CLASSIFICATION OF THE HARES AND THEIR ALLIES

By Marcus Ward Lyon, Jr.
CONTENTS
I. Introduction 322
II. List of names that have been applied to the existing Hares, Rab- bits, and Pikas 325
III. List of the existing species of the Duplicidentata, arranged by genera and subgenera 334
IV. General consideration of the skeleton and teeth of the Dupli- cidentata 337
V. Table showing principal osteological differences between the fam- ilies Ochotonidæ and Leporidæ. 384
VI. Keys to Families, genera, and subgenera of Duplicidentata
Based primarily on dental characters 386
Based primarily on cranial characters $3^{8} 7$
Based primarily on skeletal characters other than those of the skull 389
VII. Detailed account of the genera and subgenera of the existing Hares, Rabbits, and Pikas 3^{89}
Family Leporidæ
Genus Lepus. 389
Subgenus Lepus 394
Subgenus Pacilolagus 395
Subgenus Macrotolagus. 395
Genus Sylvilagus. 396
Subgenus Sylvilagus. 401
Subgenus Microlagus. 402
Genus Oryctolagus 402
Genus Limnolagus. 406
Genus Brachylagus 411
Genus Pronolagus 416
Genus Romerolagus 420
Genus Nesolagus 425
Genus Caprolagus 426
Genus Pentalagus 428
Family Ochotonidæ. 431
Genus Ochotona 43^{1}
Subgenus Ochotona 438
Subgenus Conothoa. 43^{8}
Subgenus Pika 438
VIII. Geographical distribution 439
IX. Bibliography 440
X. Explanation of plates 443

I. INTRODUCTION

The object of this paper is to give an account of the principal osteological features of the hares, rabbits, and pikas or duplicidentate rodents, the Duplicidentata, and to determine their family, generic, and subgeneric relationships.

The subject is treated in two ways. First, there is a discussion of each part of the skeleton and of the variations that are found in that part throughout the various groups of the existing Duplicidentata. Second, each of these groups is separately considered, and the characters of its skeleton described. The treatment of the osteology in these two ways is followed by three keys to the genera and subgenera, one based on cranial characters, one on dental characters, and one on skeletal characters aside from those of the skull.

Before taking up the osteological discussion, however, I give the histories of the various generic and subgeneric names that have been applied to the existing hares, rabbits, and pikas.

As the geographical distribution of the various groups shows some interesting correlations with zoogeographic areas, a few remarks are made on that subject.
I have had at my disposal the following skeletons:

[^0]

Besides these, I have had access to a large number of skulls, mostly of American species. These are indicated at the end of the description of each genus or subgenus.

The material examined has been altogether too limited for anything like complete work on this interesting group of rodents and much more must be compared before a satisfactory determination of various relationships can be made. Yet, in the course of study so many interesting points have been disclosed, some already published and some apparently never before recorded, that it seems advisable to set forth our present knowledge in as complete a manner as can now be done.

As an aid to a clearer understanding of the text, the following outline of the classification therein adopted is here given:

The existing Duplicidentata are considered as composed of two distinct families, the Leporidæ, hares and rabbits, and the Ochotonidæ, pikas.

The Leporidæe are regarded as containing the following ten distinct genera, most of which have heretofore been recognized as subgenera. Two are here described as new.

[^1]I. Lepus, with the largest number of species and the most extensive geographical distribution. It contains three well-marked subgenera and a number of species which from lack of available material cannot now be satisfactorily classified.
(a) Subgenus Lepus, represented by the well-known species, timidus, arcticus, curopaus, campcstris, and their allies.
(b) Subgenus Macrotolagus; containing the jackass hares of Mexico and southwestern United States.
(c) Subgenus Pexcilolagus (new), containing Lepus amcricanus and the related species.
2. Sylzilagus, with two subgenera.
(a) Sylvilagus proper, containing the wood rabbits or cottontails of North and South America.
(b) Microlagus, containing a few small forms from western and southwestern United States.
3. Oryctolagus, represented by the rabbit of the Old World, O. cuniculus.
4. Limnolagus, containing the swamp rabbits and water hares of southern United States.
5. Brachylagus, a small short-tailed rabbit of western United States, B. idahoensis.
6. Pronolagus (new), containing the cape hare of South Africa.
7. Romerolagus, the peculiar little rabbit of Mount Popocatepetl, Mexico.
8. Nesolagus, from Sumatra.
9. Caprolagus, from the southern foothills of the Himalayas.

Io. Pcutalagus (new), from the Liu Kiu islands sonth of Japan.
The family Ochotonidæ contains but one existing genus, Ochotona, with a number of species inhabiting the northern parts or high monntain ranges of the Northern Hemisphere. It contains three well-marked subgenera.
(a) Ochotona, containing ladacensis, and allied forms from central Asia.
(b) Pika, containing alpina and the North American species.
(c) Conothoa (new), represented by roylii and related species. In the preparation of this paper I have received from Mr. Gerrit S. Miller, Jr., many valuable suggestions and generous criticisms. which are here gratefully acknowledged. My thanks are due also to Dr. C. Hart Merriam for the use of all the skeletons and many separate skulls of the Duplicidentata in the collection of the Biological Survey of the United States Department of Agriculture; to Dr. Milton J. Greemman for the use of two specimens of Pcntalagus
furnessi in the Wistar Institute of Anatomy, Philadelphia, and to Dr. J. A. Allen for the use of a skeleton of Lepus gichiganus and skull of Ochotona kolymensis in the American Museum of Natural History, New York. I have also to thank Mr. Oldfield Thomas, who presented to the U. S. National Museum a skeleton of Oryctolagus cuniculus and two young skeletons of Sylailagus minensis; Dr. E. A. Mearns, who collected for the National Museum a series of skeletons of Sylitagus Horidamus and the only available skeleton of Limnolagus; and Messrs. Witmer Stone and James A. G. Rehn for furnishing references and copies of Blyth's figures of Caprolagus.
II. LIST OF NAMIES APPLIED GENERICALLY OR SUBGENERICALLY TO THE EXISTING HARES, RABBITS, AND PIKAS

Abstract

ABRA Proposed by Gray (Cat. Mammals, Birds, etc., presented by B. H. Hodgson to Brit. Mus., 2d ed., p. 11,1863) as a subgenus of Lagomys.

Type Lagomys (Abra) curzonic Hongson from the Himalayas of Sikkim, India.

Preoccupied by Abra Leach, 18 t 8 , a genus of Mollusca, fide Palmer, North American Fauna, No. 23, pp. 71, 860, Janluary 23, 1904.

BRACHYLAGUS

Proposed by Miller (Proc. Biol. Soc. Washington, Xiri, D. 157, June 13 , 1900) as a subgenus of Lepus for L. idahocnsis Merrian, the only species and the type. In the present paper it is considered a distinct genus.

CAPROLAGUS

Proposed by Blyth (Journ. Asiatic Soc. Bengal, xiv, 18_{45}, p. 247) as a genus to include Lepus hispidus Pearson.

Blyth (Cat. Mam. Mus. Asiat. Soc. Calcutta, 1863, p. 133) subsequently replaced Caprolagus hispidus in the genus Lepus.
Gray (Amn. Mag. Nat. Hist., सx, 3d ser., 1867, p. 225) under the misprinted ame Carpolagus regarded it as a distinct genus for Lepus hispidus Pearson.
Trouessart (Catalogus Mammalium, vol. i, fasc. iii, p. 66 6,1897) places two species under Caprolagus as a subgenus of Lepus, hispidus Pearson, and netscheri Schlegel, the latter being regarded in this paper as the type of the genus Nesolagus Major.

Major (Trans. Limn. Soc. London, 2d ser., vin, Zool., p. 514, November, 1899) regards Caprolagus as a distinct genus containing the three species sizalcusis Major, valdarncusis Weith, and hispidus Pearson, the first two extinct. He also uses the name in a larger sense for a group, including (i) Caprolagus, (2) Nesolagus, (3) Oryctolagus, (4) Sylitilagus (the last containing (a) Limnolagus, (b) Romerolagus, (c) Tapeti, and (d) Sylvilagus), contrasted with a Lepus group containing the one genus Lepus (this the same as the genus Lecpus of the present paper).

Stone (Proc. Acad. Nat. Sci. Philadelphia, 1900, p. 462) regards Caprolagus as a distinct genus containing the following species: hispidus Pearson. netscheri Schlegel, furnessi Stone. The last two are considered in the present paper as the types of the genera Nesolagus and Pentalagus respectively.

CARPOLAGUS

Used by Gray (Ann. Mag. Nat. Hist., xx, 3d ser., I867, p. 22ј), typographical error, for Caprolagus Blyth.

CHIONOBATES

Used by Kaup (Entw. Gesch. und Natür. Syst. Europ. Thierwelt, I, p. 170, 1829) as a genus for two species, zariabilis and borealis. It is antedated by Lepus Linneus.

CUNICULUS

First used as a name for rabbits by Meyer (Mag. f. Thiergesch., i, pt. i, 52-53, 1790) applied to Oryctolagus cuniculus (renamed by Meyer campcstris) and domesticus, angorensis, argentcus, russicus, and dauricus Europe, and to brasiliensis Brazil.

The name is synonymous with Lepus Linneus, containing the same three genera, cuniculus representative of Oryctolagus, dauricus $=$ tolai (Erxleben) a member of the genus Lepus, and brasilicnsis a member of the genus Sylvilagus.

Cuniculus was next used by Gloger (Hand- u. Hilfsbuch Naturgesch., i, p. 104, 1841) for Oryctolagus cuniculus renamed Cuniculus dasypus.

It was proposed again by Gray (Amn. Mag. Nat. Hist., xx, 3d ser., 1867 , p. 224) as a genus for "Lepus Section C" Baird (Mammals of North America, 1857, p. 575). The only species included by Gray in the genus is fodiens Klein which he considered the correct name for Lcpus cuniculus Linneus, which is accordingly the type.

The name is preoccupied (Cuniculus Brisson, Regn. Animal, i762, p. I3, and Cuniculus Wagler, Nat. Syst. d'Amphibian, 1830, p. 21) and was replaced by Oryctolagus Lilljeborg (Sveriges och Norges Ryggradsdjur, I, 1874, p. 4I7).

EULAGOS

Used by Gray (Ann. Mag. Nat. Hist., xx, 3d ser., I867, p. 222) as a genus for Lepus mediterraneus Wagner, and Eulagus judace "the Holy Land Buneas, Tristram." The word has apparently not been used by subsequent writers, who have placed these species under the subgenus Lcpus of the genus Lepus. I have seen no material of either.

HYDROLAGUS

Used by Gray (Ann. Mag. Nat. Hist., xx, 3d ser., I867, p. 221) as a generic term for "Lepus, Section F" of Baird (Mammals of North America, p. 575). Gray places in it two species: aquaticus Bachman, and palustris Bachman. The former, the first named species and the one from which the word Hydrolagus was evidently derived, may be considered the type.

Trouessart (Catalogus Mammalium, i, fasc. iii, pp. 657, 658, 1897) uses the name as a subgenus of Lepus for the following species: aquaticus Bachman, aquaticus attevatori Allen, palustris Bachman, paludicola Miller and

Bangs, and truci Allen. In the present paper the last named species is referred to the genus Sylvilagus.

As shown by Mearns (Science, n. s., v, March 5, 1897, p. 393) Hydrolagus Gray, 1867, is antedated by Hydrolagus Gill, 1862, for a genus of fishes. (See Limnolagus.)

LAGOMYS

Proposed by Cuvier (Leçons d'Anat. Comp., Table, 1800 , characterized in Table élémentaire de l'histoire naturelle des animaux, p. 132, 1798) as a genus to include the animal previously known as Lcpus alpinus, the only named species and the type.

From 1800 up to 1896 Lagomys was in general use among systematists as the generic term of the pikas. At the latter date Thomas (Proc. Zool. Soc. Lond., 1896, p. 1026) adopted the older name Ochotona Link (Beyträge Naturgeschichte, I, pt. II, p. 74, 1795).

Under Lagomys, Gray (Ann. Mag. Nat. Hist., xx, 3d ser., p. 220, 1867) included the following species: Asia: alpinus Cuvier, pusillus Desnarest, rufescens Gray, hodgsoni Blyth, nepalensis Hodgson, roylii Ogilby, hyperboreus Wagner; America: princips Richardson, minimus Lord.

Lagomys Cuvier is preoccupied by Lagomys Storr, 178o (Prodromus Methodi Mammalium, p. 39), a substitute for the name Arctomys (fide Miller, North American Fauna, No. 12, p. I3, July 23, 1897).

LAGOPSIS

Used by Rafinesque (Analyse de la Nature, 1815, addendum, p. 219) as an emendation of Lagopsys used on p. 58. Nomen nudum.

Used by Schlosser 1884, and Major 1899, for fossil forms.

LAGOPSYS

Used by Rafinesque (Analyse de la Nature, 1815, p. 58). Nomen nudum, 'Lagopsys R. Leputs sp.; name emended to Lagopsis, ibid., p. 219.

LAGOS

Used in a sales catalogue by Brookes. "Cat. Anat. \& Zool. Mus. of Joshua Brookes, London, p. 54, 1828."
Type: Lagos arcticus (=Lepus arcticus Ross), fide Palmer, North American Fauna, No. 23, pp. 361, 850, January 23, 190+.
This questionable name is a synonym of the restricted genus Lepus.

LEPUS

Used by Linnæus, 1758 (Syst. Nat., 1oth ed., I, p. 57, 1758), as a genus for four species, representing three modern genera, as follows:
Timidus, Chionobates Kaup 1829.
Brasiliensis, Tapeti Gray $=$ part of Sylvilagus Gray 1867.
Capensis, Chionobates Kaup, 1829.
Cuniculus, Cuniculus Gloger, 18+i (not of Brisson, 1862) =Oryctolagus Lilljeborg, 1874.
In accordance with the code of nomenclature of the American Ornithologists' Union, the species cuniculus would become the type, as it represents the last of the non-exotic groups to be removed.

On the other hand, by a slight extension of the rule recommended in Science, 11. s., xvi, pp. 114, 115, July 18, 1902, timidus may be fixed as the type of the genus Lepus, and no radical changes in the generic names of the Leporidx would result, as would occur by a strict application of the principle of elimination.
This rule is as follows:
"A generic name which is the same as that of an explicitly included species (or a cited post-Linnæan synonym of such species) takes that species as its type regardless of subsequent elimination."
Since Limneus could cite no post-Linnæan synonym, the rule can rationally be extended to include, in the case of Linnacus, the names used by earlier writers. Under timidus, Linnæus cites Lepus Gesner.
In the present paper, timidus is regarded as the type of the genus Lcpus, and the word Lepus is retained for the species to which it has been commonly applied.
Pallas (Glires, 1778, pp. i-70), Gmelin (Lin11æus, Syst. Nat., i, 1788, pp. 164-166), Schreber (Saügthiere, vii, pp. 906-918, 1792), wise Lepus as the generic name of the pikas as well as of the hares and rabbits.
The pikas were placed in separate genera, Ochotona Link, 1795 (Beyträge Naturgesch., i, pt. ii, p. 74, 1795) and later Lagomys G. Cuvier, 1798 (Leçons d'Anat. Comp. Table, i8oo; characterized in Tab. Elémentaire de l'Hist. Nat. des Animaux, p. 132, 1798).
From the time of Link and Cuvier until Gray in 1867 , the generic name Lepus was used for both hares and rabbits and as the equivalent of the family Leporidx. Gray, however, divided the genus into the following genera: Hydrolagus, Sylvilagus, Eulagos, Lepus, Tapcti, and Cuniculus. At the same time he revived Blyth's genus Caprolagus (under the misprint Carpolagus) which had been proposed in 1845 and subsequently withdrawn by Blyth.
Gray included in the genus Lepus the following species:
European.--timidus Linneus, hybridus Desmarest, aquilonius Blasius, z'ariabilis Pallas, canescens Nilsson.
African.-agyptius Geofrroy, hebessinicus Hemprich and Ehrenberg, isabellinus Rüppele, capensis Linneus, saxatilis F. Cuvier, crassicaudatus I. Geoffroy.

Asiatic.-arabicus Hemprich and Ehrenberg, syriacus Hemprich and Ehrenberg, sinaiticus Hemprich and Ehrenberg, nigricollis F. Cuvier, ruficaudatus I. Geoffroy, tolai Pallas, tibetanus Waterhouse, pallipes Hodgson, brachyurus Temmince, sinensis Gray, altaicus Brandt.
American--arcticus Leach, americanus Erxleben, washingtonii Barrd, campestris Bachman, callotis Wagner, californicus Gray, longicaudatus Gray, audubonii Baird, trozubridgii Baird.
Of these crassicaudatus is regarded in this paper as the type of the genus Pronolagus and audubonii and trozvbridgii as members of the genus Sylvilagus.

From 1867 to 1896 not much attention was paid to Gray's division of Lcpus, but in 1896 Mearns revived Sylvilagus and Hydrolagus as subgenera of Lepus.
In the same year, 1896, Merriam described Romerolagus as a new genus of the Leporidæ, regarding all the other members of the family as congeneric. From that time on the idea has rapidly spread that the family Leporidæ no longer could be regarded as composed of but a single genus. In i899 Major
revived Gray's names and Blyth's Caprolagus and gave one new name, Nesolagus.

Trouessart (Catalogus Mammalium, i, fasc. iii, 1897, pp. 649-664) gives two genera of the Leporidæ, Romerlagus and Lepus. Lepus contains the following subgenera: Lcpus, Hydrolagus, Sylzilagus, Microlagus, Macrotolagus, Tapeti, Oryctolagus, and Caprolagus. All of these except Lepus are discussed elsewhere.

Under Lepus as a subgenus Trouessart includes the following species: timidus Linneus, curopaus Pallas, mediterraneus Wagner, tolai Pallas, mandschuricus Radde, yarkandensis Günther, oiostolus Hodgson, pallipes Hodgson, dayanus Blanford, nigricollis, F. Cuyier, ruficaudatus Is. Geoffroy, peguensis Blyth, sinensis Gray, hypsibius Blanford, sucinhoei Thomas, hainanus Swinhoe, brachyurus Temmince, omanchsis Thomas, arabicus Hemprich and Ehrenperg, judea Gray, sinaiticus Hemprich and Ehrenberg, agyptius Audouin and Geoffroy, somalensis Heuglin, berberanus Heuglin, tigrensis Blanford, microtis Heuglin, capensis Linneus, zwytei Thomas, victoria Thomas, crassicaudatus Is. Geoffroy, saxatilis F. Cuvier, sala Jentink, arcticus Leach, gronlandicus Rhoads, tscluktschorum NordQuist, americanus Erxleben, campestris Bachman.

Of these, crassicaudatus is regarded as the type of a new genus Pronolagus in the present paper. Many of the others I have not examined, nor seen figures of them, but those of which specimens and figures are available undoubtedly belong to the genus Lepus as defined further on.

Major (Trans. Linn. Soc. London, 2d ser., vir, Zool., p. 54i, November, 1899) uses Lepus as a genus for evidently the same species that Trouessart includes in his subgenera Lepus and Macrotolagus.

Miller and Rehn (Proc. Boston Soc. Nat. Hist., xxx, pp. 177-180, December 27, 1901) have included under the subgenus Lepus, the following: anericanus Erxleben, americanus bairdii Hayden, americanus columbiensis Rhoads, americanus dalli Merriam, americanus macfarlani Merriam, americanus phaonotus Allen, americanus struthopus Bangs, americamus virginianus Harlan, arcticus Ross, arcticus bangsii Rhoads, bishopi Allen, campestris Bachman, gronlandicus Rhoads, klamathensis Merriam, labradorius Miller, othus Merriam, poadromits Merriam, zuashingtonii Baird.

In the present paper the genus Lepus corresponds in general with Tronessart's and Miller and Rehn's subgenera Lepus and Macrotolagus. I regard it as composed of a number of species whose relationships cannot be determined at the present time, and at least three distinct subgenera, (a) Lepus, including arcticus, arcticus bangsii, campestris, gronlandicus, labradorius, othus, and poadromus of Miller and Rehn's list, together with curopaus, timidus, and related forms of the Old World; (b) Pacilolagus, containing americanus and its subspecies, together with bishopi, klamathensis, and zuashingtonii; and (c) Macrotolagus, with the species included under that name by Trouessart and by Miller and Rehn.

LIMNOLAGUS

Proposed by Mearns (Science, n. s., v, March 5, 1897, p. 393) to replace Hydrolagus Gray (Amn. Mag. Nat. Hist., xx, 3d ser., 1867, p. 221) preoccupied in ichthyology by Hydrolagus Gill (Proc. Acad. Nat. Sci. Philadelphia, 1862, p. 331). Type designated as Lepus aquaticus Bachman.

Major (Trans. Linn. Soc. London, ad ser., vir, Zool., November, 1899, p. 514) uses it as a subgenus of Sylvilagus for "S. palustris, aquaticus, \&c."

Miller and Rehn (Proc. Boston Soc. Nat. Hist., xxx, pp. 183-184, December 27, 1901) have included under Limnolagus as a subgenus of Lepus the following species: aquaticus Bachman, aquaticus attzatcri Allen, palustris Bachman, palustris paludicola Miller and Bangs, telmalemonus Elliot, and truci Allen.

I consider Limnolagus as a genus embracing all the species just mentioned as found in Miller and Relin, except truci Allen which is a member of the genus Sylzilagus.

MACROTOLAGUS

Proposed by Mearns (Sci., N. s. i., p. 698, June 2I, 1895 ; Proc. U. S. N. M., xvili, p. 552, June 24, 1896) as a subgenus of Lepus for the jackass hares of southwestern United States and Mexico. Lepus alleni Mearns is designated as the type. The following species are included by him in this subgenus: callotis, gaillardi, alleni (type), merriami, melanotis, griseus, texianus, cremicus, deserticola, and californicus.

Trouessart (Catalogus Mammalium, i, fasc. iii, 1897, pp. 660-662) includes under Macrotolagus as a subgenus of Lepus, the following species: allcni Mearns, callotis Wagler, gaillardi Mearns, merriami Mearns, melanotis Mearns, texianus Waterhouse (including the subspecies cremicus Allen, griscus Mearns, and deserticola Mearns) californicus Gray, martirensis Stowell, insularis Bryant.

The term is used by Major (Trans. Linn. Soc. London, 2 d ser., vir, Zool., pp. 468,469 , November, i899) as a subgenus of Lepus, for apparently the same group of hares that Mearns applied it to.

Miller and Rehn (Proc. Boston Soc. Nat. Hist., xxx, pp. 180-183, December 27, 1901) place in the subgenus Macrotolagus the following species: alleni Mearns, alleni palitans Bangs, asellus Miller, californicus Gray, californicus xanti Thomas, callotis Wagler, gaillardi Mearns, insularis Bryant, martirensis Stowell, melanotis Mearns, merriami Mearns, texianus Waterhouse, texianus deserticola Mearns, texiamus cremicus Allen, texianus griseus Merriam.

It is used in the present paper in the same sense as by Miller and Rehn.
It is interesting to note that the hares of this subgenus were recognized by Baird (Mammals of North America, p. 574, 1857) as forming a distinct group and constituting his "Lepus Section B."

MAMLEPUS

Used by A. L. Herrera (Sinonimia vulgar y cientifica de los principales vertebrados mexicanos, p. 11, 1899) as a name in a new system of nomenclature for the broad genus Lepus of Linnæan nomenclature.

MICROLAGUS

Proposed by Trouessart (Catalogus Mammalium, i, fasc. iii, p. 660, 1897) as a subgenus of Lepus for Lepus cinerascens Allen, on characters defined by Mearns (Proc. U. S. Nat. Mus, xviir, pp. 552, 553, June 24, 1896). Cinerascens Allen, the only species named by Trouessart, is the type.

It is used by Miller and Rehn (Proc. Bost. Soc. Nat. Hist., xxx, pp. 188, 189) as a subgenus of Lcpus for the following species: bachmani Water-
house, bachmani wbericolor Miller, cerroscusis Allen, cinerascens Allen, peninsularis Allen.

In the present paper it is regarded as a subgenus of Syliti?agus, and includes the species just mentioned as recorded by Niller and Rehn.

Baird (Mammals of North America, p. 575, 1857) recognized that the members of this subgenus formed a distinct group included under his section E.

MICROTOLAGUS

A curious misprint for Macrotolagus Mearns found in Elliot (Synopsis of Nammals of North America and adjacent Seas, Field Colımbian Mus., Zool. Ser. II, pp. 269, 288, 1901), repeated by Allen (Bull. Amer. Mus. Nat. Hist., p. 607, 1903).

MNUOLAGUS

Billberg (Syn. Faunæ Scandinaviæ, I, Mamm., Conspectus A. (before p. 1), 1828). Nomen nudum, occurring only in a table between Lagomys and Lepus, fide Palmer, North American Fauna, No. 23, January 23, 1904, pp. 850,95 r.

NESOLAGUS

Proposed by Major (Trans. Linn. Soc. London, 2 d ser., vir, Zool., p. 5^{14}, November, 1899) as a genus under the Caprolagus group (or a subgenus of the genus Caprolagus; Major does not definitely state) for Lcpus netscheri Schlegel (Notes Leyden Museum, if, 1880, pp. 59-65).

Netscheri is the only mentioned species and the type.
Nesolagus is here regarded as a well-marked genus.

OCHOTONA

First used by Link, 1795 (Beyträge Naturgeschichte, I, pt. ii, p. 74, 1795) as the generic name of the pikas. The following species are given: pusilla, alpina, and minor (Lepus Ochotona) Linnæus, of which ochotona is the type, dauricus is an earlier name, however, for the same species. (See Palmer, N. A. Fauna, No. 23, p. 468, January 23, 1904.)

It is the proper generic name of the pikas, for nearly a century called Lagomys Cuvier (Leçons d'Anat. Comp. Table, iSoo) owing to ignorance of Link's rare work. Thomas (Proc. Zool. Soc. Lond., 1896, p. 1026) seems to lave been the first to have brought forward Link's name.

It is used in the present paper as a genus for the pikas and also as a subgeneric name for Ochotona ladacensis and related species.

OGOTOMA

First used by Gray in 1867 (Amn. Mag. Nat. Hist., xx, 3d ser., p. 220, 1867) as the generic name for Lagomys ogotoma of Cuvier and of Waterhouse, the Lepus ogotoma Pallas. Gray changes the specific name to pallasii. As this is the only species placed in the genus by Gray, it is the type.

The term is antedated by Ochotona Link (Beyträge Naturgesch., i, pt. ii, p. 74, 1795), which has the same species for the type.

ORYCTOLAGUS

Proposed by Lilljeborg (Sveriges och Norges Ryggradsdjur, 1, p. 417, 1874) as a subgeneric name for Lepus cumiculus Livneus which is designated as the type. It was used to replace Cuniculus Gray (Ann. Mag. Nat. Hist., 3d ser., xx, p. 225) which is preoccupied by Cuniculus Wagler (Nat. Syst. d'Amphibian, p. 21, 1830), and Brisson (Regn. Animal, 1762).

Trouessart (Catalogus Mammalium, i, fasc. iii, p. 663, i897) uses it as a subgenus for L.cpus cuniculus Linneus, the only existing species.

Major (Trans. Limn. Soc. London, ad ser., vii, Zool., November, i899, p. ${ }^{514}$) regards it as a genus containing two species "O. cuniculus (Linv.); O. crassicaudatus (Geoffr.)." In the present paper the latter is regarded as the type of the genus Pronolagus.

Recently Thomas (Amn. Mag. Nat. Hist., ser. 7, xi, January, 1903, pp. 78, 79) following Major has used Oryctolagus in a generic sense.

In the present paper it is regarded as a genus for the rabbits, heretofore commonly known as Lepus cuniculus.

PICA

Proposed by Fischer (Das National Museum Naturgesch. zu Paris, ir, i26, 1803) as a correction of Pika Lacépède, fide Palmer (North American Fauna, No. 23, January 23, 1904, p. 537).

PIKA

Used by Lacépède in 1799 (Tablean des Divisions de Mammifères, 1799, p. 9) for the Alpine pika, called Pika alpinus, the only mentioned species, and accordingly the type.

It is used in the present account as a subgeneric term to include Ochotona (Pika) alpina and its related species, embracing all the North American forms.

ROMEROLAGUS

Proposed by Merriam (Proc. Biol. Soc. Washington, x, December 29, 18g6, p. 173) as a genus for a remarkable rabbit found on the west slope of Mount Popocatepetl, Mexico. The type and only species in the genus is Romcrolagus nelsoni Merriam.

Herrera (Mem. Revista de la Soc. Cient. Antonio Alzate, xiv, 1899-1900, p. 380 ; La Naturaleza, $2 d$ ser., tomo in, i898, p. So) considers Romerolagus nelsoni to be a member of the genus Lagomys, a view which is entirely untenable (Nelson, Soc. Científica Antonio Alzate Mex., Revista Científica y Bibliográfica, num. 3, igoi, p. 33, figs. I-6).

Major (Trans. Linn. Soc. London, 2d ser. vir, Zool., November, I899, p. 514) regards Romerolagus as one of four subgenera of Sylvilagus, the other three being Tapcti, Limnolagus and true Sylvilagus.

Stone (Proc. Acad. Nat. Sci. Philadelphia, 1900, p. $\ddagger 62$) regards it as one of three genera forming the Leporidæ, the other two being Caprolagus and Lepus.

Romerolagus is here recognized as a well-marked genus of the family Leporidæ.

SYLVILAGUS

This was first proposed by Gray (Ann. Mag. Nat. Hist., 3d ser., xx, 1867, p. 221) as a generic term for "Lcpus Section D" of Baird (Mammals of North America, 1857, p. 578). The species first mentioned by Gray is Sylzilagus nanus (Schreber), a synonym of Sylvilagus sylzaticus (Bachanan), whose specific name was undoubtedly the origin of the word Sylvilagus. It is evident that Gray had Baird's account in mind and merely copied the synonymy of Sylvilagus sylvaticus as given by Baird, and in this way he happened to use Schreber's name nanus. As the animal formerly known as Sylzi"agus
sylaticus has had to be renamed Sylailugus floridanus mallurus (Thomas, Ann. Mag. Nat. Hist., 7th ser., ir, October, 1898, p. 320 ; Allen, Bull. Amer. Mus. Nat. Hist., Xir, March 4, r899, p. r3), the latter becomes the type of the genus Sylvilagus.
Two other species were placed in this genus by Gray, artemesia Bachman, and bachmani Waterhouse.

The name has generally been used by subsequent writers as the subgeneric term for the cottontail rabbits (Sylzilagus floridanus and its allies) of North America.

Major (Trans. Linn. Soc. London, 2d ser., vir, Zool., November, 1899, p. 514) uses it in a generic sense for Limnolagus Mearns, Romerolagus Merrriam (both regarded as separate genera in the present account), Tapcti Gray (which I regard as a part of Syivilagus), and Sylvilagus Gray, which according to Major embraces "S. sylvaticus, etc."

Trouessart (Catalogus Mammalium, i, fasc. ii, pp. 658-660, I897) uses it in a subgeneric sense for the following species: sylvaticus Bachman (with the subspecies: transitionalis Bangs, bachmani Waterhouse, alacer Bangs, mearnsi Allen, Aoridanus Allen, pinetis Allen, arizona Allen, holzcrni Mearns, nuttali Bachman, auduboni Bardd, aztccus Allen), grangeri Allen, trozebridgci Baird, artomisia Bachman, arizong Allen (with the subspecies major Mearns and minor Mearns), veracrucis Thomas, insolitus Allen, orizaba Merriam, graysoni Allen, idahochsis Merriam.

Of these the last I regard as the only member of the genus Brachylagus proposed by Miller as a subgenus, and trowbridgii Baird as a member of the subgenus Microlagus of the genus Sylailagus.

Miller and Rehn (Proc. Boston Soc. Nat. Hist., xxx, December 27, 190i, 184-188) have included under Sylzilagus, as a subgenus of Lepus, the following species: arizona Allen, arizona confinis Allen, arizona major Mearns, arizona minor Mearns, baileyi Merriam, foridanus Allen, foridanus alacer Bangs, floridanus audubonii Bard, foridanus aztecus Allen, foridanus canichunts Miller, foridanus chapmani Allen, foridanus holzncri Mearns, foridanus mallurus Thomas, foridanus mearnsi Allen, foridanus pinctis Allen, Aoridamus rigidus Mearns, floridanus sanctidiegi Miller, floridanus subcinctus Miller, floridanus transitionalis Bangs, floridanus yucatanicus Miller, grangcri Allen, graysoni Allen, insolitus Allen, muttallii Bachman, oriziba Merriam, zercecrucis Thomas.

Recently Thomas (Ann. Mag. Nat. Hist., ser. 7, viir, December, 190r, pp. 534, 539) following Major has raised Sylvilagus to generic rank.

I consider Sylvilagus a distinct genus, embracing all the forms given by Miller and Rehn under their subgenera Sylailagus, Microlagus, and Tapcti (also including Lepus truci Allen, which is found in their list under the subgenus Limnolagus) and all the South American Leporidæ. It is also used in the present paper as a subgeneric term for all the species of Sylailagus just mentioned, except the group embracing Microlagus here regarded as another subgenus of Sylzilagus.

TAPETI

Proposed by Gray (Ann. Mag. Nat. Hist., 3d ser., xx, 1867, p. 224) as a generic term for Lepus brasilicnsis Linneus, which, as the only named species, is the type.

Trouessart (Catalogus Mammalium, i, fasc. iii, 1897, pp. 662-663) places the following species under it used as a subgenus, gabbi Allen, defilippii Cornella, nigronuchalis Hartert, brasilicnsis Linneus.

Miller and Rehn (Proc. Boston Soc. Nat. Hist., xxx, p. 190, December 27, t9oi) have included under it (as a subgenus of Lepus) brasiliensis Linneus and gabbi Allen.

Major (Trans. Linn. Soc. London, 2 d ser., vir, Zool., November, 1899, p. 514) regards Tapeti as one of four subgenera (the other three being Limnolagus, Romerolagus, and true Sylvilagus) forming the genus Sylvilagus.

Gray describes Tapeti as follows: "Skull like Lepus, but with hinder supraorbital notch narrow, the lobes short, with a sharp inner edge; the front of the lower edge of the zygoma dilated, sharp-edged, porous above, hinder nasal opening rather narrower. Tail, none. Ears short." This description of the skull does not agree with the skulls of Sylvilagus minensis, paraguensis or gabbi at hand, and I am at a loss to understand the true status of Tapcti. The available material shows that Tapeti is nothing else than a part of Sylvilagus, and it is so here regarded.

III. LIST OF THE EXISTING SPECIES OF THE DUPLICIDENTATA ARRANGED BY GENERA AND SUBGENERA

The species under each group are arranged alphabetically. The list includes all the names that are found in Tronessart's Catalogus Mammalium, IS97, and in Miller and Rehn's Systematic Results of the Study of North American Land Mammals to the Close of the Year 1900 (Proc. Boston Soc. Nat. Hist., Nxx, December 27, 190I) together with the names that have appeared since these two works. Those species of which the writer has seen skulls or skeletons are printed in small capitals, those of which he has seen figures of the skulls or skeletons are in italic, and those of which he has seen neither specimens nor figures are in ordinary type.

[^2]Lepus (Pgecilolagus) americanus bairdil (Hayden).
Lepus (Pœcilolagus) americanus columbiensis Rhoads.
Lepus (Peecilolagus) americanus dalli Merriam.
Lepus (Pecilolagus) americanus macfarlani Merriam.
Lepus (Pæcilolagus) americanus phæonotus Allen.
Lepus (Pecilolagus) americanus struthopus Bangs.
Lepus (Pecilolagus) americanus virginianus (Harlan).
Lepus (Pocilolagus) bishopi Allen.
Lepus (Pecilolagus) Klamathensis Merriam.
Lepus (Pecilolagus) saliens Osgood.
Lepus (Pecilolagus) washingtonii Baird.
Lepus (Macrotolagus) alleni Mearns.
Lepus (Macrotolagus) alleni palitans Bangs.
Lepus (Macrotolagus) asellus Miller.
Lepus (Macrotolagus) californicus Gray.
Lepus (Macrotolagus) californicus xanti Thomas.
Lepus (Macrotolagus) callotis Wagler.
Lepus (Macrotolagus) gallardi Mearns.
Lepus (Macrotolagus) gaillardi battyi Allen.
Lepus (Macrotolagus) insularis Bryant.
Lepus (Alacrotolagus) martirensis Stowell.
Lepus (Macrotolagus) melanotis Mearns.
Lepus (Macrotolagus) merriami Mearns.
Lepus (Macrotolagus) texianus Waterhouse.
Lepus (Macrotolagus) texianus deserticola Mearns.
Lepus (Macrotolagus) texianus eremicus Allen.
Lepus (Macrotolagus) texianus griseus Mearns.
Lepus (Macrotolagus) texianus micropus, Allen.
Lepus ægyptius Audouin and Geoffroy.
Lepus arabicus Hemprich and Ehrenberg.
Lepus atlanticus de Winton.
Lepus berberanus Heuglin.
Lepus brachyurus Temminck.
Lepus capensis Linnæus.
Lepus capensis centralis Thomas.
Lepus capensis ochropus Wagner.
Lepus crawshayi de Winton.
Lepus dayanus Blandford.
Ledus etruscus Bosco.
Lepus fagani Thomas.
Lepus hainanus Swinhoe.
Lepus harterti Thomas.
Lepus hawkeri Thomas.
Lepus hypsibius Blanford.
Lepus judex Gray.
Lepus kabylicus de Winton.
Lepus mandschuricus Radde.
Lepus mediterraneus Wagner.
Lepus microtis Heuglin.
Lepus monticularis Thomas.
Lepus nigricollis F. Cuvier.
Lepus oiostolus Hodgson.
Lepus omanensis Thomas.
Lepus pallidor Barrett-Hamilton.
Lepus pallipes Hodgson.
Lepus peguensis Blyth.
Lepus ruficaudatus Is. Geoffroy.
Lepus salae Jentink.
Lepus saxatilis F. Cuvier.
Lepus schlumbergeri St. Loup.
Lepus sechuensis de Winton.
Lepus siamensis Bonhote.

Lepus sinaiticus Hemprich and Ehrenberg.
Lepus sinensis Gray.
Lepus somalensis Heuglin.
Lepus swinhoei Thomas.
Lepus syriacus Hemprich and Ehrenberg.
Lepus tigrensis Blanford.
Lepus tolai Pallas.
Lepus tunete de Winton.
Lepus victoriæ Thomas.
Lepus whitakeri Thomas.
Lepus whytei Thomas.
Lepus yarkandensis Günther.
Lepus zechi Matschie.
Oryctolagus cuniculus (Linnæus).
Sylvilagus (Sylvilagus) andinus (Thomas).
Sylyilagus (Sylvilagus) arizone (Allen).
Sylvilagus (Sylvilagus) arizonæ confinis (Allen).
Sylvilagus (Sylvilagus) arizone major (Mearns).
Sylvilagus (Sylvilagus) arizone minor (Mearns).
Sylvilagus (Sylvilagus) baileyi (Merriam).
Sylvilagus (Sylvilagus) braziliensis (Linnæus).
Sylvilagus (Sylvilagus) cumanicus (Thomas).
Sylvilagus (Sylvilagus) defilippii (Cornalia).
Sylvilagus (Sylvilagus) durangæ (Allen).
Sylvilagus (Sylvilagus) floridanus (Allen).
Sylvilagus (Sylvilagus) floridanus alacer (Bangs).
Sylvilagus (Sylvilagus) floridanus audubonii (Baird).
Sylvilagus (Sylvilagus) floridanus aztecus (Allen).
Sylvilagus (Sylvilagus) floridanus caniclunis (Miller).
Sylvilagus (Sylvilagus) floridanus chapmani (Allen).
Sylvilagus (Sylvilagus) floridanus holzneri (Mearns).
Sylvilagus (Sylvilagus) floridanus mallurus (Thomas).
Sylvilagus (Sylvilagus) floridanus mearnsi (Allen).
Sylvilagus (Sylvilagus) floridanus persultator (Elliot).
Sylvilagus (Sylvilagus) floridanus pinetis (Allen).
Sylvilagus (Sylvilagus) floridanus rigidus (Mearns).
Sylvilagus (Sylvilagus) floridanus sanctidiegi (Miller).
Sylvilagus (Sylvilagus) floridanus subcinctus (Miller).
Sylvilagus (Sylvilagus) floridanus transitionalis (Bangs).
Sylvilagus (Sylvilagus) floridanus yucatanicus (Miller).
Sylvilagus (Sylvilagus) gabbi (Allen).
Sylvilagus (Sylvilagus) grangeri (Allen)
Sylvilagus (Sylvilagus) graysoni (Allen).
Sylvilagus (Sylvilagus) incitatus (Bangs).
Sylvilagus (Sylvilagus) insolitus (Allen).
Sylvilagus (Sylvilagus) laticinctus (Elliot).
Sylvilagus (Sylvilagus) laticinctus rufipes (Elliot).
Sylvilagus (Sylvilagus) margarite (Miller).
Sylvilagus (Sylvilagus) minensis Thomas.
Sylvilagus (Sylvilagus) nigronuchalis (Hartert).
Sylvilagus (Sylvilagus) nuttallii (Bachman).
Sylvilagus (Sylvilagus) orinoci Thomas.
Sylvilagus (Sylvilagus) orizabe (Merriam).
Sylvilagus (Sylvilagus) paraguensis Thomas.
Sylii'agus (Sylvilagus) parvulus (Allen).
Syleilagus (Sylvilagus) russatus (Allen).
Sylvilagus (Sylvilagus) simplicanus (Miller).
Sylvilagus (Sylvilagus) superciliaris (Allen).
Sylvilagus (Syilvilagus) surdaster Thomas.
Syliliagus (Sylyilagus) truei (Allen).
Sylvilagus (Sylvilagus) ver.acrucis (Thomas).
Sylvilagus (Microlagus) bachmani (Waterhouse).

Sylvilagus (Microlagus) bachmani ubericolor (Miller).
Sylvilagus (Microlagus) cerrosensis (Allen).
Sylvilagus (Microlagus) cinerascens (Allen).
Sylvilagus (Microlagus) peninsularis (Allen).
Limnolagus aquaticus (Bachman).
Limnolagus aquaticus attwateri (Allen).
Limnolagus palustris (Bachman).
Limnolagus palustris paludicola (Niller and Bangs).
Limnolagus telmalemonus (Elliot).
Brachylagus idahoensis (Merriam).
Caprolagus hispidus (Pearson).
Pronolagus crassicaudatus (Is. Geoffroy).
Pronolagus crassicaudatus curryi (Thomas).
Pronolagus crassicaudatus nyikæ (Thomas).
Romerolagus nelsoni Merriam.
Nesolagus netscheri (Jentink).
Pentalagus furnessi (Stone).
Ochotona (Ochotona) curzonix (Hodgson).
Ochotona (Ochotona) daurica (Pallas). ${ }^{1}$
Ochotona (Ochotona) koslowi Büchner.
Ochonota (Осhotona) ladacensis Günther.
Ochotona (Ochotona) melanostoma Büchner.
Ochotona (Pika) alpina (Pallas).
Ochotona (Pika) collaris (Nelson).
Осhotona (Pika) cuppes Bangs.
Ochotona (Pika) hyperboreus (Pallas).
Осhotona (Pika) kolymensis Allen.
Ochotona (Pika) littoralis (Peters).
Ochotona (Pika) princers (Richardson).
Ochotona (Pika) pusilla (Pallas).
Ochotona (Pika) saxatilis Bangs.
Ochotona (Pika) schisticeps (Merriam).
Ochotona (Conothoa) erythrotis Büchner.
Ochotona (Conothoa) roylei (Ogilby).
Ochotona rufescens (Gray).
Ochotona rutila (Severzow).

IV. GENERAL CONSIDERATION OF THE SKELETON AND TEETH OF THE DUPLICIDENTATA

SKULL

The skulls of the two families Ochotonidæ and Leporidæ are widely different in nearly every respect, and were it not for the structure of the teeth and the number of the upper incisors there would be little to indicate that the two groups were closely related. The skulls of members of both of these families have so often been described and figured that there is here no need of a general description of that important part of their osteology, which will be given later in regard to less well known parts.

[^3]
Leporid.e
 (Plates LXXIV-LXXXIX)

The skulls of the Leporidæ fall into several groups, each distinct from the other, and no specimens have been seen which show intermediate conditions between any two of the divisions. The variations upon which these groups are founded consist principally in the shape, size, and method of the attachment of the postorbital processes, the distinctness of the interparietal bone, the distance between the two vertical portions of the palate bones, or width of the choanæ, and the relative heaviness of the zygoma. Each of these points will be considered in detail.

POSTORBITAL PROCESSES

The postorbital processes are conspicuously developed in all of the Leporidæ. In general and typically the process is triradiate, one arm being attached to the skull and forming the pedicle of the process, the other two arms or angles being toward the outside, one directed anteriorly, the other posteriorly. The following seven forms of postorbital processes are found:
I. Postorbital processes large and triangular, standing out from the side of the head and considerably arched from before backward. This form is best developed in the subgenus Lepus, where the process is a conspicuous triangle, one angle of which is attached to the skull, the other two angles of which are entirely free, the anterior subtending a large anterior notch, and the posterior subtending a larger posterior notch. Occasionally in some specimens the anterior angle of the postorbital process is directed inward, its apex meets the frontal bone and a distinct foramen is formed instead of a notch. In the subgenus Macrotolagus the posterior angle of the postorbital process is always directed inward to meet the side of the cranium and in this way forms the outer boundary of a conspicuous foramen. Some of the Old World specimens resemble Macrotolagus in this respect; such are Lcpus sp. Jumna river, India; L. ochropus, East Africa; L. hypsibius, Ladak, and L. tibetanus, central Asia. In the hares belonging to the subgenus Pocilolagus the postorbital processes, while of the same general form, are much slenderer, the outer angles are not so wide, and the process is not so arched as it is in its best developed form in the subgenus Lepus. Both anterior and posterior angles are free, and help to form corresponding notches with the rest of the sktill. The posterior angle and notch are larger than the anterior angle and

SKULLS OF HARES AND RABBITS (about ${ }_{6}^{5}$ natural size). For explanation see page 43.

- .

SKULLS OF RABBITS (natural size). 1. Romerolagus. 2. Pronolagus. 3. Brachylagus.

SKULLS OF HARES, subgenus Lepus (about $\frac{3}{5}$ natural size). For explanation see page 444.

SKULLS OF JACKASS HARES, subgenus Macrotolagus (about $\frac{2}{3}$ natural size). For explanation see page 444 .

SKULLS OF COTTONTAILS, genus Sylviluggs (about $\frac{9}{14}$ natural size). For explanation see pages 444,445 .

SKULLS OF COTTONTAILS, genus Sylvilagus (about $\frac{9}{14}$ natural size). For explanation see pages $444,445$.

notch. Lepus yarkandensis from central Asia has postorbital processes agreeing with those of Pocilolagus.
2. The skulls having postorbital processes most nearly resembling those of typical Lcpus, belong to the genus Oryctolagus. The processes are here large, but are not wide and triangular and they do not project out laterally from the sides of the skull as they do in Lepus. The process is arched. The anterior portion does not meet the frontal bone and thus subtends a notch, and a larger posterior notch is formed by the posterior angle which also does not meet the cranium. In two skulls of domestic rabbits at hand, a lop-eared and a Belgian hare, the anterior angle or limb of the postorbital process meets the frontal bone, and in the lop-eared forms the outer boundary of an irregular foramen, while in the Belgian hare the whole anterior angle is fused to the cranium, so that even the foramen is obliterated. In both these specimens posterior notches are present.
3. In the third form of postorbital process, the anterior limb is entirely lacking or else so intimately associated with the cranium that the process appears as a triangle, one whole side of which is attached to the cranium, the second side directed outward and somewhat forward, while the third side is directed obliquely inward and backward, forming the outer boundary of a posterior notch. This type of postorbital is found in the genera Romerolagus, Pronolagus, Caprolagus, Pcutalagus, and probably in Nesolagus. The process is larger and blunter in Pentalagus than it is in the others.
4. Postorbital processes long and narrow, strongly arched, attached to the skull by a very broad and short pedicle. The whole anterior part of the process, with the exception of a millimeter or two, is attached to the skull, so that only a very small notch is subtended. The posterior part of the process is long and narrow, not triangular as it is in skulls of the preceding type. Its inner posterior edge touches the side of the cranium, and a narrow clavate slit is thus formed between the inner edge of the process and the side of the skull. In its typical form this slit or clavate foramen is much narrower than the process which helps to make it. In one skull of Sylilagus floridamus mearnsi, No. 22,409, from Illinois, complete fusion of the postorbital process with the side of the skull takes place, and the clavate foramen is obliterated. The opposite extreme is found in the group of Sylzilagus arizona and its subspecies, where the clavate foramen is relatively wider and passes gradually over into the next style of postorbital. In these atypical forms the anterior notch is also relatively larger than it is in typical Sylailagus.
5. In many respects the postorbital processes included in this division resemble the postorbital processes found in that section of the genus Lepus which forms the subgenus Pecilolagus, but on the whole they are rather slenderer, and do not project so far outward from the side of the skull. The typical form is seen in Sylitagus (Microlagus) bachmani. The postorbital process is attached by a comparatively narrow pedicle. A large posterior notch is formed between the sides of the skull and the slender posterior portion of the postorbital process. In No. 63,957, Microlagus from Posts, California, the posterior extremity of the postorbital almost touches the cranium. Sylvilagus (Microlagus) cincrascens shows conditions of the postorbital ranging all the way from those found in No. 63,957 to conditions almost identical with those found in typical Syltilagus, but the posterior clavate foramen is always wider in Microlagus.
6. The postorbital processes of the skulls of the genus Brachylagus are small and slender, free both in front and behind. They bear considerable resemblance to the postorbitals of the subgenus Pecilolagus.
7. The genus Limnolagus possesses postorbital processes of a form quite different from any of the others. The process is completely fused to the side of the frontal bone so that only a notch is found anteriorly and no notch or slit is found posteriorly except in rare and anomalous cases where a small foramen is sometimes seen. The fused postorbital process has about the same general shape as has the unfused process of the genus Sylzilagus. An atypical specimen, No. 64,029, Kissimmee, Florida, shows the manner in which the process is attached. The posterior end of the process, instead of meeting the skull directly as it does in those genera where the posterior end of the process is in contact with the side of the skull, is met by an outgrowing process from the cranium. In this specimen, No. 64.029, a small foramen is inclosed between the posterior part of the postorbital process and the above ontgrowing process from the cranium. A more or less prominent blunt projection is formed by the union of the postorbital process with the outgrowing process from the cranium. This blunt projection above, together with the root of the zygomatic process just below, forms a rather conspicuous notch.

INTERPARIETAL BONE

The interparietal bone of the Leporidx is always present in the very young, and in most cases remains perfectly distinct in the adult.

On the other hand, in certain hares, the distinctness of the interparietal is lost at an early age, when the animal is but little more than half grown. Judging from rather limited material in cases where its distinctness is lost in the adults, it appears that the upper borders of the bone become obliterated, each half fusing with the parietal above, and the sagittal suture between the two parietals pushing down to meet the interparieto-supraoccipital suture. The distinctness or the obliteration of the interparietal is very constant, for the different groups of the Leporidæ. It is found as an independent bone in Sylvilagus, Brachylagus, Limnolagus, Oryctolagus, Romerolagus. In the genns Lepus, the interparietal loses its distinctness before adult life is reached. In the single available skull of Pronolagus from South Africa, the inferior suture of the interparietal is distinct, as it always is; the right latero-superior suture is partially obliterated, and the left latero-superior suture is entirely obliterated. As the specimen is a young adult, it seems reasonable to say that the interparietal is obliterated in this case. In the genus Pentalagus the interparietal is not present as a distinct bone.

PALATE AND POSTERIOR NARES

The bony palate of all the Leporidæ has its antero-posterior dimension very short, while the side-to-side dimension is considerable, so that the length of the bony palate is usually less than its width. The palatal portion of the bony palate is the part most reduced, and in some cases the horizontal plates of the palate bones form only the extreme posterior edge of the bony palate. The incisive foramina are very large, especially at the posterior ends, and extend from the anterior edge of the bony palate almost to the alveoli of the incisors. The roof of the narial cavity is usually high, so that the sides of the posterior nares form a wall of considerable height, composed mostly of the vertical portion of each palate bone. All of these structures vary in several ways and constantly for certain groups.

Variations in bony palate.-In Brachylagus the bony palate is very short, shorter than in any other genus of the Leporidæ. The horizontal plates of the palate bones form only the posterior border of it. In Lepus also the palate is short, but not so short as it is in Brachylagus. The horizontal plates of the palate bones form between a fourth and a third of the bony palate. Very similar to this arrangement is the bony palate of the genus Sylzilagus, which is trpically a little longer than it is in Lepus, but in the rabbits of the Sylzilagus arizonce group the bony palate has about the same relative
length that it has in Lepus. In Sylvilagus (Microlagus) cincrascons the bony palate is short, but in S. (M.) bachmani it is distinctly longer. In Limmolagus and Oryctolagus the bony palate lengthens, relatively speaking; the horizontal plate of the palate bone is better developed and enters into the formation of the bony palate to a slightly greater extent than in the case of the preceding genera, but to a less extent than it does in Romerolagus. The portion of the palate bone that borders the maxilla caudad of the posterior edge of the bony palate is better developed in Limmolagus and Oryctolagus than it is in Lepus, Syleilagus, or Brachylagus, and thus forms part of the roof of the month along the posterior dental alveoli. This development of the palate bone just internal to the dental alveoli is better developed in Oryctolagus than in Limmologus, and it is still further developed in the genera Romorolagus and Pronolagus. The last has the longest and narrowest bony palate of any of the Leporidæ at hand, though Romcrolagus has one nearly as long relatively. The horizontal plates of the palate bones in these two genera form about the posterior half of the bony palate. Pcntalagus and Nesolagus have long palates resembling those of Romerolagus and Pronolagus, but the horizontal plates of the true palate bones form only the posterior fifth or fourth of the bony palate. The palate of Caprolagus is apparently similar, but the horizontal plates of the palate bones form its posterior third.

In most of the Leporidæ the posterior palatine foramina are of moderate size and are located between the palatine plate of the maxilla and the horizontal plate of the palate bone, at the anterior outer angles of the horizontal plate. In Romorolayus, however, the posterior palatine foramina are relatively very large and in the usual position. In Pronolagus the posterior palatine foramina are very small, and are scarcely visible except for two grooves leading from them. They are situated not at the anterior outer angles of the horizontal plate of the palate bones, but are found near the median line, toward the anterior internal angles of the horizontal plates of the palate bones.

I'ariations about the posterior nares or choana, and aidth of the incisio foramina.-Certain variations are found in the degree of approximation of the vertical plates of the palate bones, the height of the pharyngeal vault, and the width of the incisive foramina, and when compared with the length of the bony palate measured half-way between the median line and the dental alveoli, there are found ratios which are seen to be fairly constant for the different groups of the Leporide.

Wide choanæ are found in Lepus and Brachylagus. They are remarkably wide when compared with the narrow choanæ of Oryctolagus. In both of the former the length of the bony palate, measured midway between the median line and the dental alveoli, is decidedly less than the least distance between the two vertical plates of the palate bones. In the same two genera the incisive foramina are wide, especially so in Brachylagus, where the greatest width of each incisive foramen nearly equals in length the bony palate measured midway between the median line and the dental alveoli. In Lepus, the greatest width of the incisive foramina taken together is much greater than the length of the bony palate.

The choanæ are wide in Sylvilagus, but not quite so wide as they are in Lcpus and Brachylagus. In certain species of Sylvilagus, arizonce and its allies, the lateral walls of the choanre are more approximated than they usually are in most rabbits, and approach the narrow choanæ seen in Oryctolagus. The length of the bony palate taken midway between the median line and dental alveoli equals the greatest width of the incisive foramina as well as the distance between the choanal walls. In the Sylvilagus arizonc group this palatal length is less than the width of the incisive foramina, but equals the distance between the choanal walls.

In Limnolagus the length of the palate taken between the median line and the dental alveoli about equals the greatest width of the incisive foramina taken together, and the distance between the vertical plates of the palate bones. The choane are narrower than they are in Lepus, but are not so extensively narrowed as they are in Oryctolagus.

The length of the relatively long bony palate of Romerolagus is very much greater than the greatest width of the two incisive foramina and also very much greater than the choanal width.

In the gentus Pronolagus the incisive foramina are long and narrow, less triangular in outline than they are in most of the Leporidx. Their greatest width is much less than the length of the bony palate. The choanæ are rather narrowed, being almost as narrow as they are in Oryctolagus, but the pharyngeal vault is not so high as it is in the latter genus.

In the skull of Caprolagus, as figured by Blyth, the incisive foramina are narrow, elongated-triangular, the choanæ are moderately wide, about as wide as the greatest width of the narrow incisive foramina taken together. The bony palate is long, decidedly longer than the choanal width.

In Pentalagus the incisive foramina are narrow, their sides nearly
paralle1. The choanæ are wide, much wider than the greatest width of the incisive foramina taken together. The bony palate is long, exceeding in length the rather wide choanæ. The pharyngeal vault is low.

In Nesolagus the incisive foramina are rather narrow, about as wide as they are in Caprolagus; but instead of being triangular, their sides are nearly parallel, in this respect resembling the incisive foramina of Pentalagus and Pronolagus. Their greatest width taken together is a little less than the choanal width and much less than the length of the bony palate.

In Oryctolagus the distance between the vertical plates of the palate bones is less in proportion to size than in any other member of the family Leporidæ. The incisive foramina are narrow, their greatest width not quite equal to the length of the bony palate taken half-way between the median line and the dental alveoli, and much greater than the distance between the lateral choanal walls. The pharyngeal vault is high.

Following is a summary of the relative sizes of the greatest width of the incisive foramina, the length of the palate measured between the median line and the dental alveoli, and the distance between the two vertical portions of the palate bones:

In Limmolagus and typical Sylvilagus the width of the incisive foramina, the length of the palate, and the width of the choanæ all about equal one another.

In Romerolagus the width of the incisive foramina and the choanal widths are subequal to one another and each is less than the length of the palate.

In Lepus and Brachylagus the width of the incisive foramina and the width of the choanæ are much greater than the length of the palate.

In Pentalagus the width of the incisive foramina is less than half the length of the bony palate; the width of the choanre is not much less than the length of the bony palate.

In Oryctolagus the width of the incisive foramina about equals. the length of the palate, while the width of the choanæ is less than the palatal length.

In Pronolagus the width of the incisive foramina is a little less than the length of the palate; the width of the choanre is less than the palate length.

In Caprolagus and Nesolagus the width of the incisive foramina taken together is less than the length of the palate, and the length of the palate is greater than the choanal width.

ZYGOMATIC ARCH

The zygomatic arch of the Leporidæ is well developed. Seen from above or below it is very narrow, and is much flattened when seen from the side. In the adult but two bones seem to make it up, viz., the zygomatic process from the squamosal, and what is apparently a very long backwardly projecting zygomatic process of the maxilla, but this latter consists of the true malar or jugal bone, which forms most of the zegoma and fuses at a very early age with a small zygomatic process of the maxilla. The zygomatic process of the squamosal is a triangular foot-like structure attached to the squamosal by a narrow pedicle. The squamoso-zygomatic suture remains distinct throughout old age. The malar projects candad of the zygomatic process of the squamosal, to a greater or less extent. In the family Leporidx the antero-inferior angle of the zygoma is usually enlarged and flares outward to a greater or less extent.

The heaviest zygomata are scen in Romerolagus and Limmolagus, in each of which it is thick and deep, especially deep in Romerolagus. In Lepus and Brachylagus the zygoma is deep but not thickened. In Oryctolagus the anterior half of the zygoma is deep, but in the posterior half it is shallower. Syluilagus and Pronolagus have zygomata that are rather thin and shallow when compared with the zygomata of the other genera.

The foot-like extremity of the zygomatic process of the squamosal is shorter in Lepus than it is in most of the other Leporidæ. The external lateral length of the squamoso-malar suture is contained about two times in the superior border of the malar, measured from the anterior end of the squamoso-malar suture to the antero-inferior angle of the orbit. In Oryctolagus Pcutalagus, and Caprolagus, on the other hand, the foot-like extremity of the zygomatic process of the squamosal is considerably enlarged, so that the lateral length of the squamoso-malar suture is contained between one and one and a half times in the superior border of the malar, measured from the anterior end of the squamoso-malar suture to the antero-inferior angle of the orbit. In Romerolagus the foot-like extremity of the zygomatic process of the squamosal is moderately enlarged; in Brachylagus it is relatively slightly larger than it is in Lepus. In Syliilagus and Pronolagus the size of the foot-like extremity of the zygomatic process of the squamosal has about the same relation to the rest of the zygoma that it has in Lepus. In Limnolagus, the foot-like extremity of the zygomatic process of the squamosal is short.

The antero-inferior end of the zygoma is much expanded and flared outward in Limnolagus, Nesolagus, and Romerolagus. It is also enlarged, but not quite to the same degree in Oryctolagus. In Pronolagus is is moderately enlarged. In Lcpus, Sylvilagus, Brachylagus, and Pentalagus the antero-inferior angle of the zygoma is only slightly enlarged. In the last the deep fossa seen just in front of the antero-inferior angle of the zygoma in the other genera except Limnolagus is lacking. In Caprolagus the antero-inferior angle of the zygoma is apparently not enlarged at all.

The posterior free projecting extremity of the malar is very large and long in Romerolagus, and is nearly as large in Limnolagus, Oryctolagus, and Caprolagus. It is moderately enlarged in Pcutalagus and in Brachylagus; in the remaining genera, Lcpus, Sylvilagus, and Pronolagus the posterior free extremity of the malar is short.

AUDITAL BULLE

Most of the Leporidæ hare well-developed audital bullæ, but the degree of development is subject to some variations. The external auditory meatus is prolonged upward and backward into a tubular or spont-like structure. The bulla and this tube combined much resemble a flask, the external auditory meatus being the neck.

In Brachylagus the andital bulla is very much enlarged, the external auditory meatus large and rounded. Pronolagus, Caprolagus, and Pentalagus have very small audital bullæ. The external anditory meatus in the last is not at all spout-like; it has the form of an irregular oval bony ring, rather closely applied to the side of the skull. Romerolagus has the external anditory meatus relatively larger than in any of the other genera, and decidedly oval in outline, instead of simply circular. The rest of the Leporidæ present nothing unusual in respect to the audital bullæ or the external meatus.

FENESTRATION OF MAXILLEE

The sides of the maxilla are fenestrated in nearly all the Leporidæ. In certain groups, however, this fenestration is less marked than in others. In Pcntulagus there is practically none. In Limnolagus, Pronolagus, and Romcrolagus the degree of fenestration is much less than it is in all the other genera, which may be said to have a normal degree of fenestration. In the genera with the least degree of fenestration, the infraorbital foramen is most marked and attains its largest size.

MANDIBLE

The mandible of the Leporidæ is characterized by the great development of the angular process and of the condyloid process and by the almost complete absence of the coronoid process. It does not show very many variations, but there are a few which are constant for some of the genera.

In Lepus and Oryctolagus the mandibles resemble one another closely, and may be said to possess the typical form.

In Pronolagus the angular process of the mandible is rather straighter along the lower edge than it is in the mandible of the Lepus type. The mandible of Caprolagus apparently resembles it.

The mandible in Limnolagus has a very large, rounded, angular process. The ascending ramus is rather wider than it is in the genus Lepus. The notch between the condyle and the angular process is much smaller than it is in Lepus. The condyle has a greater antero-posterior dimension.

The mandible of Nesolagus is similar, but the angular process is smaller.

The mandible of Sylailagus very closely resembles that of Lepus, but the angular process is relatively larger, and the notch between the condyle and the angular process is shorter. In this respect it resembles the mandible of Limnolagus.

Brachylagus has a mandible resembling a small one of the Lepus style, but the angular process is relatively as well as absolutely smaller, and its edge is nearly straight.
The mandible of Romerolagus possesses wide ascending rami. which are nearly vertical. The angle is well developed and its edge moderately rounded. The notch between the ascending ramus and the angular process is larger than it is in any of the other genera.

The mandible of Pentalagus has a very large, rounded, angular process, which is separated from the condyle by a small, shallow notch. The antero-posterior dimension of the ascending ramus and of the condyle is much greater relatively than it is in the other Leporidæ. It is an exaggeration of the mandible of Limnolagus.

Ociotonide

(Plate XC)
The skull in the Ochotonide is so entirely different in form and structure from that of the Leporidæ, that it is almost superfluous to point out differences. The most conspicuous points in the skulls of the Ochotonidre that serve to separate them from the Leporidæ
are, the absence of postorbital processes, the general flatness of the brain-case, the much greater development of the posterior free extremity of the malar, the shortness and slenderness of the rostrum, the greater interorbital construction, and the differences in the shape of the palate, all of which are best seen in the figures. The fenestration of the maxillary bone in the Leporidæ is replaced in the Ochotonide by a single large opening in the side of the bone.

The mandible of the Ochotonidx, although presenting many differences from that of the Leporidæ, is built on the same general plan. In Ochotona the ascending ramus is relatively much wider. The groove on the anterior surface of the ramus and the thin plate of bone forming the outer border of this groove in the hares is not found in the pikas. Just below the middle of the anterior surface of the ascending ramus of the mandible of Ochotona is a more or less prominent tubercle that is lacking in Lepus and its allies.

Corresponding to the shorter rostrum of the pikas, that portion of the mandible between the series of grinding teeth and the incisors is relatively shorter than it is in the hares.

The mental foramen in the Leporidx is situated on the side of the mandible just anterior to the insertion of the first cheek tooth; in the Ochotonidæ the mental foramen is located on the side of the mandible situated as far posteriorly as the last lower molar. The few skulls of the genus Ochotona that are available for study show striking differences among themselves and may be placed in three groups, which will be described further on as subgenera.

The brain-case is generally flat and not rounded in Ochotona, especially so in the North American species, where the whole skull is also flat. In the group represented by Ochotona ladaccnsis the skull as a whole is not flattened, although the brain-case is; the interorbital region is much constricted and highly arched. In the group containing Ochotona roylii, the brain-case is less flattened than in the other and more typical forms ; it is somewhat rounded, suggesting the brain-case of the Leporidæ.

Two general styles of incisive foramina are found in the Ochotonidæ: (a) incisive foramina resembling those of the Leporidæ in general shape, but at the same time encroaching much farther back on the bony palate, represented by Ochotona roylii; (b) incisive foramina constricted into two unequal portions by the approximation, if not actual mion, in the median line, of the posterior ventral portions of the premaxillæ, the anterior portions of the foramina being very small, and the posterior portions very large
and wide, represented by the American species and Ochotona ladacensis.

In the Ochotona roylii group all the available skulls have an oval foramen between one and two millimeters in length in the anterior and superior part of each frontal bone. This foramen is not seen in any of the other skulls, although some of the American specimens, notably 36298, O. collaris, Fort Yukon, Alaska, show light spots in the anterior part of the frontal bone, evidently the equivalent of the two above mentioned foramina.

In Ochotona roylii the single large opening in the side of the maxilla is less rotund than in the other species at hand, is more elongated, and immediately beneath it there is a small amount of fenestration.

TEETH

Leporides

(Plate XCI, 2-9)
The dental formula of most of the Leporidæ is I $\frac{1}{1}, \mathrm{C} \frac{0}{0}, \operatorname{Pm} \frac{3}{2}$, M $\frac{3}{3}$. In the genus Pcutalagus the molars are reduced to $\frac{2}{3}$. As there are no differences in structure between some of the premolar and the molar teeth, in what follows in regard to the teeth, the premolars and molars taken together will be called the molariform teeth.

Incisors.-The first upper incisors are large and heavy, being typical rodent incisors in general form. The second upper incisors are minute teeth placed directly behind the first incisors. The anterior surface of each front incisor is marked by a longitudinal groove, extending more or less deeply into the tooth, and which may or may not be filled with cement.

The lower incisors are perfectly plain rodent incisors.
Check Tectl.-All the upper molariform teeth are built on the plan of a cylinder, filled up with cement and dentine. The cylinder, however, is not circular in section, and the enamel undergoes certain infoldings, except in the last tooth of the series. The greatest diameter of each tooth is from side to side.

The first upper molariform tooth has enamel variously infolded on its anterior face: most commonly there is a deep median reentrant angle, and two smaller reentrant angles, one on each side of the median one. On the other three faces of the tooth the enamel is not infolded.

The second, third, fourth, and fifth upper molariform teeth have eaclr a single deep reentrant angle on the inner side, the sides of
which angle are more or less crenated. The enamel is well marked in this loop and on the anterior and posterior faces of the teeth, but it is scarcely discernible on the onter sides.

The last upper molariform tooth is very small, subterete, and without reentrant angles.

The lower molariform teeth, while built essentially on the same plan as the upper molariform teeth, are more difficult to understand, owing to the greater extent of the infolding of enamel which takes place in all the teeth, even the last small tooth. The infolding of the enamel is on the outer side of these teeth, and not the inner side, as in the case of the upper molariform teeth.

The first lower molariform tooth is divided into an anterior and a posterior portion in most Leporidæ by a single deep reentrant angle extending across the tooth from the external face. In three genera, however, Romerolagus, Pronolagus, and Pcntalagus (and perhaps Nesolagus), this tooth is divided into anterior and posterior portions by two reentrant angles, each extending half-way across the tooth, one from the external face and one from the internal. The anterior portion of this tooth has various minor reentrant angles on the anterior or lateral surfaces, or on both. Each of the second, third, and fourth lower molariform teeth appears like a double tooth of two compressed parts, of which the more anterior is the larger and stands higher up.

The last lower molariform tooth is much reduced in size, but similar to the others in structure, with a larger elliptic anterior portion and a smaller rotund posterior portion.

Following are the tooth variations in different genera of the Leporidæ:

Incisors.-The groove on the anterior surface of the first upper incisor is shallow and is not filled with cement in Pacilolagus, Oryctolagus, Brachylagus, Pcntalagus, nearly all the members of Sylzilagus (where, however, the groove is deep and in some Mexican specimens it is filled with cement), Romcrolagus (where the groove is still deeper), and Pronolagus. Lepus (Macrotolagus) californicus has a shallow minflled groove. Most members of the subgenus Lepus have deep grooves, usually without cement.

The groove is shallow and filled with cement in Limnolagus and in Lepus tibetamus.

The groove is rather deep but simple and filled with cement in Lepus (Lcpus) campestris, in Lepus yarkandensis, in Lepus ochropus, in Lepus (Macrotolagus) terianus, and in Caprolagus.

21

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

5

10

15

20

25

Fig. 44.-Enamel pattern of first right upper incisor of Hares, Rabbits, and Pikas, enlarged nearly four times. 1, Brachylagus idahocnsıs, No. 93696, Ione valley, Idaho. 2, Sylvilagus (Microlagus) bachmani, No. 98466, Bridgeville, California. 3, Sylvilagus (Sylvilagus) floridanus, No. 49586, Florida. 4, Limnolagus paludicola, No. 64029, Kissimmee, Florida. 5, Romerolagus nelsoni, No. 57954, Mt. Popocatepet1, Mexico. 6, Lepus tibetanus, No. 62126, Ladak. 7, Lepus ochropus, No. 34735, Kilima-njaro, Africa. 8, Lepus yarkandcusis, No. 62132, eastern Turkestan. 9, Lepus ruficaudatus, No. 38039, Inda. io, Lepus sp., No. 49621, Jumna river, India. 11, Lepus (Macrotolagus) alleni, No. 59292, Sonoyta, Mexico. 12, Lepus (Macrotolagus) merriami, No. 84643. Fort Clark, Texas. I3, Lepus (Macrotolagus) gaillardi, No. 35709, Chihuahua, Mexico. 14, Lepus (Macrotolagus) ascllus, No. 36009, San Luis Potosi, Mexico. 15, Lepps (Macrotolagus) callotis, No. S982, Chihuitan, Mexico. 16, Lepus (Macrotolagus) tc.xianus, No. 63118 , northeastern Mexico. 17, Lcpus (Macrotolagus) californicus, No. 60867 , southern California. 18, Lepus (Pacilolagus) amcricanus, No. 4325, Fort Liard, British America. 19, Lepus (Lepus) campestris, No. 61367, Madison, Minnesota. 20, Lepus (Lepus) timidus, No. 37137, Sweden. 21, Lepus (Lepus) europaus, No. 105828, Switzerland. 22, Oryctolagus cuniculus, No. 3124, England. 23, Pronolagus crassicaudatus, No. 22972, South Africa. 24, Pentalagus furnessi, No. 5583 , Liu Kiu islands. 25, Ochotona ladaccnsis, No. 84062, Ladak.

The groove is bifurcated internally, deep and filled with cement in Lepus (Macrotolagus) gaillardi, in Lepus (Macrotolagus) alleni, in Lepus (Macrotolagus) merriami, in Lepus ruficaudatus, in Lepus $s p$. from Jumna river, India. The groove is deep, filled with cement, and trifurcated in Lepus (Macrotolagus) callotis and Lcpus (Macrotolagus) ascllus.

It is rather difficult to make any general statement about the character of the groove, so far as groups go. In certain members of the genus Lepus this groove attains the greatest development, but at the same time in the subgenus Pacilolagus the groove is shallower than in any of the specimens at hand, and is not filled with cement. Even in the subgenus Macrotolagus the same extremes are met.

Check Tecth.-In Brachylagus the anterior surface of the first upper molariform tooth presents a single shallow reentrant angle. In all the other genera the anterior surface of the tooth presents a relatively deep median reentrant angle, and two shallower lateral reentrant angles, one on each side of the main median one. There is more or less individual variation in the depth and form of these folds, and occasionally the median fold itself is slightly crenated. In the genera Pronolagus, Caprolagus, and Pcntalağus these reentrant angles are deeper than they are in any of the other genera. In Pcntalagus the main reentrant angle of this tooth is much crenated.

The first lower molariform tooth has the simplest folding of enamel in Brachylagus, there being only a shallow reentrant angle on the outer surface of the anterior half.

The genera Lepus, Oryctolagus, and Sylailagus all have a small reentrant angle on the anterior face of the first lower molariform tooth, and a broader one on the anterior half of the external surface. Some skulls of Sylailagus from Mexico show two reentrant angles on the anterior surface, resembling Limnolagus in this respect.

In Limnolagus are found two or more reentrant angles which may be somewhat crenate on the anterior surface, and a broad crenated, reentrant angle on the anterior half of the external surface of the tooth. The whole anterior half of the tooth is more solid looking and more quadrilateral than it is in the other genera.

There are two deep simple reentrant angles in front on the first lower molariform tooth of Pronolagus and a broad shallow one on the external surface of the anterior half of the tooth. Unlike any other genus except Romorolagus and Pcutalagus, Pronolagus has a deep reentrant angle on the internal face of the first lower molari-
form tooth, which, extending to the middle of the tooth and meeting the reentrant angle from the external surface, divides the tooth into an anterior and a posterior portion.

In Romerolagus there is a broad shallow infold of the enamel on the external surface of the anterior half of this tooth, but the anterior and internal surfaces of this part of the tooth are smooth. The main infold as in Pronolagus extends but half-way across the tooth, while a corresponding reentrant angle comes in from the internal surface, both angles contributing to the division of the tooth into an anterior and a posterior portion.

In Pentalagus the first lower molariform tooth is very long. It is divided by two well-marked reentrant angles, one from the internal and one from the external face, into two portions, a narrower longer anterior portion, and a broader shallower posterior portion. The anterior portion of this tooth has two reentrant angles on its anterior face, and one each on the internal and external faces.

In Caprolagus the anterior portion of the first lower molariform tooth is separated from the posterior portion by a single reentrant angle from the external surface. The anterior portion considerably exceeds in size the posterior portion; it has two narrow reentrant angles on its anterior face, a broad shallow one on the external face, and a similar one on the internal face. (Major '99, pl. 37. fig. 23.)

The reentrant angle of the second, third, fourth, and fifth upper molariform teeth of Brachylagus extends but half-way across the tooth ; it is not crenated.

The second upper molariform tooth of Nesolagus has a short non-crenated reentrant angle extending about a third the distance across the tooth (Major '99, pl. 37, fig. 17). Probably the third, fourth, and fifth upper molariform teeth are similar.

In Pronolagus the reentrant angle of the second, third, fourth, and fifth upper molariform teeth extends nearly all the way across the tooth and is crenated. The internal half of the angle is rather wide and open.

In Pcntalagus the reentrant angle of the second, third, fourth, and fifth upper molariform teeth extends completely across the tooth. The crenation of its sides is more marked than it is in any other genus of Leporidæ. The sides of the angle are almost in contact throughout their entire extent.

In Romerolagus the crenated reentrant angle of the second, third, fourth, and fifth upper molariform teeth does not extend quite so far across the tooth as it does in Pronolagus, but at the same
time farther than it does in the remaining genera. The internal third of the reentrant angle is rather wide, as it is in Pronolagus.

In the remaining genera, Lepus, Oryctolagus, Sytrilagus, and Limnolagus, the reentrant angle of the second, third, fourth, and fifth upper molariform teeth is crenated and extends about threequarters of the distance across the tooth. In Limmolagus the internal fourth of the fold is rather wide, resembling the condition seen in Romcrolagus and in Pronolagus. In Lepus, Oryctolagus, and Sylzilagus the sides of the reentrant angles are almost in contact with one another throughout their whole extent.

In the second, third, and fourth lower molariform teeth of Brachylagus the single external reentrant angle divides the tooth into the usual anterior and posterior portions, but the latter portion has only about half the side-to-side diameter that the anterior portion has.

In Pronolagis, Romerolagus, and Pcntalagus the posterior portions of the second, third, and fourth lower molariform teeth have lateral diameters equaling those of the anterior portions, but in Pcutalagus the fold of enamel dividing these teeth into anterior and posterior portions is very deeply convoluted, very much more than it is in any other genus of the Leporidæ.

In Lepus, Oryctolagus. Sylzilagus, Limnolagus, and Caprolagus the lateral diameters of the posterior portions of the second, third, and fourth lower molariform teeth are about four-fifths the lateral diameters of the anterior portions.

In all the genera the third upper molar is much reduced in size and is elliptic in section, and in Pentalagus it is not found at all. It is larger in Pronolagus, however, and is somewhat diamondshaped. In Caprolagus it is relatively much smaller than it is in the rest of the Leporidæ.

The last lower molar has the appearance of a double cylinder in all the genera, the anterior portion of which is larger and more elliptical in section, the posterior portion smaller and more terete. In Pronolagus, the reentrant angle, which divides this tooth into the two mentioned portions, is more marked than it is in the other genera, and the posterior face of the anterior cylinder is slightly indented.

Ochotonidee

$$
(\text { Plate } \mathrm{XCI}, ~ \mathrm{I})
$$

The dental formula of the Ochotonide is $\mathrm{I} \frac{2}{1}, \mathrm{C} \frac{0}{0}$, $\mathrm{Pm} . \frac{3}{2}, \mathrm{M}$登. being the same as that of the Leporidæ with the exception of the small last upper molar, which has been so reduced in Ochotona as to have disappeared, as is also the case with Pcutalagus of the
Smithsonian Miscellaneous Collections

TEETH OF HARES, RABBITS AND PIKAS (enlarged three times). For explanation see page 445 .

Leporidæ. This is Forsyth Major's view on the relative number of premolars and molars in Ochotona. No. 84,064, O. ladacensis from Ladak, a young individual bears out this view, for it shows the third maxillary tooth in process of replacement by the permanent premolar.

The teeth of Ochotona are simpler in every way than the teeth of Lepus and its allies; they lack the more complicated infolding of enamel and its beautiful crenation.

Incisors.-The first upper incisors of the Ochotonidæ have each a simple groove. Their cutting edge is very sharp; the portion external to the groove much produced downward, the internal portions slightly so produced. In this manner an unequally sided V-like notch is seen on the front cutting edge of each tooth, with the groove at the point of the V .

The second upper incisors are small slender teeth placed behind the first pair as in the case of the Leporidæ.

The single pair of lower incisors of the Ochotonidæ are longer, slenderer, and more pointed than the corresponding teeth in the Leporidie.

Check Tceth.-The first upper premolar is relatively much smaller than the corresponding tooth in the Leporidæ. It has a single reentrant angle, on its anterior face toward the inner edge.

The second upper premolar has a reentrant angle on its anterior face, extending to the middle of the tooth, and thence toward the outer edge. There is also a broad shallow angle on the internal face of this tooth.

The third, fourth, and fifth upper cheek teeth possess each a single reentrant angle on the internal face, extending all the distance across the tooth, very much like the reentrant angles of the Leporidæ, but lacking the crenation usually seen in that family. The last of these teeth has a projecting loop of enamel from the posterior aspect of the tooth, thus differing from the others.

The first lower premolar much resembles the anterior half of the first lower premolar of Lcpus. It has two reentrant angles on the external face, and one on the internal.

The second, third, and fourth mandibular cheek teeth in Ochotona are much like the corresponding teeth of the Leporida, but the division into anterior and posterior portions is more marked, and the two portions are subequal.

The last lower molar is small, irregularly ovate in section, its pointed end being toward the external side. A posterior portion to this tooth is completely lacking.

VERTEBRAL COLUMIN

LEforid.e

The vertebral column in the different members of the Leporidæ, while of the same general type throughout, presents several peculiarities, constant for the various genera. The vertebral column in the Ochotonidæ, on the other hand, is different in many ways from that of the Leporidre, as will be detailed below. The different sections of the vertebral column will be taken up successively, beginning with a general account of the structures of each series, followed by a discussion of the variations each series presents in the various genera.

Ceriical Vertebre (pl. xcir, 2-IO).-The first cervical or atlas is large, with conspicuous wing-like transverse processes.

The second cervical or axis has a well-developed cylindric odontoid process. Its centrum is long, its neural spine well developed, the antero-posterior length of the neural spine being greater than the corresponding length of the centrum. Transverse processes are present as caudad projecting spines on each side.

The third, fourth, and fifth cervical vertebre have practically 110 neural spines; on the sixth there is a small neural spine and on the seventh a larger one.

The third, fourth, and fifth have spine-like transverse processes directed backward. The sixth and seventh have well-developed transverse processes, not so spine-like as they are in the third, fourth, and fifth, and they project outward.

In the fourth, fifth, and sixth, the costal process is well developed as an expanded plate projecting laterally from the centrum and extending farther both cephalad and candad than the centrum to which it is attached. With the true transverse process, this plate encloses the vertebral foramen. This plate-like expansion is largest in the sixth cervical, steadily decreases in size in each further cephalad vertebra, is merely indicated in the third cervical, and in the axis is seen only as the ventral wall of the vertebral foramen.

The seventh cervical is very similar to the first dorsal, differing from it in that it has on each side a vertebral foramen and no facets for the articulation of ribs.

The articulating surfaces of the centra are oblique, sloping from above downward and backward.

The laminæ of the axis, of the third, and of the fourth are well developed, forming a complete roof for the spinal canal. The laminr of the fifth are less extensively developed, and of the sixth

and seventh still less so, forming only a narrow arch over the vertebral canal.

Not many variations are found in the cervical vertebre in the different genera of the Leporidæ, but in general two forms occur:

First, large rabbits, in which the individual vertebre are uniformly lengthened, and in which the costal process does not project laterally from the centrum to a marked extent, and the anterior and posterior spines of the costo-transverse process are more elongated. Cervical vertebre of this type are found in all the skeletons belonging to the gemus Lepus.

Second, rabbits averaging smaller in size in which the individual cervical vertebre are uniformly shortened and in which the costal process projects further laterally from the centrum than it does in the first group, the anterior and posterior spines of which are less pronounced. The true transverse process is slightly more conspicuous here, and often begins to project laterally from the vertebra, beginning with the fifth cervical instead of with the sixth as in the case of the more elongated type of cervical vertebre. All the genera of the family Leporidæ, with the exception of the genus Lepus, belong to this section.

The most extreme development of the shortened type of cervical vertebre is seen in Pronolagus, in which the costal process stands out still farther from the body of the vertebra. The process is narrower, that is, its antero-posterior dimensions are relatively much less than they are in the other genera. The cephalad and caudad projecting spines of the costal processes are apparently not well developed, but they have a somewhat worn or damaged look in the only specimen examined. The general appearance of the cervical vertebre in Pronolagus, when viewed from below, is much as it is in Ochotona.

Thoracic Vertebra.-There are twelve thoracic vertebre, of which the more anterior are wider from side to side than they are long, while the reverse is true of the posterior vertebre. The general size of each individual vertebra increases as one passes from before backward.

The centra, often at the beginning of the thoracic series and nearly always toward the end of it, have a low ventral median ridge, which on some of the anterior lumbar vertebre is produced into a spine, the hypophysis.

In the first eight vertebree of the thoracic series, the transverse processes are well developed and each is furnished with a large facet for articulating with the tubercle of the rib. In the ninth,
tenth, eleventh, and twelfth thoracic vertebræ, as a rule, the transverse process is absent, the ribs attached to these vertebræ articulating with the facets on the sides of the bodies only. In each of the last four thoracic vertebre, each transverse process is replaced by a metapophysis on the anterior part of the vertebra, usually indicated by a tubercle on the eighth thoracic, and steadily increasing in size through the twelfth thoracic and still further increasing in size on the lumbar vertebrie. On the side of each of the four above vertebre posteriorly, there is found another process, smaller than the above, the anapophysis. It is first seen in the ninth thoracic, is usually: largest on the tenth, and decreases in size on the eleventh and twelfth. The large transverse processes which are found on the lumbar series are represented on the eleventh and twelfth thoracic by low lateral ridges.

The spinous or nemral process of the first thoracic vertebra is very short and broad, inclined slightly backward. The neural spines of the succeeding eight vertebre are all broad at the base, but spinelike at the free extremity, all are strongly directed backward. The spine of the ninth thoracic is broader than the spines of the vertebre in front of it. The spine of the tenth thoracic vertebra is still broader from before backward, and usually the spine of this vertebra is inclined neither forward nor backward, that is, as the rule, it is the anticlinal vertebra. The spines of the eleventh and twelfth are still broader, and like the spinous processes of the lumbar vertebree are directed forward.

The first vertebra presents a whole facet at the anterior edge of the centrum for the head of the first rib, a half facet at the posterior edge of the centrum for half of the head of the second rib. From the second to the eighth thoracic vertebre, inclusive, there is a half facet at the anterior edge and another half facet at the posterior edge of the centrum. The ninth thoracic vertebra has only a half facet at the anterior edge of the centrum. The tenth, eleventh, and twelfth have a whole facet each on the centrum anteriorly.

The transverse process of the first thoracic vertebra has a small concave facet for articulating with the tubercle of the rib. All the other vertebre to and including the ninth have similar facets which increase in size up to the fifth and then decrease in size again. The tenth, eleventh, and twelfth thoracic vertebræ have no transverse processes.

Variations in the thoracic vertebre are fewer than they are in the cervical vertebre of the Leporidæ. Some of the variations do not

6

ก

seem to be more than individual, and the most that can be said is that they are tendencies rather than fixed characters.

The relative length of the neural spines in the anterior part of the thoracic series of vertebree varies fairly constantly as follows: In Romerolagus, the length of an anterior neural spine is about twice the length of the centrum of the vertebra to which it is attached; in Sylvilagus, Brachylagus, Limnolagus, Lepus (Pacilolagus), and Pronolagus, the spine equals about two and a half times the centrum; in true Lcpus it is about three times the length of the centrum, and in Macrotolagus and Oryctolagus it is a trifle over three times.

The position of the anticlinal vertebra varies between the tenth and eleventh thoracic as follows: It is the tenth in Brachylagus, Limmolagus, and Romerolagus; it is usually the eleventh in Lepus, Syluilagus, Oryctolagus, and Pronolagus, but in some cases it is the tenth.

Metapophyses are always found well developed on the last three thoracic, but in Pronolagus, Limmolagus, and most of the members of Lepus, a well-developed metapophysis is also found on the ninth thoracic; this also happens frequently in the case of the genus Sylzilagus. But even those cases when the metapophysis is well developed on the tenth and eleventh thoracic only, it is always indicated by an ill-defined tubercle on the ninth.
Lumbar Vertcbra (pls. xciir, xcrv).-The seven lumbar vertebre are large and elongated. Each is provided with a stont, broad, spinous process, much shorter than the spines of the thoracic rertebre. The metapophysis is well developed in all the lumbar vertebre, and in the lumbar series nearly equals the spinous process in size. Like the spinous processes, the metapophyses are directed forward. On the anterior five lumbar vertebree the anapophysis is represented by a horizontal line ending posteriorly, usually, in a small projecting spine. In some cases this little spine is practically absent, while in others it is very well developed.

The transverse processes of the lumbar vertebre are very large and long, projecting downward and forward. The proximal end arises from the anterior third or half of the side of the centrum. The free extremity is usually enlarged, and in the more anterior vertebre of the lumbar series it is usually bifurcated. The total length of a transverse process in the middle of the lumbar series is usually equal to one and one-half times the length of the centrum to which it is attached.

Each of the second and third lumbar vertebre has a prominent ventral spine, the hypophysis. A smaller hypophysis is found in the first lumbar, and on the twelfth thoracic and the fourth lumbar vertebre the hypophysis is usually indicated by a low ventral ridge on the centrum.

The zygopophyses are prominent in the lumbar vertebre, and the articulating surfaces are directed laterally instead of horizontally as is the case with the cervical and thoracic series of vertebræ.

The last lumbar vertebra is peculiar in being shorter than any of the others and in having shorter and more slender transverse processes.

The lumbar vertebre of the Leporide possess several well-marked variations, constant for certain groups and making good characters by which to determine them. The most important variations occur in the length, shape, and attachment of the transverse processes, and they may be outlined as follows:
I. Large rabbits having wide and long transverse processes with the free extremity expanded. The length of the longest process equals the length of the centrum to which it is attached and half the length of the centrum in front. The attached portion of the transverse process rises abruptly from the anterior half of the side of the centrum. All the members of the genus Lcpus have the transverse processes of the lumbar vertebre of this form.
2. Medium sized rabbits having the lumbar transverse processes of the same relative length and width as in the above group. Instead, however, of arising abruptly from the anterior half of the lateral aspect of the centrum, each process has a rather long posterior root coming from nearly the whole of the posterior half of the centrum, sharply sloping into the process itself. The skeletons having such transverse processes on the lumbar vertebre belong to the genera Sylitlagus and Oryctolagus.
3. Medium-sized rabbits with the transverse processes slightly shorter than they are in the two preceding groups, the longest process equaling the length of the centrum to which it is attached and a fourth of the centrum in front. The processes are much broader than they are in the former groups, so that they appear much shorter than they really are. The free extremities are more expanded than they are in any of the genera except Romerolagus. The attached bases are very wide, coming from the whole side of the centrum, and the angle between the main axis of the transverse process and the side of the centrum is filled in with thin bone especially marked in the anterior part of the lumbar series, approach-
ing the condition found in Romerolagus. These processes are characteristic of the genus Limnolagus.
4. Small rabbits having the lumbar transverse process slightly more concave anteriorly than in the other rabbits. Each process is marked by a prominent longitudinal ridge. But for this pronounced ridge the lumbar transverse process resembles that found in the genus Sylvilagus. While this ridge is found to a greater or less extent in the other groups of the Leporidæ, yet it is never so narrow nor so sharply marked off from the rest of the process. The transverse processes of this type are peculiar to the genus Brachylagus.
5. Small rabbits with the lumbar transverse processes short, the longest equaling the length of the centrum to which it is attached. The process of the first lumbar vertebra is very short and almost rudimentary. All the processes are wide and have triangular outlines in general. The base is broad, coming from the whole side of the centrum, and the angle between the main axis of the process and the side of the centrum is completely filled with thin bone. It is an exaggeration of the condition found in Limnolagus. Even the transverse process of the last lumbar vertebra, which is usually slender in other rabbits, is here very broad, but not so broad as the transverse processes on the other lumbar vertebre. Transverse processes of this type are characteristic of the genus Romcrolagus.
6. Medium-sized rabbits with lumbar transverse processes of medium length, the longest equaling the length of the centrum to which it is attached. The process is not so much expanded at the free extremity as in the case of the above groups. It is wide however at the base, where it comes from the whole side of the centrum, resembling in this respect Limnolagus, but the posterior border of the transverse process is not so strongly concave as in that genus, and the process itself is more slender. Transverse processes of this type are found in the genus Pronolagus.

The other variations in the lumbar vertebre are of less importance and not so well defined as are the variations of the transverse processes.

The spinous processes and metapophyses are always well developed. In the anterior part of the lumbar region the spinous processes are usually a little longer than the metapophyses on the same vertebra and they are always longer in the posterior region. The spinous process is of variable shape and there are marked differences in individuals of the same species. This process is, in general, bluntly triangular, sloping obliquely anteriorly, the basal
side attached to the rest of the rertebra, with a long sloping or usually concave posterior edge, and a more nearly vertical and shorter anterior edge.

In the following hares the spinous processes are perfectly triangular, and are relatively not so high as in the typical form: Romerolagus, Limnolagus, Pronolagus, Pacilolagus. One skeleton of the genus Sylailagus (No. 94,197, from Monitor valley, Nevada) also has neural spines of this shape, although in the other members of this genus which I have noted they are of the typical form.

The anapophyses are very slightly developed on the lumbar vertebræ of all hares. Their presence is usually indicated by a mere ridge on the side of the vertebre, which ends in a small candad projecting tubercle. They are least developed in the skeleton of Pronolagus and are longest in the skeleton of a lop-eared domestic rabbit, Oryctolagus cumiculus. Here they are very large, and in the three middle vertebræ of the lumbar series, viz., third, fourth, and fifth, the anapophysis extends as far posteriorly as the posterior border of the metapophysis of the next succeeding vertebra. In the wild Oryctolagus, however, this great development of the anapophysis is not so pronounced, but it is much larger than on the lumbar vertebre of any of the other skeletons.

Tentral spines, or hypophyses, or ridges indicating them, are found on the first three lumbar vertebre. The spines usually occur in three lengths: In the genera Sylailagus and Brachylagus the hypophysis on the second lumbar is the longest, that on the first lumbar is next in length, and the shortest hypophysis is found on the third. Occasionally in Sylvilagus the first hypophysis is reduced to a ridge and the last is sometimes lacking. In all the skeletons of the genus Lepus the third lumbar vertebra bears the longest hypophysis; the first bears the shortest. In Romerolagus the first hypophysis is the shortest, the second and third are subequal, the third being a trifle the larger. In the skeletons of Limnolagus, Pronolagus, and Oryctolagus the hypophyses are more or less injured. It would appear, however, in these genera that the second hypophysis is the longest.

Sacral Vertcbra.-The number of sacral vertebre in the Leporidæ varies from three to five, according to the age of the individual, four being the usual number. The two anterior vertebre of the sacrum are the only ones entering into the formation of the sacroiliac joint. The remaining vertebræ are progressively smaller and resemble in shape the anterior caudal vertebre.

The first sacral has a large neural spine, vertical or inclined
slightly forward like the spines of the lumbar vertebre. The neural spines of the remaining sacral vertebre become progressively smaller from before backward and they are directed candad. In some cases the spine of the fourth sacral is very small. In nearly all cases the spines of the sacral vertebre are distinct and not fused with one another.

The outline of the sacrum as a whole is triangular, the base being in front, the apex behind. The greatest width, which is at the anterior part of the massive fused transverse processes of the first and second sacral vertebre, is nearly equal to the greatest anteroposterior diameter.

In all the rabbits the sacrum presents very few variations. The differences found in the different sacra seem to be due entirely to age and individual variations. The only sacrum showing any marked deviation from the type is in Lepus sp. No. 49,621, from Jumna river, India. The posterior part of this sacrum is very narrow from side to side. The expanded wing-like portions to which the ilia are attached are very narrow from before backward. In general, the shape of this peculiar sacrum, as seen from below, is like a ' I '. The adjacent tips of the first and second, and of the third and fourth of its sacral neural processes are in contact.

The usual number of vertebre in the sacrum is four : in some old individuals it is raised to five, and in some yonnger ones it is only three. In what follows with reference to the caudal vertebre, four vertebræ will be considered as entering into the formation of the sacrum.

Caudal aertebra.-The candal series always includes vertebre of three different though not sharply defined forms.
I. The first one or two vertebre following the sacrum are long, and in general appearance resemble the last sacral vertebra.
2. The next three to seven cadual vertebræ are shortened, have wing-like anteriorly directed transverse processes and the neural arches become progressively less developed caudad.
3. The remaining vertebræ of the candal series, four to nine in number, are merely small elongated centra without processes or neural arches.

The accompanying table (page 364) shows the number of the different forms thronghout the candal series in the arailable skeletons. From this table the following groups may be picked out:

1. Nesolagus, with a total of eight caudal vertebre.
2. Romerolagus, with a total of nine candals, of which one is of the first form, five of the second, and three of the third.

Genera and Species.	Locality.	Number.			$\begin{gathered} \dot{E} \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ 0 \\ \dot{0} \\ \dot{z} \end{gathered}$	
Lepus (iepus) timilus.................	Sweden	1,04 ${ }^{1}$	1	7	5	13
"6 ،6 "،	-	1,049 ${ }^{1}$	1	7	5	13
" "، campestris	Kansas	43,6231	1	7	6	14
" ${ }^{6}$	Nebraska.	49,6221	1	7	6	14
" "، gichicnnus..............	Siberia.	: $8,303^{2}$	2	5	5	12
" (Alacrotolagus) texianus......	Nevada.	94, 198 ${ }^{3}$	1	7	7	15
" (Pacilolagus) americanus virginianus	New York.	9691	1	7	*	*
" sf....................................	India: Jumna river.	49,621 ${ }^{1}$	1	6	7	14
Sylvilagrus floridanus..	Florida.	49,5861	1	6	7	14
،، ، ${ }^{\text {a }}$	،	49,5871	1	7	6	14
" ${ }^{6}$	،	49,588	1	5*	*	*
،	'"	49,589 ${ }^{1}$	2	6	7	15
" "، matlu? us........	Virginia.	S9,514 ${ }^{3}$	1	6	6*	13^{*}
". "tranitionalis...	New York.	49,624 ${ }^{1}$	2	6	7	15
"، "، subspecies.......	Nevada.	$94,197{ }^{3}$	I	6	5^{*}	13^{*}
" muttallii.	Wyoming.	II, 644^{1}	1	6	6	I 3
" truei....	Mexico.	92,965 ${ }^{3}$	1	6	*	*
" minensis.	Brazil ; Chapada.	113,4321	2	5	4	11
"6 "6	"6 ،	49,665 ${ }^{1}$	2	5	4	11
Brachylagus idnhoensis................	Idaho.	93, $695{ }^{3}$	2	3	4	9.
"6 ،	"	$93,596^{3}$	2	3	4	9
Vesolagus netscher i^{\dagger}..	Sumatra.		?	?	?	8
Romerolayrus nelsoni.....................	Mexico.	57,954 ${ }^{3}$	1	5	3	9.
Limnolagus paludicola.................	Florida.	$49,58{ }^{1}$	I	5	5	II
Oryctolaszus cunioulus, lop ear........	domestic.	49,3861	1	7	9	17
"، "،	Germany.	49,645 ${ }^{1}$	1	6	9	16
" "6	England.	49,64 ${ }^{1}$	1	S	8	17
" " Ielgian hare..	domestic.	49,677 ${ }^{1}$	1	7	9	17
Pronolagus crassicaudatus	South Africa.	22,972 ${ }^{1}$	2	*	*	*

3. Brachylagus, with a total of nine caudals, of which two are of the first form, three of the second, and four of the third.
4. Limnolagus, with a total of eleven, of which one is of the first form and five each of the second and third.

The other genera containing a larger number of species than the above do not show such sharply defined results, but they roughly fall into these groups.
5. Sylkilagus, having a total of eleven to fifteen caudals, of whichr usually the first one or two are of the first form, the next five or seven, usually six, of the second form, and the terminal four or seven of the third form.

[^4]6. Lepus, having a total of thirteen to fifteen caudals, of which the first only is of the first form, the next five to seven, usually seven, of the second form, and the remaining five to seven of the third form.
7. Oryctolagus, with a total of sixteen to seventeen caudals, of which the first is of the first form, the next six or eight of the second, and about the remaining eight or nine of the third form.

Ochiotonide

The vertebral column of the Ochotonide presents nearly as many and as marked differences from that of the Leporidæ as do the sktills of the former from those of the latter.

Cervical Vertebre (pl. xcir, I).-The cervical vertebre of the Ochotonidæ have the same general characteristics as in the Leporidæ. They are decidedly shortened antero-posteriorly, the laminæ of the posterior ones being very narrow. This shortening involves the axis but not the atlas. The latter has the free extremity of the transverse processes moderately expanded. The costo-transverse processes of the third, fourth, and fifth cervicals are placed more obliquely to the axis of the vertebral column than the same processes are in the Leporide. In the sixth they become horizontal as they do in the hares. The transverse process of the seventh cervical differs from that in the Leporidæ in not being pierced by a costo-transverse or vertebral foramen.

Thoracic Vertebra.-The thoracic vertebre of the Ochotonidæ are entirely different from the same series of vertebre in the Leporidx. they are 17 in number instead of 12 , the thoraco-lumbar vertebree in the two groups being 22 and 19 respectively. The first 12 of the thoracic vertebre in the Ochotonidæ are exactly homologous with the i2 thoracic vertebre of the Leporidx. The arrangement of the facets for the heads and the tubercles of the ribs is entirely similar. The five remaining rib-bearing vertebre of the Ochotonidæ are practically indistinguishable from one another as well as from the twelfth, except by the slightly greater size of each succeeding vertebra.

The spinous processes are relatively shorter in the Ochotonidr. and this is especially true in the posterior thoracic region from the twelfth onward where the spines are all low and slightly inclined forward. Each neural spine of these posterior thoracic vertebre arises by a broad base from the whole length of the neural arch ; the free extremity of the process is nearly as long as the base, the posterior edge being slightly concave.

That part of the transverse process of the thoracic vertebra which articulates with the tubercle of the rib is the same in form in the two families. Associated with this transverse process in the Ochotonidæe are the metapophysis and the anapophysis. Both these processes are first seen on the third thoracic as mere tubercles. The anapophysis grows larger on each successive vertebra, attaining its greatest size on the last thoracic. From the eleventh thoracic onward, the anapophysis is a well-marked process directed upward, backward, and outward. The metapophysis remains little mor? than a tubercle until the tenth thoracic vertebra is reached, where it is a well-marked process. On the eleventh it is slightly larger, and on the twelfth still larger but closely associated with the prezygopophysis. The metapophysis scarcely increases in size through the rest of the series and continnes closely asociated with the prezygopophysis throughout. No ventral spines or hypophyses are found on any of the vertebræ. Some of the posterior thoracic have a slight ventral ridge which is also found on all the lumbar vertebre.

Lumbar l'crtcbra (pl. xciv, IO).-Corresponding to the greater number of the thoracic vertebre in the Ochotonidæ, there is a diminution in the number of the lumbar vertebre, from 7 to 5 , but this is not sufficient to make the number of thoraco-lumbar vertebræ the same in the two families. The lumbar vertebræ of Ochotona are very different in form as well as in number from those of Lcpus and its allies. Each vertebra is compact, with the processes broader and more closely applied to the body instead of the slenderer processes extending to a distance from the centrum such as occurs in the Leporidæ. The neural process is low, with the free edge as long as the whole length of the vertebra and parallel with the axis of the vertebra. The metapophyses are well developed and more closely associated with the prezygopophyses than they are in the Leporidæ. Anapophyses are well developed on the first and second lumbar vertebre and are a direct continuation of the thoracic series of anapophyses. These processes are slightly indicated on the third lumbar vertebra, after which point they disappear. The transverse process is little more than a tubercle on the first and second lumbar vertebre, but on the third and fourth it is a wide quadrilateral plate of bone coming from the whole side of the vertebre, sloping downward and ontward. The transverse process of the fifth and last lumbar is a trifle longer than the other transverse processes and only about half as wide, the narrowing taking place chiefly at the expense of the posterior half of the process. There are no hypophyses. but all the lumbar vertebre (as is the case of those lumbar vertebre of

STERNA OF HARES AND RABBITS (natural size). For explanation see page 446.
the Leporidæ which do not bear ventral spines) possess a median ventral ridge.

Sacral Vertcbra.-The sacrum in the pikas is entirely different in form from the corresponding structure in the hares and rabbits. It is long and narrow, its greatest breadth being contained in its length about twice. The lateral masses that are attached to the ilia, instead of being expanded into wing-like processes with the greatest width anteriorly, are much less expanded and have nearly parallel sides. The neural spines so distinct and conspicuous on the sacra of the Leporidæ are reduced in the Ochotonidæ to form a low dorsal ridge, the separate spines having fused with one another. The number of vertebre entering into the formation of the sacrum of the Ochotonidæ is four, the same as in the case of the Leporidæ.

Caudal I'crtcbrc.-The candal vertebre in the Ochotonidæ are eight in number in all the skeletons at hand except one, which has nine. In three American specimens, Nos. 91,188 and 30,990 from Idaho, and No. 49,620 from Oregon, the first caudal is somewhat narrowed, the next two are slightly wider, with faint indications of lateral projections; the rest of the series consists of short flattened bodies. The single Asiatic skeleton, No. 49.500, Ochotona ladaconsis, central Asia, has mainly thie same character of the caudals, but the individual vertebre are relatively wider throughout.

STERNUMI

LEPORID.E

(Plates XCV, I-5; ACVI, I, 3-5)
The sterna of the Leporidæ are formed of the usual three portions. presternum or manubrium, mesosternum or gladiolus, and xiphisternum.

The presternum consists of one piece which is usually longer than any other single segment of the sternum excepting the xiphisternum. It is usually compressed from side to side and marked by a more or less evident ventral keel. At or anterior to its middle the first pair of sternal ribs is attached.

The mesosternum consists of four usually distinct segments. A sternal rib is attached at the point of articulation of each segment with the other, as well as at the point of articulation of the presternum with the mesosternum. At the posterior outer aspect of the last mesosternal segment near the articulation of the xiphisternum two sternal ribs are usually attached.

The xiphisternum is usually the longest single segment. It is attached anteriorly to the last mesosternal segment. Its posterior end is free and is terminated by a thin rounded piece of cartilage.

Eight different types of sternum are found among the Leporidæ; some of which are characteristic of certain genera, while the others are not so sharply defined and might better be considered tendencies rather than actual developments. A greater number of .skeletons may show that some of the types amount to nothing, as there scems to be a certain amount of variation in individuals of the same species. The different types of sterna are as follows:

1. Presternum long and narrow, much compressed laterally into a keel which is most prominent anteriorly; the first rib is attached at the junction of the first and second fourths or first and second thirds. Mesosternum of four distinct segments, of which the first is narrow and compressed, the others not compressed or even flattened dorso-ventrally. All the mesosternal segments in general are subequal and each successive one grows wider from before backward. The xiphisternum about equals the presternum in length. The anterior end is considerably enlarged where it articulates with the last mesosternal segment. Its posterior and free extremity is rather pointed or only slightly larger than the narrowest portion of the xiphisternum. One skeleton (Lcpus te.rianus, No. 94, 198), belonging in this section, has an anomalous mesosternum composed of five distinct segments, the last of which is only slightly smaller than the other segments. At the articulation of the mesosternum with the xiphisternum, but one pair of ribs is attached instead of the usual two pairs in sterna where the fifth mesosternal segment is normally suppressed.

The hares possessing sterna like the above are all large and belong to the genus Lcpus. (Pl. xcr, 3, 4.)
2. Sternum in general very similar to the above, presternum relatively longer, its keel less prominent anteriorly. The first pair of ribs is attached just anterior to its middle. The mesosternal segments have a tendency to be less flattened. Xiphisternum shorter than the presternum, its posterior end more enlarged than it is in the case of the preceding section. Such sterna are more or less characteristic of the genus Sylzilagus. (Pl. xCv, 2.)
3. Sterna similar to those of the genus Lepus; presternum more conspicuously keeled, the first rib attached just anterior to its middle. Mesosternal segments more compressed from side to side than they are in Lepus. The last is much shorter than any of the other mesosternal segments. Xiphisternum large and stout, longer than the

presternum, its posterior extremity about as much expanded as its anterior. These sterna are found in the genus Oryctolagus. (Pl . xCv, 5.) One skeleton of Oryctolagus (No. 49,6ұ8) shows the peculiarity of five segments in the mesosternum, the fifth being very small and short. As in the case of the abnormal sternum of Lepus teriamus, No. 94,198, also with five mesosternal segments, only one pair of ribs is attached to the junction of the fifth mesosternal segment with the xiphisternum.
4. Presternum compressed with low keel all along ventral border, dorsal portion somewhat expanded just anterior to the attachment of the first pair of ribs which takes place at the junction of the anterior and middle thirds. Mesosternum of four distinct segments, the first compressed laterally with a low keel continuing that of the presternum, the succeeding mesosternal segments becoming successively wider and more dorso-ventrally flattened. The last segment is much wider than any of the others, with a well-marked postero-lateral angle for the attachment of the last two sternal ribs. The xiphisternum is decidedly longer than the presternum; it is slender in the middle, but the ends are considerably expanded, especially the posterior end. This type of sternum is found in the genus Brachylagus. (Pl. xcv, I.)
5. Posterior two thirds of the presternum much compressed, but not keeled. The anterior third is somewhat expanded, resembling that portion of the presternum of Limmolagus. The first pair of ribs is attached at the junction of the first and second fourths. The mesosternal segments are more compressed laterally than they are in the other skeletons and each succeeding one is a little shorter than the one immediately in front of it. The xiphisternum is a trifle shorter than the presternum, is comparatively short, and about equally widened at each end. This type of sternum is found in the single skeleton of Pronolagus. (Pl. xcvi, 3.)
6. The anterior portion of the presternum is considerably expanded laterally, having a tendency to be intermediate in form between the presterna of Lepus and those of Romerolagus and Ochotona. The mid-ventral line of this expanded part bears a low keel which is not extended backward on the posterior portion of the presternum. The first pair of ribs is attached to the middle of the presternum. The mesosternum as a whole is wider than are the mesosterna previously mentioned. It is also shorter, so that its length is but little greater than that of the presternum or of the xiphisternum, both of which are about equal in length. The first, second, and third mesosternal segments are about equal in length ; each
succeeding segment is wider than the one in front. The third and fourth mesosternal segments are completely ankylosed so that the whole mesosternum is composed of but three separate pieces instead of the usual four. The xiphisternum is long and slender and about equally expanded at each end. In all the preceding sections the sixth and seventh pairs of ribs are attached to the last piece of the mesosternum in the angle between it and the xiphisternum. In case of the form of sternum just described the sixth rib is the last attached directly to the sternum, the seventh being attached to the cartilage of the sixth near the point where the latter joins the mesosternum. This type of sternum is found in the skeleton of Limnolagus paludicola. (Pl. xcvi, 5.)
7. In this section the sternum is very characteristic and resembles almost exactly that of Ochotona. The anterior portion of the presternum is very much expanded and flattened dorso-ventrally. To the outer posterior angles of this expanded portion the first pair of ribs is attached. The rest of the presternum is long and narrow, as it is throughout the Leporidæ, but devoid of any ventral keel. A slight ridge indicating a keel is seen on the ventral face of the expanded portion. The mesosternum in general is very much like the same structure in Limnolagus just described. The first and second segments, however, are subequal and relatively narrower, the third and fourth segments are subequal in length, but the fourth is broader, both are relatively wider than they are in Limnolagus and as in that genus are firmly ankylosed. The xiphisternum is long and rather stout ; it is about equally enlarged at either end. It is but a trifle shorter than the whole mesosternum and decidedly longer than the presternum. As in Limnolagus the seventh pair of ribs does not articulate with the sternum, but with the cartilages of the sixth pair. The above is the stemum of Romorolagus. (Pl. XCVI, I.)
8. In this group the presternum is considerably enlarged in its anterior third, to about the same extent that it is in Romorolagus. Its different shape is best seen by consulting figures I, and 4 , plate xcvi. The mesosternum consists of four distinct segments, the first two subequal in length, compressed laterally; the third segment is slightly shorter, not laterally compressed ; the fourth segment is very short and cartilaginous. The xiphisternum is very short, much shorter than the presternum; its anterior end is considerably enlarged. Apparently six pairs of ribs only articulate directly with the sternum. This type of sternum is found in Nesolagus (Major, 99, pl. 39, fig. I8).

Ochotonide

(Plate XCVI, 2)

The material for making generalizations concerning the sterna of the Ochotonidæ is far from being satisfactory. Out of four skeletons but one is fully adult and there is a certain amount of variation among them. It may be that more material would show that there are two or three different types of sterna among the Ochotonidæ. Aside from a few minor details the sternum of the only adult Ochotona at hand, No. 91,188, is almost exactly like the sternum of Romcrolagus just described, so that the genus Romerolagus can be briefly described as a rabbit with the sternum of a pika. The expanded portion of the manubrium is less developed in Ochotona than in Romerolagus, and rather triangular in outline instead of pentagonal. In other respects the two sterna are similar. The Ochotona presternum is nearly as long as the mesosternum and slightly longer than the xiphisternum.

The mesosternum of Ochotona is in general very similar to that of Romerolagus. The first and second segments are subequal in length, the second being broader however. The third segment is the longest and broadest of the mesosternum. The fourth segment is the shortest and nearly as broad as the third. Both the third and fourth mesosternal segments are completely ankylosed as they are in Romerolagus and Limnolagus.

The xiphisternum is considerably expanded at the proximal end, but the distal extremity is not much enlarged. It is decidedly shorter than the presternum.

The seventh rib is attached along with the sixth rib to the sternum at the point of union of the mesosternum with the xiphisternum.

No. 30,990 Ochotona saratilis, Idaho, is very similar to the above; it is young, however, and the third and fourth pieces of the mesosternum are not yet fused.

No. 49,620 , from Oregon, has the entire mesosternum narrow and its last two segments separate.

No. 49,500 Ochotona ladaccusis, Ladak, central Asia, has the enlarged portion of the presternum less expanded; the mesosternum is relatively longer and decidedly narrower than is the mesosternum of O. saratailis, the third and fourth mesosternal segments are not fused. The mesosternum as a whole bears considerable resemblance to some of the mesosterna of Sylzilagus. The xiphisternum is rather short.

RIBS

LEPORIDet

(Plate NCIV, i-8)
Corresponding to the number of thoracic vertebræ there are twelve pairs of ribs of which seven are nomally attached to the sternum by means of well developed, ossified, costal cartilages. The last three or four pairs of ribs have no ventral attachments. The ribs intervening between the sternal and floating ribs are attached by their costal cartilages to the costal cartilages of the sternal ribs.

The typical rib has a head attached to the centra of two adjoining vertebræ, a well-marked tubercle a portion of which articulates with the transverse process of the more anterior vertebra and another portion of which projects superiorly, forming a spine. The most posterior ribs lack the tubercle. The first rib has the articular portion of the tubercle well developed but the spine-like part is lacking. Its place, however, is taken by a dorsally projecting spine from the transverse process of the first thoracic vertebra. The rest of the rib is made up of a long, thin, flattened shaft.

In the genus Lepus the non-articular portion of the tubercles are very well developed, the eighth pair of ribs is the last pair bearing them. The second, third, fourth, fifth, and sixth ribs are very flat and broad in the ventral half of the shaft; the greatest width of the rib just behind the tubercle is very much less than the width of the shaft in the lower portion. The sternal costal cartilages in Lepus are very short and wide, as compared with the sternal costal cartilages of the other genera.

In Oryctolagus conditions similar to those found in Lepus exist regarding the ribs, but the shafts of the anterior ribs are relatively less widened.

The genus Sylzilagus closely resembles Lepus with respect to the form of the ribs, but like Oryctolagus the shafts of the ribs are less expanded and in some of the species, notably S. minensis, the nonarticular portions of the tubercles are not so well developed and are last seen on the seventh pair of ribs.

Brachylagus closely resembles Sylzilagus, especially S. mincusis; the non-articular portions of the tubercles are not very well developed and are last seen on the eighth pair of ribs.

In Limnolagus the tubercles are well developed but are not conspicuous, owing to the fact that the angle between the tubercle and the posterior edge of the rib is filled up with bone, making that part distinctly the widest portion. In the single skeleton at hand
the last rib to bear a spine-like tubercle on the right side is the seventh, while on the left side it is the sixth. The shafts of the anterior ribs are not widened ventrally.

The spines of the tubercles are very small in Pronolagus, and are last found in the seventh pair of ribs. The shafts of the ribs are relatively narrow and there is no indication of the wide expansion found in Lepus. Decidedly the widest part of the rib is just behind the spine.

Romcrolagus very closely resembles Pronolagus in regard to the ribs, but the spines of the tubercles are last found on the sixth pair.

Ochotonides

(Plate NCIV, 9)
In the Ochotonidre there are seventeen pairs of ribs of which the first seven are attached to the sternum by means of costal cartilages, the last seven pairs or about that number have no ventral attachments, while the three intermediate pairs are attached to the costal cartilages of the ribs in front. The ribs are all slender and weak compared with the ribs of the Leporide and none of them possesses spine-like, non-articular portions of tubercles, but just behind the tubercles the more anterior ribs are quite broad and heavy.

CLAVICLE

Leporid.e

(Plates XCV, 2, 5; XCVI, 1)
In the Leporidre the clavicle is probably always present as a small curved, slender bone, about fifteen millimeters long. In most of the skeletons, however, the clavicles are wanting, undoubtedly the result of faulty preparation. In only four of the skeletons at hand have these bones been found. The uncleaned skeletons show that the clavicle does not articulate with either the sternum or the scapula as it does in those animals where it is well developed. Ligamentary tissue extends from its inner end to the presternum, while the outer end is attached to a piece of cartilage placed on the summit of the greater tuberosity of the humerus. In his account of the genus Romerolagus (Proc. Biol. Soc. Washington, x, 1896, December 29, p. 171) Dr. Merriam says: " The clavicle is complete and articulates directly with the sternum (fig. 33)-a thing that never happens in the genus Lcpus." Whether that is the case with any of the other genera of the Leporidæ can not be told, owing to the faulty methods of cleaning the skeletons. It might be thought
that Romcroldsus with the enlarged presternum would have clavicles much larger than those in the other genera of the Leporidæ, but measurements show that the ratios of length of humerus to length of clavicle in Romerolagus is 3.20 , in Oryctolagus 3.16, in Sylvilagus 4.00.

Ochotonide

(Plate ICVI, 2)
In the Ochotonidæ the clavicle is rery well developed, the ratio of its length to that of the humerus is $\frac{1}{2}$. The outer end, enlarged and flattened, is connected by a ligament to the greater tuberosity of the humerus. The inner end articulates directly with the extreme anterior portion of the presternum.

> SCAPLLA
> Leporid.e
> (Plate, XCvil, 1-4. 6-9)

The general shape of the scapula of the Leporidæ is roughly that of a right triangle, with the right angle rounded off, and directed rupward and forward. The acromion process is long and slender and about half the length of the actual scapular spine. Coming off at right angles to the acromion process and directed caudad is a well developed pointed metacromion.

The scapulæ of the Leporidæ fall into three not very strongly marked groups:
I. Large rabbits, members of the genus Lcpus in which the scapula is relatively broad, the superior border rather more convex, the antero-superior angle more rounded, and the supraspinous fossa relatively wider.
2. Rabbits averaging smaller in size, members of the genera Sylvilagus, Oryctolagus, Brachylagus, and Limnolagus, in which the scapula is relatively narrower, the superior border straighter and less convex, the antero-superior angle more pronounced and not so gradually rounded off as in the genus Lepus. The supraspinous fossa is relatively narrower.
3. Romerolagus and Pronolagus have scapulæ much alike and differing from the scapulie of the other genera in being longer and narrower. The posterior border is more nearly straight instead of being concave as in the other two groups. The superior border is straighter. The distance between the antero-superior and the postero-superior angles is contained twice in the length of the scapula measured along the inner surface at the attachment of the

spine, from the superior border to the edge of the glenoid cavity. In the other rabbits the distance between the two superior angles is contained but one and one-half times in the scapular length.

Ochotonidee

(Plate ACVil, 5)

The scapula of the Ochotonide is of a quite different type from that of the Leporidæ. The general outline of the bone is also that of a right triangle, but the right angle is very mucli rounded off and the general appearance of the scapula is more oblique. The acromion process is very long and slender, about twice the length of the actual scapular spine. The metacromion is well developed, and has about the same general proportion that it has in the Leporide. The posterior border of the scapula is long and more concave than in the Leporidx; the superior border is relatively longer and very much rounded off, so that it gradually merges into the anterior border. The distance between the antero-superior and the posterosuperior angles is relatively greater in the pikas than it is in the hares and rabbits, being contained but little more than once in the length of the scapula taken along the attachment of the spine. The supraspinous fossa in the Ochotonidæ is relatively much narrower, when compared with the infraspinous fossa, than it is in the Leporidæ.

The scapula of Ochotona ladacensis differs somewhat from that of the American species. The superior border is shorter and does not merge so gradually into the anterior border, so that the anterosuperior angle is more pronounced.

HUMERUS

Leporidie

The humeri of the Leporide are all much alike in form and proportions, and the humeri of the Ochotonidæ differ but slightly from them in these respects. The variations in this bone in the different genera are few, hard to define, and apparently of little significance. They are as follows:

The groove that subtends the internal condyle is best marked in members of the genus Lepus. It is well marked also in Sylzilagus, Oryctolagus, and Pronolagus, but in Limnolagus and Romerolagus is much less developed and in Pentalagus it is very slight. Brachylagus occupies an intermediate position between these last two degrees of development. In Pcntalagus the double trochlear surface at the distal extremity of the humerus differs from the same structure
in the other genera in having its two portions very unequally developed, the main one being very broad and shallow, and the external portion much reduced.

Brachylagus and Romcrolagus have the slenderest humeri ; Oryctolagus and especially Pcntalagus have rather thick, heavy ones. All the other groups may be said to have moderately developed humeri.
The external condyloid ridge is very short and poorly developed in all the hares. Romerolagus has the most prominent external condyloid ridge; Brachylagus has a ridge as wide but not so long; Limnolagus has a short and comparatively wide ridge, but only a trifle more conspicuous than the ridge in Sylzilagus or in the other genera.

Ochotonide

The humeri of the Ochotonidæ have a strong resemblance to those of the Leporidæ. The head of the bone is more globular in the former, the bicipital groove does not encroach on its anterior surface.

The tuberosities of the humeri of Ochotona bear about the same general proportions to one another that they do in the hares and rabbits. The greater tuberosity does not project so far upward in Ochotona as it does in the Leporida, so that the head of the humerus is the highest point of the bone, while in the hares and rabbits the greater tuberosity is the highest point.

When viewed from the side, the head of the humerus in the pikas is seen to project farther backward than in the hares, and to form a sort of hook with the shaft of the bone.

The double trachlear surface at the distal end of the humerus is shallow and wider in Ochotona than in any of the Leporidæ.

The groove subtending the internal condyle is rather shallow and inconspicuous in Ochotona; it is developed to about the same degree that it is in Romerolagus.

RADIUS AND ULNA

Leporide

(Plate XCVIII, i-io)

The bones of the forearm of the Leporidæ show some interesting differences among the various genera, in regard to their relative development and the length of the radius compared with the length of the humerus.

The radius and ulna are always perfectly distinct, but they are in contact with one another throughout the greater part of their extent. At the point of contact there is a certain amount of fusion, but at the same time each bone maintains its individual distinctness.

11

In the upper part of the forearm, the radius lies in front of the ulna, while at the distal extremity the radius is found toward the imner side.

The radius in general is flattened antero-posteriorly, presenting a rather flattened posterior surface and a convex anterior one. The upper extremity of the radius forms the inferior portion of the sigmoid notch for articulating with the double trachlear surface of the lower end of the humerus. The lower extremity of the radius is rather enlarged and its distal surface is concave, the concavity inclining to be double for articulating with the scaphoid and semilunar bones of the wrist.

The ulna in general lies behind the radius and toward the outer side. In some cases the shaft of the ulna is more heavily built than the shaft of the radius, while in other cases it is very much reduced. The outer part of the lower end of the ulna is prolonged downward into a convex articular surface which fits into a corresponding concavity formed jointly by the cuneiform and pisiform bones. This projecting part of the ulna is the only part of that bone which articulates with the carpus in the case of the Leporidæ. In the case of the Ochotonidx, however, there is a concave facet internal to this projection which articulates with a corresponding convexity on the cuneiform. A condition approaching this is found in Pentalagus, Romerolagus, Brachylagus, and in some skeletons of Sylvilagus and Lepus.

In the genus Lepus the ulna is much reduced in size along the middle of the shaft, and except at the lower extremity it is placed almost entirely behind the radius. The radius itself is rather long and slender. The humerus and radius are usually subequal in length. In the subgenus Macrotolagus, at least so far as the limited material shows, the radius is slenderer than it is in the two other subgenera, Lepus and Pacilolagus, and it is decidedly longer than the humerus.

In the genera Sylailagus, Pronolagus, and Limnolagus the radius and ulna are subequal in size, the ulna not being reduced in the middle part of the shaft. The ulna is situated external to the radius rather than behind it as in Lcpus. Both radius and ulna as a rule are moderately slender. The radius equals the humerus in length.

The condition of the bones of the forearm in Brachylagus is very similar to that just described, but the humerus is distinctly longer than the radius.

In Pcutalagus, in Romerolagus, and to a less extent in Oryctolagus the radius is slenderer than the ulna, except at the articular ends of the radius, where normal conditions exist. The humerus is distinctly longer than the radius, except in Oryctolagus where their lengths are subequal.

Ochotonide

(Plate XCVIII, ii)
In the Ochotonidæ the bones of the forearm resemble the ulna and radius of the Leporidæ in general form and position. The ulna is distinctly the larger of the two bones of the forearm throughout its whole extent. As noted in the description of that bone under the Leporidæ, the ulna has an extra facet at its distal surface for articulating with the carpus. The proximal articulating extremity of the radius maintains about the same relative size that it does in the Leporidæ, but the distal end is conspicuously reduced and the lower end of the ulna is correspondingly increased. The radius is distinctively shorter than the humerus.

CARPUS

Lepurides

(Figure 45, I-3)
The full number of carpal bones (nine) is found in the Leporidæ. An understanding of their form and position is best obtained from consulting the figures. In all the skeletons the bones have the same relative shapes, sizes, and positions.

The pisiform is one of the largest carpal bones and has considerable dorso-palmar depth, except in Pcntalagus where this depth is less and has about the same relative proportions that it has in Ochotona.
In the cuneiform, together with a small portion of the pisiform, is a cup-shaped depression into which fits the small romnded projecting head of the ulna. The internal and median portion of the proximal aspect of the cuneiform in most hares is scarcely at all developed, but in some of the skeletons (Pcutalagus, Romerolagus, Pronolagus, Brachylagus, and rarely in Sylzilagus and Lcpus) there is found internal to the cup-shaped cavity for the ulna, a small convex surface which articulates with the ulna internal to the projecting converity.

The os centrale is a flask-shaped bone, only the neck of which appears in an undissected carpus. The distal aspect of the necklike process articulates with the outer portion of the proximal end of the second metacarpal.

In some of the skeletons (and probably in all had they been carefully cleaned), in the angle between the unciform and the fifth meta-

2

5

3

Fig. 45.-Carpus of the Leporida and Ochotonida. 1. Dorsal view of right carpus of Sylvilagus floridanus mallurus, No. $16,2 \not+8$, Carlisle, Pennsylvania, enlarged nearly twice. 2. Proximal view of proximal row of carpal bones of same. 3 . Proximal view of distal row of carpal bones of same. 4. Dorsal view of right carpus of Ochotona saxatilis, No. 49,620, Oregon, enlarged nearly four times. 5. Proximal view of proximal row of carpal bones of same. 6. Proximal view of distal row of carpal bones of same. $a c$, accessory ossicle; c, os centrale; $c u$, cuneiform; $m c_{1}$, first metacarpal; $m c_{5}$, fifth metacarpal; $m g$, os magnum; $p s$, pisiform : sc, scaphoid; sm, semilunar; t, trapezium ; $t d$, trapezoid; u, unciform.
carpal, is a small bone which Forsyth Major calls the carpale 5. He regards the unciform as carpale 4 only, instead of the fused carpalia 4 and 5. This small bone is otherwise known as the os vesalianum.

Осhotonid.e:

(Figure $45,4^{-6}$)
The carpus of the Ochotonidæ differs in several respects from the carpus of the Leporidæ. The pisiform has less dorso-palmar depth; the lunare is narrower; the internal half of the cuneiform is more largely developed, making up for the narrower lunare, and presents a well-developed convex facet for articulating with the ulna, in addition to the cup-shaped cavity formed by the cuneiform and pisiform jointly. The centrale is much larger than it is in the Leporidæ, and is not flask-shaped. The os magnum is reduced in size. A small os vesalianum is present.

METACARPUS

There are few points of interest about the metacarpus of either the Leporidæ or the Ochotonidæ; both have metacarpi of a generalized mammalian type. The first metacarpal is very short in both families. The fifth metacarpal is about twice or about two and a half times the length of the first. The middle metacarpal is the longest, but not much longer than the two subequal adjacent ones. The middle metacarpal is relatively longer in the Leporidæ than in the Ochotonidæ, with respect to the two metacarpals on either side of it.

The metacarpus, as a whole, is longer in the Leporidæ than it is in the Ochotonidæ. The width of the three middle metacarpals at their bases is contained about two and one-half times the length of the middle metacarpal in all the genera except Pcutalagus. In the Ochotonidæ, however, and in Pcutalagus of the Leporidæ the basal width of the three middle metacarpals taken together is contained only about one and one-half times in the length of the middle metacarpal.

PHALANGES

The phalanges are relatively longer in the Leporidæ than in the Ochotonidæ. In both families the length of the three phalanges of the middle digit about equals the length of the middle metacarpal, which bone, as noted above, is relatively longer in the hares and rabbits than in the pikas.

OS INNOMINATUM

Leporide

The os innominatum in all the genera of the Leporidæ is generally uniform in shape, differences being slight and apparently of not much importance, yet they are fairly constant for some genera or groups of genera.

In the genus Lepus, the ilinn is broad and shovel-like: the anterosuperior angle of the crest is rounded off, but not obliquely so as in the case of the other genera. The distance from the anterior edge of the acetabulum to the most anterior point of the ilium, is less than the distance from the same point to the most distant part of the ischinm, while in all the other genera the distance from the anterior edge of the acetabulum to the most distant point of the ilium is equal to or a little greater than the distance measured from the same point to the most distant part of the ischinm.

The obturator foramen is more rotund in Lepus than in most other genera.

In Oryctolagus, Sylzilagus, and Brachylagus the ossa innominata have about the same general form. There is nothing to distinguish these bones in the first two genera, but the innominate bone of Brachylagus can be distinguished by its smaller size and the greater prominence of the tubercle in front of the acetabulum and by a slenderer descending ramus of the pubis and shorter distance from the tuberosity of the ischium to nearest point of the obturator foramen. In the above three genera the ilium is not so wide and shovel-like as it is in Lepus. The anterior edge of the acetabulum is about equidistant between the extreme anterior and posterior points of the os innominatum, or just a little posterior to the equidistant point. The antero-superior angle of the ilium is obliquely rounded off. The thyroid foramen is usually less rotund than it is in Lepus.

The genus Limmolagus has wide ilia, much like those of Lepus, but the antero-superior angle is not obliquely rounded off. The antero-ventral angle is produced into a blunt, very short spine. The horizontal rami of the pubic bones slope backward more than they do in the other genera except Romerolagus.

The os innominatum of Roncrolagus closely resembles that of Limnolagus. The only marked differences, aside from its slender formation, is the more pronounced development of the short, blunt spine at the antero-ventral angle, and the straightness of the ventral edge of the ilium. In all the other groups except the genus Pronolagus the ventral edge of the ilium has a more or less pronounced concavity on its posterior half.

The genus Pronolagus has an os innominatum resembling in most respects that of Sylvilagus and Oryctolagus, but the ilium is even narrower than it is in them. Its ventral edge is straight, in this respect being like the ventral edge of the ilium of Romerolagus.

Ochotonid.e

The pelvis of the Ochotonidæ is very different from the pelvis of the Leporidæ. The most notable difference is the absence of the symphysis pubis. As none of the few available skeletons is sexed, it is impossible to say whether the difference is sexual or not. The pubic bones are widely separated from one another, but are connected by a ligament.

The os innominatum of the Ochotonidæ as a whole is longer and more slender than that bone in the Leporidæ. The ilium is less ex-
panded, thicker, its ventral third separated from the dorsal twothirds by a well-marked ridge, which terminates anteriorly and ventrally in a well-marked, recurved, pointed spine. The tuberosity of the ischium is not so heavy and it lacks the processes seen in the Leporidæ. The thyroid foramen is egg-shaped, the small end of the egg being directed forward toward the acetabulum.

The horizontal ramus of the pubis is very short, the descending ramus long, directed obliquely backward and downward.

FEMIUR

The femora in all the Leporidæ resemble one another very closely. The bone is stout and heavy in Pentalagus, it is relatively thicker in Oryctolagus than in the remaining genera, and it is slenderest in Brachylagus, but individuals vary much in this respect. Of two Lcpus campestris, one from Nebraska and the other from Kansas, one is relatively thicker than the other. The same individual variation is found in the series of skeletons of Syleilagus floridamus. In most of the skeletons the femur is a little shorter than the tibia. In Lepus (Macrotolagus) terianus, however, it is decidedly shorter, in Pcutalagus the two bones are subequal in length.

The femur in the Ochotonidæ has the same general characteristics that it has in Leporidæ, but it is a relatively thicker and heavier bone; the third trochanter is much reduced in size, the lesser trochanter is relatively larger, and the fossa behind the great trochanter is not so deep. Its length is a trifle less than that of the tibia.

TIBIA AND FIbLLA

(Plate XCIX)
The tibia and fibula show about as few variations in the different groups of the Leporidæ as do the femora. The fibula is a free, distinct bone above, but at a point somewhat above the middle of the tibia it becomes intimately fused with the bone and its identity is lost sight of from there on, in all the genera except Romcrolagus and Pentalagus, in which genera the fusion of fibula and tibia occurs at the middle of the latter bone. The point of fusion is highest in Lepus, next highest in Sylzilagus, Oryctolagus, Pronolagus, and Limmolagus, and in Brachylagus it is just above the middle point of the tibia. In Pcntalagus the tibia and fibula are relatively much heavier than they are in the other genera. In Romerolagus and Limmolagus also the tibia is relatively heavier than in the remaining

LEG BONES OF HARES, RABBITS, AND PIKAS (natural size). For explanation see page 447 .
genera. In both Romcrolagus and Limnolagus, especially the former, the tibia is more curved than it is in the other rabbits, the inner surface of the lower part of the shaft of the tibia being concave, as it is in Ochotona.
In most of the skeletons the greatest length of the foot is about equal to the length of the tibia. In Brachylagus and Sylailagus floridanus subsp. No. 94,197, from Nevada, the foot is longer than the tibia. In the subgenus Macrotolagus and in the genus Romerolagus the foot is shorter than the tibia.

The tibia and fibula in the Ochotonidæ are similar in form to the same bones in Romerolagus.

TARSUS

(Plate C)

The tarsal bones in all the skeletons show few differences among the Leporidæ, except as to size. The middle cuneiform is not fused to the base of the second metatarsal.

The tarsus of the Ochotonidre is in general like that of the Leporidæ. The middle cuneiform, however, is entirely fused with the base of the second metatarsal. The foot, as a whole, is relatively shorter than it is in the Leporidæ.

In the Ochotonidæ there are some small sesamoid bones, on the plantar surface of the tarsus, which are apparently lacking in the feet of the Leporidæ. These bones are discussed by Major at considerable length. Their true significance and functions cannot be well determined without the dissection of fresh material. The largest of these sesamoid bones is situated on the plantar surface of the base of the fifth metatarsal. In the Leporidæ this bone seems to have become fused with the base of the fifth metatarsal, where it forms a prominent tubercle.

METATARSUS

The metatarsals in both the Leporidæ and the Ochotonidæ are four in number, the first being suppressed. According to their relative lengths the metatarsi in the two families fall into four groups, as follows: The basal width of the metatarsus, measured from the tuberosity of the fifth to an opposite point on the second is contained about three times in the length of the third metatarsal in Lcpus. It is contained about two and a half times in Sylzildgus, Oryctolagus, Limnolagus, Brachylagus, and Pronolagus. It is contained two times in Romerolagus. In Pentalagus and Ochotona it is contained one and a half times.

PHALANGES

Little can be said regarding the toes. The two lateral digits are relatively longer in the Ochotonidæ than they are in Leporidæ. In Ochotona, Romcrolagus, Pronolagus, Limmolagus, Oryctolagus, and Brachylagus the combined lengths of the three phalanges approximately equals the length of the metatarsal to which they belong. In the other genera, Lepus and Sylvilagus, this is true of the middle digits only; in the case of the lateral digits the metatarsals are decidedly longer than the combined length of the corresponding phalanges.

V. OSTEOLOGICAL DIFFERENCES BETIVEEN OCHOTONIDE AND LEPORID.E

The principal osteological differences between the two families Ochotonidx and Leporidæ, discussed in the foregoing pages, are briefly set forth in the following table:

Осhotonide Leporide Skull

Not arched, flat, much constricted between the orbits.

Rostrum short and slender.
Nasals widest in front.
Palate very short.
Postorbital processes lacking.
Posterior free edge of malar very long.

Maxilla not conspicuously fenestrated.

Mental foramen of mandible far posterior to its usual position.

More or less arched, not flat, only moderately constricted between the orbits.
Rostrum long and stout.
Nasals not wider in front than behind.

Palate moderately short.
Postorbital processes well developed.

Posterior free edge of malar only moderately long.

Maxilla more or less conspicuously fenestrated.

Mental foramen of mandible anterior, in its usual position.

Tecth

Dental formula

$$
1 \frac{2}{1} \mathrm{C} \frac{0}{0} \mathrm{Pm} \frac{3}{2} \mathrm{MI}_{\frac{2}{3}}
$$

Enamel not crenated in reentrant angles of upper cheek teeth.

Cutting edge of first upper incisor V-shaped.

Third upper molar entirely wanting.

Second and fifth upper cheek teeth unlike third.

Last lower molar simple.

Dental formula

$$
\mathrm{I} \frac{2}{1} \mathrm{C} \frac{0}{6} \mathrm{Pm} \frac{3}{2} \mathrm{M} \frac{3}{3}
$$

(In one genus, Pentalagus, M_{3}^{2}).
Enamel usually crenated in reentrant angles of upper cheek teeth.

Cutting edge of first upper incisor straight.

Third upper molar small but usually present (absent in Pentalagus only).

Second and fifth upper cheek teeth entirely similar to third.

Last lower molar double.

l'ertebral Column

Transverse process of the seventh cervical not pierced by a vertebral foramen.

Thoracic vertebre seventeen in number.

Thoraco-lumbar vertebre twentytwo in number.

Spinous processes of thoracic vertebrex relatively short.

Spinous processes of lumbar vertebre relatively low.

Transverse processes of lumbar vertebre very short and wide.

No hypophyses on any of the lumbar vertebre.

Sacrum long and narrow, twice as long as wide.

Transverse process of the seventh cervical pierced by a vertebral foramen.
Thoracic vertebre twelve in number.

Thoraco-Lumbar vertebre nincteen in number.
Spinous processes of thoracic vertelrex relatively long.
Spinous processes of lumbar vertelree relatively high.
Transverse processes of lumbar vertebre long and slender.
Hypophyses found on the anterior three lumbar vertebre.
Sacrum wide and triangular about as wide as long.

Shoulder Girdle and Upper Extremity

Clavicle well developed.
Scapula with antero-superior angle much rounded off.

Acromion very long, three times the length of actual scapular spine.

Supraspinous fossa of scapula narrow.

Dorso-pahmar depth of pisiform not pronounced.

Internal half of cunciform more largely developed, presenting a well developed convex facet for articulation with the ulna, in addition to the cup-shaped cavity formed by the cumeiform and pisiform together.

Centrale larger, not flask-shaped.
Os magnum smaller.
Width of three middle metacarpals at base contained about one and a half times into length of the middle metacarpal.

Clavicle small and rudimentary.
Scapula with antero-superior angle not much rounded off.
Acromion long, about half the length of the actual scapular spine.
Supraspinous fossa of scapula much wider.
Dorso-palmar depth of pisiform very great, except in Pentalagus.

Internal half of cuneiform not largely developed nor presenting a well developed convex facet for articulation with the ulna, though sometimes such a condition is indicated.
Centrale smaller, flask-shaped.
Os magnum larger.
Width of thrce middle metacarpals at base contained about two and a half times into length of the middle metacarpal, except in Pentalagus.

Pelvis and Lozver Extremity

Pubic symphysis absent.
Antero-ventral angle of ilium with a well-marked recurved spine.
Middle cunciform bone of the foot intimately fused with the base of the second metatarsal.

Basal width of the metatarsals taken together contained less than twice into the length of the metatarsals.
A large sesamoid hone on the plantar surface of the fifth metatarsal.

Pubic symphysis well marked.
Antero-ventral angle of ilium without a well-marked recurved spine.

Middle cuneiform of foot not fused with the base of the second metatarsal.
Basal width of the metatarsals contained two or more times into the length of the metatarsals, except in Pentalagus one and a half times.
A prominent tubercle on the base of the plantar surface of the fifth metatarsal.
VI. KEYS TO FAMIILIES, GENERA, AND SUBGENERA OF THE DUPLICIDENTATA, BASED ON DENTAL, CRANIAL, AND OTHER SKELETAL CHARACTERS
A. Key to the Families and Genera of Existing Hares, Rabbits, and Pikas, Based Manly on Dental Characters
a) Dental formula: I $\frac{2}{1}, \mathrm{C} \frac{0}{0}, \mathrm{Pm} \frac{3}{2}, ~$ I $\frac{2}{3}$, second upper molariform tooth unlike third in form. Family Осhotonide, genus Ochotona, p. 43 r.
$\left.a^{\prime}\right)$ Dental formula usually I $\frac{2}{5}, \mathrm{C} \frac{0}{0} . \mathrm{Pm} \frac{3}{2}, \mathrm{M} \frac{3}{5}$ (in Pcntalagus the molars are $\frac{2}{3}$), second upper maxillary tooth like third in form. Family, LepoRID.E. p. 389.
b) Reentrant angle of second upper maxillary tooth short and not crenated.
c) Reentrant angle extends one-third way across the tooth, genus Nesolagus, p. 425.
c^{\prime}) Reentrant angle extends half way across the maxillary teeth, genus Brachylagus, p. 41 I.
b^{\prime}) Reentrant angles of second, third, fourth, and fifth maxillary teeth with sides crenated.
d) First lower premolar divided into an anterior and a posterior portion by two reentrant angles, one extending from the external, the other from the internal face to the center of the tooth.
c) Anterior face of first lower premolar without reentrant angles. Genus Romerolagus, p. 420.
c^{\prime}) Anterior face of first lower premolar with two reentrant angles.
f) Posterior limb of reentrant angles of second, third, and fourth mandibular cheek teeth with antero-posterior convolutions nearly as long as the antero-posterior diameter of the posterior portions of the teeth. Genus Pcntalagus, p. 428 .
f^{\prime}) Posterior limb of reentrant angles of second, third, and fourth mandibular cheek teeth with normal convolutions, not nearly so long as the antero-posterior diameter of the posterior portions of the teeth. Genus Pronolagus, p. +16.
d^{\prime}) First lower premolar divided into an anterior and posterior portion by a single deep reentrant angle extending entirely across the tooth from its external surface.
g) First lower premolar with but one reentrant angle on its anterior face. (Some Mexican Sylzilagus have two.)
h) Sutures of the interparietal obliterated in the adult, genus Lepus, p. 389.
i) Groove on incisors not filled with cement. Subgenus Pacilolagus, p. 395. Also some Lepus and Macrotolagus.
${ }^{1}$) Groove on incisors filled with cement.
j) Groove deep and simple. Mostly subgenus Lepus, p. $39+$
j^{\prime}) Groove deep and bi- or tri-furcated. Mostly subgenus Macrotolagus, p. 395.
h^{\prime}) Sutures of the interparietal distinct throughout life.
k) Choane narrow. Genus Oryctolagus, p. 402.
k^{\prime}) Choane not narrowed. Genus Sylvilagus, p. 396.
g^{\prime}) First lower premolar with two crenated reentrant angles on its anterior face.
l) Internal face of anterior portion of first lower premolar without reentrant angle. Genus Limnolagus, p. 406.
l^{\prime}) Internal face of anterior portion of first lower premolar with reentrant angle. Genus Caprolagus, p. 426.
B. Key to the Families, Genera, and Subgenera of Existing Hares, Rabbits, and Pikas, Based on Cranial Characters
a) Postorbital process absent, skull flat, much constricted between orbits, rostrum short and slender, nasals widest in front, bony palate very short, posterior free edge of malar very long, maxilla not conspicuously fenestrated, mental foramen of mandible situated under last lower molar. Family Ochotonide, genus Ochotona, p. 43 r .
b) Interorbital region very narrow and pinched up and stronglv arched from before backward. Subgenus Ochotona, p. 438.
b^{\prime}) Interorbital region moderately broad, not compressed laterally nor arched from before backward.
c) Brain case and whole skull very flat, rostrum slender, its origin abrupt, no foramen in the anterior part of the frontal bone. Opening in maxilla single, roundly triangular. Incisive foramina constricted into two unequal portions. Subgenus Pika, p. 438 .
$\left.c^{\prime}\right)$ Brain case rather rounded, whole skull moderately arched from before backward, rostrum relatively long and heavy, its origin not abrupt, a small oval foramen in frontal bone. Opening in maxilla elongated triangular with a small amount of fenestration just beneath it. Incisive foramina triangular in outline, not constricted into two unequal portions. Subgenus Conothoa, p. 438 .
a^{\prime}) Postorbital process well developed, skull arched from before backward, moderately constricted between the orbits, bony palate only moderately short, rostrum long and stout, nasals widest behind, posterior free edge of malar only moderately long, sides of maxilla more or less conspicuously fenestrated, mental foramen of mandible situated under first lower cheek tooth. Family Leporine.
d) Postorbital process attached to the side of the skull for its whole length. Genus Liminolagus, p. $\ddagger 06$.
d^{\prime}) Postorbital process not attached to the side of the skull for its whole length, bounding well marked foramina or notches.
e) Postorbital process small, without anterior limb, the single posterior limb pointed, directed outward and backward, bounding a distinct notch. Bony palate long.
f) Nasals relatively short, as broad in front as behind.
$\cdot g$) Incisive foramina elongated triangle in outline, postorbital process smaller and pointed. Genus Caprolagus, p. 426.
g^{\prime}) Incisive foramina, not triangular in outline, small, their sides approximately parallel, postorbital process larger and blunter. Genus Pentalagus, p. +28 .
f^{\prime}) Nasals relatively larger, wider behind than in front.
h) Audital bulla much reduced in size, smaller than foramen magnum. Genus Pronolagus, p. 416.
h^{\prime}) Audital bulla normal, as large as the foramen magnum. Genus Romerolagus, p. 420.
f^{\prime}) Postorbital process large with distinct anterior and posterior limbs, bony palate relatively shorter, usually less than its posterior third formed by the horizontal plates of the palate bones.
i) Interparietal not present as a distinct bone in adult life. Genus Lepus, p. 389.
j) Skull shortened and arched, posterior limb of postorbital not touching the sides of the cranium.
k) Size large, postorbital process wide and heavy, nasals and rostrum wider and heavier. Spmes of lumbar vertebre well marked. Subgenus Lepus, p. $39+$.
k^{\prime}) Size medium, postorbital process rather slenderer, nasals and rostrum narrower. Spines of lumbar vertebre low and triangular. Subgenus Pacilolagus, p. 395.
$\left.j^{\prime}\right)$ Skull elongated, less arched, posterior limb of postorbital meeting side of cranimm and enclosing a large foranen. Sulgenus Macrotolagus, p. 395.
i^{\prime}) Interparietal present as a distinet bone in adult life.
l) Choane very narrow, pharyngeal vault high, distance bebetween vertical plates of palate bones less than least length of bony palate. Posterior limb of postorbital not meeting side of skull. Genus Oryctolagus. p. toz.
l^{\prime}) Choanse not remarkably narrow, the distance between the vertical plate of palate bones equal to or greater than the least length of bony plate.
m) Skull and rostrum shortened, arched, audital bullie very large. Postorbitals slender, neither its anterior nor its posterior limb touches the side of the skull. Genus Brachylagus, p. 41 I.
m^{\prime}) Skull and rostrum not relatively shortened, audital bullae not greatly enlarged, posterior limb of postorbital usually in contact with side of the cranium, rostrum heavier. Genus Sylvilagus, p. 396.
n) Posterior limb of postorbital always meeting side of cranium, and inclosing a clavate slit narrower than the process itself. Sulgenus Sylizi'agus, p. for.
n^{\prime}) Posterior limb of postorbital not meeting the side of the cranimm, or if it does, enclosing a clavate slit as wide or wider than the process itself. Rostrum slenderer. Subgenus Microlagus, p. ұо2.
C. Key to the Families and Generi of ILares, Rabits, and Pikas, Based on Skeletal Characters Otier tilan Cranial
(Because of insufficient material, the genera Caprolagus, I'cntalagus, and Nesolagus can not be incorporated in this key.)
a) Transverse process of 7 th cervical vertebra, with no vertebral foramen, thoracic vertelrae 17, humbar vertebre 5, sacrum much longer than wide. Acromion about 3 times the length of actual scapular spine, foot short, basal width of metatarsals contained $11 / 2$ times into length of longest metatarsal. Family Ochotonibe. Genus Ochotona, p. 431.
a) Transverse process of 7 th cervical vertebra, with no vertelral foramen, thoracic vertebre 12 , lumbar 5, sacrum as wide as long. Acromion process about half the length of the actual scapular spine, foot long, basal width of metatarsals contained at least 2 times and usually $21 / 2$ times into the length of longest metatarsal. Family Leporides.
b) Cervical vetrebre lengthened individually, wha much reduced in size, smaller than radius and behind that bone, ventral half of anterior ribs much broadened. Genus Lepus, p. 394.
b^{\prime}) Cervical vertebre individually shortened, uha and radius subequal in size, the ulna toward the outer side of radins. Ventral half of anterior ribs not broadened.
c) Transverse processes of the lumbar vertebre not conspicuously ridged, and the angle between the process and the side of the centrum not conspicuonsly filled in with thin bone.
d) Tubercles of anterior ribs not well marked. Genus Pronolagus, p. +16.
d^{\prime}) Tubercles of anterior ribs usually well marked.
c) Presternum with well marked keel, xiphisternum large and stont, equally enlarged at both ends, longer than presternum. Genus Oryctolagus, p. 402.
c^{\prime}) Presternum with keel not well marked, xiphisternum shorter than presternum. Genus Sylailagus, p. 396.
c^{\prime}) Transverse processes of lumbar vertebre conspicuously ridged or else angle between the process and the side of centrum conspicuonsly filled in with thin bone.
f^{\prime}) Anterior portion of presternum conspicuonsly enlarged, like presternum of Ochotona. Genus Romerolagus, p. 420.
f) Anterior portion of presternum not conspicuonsly enlarged.
g) Size small, each transverse process of the lumbar vertebree with a well marked longitudinal ridge. Genns Brachylagus, p. 41 I .
g^{\prime}) Size larger, angle between transverse process and side of centrum of lumbar vertebre filled in with thin bone. Genus Limnolagus, p. $\ddagger 06$.
VII. DETAILED ACCOUNT OF THE GENERA AND SUBGENERA OF THE EXISTING HARES, RABBITS, AND PIKAS

Family LEPORIDた

Genus LEPUS Linnæus

1758. Lepus Linntius, Syst. Nat., ioth ed., 1, p. 57.

I829. Chionobates Kac'p, Entw. Gesch. und Natur. Syst. Europ. Thierwelt, I, P. 170.
1867. Lepus Gray, An11. Mag. Nat. Hist., Nx, 3d ser., p. 222.
1900. Lepus Major, Trans. Linn. Soc. London, 3d ser., vin, Zool., p. 5i4, November, 1899.
Type.-Lepus timidus Linnæus.
Geograplical Distribution.-The genus Lepus is found throughout nearly every portion of the world except Australia, Madagascar, and South America.

Diagnosis.-Pelage soft, a patch on throat different in color and texture from surrounding fur, ears as long as or longer than head, tail short but plainly evident. Hind feet long, heavily clothed with hair, claws not conspicuous. Sutures of interparietal obliterated in the adult, postorbital processes large and triangular, with distinct anterior and posterior limbs. Palate short, its least length two and one-half or less times the length of n^{1}, choanee wide, about four times length of m^{1}. Teeth normal as described on page 391.

Skull (pls. LXXIV, LXXY, LXXX-LXXXy).-The postorbital processes are large and spreading, usually distinctly triangular, standing out from the side of the head and considerably arched from before backward.

The sutures of the interparietal are obliterated at an early age, so that in adult life the interparietal is not distinguishable as a separate bone. Apparently the only other genera of the Leporidæ in which this condition occurs are Pronolagus and Pentalagus.

The bony palate is very short, but not relatively so short as it is in Brachylagus. The horizontal plates of the palate bones form between a fourth and a third of the bony palate. The posterior portion of the palate bone, bordering the edge of the maxilla, caudad of the posterior edge of the bony palate, is very slightly developed and scarcely enters into the formation of the roof of the mouth.

The posterior palatine foramina are of moderate size and located between the palatine plate of the maxilla and the horizontal plate of the palate bone, at the anterior outer angle of the horizontal plate.

As in Brachylagus, the choanæ are wide in the genus Lepus. The length of the bony palate, taken at a point midway between the median line and the dental alveoli, is decidedly less than the least distance between the vertical plates of the palate bones.

The incisive foramina are wide; their greatest width much exceeds the length of the bony palate, measured midway between the median line and the dental alveoli.

The zygoma is deep, but not thickened. The foot-like extremity of the zygomatic process of the squamosal is shorter in Lepus than
in most of the other genera. The external lateral length of the squamoso-malar suture is contained about twice in the superior border of the zygoma, measured from the anterior end of the squamoso-malar suture to the antero-inferior angle of the orbit. The antero-inferior angle of the zygoma is only slightly enlarged in Lepus. The posterior free projecting extrenity of the malar is short.

The audital bullæ, the fenestration of the maxillæ, and the shape of the mandible throughout the genus show nothing distinctive and may be said to represent normal degrees of development.

Tecth (pl. xci, 6).-The following are the dental characters of the genus Lepus: Front upper incisor with longitudinal groove in anterior face, more or less deep, simple or branched internally, filled or unfilled with cement. First upper maxillary tooth has typical folding of enamel on the anterior surface, a deep median reentrant angle, on either side of which is a smaller reentrant angle. The first lower molariform tooth, divided into two portions by a single reentrant angle from the external face, has a small reentrant angle on its anterior surface, and a shallow broader reentrant angle on the external surface of the anterior half of the tooth. The second, third, fourth, and fifth upper molariform teeth show each a deep reentrant angle extending from the internal face about three-quarters the distance across the tooth; the adjacent edges of this angle are almost in contact with one another throughout their whole extent. The enamel of the reentrant angles is beautifully crenated. The lateral diameter of the posterior half of each of the second, third, and fourth lower molariform teeth is about four-fifths the lateral diameter of the anterior half of the tooth. The last upper molar is a small elliptic cylinder: the last lower molar is a small double cylinder in form, the anterior half of which is larger and elliptical, the posterior half terete.
Vertcbral Column.-The cervical vertebre (pl. xcir, 7-9) of Lepus have a form characteristic for the genus and are uniformly lengthened as compared with the same series of vertebre in the other genera. The costo-transverse process does not project laterally from the centrum to a marked extent, and the anterior and posterior spines of the same are more elongated.

The thoracic vertebre show practically nothing characteristic of Lepus. The neural spines in the anterior part of the series equal about two and a half to three times the length of their centra. The anticlinal vertebra is usually the eleventh, but it may be the tenth. A well-developed metapophysis is found on the ninth thoracic.

The lumbar vertebre ($\mathrm{pl} . \mathrm{xcin}, \mathrm{I}, 2$) have transverse processes peculiar to this genus. They are wide and long with the free extremity considerably expanded. The length of the longest process equals the length of the centrum to which it is attached and half the length of the centrum in front. The attached portion of the transverse process arises abruptly from the anterior half of the side of the centrum. The anapophyses are indicated by a mere ridge or tubercle. Hypophyses are developed on the first three lumbars, the first being the shortest and the third the longest.

Except in absolute size the sacra in all the skeletons but one differ in no respect from the sacra of the other genera. The single exception is No. 49,621, from the Jumna river, India. The narrow posterior part of this sacrum is very narrow from side to side. The expanded wing-like portion to which the ilia are attached is very narrow. In general its shape, as seen from below, is like a T. The adjacent edges of the first and third, and of the third and fourth sacral neural processes are in contact.

The total number of caudal vertebræ varies from thirteen to fifteen ; of these the first is long and with a complete neural arch, the next five or seven, usually seven, are of the form having more or less evident broad transverse processes, the remaining five to seven are small rudimentary centra, without processes.

Stcrnum and Ribs (pls. xciv, 1,$2 ; \mathrm{xcv}, 3,4$).-The sternum of the genus Lepus is not very characteristic. The presternum is long and narrow, compressed laterally into a keel, which is most prominent anteriorly. The first rib articulates with it at the junction of the first and second fourths, or first and second thirds. The mesosternum consists of four distinct segments, of which the first is narrow and compressed, the remaining three are not compressed, and are often flattened dorso-ventrally. All the mesosternal segments in general are subequal in length, and each successive one grows wider. The xiphisternum is about equal to the presternum in length; its anterior end is considerably enlarged where it articulates with the last segment of the mesosternum. Its posterior free extremity is rather pointed and only slightly larger than its narrowest portion.

The form of the ribs is quite characteristic for the genus Lepus. The spine-like portions of the tubercles of the ribs are well developed and prominent. The eighth pair of ribs is the last pair bearing these tubercles. The second, third, fourth, and fifth ribs are very flat and broad on the ventral half of their sliafts. The greatest width of one of these ribs, just behind the spine and tubercles, is very much less than the width of the slaft in its lower portion. Seven pairs of ribs
articulate with the sternum. The sternal costal cartilages are very short and wide as compared with the same structures in the other genera.

Shoulder Girdle and Upper Extremity.-The scapula (pl. xcrin, 1, 2) in Lepus, especially in the larger members, has a tendency to be relatively broad, with the superior border rather more convex than it is in the other genera, with the antero-superior angle more rounded, and with the supra-spinous fossa relatively wide.
The radius and ulna (pl. xcyiII, I-3) show characteristics peculiar to the genus. The ulna is much reduced in size along the middle of the shaft, and except at the lower extremity it is placed almost entirely behind the radius. The radius itself is rather long and slender. The humerus and radius are usually subequal in length.
The carpus, the metacarpus, and the phalanges of Lepus are entirely similar in form and position to these same bones in any of the Leporidæ as detailed in the general account of the wrist and the hand.

Pcliis and Lower E.rtromity.-The ilium is broad and shovel-like in the genus Lcpus; its antero-superior angle is rounded off, but not obliquely so, as in the case of the other genera. The distance from the anterior edge of the acetabulum to the extreme anterior point of the ilium is less than the distance from the former point to the most distant point of the ischium. In all the other genera the former distance is usually equal to or a little greater than the latter. The obturator foramen is usually more rotund in Lcpus than in the rest of the family.

The femur and the tibia and fibula (pl. xcix, i) of Lcpus are typical for the family, as detailed in the general account and show nothing that is peculiar to the genus.

The basal width of the metatarsus is contained two and a half or more often three times into the length of the third metatarsal, as is commonly the case among the Leporidæ (pl. c, 6).

The combined length of the phalanges of the two lateral digits is less than the length of the metatarsal to which they belong. The combined length of the phalanges of the middle two digits approximately equals the lengths of the metatarsals to which they belong.

The genus Lepus possesses a number of skeletal characters quite peculiar to itself and serving to separate it at once from all the other genera of the Leporidæ. Among these are form of postorbital processes, shortness of palate, reduced size of ulna, shape of anterior ribs, shape of transverse processes of lumbar vertebre, and the elongated form of the cervical vertebree. Not one of these charac-
ters is found in any of the other genera. To these might also be added the obliteration of the sutures of the interparietal in the adult, which is nearly as characteristic.

Thus there is considerable foundation for Major's view that the existing hares and rabbits fall into two supergeneric groups, one containing Lepus, and one containing the other genera, which he designates as Caprolagus. It is the writer's opinion, however, that Major's group, Caprolagus, contains many genera as well defined as Lepus.

The genus Lepus has the most extensive geographic distribution and the greatest number of species of any of the Leporidæ. As would be expected, there are several groups of these species, constituting at least three well-marked subgenera for forms from North America and northern Eurasia described below. There are a number of skulls at hand, however, from central and eastern Asia and from Africa, which it is impossible to classify satisfactorily, owing to lack of material, and no provision is made for these in the present discussion. For a list of these specimens see page 335 .

Subgenus LEPUS Linnæus

1758. Lepus Linneés, Syst. Nat., Ioth ed., I, p. 57.
1759. Lepus Mlajor, Trans. Linn. Soc. London, 2d ser., viri, Zool., p. 514 , November, 1899.
Typc.-Lepus timidus Linnews.
Geographical Distribution.-Mainly the northern portions of the New and Old Worlds.

Diagnosis.-Size large, ears moderate, greatest length of skull nearly 100 m111. ; skull broad, postorbital broader than notch it subtends, its posterior limb not touching side of cranium.

The skull is broad and strongly arched. The rostrum is shorter and broader and the brain case is broader and the nasals shorter and broader than they are in the other members of the genus Lcpus. The postorbital processes are broad and triangular, neither the anterior nor the posterior limbs touch the sides of the cranium, but help to bound well-marked anterior and posterior notches.

Tceth (figure 44, 19-2). -The groove on the front of the incisors is fairly deep, is simple and usually filled with cement.

This subgentus apparently possesses no other skeletal character.
Species included in this subgentus, see p. 334.

Subgenus PCECILOLAGUS, new

Type-Lepus americanus Erxleben.
Gcographical Distribution.-The Canadian, Hudsonian, and Transition zones of North America.

Diagnosis.-External, cranial, and dental characters essentially as in subgenus Lepus, but size smaller, greatest length of skull about 75 mm., portorbital process slenderer than in Lcpus, its posterior limb free behind, rostrum more pointed, groove on incisors simple, shallow, and without cement. Spinous processes of lumbar vertebre low and triangtilar in form.

Skull (pls. LXXY, I; LXXYI, I, 4: LXXXIV; LXXXY, 6-12).-The members of this subgenus are hares of medium size, the skull being about 75 mm . long. The skull is less strongly arched than it is in the true Lcpus, but not so flat and long as in Macrotolagus. The nasals and rostrum are narrower than they are in Lepus. The postorbital processes are much slenderer, less triangular than they are in Lepus or Macrotolagus, free both in front and behind. They bear considerable resemblance to the postorbital seen in Oryctolagus.

Tecth (figure 44, 18).-The first upper incisors bear each a simple shallow groove not filled with cement. The remaining teeth are as in true Lepus.

Vertcbral Columm.-The spines of the anterior dorsal vertebræ are relatively shorter than they are in true Lepus, being equal to about two and a half times the length of the centra, instead of three times. The spinous processes of the lumbar vertebre (pl. xcirr, 2) are also relatively lower in Pocilolagus than in Lepus; they are triangular in outline, with the posterior edge nearly straight, while in the other subgenera the posterior edge is much cut out.

Species included in this subgenus, see pp. $33+$ and 335 .

Subgenus MACROTOLAGUS Mearns

1896. Macrotolagus Mearns, Proc. U. S. Nat. Mus., xvili, p. 55², June 24, 1896.
1897. Macrotolagus Major, Trans. Linn. Soc. London, ad ser., vii, Zool., pp. 468,469 , November, 1899.
Type-Lepus alleni Mearns.
Geographical Distribution.-Mexico and the sonthwestern United States.

Diagnosis.-Size large, as in subgenus Lepus, ears longer than head or hind foot, skull narrow, posterior limb of postorbital touching side of cranium, enclosing an oval foramen.

Skull (pls. Lxxiv, i; Lxxy, 2 ; Lxxxif; Lxxxiif).-The skull of Macrotolagus is large and slender. It is not arched as in the subgenus Lepus. The nasals are larger and narrower, the brain case is narrower, and the choanæ somewhat narrower. The postorbital processes are larger, rather longer than they are in the true Lcpus, and their posterior angles are always attached to the side of the cranium enclosing large foramina.

Tecthe (figure 44, 11-17). -The groove on the front of the incisor teeth in this subgenus may be perfectly simple and not filled with cement as it is in Lepus (Macrotolagus) californius, but more often it is deep and filled with cement as in L. (M.) tc.rianus, where the groove is simple, and in gaillardi, alleni, merriami, where the groove is bifurcated internally, and in callotis and asclus where the grove is trifurcated internally. This is the only group of the Leporidæ in North America that shows this complicated folding of the groove internally, but at the same time some members of it do not show it. When found in a North American rabbit this folding of the groove on the incisor is diagnostic of the subgenus, but when not found it is without significance.
l'crtcbral Column.-The length of the neural spines is a little greater than it is in either the subgenus Lepus or Pacilolagus. In the latter two it is about three times the length of the centrum in the anterior part of the thoracic series of vertebre; in Macrotolagus it is a little over three times the length of the centrum.

Upper Extremity (pl. xcriri, 2).-The radius is slenderer than in the other members of the genus Lepus and longer than the humerus, while in the other subgenera, the humerus and radius are about equal in length.

Species belonging to this subgenus, see p. 335 .

Genus SYLVILAGUS Gray

1867. Sylvilagus Gray, Ann. Mag. Nat. Hist., xx, 3d ser., p. 22 i.
iSg6. Syluilagus Mearns, Proc. U. S. Nat. Mus., xvini, p. 551, June 24, 1896.
1868. Sylvilagus Major, Trans. Linn. Soc. London, 2d ser., vir, Zool., p. 5 It, November, I899.
Type.-Syzilagus floridamus mallurus (Thomas).
Geographical Distribution.-In general, North America south of the northern border of the United States and in South America.

Diagnosis-External and dental characters as in Lepus. Skull essentially like that of Lepus except that sutures of interparietal are always distinct; the postorbital process is long and narrow, its
posterior limb tonching the side of the cranium and helping to bound a clavate foramen. Rarely the process fails to meet the cranium.

Skull (pls. Lxyi, 7-IO : Lxvii, i, 2 ; Lxxxil ; Lxxxyif). -The postorbital processes are long and narrow, attached to the skull by a very broad pedicle. The whole anterior part of the process, with the exception of a millimeter or two, is attached to the skull and a very small anterior notch is thus formed. The posterior part of the postorbital process is long and narrow, not triangular. Its imner posterior edge usually touches the cranium and the process thus forms a narrow clavate slit. The amount of fusion of the postorbital process is subject to considerable variation. In one individual, Sylzilagus floridams mearnsi, from Illinois, complete fusion of the postorbital with the side of the skull takes place and the usual clavate slit is obliterated. In Sylvilagus arizonc and its forms the anterior portion of the postorbital process is not so extensively fused with the frontal bone and a larger anterior notch is found than in the more typical forms. In the most highly differentiated forms of the subgenus Microlagus, viz., bachmani, the postorbital process is attached by a comparatively narrow pedicle, a large notch is found in front, and as the posterior end of the postorbital does not meet with the cranium a large notch is found posteriorly instead of the usual clavate slit. In No. 63.957, Sylzilagus bachmani, from Posts. California, the posterior extremity of the postorbital almost touches the cranium. Skulls of S. (Microlagus) cincrascens show conditions ranging from those seen in No. 63.957 to conditions very similar to those found in typical Sylzilagus, but the posterior clavate slit is always relatively wider. Intermediate conditions are thus found from the extreme freedom of the postorbital seen in S. bachmani, No. 35.131, Nicasio, California, passing through S. cincrascons and then S. arizonc and normal typical Sylailagus, to the atypical skull, from Illinois, No. 22,409, where the postorbitals are entirely fused to the sides of the cranium.

The bony palate in true Sylzilagus is rather short, slightly larger relatively than it is in Lepus or Brachylagus, but shorter than in any of the other genera. Its length half-way between the median line and the dental alveoli about equals the greatest width of the incisive foramina and also the distance between the vertical plates of the palate bones. In the Sylzilagus arizonc group the palate is shorter than in typical Sylitilagus: its length half-way between the median line and the dental alveoli is less than the width of the incisive foramina and about equals the distance between the vertical plates of the palate bones, which are here closer together than in
any of the rabbits except those of the genus Oryctolagus. The portion of the palate bone that borders the maxilla caudad of the posterior edge of the bony palate is poorly developed in Sylzilagus.

The posterior palatine foramina are of moderate size and located between the palatine plate of the maxilla and the horizontal plate of the palate bone, at the anterior outer angles of the horizontal plate.

The zygoma of Sylzilagus is thin and shallow. The foot-like extremity of zygomatic process of the squamosal is short, the external lateral length of the squamoso-malar suture is contained about two times into the superior border of the malar measured from the anterior end of the squamoso-malar suture to the antero-inferior angle of the orbit. The antero-inferior end of the zygoma is only slightly enlarged. The posterior free extremity of the malar is short.

The audital bullæ, the external auditory meatus and the fenestration of the maxille in Sylzilagus show nothing distinctive and may be sad to represent normal degrees of development.

The angular process of the mandible is rather larger and more rounded, as compared with Lcpus. The ascending ramus is of moderate development, resembling that of Lcpus.

Tceth (pl. xci, 9: figure 44, 2 and 3). -The following are the characters of the teeth of the genus Sylzilagus, which, with the exception of the front upper incisors and first lower premolar, and smaller size throughout, are not different from those of the teeth of Lepus: First upper incisors with longitudinal groove in anterior face always simple, usually shallow and filled with cement only in a few specimens from Mexico. The first upper maxillary tooth has typical folding of enamel on the anterior surface, a deep median reentrant angle on either side of which is a smaller reentrant angle. The first lower molariform tooth has a small reentrant angle on its anterior surface and a shallow, broader reentrant angle on the external surface of the anterior half of the tooth. In some of the specimens of Sylzilagus, from Mexico, the anterior face of this tooth is marked by two reentrant angles, instead of the usual one, the tooth in this case resembling the first lower premolar of Limnolagus. The second, third, fourth, and fifth upper molariform teeth show each a deep reentrant angle extending from the internal face about three-quarters the distance across the tooth ; the adjacent edges of this angle are almost in contact with one another throughout their whole extent. The enamel of the reentrant angle is crenated. In the second, third, and fourth lower molariform teeth the lateral diameter of the posterior half of each tooth is about four-fifths of the lateral diameter
of the anterior half of the tooth. The last upper molar is small with an elliptic cross section. The last lower molar is a small double cylinder in form, the anterior half of which is farger and elliptic in, section, the posterior half terete.

Vertebral Column.-The cervical vertebre (pl. xcir, 5) of Sylzilagus have nothing to distinguish them from the same vertebre of many other genera, being noticeably different from those of Lepus and Pronolagus only. The cervicals are miformly shortened, the costal processes project laterally farther from the sides of the centrum, the anterior and the posterior spines of these processes are less prominent, than in Lcpus. The true transverse process is more conspicuous and is often found to project laterally from the side of the fifth vertebra.

The length of a neural spine in the anterior thoracic region is about twice the length of the centrum, to which it is attached. The anticlinal vertebra is usually the eleventh, but often the tenth. Metapophyses are usually seen only on the tenth, eleventh, and twelfth thoracic vertebræ, sometimes on the ninth.

The lumbar vertebre ($\mathrm{pl} . \mathrm{xcIv}, \mathrm{I} 4$) are scarcely distinguishable from the same in Oryctolagus. The transverse processes instead of arising abruptly from the anterior half of the lateral aspect of the centra as they do in Lcpus, arise from the whole side, so that the angle between the process and the centrum is partly filled in with bone, but this is not comparable to the filling in that takes place in Limnolagus and in Romerolagus. True anapophyses are lacking, the neural spines and metapophyses show nothing of interest. The hypophysis on the second lumbar is the longest, that on the first is next in length, and the shortest is found on the third. Sometimes the first hypophysis is reduced to a ridge and the third is lacking.

The sacrum differs in no way from the description given in the general account.

The caudal vertebre vary from eleven to fifteen in number. The larger number is the more usual. Of the different forms (see p. 363) of vertebre in this region, one, or often two, is of the first form ; five to seven of the second, usually six; four to seven of the last form, usually six or seven. The skeleton with the lowest number of candals, eleven, is Sylilagus mincusis Tmomas. The decrease takes place in the last form, which is here reduced to four in number.

Stornum and Ribs.-The sternum ($\mathrm{pl} . \mathrm{xcv}, 2$) of Sylilagus is not very characteristic. In general it resembles the sternum of Lcpus. The presternum is relatively larger, the keel less prominent anteriorly. The first pair of ribs is attached just in front of its
middle. The mesosternal segments have a tendency to be less flattened than they are in Lepus. The xiphistemum is shorter than the prestemum, its ends moderately enlarged, the posterior end being more enlarged, relatively, than in Lcpus.

The ribs (pl. xcrs, 5) are somewhat peculiar, but there is nothing to distinguish them from the ribs of Oryctolagus. The slafts of the anterior ribs are only moderately enlarged in their ventral portions. The spine-like portion of tubercles is well developed on all the skeletons except that of Sylilagus minonsis where the spines are poorly developed and are last seen on the seventh pair of ribs instead of on the eighth as in the others.

Shoulder Girdle and Upper E.rtremity.-The scapula (pl. xcrir, 7) of Syltilagus is different in form from the same bone of Lepus, Romerolagus, and Pronolagus, but shows nothing tangible by which it can be distinguished from the scapulæ of the other genera. It is relatively narrow, the superior border relatively less convex, the antero-superior angle moderately pronounced, and the supraspinous fossa relatively narrow, when compared with the scapula of Lepus.

Regarding the humerus of Sylailagus there is nothing peculiar by which it can be distinguished from the humeri of many of the other genera.

The forms, relations, sizes, and positions of the radius and ulna (pl. xcrin, 4) are alike in Sylarlagus and in Limmolagns. These bones are subequal in size; the ulna is not reduced in the middle of its shaft, and is situated external to radius rather than behind it. Both bones are moderately slender. The radius is equal to the humerus in length.

The carpus, the metacarpus, and the phalanges of Sylzilagus are entirely similar in form and position to these bones in any of the Leporidx, as detailed in the general account of the wrist and hand (p. 378).

Pclais and Lozer Extremity.-The os innominatum has about the same general form in Sylilagus and in Oryctolagus. The ilium is not wide and shovel-like. The anterior edge of the acetabulum is about midway between the extreme anterior and posterior points of the os innominatum or just a little posterior to the middle point. The antero-superior angle of the ilium is rather obliquely rounded off. The obturator foramen is apparently less rotund than is the case with Lepus.

The femur, the tibia, and the fibula of Sylailagus are typical for the family, as detailed in the general account (p. 382), and show nothing that is peculiar to the genus.

The greatest length of the foot about equals the length of the tibia, but in one skeleton, No. 94, 197, from Nevada, the foot is longer than the tibia, in this respect resembling the foot and tibia of Brachylagus.

The basal width of the metatarsus is contained two and a half times into the length of the third metatarsal, as is commonly the case among other Leporidx.

The combined length of the phalanges of the two lateral digits, as well as of the two middle ones, is usually approximately equal to the length of the metatarsals to which they belong.

The genus Sylitlagus stands second to Lepus in point of mumber of species and extent of geographic distribution. It is a fairly homogeneous group. A few forms have been classed as a scparate subgenus, an arrangement which is here retained. The teeth on the whole are formed as they are in typical Lepus. Certain of the Mexican species, however, have the first lower premolar as it is in Limmolagus.

In the form of the cervical vertebre and the shape of the transverse processes of the lumbar vertebre, the relative size of the radius and ulna, and in the shape of the pelvis and the ribs, sternum, and scapula, Sylzilagus seems to be generally similar to Oryctolagus. The teeth in these two genera are essentially alike.

There are two subgenera of Syliilagus-Sylzilagus proper and Microlagus. No skeletons of the latter are available for examination.

Subgenus SYLVILAGUS Gray

1867. Sylzilagus Gray, Amn. Mag. Nat. Hist., xx, 3d ser., p. 221.
1868. Sylzilagus Mearns, Proc. U. S. Nat. Mus., ximi, p. 55 r . June 24. 1896.
1869. Sylzilagus Major, Trans. Limn. Soc. London, $2 d$ ser., vil, p. 514, November, 1899.
Type.-Sykilagus floridamus mallurus (Thomas).
Gcographical Distribution.-Same as for the genus.
Diagnosis and Description.-Size larger, skull (pls, Lxxvi, 7, 8: LXXYII, 2 : LXXXYI; LXXXVII, $1-10$) heavier, rostrum often heavier and not so pointed. Postorbital processes long and narrow, attached to skull by a very broad pedicle. The anterior part of the process short, attached to the side of the skull for nearly its whole length. Posterior part of the process long and narrow, the posterior edge touching the cranium, the process thus enclosing a very narrow clavate slit, much narrower than the width of the postorbital, which helps to form it.

Spacies in this subgenus, see p. 336 .

Subgenus MICROLAGUS Trouessart

1897. Microlagus Trouessart, Catalogus Mammalium, i, fasc. iii, p. 660. Type.-Sylvilagus (Microlagus) cincrasceus (Allen). Gcographical Distribution.-Western and southwestern United States and northern Mexico.

Diagnosis and Description.-Externally like Sylailagus, size small,
 rostrum rather straight, narrow, pointed ; postorbital process attached to skull by a narrow pedicle, the anterior portion of the postorbital more or less free from the skull, and helping to form a well-marked notch. Posterior portion of postorbital rather slender. It may or may not touch the side of the cranium ; when it does, it incloses a clavate foramen, fully as wide as the posterior limb of the process.

For the species belonging to this subgenus, see pp. 336,337 .

Genus ORYCTOLAGUS Lilljeborg

1867. Cuniculus Gray, Ann. Nag. Nat. Hist., 3d ser., xx, p. 225.
1868. Oryctolagus Lilljeborg, Sveriges och Norges Ryggradsdjur, i, p. 417 .
i899. Oryctolagus Major, Trans. Linn. Soc. London, 2d ser., vir, Zool., November, 1899, p. 514.
Type.-Lepus cumiculus Linneeus.
Geograplical Distribution.-Southern and western Europe and northern Africa.

Diagnosis.-Externally similar to Lepus, but ears and hind feet relatively shorter. Postorbital process large but not wide and triangular; its posterior limb does not touch side of cranium. Sutures of the interparietal distinct. Choanæ very narrow, incisive foramina and least length of palate subequal, width of choanæ much less than either. Teeth essentially as in Lepus.

Skull (pls. LxXYi, 2, 5 ; LXXYi, 5 ; LxXXYiII; LxXXIX, I-5).-The postorbital processes are large, but not wide and triangular; they do not stand out from the side of the skull to a marked extent. The process is arched. Neither the anterior nor the long and rather pointed posterior portions meet the side of the cranium in the wild rabbits. Anterior and posterior notches are thus formed. In two of the skulls of domestic rabbits at hand, a lop-eared and a Belgian hare, the anterior angle of the postorbital meets the frontal bone, and in the lop-ear forms the outer boundary of an irregular foramen, while in the Belgian hare the whole anterior angle is fused to the cranium so that even the foramen is obliterated. In both these specimens posterior notches are present.

The interparietal is present as a distinct bone in Oryctolagus.
The bony palate is relatively long. The horizontal plate of the palate bone well developed. It enters into the formation of the bony palate to a greater extent than it does in Lepus, where it forms a fourth to a third of the bony palate, and to a less extent than it does in Romerolagus where it is about lalf of the bony palate. The portion of the palate bone that borders the maxilla caudad of the posterior edge of the bony palate is moderately developed and thus helps to form part of the roof of the mouth along the posterior dental alveoli. The distance between the vertical plates of the palate bones, that is the width of the choanæ, is very slight, less than it is in any other genus. The pharyngeal vault is high. The length of the bony palate, measured midway between the median line and the inner edge of the dental alveoli, is about equal to the greatest width of the incisive foramina, which are narrow in this genus, and it is much greater than the least distance between the two vertical plates of the palate bones.

The posterior palatine foramina are of moderate size and situated in the usual position at the anterior outer angles of the horizontal plates of the palate bones.

The anterior portion of the zygoma is deep, as it is in Lcpus, but the under edge of the posterior portion is cut away, rendering it shallower. The antero-inferior angle of the zygoma is enlarged and flares outward to a rather marked extent. The foot-like extremity of the zygomatic process of the squamosal is enlarged. The lateral length of the squamoso-malar suture is contained between one and one and a half times in the superior border of the malar, measured from the anterior edge of that suture to the antero-inferior angle of the orbit. The posterior free extremity of the malar is long.

The audital bullæ, the fenestration of the maxillæ, and the shape of the mandible in Oryctolagus show nothing distinctive of the genus, and may be said to represent normal degrees of development.

Tecth (pl. xci, 5; figure 44, 22).-First upper incisors, with longitudinal groove on anterior face, always simple, moderately shallow and unfilled with cement. First upper maxillary tooth has typical folding of enamel on the anterior surface, a deep median reentrant angle, on either side of which is a smaller reentrant angle. The first lower molariform tooth has a small reentrant angle on its anterior face, and a shallow broader reentrant angle on the external surface of the anterior half of the tooth which is separated from the posterior half by a single reentrant angle. The second, third, fourth, and fifth upper molariform teeth show each a deep reentrant angle
extending from the internal face about three-quarters the distance across the tooth. The adjacent edges of this angle are almost in contact with one another throughout their whole extent and crenated. In the second, third, and fourth lower molariform teeth the lateral diameter of the posterior half of each tooth is about four-fifths the lateral diameter of the anterior half of the tooth. The last upper molar is very small, with an elliptical outline. The last lower molar is also small, consisting of a larger anterior elliptic portion and á smaller posterior portion, circular in outline.

Vertcbral Column.-The cervical vertebre (pl. xcir, 6) of Oryctolagus have nothing to distinguish them from the same series of vertebre of several other genera, being noticeably different onls from the two extremes, Lepus, with elongated cervicals on the one hand, and Pronolagus, with more shortened ones, on the other. The cervicals are miformly shortened, the costal processes project relatively far from the sides of the centrum; the anterior and the posterior spines of these processes are less prominent than they are in Lepus. The true transverse process is more conspicuous and is often found to project laterally from the side of the fifth vertebra.

The length of the neural spines in the anterior thoracic region is about three times the length of a centrum. The anticlinal vertebra is the eleventh, on the lop-eared domestic it is the tenth, however. Metapophyses are well developed on the tenth, eleventh, and twelfth thoracic and are indicated on the ninth by small tubercles.

The lumbar vertebre (pl. xciur, 4. 5) are scarcely distinguishable from the same series of vertebre in Sylzilagus. The transverse processes do not arise abruptly from the anterior half of the lateral aspect of the centra, but from the whole side, so that the angle between the process and the centrum is partly filled in with bone, but in no way comparable to the filling in that takes place in Limnolagus and in Romerolagus. Anapophyses are best developed in this genus of all the Leporidæ. In the skeleton of the lop-eared domestic, these processes are very large; in the three middle vertebre of the lumbar series, the third, fourth, and fifth, the anapophyses extend as far caudad as the posterior border of the metapophyses of the next succeeding vertebra. In the two skeletons of wild Oryctolagus, however, this great development of the anapophyses is not so pronounced, but they are much larger than they are on the lumbar vertebre of any of the other skeletons.

The hypophyses are injured in the skeletons of the wild animals, but from what remains of them it would appear that the second hypophysis is the longest, as it is in the lop-eared domestic.

The sacrum of Oryctolagus differs in no way from the description given in the general account, p. 3^{62}.

The candal vertebre are about seventeen in, number, one being of the first form (see p. 363), six to eight of the second, and the last eight or nine are the rudimentary elongated centra, without neural canal or processes.

Sternum and Ribs.-The sternum (pl. xcr, 5) in Oryctolagus is in general as in Lepus. The presternum is more conspicuously keeled ; the first pair of ribs attached just anterior to its middle. The mesosternal segments are more compressed from side to side than they are in Lepus. The last is much shorter than any of the other mesosternal segments. The xiphisternum is large and stout, longer than the presternum, its posterior end about as much enlarged as its anterior.

There is nothing by which the ribs of Oryctolagus can be distinguished from the ribs of Sylzilagus. The shafts of the anterior ribs are scarcely enlarged in their ventral portion. Spine-like portions of the tubercles of the ribs are well developed, and are last seen in the eighth pair.

Shoulder Girdle and Upper E.rtremity.-The scapula (pl. xcrix, 3) of Oryctolagus is different in form from the same bone in Lepus, Romerolagus, and Pronolagus, but shows nothing tangible by which it can be distinguished from the scapule of the other genera. It is relatively narrow, the superior border relatively convex, the antero-superior angle moderately prominent, and the supraspinous fossa relatively narrow, as compared with the scapula of Lepus.

Regarding the humerus of Oryctolagus there is nothing by which it can be distinguished from the humeri of many of the other genera.

The form, relative sizes, and positions of the radius and ulna are nearly alike in Oryctolagus, Sylitagus, Pronolagus, and Limnolagus; that is, the ulna is not reduced in the middle of its shaft and is situated external to the radius rather than behind it. In Oryctolagus the uha is somewhat heavier than the radius and both bones are rather heavier than they are in the other genera mentioned above. The radius is equal to the humerus in length.

The carpus, the metacarpus, and the phalanges of Oryctolagus are entirely similar in form and position to these same bones in any of the Leporidæ, as detailed in the general account of the wrist and hand (p. 378).

Pcleis and Loücr Extremity.-The os innominatum has about the same general form in Oryctolagus and in Sylitagus. The ilium is not wide and shovel-like except in the lop-eared domestic. The
antero-superior angle is rather obliquely rounded off. The anterior edge of the acetabulum is about midway between the extreme anterior and the extreme postefior points of the bone. The obturator foramen is less rotund than it is in Lcpus.

The femur, the tibia, and the fibula of Oryctolagus are typical for the family Leporidæ, as detailed in the general account (p. 382), and show nothing that is peculiar to the genus.

The greatest length of the foot about equals the length of the tibia.
The basal width of the metatarsis is contained two and a half times in the length of the third metatarsal, as is commonly the case among the Leporidæ.

The combined length of the phalanges of the two lateral digits, as well as of the two middle ones, is approximately equal to the length of the metatarsals to which they belong.

Species in the genus. One, O. cumiculus (Linneeds).
Oryctolagus is a well-marked genus. In spite of a rather extensive geographic distribution, only one species has been recognized. It seems to have few relationships with the other Old World genera. With Sylvilagus in America, it has certain points of resemblance, in the shape of the transverse processes of the lumbar vertebre, of the scapula, in the relative size of the radius and ulna, in the shape of the pelvis and of the ribs and sterna. The skulls of the two genera taken as a whole are not markedly different, and the teeth are essentially alike.

Oryctolagus has been extensively domesticated, and many stable varieties produced, among them the Belgian hare, but the true generic characters are never lost, and some of them, as the keeled presternum and the large anapophyses of the lumbar vertebræ are even better marked in the domestic rabbits than they are in the wild ones.

Genus LIMNOLAGUS Mearns

1867. Hydrolagus Gray, Amn. Mag. Nat. Hist., xx, 3d ser., 1867, p. 22 i.
1868. Limnolagus Mearns, Science, n. s., v, March 5, i897, p. 393.
1869. Limnolagus Major, Trans. Linn. Soc. London, 2d ser., vir, Zool., November, 1899, p. 5 I4.
Type.-Limnolagus aquaticus (Bachman).
Gcographical Distribution.-Austro-riparian fannal area of North America, in general the South Atlantic and Gulf states.

Diagnosis.-Externally similar to Sylailagus, but pelage harsher: ear, tail, and hind foot relatively shorter, the latter scantily haired. Skull much as in Sylzilagus, but postorbital process fused to side of cranium for its whole length, forming neither notch nor foramen.

Teeth essentially as in Lepus, except first lower premolar which has two or more reentrant angles on anterior face.

Skull (pls. Lxxyi, 3, 6; Lxxxif, 4; Lxxxyiif bxxxix, 6-10). The genus Limnolagus possesses postorbitals quite different in form and attachment from the postorbitals of any of the other genera of the Leporidæ. The whole process is fused to the side of the frontal bone, so that only a very minute notch is found anteriorly, and no notch, foramen, or slit is found posteriorly, except in rare and anomalous cases, in which a small foramen may be formed by incomplete fusion of the postorbital with the side of the skull. The fused postorbital process has about the same general shape as has the unfused process in the genus Sylzilagus. An atypical specimen (No. 64,029, Kissimmee, Florida) shows the manner in which the process is attached. The hind-end of the process, instead of meeting the skull directly as it does in those genera where the posterior end of the process is in contact with the side of the skull, is met by an outgrowing process from the cranium. In this specimen a small foramen is enclosed between the posterior part of the postorbital process and the above outgrowing process from the cranium. A more or less prominent blunt projection, not seen in the other genera, is formed by the union of the postorbital process with the outgrowing process from the cranium. The blunt projection above, together with the root of the zygomatic process just below, forms a rather conspicuous notch.

The interparietal is present as a distinct and separate bone.
The bony palate is relatively long, about as it is in Oryctolagus, longer than in Lepus or Sylailagus, shorter than in Pronolagus or Romerolagus. The horizontal plate of the palate bone is relatively well developed, to about the same extent as in Oryctolagus, forming between a third and a half of the bony palate. The portion of the palate bone bordering the maxilla caudad of the posterior edge of the bony palate is moderately well developed, much better than it is in Lepus, much less than it is in Romcrolagus. The posterior palatine foramina, of moderate size, are located at the anterior outer angles of the horizontal plates of the palate bones. The choanæ are moderately wide, narrower than in Lcpus, but not approaching the extreme narrowness seen in Oryctolagus. The length of the bony palate taken midway between the median line and the dental alveoli is about equal to the width of the choanre and to the greatest width of the incisive foramina taken together.

The zygoma is heary, thick, and deep, its antero-inferior angle is much expanded and flares outward, more so than it does in any
other genus except Romcrolagus. The foot-like extremity of the zygomatic process of the squamosal is short, about as it is in Lcpus, but the posterior free extremity of the malar is long.

The audital bullæ and the external auditory meatus are typical for the family as detailed in the general account (page 346).

The fenestration of the maxillæ is reduced to a small degree, being about as it is in the genera Pronolagus and Romerolagus.

The mandible of Limmolagus has a very large, rounded, angular process, similar to the form in Sylailagus, but the ascending ramus is relatively wider.

Tceth (pl. xci, 4 ; figure 4.4, 4). -The first upper incisor in Limmolagus has a shallow, simple groove in front, filled with cement. The first upper molariform tooth has the three usual reentrant angles, a deeper median one and two lateral shallower ones. The first lower molariform tooth, divided into an anterior and a posterior portion by a single deep reentrant angle from the external face, presents on its anterior face two deep crenated reentrant angles and one or two smaller ones, and a broad crenated reentrant angle on the anterior half of the external surface. The whole anterior half of the tooth is rather solid looking, and more quadrilateral in outline than is usually the case with this tooth in other genera. The second, third, fourth, and fifth upper molariform teeth have each a deep, internal reentrant angle, extending about three-quarters the distance across the tooth as in Lepus, Oryctolagus, and Sylitlagus, but mike then the internal fourth of the reentrant angle is rather wide, that is, its adjacent edges are not in contact for that fourth. The second, third, and fourth lower molariform teeth have each the lateral diameter of the posterior half of the tooth equal to about four-fifths the lateral diameter of the anterior portion. The last upper molar is small, elliptical in section. The last lower molar is also small, consisting of anterior and posterior portions which are more nearly subequal in size than they are in most of the genera. The anterior part is the larger and more elliptical, the posterior smaller and more rotund in outline.

I'crtcbral Columm.-The cervical vertebre (pl. xcir, 4) of Limmolagus have nothing to distinguish them from the same vertebre of several other genera, being noticeably different only from the two extremes, Lcpus with elongated cervicals, and Pronolagus with more shortened ones. The individual vertebre are uniformly shortened, the costal processes project relatively far from the sides of the centrum, the anterior and posterior spines of these processes are less prominent than they are in Lepus. The true transverse process is
more conspicuous and is found to project laterally from the side of the fifth vertebra.

The length of a neural spine in the anterior thoracic region is about equal to twice the length of a centrum. The tenth thoracic is the anticlinal vertebra. Well developed metapophyses are found on the last four thoracic vertebre.

The lumbar vertebre ($\mathrm{pl} . \mathrm{xcms}, \mathrm{I} 3$) of Limmolagus are quite peculiar. The transverse processes are shorter and much broader than they usually are in the Leporidæ, the longest being equal to the length of the centrum to which it is attached and a fourth of the centrum in front. Their breadth makes them appear shorter than they really are. The free extremity of the transverse process is more expanded than it is in any other genus except Romcrolagus. The attached base is very wide, coming from the whole side of the centrum, so that the angle between the main axis of the transverse process and the side of the centrum is filled in with thin bone, approaching the condition found in Romerolagus. This character of the transverse process is especially marked in the anterior part of the lumbar series. The spinous processes of the lumbar vertebre are low, triangular in outline, and directed forward. True anapophyses are lacking. The hypophyses are injured in the single available skeleton, but it is probable that the second was the longest.

The sacrum differs in no way from the description given in the general account (page 362).

The total number of caudal vertebre in Limnolagus is eleven, of which the first is long with a complete neural arch, the next five are shorter, wider, with more or less evident transverse processes, and the terminal five consist of small rudimentary centra without neural arches or processes.

Stcrmum and Ribs (pls. xCli, 5 ; XCli, 6).-The anterior portion of the prestermum of Limmolagus is considerably enlarged laterally, having a tendency to be intermediate in form between the presternum of Lepus and that of Romorolagus and Ochotona. The mid-ventral line of this expanded part bears a low keel which is not extended backward on the posterior portion of the presternum. The first pair of ribs is attached to the middle of the sides of the presternum. The mesosternum of Limnolagus as a whole is wider than it is in most of the other genera. It is also shorter, so that its length is but little greater than that of the presternum or of the xiphisternum, both of which are subequal. The first, second, and third mesosternal segments are about equal in length, the fourth is shorter. Each successive segment is wider than the one immediately in front. The third
and fourth segments are completely ankylosed so that the whole mesosternum is composed of but three separate pieces instead of the usual four. The xiphisternum is long and slender and about equally expanded at each end.

In all the other genera except Romcrolagus, the sixth and seventh pairs of ribs are attached to the last piece of the mesosternum. In these two genera the last rib attached directly to the stemum is the sixth, the seventh rib being attached to the cartilage of the sixth near the point where the latter joins the mesosternum.

The spine-like portions of the tubercles of the ribs in Limmolagus are well developed, but are not conspicuous, owing to the fact that the angle between the tubercle and the posterior edge of the rib is filled in with bone, making that part of the rib very wide, so that it is distinctly the widest portion of the rib. In the single skeleton at hand the last rib to bear a spine-like tubercle on the right side is the seventh, while on the left side it is the sixth. The shafts of the anterior ribs are not widened ventrally.

Shoulder Girdle and Upper E.rtremity.-The scapula (pl. xcvir, 6) of Limmolagus is different in form from the same bone in Lepus and in Romerolagus but shows nothing tangible by which it can be distinguished from the scapulæ of the other genera. It is relatively narrow, the superior border relatively convex, the antero-superior angle moderately pronounced, and the supraspinous fossa relatively narrow.

There is little about the humerus of Limnolagus by which it can be distinguished from the humeri of many of the other genera, but the groove subtending the internal condyle is rather less marked than in any of the Leporidæ except Romerolagus. The external condyloid ridge is short but comparatively wide, a trifle more conspicuous than it is in the other genera except Romerolagus.

The form, relative sizes, and positions of the radius and ulna (pl . xcini, 5) are quite alike in Limnolagus and in Sylzilagus. These bones are subequal in size; the ulna is not reduced in the middle of its shaft ; it is situated external to the radius, rather than behind it. Both bones are moderately slender. The radius is equal to the humerus in length.

The carpus, the metacarpus, and the phalanges of Limmolagus are entirely similar in form and position to these same bones in any of the Leporidæ, as mentioned in the general account of the wrist and hand (page 378).

Pelvis and Lower Extremity.-Limnolagus has wide ilia, much like those of Lepus, but the antero-superior angle is not obliquely
rounded off. The antero-ventral angle is produced into a blunt, very short spine. The horizontal rami of the pubic bones slope backward more than in the other genera with the exception of Romerolagus.

The femur and the fibula of Limnolagus are typical for the family Leporidæ, as detailed in the general account (page 382). The tibia (pl. xCix, io) of Limmolagus however is relatively heavier than in the other genera excepting Romerolagus. It resembles that of the latter genus in the fact that it is rather curved, the inner surface of the lower part of the shaft teing concave.

The foot ($\mathrm{pl} . \mathrm{c}, 5$) is about equal in length to the tibia. As in the other genera, the basal width of the metatarsals is contained about two and a half times in the length of the third metatarsal. The combined lengtlis of the phalanges of each toe is about equal to the length of the metatarsal of that toe.

Species in the genus Limnolagns, see page 337.
Limnolagus is a well-marked genus. It has a number of characters associating it with Sylitagus on the one hand and with Romerolagus on the other. The radius, the ulna, the hind foot, the pelvis, and the scapula are much alike in Limmolagus and Sylitagus. Occasionally abnormal individuals show postorbital processes somewhat alike in the two genera.

The palatal region of Limnolagns shows some resemblance to the same region in Romerolagus, while the whole sternum and the shape of the transverse processes on the lumbar vertebre and the degree of development of the tail are intermediate in character between these structures in Romerolagus and Sylitagus.

Genus BRACHYLAGUS Miller

1900. Brachylagus Mileer, Proc. Biol. Soc. Washington, xili, p. I57, June 13, igoo.
Type-Brachylagus idahocusis (Ilerriam).
Gcographical Distribution.-Upper Sonoran faunal area, in southern Idaho, in northern Nevada and California, and in eastern Oregon and Washington.

Diagnosis.-Externally similar to Lepus, except that the tail is unusally short. Skull essentially like that of Lepus but with interparietal distinct; audital bullæ relatively larger than in any of the related genera. First upper premolar with only one reentrant angle on anterior face. Reentrant angles of upper molariform teeth extending only half-way across the tooth and not crenate.

Skull (pl. Lxxyif, 3: LAXix, i).-Brachylagus is the smallest of
all the rabbits examined and consequently has the smallest skull. As a whole the skull is short and wide, arched antero-posteriorly. The brain-case is inflated.

The postorbital processes are small and slender, free both in front and behind, forming anterior and posterior notches with the cranium proper.

The interparietal bone is distinct.
The bony palate is shorter than in any other genus, its least length being equal to twice the length of nr^{1}. Its extreme posterior edge only is formed by the horizontal plates of the palate bones. The incisive foramina are wide, the widest part of each one nearly equaling the length of the bony palate. The distance between the vertical plates of the palate bones is relatively as great as it is in Lcpus, and much exceeds the length of the bony palate.

The zygoma is deep and thin, only slightly expanded at the anteroinferior angle. The posterior free extremity of the malar is moderately enlarged. The foot-like extremity of the zygomatic process of the squamosal is rather short, but not relatively so short as it is in Lepus.

The andital bullæ are much inflated and the external auditory meatus is very large and rounded.

The mandible has the general form of the mandible of Lepus, but the angular process is relatively smaller and its edge is nearly straight.

Tceth (pls. xci, I; fig. 4+, I).-Brachylagus has the simplest teeth of any of the Leporidæ available for examination. The enamel lacks much of the folding and the crenation found in the other genera. The first upper incisor has a simple groove, not filled with cement. The first upper premolar is very simple, presenting a single reentrant angle instead of the usual three on the anterior face. The infolding of the enamel on the inner sides of the four upper molariform teeth extends as far as the middle of each tooth only and lacks the crenation so distinctly seen in the case of the other genera. The anterior lower premolar is also simple. It is divided into an anterior and a posterior portion by a single deep reentrant angle extending in from the external face. It has no infolding of the enamel in front, none on the imer side of the anterior half of the tooth, and a single wide, shallow infolding on the outer side of the anterior portion of the tooth. The posterior transverse portions of the three lower molariform teeth are relatively much shorter than they are in any of the other Leporidæ. The lateral length of each posterior portion is equal to about half the lateral length of the anterior
portion to which it belongs. In all the other genera the anterior and posterior portions of the three lower molariform teeth are subequal or nearly so. The enamel between the two portions of these teeth is not crenated as in the other groups.

Vertcbral Columm.-The cervical vertebre (pl. xcir, 3) of Brachylagus have practically the same form that they have in the large genus Sylzilagus, that is, they belong to the shorter type.

In the anterior part of the thoracic series of vertebre, the length of the neural spine is about equal to three times the length of the centrum to which it is attached. The tenth thoracic is the anticlinal vertebra; its spine is abruptly broader than any of the spines in front and is concave on its anterior and also on the posterior edge. The anterior edge of the eleventh is slightly concave and is perpendicular in its general direction ; the posterior edge is concave and slopes backward and downward from above. The spine of the last thoracic is smaller than that on the eleventh and resembles in form the spines of the lumbar series. Well developed metapophyses are found on the last three thoracic vertebre, and on the ninth this process is distinctly indicated by a small spine. The last two vertebre of this series have rather well marked ventral ridges.

The lumbar series of vertebre (pl. xciv, 12) in Brachylagus is quite different in some respects from the same series in the other genera. The best distinguishing character is a prominent longitudinal rounded ridge extending the length of the long axis of the transverse processes. The process itself is rather long and slender, is rather more curved and concave anteriorly than the lumbar transverse process in the other genera. The longest process has a length of one and a half times that of the centrum to which it is attached. The process does not rise abruptly from the side of the centrum, but slopes gently into it at the posterior angle of its attachment. as in Syli ilagus and in Oryctolagus. The neural spines are low, especially anteriorly. Anapoplyses are slightly more developed on the anterior three or four vertebre of this series than they are in other genera, except Oryctolagus.

The sacral vertebræ are four in number and differ in no essential respects from the same vertebre in other genera.

The caudal series of vertebre is very short in Brachylagus, the total number being nine, the smallest that occurs in any genus except Romorolagus, which has the same number, and Nesolagus which has eight. The first two caudal vertebre are long, with complete neural arches, and resemble the last sacral vertebre, the next three are shorter, with rather wide transverse processes, the last four are
small, rudimentary centra, longer than wide and without processes of any kind.

Stcrmm and Ribs (pls. XCv, I : XClv, 7).-The structure of the sternum of Brachylagus is fairly characteristic of the genus. The presternum is compressed, bearing a low keel along the whole ventral border. The dorsal portion of the presternum is somewhat enlarged laterally just anterior to the attachment of the first pair of ribs, which takes place at the junction of the anterior and middle thirds. The mesostermum consists of four distinct segments, of which the first is compressed laterally, with a low keel continning that of the prester11unn. The succeeding mesosternal segnents become successively wider, and more flattened dorso-ventrally. The last segment is much wider than any of the others, with well marked postero-lateral angles, for the attachment of the sixth and seventh pairs of ribs. The xiphisternnm is decidedly longer than the presternt1m, is slender in the middle but considerably expanded at the ends, especially the posterior one.

The ribs are not very characteristic in Brachylagus. In general they resemble those of Sylailagus. The spine-like portion of the tubercles are but moderately developed and are last seen on the seventh pair of ribs. The lower part of the shafts of the anterior ribs is but slightly broadened.

Shoulder Girdle and Upper Extremity.-There is apparently nothing about the shoulder blade (pl. xcrir, 8) of Brachylagus except the smaller size by which to distinguish it from the scapulæ of several other genera. It belongs to the moderately narrow type with a relatively straighter and less convex vertebral border, with the antero-superior angle of the more prononnced type, and the supraspinous fossa relatively narrower.

There is little in the humerus of Brachylagus that is peculiar. It is small and relatively more slender than in other genera except Romerolagus. The groove subtending the internal condyle is moderately developed. The external condyloid ridge is rather wide for one of the Leporidæ, like that of Romorolagus, but not quite so long.

In Brachylagus the radius and ulna (pl . xcviir, 6) are subequal in size, and in general resemble those bones in Sylzilagus, Oryctolagus, Pronolagus, and Limnolagus. Unlike any of those skeletons, however, with bones of the foramen equally developed, the radius is distinctly shorter than the humerus, in the other cases the humerus and radius are subequal in length.

The carpal bones, the metacarpals, and the phalanges of Brachy-
lagus are entirely similar in form and position to these bones in any of the Leporidre, as detailed in the general account of the wrist and the hand (page 378).

Pclitis and Loaer Extremity.-The innominate bone in Brachy'lagus is smaller than it is in other genera. The anterior part of the ilium is of the narrow type with the antero-superior angle obliquely rounded off, in these respects resembling Sylzilagus and Oryctolagus. A tubercle in front of the acetabulum is more prominent in Brachylagus than in the other genera. The descending ramus of the pubis is slenderer, and the distance from the tuberosity of the ischium to the nearest edge of the obturator foramen is relatively shorter than it is in other Leporidæ. The anterior edge of the acetabulum is about equidistant between the extreme anterior and posterior points of the os innominatum.

The femur, tibia, and fibula (pl. xcix, 8) of Brachylagus are typical for the family as detailed in the general account (page 382) and show nothing that is peculiar for the genus, but the fibula fuses with the tibia at a point relatively nearer the middle than it does in most of the genera. The femur is apparently relatively more slender than in the other genera.

The greatest length of the foot ($\mathrm{pl} . \mathrm{c}, 3$) in Brachylagus, unlike that of most of the skeletons except Syluilagus, No. 94,197 from Nevada, is greater than the greatest length of the tibia. The basal width of the metatarsals is contained about two and one-half times in the length of the third metatarsal. The combined lengths of the three phalanges approximately equal the length of the metatarsal to which they are attached.

So far as known the genus Brachylagus contains but a single species, B. idahocusis, represented by two skeletons and several skulls.

Brachylagus is a very well marked genus. Its peculiar teeth and the ridge on the transverse process of the lumbar vertebre are quite mulike anything else among the Leporidæ, although it would appear from the published figures (Major, '99, pl. 37, fig. 17) of the teeth of Nesolagus from Sumatra that the latter has teeth resembling; those of Brachylagus. Aside from that, however, the two genera have little in common. Apart from the structure of the teeth, Brachylagus appears somewhat related to Microlagus, judging from the skulls as a whole. The skeleton in general, aside from the reduced number of caudal vertebre and the ridges on the transverse processes of the lumbar vertebre, is much like the skeleton of Sylailagus.

Genus PRONOLAGUS new

1867. Lepus Gray, Ann. Mag. Nat. Hist., 3d ser., Xx, p. 223.
1868. Oryctolagus Major, Trans. Limn. Soc. London, ed ser.. rii, Zool.. p. 514, November, 1899.

Type-Pronolagus crassicaudatus (Geoffrov).
Gcographical Distribution.-South Africa.
Diagnosis.-Externally similar to Lepus. Skull and teeth essentially like those of Romerolagus except that audital bulle are smaller than foramen magnum, and anterior face of first lower premolar has two reentrant angles.

Skull (pls. LXXYir, 2a, 2b; LXXYi, 3).-The skull as a whole is long and narrow. The anterior angle of the postorbital process is entirely lacking or else is so intimately associated with the craninm that the process appears as a triangle, one whole side of which is attached to the cranium. Of the two other sides one is directed outward and somewhat forward and the other obliquely inward and backward, forming the outer boundary of a posterior notch. The posterior and only angle of the postorbital is pointed. The process, as a whole, closely resembles that of Romcrolagus, but it is relatively as well as absolutely larger.

It cannot be definitely stated whether the interparietal of Pronolagus is obliterated in adult life or not. In the single available skeleton, which has evidence of being young, the sutures of this bone are partially obliterated.

The bony palate of Pronolagus is longer and narrower than in most of the Leporidæ, its least length equaling four times the length of Nr^{1}, though the palate of Romerolagus approaches it closely. The incisive foramina are long and narrow, less triangular in outline than they are in most of the other genera. Their greatest width, taking both together, is much less than the length of the bony palate. The horizontal plates of the palate bones are large, and form a little less than half of the bony palate. The portion of the palate bone that borders the maxilla caudad of the posterior edge of the bony palate is developed to a greater degree than in any other genus except Romerolagus, and aids in forming to a considerable extent the lateral portion of the roof of the mouth just internal to the dental alveoli and posterior to the bony palate. The choanæ are considerably narrowed, almost approaching the narrowness seen in Oryctolagus, but the pharyngeal vault is only moderately high. The posterior palatine foramina are very small and would be scarcely noticeable were it not for the well-marked grooves leading from them. These foramina are located near the median line and not at the anterior external angles
of the horizontal plates of the palate bones, as in the case of the other genera of Leporidæ.

The zygoma is rather thin and shallow ; its antero-inferior angle is moderately enlarged. The foot-like extremity of the zygomatic process of the squamosal is rather short, about as it is in the genus Lepus. The posterior free extremity of the malar is short. The root of the zygomatic process takes its origin close to the squamoso-frontal suture, closer than in any other genus, although Romerolagus and Limnolagus show an approach to this condition.

The audital bullæ in Pronolagus are remarkably small.
The fenestration of the maxillæ is developed to a small extent only, about as in Romerolagus and Limnolagus.

The mandible in general is quite like that of Lepus, but the lower edge of the angular process is decidedly straight.

Tceth (pl. xci, 8; fig. 44, 23). -First upper incisor has the groove simple, very shallow, and unfilled with cement. The first upper molariform tooth has the three usual reentrant angles on the anterior surface very deep, deeper than they are in the other genera, except Pentalagus. The first lower molariform tooth, like the same tooth in Romerolagus, departs from the typical form. The tooth is divided into anterior and posterior portions not by a single reentrant angle extending inward from the external face, but by two reentrant angles, one from the internal, one from the external face, which meet near the center of the tooth. The external angle is the broader and shallower of the two. The internal is deeper and the adjacent sides of the angle are nearly in contact. The anterior limbs of both the reentrant angles are plain and heavy, the posterior limbs relatively narrower and decidedly convoluted. On the anterior face of the first lower molariform tooth are two deep, simple, reentrant angles. On the external face of the anterior portion of the tooth is a broad, shallow, reentrant angle. In the second, third, fourth, and fifth upper molariform teeth the reentrant angles extend nearly the whole distance across the teeth. The internal half of the angle is rather wide and open, differing in this respect from the other genera except Romerolagus. The enamel of the reentrant angles is crenated. The second, third, and fourth lower molariform teeth are divided by the usual deep reentrant angle, into anterior and posterior portions, the lateral diameters of which are equal to one another. The last upper molar is relatively larger in Pronolagus than in the other genera and its grinding surface is somewhat lozenge-shaped. The last lower molar has the reentrant angle which divides the tooth into a larger elliptical anterior portion and a smaller circular pos-
terior portion well marked. Owing to an extra fold of the reentrant angle the posterior face of the anterior portion of this tooth has a slight indentation not seen in the other genera.

Vertebral Coltmn.-The greatest development of the shortened type of cervical vertebræ ($\mathrm{pl} . \mathrm{xcir}, \mathrm{IO}$) is seen in Pronolagus. The costal process stands out very far from the body of the vertebra; the process itself is narrow, that is, its antero-posterior dimensions are relatively much less than they are in the other genera. The cephalad and candad projecting spines of the costal processes are apparently not well developed, but they have a somewhat worn or damaged look in the only skeleton. The general appearance of the cervical vertebræ in Pronolagus, seen from below, is much the same as in Ochotona.

The spines of the anterior thoracic vertebræ are equal to about two and a half times the length of their centra. The eleventh thoracic is the anticlinal vertebre. Metapophyses are developed in the last four thoracic.

The transverse process of the lumbar vertebræ (pl. xciil, 3) of Pronolagus is of medium length, the longest equaling the length of the centrum to which it is attached. It is not so much enlarged at the free extremity as it is in other genera. It is wide at the base where it comes from the whole side of the centrum, resembling Limmolagus in this respect, but the posterior border of the process is not so strongly concave as in that genus and the process itself is more slender. The spinous processes are low and triangular, like those of Limnolagus, Romerolagus, and Pocilolagus. The hypophyses are injured in the only available skeleton. Probably the second was the longest.

The sacrum differs in no way from the description given in the general account, page 362 .

All but two of the caudal vertebre are missing. These two resemble the sacral vertebre in form.

Sternmm and Ribs (pls. xcyi, 3; xciv, 3).-The posterior twothirds of the presternum is much compressed, but not keeled; its anterior third is somewhat enlarged, resembling that portion of the presternum of Limnolagus. The first pair of ribs is attached at the junction of the first and second fourths. The mesosternal seguents are more compressed laterally than they are in any of the other skeletons and each succeeding one is a trifle shorter than the one immediately in front. The xiphisternum is a little shorter than the presternum, is comparatively stont and about equally enlarged at each end.

The spine-like portions of the tubercles of the ribs are very small
and are last seen on the seventh pair of ribs. The shafts of the ribs are relatively narrow and there is no indication of the wide expansion found in Lepus. Decidedly the widest part of the rib is just behind the spine.

Shoulder Girdle and Upper Extremity (pl. xcrii, 4).-The scapula of Pronolagus is different in form from the same bone in Lepus and in Sylvilagus, and has relative proportions about the same as are found in Romerolagus. It is relatively long and narrow, the superior border relatively less convex, the antero-superior angle moderately pronounced, and the supra-spinous fossa relatively narrow.

Regarding the humerus of Pronolagus there is nothing peculiar by which it can be distinguished from the humeri of many of the other genera.

The form, relative sizes, and positions of the radius and ulna (pl . xcvin, 7) are much alike in Pronolagus and in Oryctolagus. The bones are about subequal in size ; the ulna is not reduced in the middle of its shaft, and is situated external to the radius rather than behind it. Both bones are moderately slender. The radius is equal to the humerus in length.

The carpus, the metacarpus, and the phalanges of Pronolagus are entirely similar in form and position to these same bones in any of the Leporidx as detailed in the general account of the wrist and the hand (page 378).

Pcleis and Lozer Extromity.-The os inmominatum of Pronolagus resembles, in most respect, the same bone in the genera Sylzilagus and Oryctolagus, but the ilium is even narrower than it is in them, and its ventral edge is straight, in this respect resembling the ilium of Romerolagus.

The femur, the tibia, and the fibula (pl. xcix, 3) of Pronolagus are typical for the family as detailed in the general account (page 382) and show nothing that is peculiar for the genus.

The basal width of the metatarsus is contained about two and a half times in the length of the third metatarsal.

The combined lengths of the three phalanges of each of the hind toes approximately equal the length of the metatarsal to which they are attached.

The genus is represented by a single skeleton, Pronolagus crassicaudatus from South Africa.

Pronolagus is a peculiar genus, first classed as Lepus and later as Oryctolagus. It has not much to associate it with the former, and but little with the latter. In the structure of its teeth, postorbital processes, palate, and zygoma, it appears related to Romerolagus.

The sternum, however, is very similar to that of Lepus. The hind foot is nearly as short relatively as it is in Romerolagus. While I have seen no skins of Pronolagus, yet the fact that it has always been associated with Lepus or Oryctolagus makes it appear that its external features are not peculiar, which is all the more interesting, as the genus with which it has the most skeletal resemblances, Romerolagus, externally, bears certain resemblances to the pikas.

Genus ROMEROLAGUS Merriam

1896. Romerolagus Merriam, Proc. Biol. Soc. Washington, x, p. iz3, December 29, 1896.
iSgS. Lagomys Herrera, La Naturaleza, 2d ser., in, p. So.
iSg9. Romerolagus Major, Trans. Limn. Soc. London, 2d ser., vii, Zool., p. 514, November, 1899.

Type.-Romerolagus nelsoni Merrinm.
Geographical Distribution.-West slope of Mount Popocatepetl, Mexico.

Diagnosis.-Externally, like Pentalagus; tail none ; ears and hind feet short. Skull entirely leporine, palate long, postorbital process small, consisting of posterior limb only, nasals as in Lepus, audital bullæ normal, equal to foramen magnum in size. First lower premolar divided into an anterior and a posterior portion by two reentrant angles, one extending from the external and the other from the internal face to the center of the tooth; anterior face of first lower premolar without reentrant angles. Sternum essentially as in Ochotona.

Skull (pls. Lxxyifi, $1 a, 1 b, 1 c$). -The postorbital processes are small, of similar form and position to those of Pronolagus and Caprolagus, but relatively as well as absolutely smaller. The anterior angle is entirely lacking, so that the process appears as a triangle, one entire side of which is attached to the cranitum. The second side is directed outward and somewhat forward. The third side is directed obliquely inward and backward, forming the outer boundary of a posterior notch.

The interparietal is present as a distinct, separate bone.
The bony palate in Romerolagus is very long, its least length nearly equaling four times that of 11^{1} and equaled in proportional development only by Pronolagus. Its length measured half-way between the median line and the inner edge of the dental alveoli is very much greater than the greatest width of the two incisive foramina taken together, and also very much greater than the distance between the vertical plates of the palate bones or width of the choanæ. The
latter is not narrowed as in the case of Oryctolagus. The horizontal plates of the palate bones are extensively developed and form about half of the bony palate. The portion of the palate bone bordering the maxilla, caudad of the posterior edge of the bony palate, reaches its greatest development in Romerolagus, Pcntalagus, and Pronolagus, about equally developed in each, where it helps to form the lateral posterior part of the roof of the mouth. The posterior palatine foramina are very large in Romerolagus; they are in the usual position at the anterior outer angles of the horizontal plates of the palate bones.

The zygoma of Romorolagus is very thick and deep. The an-tero-inferior angle is much enlarged and flares outward to a considerable degree. The foot-like extremity of the zygomatic process of the squamosal is moderately enlarged. The posterior free projecting extremity of the malar is large and long, being proportionally more so than in any of the other genera.

The audital bullæ show nothing peculiar, but the external auditory meatus is relatively larger than in the rest of the Leporidæ, and its outline is oval instead of circular.

The fenestration of the maxilla is much reduced, about as it is in Pronolagus and Limnolagus.

The mandible of Romerolagus possesses wide ascending rami, which are nearly vertical instead of sloping backward as in other Leporidæ. The angle is well developed and its edge is moderately rounded: The notch between the ascending ramus and the angular process is much larger than in any of the other genera.

Tecth (pl. xci, 3; fig. 44, 5). -The teeth of Romorolagus in a general way resemble those of Pronolagus. The first upper incisor has the groove rather deep but not filled with cement. The first upper molariform tooth presents the three usual reentrant angles on the anterior face, a deep median one and a shallower one on each side. The first lower molariform tooth has a broad shallow reentrant angle on the external surface of its anterior half. The main reentrant angle extends but half way across the tooth, while a corresponding reentrant angle comes in to meet this from the internal surface, both angles contributing to the division of the tooth into anterior and posterior portions.

The second, third, fourth, and fifth upper molariform teeth show reentrant angles that extend nearly across the teeth, but not quite so far as they do in Pronolagus. The internal third of the recutrant angles is rather wide; for the external two thirds, the adjacent sides are almost in contact. The posterior portions of the second,
third, and fourth lower molariform teeth have their lateral diameters equal to those of the anterior portions, like these teeth in Pronolagus. The last upper molar is small and narrowly elliptic in section. The last lower molar consists of the two usual portions, the anterior larger and elliptic, and the posterior smaller and circular.

Vertcbral Column.-The cervical vertebre (pl. xciI, 2) of Romerolagus belong to the shortened type. The costal process projects laterally from the centrum; its anterior and posterior spines are only moderately pronounced. The true transverse process is rather conspicuous and projects laterally from the fifth cervical onward through the rest of the series.

The length of a neural spine in the anterior part of the series of thoracic vertebre is about twice the length of its centrum, relatively shorter than in other genera. Metapoplyses are found in the last three vertebre of this series. The tenth is the anticlinal vertebra.

The transverse processes of the lumbar vertebre (pl . XCIV, II) of Romorolagus are very characteristic. The processes are short and wide, the longest equaling the length of the centrum to which it is attached. The process on the first lumbar is very short and almost rudimentary. All the processes are wide and, in general, have triangular outlines. The base is broad, coming from the whole side of the centrum, so that the angle between the main axis of the process and the side of the centrum is completely filled up with thin bone. It is an exaggeration of the condition found in Limnolagus. The spinous processes of the lumbar vertebre are low, triangular in outline. Anapophyses are very slightly developed. The first three lumbar vertebre bear hypophyses, the first of which is the shortest; the second and third are nearly the same length, but the latter is a trifle longer.

The sacrum consists of the usual four vertebre and does not differ in form from the sacra of the other genera of the Leporidæ.

The candal vertebræ of Romerolagus are only nine in number, this being the smallest number of any genus except Brachylagus which also has nine, and Nesolagus with eight. One vertebra is of the first form, like the last sacral, five are of the second form bearing more or less wing-like processes, the last three are merely centra without processes.

Stermum and Ribs.-The sternum (pl. xcvi, I) of Romerolagus is very characteristic, being like that of Ochotona. The anterior portion of the presternum is very much expanded and flattened dorsoventrally. To the outer posterior angles of this enlarged portion the first pair of ribs is attached. The rest of the presternum is long
and narrow, as it is throughout the other Leporidæ, but devoid of any ventral keel. A slight ridge indicating a kcel is seen on the ventral face of the expanded portion however. The mesosternm in general is very like the same structure in Limnolagus. The first and second segments are subequal, the third and fourth segments are subequal in length, but the fourth is broader. Both of the latter are relatively wider than they are in Limnolagus and as in that genus are firmly ankylosed. The xiphisternum is long and rather stout. It is but a little shorter than the whole mesosternum and decidedly longer than the presternum. The seventh pair of ribs does not meet the sternum, but articulates only with the cartilages of the sixth pair.

The ribs (pl. xciv, 8) of Romerolagus are very similar in structure to the ribs of Pronolagus; the only marked difference is that the poorly developed spinc-like portion of the tubercles is last found on the sixth pair of rilbs instead of on the seventh pair. The shafts of ribs are relatively narrow, and there is no indication of the wide expansion found in Lepus. Decidedly the widest part of the ribs is behind the spine.

Shoulder Girdle and Upper Extremity.-The ratio of the length of the humerus to the length of the clavicle (pl. xcvi, i) in Romerolagus is 3.2, in Oryctolagus 3.15, in Sylvilagus 4, in Ochotona 2. In the skeletons representing the other genera the clavicles have been lost, due to faulty preparation. In the original account of the genus Romerolagus, the description reads (Merriam '96, p. 171): "The clavicle is complete and articulates directly with the sternum1 (fig. 33), a thing that never happens in the genus Lepus." In the present condition of the skeleton of Romerolagus, the clavicle has been cleaned from all its attachments. An examination of uncleaned skeletons of Oryctolagus and Sylvilagus showed that the clavicle did not articulate directly with the sternum. In the articulation of the clavicle Romerolagus resembles Ochotona, and not the other genera of the Leporidæ.

The scapula (pl. xcvir, 9) of Romerolagus differs in form from the scapulæ of the other Leporidæ, except Pronolagus, with which it has many points of similarity. It is long and narrow, its posterior border is practically straight instead of being concave, as in the other genera; its superior border is straight rather than convex. The distance between the antero-superior angle and the posterosuperior angle is contained twice in the length of the scapula measured along the inner surface at the attachment of the spine. In the other genera with the exception of Pronolagus the distance be-
tween the two superior angles is contained but one and a half times in the scapular length.

There is little that is peculiar about the humerus. Like that of Brachylagus it is slenderer than in most of the other genera. The groove subtending the internal condyle is not well marked. The external condyloid ridge is better developed than in the other genera. The humerus of Romerolagus is distinctly longer than the radius.

Unlike the other genera, except Oryctolagus and especially Pcutalagus, the radius of Romerolagus is slenderer than the ulna (pl. xccuir, 9) ; at its articular ends the usual degree of development takes place.

The carpus, the metacarpus, and the phalanges of Romerolagus are entirely similar in form and position to these same bones in any of the Leporidæ as detailed in the general account of the wrist and the hand (page 378).

Pclits and Loact Ertromity.-The os innominatum of Romerolagus closely resembles that of Limmolagus. The only marked difference, aside from its slenderer formation, is the more pronounced development of the short, blunt spine at the antero-ventral angle, and the straightness of the ventral edge of the ilium. The ilia are wide, but their antero-superior angles are not obliquely rounded off. The horizontal rami of the pubic bones slope backward to a greater extent than they do in other genera with the exception of Limnolagus.

The femur of Romerolagus is entirely similar to the same bone in any of the Leporidæ and needs no special mention.

The fusion of the fibula with tibia (pl. xcix, 9) in Romerolagus takes place at the middle of the latter bone, thus resembling Ochotona. In other genera of the Leporidre, except Pcutalagus, it occurs just above the middle. The tibia of Romcrolagus, like that of Limnolagus and Pcutalagus, is relatively heavier and also more curved than in the other genera, the inner surface of the lower part of its shaft being concave as in Ochotona.

The basal width of the metatarsus is contained twice in the length of the third metatarsal.

The combined lengths of the three phalanges approximately equal the length of the metatarsals to which they belong.

Romorolagus uclsoni, the only species of the genus, is represented by゙ a single complete skeleton and several separate skulls.

Romerolagus is one of the best marked genera of the Leporidæ. Externally it appars much like Pcutalagus.

The skull, as a whole, and in particular the postorbital processes and the palate, strongly suggests the skull of Pronolagus. The structure of the first lower premolar also associates Romerolagus with Pronolagus and with Pentalagus as well. Its external characters also associate it with Pentalagus but not with Pronolagus. In the shortness of its hind foot, Romerolagus approaches Pentalagus and Ochotona. The sternum of Romerolagus has almost exactly the same form as in Ochotona.

Genus NESOLAGUS Major

İ97. Caprolagus Trouessart, Catalogus Mammalium, vol. i, fasc. iii, p. 66
i899. Nesolagus Major, Trans. Linn. Soc. London, 2d ser., vir, Zool., p. 514 , November, 1899.
1900. Caprolagus (in part) Stone, Proc. Acad. Nat. Sci. Philadelphia, 1900, p. 462.
Type.-Nesolagus netscheri (Schlegel).
Geographical Distribution.-Sumatra.
Diagnosis.-Externally essentially as in Caprolagus (Schlegel, 'So, pp. 61, 62). Reentrant angle of second upper cheek tooth extending little more than a third across the tooth, not crenated, but resembling the same tooth in Brachylagus. (Major, '99, pl. 37, fig. 17.)

No specimens of this interesting rabbit have been seen by the writer, and the following description is based on the figures given by Major and the description by Schlegel.

Skull.-Postorbital processes probably like those of Romerolagus, Pronolagus, Caprolagus, and Pentalagus.

The bony palate is long, the true palate bones forming about its posterior third, its length is greater than the width of the choanre or incisive foramina. The incisive foramina are rather small, their sides approximately parallel, their greatest width less than the width of the choanæ. The choance are wide. The antero-inferior angle of the zygoma is enlarged. (Major, '99, pl. 39, fig. 38.)

Tecth.-The reentrant angle of the second upper molariform tooth extends but little more than a third of the distance across the tooth; its sides are not crenated. (Major, '99, pl. 37, fig. 17.)

Vertcbral Column.-Sacro-caudal series of vertebra twelve (Schlegel, 'So, p. 64). By considering four vertebre as forming the sacrum, eight caudal vertebre are left, a smaller number than is found in any other genus of the Leporidæ.

Sternum and Ribs (pl. xcyi, 4).-Presternum considerably enlarged in its anterior third, to about the same extent as in

Romcrolagus. Its different shape is shown in figs. I and 4, pl. Xevi. The mesosternum consists of four distinct segments, the first two subequal in length, compressed laterally; the third segment is slightly shorter, not laterally compressed ; the fourth segment is very short and cartilaginous. The mesosternum, strangely enough, is quite unlike that of Romcrolagus, and closely resembles the mesosternum of Sylitlagus. The xiphisternum is very short, much shorter than the presternnm, its anterior end considerably enlarged, its posterior end not enlarged at all. Apparently only six pairs of ribs articulate directly with the stern1111. (Major, '99, pl. 39, fig. I8.)

Upper Extremity.-Radius and ulna subequal. (Major, '99, pl. 38, fig. 28.)

Species in the genus.-One, Nesolagus netscheri (Schlegel).
Nesolagus is apparently a well-marked genus, but unfortunately I have seen no examples of it. The general structure of its skull, radius, and ulna seems to associate it with Caprolagus. The anterior portion of its presternmm is enlarged quite as in Romerolagus and Ochotona. The upper cheek teeth apparently resemble those of Brachylagus in the short non-crenate reentrant angles.

Genus CAPROLAGUS Blyth

1845. Caprolagus Blyth, Journ. Asiatic Soc. Bengal, xiv, 1845, p. 247. 1863. Lepus Blyth, Cat. Mam. Mus. Asiat. Soc. Calcutta, p. I33.
1846. Carpolagus Gray, Ann. Mag. Nat. Hist., xx, 3d ser., p. 225.
i899. Caprolagus Major, Trans. Linn. Soc. London, 2 d ser., vir, Zool., p. 514, November, 1899.
1847. Caprolagus Stone, Proc. Acad. Nat. Sci. Philadelphia, 1900, p. 462. Typc.-Caprolagus hispidus (Pearson).
Gcographical Distribution.-Along the foot-hills of the Himalayas in northeastern India.

Diagnosis.-Fur harsh, ears much shorter than head, tail short. Skull short and heavy, rostrum stout, postorbital process represented by small posterior limb only. Teeth essentially as in Lepus except that the first lower premolar has two reentrant angles on anterior face and one on the internal face of the anterior portion of the tooth.

I have seen $n 0$ members of this genus, and the following account has been taken from the published figures of the skull and teeth. (Blyth '45, Major '99.)

Skull.-The skull, as a whole, is rather short and heavy, moderately arched, rostrum short and stout, nasals about as wide in front as behind.

Postorbital process small, represented by the posterior limb only, which forms the outer border of a well-marked posterior notch.

The bony palate is long, its length equaling four times the length of M^{1}, its posterior third is formed by the horizontal plates of the palate bones. Its length is greater than the width of the choane. and is greater than the greatest width of the incisive foramina taken together.

The incisive foramina themselves are smaller than in any other genus except Pcutalagus; their shape taken together is that of an elongated triangle.

The zygoma is deep, its posterior free extremity long. Its anteroinferior angle is not enlarged.

The audital bullæ are small, resembling those of Pronolagus and Pentalagus.

Tecth.-First upper incisor, groove on anterior face, deep, simple. and filled with cement (Major '99, p. 468, No. vin). The first upper molariform tooth has the usual three reentrant angles on its anterior surface very deep, much as they are in Pronolagus; the sides of the angle are not crenated. The second, third, fourth, and fifth upper molariform teeth have each the usual deep reentrant angle on the internal face extending about four-fifths of the distance across each tooth. The sides of these reentrant angles are close together throughout their whole extent, and are strongly crenated in the first two of these teeth, moderately crenated in the third, and scarcely at all in the fourth. The last upper molar is very small, elliptic in outline, with a transverse diameter between a fourth and a fifth of the transverse diameter of the other upper jaw teeth.

The first lower molariform tooth is divided, by the usual deep reentrant angle from the external face, into an anterior and a posterior portion. The anterior face of the anterior portion has two narrow reentrant angles, and the external and internal faces of this portion have a single broad reentrant angle each. The second, third, and fourth lower molariform teeth are divided into the usual anterior and posterior portions by a well-marked reentrant angle extending from the external face across the tooth, the posterior limb of the angle being crenated. The posterior portion of the second lower molariform tooth has a transverse diameter about five-sisths the transverse diameter of the anterior portion; the transverse diameter of the posterior portion of the fourth lower molariform tooth is little more than half of the same dimension of the anterior portion of the tooth. The last lower molar is small, composed of a larger anterior portion, elliptic in section, and a smaller posterior portion, more nearly circu-
lar. which is very small in comparison with the anterior portion. (Major '99, pl. 36, fig. 33 ; pl. 37, fig. 23.)

Upper Extremity.-The radius and ulna are subequal in size, apparently shorter than they are in most of the Leporidæ. (Major 99. p. 490, figs. xxxit-xl.)

Species in the genus.-One, Caprolagus hispidus (Pearson).
Caprolagus is apparently a well-marked gentus of the Leporidæ. It was the first member of the family to be separated as a genus distinct from Lepus. The structure of its teeth associate it with Lepus, Sylithgus, and Oryctolagus, while the general shape of the skull make it appear related to Nesolagus and Pentalagus, as do also the external claracters.

Genus PENTALAGUS new

1900. Caprolagus Stone, Proc. Acad. Nat. Sci. Philadelphia, p. 460.

Type-Pentalagus furnessi (Stone).
Gcographical Distribution.-Liu Kiu islands.
Diagnosis.-Ears and hind feet unusually short, similar to proportions in Romerolagus, pelage harsh, throat patch not well marked. Skull and teeth of leporine build, but molars $\frac{2}{3}$ instead of $\frac{3}{3}$.

Skull (pl. LxXix, $2 a, 2 b, 2 c$).-The skull as a whole is low and flat, not so much arched as is usual among the Leporidæ, broad between the orbits, rostrum shorter and heavier than in the other Leporidæ. Nasals very short and broad, as wide in front as behind; their most posterior point is on a line just anterior to the anteroinferior angle of the zygoma; in most of the other genera of the Leporidæ, the nasals are on a line just posterior to the anteroinferior angle of the zygoma.

The postorbital process consists of the posterior limb only, as is the case with Pronolagus, Caprolagus, and Romerolagus. It is well developed, heavier and more blunt than in the genera just mentioned.

The sutures of the interparietal are obliterated.
The bony palate is long, being four times the length of m^{1}; its posterior fourth is formed by the horizontal plates of the palate bones.

The incisive foramina are narrow, their sides approximately parallel, resembling in shape those of Pronolagus, but very much smaller. Their greatest width taken together is about half the length of the bony palate and much less than the width of the choanre. The choanæ are wide, but their width is less than the length of the bony palate. The pharyngeal vault is low. The posterior palatine foramina are well developed and are situated at the outer anterior angles of the horizontal plates of the palate bones.

The zygoma is moderately heavy, its posterior free extremity moderately long, its antero-inferior angle slightly enlarged but con-siderably flared outward. The fossa, which is found usually in the Leporide on the anterior surface of the antero-inferior angle, is lacking in Pcutalagus as it also is in Limmolagus. The foot-like extremity of the zygomatic process is large.

The audital bullae are very small, being even more reduced in size than they are in Pronolagus. The external auditory meatus does not have the form of a rounded tube, but is an oval ring of bone closely applied to the side of the skull, just above and slightly behind the audital bulla. The paramastoid process of the exoccipital, which is in relation with the audital bulla posteriorly, is sery large and heavy, and projects below the lowest point of the bulla about six millimeters. In all the other rabbits at hand, the paramastoid process projects not more than one or two millimeters below the bulla.

The sides of the maxilla are scarcely at all fenestrated, being pierced by a few small foramina only. The infraorbital foramen is large and distinct.

The premaxille are relatively shorter than in the other genera and their nasal processes do not extend so far caudad.

The mandible of Pcntalagus shows an exaggeration of the condition found in Limnolagus. The angular process is large and rounded, extends high up on the ascending ramus, which is relatively thick. The condyle has a long antero-posterior dimension. The notch between the condyle and the angular process is very short and shallow.

Tceth (pl. xci, 7; fig. 44, 24).-Pcntalagus differs from all the other known genera of the Leporidæ in lacking the third upper molar.

The upper incisors are large and heavy, each with a broad sulcus on its anterior face, not filled with cement.

The first upper molariform tooth has the three usual reentrant angles, of which the middle and largest one is very deep and has its sides distinctly crenated. The second upper molariform tooth is the largest of the maxillary teeth; the third, fourth, and fifth are nearly subequal in size. The reentrant angles on all the teeth are well marked and extend almost completely across the tooth. The sides of these angles are almost in contact throughout their whole extent and more distinctly crenated than they are in the rest of the Leporidx.

The first lower molariform tooth is very long. It is divided into two portions, a narrower, longer, anterior one, and a broader, shorter, posterior one, by two well-marked reentrant angles, one from the external and the other from the internal facs. The anterior portion
of the tooth has two reentrant angles on its anterior face, and one each on its internal and external faces. The second, third, and fourth lower molariform teeth have their posterior portions as well developed as their anterior portions, and the posterior limb of the reentrant angle which divides these teeth into two portions is very much more convoluted than in any of the other Leporidx examined. The last lower molar has the appearance of a double cylinder, the anterior portion of which is larger and elliptic in outline, and the posterior portion smaller and more terete.

Upper Extremity.-The bones of the upper extremity, like those of the lower, are relatively shorter and stonter than in the other genera. The double trochlear surface of the lumerus has its main portion very broad and shallow, while the outer portion is much reduced in size. The groove subtending the internal condyle is very shallow.

The radius and ulna (pl . xcvin, io) are short, heavy bones, the ulna being the larger of the two. The radius is distinctly shorter than the humerus.

The carpal bones resemble those of the Leporidæ as described in the general account (page 378), but the pisiform is considerably reduced in size, and has almost the same form that it has in Ochotona.

The metacarpals are sliort and heavy, resembling those of Ochotona, and the basal width of the three middle ones is contained but one and a half times in the length of the middle metacarpal.

Loacer Extremity.-The femur is very stout and heavy.
The tibia and fibula are also very stout and heavy, in marked contrast to the same bones in the other genera. As in the case of Romerolagus the fibula fuses with the tibia at its middle point (pl. xcix, 4).

The hind foot ($\mathrm{pl}, \mathrm{c}, 4$) is short and stout, the tarsal bones being relatively wider than in the other genera of the Leporidæ, having about the same general proportion as in the Ochotonidæ.

The metatarsals are especially short and heavy, and their basal width is contained but one and a half times in the length of the longest, as in the case of the Ochotonidæ.

Pentalagus is the most marked of any of the genera of the Leporidx, the tooth formula, the structure of the teeth, the relative size of the radius and ulna, and the very short tarsus and metatarsus being peculiar to the genus and unlike anything in the rest of the family. A complete sleeleton would probably show that it has still further points of differentiation from the typical leporine form.

Its general build of skull seems to associate it with Caprolagus and Nesolagus. But Caprolagus has typical leporine teeth and the upper cheek teeth of Nesolagus seem to resemble those of Brachylagus. In the structure of the first lower premolar, Pcntalagus, Romerolagus, and Pronolagus are very similar.

The dental formula, the relation between radius and ulna, and the extremely short hind foot associate Pentalagus with Ochotona, but the general structure of its skull is entirely leporine.

Family OCHOTONIDÆ

Genus OCHOTONA Link

1778. Lepus (in part) Pallas, Glires, pp. 1-jo.
1779. Ochotona Link, Beyträge Naturgesch., i, pt. ii, p. 74.
ıSoo. Lagomys Cuvier, Leçons d'Anat. Comp., i, Table.
1780. Ogotoma Gray, Ann. Mag. Nat. Hist., xx, 3d ser., p. 220.
1781. Lagomys Gray, Ann. Mag. Nat. Hist., xx, 3d ser., p. 220.
1782. Ochotona Trouessart, Catalogus Mammalium, 1, fasc. ii, p. 645.
1783. Lagomys Major, Trans. Linn. Soc. London, $2 d$ ser., vir, Zool., p. 435, November, 1899.
Type.-Ochotona ochotona (Pallas).
Geographical Distribution.-In the mountain ranges of eastern Europe, central Asia, Siberia, and the Boreal Zone of the mountains of western North America.

Diagnosis.-Same as for the family Ochotonidæ. Duplicidentate rodents without postorbital processes, and the second upper cheek tooth different in structure from the third. See also page 38_{+}.

Skull (pl. xc).-As a whole the skull of Ochotona is small, flat, not arched, brain case not rounded or inflated, rostrum short and moderately slender, the greatest width of the nasals being anterior and not posterior as in the case of the typical Leporidre.

Postorbital processes are lacking.
The interparietal is present as a distinct bone.
The bony palate is very short, and the incisive foramina in front and the choanx behind are separated only by a very narrow bridge of bone. The sutures of the horizontal plates of the palate bones and of the horizontal plates of the maxilla are obliterated in adult skulls. Young individuals show that more than half of the bony palate is formed by the horizontal plates of the palate bones. The horizontal plate of the palate is largely developed between the dental alveoli and the outer border of the choanæ, each such portion of the horizontal plate of the palate bone being approximately equal to the width of the choanæ.

The incisive foramina are varionsly shaped; they may have an elongated, triangular form, as in Ochotona roylii, but more usually they are divided into two portions-a smaller anterior one just behind the upper incisors, and a larger, rather pyriform one, just anterior to the bony palate-by the uniting to a greater or less extent of the posterior ventral portions of the two premaxillary bones.

The zygoma is moderately heavy ; at its antero-inferior angle is a well-marked tubercle; its posterior free extremity is very long.

The maxilla of Ochotona is not fenestrated as it is in the Leporidæ. Instead there is a single large, roughly triangular opening in the upper part of the nasal portion of the maxilla. In Ochotona roylii, however, the triangular opening is more elongated than in the other species, and just inferior to it there is a very slight amount of fenestration.

The mandible of Ochotona has a very wide ascending ramus and long condyle ; the notch between the ascending ramus and the angular process is large. No groove or thin plate of bone is found on the anterior surface of the ascending ramus of the mandible, as in the Leporidæ, but a prominent tubercle occurs there which is lacking in the latter family. The mental foramen is situated on the side of the horizontal ramus, directly under the last lower molar.

Tceth (pl. xcr, 2: fig. 44. 25.) -The first upper incisors of Ochotona have each a single, simple groove. Their cutting edge is very sharp; that portion external to the groove is much produced downward, the internal portion only moderately so produced. In this manner an unequally sided V-like notch is seen on the front cutting edge of each tooth, with the groove at the point of the V.

The second upper incisors are small slender teeth placed directly behind the first. The lower incisors, a single pair, are longer, slenderer, and more pointed than the corresponding teeth in Lepus and its allies.

The first upper premolar is small, with a single reentrant angle on the inner half of the anterior face.

The second upper premolar has a reentrant angle on its anterior face, extending to the middle of the tooth and thence toward the outer edge. There is also a broad, shallow angle on the internal face of this tooth.

The three remaining upper jaw teeth possess each a single reentrant angle on the internal face, extending all the distance across the tooth, very much like the reentrant angles of the Leporidæ, but without any crenation. The last tooth has a projecting loop of enamel, from its posterior aspect, thus differing from the two teeth immediately in front of it.

The first lower premolar much resembles the anterior half of the first lower premolar of Lepus. It has two reentrant angles on the external face and one on the internal.

The second, third, and fourth mandibular cheek teeth of Ochotona are quite like the corresponding teeth of the Leporidæ, but the division into anterior and posterior portions is more marked and the two portions are entirely subequal.

The last lower molar is small, irregularly oval in outline, its pointed end being toward the external side. A posterior portion to this tooth is completely lacking.

Vertcbral Column.-The cervical vertebræ (pl. xcir, I) of the Ochotonidæ have the same general characteristics as in the Leporidæ. They are decidedly shortened antero-posteriorly, the laminæ of the posterior ones being very narrow. This shortening involves the axis but not the atlas. The latter has the free extremities of the transverse processes moderately expanded. The costo-transverse process of the third, fourth, and fifth cervicals are placed more obliquely to the axis of the vertebral column than the same processes in the Leporidæ. In the sixth they become horizontal as they do in the hares. The transverse process of the seventh cervical differs from the same process on the same vertebra in the Leporidæ in not being pierced by a costo-transverse or vertebral foramen.

The thoracic vertebræ of the Ochotonidæ are seventeen in number. The first twelve of the thoracic vertebre, in Ochotona, are exactly homologous with the twelve thoracic vertebre of the Leporidæ. The arrangement of the facets for the heads and the tubercles of the ribs is entirely similar. The five remaining rib-bearing vertebre of Ochotona are practically indistinguishable from one another, as well as from the twelfth, except by the slightly greater size of each succeeding vertebra.

The spinous processes are relatively shorter in Ochotona, and this is especially true in the posterior thoracic region from the twelfth onward, where the spines are all low and slightly inclined forward. Each neural spine of these posterior thoracic vertebre arises by a broad base from the whole length of the neural arch; the free extremity of the process is nearly as broad as the base, the posterior edge being slightly concave.

That part of the transverse process of the thoracic vertebra which articulates with the tubercle of the rib is of the same form in the two families. Associated with this transverse process in Ochotona are the metapophysis and the anapophysis. Both of these processes are first seen on the third thoracic as mere tubercles. The anapo-
physis grows larger on each succeeding vertebra, attaining its greatest size on the last thoracic. From the eleventh thoracic onward the anapophysis is a well-marked process, directed upward, backward, and outward. The metapophysis remains little more than a tubercle until the tenth thoracic vertebra is reached, where it is a well-marked process. On the eleventh it is slightly larger and on the twelfth still larger, closely associated with the prezygopophysis. The metapophysis scarcely increases in size through the rest of the series and continues closely associated with the prezygopophysis throughout.

No ventral spines or hypophyses are found on any of the vertebræ. Some of the posterior thoracic have a slight ventral ridge, which is also found on all the lumbar vertebræ.

There are five lumbar vertebræ (pl . xcri, io) in Ochotona, each of which is compact, with the processes broad and closely applied to body. The neural process is low, with the free edge as long as the whole length of the vertebra and parallel with its axis. The metapophysis is well developed and is more closely associated with the prezygopophysis than it is in the Leporidæ. Anapophyses are well developed on the first and second lumbar vertebre and are a direct continuation of the thoracic series of anapophyses. These processes are slightly indicated on the third lumbar vertebra, after which point they disappear. The transverse process is little more than a tubercle on the first and second lumbar vertebræ, but on the third and fourth it is a wide quadrilateral plate of bone coming from the whole side of the vertebre, sloping downward and outward. The transverse process of the fifth and last lumbar is a trifle longer than the other transverse processes and only about half as wide, the narrowing taking place chiefly at the expense of the posterior half of the process. There are no hypophyses, but all the lumbar vertebre, as is the case of those lumbar vertebræ of the Leporidæ which do not bear ventral spines, possess a median ventral ridge.

The sacrum in the pikas is long and narrow, its greatest breadth being contained in its length about twice. The lateral masses that are attached to the ilia have sides that are nearly parallel. The neural spines, so distinct and conspicuous on the sacra of the Leporidæ, are reduced in the Ochotonidæ to form a low dorsal ridge, the spines having fused with one another. The number of vertebræ entering into the formation of the sacrum of the Ochotonidæ is four, the same as in the Leporidæ.

The caudal vertebre in Ochotona are eight in number in all the skeletons at hand except one, which has nine. In the three American specimens, the first caudal is somewhat narrowed; the next two are
slightly wider, with faint indications of lateral projections; the rest of the series consists of short, flattened bodies. The single Asiatic skeleton has mainly the same character of the caudals, but the individual vertebre are relatively wider throughout.

Stcrnum and Ribs (pls. XCYi, 2; xciv, 9).-The material for making generalizations of the sterna of Ochotona is far from satisfactory. Among four skeletons but one is fully adult and there is a certain amount of variation among them. It may be that more material would show that there are two or three different types of sterna in the Ochotonidæ. Aside from a few minor details the sternum of the only adult Ochotona at hand, No. 91,188, is almost exactly like the sternum of Romerolagus. The expanded position of the manubrium is less developed in Ochotona than in Romerolagus, and rather triangular in outline instead of pentagonal. In other respects the two sterna are similar. The presternum is nearly as long as the mesosternum and slightly longer than the xiphisternum.

The mesosternum of Ochotona is, in general, very similar to that of Romcrolagus. The first and second segments are subequal in length, the second, however, being broader. The third segment is the longest and broadest of the mesosternum. The fourth segment is the shortest and nearly as broad as the third. Both the third and fourth mesosternal segments are completely ankylosed as they are in Romerolagus and Limnolagus.

The xiphisternum is considerably expanded at the proximal end but the distal extremity is not much enlarged. It is decidedly shorter than the presternum.

The seventh rib is attached, along with the sixth rib, to the sternum at the point of union of the meso- and xiphi-sternum.

No. 30,990 Ochotona saxatilis, from Idaho, is very similar to the above; it is young, however, and the third and fourth pieces of the mesosternum are not yet fused.

No. 49,620, from Oregon, has the entire mesosternum narrow, and its last two segments separate.

No. 49,500 Ochotona ladacensis, has the enlarged portion of the presternum less expanded, the mesosternum is relatively longer and decidedly narrower than is the mesosternum of O. saratilis, the third and fourth mesosternal segments are not fused. The mesosternum, as a whole, bears considerable resemblance to some of the mesosterna of Syluilagus. The xiphisternum is rather short.

In Ochotona there are seventeen pairs of ribs, of which the first seven are attached to the sternum by means of costal cartilages; the
last seven, or about that number, have no ventral attachments, while the intermediate three pairs are attached to the costal cartilages of the ribs in front. The ribs are all slender and weak compared with the ribs of the Leporidre, and none of them possesses well-developed spine-like tubercles, but between the heads and tubercles the anterior ribs are rather broad and heary.

Shoulder Girdlc and Upper E.tremity. - In Ochotona, the clavicle (pl. xCyi, 2) is well developed; its onter end is enlarged, flattened. and connected by a ligament to the greater tuberosity of the humerus. The imuer end articulates directly with the extreme anterior portion of the presternum.

The scapula (pl. Xcrir, 5) has the general outline of a rightangled triangle with the right angle very much rounded off. The acromion process is very long and slender and about three times the length of the actual scapular spine. The metacromion is well developed. The posterior border of the scapula is long and concave; the superior border is relatively long and much romnded, so that it gradually passes into the anterior border. The distance between the antero-superior and postero-superior angles is contained a little more than once in the length of the scaputla, taken along the attachment of the spine.

The humerus of Ochotona is in general very much like the same bone in Lepus and its allies. The head of the bone is rather more globular, and the bicipital groove does not encroach on its anterior surface. The anterior tuberosity does not project above the head of the bone, so that the latter point is its highest part. When viewed from the side, the head of the humerus is seen to project rather backward, so as to form a sort of hook with the shaft of the bone. The double trochlear surface, at the distal end of the bone, is rather wide and shallow. The groove subtending the internal condyle is poorly developed.

The bones of the forearm (pl. xcyin, in) in Ochotona are similar to the forearm bones of Pentalagus (page +30). The uha is distinctly larger than the radius throughout its whole extent. The outer portion of the distal extremity of the ulna is prolonged downward into a convex articular surface which fits into a corresponding concavity formed by the cuneiform and pisiform bones. There is also a concave facet just internal to this projection which articulates with a corresponding convexity on the cmeiform.

The structure of the carpus of Ochotona is best understood by an examination of the figures (page 379). Compared with the carpus of Lepus and its allies the dorso-palmar depth of the pisiform is
relatively small, the lunare narrow, the internal half of the cunciform larger, which presents a well-developed convex facet for articulation with the ulna, as mentioned above. The os centrale is quite large, and not flask-shaped. The os magnum is rather small. A small os vesalianum is present.

The metacarpus and phalanges of Ochotona are quite like the same structures in Lepus. The second and fourth metacarpals are nearly as long as the third. The width of the three middle metacarpals is contaned about one and a half times in the length of the third metacarpal.

Pelait and Lozver Eirtremity.-The most striking feature of the pelvis of Ochotona is the absence of the symphysis pubis. The pubic bones are widely separated from one another but are connected by a ligament. As none of the few available skeletons are sexed, it is barely possible that this character is sexual. The os immominatum is rather long and slender, the ilium rather thick, its ventral third separated from the dorsal two-thirds by a well marked ridge, which terminates anteriorly and ventrally in a well-marked, recurved, pointed spinc. The thyroid foramen is ovoid, its narrow end directed forward toward the acetabulum. The horizontal ramus of the pubis is very short, the descending ramus long, directed obliquely backward and downward.

The femur of Ochotond has the same general character that it has in Lepus, but is relatively thicker and heavier. The third trochanter is much reduced in size, the lesser trochanter relatively larger. The fossa behind the great trochanter is not so deep as in Lepus. The length of the femur is a trifle less than that of the tibia.

The tibia and fibula (pl. xcrx, 6, 7) of Ochotona are similar in all respects, except in absolute size, to these bones in Romerolagus. The fibula fuses with the tibia at the middle of the latter bone. The imer surface of the lower part of the shaft of the tibia is concave.

The tarsus of Ochotona is generally like that of Lepus. The middle cuneiform, however, is fused with the base of the second metatarsal. The basal width of the metatarsals is contained one and a half times in the greatest length of the metatarsals. There is a large sesamoid bone at the platar surface of the base of the fifth metatarsal. This bone is lacking in the leporidee, but is represented by a prominent tulecrele on the fifth metatarsal in the same situation.

The skulls of Ochotona available for stuly are a heterogenenus lot, capable of being placed in threc distinct groups, clescribed below as subgenera.

Subgenus OCHOTONA Link

1795. Ochotona Link, Beyträge Naturgesch., I, pt. ii, p. 74.
1796. Ogotoma Grar, Ann. Mag. Nat. Hist., xx, 3d ser., p. 220.

Type.-Ochotona ochotona (Pallas).
Geographical Distribution.-Mountains of central Asia.
Diagnosis and Description.-Brain-case rather flattened, resembling that in subgenus Pika. Skull (pl. xc, 84,062) itself rather strongly arched, especially between the orbits. Interorbital region very narrow and pinched up. Incisive foramina constricted into two unequal portions as they are in subgenus Pika.

Represented by several skulls of Ochotona ladaccusis. The figures published by Büchner, show that O. koslozi also belongs to this subgenus.

Subgenus CONOTHOA new

Type.-Ochotona roylii Ogilby.
Geographical Distribution.-Mountains of central Asia.
Diagnosis and Description.-Brain-case rather rounded, whole skull (pl. xc, 30,814) moderately arched from before backward, rostrum relatively long, its origin less abrupt than in the other subgenera. A small oval foramen, between one and two millimeters long, is found in the antero-superior part of each frontal bone; interorbital region moderately wide. The opening in the maxilla is elongated triangular ; just beneath this large opening there is a small amount of fenestration. The incisive foramina together are triangular in outline, usually not constricted into an anterior and posterior portion.

This subgenus is represented by several skulls of Ochotona roylii. The figures of O. crythrotis, published by Büchner, show that it undoubtedly belongs in this subgentu, although the incisive foramina are constricted into two portions.

Subgenus PIKA Lacépède

1799. Pika Lacépède, Tableau de Divisions de Mammifères, p. 9.

Type.-Ochotona alpina (Cuvier).
Gcographical Distribution.-Same as for the genus.
Diagnosis and Description.-Brain-case and whole skull (pl. xc. 66,678) very flat, interorbital region rather broad and flat, not pinched up or arched. No foramina in the anterior part of the frontals. Opening in the maxilla roundly triangular, single. Incisive foramina constricted into two unequal portions.

Ochotona alpina illustrated by Waterhouse (pl. it), and all the American species belong to this subgenus.

VIII. GEOGRAPHICAL DISTRIBUTION

The family Leporidæ is widely distributed. Members of it are found in every portion of the world except the general regions embraced by Australia and neighboring islands, and by Madagascar and neighboring islands. In the terms of zoogeographers they are found throughout the Arctogreic realm (Lydekker '96) with the exception of the Malagasy region, and one genus is found in the Neogreic realm. No member of the family is found in the Notogreic realm, nor in the Malagasy region of the Arctogric reahm.

The genus Lepus has the same general distribution that the family: has, except that no members so far as known are found in the Neogreic realm. This genus is found most abundantly in the Holarctic region.

The subgenus Lepus is mainly confined to the Holarctic region, but in North America one species, Lepus campestris, extends into the Sonoran region (Lydekker '96) or Arid Transition faunal area (Merriam '98).

The subgenus Pacilolagus, so far as known, is found in that portion of North America which belongs to the Holarctic region, the Canadian, Hudsonian, and Transition zones.

The subgenus Macrotolagus is chiefly confined to the western arid portion of the Sonoran region of Lydekker or the arid portion of Merriam's Austral region embracing the Upper and Lower Sonoran.

The genus Sylvilagus is restricted entirely to the New World. where it extends throughout the Sonoran region of the Arctogeeic realm of Lydekker, and southward more or less extensively throughout the Neogæic realm, or it may be said to occur throughout the Transition zone of Merriam and all the zones southward.

Brachylagus has a rather small distribution in the Lepper Austral, called Upper Sonoran famal area, in southern Idaho, northern Nevada and California, and eastern Oregon and Washington.

Limnolagus is found, in general, throughont the Austroriparian faunal area, occupying the greater part of the South Atlantic and Gulf states.
The genus Oryctolagus occurs in southern and western Europe and northern Africa, in general, the sonthwestern portion of Lydekker's Holarctic region in the Old World.

The genus Pronolagus, so far as known, is confined to the sonthern portion of Africa or the Ethiopian region.

The remaining genera of the Leporidx contain but a single species each, and have a very limited distribution.

Caprolagus is found along the foothills of the Himalayas in northeastern India.

Nesolagus is found only in Sumatra.
Romcrolagus is known only from Mount Popocatepetl, Mexico.
Pentalagus is known only from the Liu Kiu islands, south of Japan.

The family Ochotonidæ has a much less extensive distribution than the Leporidæ. Members of it are found in the Canadian zone of the Rocky mountains of western North America. They also occur in the mountain ranges of eastern Europe, central Asia, and in Siberia. They are thus confined to the Holarctic region of the Arctogæic realm.

IN. BIBLIOGRAPHY

The following bibliography gives the titles of the works which are referred to in, and have been of most service in the preparation of, the present paper, with the exception of those that are mentioned in the tables of synonomy, or incidentally in the text, where full references are given.

Baird, S. F., '57.

Mammals of North America, 1857. pp. 572-620, pls. Lvi-lix.
The following groups of the genus Lcpus are recognized. designated by letters: A, corresponds to the genus Lepus exclusive of the subgenus Macrotolagus; B , corresponding to the stubgenus Macrotolagus; C , to the genus Oryctolagus; D, to the subgenus Sylailagus; E, to the subgenus Microlagus, and F , to the genus Limnolagus.

Excellent figures of skulls of Lepus, Syleilagus, Macrotolagus and Limnolagus are given.

Blyth, Edward, '45.

Description of Caprolagus, a new genus of Leporine Mammalia.
Journal of Asiatic Society of Bengal, xiv, i845, pp. 247-249.
Caprolagus proposed as a genus to include Lepus hispidus Pearson. Figures of the skull, dorsal, ventral and lateral views are given.

Büchner, Eug., 's4.
Wissenschaftliche Resultate der von N. M. Przewalski nach CentralAsien Reisen Zool. Theil, Band I., Säugethiere. St. Petersburg, 1894.

Contains excellent photographic reproductions of the skulls of Ochotona (Ochotona) ladaccnsis, Ochotona (Ochotona) koslozvi, Ochotona (Conothoa) crythrotis. Ochotona (Pika) daurica, Lcpus oistolus, and Lepus pallipes, on plates xxiv and xxv.
Flower, William Henry, and Lydekker, Richard, 'gr.
Mammals, living and extinct, London, I891, pp. 491-495.
Brief descriptions of the two families of the Duplicidentata, Lagomyidæ, and Leporidx, each with a single existing genus, Lagomys and Lepus, are given.

Gray, J. E., ' 67.
Notes on the skulls of Hares (Leporidæ) and Picas (Lagomyidæ) in the British Museum. Amnals and Magazine of Natural History, 3d series, vol. सX, 1867, pp. 219-225.
Lagomyidæ divided into two genera: Ogotoma and Lagomys.
Leporidæ divided into the following genera: Hydrolagus, Sy:vilagus, Eu'agus, Lepus, Tapcti, Cuniculus, Carpolagus.

Krause, W., '84.

Die Anatomie des Kaninchens in topographischer und operativer Ruitcksicht, Zweite Auflage, 1884, pp. I-383.

It contains a complete anatomy of the common rabbit Oryctolagus cuniculus; pp. 36-46, general osteology ; pp. 75 to 135, a detailed description of all the bones of the rabbit, illustrated by woodcuts, figs. 28 to 64 ; pp. 197-199, embracing figs. So-82, devoted to the teeth. In the introduction, pp. I-35, many of the differences between the hares Lepus and the rabbits Oryctolagus are pointed out, figs. 3-I3. The skulls and bones of the forearm of each are figured.

Lilljeborg, ' 74.

Sveriges och Norges Ryggradsdjur, I, 1874.
Describes Lepus with two subgenera, true Lepus represented by timidus, Oryctolagus (new name to replace Gray's Cuniculus) for Lepus cuniculus. The cranial characters of the two subgenera are carefully set forth.

Lydekker, Richard, '96.

A geographical History of Nammals, i8g6.
A work of 400 pages with a map of the mammalian geographical realms. and regions in the front.

Major, C. I. Forsyth, '99.
On Fossil and Recent Lagomorpha. Transactions of the Limnean Society of London, 2d ser., vir, Zoology, November, I899, pp. 433-530, plates 36-39.

An elaborate account of recent and fossil forms, with excellent figures, especially of the teeth. The characters for the groups are not well defined and are rather obscured in the mass of general discussion.

Mearns, Edgar A., '96.
Preliminary description of a new subgenus and six new species and subspecies of hares from the Mexican border of the United States. Proc. U. S. Nat. Museum, xvili, pp. $551-565$, June 24, 1896.

Macrotolagus described as a new subgenus of Lepus. Diagnoses of Hydrolagus, Sylvilagus, and Macrotolagus given.
Merriam, C. Hart, '96.
Romerolagus nclsoni, a new genus and species of rabbit from Mt. Popocatepetl, Mexico. Proc. Biol. Soc. Washington, x, pp. 169-174, December 29. 1896.

The genus Romorolagns is described. Its sternum is figured.
Merriam, C. Hart, '98.
Life and Crop Zones of the United States. Bull. No. 10, U. S. Dept. Agric., Div. of Biol. Survey, I898, pp. i-79.

Map of the life zones of the United States in front.

Miller, Gerrit S., Jr., 1900.
A new subgenus for Lepus idahoensis. Proc. Biol. Soc. Washington, xili, p. 157, June 13, 1900.
Brachylagus is proposed as a subgenus for Lepus (Brachylagus) idahoensis Merriam, and some of its characters are defined.

Miller, Gerrit S., Jr., and Rehn, James A. G., 'or.
Systematic Results of the Study of North American Land Mammals to the close of the year rgoo. Proc. Boston Soc. Nat. Hist., xxx, No. I, pp. 175 ${ }^{-}$ 190, December 27, 1901.
It gives a complete list of all the North American Duplicidenta known up to the close of 1900 and places them in their several genera and subgenera, according to the views of modern workers.

Pallas, 1778.

Novæ Species Quadrupedum e Glirium Ordine. I778, pp. I-70, pls. i-iv.
The hares, rabbits and pikas are placed in one genus Lepus.
The external and internal anatomy of Ochotona pusilla, alpina, and ogotona is given with considerable detail. Figures of the skull and a figure of the entire skeleton of pusilla are given. Lepus variabilis and L. tolai are also described at some length.

Palmer, T. S., '04.

North American Fauna No. 23. Index Generum Mammalium. January 23, 1904.'
On pp. $850-85 \mathrm{I}$, a list of the generic and subgeneric terms that have been applied to the Leporidx; on p. 860 , those that have been applied to the Ochotonidx. In the body of this invaluable work, each of these terms is treated by itself.

Schlegel, H., '8o.

On an anomalous species of Hare discovered in the Isle of Sumatra; Lepus netscheri. Notes from the Leyden Museum, if, I880, pp. 59-65, February.
A description of external characters and a few skeletal characters is given. No figures.

Stone, Witmer, 1900.

Description of a new rabbit from the Liu Kiu islands, and a new flying squirrel from Borneo. Proc. Acad. Nat. Sci. Philadelphia, 1900, pp. 460-463.

External and cranial characters of Pentalagus furnessi (Stone) described. Pentalagus not recognized as distinct but considered a part of Caprolagus, which is regarded as a good genus.

Trouessart, E-L., '97.
Catalogus Mammalium, Vol. i, fasc. iii, 1897, pp. 6 6 - 664 .
A list, with references, of all known hares, rabbits, and pikas is given. It aims to be a compilation of what has been published in a systematic way on the subject, up to its date of publication, together with the geographic distribution.

Microlagus is named on $p .660$ as a subgenus for Lepus cincrascons Allen.

Waterhouse, G. R., '48.

A Natural History of the Mammalia, Vol. II, Rodentia, 1848 , pp. 9-147, pls. I and ir.

Contains an excellent account of the structure and characters of the two families Leporidie and Ochotonide. Ail the species known at that time are described. On plate in good figures are given of the skulls of Lepus timidus and Ochotona alpina.

EXPLANATION OF PLATES

Plate LXXIV (About four-fifths natural size)
I and Ia. Lepus (Macrotolagus) allcni, No. 59,223, Sonora, Mexico.
2 and 2a. Lepus (Lepus) curopaus, No. 105,831, Switzerland.

Plate LXXV (About five-sixths natural size)

1. Lcpus (Pacilolagus) amcricanus dalli, No. 36,209, Alaska.
2. Lepus (Macrotolagus) allcni, No. 59,223, Sonora, Mexico.
3. Lepus (Lepus) curopaus, No. 105,83I, SWitzerland.

Plate LXXVI (About five-sixths natural size)
1, 4. Lcpus (Pacilolagus) americanus dalli, No. 36,209, Alaska.
2, 5. Oryctolagus cuniculus, No. 49.645, Germany.
3. 6. Limnolagus palustris, No. 2,089, Society Hill, South Carolina.
7. 8. Sylvilagus (Sylailagus) floridanus transitionalis, No. 49,624, Monroe county, New York.

9, Io. Sylvilagus (Microlagus) bachmani, No. 44,416 , San Luis Obispo, California.

Plate LXXVII (About five-sixths natural size)
I. Sylìlagus (Microlagus) bachmani, No. 44,416, San Luis Obispo, California.
2. Sylitlagus (Sylvilagus) floridanus transitionalis, No. 49,634. Monroe county, New York.
3. Pronolagus crassicaudatus, No. 22,972, South Africa.
4. Limnolagus palustris, No. 2,089, Socicty Hill. South Carolina.
5. Oryctolagus cuniculus, No. 49,645, Germany.

Plate LXXVIII (Natural size)
ıa, ıb, ic. Romerolagus nelsoni, No. 57,954, Mt. Popocatepetl, Mexico.
2a, 2b. Pronolagus crassicaudatus, No. 22,972, South Africa.
3. Brachylagus idahocnsis, No. 93,696. Ione valley, Idaho.

Plate LXXIX (Natural size)
I. Brachylagus idahocnsis, No. 93.696, Ione valley, Idaho.

2a, 2b, 2c. Pentalagus furnessi. No. 5,583 (Wistar Institute), Liu Kiu islands.

Plates LXXX, LXXXI (About three-fifths natural size)
I. Lepus (Lepus) othus, No. 15,878, St. Michaels, Alaska.
2. Lepus (Lepus) curopaus, No. I, 857 , Bavaria.
3. Lepus (Lepus) tschuktschorum, No. 86,459, Petropaulski, Kamschatka.
+. Lepus (Lepus) t'ariabilis, No. 37.I37, Sweden.
5. Lepus (Lepus) campestris, No. 49,623, Kansas.
6. Lepus (Lepus) labradorius, No. 23,132, type, Labrador.
7. Lepus (Lepus) gronlandicus, No. II4,849, Bache peninsula, Greenland.
8. Lepus (Lepits) varronis, No. 105,834, Switzerland.

Plates LXXXII, LXXXIII (About two-thirds natural size)

1. Lepus (Macrotolagus)alleni, No. 59,292, Sonoyta, Mexico.
2. Lepus (Macrotolagus) merriami, No. S4,6 46 . Fort Clark, Texas.
3. Lepus (Macrotolagus) asclus, No. 36,0o9, type, San Luis Potosi, Mexico.
4. Lepus (Macrotolagus) callotis, No. 35.678, Guadalajara, Mexico.
5. Lepus (Macrotolagus) californicus, No. 60,867, U. S. and Mexican boundary line at Pacific ocean.
6. Lepus (Macrotolagus) terianus cromicus, No. 63,119, U. S. and Mexican boundary line, monument No. 77.
7. Lepus (Macrotolagus) texianus, No. 63,118, U. S. and Mexican boundary line, monument No. 6. .
8. Lepus (Macrotolagus) gai.lardi, No. 35.709, White Water, Chihuahua, Mexico.

Plates LXXXIV. LXXXV (About five-eighths natural size)

1. Lepus ruficaudatus, No. 38,039, Indi?.
2. Lepus ochropus, No. 34.735, Kilima-njaro, Africa.
3. Lepus hypsibius, No. 84,076 , Rupshu, Ladak.
4. Lepus tibetanus, No. 62,126, Ladak.
5. Lepus yarkandensis, No. 62,132, Yarkand river, eastern Turkestan.
6. Lepus (Pacilolagus) zashingtonii. No. 6,865, Washington.
7. Lepus (Pccilolagus) amcricants dalli, No. 36,209, Alaska.
8. Lepus (Pacilolagus) americanus struthopus, No. 23,123, Labrador.
9. Lepus (Pacilolagus) americanus zirginianus, No. IoI,844, Massachusetts.
10. Lepus (Pacilolagus) americanus macfarlani, No. 14,467, type, Fort Anderson, British America.

Plates LXXXVI, LXXXVII (Nine-fourteenths natural size)
I. Sy'z'lagus (Sylvi'agus) foridanus mallurus, No. 1,227, District of Columbia.
2. Sylvi'agus (Sylzilagus) floridanus yucatanicus, No. 37,772, type, Merida, Yucatan.
3. Sylzilagus (Sylzilagus) foridanus mearnsi, No. 22,409, Illinois.
+. Sylzilagus (Sylzilagus) truci, No. 112,787, Mexico.
5. Sylvilagus (Sylilagus) margarita, No. 63.217, type. Margarita island.
6. Syvilagus (Sylai'agus) subcinctus, No. 35,663, Hacienda El Molino, Mexico.
7. Sylvilagus (Sylid'agus) brasilicusis gabbi, No. 37.794, type. Talamanca, Costa Rica.
8. Sylzilagus (Sylvilagus) paragucnsis, No. 121,ł23, Sapucay, Paraguay. 9. Sylvilagus (Sylvilagus) arizonce, No. 58,863, Fort Lowell, Arizona.
io. Sylvilagus (Sylvilagus) auduboni, No. Go,92ı, Coast Range mountains, U. S. and Mexican boundary line.
ir. Sylvilagus (Microlagus) cincrascens, No. 60,871, Tecate river, U. S. and Mexican boundary line.
12. Sylzilagus (Microlagus) bachmani, No. 35.131, Nicasio, California.
13. Sylvilagus (Microlagus) bachmani ubericolor, No. 35,371, type, Beaverton, Oregon.

Plates LXXXVIII, LXXXIX (About five-eighths natural size)

I. Oryctolagus cuniculus, domestic, Belgian hare, No. 105.402.
2. Oryctolagus cuniculus, common domestic, No. 62.70+.
3. Oryctolagus cuniculus, common domestic, No. 36,831.
4. Oryctolagus cuniculus, wild, No. 3.124, England.
5. Oryctolagus cumiculus, wild, No. $49.6+5$, Germany.
6. Limnolagus paludicola, No. 64.029. Kissimmee, Florida.
7. Limnolagus palustris, No. 2,089, Society Hill, South Carolina.
8. Limnolagus aquaticus, No. 3.779, Warren county, Mississippi.
9. Limnolagus aquaticus, No. 8_{4}, Io9. Mississippi.

1о. Limnolagus attzuatcri, No. 97,031, Richmond. Texas.

Plate XC (Natural size)

I. Ochotona (Ochotona) ladaccnsis, No. 8九,063, Ladak, central Asia.
2. Ochotona (Pika) princcps, No. 66,678 , Nelson, British Columbia.
3. Ochotona (Conothoa) roylci, No. 36,8ז4, Baltistan.

Plate XCI (Enlarged three times)
Lower and Upper Cheek Teeth, right side
I. Brachylagus idahocnsis, No. 23,104, Goose lake, California.
2. Ochotona ladacensis, No. 84.062, Ladak, central Asia.
3. Romerolagus nelsoni, No. 57.95t, Mt. Popocatepetl, Mexico.
4. Limnolagus paludicola, No. 64,029 , Kissimmee, Florida.
5. Oryctolagus cuniculus, No. 49,6+8, England.
6. Lepus campestris, No. 61,367, Madison, Minnesota.
7. Pentalagus furnessi, No. 5.583 (Wistar Institute), Liu Kiu islands.
8. Pronolagus crassicaudatus, No. 22,972, South Africa.
9. Sylzilagus foridanus, No. 49.588, Florida.

Plate XCII (Natural size except Figure 1, which is enlarged twice)
Ventral Views of Cervical Vertebree

1. Ochotona saxatilis, No. 91,188, Cabinet mountains, Idaho.
2. Romerolagus nelsoni, No. 57,954. Mt. Popocatepet1, Mexico.
3. Brachylagus idahoensis, No. 93.595. Ione valley, Idaho.
4. Limnolagus paludicola, No. 49.58o. Florida.
5. Sylvilagus foridanus, No. 49.587. Florida.
6. Oryctolagus cunicults, No. 49,645. Germany.
7. Lepus (Lepus) campestris, No. 49,623. Kansas.
8. Lepus (Pacilolagus) amcricanus virginianus, No. 969. New York.
9. Lepus (Macrotolagus) tc.rianus, No. 94,198, Newark valley, Nevada.
io. Pronolagus crassicaudatus. No. 22,972, South Africa.

Plate XCIII (Natural size)

Lu'mbar Verterr.e, seen from the side.

1. Lepus (Lepus) campestris, No. 49.622, Nebraska.
2. Lepus (Pacilolagus) amcricanus virginianus, No. 9́9, Nev York.
3. Pronolagus crassicaudatus No. 22,972, South Africa.
4. Oryctolagus cuniculus, No. 49.648, England.
5. Oryctolagus cuniculus, lop-ear, domestic, No. 49.3S6.

Plate XCIV (Natural size, except 9 and io enlarged twice)
Ribs and Lumbar Vertebre
I. Lepus terianus. No. 04,198, Newark valley, Nevada.
2. Lepus campestris, No. 49,623, Kansas.
3. Pronolagus crassicaudatus, No. 22,972, Soutlı Africa.
4. Oryctolagus cuniculus, No. 49,645, Germany.
5. Sylailagus floridanus mallurus, No. 89,514, Four-mile Run, Virginia,
6. Limnolagus palustris, No. 49.580. Florida.
7. Brachylagus idahocnsis, No. 93,595. Ione valley, Idaho.
8. Romerolagus nelsoni, No. 57,954. Mt. Popocatepetl, Mexico.

9 and io. Ochotona saxatilis, No. 9I, I88, Cabinet mountains, Idaho.
if. Romerolagus nelsoni, No. 57,95ł, Mt. Popocatepetl, Mexico.
12. Brachylagus idahocnsis, No. 93,595, Ione valley, Idaho.
13. Limnolagus paludicola. No. 49.580, Florida.

I4. Sylvilagus floridanus mallurus, No. S9.5I4, Four-mile Run, Virginia.

Plate XCV (Natural size)

Sterna and Costal Cartilages, ventral view.
I. Brachylagus idahocnsis, No. 93.595, Ione valley, Idaho.
2. Sylvilagus floridanus, No. 49.587, Florida-clavicles shown.
3. Lepus (Macrotolagus) texianus, No. 94,198, Newark valley, Nevada.
4. Lepus (Lepus) campcstris, No. 49,622, Nebraska.
5. Oryctolagus cuniculus, No. 49,645, Germany-clavicles shown.

Plate XCVI

Sterna and Costal Cartilages, ventral view.
I. Romerolagus nelsoni, No. 57,954, Mt. Popocatepetl, Mexico-clavicles shown. Natural size.
2. Ochotona saratilis, No. 91,188, Cabinet mountains, Idaho-clavicles shown. Twice natural size.
3. Pronolagus crassicaudatus, No. 22,972, South Africa, natural size.
4. Nesolagus netscheri, copied from Pl. 39, fig. 18, Major '99.
5. Limnolagus paludicola, No. 49.58o, Florida, nat'tral s* e.

Plate XCVII (Natural size)

Scaplle..

1. Lepus (Lepus) campestris. No. 49,623. Kansas.
2. Lepus (Macrotolagus) texianus, No. 94,198, Newark valley, Idaho.
3. Oryctolagus cuniculus, No. 49,648, England.
4. Pronolagus crassicaudatus, No. 22,972, South Africa.
5. Ochotona saratilis, No. 91,188, Cabinet mountains, Idaho.
6. Limnolagus paludicola, No. 49,58o, Florida.
7. Sylvilagus floridanus, No. 49.588, Florida.
8. Brachylagus idahocusis, No. 93,696, Ione valley, Idaho.
9. Romerolagus nelsoni, No. $57,95 \mathrm{t}$, Mt. Popocatepet1, Mexico.

Plate XCVIII (Natural size)

Bones of the Fore Arm

1. Lepus (Lepus) campestris, No. 49,623, Kansas.
2. Lepus (Macrotolagus) tcxianus, No. 94,198, Newark valley, Nevada.
3. Lepus (Pacilolagus) americanus virginianus, No. 969, New York.
4. Sylvilagus floridanus, No. 49,586, Florida.
5. Limnolagus paludicola, No. 49,580, Florida.
6. Brachylagus idahoensis. No. 93,696, Ione valley, Idaho.
7. Pronolagus crassicaudatus, No. 22,972, South Africa.
8. Oryctolagus cuniculus, No. 49,648, England.
9. Romerolagus nelsoni, No. 57,954 , Mt. Popocatepetl, Mexico.
10. Pentalagus furnessi, No. 5,583 (Wistar Institute), Liu Kiu islands.
ri. Ochotona saxatilis, No. 91,188, Cabinet mountains, Idaho.

Plate XCIX (Natural size)

Bones of the Leg

1. Lepus campestris, No. 49,622, Nebraska.
2. Oryctolagus cuniculus, No. 49,645, Germany.
3. Pronolagus crassicaudatus, No. 22,972 , South Africa.
4. Pentalagus furnessi, No. 5.583 (Wistar Institute), Liu Kiu islands.
5. Sylvilagus floridanus, No. 49.586, Florida.
6. Ochotona saxatilis, No. 91,188, Cabinet mountains, Idaho.
7. Ochotona ladacensis, No. 49,500 , Ladak, central Asia.
8. Brachylagus idahocnsis, No. 93,696, Ione valley, Idaho.
9. Romerolagus nelsoni, No. 57,954, Mt. Popocatepet1, Mexico.
ro. Limnolagus paludicola, No. 49,580, Florida.

Plate C (Natural size)

Hind Feet

r. Ochotona ladacensis, No. 49,500, Ladak, central Asia.
2. Romcrolagus nelsoni, No. 57,95t, Mt. Popocatepetl, Mexico.
3. Brachylagus idahoensis, No. 93,696, Ione valley, Idaho.
4. Pentalagus furnessi, No. 5.583 (Wistar Institute), Liu Kiu islands.
5. Limnolagus paludicola, No. 49,580, Florida.
6. Lepus campestris, No. 49,623, Nebraska.
7. Pronolagus crassicaudatus, No. 22,972, South Africa.
8. Oryctolagus cuniculus, No. 49,645, Germany.
9. Sylvilagus floridanus, No. 49,586, Florida.

[^0]: ${ }^{1}$ United States National Museum.
 ${ }^{2}$ American Museum of Natural History.
 ${ }^{3}$ Very young, of little use.
 *Skeleton incomplete.
 ${ }^{5}$ United States National Museum, collection Biological Survey, Department of Agriculture.
 ${ }^{6}$ Incomplete.

[^1]: ${ }^{1}$ United States National Museum.
 ${ }^{2}$ United States National Museum, collection Biological Survey, Department of Agriculture.

[^2]: Lepus (Lepus) arcticus Ross.
 Lepus (Lepus) arcticus rangsil Rhoads.
 Lepus (Lepus) arcticus canus Preble.
 Lepus (Lepus) campestris Bachman.
 Lepus (Lepus) corsicanus de Winton.
 Lepus (Lepus) creticus Barrett-Hamilton.
 Lepus (Lepus) cyprinus Barrett-Hamilton.
 Lepus (Lepus) europ.eus Pallas.
 Lepus (Lepus) gichiganus Allen.
 Lepus (Lepus) grenlandicus Rhoads.
 Lepus (Lepus) Labradorius Miller.
 Lepus (Lepus) lilfordi de Winton.
 Lepus (Lepus) othus Merriam.
 Lepus (Lepus) parnassius Miller.
 Lepus (Lepus) poadromus Merriam.
 Lepus (Lepus) timidus Linnæus.
 Lepus (Lepus) timidus ainu Barrett-Hamilton.
 Lepus (Lepus) timidus lutescens Barrett-Hamilton.
 Lepus (Lepus) transylvanicus Matschie.
 Lepus (Lepus) varronis Miller.
 Lepus (Pecilolagus) americanus Erxleben.

[^3]: ${ }^{1}$ An earlier name for ochotona the type.

[^4]: ${ }^{1}$ United States National Museum.
 ${ }^{2}$ American Museum of Natural History.
 ${ }^{3}$ United States National Museum, Collection of Biological Survey, United States Department of Agriculture.
 ${ }^{4}$ No specimen seen, taken from original description. (Schlegel, © So, p. 64.)
 *Series incomplete.

