
Osaka.	34	39	135	31	20	6
Sapporo.	43	4	141	21	55	17
Tadotsu	34	17	I33	46	16	5
*Taihoku	25	2	121	31	30	9
*Tokio.	35	41	I39	45	70	21
Tokushima.	34	6		37	13	4
Tsukubasan.	36	13	140	6	2854	870
PHILIPPINES AND HAWAIIAN ISLANDS.						
Aparri (Luzon) . . .	18	22 N.	121	38 E .	16	5
Altimonan (Luzon)	14	∞		55	13	4
Baguio (Benguet).	16	25	120	36	4961	1512
* Bolinao (Luzon).	16	24	II9	53	33	10
Cebu (Cebu)....	10	18	123	54	30	9
Dagupan (Luzon).	16	3		20	10	3
*Honolulu (Hawaii)	2 I	19	157	52 W.	39	12
Iloilo (Panay).	10	42	122	34 E .	20	6
Legaspi (Luzon).	13	9		45	20	6
*Manila (Luzon).	14	35		${ }^{52}$ IV	46	14
Midway Island. *Ormoc (Leyte).	28	13	$\text { I } 77$	22 W.	19 20	6
Ormoc (Leyte).		∞		36 L .	20	6

Note. - Stations with asterisk appear in the "Réseau Mundial" of the British Meteorolog.cal Office for 1912. (London, 1917.)

PHILIPPINES AND HAWAIIAN ISLANDS. (Continued.) *Surigao (Mindanao) *Tagbilaran (Bohol). *Vigan (Luzon).	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
	9°	$48^{\prime} \mathrm{N}$.	125°	$29^{\prime} \mathrm{E}$.	20	6
		38		51	85	26
				23	49	15
EAST INDIES.						
*Ambon		42 S .		10 E.	13	4
*Batavia (Java)				50	26	8
* Christmas Island		25	105	43	20	6
* Cocos Keeling Island		5		54	16	8
*Daru (New Guinea)	9	4	143	${ }^{\text {I }} 3$	26	8
*Kajoemas (Java)..	7	56	114	9	3117	950
*Koepang........		10	123	34	10	3
*Kota Radja (Sumatra)	5	32 N .		20	23	7
*Medan (Sumatra)....	3	35 S	98	41	79	24
*Padang (Sumatra)	\bigcirc	56 S .	100	22	23	7
*Passeroean (Java).	7	38	112	55	16	5
*Pontianak (Borneo).	\bigcirc	1	109	20	10	3
*Port Moresby (New Guinea)	9	29		9	128	39
Samarai..	10	37	150	40	20	6
*Sandakan (Borneo)	5	49 N.	I I8	I2	?	?
AUSTRALASIA.						
*Adelaide (South Australia).	34	56 S	138	35 E.	141	43
Albany (IVest Australia).	35	2	117	50	41	12
*Alice Springs (South Australia)	23	3^{8}	133	37	1926	587
*Auckland (New Zealand).		50		50	125	38
*Boulia (Queensland)		55		38	479	146
* Bourke (New South Wales)		13	145	58	360	110
*Brisbane (Queensland).		28	153	2	137	42
Burketown (Queensland).		45		33	27	8
Camooweal (Queensland)...	19	57	138	17	758	231
*Christchurch (New Zealand)		32		38	27	8
Cooktown (Queensland)....		28		17	17	5
*Coolgardie (Western Australia).	30	57	121	10	1388	423
*Daly Waters (Northern Territory)..		16		23	699	213
*Danger Point (New South Wales)...		37		18	66	20
*Derby (Western Australia)	17	18	123	40	53	16
* Dunedin (New Zealand)..	45	52		31	295	90
* Eucla (Western Australia)		45		58	15	5
*Georgetown (Queensland).	18	23		33	990	302
*Hall's Creek (Western Australia).		I3		46	1224	373
*Hobart (Tasmania)	42	53	147	20	160	49
*Katanning (Western Australia).	33	42		35	1017	310
*Launceston (Tasmania)		27	147	10	30	9
*Laverton (Western Australia).	28	40	122	23	1463	466
Mackay (Queensland).	21	9		13	36	118
*Mein (Queensland)..		13		57	400	122
*Melbourne (Victoria).	37	50	144	59	115	35
*Mitchell (Queensland).........		32		52	1110	337
* Nullagine (Western Australia).		53		5	1270	386
* Onslow (Western Australia)...		43		57	13	4
*Peak Hill (Western Australia).		38		47	1029	588
*Perth (Western Australia).					197	60
*Port Darwin (Northern Territory). Richmond (Queensland)..........		$\begin{aligned} & 28 \\ & 44 \end{aligned}$	130	51 10	98 697	30 212

LIST OF METEOROLOGICAL STATIONS.
Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

AUSTRALASIA. (Continued.)	Latitude.	Longitude Greenwich	Height.	
			Feet.	m.
*Rockhampton (Queensland).	$23^{\circ} 24^{\prime} \mathrm{S}$.	$150^{\circ} 30^{\prime} \mathrm{E}$.	37	11
Sandy Cape (Queensland)..	$24 \quad 41$	15316	330	100
*Streaky Bay (South Australia)	3248	I34 13	43	13
*Sydney (New South Wales).	$33 \quad 52$	151 12	146	44
Thargomindah (Queensland)	$27 \quad 58$	14343	402	122
Thursday Island (Queensland).	10 34	$142 \quad 12$	17	5
Townsville Pilot Station (Queensland).	1914	146 5I	73	22
*Wellington (New Zealand).	415	17446	6	${ }^{2}$
*William Creek (South Australia)	$28 \quad 55$	${ }^{1} 36$ 21	249	76
Windorah (Queensland)....	$25 \quad 26$	14236	390	119
OCEANIA.				
*Apia (Samoa).	I3 48 S	17 I	16	5
*Alofi (Niue Is.)	192	16955	121	37
*Chatham Island	$43 \quad 52$	170 15	190	58
*Fanning Island.	355 N.	15923	13	4
Gomen (New Caledonia)	20 21 S.	164 10 E.	?	?
*Guam (Ladrones Is.)	1320 N.	14435	12	4
${ }^{*}$ Lord Howe Island	31.32 S .	1594	?	?
*Malden Island. . . .	359	${ }^{5} 5500 \mathrm{~W}$.	26	O
${ }^{\text {* M Mataveri (Easter Is.) }}$	$\begin{array}{rr}27 & 10 \\ 29 & 4\end{array}$	$\begin{array}{ll}109 & 26 \\ 167 & 58 \\ 108 .\end{array}$	98	30
${ }^{\text {* Norfolk Island. }}$ Noumea (New Caledonia)	$\begin{array}{rr}29 & 4 \\ 22 & 16\end{array}$	$\begin{array}{lll}167 & 58 \\ 166 & 27\end{array}$	30	?
*Ocean Island.	- 52	16936	92	28
*Rarotonga (Cook Is.).	$21 \quad 12$	r 59 47 17 W.	?	?
*Rendova (Solomon Is.)	824	157 19 E.	?	?
*Suva (Fiji).	188	17826	13	4
*Tahiti (Low Arch.)	1547	148 I4 W.	154	47
${ }^{*}$ Tulagi (Solomon Is.)	95	1608 E.	6	10
${ }^{*}$ Uyelang	$94^{9} 4^{2} \mathrm{~N}$.	$161{ }^{1}$	33	10
*Yap.	929	1388	105	32
AFRICA.				
*Accra (Brit. Guinea).	535 N.	- 6 W .		18
Addis-Abeba (Abyssinia)	9 I	$38 \quad 43 \mathrm{E}$.	7874	2400
*Alexandria (Egypt)	319	$29 \quad 54$	105	32
*Algiers (Algeria)	$36 \quad 47$	34	125	38
*Aswan (Egypt)	242		328	100
*Bathurst (Gambia)	I3 24	1636 W .	16	5
Bengazi (Tripoli)	$32 \quad 7$	$20 \quad 2 \mathrm{E}$.	30	
Bizerte (Tunis).	3717	950	30	9
Bulawayo (South Rhodesia).....	20 1о S.	2840	4469	1362
Cairo (Egypt) Abassia Observatory	304 N .	$3 \mathrm{I} \quad 17$	108	33
${ }^{*}$ Cairo (Egypt) Helwan			380	116
*Cape Coast Castle (Brit. Guinea)...	$5 \quad 5$	$\mathrm{I}^{13} \mathrm{I} \mathrm{W}$.	?	?
Cape Spartel (Morocco)...	$35 \quad 47$	$5 \quad 55$	191	58
* Cape Town (Cape Colony)	33 56 S.	1829 E .	30	9
* Casablanca (Morocco)	$33 \quad 37 \mathrm{~N}$.	735 W.	56	17
Ceres (Cape Colony)	33 22 S.	1920 E .	1493	455
*Conakry (Fr. Guinea).	931 N.	1343 W.	52	16
Constantine (Algeria).............	36 32	637 E .	2165	660
*Dakhla Oasis (Egypt).............	$25 \quad 30$	2900	426	130
*Dar-es-Salaam (Tanganyika Terri tory) *Durban (Natal)	$\begin{array}{rl} 6 & 49 \\ 29 & 5 \mathrm{I} . \end{array}$	$\begin{array}{ll} 39 & 18 \\ 31 & 00 \end{array}$	$\begin{array}{r} 26 \\ 262 \end{array}$	$\begin{array}{r} 8 \\ 80 \end{array}$

LIST OF METEOROLOGICAL STATIONS.

Note. -Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, 1917.)

AFRICA. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
*East London (Cape Colony)		2^{\prime} S.		$55^{\prime} \mathrm{E}$.	33	10
El-Djem (Algeria).........		21 N .		38	541	165
*El Obeid (Brit. Sudan)		II			1919	585
*Entebbe (Brit. East Africa)	0	5		29	3862	I177
Fort Napier (Natal).		36 S.		23	2200	671
Fort National (Algeria)	36	38 N .		72	3051	930
Geryville (Algeria).	33			-0	428 I	1305
Grahamstown (Cape Colony)	33	18 S .		32	1800	540
*Gwelo (South Rhodesia).	19	27		49	4646	1416
*Harrar (Abyssinia).	9	42 N .		30	6089	1856
*Heidelberg (Transvaal)	34	5 S .		58	5056	1541
*Insalah (Sahara).	27	17 N.		27	1083	330
Ismailia (Egypt).	30	36		16	30	9
*Johannesburg (Transvaal)	26	II S.		4	6148	1874
*Kadugli (Brit. Sudan)	II	2 N .		45	1650	503
*Kafia Kingi (Brit. Sudan)	9	22		18	1955	596
*Katagum (Nigeria)	12	17		22	102	31
Kenilworth (Kimberley)	28	42 S .		27	3950	1204
*Khartoum (Egypt)	15	37 N .		33	1309	390
*Kimberley (Cape Colony)	28	43 S		46	4042	1232
*Kontagora (Nigeria).	10	24 N .		24	1312	400
Laghouat (Algeria)	33	48	2	53	2559	780
*Lagos (Nigeria)..	6	22	3	28	26	8
*Lamu (Brit. East Africa)	2	16 S .		54	10	3
*Libreville (Fr. Congo)	-	23 N.		26	II5	35
*Loango (Fr. Congo).	4	38 S .		50	? 164	? 50
*Lorenzo Marques (Port. East Africa)	25	5^{8}		36	194	59
${ }^{*}$ McCarthy Is. (Gambia)	13	42 N.		46 W.	13	4
*Maiduguri (Port. East Africa)......	II	48		12 E .	1214	370
*Mauritius (Royal Alfred Observatory)	20	6 S.		33	177	54
Mayumba (Fr. Congo)..........	3	23		31	200	61
Mojunga (Madagascar). .	15	45			I 34	41
Mozambique (East Africa)	15	-0		44	13	6
*Nairobi (Brit. East Africa)	I	18		59	5446	1660
*Nandi (Brit. East Africa)	-	2 N.		5	6594	2010
Oran (Algeria)	35	42	-	39 W.	174	53
Ouargla (Algeria)	31	55	4	70 E .	407	124
Port Elizabeth (Cape Colony).	33	58 S .		37	181	55
Port Saild (Egypt). . .	31	16 N.		19	14	4
Porto Novo (Dahomey)	6	28 N.		40	65	20
*Pretoria (Transvaal)......	25	45 S .	28	II	5170	r 576
Queenstown (Cape Colony)	31	54		52	3500	1067
St. Denis (Réunion)	20	51	55	30	102	$3 i$
*St. Helena.	15	57	5	40 W.	2073	632
St. Louis (Senegal)	16	1 N.		3 I	6	2
St. Paul de Loanda (Angolo).	8	47 S .		13 E .	194	59
*St. Vincent (C. Verde Is.)	16	54 N .	25	4 W.	36	11
*Sainte-Croix-des-Eshiras (Fr. Congo)	1	44 S .	10	21 E .	640	195
*Salisbury (Rhodesia) ...	17	49	31		4878	1487
*San Tiago (C. Verde Is.)	14	54 N.	2.3	3 I W.	112	34
*Ségou (Fr. West Africa)....	13	34		17	3892	? 272
*Sierra Leone (Sierra Leone)	8	30	13		223	68
*Sokoto (Nigeria)	13	2		14 E .	1161	354
*Suez (Egypt).	29	57			10	3
*Tamatave (Madagascar)	18	9 S .			13	4
*Tananarivo (Madagascar)	18	55			4593	1400

LIST OF METEOROLOGICAL STATIONS.

Note. - Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1912. (London, I917.)

AFRICA. (Continued.)	Latitude.		Longitude from Greenwich.		Height.	
					Feet.	m.
Tangier (Morocco). . .	35°	$47^{\prime} \mathrm{N}$.	5°	$49^{\prime} \mathrm{W}$.	246	75
*Timbuctoo (Fr. West Africa)......	16	43	2	52	820	250
*Tunis (Tunis) .		48	10	Io E.	141	43
Upper Sheikh (East Africa)		56	45	II	4593	I400
Vivi (Congo).	5	40 S .	13	49	364	III
*Wadi Halfa (Egypt)	21	55 N.	31	20	420	128
*Wau (Brit. Sudan)	7	42	28	3	1444	440
*Windhoek (South-West Africa)...	22	34 S.	17	5	5463	1665
*Yola (Nigeria).	9	12 N .	12	30	850	259
*Zanzibar (Brit. East Africa)	6	ıо S .	39	II	73	22
*Zomba (Nyasaland Prot.). .				18	2949	899
*Zungeru (Nigeria).	9	48 N.		10	426	130
ARCTIC AND ANTARCTIC. (See also Greenland, Iceland, Russia, etc.)						
Bossekop.	69	57 N.	23	15 E.	?	?
* Cape Evans (McMurdo Sound).	77	38 S .	166	24	59	18
*Cape Pembroke.	51			42 W.	69	2 I
Dicksonhavn.	73	30 N .	81	00 E .	?	?
Fort Rae. .	62	39	II5	44 W.	?	?
*Framheim.	78	38 S.	163	37	36	11
Jan Mayen	70	59 N.	8	28	?	?
Kingua-Fjord (Cumberland Sound).	66	36	67	9	?	?
Lady Franklin Bay	8 I	44	64	45	?	?
Novaya Zemlya.	72	30	52	45 E .	?	?
Orange Bay.		3 I S.	70	25 W	?	?
Point Barrow.		23 N.		40	?	?
Sagastyr...		23	124	5 E.	?	?
*Spitsbergen	78	2	15	6	590	180
Green Harbour				14	36	10
*South Georgia.		14 S .		33 WV .	13	4
*South Orkneys.					23	I

INDEX.

Barometer,
difference in height corresponding to, sity of, at different humidities
English.
xix-1xx, 221-223 Metric
xix-lxx, 225-228
English.................... .1xix-lxx, 221-223 ensity of, at different temperatures,

English
...|xix, 220 mass of, corresponding to different zenith distances of the sun......................xxviin, 218 weight in grams per cubic centimeter
xli, 1xix-1xx, 220-228
Angle, conversion of days into xx, 52-55
Approxi, treatise ote thermometric scale defined xi-xi
Approximate absolute temperature, conversion into
Centigrade, Fahrenheit, and Reaumur.xii, 2-4
Aqueous vapor, decrease of pressure with altitude
at mountain stations................................, 194 pressure of, by psychrometric observations,

English........................ . |vii-1x, 172-185 essure of saturated, over ice

Engish
lii-lv, 160
Metric.
.iii-lv, 16r-164
English. lii-lv, 166-168 (See also atmospheric water vapor.)
ht of
English .lv-lvii, 169
......xx, 50
Aschkinass, Rubens \&, treatise cited.................... 231
Astronomical twilight, defined.......................... $1 x$ vi duration of..................................ixi-1xii, 215
Atmospheric price
absorption by, in infra-red
i.... $1 \times x x_{1,} 230$

Augut, wok cited....................................

Babinet, barometric formula for determining heights
Ball, Frederick, work cited..............................|xvii
Bar, value of defined...xvii
Barometer,
correction for (in determining height),
English weight or mercury,
Metric...................................... . xlvii, $_{14}$
humidity,
Dynamic.xlvi-xlvii, 152
Metric..............................i-xi-xlvii, 149-151
temperature,
English..................... .xlii-xliii, x38-139
Metric.....................x|v-xlvi, 147-r48
English
.xiv, 143
etermination of height by,
Babinet's formula
xix-1, 157
Dynamic.iviii. xxxix-xli
..................... . xin-xiv, 134-143
etricxliv-xlviii, 544-154
a change of 0.01 inch..
a change of 1 mm.......................... xiiix, 155
pressures corresponding to temperature of boiling water
reduced to,
standard gravityxxxiv-xxxviii, 129
English..................xxxvii-xxxviii, 130-131
Metric .xxxviii, $132-133$
standard temperature..xxx-xxxiv
English..................... xxxii-xxxiii, 86-105
Metric. .i.xxxiii-xxxiv, 106-128
value for auxiliary formula in determining height,
Dynamic.xlv, I45-146
Englishxlii, r34-137
Metric. xlv, I44
Barometric constantxl-xli
Baumann, A., treatise cited . lii
Beaufort, Admiral,
weather notation. Ixxii, 236
wind scale .xxiv-xxv, 70
Belli, work cited. vii
Bemporad, A., treatise cited......................... . . . 1 xviii
Bowie, William, work cited. xxxv, lxiii
Broch, work cited xxxii, lii-liii
Buckingham, Edgar, work cited.
Cederberg, I. W., treatise cited liii
Centigrade, conversion into Approximate Absolute,
Fahrenheit, and Reaumur.xii, 2-4
conversion into Fahrenheit.xiv, 10-12
differences into differences Fahrenheit. . . .xv, 13
near boiling point of water. xiv, r3
thermometric scale defined. xi
Chappuis, Pierre, work cited. xviii
Civil twilight, defined... $x v v i$
duration of 216
Clarke, treatise cited . xli, lxiv
spheroidxx, lxiv
Cloud classification, international.............1xxii, 234^{-235}
Coefficient of expansion of air with temperature.xxxix, xli
Continental measures of length and equivalents... $\mathrm{xx}, 48$ Conversion of,

> barometric readings into standard units of
> pressure. xvii, $36-39$
> linear measures...vi, 16-48
> measures of time and angle............... $\times x, 50-58$
> measures of weight.. xxiii, 60-62
> thermometric scales.........................xi-xiv, 2-13
> wind velocities. .xxiv, 64-7a

Correction,
in determining heights by barometer,
for gravity and weight of mercury,
English.................................. . . xliiii, 141
Metric................ 153
for humidity,
Dynamic. xlvi-xlvii, 152
English. .. xliii, 142
Metricxivi-xlvii, 149-15I
for temperature,
English. xlii-xliii, 138-I39
Metric.x|v-xlvi, 147-148
for variation of gravity with altitude,
English.
xliv, 143
Metric.
xlvii, 154
for temperature of emergent mercurial column
of thermometers
XV, 14
Davis, H. N., work cited.
. .lvi
Days, conversion into decimals of year and angle
xx, 52-55
conversion of decimals of, into hours, minutes,
and seconds.xxi, 56

Declination of the sum
Defforgion of the sun. .. 214
Degree, length of, at different latitudes, of meritlian of any thatlel. xiv, 202
Degrees, interconversion of Absolute, Centigrade,
Fiabrenheit, and Reatumur xii-xiii, 2-4
Density of : tir
Ixix, Ixx, 220-228
Depth of water corresponding to weight of snow or rain
Determination of heights by barometer,
1)ynamic. xliv-xlviii, 145-154

Jinglish. xti-xtiv, 134-x43
Alctric . xliv-xlvii, 144-1 54
labinet 's formula for xtix-1, 157
Dew-point. Iviii
vapor pressurc corresponding to,
linglish
lix, 172-182
Metric.
1x, 186-191
Differences, in leight, corresponding to changes in
barometer,
English
xlviii, 155
Metric.
. $\mathrm{xix}, 150$
Differences,
Centigrade to l'ahrenheit.xv, 13
Fiahrenheit to Centigrade. xiv, 13
Duration of,
xvii, 215

sunshine . Ixv, 203-214
Dync.
El, value of the .48

Expansion, coefficient of, for air, with temperature
xxxix, xli
Fahrenheit, conversion into Approximate Absolute,
Centigrade, and Realumur conversion into (centigradexiii, 5-9
differences into differences Centigrade... xiv, 13
Fathom, Swedish, value of.
-..... 48
Fect, conversion into meters. ix, 40-41
per second into miles per hour. ... liii, .xvii
Ferrel, WM., treatise cited.xxvii, xli, xliii, lxvii, Ixviii
Foot, value of, for (lilierent mationalities. 48
Formula, Babinet's barometric. xlix-1, 157
gradient winds...................xxvii-xxix, 77-79
Lambert's, wind direction. xxv-xxvii, 71-76
Laplace's barometric
vapor pressure,
over ice
English.
. Jii- $\mathrm{lv}, 160$
Metric.
lii-lv, 165
over water, English
lii Jv, 16x-164
Metric.....................
English
Metric
lii-Iv, 166-168
Ivii $] x, 172-182$ lvii-Ixi, 186-101
Fowle, F. E., treatise cited.
Geodetical tables
lxiii-lxix, 198-218
Gradient winds,
English.
Metric.
xxvii-xxix, $77-78$
xxvii-xxix, 78 -79
Grains, conversion into grams xxiii, 01
Grams, conversion into grains xxiii, xxiv, 62
Gravity, standard, delinet
,ini, xxiv, 6_{2}
correction of, for variation with altitude xxxy to standard.
.xxxy-xxxvi
reduction of barometric readings to standard
xxxvi-xxxviii, 129-133
relative acceleration in different latitudes
|xiii, 100-200
value of, nt sea level
. lxiii, 198
Guyot, A., treatise cited.
. xxxii
Irann, J., treatise cited
xli, lxi, lxxi
Hazen, H. A., treatise cited
.xxiv, xxvi
Height, determination of,
by barometer,
1)ynamic.

English.
liv-xlvii, 145-154
Metricxti-xliy, 134-143
thermometrical measurenent of...........1-li, 158

ITenning, F., treatise cited
Heuse, W., treatise cited..
PAGE
lii-liii
. .
Ilours, conversion into decimals of a dayxxi, 56
minutes and seconds into decimals ofxxi, 57
Humidity,
correction for, in determining heights by baro-
1)ynamic.xlvi-xlvii, 152
linglish. xiii-xliv, 142
Metric xlvi-xlvii, 149-15I
relative,
Fiahrenheit. $1 x, 183-185$
Centisrade.
erm for, in determining density of air,
English.
, 1
Metic
x.x, 221-223

Hygrometrical tables ii-1xiii, 160-195
Hypsometric formula. xxxix
Hypsometry xxxix-lii, 134^{-158}

Illumination intensities, relative . Jxix, 218 Inches, barometric, conversion into millibars
xviii, $36-37$
Inches, conversion into millimeters. xvii, 16-22
Infra-red spectrum, absorption by water vapor bands
....... xxxi, 230
Interconversion, nautical and statute miles.xx, 48
sidereal and solar time. xxii, 5^{8}
International cloud classification.................. . . . x xii, 234
International metcorological symbols. Ixxi, 232-233
Juhlin, T. T., work cited
lii
Kelvin, Lord, work cited.
.xi
Kilogram prototype. xiii
Kilograms, conversion into poundsiii, 6 I
Kilometers, into miles....................... xix, 46-47
per hour into meters per second. xxiv, 69
Kimball, Herbert H., works cited................ . . Ixvi, Ixix
Klafter, W ienet, value of . 48
lambert's formula, mean wind direction. .xxv-xxvi, $71-76$
Laplace, formula of..
Latitude, correction for, in determining heights by

Finglish..xxxvii xxwviii, xliii, 140-141
Mctric. xxxvii-xxxviii, $2 . l v i i, ~ 153$
in reducing barometer to standard gravity,
English. xxxvii-xxxviii, 130-131
Metric. xxxvii-xxxviii, 132-13.3
Leduce, S. A., work cited..... xviii, xli
Length, are of meridian. Ixiv, 201 arc of parallel...............................
continental measures of, with metric and
british equivalents. xx, 4^{8}
Libbey, Wm., Work cited.
x, 48
line, old lirench, value of . 8
Lincar measures.
xvi, $16-48$
Marks, L. S., work cited . Iri
Marvin, C. F., work cited.viii, xxxi, lii
Maxwell, work cited. .
. Nii
Mean time, conversion of solar into sidereal. xxii, 58
at apparent noon . xxii, 57
Measures of angle.xx-xxi, 50-55
of length.xx, 48
of time .xx-xxiii, 50-58
Mercury, density of . xviii
Meridian, ares of terrestrial. .
length of a degree. $x j v, 201$
Metcorological stations, list of xxii, 237-257
Meter.
Meters, conversion into feet xix, 42-43
per second into kilometers per hour.xxiv, 68
per second into miles per hourxxiv, 66
Mite, different values for.
Miles, conversion into kilometers. 45
per hour into feet per second.xxiv, 65
kilometers per hour .xxiv, 64
meters per second. .xiviv, 67
Millimeters, conversion into inches..xvii, 23-35
(barometric), into millibars.xviii, 38-39
Minutes of time, into arc. 58
into decimals of a day.xxi, 56
into decimals of an bour
$\mathrm{xxi}, 57$

Moon, zenithal full, relative illumination intensity of
PAGE quarter, relative illumination intensity of

218

Nautical mile, equivalent in statute xx, 48
Newcomb, Simon, work cited. xxii, 236
Notation, Beaufort's, weather
Ounces, conversion into kilograms. \qquad xxiii, 60
kilograms into xxiii, 61

Palm, Netherlands, value 48
Parallel, length of a degree on... x.iviv, 202
Paschen, F., treatise cited... .:. ${ }^{231}$
Pounds, conversion into kilogramsxxiii, 60 imperial standard . xxiii
Pressure of saturated aqueous vapor, over ice,

English lii-lv, 160
Metric lii-lv, 165
over water,
English . lii-lv, 161-164
Metric... $\mathrm{lii}-\mid \mathrm{lv}$, 166-168
decrease with altitude at mountain stations
1xi-1xii, 194
Pressure, standard units of,
conversion of barometric readings into,
xvii-xviii, 36-39
(See also Barometer)
.xxiii
Prototype kilogram.
Psychrometric formula Ivii-Lxi
Psychrometric observations,
reduction of
English
lix-lx, 172-182
Metric 1x-Ixi, 186-191
Quantity of rainfall corresponding to different depths
lxiii, 195
Radiation, solar, relative intensity of. for 24 hours at top of atmosphere......... . . xvii, 217
during year at surface of the earth.... Ixviii, 218
transmission percentages of, through moist air,
1xxi, 231
Rainfall, conversion of depth of, into gallons and tons Ixiii, 195
Reaumur, conversion to Approximate Absolute, Cen-
tigrade and Fahrenheit
.xii, 2-4
Reduction, of barometer to
standard gravity....xxxiv-xxxviii, $120^{-1} 33$ standard temperature
xiv-xxxviii, 129-133
$. . x x x-x x x i v, 86-128$
of psychrometric observations,
English
Ivii-lx, $172-182$
Metric. lvii-|xi, 186-ı 91
of snowfall measurements. $1 \times 1 i$, 194-195
Regnault, treatise cited.xxxii, li, lii, Ivii
Relative humidity,
English. .1x, 183-185
Metric.......................................192-193
Relative intensity of solar radiation. .lxvii-lxviii, 2 r 7-218
Rode, Danish, value of.
.48
Rotch, A. L., work cited
$x x v$
Rowland, work cited. xxv
Rubens and Aschinass, treatise cited.......................... 23 I
Ruthe, Prussian, value of. 231
.48
Norwegian, value of................................ . . 48
Sagene, Russian, value of .. 48
Scales, comparison of Approximate Absolute, Centi-
grade, Fahrenheit, and Reaumur... xii-xiii, 2-4 Sea-level,
reduction of temperature to, English.
$\mathrm{xxx}, 82$
Metric. .xxxx, 83
Seconds, conversion of decimals of a day into......xxi, 56 into arc. .xx, 51
into decimals of a day.....xxi, 56
into decimals of an hour xxi, 57
reduction for, sidereal or solar time........ . xxii, 58
Sidereal time, conversion to mean solar........... . xxii, 58
Simpson, Dr. G. C., work cited. xxv
Sky, relative illumination intensity, at sunset

218
at end of civil twilight...................................... 218
Snowfall, weight corresponding to depth of water
1xii, 194-I95

Solar radiation, intensity of,
for 24 hours at top of atmosphere........ Ixvii, 217 during year at surface of the earth..... Inviii, 218 Solar time, mean, conversion into sidereal... xxii-xxiii, 58 Specific gravity, of airxli of aqueous vapor .lv-lvi
Spectrum, water vapor lines in visible...... Ixxi, 229-230 absorption in infra-red.. $x x \mathrm{xi}, 230$
Spheroid, Clarke'sxx
Starlight, relative illumination intensity of 218
State of weather, Beaufort notation for... 1 xxii, 236
Stations, list of metcorological.............. .lxxii, 237-257
Statute miles, conversion of, into nauticalxx, 48
Stefan, work cited. vii
Sun, declination of .. . 1 xvi, 214
relative illumination intensity of zenithal. 218
Sunrise, time of, defined... x lvi
Sunset, time of, defined . lxvi
Sunshine, duration of 203 -214
Symbols, International Meteorological. Ixxi, 232-233

Temperature,

correction for, of thermometer stem........ .xv, 14 reduction to sea level. xxx, 82, 83 term in determination of heights by barometer
xlii-xliii, xlv-xlvi, 138-139, 147-148
term in determination of density of air
|xix-lxx, 220, 224-225
Thermodynamic thermometric scale, defined.
i-li, 158
Thermometer, hypsometric.
$1-l i, 158$
correction for temperature of mercury in stem $x v-x v i, 14$
Thermometric scales, defined . xii
interconversion of . xii, ${ }^{2-4}$
Thiesen, M., work cited.
. liii, liv
Time,
arc into. .. xx, 50
into arc .xx, 51
mean, at apparent noon.. xxii, 57
mean solar into sidereal. xxii, 58
sidereal into mean solar xxii, 58
Toisè, value of
.48
Transmission percentages of radiation through moist
air $x x x i, 231$
Twilight, duration of astronomical. lxvii, 215
duration of civil . ${ }^{\text {xviii, } 216}$

Vapor, aqueous,

pressure of,
English .ii-IV, 1v, 160-164
Metric 68
pressure by psychrometric observations,
English. lix, 172-182
Metric
Ix, 186-191
pressure decrease with altitude
for mountain stations....... $x i, 194$
specific gravity .lv-lvi
weight of. v-lvii, 169-170
Vara, values of,
Mexican. 48
Spanish. 48
ersta or Werst, value of.
Visible spectrum, water vapor lines in...... Ixxi, 229-230
Waals, J. D. van der, work cited.
. liii
Water, vapor of (see Aqueous)
Weather, state of, Beaufort symbols for Ixxii, 236
Weight, of saturated aqueous vapor,
Cubic foot . Iv-Iviii, 169
Cubic meter Iv-Ivii, 170
in grams, of a cubic centimeter of air.
English... Ixix-lxx, 220-223
Metric.
xix-lx, 220-223
Werst or versta, value of.
lxix-lxx, 224-228
$\cdots48$
Wind tables
Wind, mean direction by Lambert's formula
xxv-xxvii, 71-76
true direction and velocity at sca, determina-
tion of.
xxy
gradient, velocity of xxvii-xxix, 77-79
radius of critical curvature . .xxvii-xxix, 77-79
scale, Beaufort's. xxiv-xxyv, 70
synoptic conversion of velocities.
......xxiv, 64
Year, days into decimals of, and angle......... $\times x, 52-55$
tropical, length of.
xxii

[^0]: ${ }^{1}$ The value of the bar as here defined is a pressure of $1,000,000$ dynes per square

[^1]: national meteorological and aerological conferences. It is $1,000,000$ times greater than that given in the Smithsonian Physical Tables, 6th ed., 1914, p. 346. The smaller value is generally employed by physicists and chemists. See Marvin, Charles F. Nomenclature of the Unit of Absolute Pressure. Monthly Weather Review, 1918, 46:73-75.
 ${ }^{1}$ Chappuis, Recueil de Constantes Physiques, Soc. Fr. Phys., 1913, p. 139. Leduc, Trav. et Mém., Bur. Int. Poids et Mes., xvi, p. 36, 1917.
 ${ }^{2}$ Comptes Rendus des Séances, Troisième Conférence Générale, p. 68. Trav. et Mém., Bur. Int. Poids et Mes., xir, 1902.

[^2]: ${ }^{1}$ Derived from the equation of time for Washington apparent noon for the year 1899. See the American Ephemeris and Nautical Almanac, 1899, pages 377-84.
 ${ }^{2}$ The length of the tropical year is not absolutely constant. The value here given is for tle year 1900. Its decrease in $10 n$ years is about 0.5s. (See the American Ephemeris and Nautical Almanac 1918, page xvi.)

[^3]: ${ }^{1}$ From Hand-Book of Meteorological Tables. By H. A. Hazen. Washington, 1888.

[^4]: ${ }^{1}$ From Hand-book of Meteorological Tables. By H. A. Hazen. Washington, 1888. A corrected copy of the table was kindly furnished by the author.

[^5]: ${ }^{1}$ Investigations of gravity and isostasy, by William Bowie. U.S. Coast and Geodetic Survey, Special Publication No. $+0,1917$, p. 13 + .
 2 Op. cit. p. 50.
 ${ }^{6}$ Bowie, op. cit. p. I34.
 ${ }^{3}$ Op. cit. p. 59.
 ${ }^{4}$ Op. cit. p. $50 . \quad{ }^{7}$ Bowie, op. cit. p. 93.

[^6]: ${ }^{1}$ In most cases the gravity anomaly may be obtained from Bowie's paper, op. cit., figure II.
 ${ }^{2}$ In some cases this correction may be obtained from Bowie's paper, op. cit., pp. 50-52, but in many cases, and especially in mountainous districts, it must be separately computed for each station.

[^7]: ${ }^{1}$ In accordance with the relation between the meter and the foot given on p . xix, this constant should be 60367. (See Table J4.)

[^8]: ${ }^{1}$ Due to the use of a slightly different value for the coefficient of expansion, Prof. Ferrel's formula, upon which the table is computed, is

 $$
 d Z=-\frac{2628.4}{B}\left(\mathrm{I}+0.002034\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
 $$

[^9]: ${ }^{1}$ Scheel, Karl und Heuse, Wilhelm. Bestimmung des Sättigungsdrucks von Wasserdampf unter 0°. Annalen der Physik, 1909, 29: 723-737.

 Bestimmung des Sättigungsdrucks von Wasserdampf zwischen 0° und $+50^{\circ}$. Annalen der Physik, 1910, 3I: 715-736.

 Holborn, L. und Henning, F. Über das Platinthermometer und den Sättigungsdruck des W'asserdampfes zwischen 50 und 200°. Annalen der Physik, 1908, 26:833-883.

 Holborn, L. und Baumann, A. Uber den Sättigungsdruck des Wasserdampfes oberhall) 200 . Annalen der Physik, 1910, 31: 945-970.

[^10]: ${ }^{1}$ Annaten der Physik, 1907, 22: 609-630.
 ${ }^{2}$ Cederberg, Ivar W. Über eine exakte Dampidruckberechnungsmethode. Physik. Zeitschr. xv: 697, 1914; Über die Temperaturabhängigkeit einiger physikalischen Eigenschaften des Wassers in seinen vershiedenen Aggregatzuständen. Physik. Zeitschr. xv: 824, 1914.

[^11]: ${ }^{1}$ Thiesen M. Die Dampfspannung über Eis. (Mitteilung aus der Physikalisch-Technischen Reichsanstalt.) Annalen der Physik, 1909; 29: 1057.

[^12]: ${ }^{1}$ Marks, Lionel S., and Davis, Harvey N. Tables and diagrams of the thermal properties of saturated and superheated steam. New York, 1909.

[^13]: 1 Gravity is here considered in terms of force (expressed in dynes) that is exerted on a mass of one gram rather than its numerical equivalent, acceleration (expressed in centimeters and seconds), for which there is no convenient expression.
 ${ }^{2}$ See Bowie, William, Investigations of Gravity and Isostasy. U.S. Coast and Geodetic Survey, Special Publication No. 40, 1917, page 134.

[^14]: ${ }^{1}$ Comparisons of Standards of Length, made at the Ordnance Survey Office, Southampton, England, by Capt. A. R. Clarke, R. E., 1866.

[^15]: ${ }^{1}$ Kimball, Herbert H. "Duration and Intensity of Twilight," Monthly Weather Review, 1916, 44: 614-620.

[^16]: ${ }^{1}$ Ball, Frederick. Altilude Tables for let. 31° to 60°. London, 1907 ; [same] for lat. 0° to 30°, London, 1910.

[^17]: - Subtract 0.14 from a sidereal time interval.

[^18]: 8mithbonian Tables.

[^19]: * Values for temperatures less than $32^{\circ} \mathrm{F}$. refer to vapor over ice

[^20]: * These plares require multiplication by the following factors to allow for losses in CO_{2} gas. Under average sea-level outdoor conditions the CO_{2} (partial pressure $=0.0003$ atmos.) amounts to about 0.6 grams per cu.m. Paschen gives 3 times as much for indoor conditions.
 2μ to 3μ, for 2 grams in m^{2} path (95); for 140 grams in m^{2} path (93);
 $\begin{array}{rrr}4 \\ 13 & \text { ". } 5 \text {, } 4 \text {, slight allowance to be made; } \\ \text { 1 }\end{array}$

 ${ }^{15}$ These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

